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Preface

This report, as a Master’s Thesis report, contains research works on model analysis and
state estimation of air-cooled synchronous generator and submitted to the Department of
Electrical, IT and Cybernetics, University of South-Eastern Norway in partial fulfillment
of the requirements for Master of Science in Electrical Power Engineering. This thesis work
has been started in January 2019. Out of several tasks that should be carried out as given
in Appendix A, the first task explaining about the thermal model extension with electric
model constraining field voltage and terminal currents has not been carried out because
of availability of electrical power and voltage data for calculating terminal currents. The
report mainly contains model developments, analysis, and state estimation.

The thesis work would not have been successful without continuous supervision I received
from Prof. Bernt Lie. I would like to have special gratitude towards him. It was my
pleasure to work with him and would love to work in future if any. I would also like to
express my gratitude towards Associate Prof. Thomas Øyvang for his help and guidance.
My special thanks go to my friend, Sabin who helped me with SolidWorks sketch. The
report would not have been meticulously examined without working together with my
classmate Prabesh. My special reverence goes to my family members who have always
encouraged me for further education. A big salutation goes to Julia Community who are
trying to develop such an elegant and lovely product for mankind.

Porsgrunn, 14th May 2019

Madhusudhan Pandey
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w is running inside the
heat exchager to cool hot air from generator outlet, with mass flow rate ṁa
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Ŵ Introducࢢon

This chapter deals with introductory concepts with a section including background, scope,
and outline of the thesis report. In a way, this chapter deals with a big picture of the task
that is carried out.

Ŵ.Ŵ Background

In a European hydropower generation, the power factor of a synchronous generator is
constrained to the range [0.85,0.95] [1]. And for a Norwegian hydropower system, the
power factor is constrained below 0.86 [2]. There is always a tradeoff between choosing a
higher and lower power factor normally in a hydropower system. A higher power factor
means less reactive power (unexploited power) and more active power (exploited power)
through the system, however, results in more currents, resulting in more heating of the
hydro-generators. Thus, relaxation on constrained power factor, make possibilities on the
exploitation of more active power in case of operational challenges, however; this should
be balanced with thermal heating and, for the lifetime of the generator.

A brief review of modern thermal analysis of electrical machines is provided in [3]. The
thermal models are based particularly on lumped-parameter thermal network (LPTN)
[4, 5, 6], finite element analysis (FEM), and computational fluid dynamics (CFD) [7, 8].
A totally enclosed water-cooled thermal model of synchronous machines for an electric
vehicle has been purposed in [9]. Recently, a totally enclosed thermal model of air-cooled
hydro generator has been developed in [10] using closed-loop heat exchanger model for
cooling heated air from the outlet of generator. The similar model has also been developed
in [11]. Our1 research study is primarily focused to further developed the model as tasks
described in Appendix A.

Ŵ.ŵ Scope and Objecࢢves

A mathematical model of the air-cooled synchronous generator is being implemented.
The model developed in [11] is further analyzed with temperature dependent resistances

1Here our and we is referred to author and readers.
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1 Introduction

Table 1.1: Julia packages used

Packages Version Packages Version
BoundaryValueDiffEq 2.2.3 LaTeXStrings 1.0.3
CSV 0.4.3 NLsolve 4.0.0
ControlSystems 0.5.1 OMJulia 0.0.0
DataFrames 0.17.1 Optim 0.18.1
DiffEqParamEstim 1.6.0 OrdinaryDiffEq 5.5.0
DiffEqSensitivity 3.2.0 Plots 0.24.0
DifferentialEquations 6.3.0 Polynomials 0.5.2
Distributions 0.17.0 PyPlot 2.8.1
ForwardDiff 0.10.3 Random —
IJulia 1.18.1 Sundials 3.3.0
JLD 0.9.1 Taro 0.7.0

and specific heat capacities of metals, air, and water. The scope of this thesis lies in
implementing state estimation algorithms, mainly Unscented Kalman Filter (UKF), and
Ensemble Kalman Filter (EnKF) and comparing them. Before implementing these al-
gorithms, models are simulated, linearized, checked for the stability of the linearized
model, checked for controllability and observability. Similarly, local parameter sensitiv-
ity analysis is done. Furthermore, few model parameters are optimized for better fitting
of model with experimental data from [12].

Ŵ.Ŷ So[ware Requirements

For implementing mathematical models, plotting of results, algorithms, loading data files,
and for other common tasks we are using, open-source2 programs, OpenModelica3, OMJu-
lia4, and Julia language5 with several packages. A few important packages that we are
using for accomplishing this thesis research are given in Table 1.1.

2https://en.wikipedia.org/wiki/Open_source
3It is an open-source environment for modeling and simulation. https://openmodelica.org . The version

used is “OMEdit v1.14.0-dev-44-gd66d325c (64-bit)”
4https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/omjulia.html
5https://julialang.org/
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1.4 Outline of Report

Ŵ.ŷ Outline of Report

In Chapter 2 we will be discussing the overview of a case study hydrogenerator at Åbjøra,
Norway. The detailed design consideration is not done, however, the general layout and
a basic outline on how a totally air enclosed hydro generator is set up is presented.

Chapter 3 describes the mathematical model, Differential Algebraic Equation (DAE) and
Ordinary Differential Equation (ODE) of air-cooled synchronous generator. The models
are developed considering constant temperature and temperature dependent resistance of
rotor and stator copper of the hydrogenerator, and specific heat capacities of metals, air,
and water.

We will then present the simulation of DAE and ODE models in Chapter 4. Similarly,
Chapter 5 is linearization, stability, controllability, and observability of our generator
models while Chapter 6 is on parameters sensitivity analysis, an overview of experimental
data, simulation versus real measurements and parameters optimization. Chapter 7 will
discuss state estimation algorithms, UKF and EnKF.

Chapter 8 will be for results and discussion. Future works and conclusion are presented
in Chapter 9 and 10 respectively.

Similarly, Appendix A contains task descriptions that should be carried out. Appendix
B list the model equations for all DAE models. Furthermore, Appendix C contains the
code listing in Julia and Modelica. Modelica codes are written in OpenModelica editor
while Julia codes are written in Jupyter notebook. And finally, a submitted draft paper
for SIMS 2019 is given in Appendix D.
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ŵ Overview of Air-cooled Synchronous
Generator

The case study, for implementing a mathematical model of air-cooled synchronous gen-
erator is taken from a vertically mounted 103 MVA air-cooled hydro generator, Åbjøra,
Norway. The machine data is given in Table 2.1.

Figure 2.1 shows the stator and rotor configuration. The stator iron consists of 46 slices
of iron core, where Figure 2.1(a) shows one slice among 46 slices in real stator of hydro
generator at Åbjøra (We are only showing 10 slices and figures are not on scale). These
slices are together connected with nuts and bolt to create a stator iron which consists of
198 slots in total for stator windings (We are only showing 10 slots). And, thus, a gap
to circulate hot air coming from the air gap of rotor and stator is created as shown in
the side view of stator iron in Figure 2.1(b). Figure 2.1(c) shows an isometric view of the
stator and Figure 2.1(d) shows the salient pole rotor configuration1.

Similarly, Figure 2.2 shows the overall setup consisting of the rotor and stator enclosed
inside a frame. The heat exchanger is a counter-current type and mounted at the top of
the frame as shown in the figure.

1It should be noted that the all design consideration is not taken here. The purpose of these diagrams
is to show the basic outline for the typical hydro generator setup at the plant.
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2 Overview of Air-cooled Synchronous Generator

Table 2.1: Machine data from Åbjøra hydrogenerator

Quantity Symbol Value Unit
Rated power Sn 103 MVA
Rated power factor cosϕn 0.9 -
Rated voltage Vt 11 kV
Rated current It 5406 A
Rated field current If 1065 A
Stator bore D 3.4 m
Stator gross iron length lg 2.2 m
Number of slots per pole and phase qs 51

2 -
Number of parallel current paths cs 3 -
Number of conductors per slot ns 2 -
Number of field turns per pole nf 401

2 -
Type of strand transposition - Roebel bar -
Insulation temperature class - F -
Frequency f 50 Hz
Number of polepairs p 6 -
Synchronous reactance xd 1.087 p.u
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a) Part of a stator

b) Side view of stator

.

c) Isometric view of stator

.

d) Salient pole rotor

Figure 2.1: The stator and rotor configuration (Not on scale or design consideration)
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2 Overview of Air-cooled Synchronous Generator

a) Heat exchanger
b) Isometric view of overall setup

.

c) Overall setup front view

Figure 2.2: The overall enclosed configuration of air-cooled hydrogenerator (Not on scale or design con-
sideration)
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Ŷ Thermal Model of Air-cooled
Synchronous Generator

In a recent work of Øyvang et al. [10] a thermal model for a totally enclosed air-cooled
synchronous generator has been developed. Similar model, with more general configur-
ation and more efficient heat exchanger, has been developed in [11] using concepts and
notations from [13]. Figure 3.1 shows the operation of the thermal model of the air-cooled
synchronous generator. The cold air out of the heat exchanger is blown by a fan into the
rotor/stator air gap. The air is heated by heat flow from the rotor, air gap windage and
bearing friction. Furthermore, the air is forced into the iron cores which then gets heated
by the heat flow from the iron cores. The heated air is now collected at the stator’s outlet
and passed through the heat exchanger. The heated air is then cooled at the desired
temperature using continuous cold water circulation in the heat exchanger and then feed
again into the air gap as a continuous process. The heat exchanger is feed with cold
water, with mass flow rate ṁw at temperature T c

w . The air mass flow rate is ṁa with tem-
perature T h

a a at stator outlet and heat exchanger entry. The rotor copper heat source,
Q̇σ

r , is due to rotor field current, If. Similarly the stator copper heat source, Q̇σ
s , is due

to stator terminal current It . Q̇σ
Fe is stator iron heat source, and Q̇σ

f is heat generated
due to friction in stator/rotor air gap. The thermal operation of air-cooled synchronous
generator is mainly influenced by ṁw, ṁa, T c

w, Q̇σ
Fe, Q̇σ

f , It and If. It is of interest to see
the behavior of evolution in the rotor, stator and iron core temperatures indicated by Tr,
Ts and TFe, respectively. The functional diagram for the air-cooled synchronous generator
is shown in Figure 3.2 relating inputs and outputs.

The rotor copper heat source, Q̇σ
r , is considered to be resistive heating with 10% magnet-

ization loss. Similarly, the stator copper heat source is considered due to joules heating
of stator resistance. The stator iron heat source, Q̇σ

Fe is considered to be constant and
independent of operating conditions. The air gap heating rate, Q̇σ

f is considered to be 80%
of power loss due to friction at air gap, Ẇf.

Q̇σ
r = 1.1RrI2

f (3.1)
Q̇σ

s = 3RsI2
t (3.2)

Q̇σ
f = 0.8Ẇf (3.3)
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3 Thermal Model of Air-cooled Synchronous Generator

Figure 3.1: Operation of the thermal model of the air-cooled synchronous generator [11].

Figure 3.2: Functional diagram for air-cooled synchronous generator.

The rotor to air gap power loss Q̇r2δ , stator copper to stator iron power loss Q̇s2Fe, and
finally, power loss from stator iron to hot air out of the generator Q̇Fe2a as shown in Figure
3.1 is given as,

Q̇r2δ = U Ar2δ

(
Tr −T δ

a

)
(3.4)

Q̇s2Fe = U As2Fe (Ts −TFe) (3.5)

Q̇Fe2a = U AFe2a

(
TFe −T h

a

)
. (3.6)

Ŷ.Ŵ Model Development

From the functional diagram, Figure 3.2,
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3.1 Model Development

Inputs,
u =

(
ṁw, ṁa, If, It, Q̇σ

Fe, Q̇
σ
f
)

(3.7)

and Outputs,
y = (Tr,Ts,TFe) (3.8)

The objective of the model is to see how the inputs affect the outputs.

Few things are assumed while developing the model. The metal temperatures are assumed
to be homogeneous as indicated with impeller symbol in Figure 3.1 and this is because
heat conduction in rotor copper, stator copper and iron is assumed to be very large than
the heat transported across the metal boundaries. Furthermore, we assume that air and
water temperature change are faster than the metal volumes. As an implication of this
assumption, we can use relevant balance laws. The model development is described in
three steps.

Ŷ.Ŵ.Ŵ Step Ŵ: Describing relevant balance laws

Since there is no change of masses in metals (stator copper, rotor copper, and stator
iron) mass balance for metals are unimportant. Similarly, we assume air having constant
density throughout the operation we can neglect mass balance for air as well. However, we
want to see the evolution of metals temperatures during the operation of the synchronous
generator. This inferred to use thermal energy balance. The thermal energy balance
equation in terms of internal energy, enthalpy rate, work rate, and heat flow is given by
Eq. 3.9.

dU
dt

= Ḣi − Ḣe −Ẇf +Ẇv + Q̇ (3.9)

As terms like power due to friction (Ẇf), and added mechanical power to change the
system volume given by (Ẇv) are non-trivial, we can neglect these quantities from the
energy thermal balance equation, Eq. 3.9. The energy thermal balance equation after
assumption is now given in Eq. 3.10.

dU
dt

= Ḣi − Ḣe + Q̇. (3.10)

Ŷ.Ŵ.ŵ Step ŵ: Relaࢢng balance equaࢢons to output quanࢢࢢes

Here, internal energy, U , can be related as,

U = H − pV (3.11)
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3 Thermal Model of Air-cooled Synchronous Generator

where enthalpy, H, is given in terms of specific enthalpy as,

H = mĤ.

The differential specific enthalpy[13, p.358] is given by 3.12,

dĤ = ĉpdT +V̂ (1−αpT )d p. (3.12)

For an ideal gases1, αp =
1
T , while for solids, αp = 0.

Thus for ideal gases, Eq. 3.12can be written as,

Ĥ = Ĥo +
∫ T

T o
ĉpdT.

Similarly for solids specific enthalpy is given as

Ĥ = Ĥo +
∫ T

T o
ĉpdT +V (p− po).

We are assuming constant pressure in metals and this reduces specific enthalpy expression
to,

Ĥ = Ĥo +
∫ T

T o
ĉpdT (3.13)

So the expression for specific enthalpy for both air and metals is given by Eq. 3.13.

The specific heat capacity, ĉp , is dependent on temperature and often represented with
a function in temperature. If ĉp is considered temperature independence then Eq. 3.13
can be written as,

Ĥ = Ĥo + ĉp(T −T o). (3.14)
If ĉp is function of temperature than Eq. 3.13 can be written as,

Ĥ = Ĥo +
∫ T

T o
ĉp(T )dT. (3.15)

ĉp(T ) is often represented by power series in temperature, T , in Kelvin. The 7-coefficient2
power series has been purposed in [14, 15] for molar heat capacity at constant pressure
at temperature for the standard state, for a specified range of temperature, given by Eq.
3.16.

c̃p(T )
R

= a1T−2 +a2T−1 +a3 +a4T +a5T 2 +a6T 3 +a7T 4 (3.16)

where R is Universal gas constant.

The 7-coefficients power series can be further realized with linear and quadratic approx-
imations. A comparison plot for linear, quadratic and 7-coefficients form for air, water,
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3.1 Model Development

Figure 3.3: 7-coefficients, linear and quadratic approximations plots of c̃p(T )
R for copper, iron, air, and

water.
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3 Thermal Model of Air-cooled Synchronous Generator

copper, and iron is shown in Figure 3.3. The code listing to produce this plot is given in
Appendix C Jupyter notebook number 10.

We will be considering linear approximation for temperature dependent molar heat capa-
city as given in Eq. 3.17.

c̃p(T )
R

= a+bT (3.17)

Molar specific heat capacity can be converted into specific heat capacity with relation
given as, ĉp(T ) =

c̃p(T )
M , where M is molecular mass.

The integral in Eq. 3.15 can be calculated which results expression for Eq. 3.15 to be,

Ĥ = Ĥo +
R

M

((
aT +

b
2

T 2
)
−
(

aT o +
b
2

T o2
))

(3.18)

Furthermore, the enthalpy rate is given as,

Ḣ = ṁĤ

Similarly, the temperature dependency of resistance can be realized with Eq. 3.19.

R(T ) = R(T o)(1+α (T −T o)) (3.19)

where α is the temperature coefficient of resistance for material as per choice.

Finally, the heat rate flow equations are taken as described in Chapter 3.

Heat exchanger model

A generic distributed tube and shell heat exchanger configurations are described in [13,
p.389]. Out of three tube-and-shell heat exchanger configuration, cross-current, co-current,
and counter-current, we will be discussing the counter-current heat exchanger model since
the case study has operated with the counter-current heat exchanger. The tube is con-
sidered to be flown with the water and the shell with the air. The heat exchanger model
is assumed to be a steady state model. A typical tube-and-shell counter-current heat
exchanger is shown in Figure 3.4.

For the counter-current configuration of heat exchanger, the model equations are given
as,

dTw

dx
=

U ℘
ĉp,wṁw

(Tw −Ta) (3.20)

dTa

dx
=

U ℘
ĉp,aṁa

(Tw −Ta) (3.21)

1We are considering air with properties of an ideal gas.
2These coefficients are also known as NASA Lewis coefficients

32



3.1 Model Development

Figure 3.4: A shell-tube configuration of counter-current heat exchanger. The cold water, with mass flow
rate ṁw, at temperature T c

w is running inside the heat exchager to cool hot air from generator
outlet, with mass flow rate ṁa at temperature T h

a . Q̇w2a represent negative heat transfer from
water to air.

with boundary conditions as, Tw (x = Lx) = T c
w and Ta (x = 0) = T h

a . It should be noted that
tube and shell temperatures are space derivative.

When the specific heat capacities for fluid (air, water) inside the heat exchanger are con-
sidered to be constant, the analytical solution for a two point boundary value problem
is given in [13, p.400]. However, it is difficult to find an analytical solution when spe-
cific heat capacities are temperature dependent, so a numerical solution will be proposed
wherever needed.

Ŷ.Ŵ.Ŷ Step Ŷ: Model equaࢢons

It is our interest to see the temperature dependent and temperature independent of resist-
ance and specific heat capacity; and its effect on metal temperatures. Before developing
the models we tend to develop notations to distinguish different models. First, R and R(T)
will represent models with constant and temperature dependent resistances respectively.
Second, ĉp and ĉp(T) will represent constant and temperature dependent specific heat
capacity. We can list four models as,

• Model 1 (ĉp,R): Resistances and specific heat capacities are both independent of
temperature.

• Model 2 (ĉp,R(T)): Resistances are temperature dependent while specific heat
capacities are temperature independent.

• Model 3 (ĉp(T),R): Resistances are constant and specific heat capacities are tem-
perature dependent.
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3 Thermal Model of Air-cooled Synchronous Generator

• Model 4 (ĉp(T),R(T)): Resistances and specific heat capacities are both temper-
ature dependent.

Model 3 and Model 4 have further two models each Model 3a and 3b and Model 4a and
4b, respectively. Model 3a is considering specific heat capacities, for fluid, independent
of the temperature inside the heat exchanger and Model 3b is considering specific heat
capacities dependent of the temperature inside the heat exchanger, and same applies for
Model 4a and 4b. This variation is taken into consideration to see the effect of specific
heat capacities inside the heat exchanger. It is reasonable to have this variation as it
is often difficult to find the analytical solution for heat exchanger models and numerical
solution for the two point boundary value problem may have higher computational speed
and cost.

Ŷ.Ŵ.Ŷ.Ŵ Model equaࢢons for Model Ŵ (ĉp,R):

The balance equations for rotor copper, stator copper and stator iron can be written as,

dUr

dt
= Q̇σ

r − Q̇r2δ (3.22)
dUs

dt
= Q̇σ

s − Q̇s2Fe (3.23)
dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe. (3.24)

Similarly for rotor/stator air gap, and forced-air inside the stator iron the balance equation
are given as,

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (3.25)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (3.26)

The internal energies for rotor copper, stator copper and stator iron are,

Ur = Hr − paVr (3.27)
Us = Hs − paVs (3.28)
UFe = HFe − paVFe. (3.29)

The total enthalpies are,

Hr = mrĤr (3.30)
Hs = msĤs (3.31)
HFe = mFeĤFe. (3.32)
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3.1 Model Development

Similarly we can list specific enthalpies as,

Ĥr = Ĥo
Cu + ĉp,Cu (Tr −T o

Cu) (3.33)
Ĥs = Ĥo

Cu + ĉp,Cu (Ts −T o
Cu) (3.34)

ĤFe = Ĥo
Fe + ĉp,Fe (TFe −T o

Fe) (3.35)
Ĥc

a = Ĥo
a + ĉp,a (T c

a −T o
a ) (3.36)

Ĥδ
a = Ĥo

a + ĉp,a

(
T δ

a −T o
a

)
(3.37)

Ĥh
a = Ĥo

a + ĉp,a

(
T h

a −T o
a

)
. (3.38)

Furthermore, we can list enthalpy flow rates for air as,

Ḣc
a = ṁaĤc

a (3.39)
Ḣδ

a = ṁaĤδ
a (3.40)

Ḣh
a = ṁaĤh

a . (3.41)

The heat rate equations are listed as,

Q̇σ
r = 1.1RrI2

f (3.42)
Q̇σ

s = 3RsI2
t (3.43)

Q̇σ
f = 0.8Ẇf (3.44)

Q̇r2δ =UAr2δ

(
Tr −T δ

a

)
(3.45)

Q̇s2Fe = U As2Fe (Ts −TFe) (3.46)

Q̇Fe2a = U AFe2a

(
TFe −T h

a

)
. (3.47)

Finally the heat exchanger model equations solving the two point boundary value problem,
the analytical solution is given as,

T h
w =

Nw
St

(
1− e−N∆

St

)
T h

a +N∆
Ste

−N∆
StT h

w

Nw
St −Na

Ste
−N∆

St
(3.48)

T c
a =

N∆
StT

h
a +Na

St

(
1− e−N∆

St

)
T c

w

Nw
St −Na

Ste
−N∆

St
(3.49)

Q̇w2a =
e−N∆

St −1
1

ĉp,aṁa
e−N∆

St − 1
ĉp,wṁw

(
T c

w −T h
a

)
(3.50)
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3 Thermal Model of Air-cooled Synchronous Generator

where,

Nw
St =

U Ax

ĉp,wṁw
(3.51)

Na
St =

U Ax

ĉp,aṁa
(3.52)

N∆
St = Nw

St −Na
St. (3.53)

Ŷ.Ŵ.Ŷ.ŵ Model equaࢢons for Model ŵ (ĉp,R(T)):

When the resistances of rotor copper and stator copper are considered to be temperature
dependent, the model equations are identical as that of Model 1, however; Eq. 3.42 and
Eq. 3.43 are replaced as,

Q̇σ
r = 1.1Rr (1+αCu (Tr −T o

Cu)) I2
f (3.54)

Q̇σ
s = 3Rs (1+αCu (Ts −T o

Cu)) I2
t . (3.55)

Ŷ.Ŵ.Ŷ.Ŷ Model equaࢢons for Model Ŷ (ĉp(T),R):

• Model 3a: For this version of the model, we will be considering specific heat
capacities as temperature dependent only outside of heat exchanger i.e. for metals
and air inside the generator. The equations relating specific enthalpies in Model 2
should now be changed with the temperature dependence of specific heat capacities.
These are given as,

Ĥr = Ĥo
Cu +

∫ Tr

T o
Cu

ĉp,Cu(T )dT (3.56)

Ĥs = Ĥo
Cu +

∫ Ts

T o
Cu

ĉp,Cu(T )dT (3.57)

ĤFe = Ĥo
Fe +

∫ TFe

T o
Fe

ĉp,Fe(T )dT (3.58)

Ĥc
a = Ĥo

a +
∫ T c

a

T o
a

ĉp,a(T )dT (3.59)

Ĥδ
a = Ĥo

a +
∫ T δ

a

T o
a

ĉp,a(T )dT (3.60)

Ĥh
a = Ĥo

a +
∫ T h

a

T o
a

ĉp,a(T )dT (3.61)
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where the integral term can be expanded as,

∫ Tr

T o
Cu

ĉp,Cu(T )dT =
R

MCu

((
aCuTr +

bCu

2
T 2

r

)
−
(

aCuT o
Cu +

bCu

2
T o2

Cu

))
∫ Ts

T o
Cu

ĉp,Cu(T )dT =
R

MCu

((
aCuTs +

bCu

2
T 2

s

)
−
(

aCuT o
Cu +

bCu

2
T o2

Cu

))
∫ TFe

T o
Fe

ĉp,Fe(T )dT =
R

MFe

((
aFeTFe +

bFe

2
T 2

Fe

)
−
(

aFeT o
Fe +

bFe

2
T o2

Fe

))
∫ T c

a

T o
a

ĉp,a(T )dT =
R

Ma

((
aaT c

a +
ba

2
T c2

a

)
−
(

aaT o
a +

ba

2
T o2

a

))
∫ T δ

a

T o
a

ĉp,a(T )dT =
R

Ma

((
aaT δ

a +
ba

2
T δ2

a

)
−
(

aaT o
a +

ba

2
T o2

a

))
∫ T h

a

T o
a

ĉp,a(T )dT =
R

Ma

((
aaT h

a +
ba

2
T h2

a

)
−
(

aaT o
a +

ba

2
T o2

a

))
.

• Model 3b: For this version of the model, we will be considering specific heat
capacities depending on temperature for all metals and air inside the generator,
and fluids (air, water) inside the heat exchanger. As specific heat capacities inside
the heat exchanger are temperature dependent, the numerical solution is proposed
using the two point boundary value problem. For counter-current heat exchanger,
it is given as,

dTw

dx
=

U ℘
R

Mw
(aw +bwTw) ṁw

(Tw −Ta)

dTa

dx
=

U ℘
R
Ma

(aa +baTa) ṁa
(Tw −Ta)

with boundary conditions as, Tw(x = Lx) = T c
w and Ta(x = 0) = T h

a .

Ŷ.Ŵ.Ŷ.ŷ Model equaࢢons for Model ŷ (ĉp(T),R(T)):

Model 4 is similar to Model 3, however, we will take consideration of resistances depending
on temperature as described in Model 2.
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3 Thermal Model of Air-cooled Synchronous Generator

Ŷ.ŵ DAE Formulaࢢon

The standard form of DAE is given as,

dx
dt

= f (x,z,u;θ)

0 = g(x,z,u;θ)
y = h(x,z,u;θ).

Out of five differential variables from balance equations, Uδ
a and Uh

a are in steady state
conditions which implies their derivatives are zero. This result with differential variable,to
be,

x = (Ur,Us,UFe)

Inputs and outputs are given by Eq. 3.7 and Eq. 3.8.

Similarly, we can list algebraic variables and model parameters for different models.

Ŷ.ŵ.Ŵ DAE formulaࢢon for Model Ŵ

Algebraic variables,

z =
(

Q̇σ
r , Q̇

σ
s , Q̇

σ
f , Q̇r2δ , Q̇s2Fe, Q̇Fe2a,

Ĥr, Ĥs, ĤFe, Ĥc
a , Ĥ

δ
a , Ĥ

h
a ,Hr,Hs,HFe, Ḣc

a , Ḣ
δ
a , Ḣ

h
a ,

Nw
St,N

a
St,N

∆
St, Q̇w2a,T h

w,T
c

a ,T
δ

a ,T h
a ,Tr,Ts,TFe

)
and the parameters are,

θ =
(

pa, ĉp,a, ĉp,w, ĉp,Cu, ĉp,Fe,mr,ms,mFe,

V̂Cu,V̂Fe,Vr,Vs,VFe,U Ar2δ ,U As2Fe,U AFe2a,

hAax,hAwx,U Ax, Ĥo
a , Ĥ

o
Cu, Ĥ

o
Fe,T

o
a , T̂

o
Cu,T

o
Fe,Rr,Rs

)
.

Ŷ.ŵ.ŵ DAE formulaࢢon for Model ŵ

The algebraic variables are same, however, with one extra parameter to be added is αCu.

38



3.3 ODE Formulation

Ŷ.ŵ.Ŷ DAE formulaࢢon for Model Ŷ

For Model 3a algebraic variables are same as that of Model 1 and Model 2. However, the
parameters that need to be added are aCu,bCu,aFe,bFe,aa,ba,R,MCu,MFe,Ma.

Furthermore, for Model 3b as we do not have the analytical solution for the heat exchanger
model, the algebraic variables get reduced and are different than other models. Algebraic
variables and parameters are given as,

z =
(

Q̇σ
r , Q̇

σ
s , Q̇

σ
f , Q̇r2δ , Q̇s2Fe, Q̇Fe2a,

Ĥr, Ĥs, ĤFe, Ĥc
a , Ĥ

δ
a , Ĥ

h
a ,Hr,Hs,HFe, Ḣc

a , Ḣ
δ
a , Ḣ

h
a ,

T h
w,T

c
a ,T

δ
a ,T h

a ,Tr,Ts,TFe

)

θ =
(

pa,aCu,bCu,aFe,bFe,aa,ba,aw,bw,mr,ms,mFe,

V̂Cu,V̂Fe,Vr,Vs,VFe,U Ar2δ ,U As2Fe,U AFe2a,

U ℘, Ĥo
a , Ĥ

o
Cu, Ĥ

o
Fe,T

o
a , T̂

o
Cu,T

o
Fe,Rr,Rs,

R,MCu,MCu,MFe,Ma

)
.

Ŷ.ŵ.ŷ DAE formulaࢢon for Model ŷ

DAE formulation for Model 4 is similar to Model 3, however with added parameter to be
αCu.

Complete set of equations for DAE models are given in Appendix B.

Ŷ.Ŷ ODE Formulaࢢon

DAE models are often regarded lucid in formulating models of physical systems since we
avoid a lot of equations manipulation. Furthermore, DAE models are easily handled with
a tool like OpenModelica using Modelica language. DAE models are often more complex
than their corresponding ODE models because of large numbers of equations and model
parameters, however; it contains a lot of information about the model.

It is often rigorous, since it is very complex for DAEs, to develop the ODE model to
study the stability of the developed model. DAE models can easily be converted into
ODE models with formula manipulation.
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3 Thermal Model of Air-cooled Synchronous Generator

ODE models, from DAE models, are obtained by manipulating balance equations to
output quantities, and in our case, they are Tr, Ts and TFe. By inserting expression
of enthalpies to internal energy, and then to balance equation differential equations in
outputs are obtained. Furthermore, we will be inserting expression for heat flow rate and
enthalpy rate equations into the balance equations to get final ODE expression for our
models.

Ŷ.Ŷ.Ŵ ODE formulaࢢon for Model Ŵ

After formula manipulation, the ODE model for Model 1 is,

mrĉp,Cu
dTr

dt
= 1.1RrI2

f −U Ar2δ

(
Tr −T δ

a

)
(3.62)

msĉp,Cu
dTs

dt
= 3RsI2

t −U As2Fe (Ts −TFe) (3.63)

mFeĉp,Fe
dTFe

dt
= U As2Fe (Ts −TFe)−U AFe2a

(
TFe −T h

a

)
+ Q̇σ

Fe. (3.64)

Similarly, for air inside the generator,

0 = ṁaĉp,a

(
T c

a −T δ
a

)
+U Ar2δ

(
Tr −T δ

a

)
+ Q̇σ

f (3.65)

0 = ṁaĉp,a

(
T δ

a −T h
a

)
+U AFe2a

(
TFe −T h

a

)
(3.66)

and the heat exchanger model equation as,(
Nw

St −Na
Ste

−N∆
St

)
T c

a = N∆
StT

h
a +Na

St

(
1− e−N∆

St

)
T c

w. (3.67)

Ŷ.Ŷ.ŵ ODE formulaࢢon for Model ŵ

Applying the same reduction process from DAE to ODE as in Model 1 formulation, we
can find ODE for Model 2.

The ODE for Model 2 is similar as of Model 1, however, with a slight variation due to
resistance dependence of temperature. As of same ODE formulation of Model 1, the rotor
copper and stator copper temperatures differential equation is changed and given as,

mrĉp,Cu
dTr

dt
= 1.1Rr (1+αCu (Tr −T o

Cu)) I2
f −U Ar2δ

(
Tr −T δ

a

)
(3.68)

msĉp,Cu
dTs

dt
= 3Rs (1+αCu (Ts −T o

Cu)) I2
t −U As2Fe (Ts −TFe) (3.69)
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3.3 ODE Formulation

Ŷ.Ŷ.Ŷ ODE formulaࢢon for Model Ŷ

For Model 3 it is easier to follow up with ODE formulation of Model 4, given in up-
coming Subsection 3.3.4with the difference is only that resistances are not temperature
dependent.

Ŷ.Ŷ.ŷ ODE formulaࢢon for Model ŷ

The ODE model for Model 4a is given as,

mr
R

MCu
(aCu +bCuTr)

dTr

dt
= 1.1Rr (1+αCu (Tr −T o

Cu)) I2
f −U Ar2δ

(
Tr −T δ

a

)
(3.70)

ms
R

MCu
(aCu +bCuTs)

dTs

dt
= 3Rs (1+αCu (Ts −T o

Cu)) I2
t −U As2Fe (Ts −TFe) (3.71)

mFe
R

MFe
(aFe +bFeTFe)

dTFe

dt
= U As2Fe (Ts −TFe)−U AFe2a

(
TFe −T h

a

)
+ Q̇σ

Fe. (3.72)

Similarly, for air inside the generator,

0 = ṁa
R

Ma

(
(aCu +bCuT c

a )T c
a −

(
aCu +bCuT δ

a

)
T δ

a

)
+U Ar2δ

(
Tr −T δ

a

)
+ Q̇σ

f (3.73)

0 = ṁa
R

Ma

(
(aCu +bCuT c

a )T δ
a −

(
aCu +bCuT h

a

)
T h

a

)
+U AFe2a

(
TFe −T h

a

)
. (3.74)

And, finally, for the heat exchanger model, we will not be considering temperature de-
pendence of specific heat capacity for air and water inside the heat exchanger,(

Nw
St −Na

Ste
−N∆

St

)
T c

a = N∆
StT

h
a +Na

St

(
1− e−N∆

St

)
T c

w. (3.75)

However, for Model 4b, as we will be considering temperature dependence of specific heat
capacity for air and water inside the heat exchanger, the expression for the heat exchanger
is given by boundary value equations given as,

dTw

dx
=

U ℘
R

Mw
(aw +bwTw) ṁw

(Tw −Ta) (3.76)

dTa

dx
=

U ℘
R
Ma

(aa +baTa) ṁa
(Tw −Ta) (3.77)

with boundary conditions as, Tw (x = Lx) = T c
w and Ta (x = 0) = T h

a .
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ŷ Simulaࢢon of DAE and ODE Models

So far we have developed model equations for several models in Chapter 2.

The DAE model equations can easily be implemented in tools like OpenModelica and
then simulated. Similarly, as an alias, the model developed in OpenModelica can easily
interact using advance OMJulia functionality for further analysis. Furthermore, DAE
models can also be solved using DAE solver packages under Julia language.

In this report, all of the DAE models except Model 3b and Model 4b are not formulated in
OpenModelica as it is difficult to obtain algebraic equations solving analytical solutions
for temperature dependent heat exchanger steady-state models. Model 3b and Model 4b
are solved numerically using Julia language.

The ODE models for Model 1 and 2 can be reduced in the form given as,

M1
dx
dt

= M2x+M3z+ v (4.1)

N1z = N2x+w (4.2)
.

For Model 1 we have,
x = (Tr,Ts,TFe)

z = (T c
a ,T

δ
a ,T h

a )

M1 = diag(mrĉp,Cu,msĉp,Cu,mFeĉp,Fe)

M2 =

 −U Ar2δ 0 0
0 −U As2Fe U As2Fe
0 U As2Fe −U As2Fe −U AFe2a



M3 =

 0 U Ar2δ 0
0 0 0
0 0 U AFe2a


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and

v =

 1.1RrI2
f

3RsI2
t

Q̇σ
Fe

 .

Similarly,

N1 =

 −ṁaĉp,a ṁaĉp,a +U Ar2δ 0
0 −ṁaĉp,a ṁaĉp,a +U AFe2a

Nw
St −Na

Ste
−N∆

St 0 −N∆
St



N2 =

 U Ar2δ 0 0
0 0 U AFe2a
0 0 0



w =

 Q̇σ
f

0

Na
St

(
1− e−N∆

St

)
T c

w

 .

Similar formualtion can be done for ODE Model 2.

These ODE models can be easily formulated in Julia language and then simulated and
analyzed.

The parameters and operating conditions for thermal model air-cooled synchronous gen-
erator are given in Table 4.1 and 4.2.

ŷ.Ŵ Models Implementaࢢon

In this section, we will discuss models implementation in programming languages. Models
are implemented in Modelica [16] language using OpenModelica as a tool. The imple-
mented DAE model in Modelica can be run using OMJulia from Julia. Furthermore, we
will also be using DifferentialEquations [17] package from Julia to implement our DAE
and ODE models.
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4.1 Models Implementation

Table 4.1: Parameters for the thermal model of air-cooled synchronous generator.

Quantity Symbol Value
Atmoshpheric pressure pa 1.01∗105N/m2

Specific heat capacity, air ĉp,a 1.15 kJ/kg/K
Specific heat capacity, water ĉp,w 4.2 kJ/kg/K
Specific heat capacity, copper ĉp,Cu 385 J/kg/K
Specific heat capacity, iron ĉp,Fe 465 J/kg/K
Copper mass, rotor mr 9260 kg
Copper mass, stator ms 6827 kg
Iron mass, stator mFe 71200 kg
Specific volume, copper V̂Cu 0.112 L/kg
Specific volume, iron V̂Fe 0.127 L/kg
Heat transfer, rotor to air gap U Ar2δ 2.7 kW/K
Heat transfer, stator copper to iron U As2Fe 20 kW/K
Heat transfer, stator iron to air U AFe2a 14.3 kW/K
Heat transfer, solid to air haAx 55.6 kW/K
Heat transfer, solid to water hwAx 222 kW/K
Heat transfer, air to water U Ax 1/

(
1

haAx
+ 1

hwAx

)
Overall heat transfer coefficient*perimeter U ℘ 0.88 kW/K/m
Reference specific enthalpies, j ε {a,Cu,Fe} Ĥ◦

j 0 kJ/kg
Reference temperatures, j ε {a,Cu,Fe} T ◦

j 25◦C
Rotor copper ohmic resistance Rr 0.127Ω
Stator copper ohmic resistance Rs 1.95 mΩ
Universal gas constant R 8.314 J/K/mol
Molar mass, air Ma 28.97 g/mol
Molar mass, water Mw 18.01 g/mol
Molar mass, copper MCu 63.54 g/mol
Molar mass, iron MFe 55.84 g/mol
NASA Lewis coefficient-linear approx., air aa +baT 3.28+0.000672T
NASA Lewis coefficient-linear approx., water aw +bwT 3.63+0.001272T
NASA Lewis coefficient-linear approx., copper aCu +bCuT 2.56+0.001200T
NASA Lewis coefficient-linear approx., iron aFe +bFeT 0.19+0.00676T
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4 Simulation of DAE and ODE Models

Table 4.2: Operating conditions for the thermal model of air-cooled synchronous generator.

Quantity Symbol Value
Initial value, rotor temperature Tr (t = 0) 28◦C
Initial value, stator copper temperature Ts (t = 0) 28◦C
Initial value, stator iron temperature TFe (t = 0) 28◦C
Initial specific enthalpy of rotor Ĥr (0) Ĥ◦

Cu + ĉp,Cu(Tr(0)−T ◦
Cu) in J/kg

Initial specific enthalpy of stator copper Ĥs (0) Ĥ◦
Cu + ĉp,Cu(Ts(0)−T ◦

Cu) in J/kg
Initial specific enthalpy of stator iron ĤFe (0) Ĥ◦

Fe + ĉp,Fe(Tr(0)−T ◦
Fe) in J/kg

Initial enthalpy of rotor Hr (0) mrĤr in J
Initial enthalpy stator copper Hs (0) msĤs in J
Initial enthalpy of stator iron HFe (0) mFeĤFe in J
Initial internal energy of rotor Ur (0) Hr(0)− paVr in J
Initial internal energy of stator copper Us (0) Hs(0)− paVs in J
Initial internal energy of stator iron UFe (0) HFe(0)− paVFe in J
Influent water temperature T c

w 3.8◦C
Water mass flow rate ṁw 53.9 kg/s
Air mass flow rate ṁa 49.2 kg/s
Rated rotor field current If 1055 A
Rated Stator terminal current It 5360 A
Stator iron generated heat Q̇σ

Fe 212 kW
Friction work Ẇf 528 kW
Power loss due to friction at air gap Q̇σ

f 0.8Ẇf
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4.1 Models Implementation

ŷ.Ŵ.Ŵ Models implementaࢢon in Modelica

A model class is created. This model class contains model parameters, variables, initial
conditions, inputs, outputs, and equations. For Model 1, a model class ModGenerator is
created shown as below1,

1 model ModGenerator
2 //Parameters
3 parameter Real pa=1.01e5 ”Atmospheric pressure , Pa” ;
4 //
5 parameter Real chpa=1.15 ” Spec i f i c heat capacity air , kJ . kg−1.K −1” ;
6 parameter Real chpw=4.2 ” Spec i f i c heat capacity water , kJ . kg−1.K−1” ;
7 .
8 .
9 .
10 / Declaring var iab le s
11 // −− s ta te s
12 Real Ur( s ta r t=Ur0 , f ixed=true ) ” I n i t i a l i z i n g inte rna l energy of rotor copper , kJ” ;
13 Real Us( s ta r t=Us0 , f ixed=true ) ” I n i t i a l i z i n g inte rna l energy of stator copper , kJ” ;
14 Real UFe( s ta r t=UFe0, f ixed=true ) ” I n i t i a l i z i n g inte rna l energy of stator iron , kJ” ;
15 // −− aux i l i a ry var iab le s
16 Real Qdrs ”Heat flow source in rotor copper ,kW” ;
17 Real Qdss ”Heat flow source in stator copper ,kW” ;
18 Real Qdfs ”Heat flow source due to f r i c t i o n loss ,kW” ;
19 .
20 .
21 .
22 //−− output var iab le s
23 output Real Tr ”Temperature of rotor copper ,C” ;
24 .
25 .
26 // −− input var iab le s
27 input Real Twc ”Cold water feed ,C” ;
28 input Real I fd ”Field current in rotor ,A” ;
29 .
30 .
31 .
32 equation
33 der (Ur)=Qdrs−Qdr2d ; der (Us)=Qdss−Qds2Fe ;
34 .
35 .
36 .
37 end ModGenerator

Now model instantiation is done defining inputs in another class named as SimGenerator
as shown below,

1 model SimGenerator
2 // Instant iate model of Air cooled Synchronous Generator
3 ModGenerator G;
4 // Declaring var iab le s
5 // −− inputs
6 Real _Twc ”Cold water feed ,C” ;
7 Real _mdw ”Heat exchanger water mass flow rate , kg/s” ;
8 Real _mda ”Circulat ing a i r mass flow rate , kg/s” ;
9 Real _Ifd ”Field current in rotor ,A” ;

1We are using Sublime Text, a text editor like Notepad++, for writing scripts for Modelica language.
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10 Real _It ”Terminal current in each stator phase ,A” ;
11 Real _QdFes ”Heat flow source in stator iron ,kW” ;
12 Real _Wdf ”Fr ict ion work rate in a i r gap ,kW” ;
13 // Equations
14 equation
15 // −− input values
16 _Twc=3.8;
17 _mdw=53.9;
18 _mda=49.2;
19 _Ifd=1055;
20 _It=5360;
21 _QdFes=212;
22 _Wdf=528;
23 // −− i n j e c t ing input funct ions to model inputs
24 G.Twc=_Twc;
25 G.mdw=_mdw;
26 G.mda=_mda;
27 G. I fd=_Ifd ;
28 G. I t=_It ;
29 G.QdFes=_QdFes ;
30 G.Wdf=_Wdf;
31 end SimGenerator ;

Here, G is an instance of model class ModGenerator. Now both model classes are wrapped
inside a package with the same filename. For Model 1 we can choose a package name as
Model1 and file name should be Model1.mo . The program listing is given in Appendix
C.

The file Model1.mo can now be open and analyze using OpenModelica. The model can
also be loaded, as an alias, using OMJulia advance functionality.

To simulate this model first we need to add package OMJulia.jl in Julia2 which will issue
us for using OMJulia functionality. Next, we create OMJulia session object to define a
ModelicaSystem environment inside Julia to access OMJulia advance functionality. For
instances, simulating the model, acquiring get/set3 functionalities, linearization of models,
sensitivity analysis, etc are few of the things from OMJulia API.

For simulating Model1.mo we can do it as4,

1 # Creating OMJulia session objec t
2 # gen i s considered to be an objec t
3 gen = OMJulia .OMCSession()
4 # Creating a modelica system using session objec t
5 gen . ModelicaSystem(”/ pathto f i l e /Model1 .mo” , ”Model1 . SimGenerator” ) ;
6 # Sett ing up simulation

2It should be noted that the installation of OpenModelica should be prior as of OMJulia. Julia creates
required files for running OpenModelica in the backend as soon as it encounters OpenModelica has
been installed.

3These methods allows us to get all quantities, inputs, outputs, etc and for setting models parameters,
simulation options, etc.

4All of the Julia scripts are written in Jupyter notebook (https://jupyter.org/), which is accessed by
julia>using IJulia
julia>notebook();
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7 gen . setSimulationOptions ( [ ”stopTime=$(500*60)” , ” stepSize=60” ] )
8 # Simulting model
9 gen . simulate ()

The simulation step size is considered to be 1min with 5hrs of total simulation time.

Similarly, we can simulate Model 2, Model 3a and Model 4a in both OpenModelica and
in Julia using OMJulia advance functionality.

ŷ.Ŵ.ŵ Models implementaࢢon in Julia

DifferentialEquations.jl is a feature-rich and highly performant package for solving differ-
ential equations [17] in Julia. It has got a rich functionality for simulation and analysis
of DAE5 and ODE6 equations.

For defining a DAE problem, it is straight forward using a DAEProblem method. It
requires a function that needs to be a DAE function containing differential and algebraic
equations, initial conditions of differential variables, initial values for all variables and
specifying the differential variable.

The function can be created for example, for Model 1,

1 #creating a model
2 function model1_DAE( err , dxdt , x , parameters , t )
3 #
4 # Naming der iva t i ves of d i f f e r e n t i a l var iab l e s
5 dUrdt = dxdt [ 1 ]
6 dUsdt = dxdt [ 2 ]
7 dUFedt = dxdt [ 3 ]
8 # Naming d i f f e r e n t i a l var iab l e s
9 Ur = x [ 1 ]
10 Us = x [ 2 ]
11 UFe = x [ 3 ]
12 # Naming a lgebra ic var iab l e s
13 Qdrs= x [ 4 ] # ” Heat f low source in rotor copper , kW ”
14 Qdss = x [ 5 ] # ” Heat f low source in s ta tor copper , kW ”
15 .
16 .
17 .
18 # Equations
19 #−−−−−−−−−−
20 # − Algebraic equations
21 err [ 1 ] = Hdac − Hdad + Qdr2d + Qdfs
22 err [ 2 ] = Hdad − Hdah + QdFe2a
23 .
24 .
25 .
26 # − d i f f e r e n t i a l equations
27 err [ 2 6 ] = −dUrdt + Qdrs − Qdr2d
28 err [ 2 7 ] = −dUsdt + Qdss − Qds2Fe

5http://docs.juliadiffeq.org/latest/tutorials/dae_example.html
6http://docs.juliadiffeq.org/latest/tutorials/ode_example.html
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29 err [ 2 8 ] = −dUFedt + QdFes + Qds2Fe − QdFe2a
30 #
31 return err
32 end

Now all the variables initial values with initial derivatives of differential variables are given
as,

1 #I n i t i a l values for a lgebra ic var iab l e s
2 x0 = zeros (28 ,1)
3 x0 [ 1 ] = Ur0
4 x0 [ 2 ] = Us0
5 x0 [ 3 ] = UFe0
6 x0 [ 4 ] = 1.1* Rr * u_Ifd (0)^2
7 x0 [ 5 ] = 3.0* Rs * u_It (0)^2
8 .
9 .
10 .
11 # I n i t i a l der i va t i ves
12 dxdt0 = zeros (28 ,1)
13 dxdt0 [1]= x0[4]−x0 [ 7 ]
14 dxdt0 [2]= x0[5]−x0 [ 8 ]
15 dxdt0 [3]= u_QdFes(0)+x0[8]−x0 [ 9 ]
16 # Speci fying d i f f e r e n t i a l var iab l e s
17 di f f_vars = f i l l ( f a l s e ,28)
18 di f f_vars [ 1 ] , d i f f_vars [ 2 ] , d i f f_vars [3]= true , true , true
19 # Time span
20 tspan = (0.0 ,500*60)

We then define a problem and solve it using a suitable solver7 using solver(...) method.
For our case, we are using IDA() from Sundails.jl8 package.

1 # Issuing packages
2 using Di f ferent ia lEquat ions
3 using Sundials
4 # Defining a problem
5 problem=DAEProblem(model1_DAE, dxdt0 , x0 , tspan , parameters , d i f f e r ent ia l_var s=dif f_vars )
6 # Solving using s u i t a b l e so lver
7 so lut ion=solve (problem ,IDA() )

The solution contains two arrays element of algebraic variables and time instant, u and t,
respectively, containing solutions of DAE problem for each time span which can be stored
in suitable variables and then use it later for further manipulation, for example using it
for plotting temperature of rotor copper, stator copper or stator iron.

1 # 26 ,27 ,28 re fer s that Tr, Ts and TFe are considered to be 26th , 27 th and 28th a lgebra ic
var iab le

2 Tr_model1_DAE=[ so lut ion . u [ i ] [ 2 6 ] f o r i in 1 : length ( so lut ion . u) ]
3 Ts_model1_DAE=[ so lut ion . u [ i ] [ 2 7 ] fo r i in 1 : length ( so lut ion . u) ]

7https://docs.juliadiffeq.org/latest/solvers/dae_solve.html
8https://github.com/JuliaDiffEq/Sundials.jl
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4 TFe_model1_DAE=[ so lut ion . u [ i ] [ 2 8 ] fo r i in 1 : length ( so lut ion . u) ]
5 t_model1_DAE = [ so lut ion . t [ i ] f o r i in 1 : length ( so lut ion . u) ] ;

In a similar way using ODEProblem(...) method from DifferentialEquations.jl we can
solve ODE problems.

For example, we can set problem and find it solutions as,
1 # I n i t i a l values
2 x0 = [ 2 8 . , 2 8 . , 2 8 . ]
3 # Time span
4 tspan = (0 , 500*60.)
5 # Defining ODE problem using ODE function
6 # for each models containing ODE equations , eg . model1_ODE
7 prob=ODEProblem(model1_ODE, x0 , tspan , p)
8 so l = solve (prob , ABM54() , dt=60)

For solving DAE and ODE problems for Model 3b and 4b a two point boundary value
problem should be solved. The analytical solution is difficult to find, however, can be
posed with a numerical solution, and we will be using BVProblem(...) method9.

First, we need to define the two boundary value equation creating a function and a
residual10 function that calculates residue of boundary equations. This two function then
can be solved using the BVProblem(...) method. And using suitable boundary value
problem solver we will be solving its solution.

For example the boundary value problem describe by Eq. 3.20 and Eq. 3.21 can be pose
in Julia as,

1 heat_exchanger_length=(0.0 ,1.0)
2 # Defining heat exchanger boundary problem
3 function heat_exchanger ! (dT,T, parameters , t )
4 #T[1]=Ta, T[2]=Tw
5 dT[1]=Up/(chpa*mda) *(T[2]−T[ 1 ] )
6 dT[2]=Up/(chpw*mdw) *(T[2]−T[ 1 ] )
7 end
8 ##ini ta i lGuess =[Tah,Twh]=for counter−current
9 #ini t ia lGuess =[42.27 ,8.36]
10 in i t ia l_guess=[Ta_o, u_Twc(0) ]
11 function boundary_condition ! ( res idual ,T, par_is , t )
12 re s idua l [1]=T[1 ] [1 ] −Tah #Tah
13 res idua l [2]=T[ end ] [2 ]−Twc #Twc
14 end
15 #Posing boundary value problem with BVProblem() method
16 bvp=BVProblem(heat_exchanger ! , boundary_condition ! , in i t ia l_guess , heat_exchanger_length ,

parameters )
17 #Solving problem with Shooting Vern method
18 so l=solve (bvp , Shooting (Vern7 () ) )

9https://docs.juliadiffeq.org/latest/tutorials/bvp_example.html
10This will calculate a residual in each iteration while solving numerically. While a suitable solver, in

Julia for eg. IDA() or Vern(), will try to minimize this residual error to zero as possible within a
tolerance limit and finds the solution.
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The simulation of DAE models and ODE models are given in Appendix C in Jupyter
notebook number 3 and 15 respectively.

ŷ.ŵ Simulaࢢon with Nominal Inputs and Operaࢢng Condiࢢons

The simulated outputs for different models can be compared together with supplied nom-
inal inputs and operating conditions given in Table 4.2. Figure 4.1 and 4.2 shows simulated
outputs with nominal inputs supplied to models.

ŷ.Ŷ Heat exchanger profiles

It is interesting to see the temperature variation inside the heat exchanger when resistance
and specific heat capacities are constant and temperature dependent as shown in Figure
4.3.
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4.3 Heat exchanger profiles

Figure 4.1: Simulated outputs with nominal inputs for Model 1 and Model 2.
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Figure 4.2: Simulated outputs with nominal inputs for Model 3a, 3b, 4a and 4b. Heat flows from water
to air and the temperature of hot water are compared for all the models.
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4.3 Heat exchanger profiles

Figure 4.3: Heat exchanger profiles for all models. The figure contains 50 number of lines for both Tw
and Ta where temperature is plotted for every 10min for 500min of simulation with nominal
inputs and operating conditions.
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Ÿ Linearizaࢢon, Stability, Controllability,
and Observability

It is prime to see whether the system is stable at operating conditions or not. This
chapter gives a brief review on linearization, stability, controllability, and observability
for our generator models.

Ÿ.Ŵ Linearizaࢢon

Consider we have a nonlinear ODE model given as,

dx
dt

= f (x,u;θ)

y = g(x,u;θ)

Let us assume that (x∗,u∗) is an operating point where the model is valid. Then Taylor
series expansion of f (x,u;θ) at operating point (x∗,u∗) is given by[13],

f (x,u;θ)≈ f (x∗,u∗;θ)+
∂ f (x,u;θ)

∂x

∣∣∣∣
∗
(x− x∗)+

∂ f (x,u;θ)
∂u

∣∣∣∣
∗
(u−u∗)

.

The model can now be realized in the form of,

dxδ

dt
= f (x∗,u∗;θ)+Axδ +Buδ (5.1)

where xδ = x−x∗ , uδ = u−u∗, A = ∂ f (x,u;θ)
∂x

∣∣∣
∗
,B = ∂ f (x,u;θ)

∂u

∣∣∣
∗
,and f (x∗,u∗;θ) = 0 since the

model is valid at (x∗,u∗).

Thus, the linearized model is written as,

dxδ

dt
= Axδ +Buδ
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Similarly,

yδ =Cxδ +Duδ

where A and B are Jacobian matrices in states and inputs, also called as system or state
and control or input matrices, respectively. Similarly, C and D are called as output and
feedforward matrices respectively.

Ÿ.ŵ Stability

There are several stability analysis approaches, however, we will be analyzing our system
stability on the basis of eigenvalues of matrix A.

Let λ = {λ1,λ2, .....λn} be eigenvalues of matrix A, where n is then number of states in
the system, then it is defined that system is stable only if ∀ j : ℜ(λi)< 0.

Ÿ.Ŷ Controllability

It is often defined as the ability of a system to change its states while system input(s) are
changed. The controllability of the system helps to determine a system engineer whether
a system can be controlled (in a more specific/desired way) or not.

A system is controllable if the rank of controllability matrix is equal to the rank of the
system matrix A.

For a system with system matrix A and control matrix B, the controllability matrix is
given as,

C =



B
AB
A2B
.
.
.

An−1B


.

For a controllability of a system, rank(A) = rank(C ).
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Ÿ.ŷ Observability

A system is said to be observable only if and only if information about the states of a
system can be determined from the measurements. For a system to be observable,

rank(A) = rank(O)

where, O is an observability matrix given as,

O =



C
CA
CA
.
.
.

CAn−1


.

.

Ÿ.Ÿ Linearizaࢢon, Stability, Controllability, and Observability of
Model Ŵ and Model ŵ

Model 1 and Model 2 can be linearized around operating points with steady-state solu-
tions. There are several methods available in Julia’s DifferentailEquations.jl package for
finding steady-state solutions. Similarly, we will be using ForwardDiff.jl package for cal-
culating jacobians for computing system and input/control matrix. Once A and B are
calculated we can linearize the system.

Furthermore, for stability analysis, we will be finding eigenvalues of A matrix and see
whether the system is stable around operating conditions. The time constant for the
system can be found from eigenvalues.

The ODE for Model 1 can be formulated in Julia as,

1 #Author : Bernt Lie
2 #Edited on purpose and use by : Madhusudhan Pandey
3 # Necessary packages
4 using Di f ferent ia lEquat ions
5 using LinearAlgebra
6 using Plots
7 using Plots . PlotMeasures
8 using LaTeXStrings
9 pyplot () ;
10 # ODE model of Model1
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11 function model1 (x , u , t )
12 # unpacking s ta t e s
13 Tr = x [ 1 ]
14 Ts = x [ 2 ]
15 TFe = x [ 3 ]
16 # upacking inputs
17 Twc = u [ 1 ]
18 I fd = u [ 2 ]
19 I t = u [ 3 ]
20 QdFes = u [ 4 ]
21 Wdf = u [ 5 ]
22 mdw = u [ 6 ]
23 mda = u [ 7 ]
24 # parameters
25 chpa = 1.15
26 chpw = 4.2
27 chpCu = 0.385
28 chpFe = 0.465
29 # Masses
30 mr = 9260.
31 ms = 6827.
32 mFe = 71200.
33 # Heat trans fer c o e f f i c i e n t s
34 UAr2d = 2.7
35 UAs2Fe = 20.
36 UAFe2a = 14.3
37 hAax = 55.6
38 hAwx = 222.
39 UAx = 1/(1/hAax+1/hAwx)
40 # Resistances
41 Rr = 0.127e−3
42 Rs = 1.95e−6
43 #
44 Qdfs = 0.8*Wdf
45 # Stanton numbers
46 NSta = UAx/chpa/mda
47 NStw = UAx/chpw/mdw
48 NStd = NStw − NSta
49 # Matrices
50 M1 = diagm(0=>[mr*chpCu , ms*chpCu , mFe*chpFe ] )
51 M2 = [−UAr2d 0. 0 . ; 0 . −UAs2Fe UAs2Fe ; 0 . UAs2Fe −UAs2Fe−UAFe2a]
52 M3 = [ 0 . UAr2d 0 . ; 0 . 0 . 0 . ; 0 . 0 . UAFe2a]
53 #
54 N1 = [−mda*chpa mda*chpa+UAr2d 0 . ; 0 . −mda*chpa mda*chpa+UAFe2a; NStw−NSta*
55 exp(−NStd) 0 . −NStd ]
56 N2 = [UAr2d 0. 0 . ; 0 . 0 . UAFe2a; 0 . 0 . 0 . ]
57 #
58 v = [1 .1*Rr* I fd ^2 , 3*Rs* I t ^2 , QdFes ]
59 w = [Qdfs , 0 . , NSta*(1−exp(−NStd) )*Twc]
60 #
61 z = N1\(N2*x + w)
62 dxdt = M1\(M2*x+M3*z + v)
63 return dxdt
64 end

Further analysis of this ODE can be done as,
1 # Nominal Inputs
2 u = [3 .8 ,1055 ,5360 ,212 ,528 ,53 .9 ,49 .2 ]
3 # I n i t i a l s ta t e s
4 x0 = [28 . , 2 8 . , 2 8 . ]
5 # Time span
6 tspan = (0 . , 300*60.)
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5.5 Linearization, Stability, Controllability, and Observability of Model 1 and Model 2

7 # findind steady s ta te so lut ion
8 prob_steady_state = ODEProblem(model1 , x0 , ( 0 . , In f ) ,u)
9 sol_steady_state = solve ( prob_steady_state ,DynamicSS( Tsit5 () ) )
10 # steady s ta te s ta te values
11 xs = sol_steady_state . u [ end , 1 ]
12 # nominal inputs
13 us = u
14 using ForwardDiff
15 # functions in s ta t e s and inputs
16 fx (x) = gen(x , us , 0 )
17 fu (u) = gen(xs , u , 0 )
18 # Jacobians at operating points
19 A = ForwardDiff . jacobian ( fx , xs )
20 B = ForwardDiff . jacobian ( fu , us )
21 # Calculating time constants
22 # Eigen value of system matrix , A
23 using LinearAlgebra
24 # Eigenvector
25 R = eigvecs (A)
26 # Eigenvalues
27 lambda = e igva l s (A)
28 # Time Constants
29 tau = − @. inv ( lambda)/60

Thus, Model 1 can be linearized with,

A =

 −7.02∗10−4 0 1.11∗10−4

0 −7.60∗10−3 7.60∗10−3

2.48∗10−5 6.04∗10−4 −8.98∗10−4



B=

 5.91∗10−4 1.04∗10−4 0 0 1.617∗10−5 −2.21∗10−5 −1.39∗−5

0 0 4.28∗10−5 0 0 0 0
2.69∗10

−4
0 0 3.02∗10−5 7.36∗10−6 −10−5 −6.99∗10−5


, and since we will only have measurements of two of our states, stator copper and stator
iron temperatures, Ts and TFe, respectively we have,

C =
(

0 1 1
)
.

The eigenvalues are given as,

λ =
{
−7.08∗10−4,−2.65∗10

−4
,−8.23∗10−3

}
and since we have all the eigenvalues in the left half-plane we can say that our generator
Model 1 is stable at operating conditions.

Similarly, the time constants, given by τ jε{1,2,3} =
1

|λ jε{1,2,3}| , are,

τ =
{

23.52, 62.69, 2.02
}

min.
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5 Linearization, Stability, Controllability, and Observability

For checking controllability and observability, ControlSystems.jl 1 package under Julia
has got enriched functionality. When A, B, and C matrix are known then, controllability
and observability can be found as,

1 # C o n t r o l l a b i l i t y and o b s e r v a b i l i t y
2 using ControlSystems
3
4 # Rank of matrix , A
5 # System order
6 rank_of_A = rank (A)
7 # C o n t r o l l a b i l i t y matrix
8 ctrb_C = ctrb (A,B)
9 # Rank of c o n t r o l a b i l i t y matrix
10 rank_of_ctrb_C=rank (ctrb_C)
11
12
13 # Observabi l i ty
14 C = [ 0 . 1 . 1 . ]
15 # Observabi l i ty matrix
16 obsv_O = obsv (A,C)
17 rank_of_obsv_O=rank (obsv_O)

. This produces,

rank(A) = rank(C ) = rank(O) = 3

; therefore, our Model 1 is both controllable and observable.

In a similar way we can linerize Model 2 and check for stability, observaility, and control-
lability. The time constant for Model 2 is found to be τ =

{
31.12, 68.92, 2.05

}
min.

The code listing for linearizing, finding stability, controllability, and observability for
Model 1 and 2 is given in Appendix C with Jupyter notebook number 11.

1http://juliacontrol.github.io/ControlSystems.jl/latest/
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Ź Parameters Sensiࢢvity Analysis and
Model Fiࢰng

This chapter focuses mainly on determining the sensitivity in states due to parameters.
Furthermore, we will have an overview of the experimental data. We will then simulate
models and plot simulated outputs with real measurements. At the end of the chapter,
we will optimize a few parameters for better fitting of outputs from simulation to meas-
urements.

Ź.Ŵ Parameters sensiࢢvity analysis

It is often prime to analyze sensitivity in states due to parameters changes. This effect
can be analyzed by parameter sensitivity analysis. Several methods are available [18, 19];
however, we will be discussing local sensitivity analysis formulating a sensitivity ODE in
this report.

For a system, dx
dt = f (x,u;θ), having k number of system states and n number of paramet-

ers, local sensitivity for jε {1,2, ...,n} can be computed using,

d
dt

∂x
∂θ j

=
∂ f
∂x

∂x
∂θ j

+
∂ f
∂θ j

= J ∗S j +Fj

where,

J =


∂ f1
∂x1

∂ f1
∂x2

... ∂ f1
∂xk

∂ f2
∂x1

∂ f2
∂x2

... ∂ f2
∂xk

... ... ... ...
∂ fk
∂x1

∂ fk
∂x2

... ∂ fk
∂xk


is Jacobian in states,
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6 Parameters Sensitivity Analysis and Model Fitting

Fj =



∂ f1
∂θ j
∂ f2
∂θ j

.

.

.
∂ fk
∂θ j


is parameter derivatives, and

S j =



∂x1
∂θ j
∂x2
∂θ j

.

.

.
∂xk
∂θ j


is a vector of sensitivities. Both Fjand S j are calculated simultaneously for each itera-
tion while computing numerically. This problem can easily be formulated in Julia using
package DiffEqSensitivty.jl 1.

For defining local sensitivity problem a method ODELocalSensitivityProblem(..)is
used. After posing a local sensitivity problem we can solve this using any solve(....)
method using relevant solver.

For our Model 1 (ĉp,R), the parameter sensitivity analysis is done in ParametersSensit-
ivityAnalysis.ipynb Jupyter notebook given in Appendix C. Figure 6.1, 6.2, 6.3, and 6.4
the result from sensitivity analysis. It shows that states are sensitive to resistance than
any other parameters.

Ź.ŵ Overview of Experiemental Data

The heat-run test of the synchronous machine was performed for 600min [10]. For each
minute, for a supplied filed current, starting from a cold-start the data consists of different
measurements. The cold-run was up to 53min where the terminal voltage is build-up due
to residual flux in rotor windings. After cold-run field current is increased which increases
the temperature of stator copper and stator iron.

The measurements quantities can be summarized in Table 6.1.
1http://docs.juliadiffeq.org/latest/analysis/sensitivity.html
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6.2 Overview of Experiemental Data

Figure 6.1: Sensitivity in states due to nominal inputs.
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6 Parameters Sensitivity Analysis and Model Fitting

Figure 6.2: Sensitivity in states due to specific heat capacities (ĉp).
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6.2 Overview of Experiemental Data

Figure 6.3: Sensitivity in states due to metal masses and heat transfer.
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6 Parameters Sensitivity Analysis and Model Fitting

Figure 6.4: Sensitivity in states due to rotor and stator copper resistances.

Table 6.1: Measured quantities from heat-run test. The expression for terminal current is shown at end
row, 2nd column of table to indicate that It is not measured using sensor, however, calculated
from mathematical expression shown inline. All other quantities are measured using sensors.

Quantity Symbol Units Sensor No. of sensors
Generator terminal voltage Vt kV - -
Active power of generator Pg MW - -
Reactive power of generator Qg MVar. - -
Rotor field current If A - -
Temperature of stator copper Ts

◦C PT 100 15
Temperature of stator iron TFe

◦C PT 100 4
Hot air temperature T h

a
◦C Pt 100/CTD 2/2

Cold air temperature T c
a

◦C Pt 100/CTD 2/2
Cold water temperature T c

w
◦C Analog -

Hot water temperature T h
w

◦C Analog -
Terminal current It =

P2
g +Q2

g√
3∗Vt

A - -

68



6.3 Simulation versus Real Measurements

Figure 6.5: Experimental data for generator model from 600min heat-run test.

Figure 6.6: Mathematical model and plant are run together with same the inputs. ysim and ymeas represents
simulated and measured outputs respectively.

The experimental data is plotted in Figure 6.5.

Ź.Ŷ Simulaࢢon versus Real Measurements

The mathematical model and real system often termed as plant, are run parallel with
the same supplied inputs as shown in Figure 6.6. The real measurements and simulated
outputs for different models are given in Figure 6.7. The plotting is shown after the
cold-run.
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6 Parameters Sensitivity Analysis and Model Fitting

Figure 6.7: Simulation versus real measurements plotted together. Ts(M) represents stator copper tem-
perature measurement and Ts(S) represents simulated output.
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6.4 Parameters Optimization

Ź.ŷ Parameters Opࢢmizaࢢon

From Figure 6.7 we see, for all of our four models, our simulation does not fit better with
real measurements. There might be several possible reasons for that. First, since states are
very sensitive to resistance the correct choice of resistance value with errors up to three
or four decimal places might be one reason for that. Similarly, while measuring other
quantities using sensors, measurement errors due to measurement noises might not be
considered. Besides, the temperature distribution inside metals may not be homogenous
and the measured temperatures are not true measurements. Few quantities are guessed
work and others may be tuned as per hit and trial.

We will be considering Model 1 as our generator model for parameter optimization.

To better fit the model with the real measurements, we can use parameters tuning with
hit and trial selection for parameters. However, since we have many parameters it is very
tedious to tune parameters with hit and trial method. Another method can be using
parameter optimization algorithms for minimizing the mean-square-error.

Julia has got several packages for solving optimization problem [20, 21]. However, we
choose, Optim.jl, explained in [22]. Several optimization algorithms are available, how-
ever; we choose to use box-constrained-optimization. This gives possibilities for choosing
lower and upper bounds for parameters and solve optimization under that bounds. The
parameter optimization script using package Optim in Julia for the differential equation
is given below,

Code listing for parameter optimization is given as,
1 # Using packages for parameter estimation for d i f f e r e n t i a l equations
2 using Di f ferent ia lEquat ions
3 using DiffEqParamEstim
4 # Using Optim . j l package for optimization
5 using Optim
6 # Building a lo s s ob j ec t i ve function for d i f f e r e n t i a l equation and def ining a L2Loss function

containing data
7 # Since we have data for Ts and TFe our problem i s 3−s ta t e s problem 2−s ta t e s measurement data

optimization problem
8 # We need to save Ts and TFe only from ODE
9 t = co l l e c t ( range (0 , stop=583, length=584))
10 cost_function=build_loss_objective (prob ,ABM54() , dt=60. , save_idxs=2:3 ,L2Loss ( t , data ) ,

maxiters=10000,verbose=f a l s e )
11 # Sett ing 10% lower bounds and upper bounds for parameters
12 lower = 0 .9* [ 53 . 9 , 49 . 2 , 2 . 7 , 14 . 3 , 20 . ]
13 upper = 1 .1* [ 53 . 9 , 49 . 2 , 2 . 7 , 14 . 3 , 20 . ]
14 # Optimizing using Fminbox() method
15 # Optimized parameter are : mda,mdw,UAr2d,UAs2Fe,UAFe2a
16 r e su l t = optimize ( cost_function , lower , upper , [ 5 3 . 9 , 4 9 . 2 , 2 . 7 , 1 4 . 3 , 2 0 . ] , Fminbox() )
17 # minimized parameters
18 r e su l t . minimizer

Table 6.2 shows the chosen parameters for optimization for better model fitting. We are
choosing five parameters in which states are having similar sensitivity as shown in Section
6.1. The lower bounds and upper bounds are set to 10% each.
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6 Parameters Sensitivity Analysis and Model Fitting

Table 6.2: Parameters optimization for model fitting for Model 1.

Parameters Nominal values Lower bounds Upper bounds Optimized values
ṁa 53.9 kg/s 10% 10% 48.51 kg/s
ṁw 49.2 kg/s 10% 10% 44.28 kg/s
U Ar2δ 2.70 kW/K 10% 10% 2.96 kW/K
U As2Fe 20.0 kW/K 10% 10% 18.0 kW/K
U AFe2a 14.3 kW/K 10% 10% 12.87 kW/K

Figure 6.8: Model 1 Fitting using optimized parameters

The code listing written in Jupyter notebook for parameters optimization is given in
Appendix C with Jupyter notebook file named as ParameterOptimization.ipynb.

The model fitting with optimized parameters for Model 1 is shown in Figure 6.8.
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ź State Esࢢmaࢢon

State estimation is a process of estimating state variables, which can not be measured
directly or not measured because of any reasons, in a control system. For instance, in our
generator model we have measurements for two of the states which are Ts and TFe, while
the third state Tr is to be estimated with the help of others.

Several state estimation methods are available; however, we stick to the Kalman filter
for our state estimation [23]. There are several derivatives of Kalman filter for different
control process [24]. In this thesis report, we only present two of the derivatives, Unscented
Kalman Filter (UKF) and Ensemble Kalman Filter (EnKF). UKF and EnKF algorithms,
we will be using similar notations, are well compared in [25].

ź.Ŵ Introducࢢon on Notaࢢons Used

The notations develop in describing an (original) Kalman filter algorithm, and its derivat-
ives are often not superficial to comprehend and use; but varies from text to text, articles
to articles. Readers while reading this report are requested to follow notations and their
meanings from this Table 7.1.

A nonlinear dynamic system is often represented as,

xk = f (xk−1,uk−1,wk−1)

yk = h(xk,uk,vk)

with wk ∼ N (w̄k,Wk) and vk ∼ N (v̄k,Vk).

ź.ŵ Unscented Kalman filter

The original Kalman filter [23], developed for linear systems, was later extended for non-
linear systems with Extended Kalman Filter (EKF)1. For a linear system, the mean and

1It is a derivate of Kalman filter used for the state estimation of a nonlinear problem linearized around
operating points using Jacobians

73



7 State Estimation

Table 7.1: Notations and their explanations for UKF and EnKF algorithms

Symbols Explanations
x, x̄, x̂ State vector, its mean, its estimate
xk kth component of vector x
x̂k|k−1 a priori estimate of xk on all prior

measurements except at time tk
x̂k|k a posteriori estimate of xk on all prior

measurements including at time tk
X State covariance
w Process noise vector
v Measurement noise vector
W Process noise covariance
V Measurement noise covariance
K Kalman gain
E Innovation covariance
Z Cross covariace between x and y
ε Innovation, error between

measurement and estimate

covariance are exactly propagated using linear (original) Kalman filter while for non-linear
systems linearized around operating points using Jacobians the mean and covariance are
propagated approximately [24]. For systems having extremely nonlinear dynamics, EKF
fails for proper estimation; however for propagating mean and covariances in such systems
unscented transformation2 is used as given in [26]. The UKF algorithm is given in Table
7.2.

ź.Ŷ Ensemble Kalman Filter

EnKF is a Monte Carlo implementation for updating statistical moments for propagating
through the control process. Unlike EKF and UKF the statistical moments, such as
mean and covariances, are propagated using a random cloud of mean in state space [27].
Therefore, we tend to avoid the formulation of Jacobians and/or unscented transformation
in an EnKF. The EnKF is implemented in Table 7.3.

2Consider a system with state(s) vector x having mean x̄ and covariance X . Then, in unscented trans-
formation 2n, where n is the number of states, sigma points, are propagated through the nonlinear
process and measurement equations. Sigma points are a set of individual points in state space whose
ensemble mean and covariance are equal to x̄ and X .
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7.3 Ensemble Kalman Filter

Table 7.2: Algorithm: UKF

Initialization, k = 1 :
x̂1|1 = E(x1) = x̄1
X1|1 = X1

for k = 2, 3, ...

Propagation step:
1. Generate sigma points using unscented transformation
x(i)k−1|k−1 = x̂k−1|k−1 + x̃(i) i ∈ {1,2, ...2n}
where,
x̃(i) =

(√
nXk−1|k−1

)T

i
i ∈ {1,2, ...n}

x̃(n+i) =−
(√

nXk−1|k−1

)T

i
i ∈ {1,2, ...n}

2. Propagate sigma points through process model
x(i)k|k−1 = f

(
x(i)k−1|k−1,uk−1, w̄k

)
i ∈ {1,2, ...2n}

3. a priori state and covariance estimate
x̂k|k−1 =

1
2n ∑2n

i=1 x(i)k|k−1

Xk|k−1 =
1

2n ∑2n
i=1

(
x(i)k|k−1 − x̂k|k−1

)(
x(i)k|k−1 − x̂k|k−1

)T
+Wk

Information update:
(Note: We are using the same sigma points from propagation step;
however, we can generate new sets of sigma points same as in
propagation step and proceed further. It is a trade-off between
computational cost and performance of the filter.)

1. Propagate sigma points through measurement equation
y(i)k|k−1 = h

(
x(i)k−1|k−1,uk−1, v̄k

)
i ∈ {1,2, ...2n}

2. Predicted measurements
ŷk|k−1 =

1
2n ∑2n

i=1 y(i)k|k−1

3. Innovation and cross covariance
Ek|k−1 =

1
2n ∑2n

i=1

(
y(i)k|k−1 − ŷk|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T
+Vk

Zk|k−1 =
1
2n ∑2n

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

4. Kalman gain
Kk = Zk|k−1E

−1
k|k−1

5. a posteriori update
εk|k−1 = yk − ŷk|k−1
x̂k|k = x̂k|k−1 +Kkεk|k−1
Xk|k = Xk|k−1 −KkEk|k−1KT

k
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7 State Estimation

Table 7.3: Algorithm: EnKF

Initialization, k = 1 :
xi

1|1 ∼ N (x̄1,X1), i ∈
{

1,2, ...,np
}

wi
k ∼ N (w̄1,Wk), i ∈

{
1,2, ...,np

}
vi

k ∼ N (v̄1,Vk), i ∈
{

1,2, ...,np
}

x̂1|1 =
1

np
∑np

i=1 x(i)1|1

X1|1 =
1

np−1 ∑np
i=1

(
x(i)1|1 − x̂1|1

)(
x(i)1|1 − x̂1|1

)T

for k = 2, 3, ...

Propagation step:
1. Propagate particles through process model
x(i)k|k−1 = f

(
x(i)k−1|k−1,uk−1,w

(i)
k−1

)
i ∈

{
1,2, ...,np

}
2. a priori state and covariance estimates
x̂k|k−1 =

1
np

∑np
i=1 x(i)k|k−1

Xk|k−1 =
1

np−1 ∑np
i=1

(
x(i)k|k−1 − x̂k|k−1

)(
x(i)k|k−1 − x̂k|k−1

)T

Information update:
1. Propagate particles through measurement equation
y(i)k|k−1 = h

(
x(i)k−1|k−1,uk−1,v

(i)
k−1

)
i ∈

{
1,2, ...,np

}
2. Predicted measurements
ŷk|k−1 =

1
np−1 ∑np

i=1 y(i)k|k−1

3. Innovation and cross covariance
Ek|k−1 =

1
np−1 ∑np

i=1

(
y(i)k|k−1 − ŷk|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

Zk|k−1 =
1

np−1 ∑np
i=1

(
x(i)k|k−1 − x̂k|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

4. Kalman gain
Kk = Zk|k−1E

−1
k|k−1

5. a posteriori update of state and covariance
ε(i)k|k−1 = yk − y(i)k|k−1

x(i)k|k = x(i)k|k−1 +Kkε(i)k|k−1

x̂k|k =
1

np−1 ∑np
i=1 x(i)k|k

Xk|k =
1

np−1 ∑np
i=1

(
x(i)k|k − x̂k|k

)(
x(i)k|k − x̂k|k

)T
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Ż Results and Discussion

This chapter provides important results after implementation of several tasks carried out
in earlier Chapters. First, results from model implementation are discussed. Second,
results from the model analysis are presented and finally, we will present results from
state estimation.

Ż.Ŵ Model Implementaࢢon

The computational speed for the model implemented1 in OpenModelica, OMJulia, and
Julia for solving DAE models can be compared in Table 8.1. The solver used for Open-
Modelica and OMJulia is DASSL and IDA for Julia.

The computational time for solving models in Julia is faster as compared to OpenModelica
and OMJulia. The computational time required for solving models using OMJulia is
the highest among Julia and OpenModelica and this is because models are solved using
OpenModlica API in Julia. In OMJulia models are first solved using OpenModelica in the
backend and render to Julia with few time lags, and thus computational time for solving
models increases.

The computational time for solving Model 3b and Model 4b are higher even in Julia.
It is because of the fact that the two point boundary value problem should be solved
when specific heat capacities for fluids (air, water) depends on the temperature inside
the heat exchanger. The computational cost for the numerical solution of models with
boundary value problem is higher. When model complexity increases the computational
time for solving models increases. For instance, computational time for solving models
with constant ĉp and R is less than for model with ĉp(T) and R(T).

Although, solving DAE models in Julia have less computational time the preliminary
model implementation is often tedious in Julia. The model implementation in Modelica
does not require initial values for algebraic variables, and are implicitly solved by the

1The simulation environment is set up with “Processor: Intel(R) Core(TM) i7-7500U CPU @
2.70GHz, 2901 Mhz, 2 Core(s), 4 Logical Processor(s)”. The OpenModelica is Official
Release Version 1.13.2 (64bit), OMJulia with Version 0.0.0 and Julia programming language
Version 1.0.3 (2018-12-18).
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8 Results and Discussion

Table 8.1: Comptational speed for solving DAE models using OpenModelica, OMJulia and Julia. The
mean time is taken from 1000runs for Julia, 100runs for OMJulia, and for OpenModelica the
sample is taken from 10runs. The simulation time is for 500min.

Model OpenModelica OMJulia Julia
Model 1 40.9ms 9.39s 3.36ms
Model 2 50.72ms 9.18s 3.98ms
Model 3a 52.30ms 9.85s 4.86ms
Model 3b - - 306ms
Model 4a 51.68ms 9.48s 4.98ms
Model 4b - - 297ms

compiler, however in Julia initial values for each algebraic variables should be explicitly
defined.

Figure 8.1 shows a subjective comparison for solving DAE models in Julia, OMJulia and
OpenModelica.

Ż.ŵ Model Analysis

1. Figure 4.1 compares simulated outputs for Model 1 and 2, and Model 1 and 3a.
It shows that generator metal temperatures are more sensitive for models with
R(T) than models with ĉp(T), however; opposite for air and water temperatures.
For models with R(T), there is an increase in heat transfer between air and metals,
however; models with ĉp(T ) heat transfer between air and metals have few or almost
no difference at steady state.

2. Figure 4.2 shows comparison of Model 3a and 3b, and Model 4a and 4b. Model 3a
and 4a are models considering constant specific heat capacity inside heat exchanger
while Model 3b and 4b are models considering temperature dependent specific heat
capacity. The generator metals and air temperatures have very few difference in
temperature between Model 3a and 3b, and Model 4a and 4b, around 2− 4◦C;
however, almost no difference for heat transfer and hot water temperature. The hot
water temperature for Model 3b has an abrupt change from 14◦C to 1◦C at around
250min but regain temperature of 9◦C and becomes steady after 350min. Similarly,
hot water temperature for Model 4b has an abrupt change from 14◦C to 1◦C at
around 120min but regain temperature of 9◦C and becomes steady after 140min.
The cost of solving the numerical solution for Model 3b and 4b is higher than Model
3a and 4a because of numerical solution for solving boundary value problem for heat
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8.2 Model Analysis

OM

Model 1
Model 2

Model 3a Model 4a

OMJulia

Model 1Model 2

Model 3a Model 4a

Julia

Model 1
Model 2

Model 3a
Model 4a

OM vs OMJulia Model 1

OMOMJulia

OM vs Julia Model 1

OM

Julia

Julia

Model 1Model 3b

Figure 8.1: Subjective comparison for computational time for solving DAE models in OpenModelica,
OMJulia and Julia. OM in the figure refers to OpenModelica. The computational time
in Julia is faster than OpenModelica and OMJulia. Solving Model 3b in Julia has higher
computational time than solving Model 1 because of a two point boundary value numerical
solution for heat exchanger for Model 3b.
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8 Results and Discussion

Figure 8.2: Heat exchanger profile at t = 0 to t = 500min for Model 4b

exchanger. There is a tradeoff between model accuracy, and computational speed.
The heat transfer rate from air to water increases as the model complexity increases
from Model 1 to 2 to 3a to 4a.

3. Figure 4.3 and 8.2 shows heat exchanger profiles for all the models. As the model
complexity increases from constant R and ĉp to temperature dependent, the tem-
perature range for air and water inside heat exchanger changes for nominal inputs.
A careful observation from the heat exchanger profiles from Model 4a and 4b show
that Model 4b considering temperature dependent ĉp inside the heat exchanger has
substantial decrease in T h

a around 2− 3◦C than Model 4a with constant ĉp inside
the heat exchanger, however, T h

w increases for Model 4b than to Model 4a. Sim-
ilar results can be seen for Model 3a and 3b. This indicates that the model with
temperature dependent ĉp has better heat transfer from air to water representing a
more realistic model in terms of heat transfer.

4. Figure 6.1, 6.2, 6.3, and 6.4 shows sensitivity in states due to various parameters.
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8.3 State Estimation

It shows that states are more sensitive to resistances than any other parameters.
Figure 6.4 shows that Tr and Ts are more sensitive to Rr and Rs than TFe. States are
least sensitive to the generator metal masses as shown in Figure 6.3.

Ż.Ŷ State Esࢢmaࢢon

Before starting state estimation we set initial values for process noise covariance (W )
and measurement noise covariance (V ). UKF and EnKF are initialized with W = KT ∗
diag(4,4,4) and V = diag(1,1) and state covariance as X = 10 ∗W , where KT is tuning
parameter.

It is often hard to find W . After possible tuning the filter by hit and trial with KT , the
closer value was found to be 1.5. Both the process noise w and measurement noise v are
considered to be white Gaussian noise with zero-mean. The simulation step ∆t is set to
1min and the total time of simulation is 584min.

The simulation environment is setup with “Processor: Intel(R) Core(TM) i7-7500U
CPU @ 2.70GHz, 2901 Mhz, 2 Core(s), 4 Logical Processor(s)” in Julia program-
ming language Version 1.0.3 (2018-12-18).

For comparison of UKF and EnKF, air and metals temperatures estimates, root mean
square error (RMSE) of innovation residuals, ε = yk − ŷk|k−1 , its covariance E , and com-
putational time of filters are taken into consideration.

Several important results can be obtained from metals and air temperature estimation
using UKF and EnKF with different np.

Ż.Ŷ.Ŵ Comparison of UKF and EnKF based on temperatures esࢢmaࢢon

It can be seen from Figure 8.3, for estimated rotor copper and air gap temperatures for
Model 1; for EnKF as the number of particles np increases EnKF converge approximately
as the UKF estimates. For instance, EnKF estimation when increased from np = 50 to
np = 1000 gives similar estimation with UKF. Similarly, from Figure 8.6 and 8.4, for Model
2, UKF and EnKF with np = 1000 gives similar rotor temperature estimates.

However; from Figure 8.8, for rotor temperature estimates, for Model 3a and 3b, and
Model 4a and 4b, UKF and EnKF with np = 1000 gives very different results with an
average difference of 10◦C.

Figure 8.5 and 8.7 shows that air temperatures estimates from UKF and EnKF with
np = 1000 give similar results. Similarly, stator copper and stator iron temperatures
estimates for both UKF and EnKF with np = 1000 give approximately the same results.
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8 Results and Discussion

Figure 8.3: Rotor and air gap temperature estimation using UKF and EnKF with different np.
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8.3 State Estimation

Figure 8.4: Metals temperatures estimation using UKF for different models.
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8 Results and Discussion

Figure 8.5: Air temperatures estimation using UKF for different models.
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8.3 State Estimation

Figure 8.6: Metals temperatures estimation using EnKF (np = 1000) for different models.
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8 Results and Discussion

Figure 8.7: Air temperatures estimation using EnKF (np = 1000) for different models.
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8.3 State Estimation

Figure 8.8: Air temperatures estimation using EnKF (np = 1000) for different models.
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8 Results and Discussion

UKF

Model 1

Model 2

Model 3a

Model 4a

EnKF(np=1000)

Model 1

Model 2

Model 3a

Model 4a

Model 1: EnKF

EnKF(np=50)
EnKF(np=100)

EnKF(np=500)

EnKF(np=1000)

Model 3b: EnKF

EnKF(np=50)
EnKF(np=100)

EnKF(np=500)

EnKF(np=1000)

EnKF (np=1000)

Model 3aModel 3b

EnKF (np=1000)

Model 4aModel 4b

Figure 8.9: Comparison of computational time for UKF and EnKF with different models.

Figure 8.4 shows that rotor temperature estimates decreases from models with constant
ĉpand R to temperature dependent ĉp and R. UKF estimation of rotor temperature is
exactly same for Model 3a and 3b which shows that there is no difference in estimation
either constant or temperature dependent ĉp is taken inside heat exchanger is considered
or not. And, a similar result is obtained from Model 4a and 4b.

As the model complexity increases from Model 1 to Model 4b, Figure 8.5 and 8.7 shows
that estimation in air temperatures values increases from simple to complex.

Ż.Ŷ.ŵ Comparison of UKF and EnKF based on esࢢmaࢢon accuracy and
computaࢢonal meࢢ

We can compare UKF and EnKF based on estimation accuracy measuring RMSE of
innovation residuals ε and its covariance E , and the computational time for each filter.
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8.3 State Estimation

8.2
Table 8.2: Comparison of UKF and EnKF based on RMSE of residual ε and its covariance E , and

computational time. Tsim is the total simulation time.

Model KF RMSE
(ε)

RMSE
(E )

Elapsed
(∆t = 1min)

Elapsed
(Tsim = 584min)

UKF 2.214 7.203 0.578ms 0.338s
EnKF

(
np = 50

)
2.066 8.662 1.863ms 1.088s

1 EnKF
(
np = 100

)
2.039 8.705 3.785ms 2.211s

EnKF
(
np = 500

)
2.010 8.636 18.595ms 10.860s

EnKF
(
np = 1000

)
2.012 8.551 45.102ms 26.343s

UKF 1.652 7.241 1.274ms 0.744s
EnKF

(
np = 50

)
1.573 8.634 3.037ms 1.774s

2 EnKF
(
np = 100

)
1.524 8.778 5.845ms 3.414s

EnKF
(
np = 500

)
1.500 8.518 28.645ms 16.729s

EnKF
(
np = 1000

)
1.492 8.523 55.179ms 32.225s

UKF 3.137 5.970 1.782ms 1.041s
EnKF

(
np = 50

)
2.725 8.386 5.545ms 3.238s

3a EnKF
(
np = 100

)
2.700 8.143 13.087ms 7.643s

EnKF
(
np = 500

)
2.706 8.178 62.780ms 36.663s

EnKF
(
np = 1000

)
2.699 8.243 100.33ms 58.595s

UKF 3.200 5.971 205.582ms 2.001min
EnKF

(
np = 50

)
2.774 8.360 1.370s 13.335min

3b EnKF
(
np = 100

)
2.783 8.267 2.662s 25.916min

EnKF
(
np = 500

)
2.747 8.255 0.270min 2.63hr

EnKF
(
np = 1000

)
2.741 8.259 0.471min 4.59hr

UKF 2.730 6.010 1.366ms 0.798s
EnKF

(
np = 50

)
2.394 8.650 5.402ms 3.154s

4a EnKF
(
np = 100

)
2.375 8.386 9.053ms 5.287s

EnKF
(
np = 500

)
2.337 8.251 61.433ms 35.877s

EnKF
(
np = 1000

)
2.330 8.319 104.44ms 60.993s

UKF 2.802 6.012 131.506ms 1.280min
EnKF

(
np = 50

)
2.470 8.539 974.075ms 9.481min

4b EnKF
(
np = 100

)
2.423 8.531 2.65s 25.878min

EnKF
(
np = 500

)
2.401 8.223 0.259min 2.528hr

EnKF
(
np = 1000

)
2.400 8.257 0.495min 4.820hr
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8 Results and Discussion

Ż.Ŷ.ŵ.Ŵ Esࢢmaࢢon accuracy

It can be seen from Table 8.2 that RMSE of innovation residuals (ε) is least for Model 2
while for other models it is almost the same. Also, RMSE of E is not that much different
from one model to another. However, residuals of ε are higher for UKF than EnKF
and residuals of E is lower for EnKF than UKF. Furthermore, residuals decrease as we
increase the number of particles in EnKF from np = 50 to 100 to 500 to 1000. Thus,
EnKF estimation has less estimation error while we increase the number of particles.

Ż.Ŷ.ŵ.ŵ Computaࢢonal meࢢ

From Table 8.2 it can be seen that computational time increases when model complexity
increases from Model 1 to Model 4, that is, models with constant ĉp and R have less
computational time than the model with temperature dependent ĉp and R.

Similarly, UKF has less computational time than EnKF. Furthermore, computational
time increases as the number of particles increases for EnKF.

Model 3b and 4b have the highest computational time as compared to other models and it
is because considering ĉp(T ) inside heat exchanger for air and water a numerical solution
needs to be solved for the tow point boundary value problem. For a total simulation
time of 584min state estimation for Model 3b using EnKF

(
np = 1000

)
is 4.59hr while for

Model 3a is only 58.595s. Similar results can be seen for Model 4a and 4b.

For a single iteration of ∆t = 1min, it can be seen that UKF is faster, than EnKF with
different particles for all models, and has less computational time.

Figure 8.9 shows a subjective comparison of computational time for UKF and EnKF.
Also, it shows that computational time for Model 3a and 3b, and Model 4a and 4b have a
vast difference because Model 3b and 4b are based on the numerical solution of boundary
value problem for the heat exchanger which requires higher computational time.
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ż Future Works

For further studies, to be very specific,

• the computational time for solving boundary value problem for heat exchanger, for
Model 3b and 4b, can be improved,

• analysis of linearization, stability, observability, and controllability of models other
than Model 1 and 2 can be performed,

• a few of the parameters are only used for parameter optimization for fitting Model
1, all parameters can be considered for fitting Model 1, parameter optimization for
other models can also be tested and verified,

• local parameter sensitivity analysis performed in this thesis can be compared with
global parameter sensitivity analysis,

• few other state estimation algorithms like Particle filter, different versions of EnKF
and UKF can be further developed and compared,

• models can be solved using other possible platforms other than Julia, OMJulia
and Modelica, like MATLAB, modia.jl 1,etc., it is often interesting to compare
computational time for solving complex models.

1https://github.com/ModiaSim/Modia.jl
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Ŵų Conclusion

The central focus of this thesis is to develop and have state estimation for the temperature
of the metals of the thermal model of the air-cooled synchronous generator. The models
are developed and analyzed using constant and temperatures dependent resistances of
rotor and stator copper windings, and specific heat capacities of fluids (air, water). Six
DAE and ODE models have been purposed, simulated, and out of six, the computational
time for four models have been compared in Julia, OMJulia, and OpenModelica. For
steady state, the two point boundary value solution of the heat exchanger when fluids’
specific heat capacities depending on temperature, a numerical solution is purposed using
Julia language. UKF and EnKF based state estimation algorithms are used for gener-
ator metals and air temperature estimation. Both algorithms are compared based on
estimation accuracy and computational time. UKF performs better than EnKF based on
computational speed while EnKF performs better based on estimation accuracy. Model
2 with temperature dependent resistance has better estimation accuracy based on RMSE
of innovation residuals of estimators than any other models.

93



94



Bibliography

[1] B. Lie, “Project, fm1015 modelling of dynamic systems,” University of South-Eastern
Norway, Sep. 2018, group project task.

[2] ENTSO-E, “Commission regulation (eu) 2016/631 of 14 april 2016 establishing a
network code on requirements for grid connection of generators. technical report,
european net- work of transmission system operators for electricity, entso-e avenue
de cortenbergh 100 1000 brussels bel- gium,” Tech. Rep., 2016.

[3] Statnett, “Fiks funksjonskrav i kraftsystemet [functional require- ments in the power
system]. technical report,” Tech. Rep., 2012.

[4] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, “Evol-
ution and modern approaches for thermal analysis of electrical machines,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 3, pp. 871–882, March 2009.

[5] A. M. EL-Refaie, N. C. Harris, T. M. Jahns, and K. M. Rahman, “Thermal analysis
of multibarrier interior pm synchronous machine using lumped parameter model,”
IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 303–309, June 2004.

[6] S. Nategh, O. Wallmark, M. Leksell, and S. Zhao, “Thermal analysis of a pmasrm
using partial fea and lumped parameter modeling,” IEEE Transactions on Energy
Conversion, vol. 27, no. 2, pp. 477–488, June 2012.

[7] N. Rostami, M. R. Feyzi, J. Pyrhonen, A. Parviainen, and M. Niemela, “Lumped-
parameter thermal model for axial flux permanent magnet machines,” IEEE Trans-
actions on magnetics, vol. 49, no. 3, pp. 1178–1184, 2013.

[8] F. Marignetti, V. D. Colli, and Y. Coia, “Design of axial flux pm synchronous
machines through 3-d coupled electromagnetic thermal and fluid-dynamical finite-
element analysis,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp.
3591–3601, 2008.

[9] Y.-K. R. Chin, E. Nordlund, and A. Staton, “Thermal analysis-lumped-circuit model
and finite element analysis,” in IPEC 2003: 6th International Power Engineering
Conference. NANYANG TECHNOLOGICAL UNIV, 2003, pp. 952–957.

95



Bibliography

[10] B. Zhang, R. Qu, W. Xu, J. Wang, and Y. Chen, “Thermal model of totally enclosed
water-cooled permanent magnet synchronous machines for electric vehicle applica-
tions,” in 2014 International Conference on Electrical Machines (ICEM). IEEE,
2014, pp. 2205–2211.

[11] T. Øyvang, J. K. Nøland, G. J. Hegglid, and B. Lie, “Online model-based thermal
prediction for flexible control of an air-cooled hydrogenerator,” IEEE Transactions
on Industrial Electronics, 2018.

[12] T. Øyvang, “Enhanced power capability of generator units for increased operational
security,” Porsgrunn, 2013.

[13] B. Lie, “Modeling of dynamic systems,” Aug. 2017a, lecture notes, Version of August
8.

[14] B. J. McBride, M. J. Zehe, and S. Gordon, “Nasa glenn coefficients for calculating
thermodynamic properties of individual species,” 2002.

[15] M. J. Zehe, S. Gordon, and B. J. McBride, “Cap: A computer code for generating
tabular thermodynamic functions from nasa lewis coefficients,” 2002.

[16] P. Fritzson, Principles of object-oriented modeling and simulation with Modelica 3.3:
a cyber-physical approach. John Wiley & Sons, 2014.

[17] C. Rackauckas and Q. Nie, “Differentialequations. jl–a performant and feature-rich
ecosystem for solving differential equations in julia,” Journal of Open Research Soft-
ware, vol. 5, no. 1, 2017.

[18] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in prac-
tice: a guide to assessing scientific models. Wiley Online Library, 2004.

[19] D. G. Cacuci, Sensitivity & uncertainty analysis, volume 1: Theory. Chapman and
Hall/CRC, 2003.

[20] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for mathem-
atical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[21] JuliaNLSolvers, “Julianlsolvers/lsqfit.jl,” Apr 2019. [Online]. Available: https:
//github.com/JuliaNLSolvers/LsqFit.jl

[22] P. K. Mogensen and A. N. Riseth, “Optim: A mathematical optimization package
for Julia,” Journal of Open Source Software, vol. 3, no. 24, p. 615, 2018.

[23] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[24] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
John Wiley & Sons, 2006.

96

https://github.com/JuliaNLSolvers/LsqFit.jl
https://github.com/JuliaNLSolvers/LsqFit.jl


Bibliography

[25] O. Brastein, B. Lie, R. Sharma, and N.-O. Skeie, “Parameter estimation for externally
simulated thermal network models,” Energy and Buildings, 2019.

[26] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear
systems,” in Signal processing, sensor fusion, and target recognition VI, vol. 3068.
International Society for Optics and Photonics, 1997, pp. 182–194.

[27] G. Evensen, “The ensemble kalman filter: Theoretical formulation and practical
implementation,” Ocean dynamics, vol. 53, no. 4, pp. 343–367, 2003.

97



98



Appendix A

Task Descripࢢons

99



 

 

 
 
 

 

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn 

 

FMH606 Master's Thesis 

Title: Model Fitting and State Estimation for Thermal Model of Synchronous Generator 
 

USN supervisor: Bernt Lie, co-supervisor Thomas Øyvang 
 

External partner: Skagerak Kraft 
 

Task background: 
Currently, strict constraints are imposed on the operation of synchronous generators for 
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restricted to be less than 0.86. The Power Factor is the ratio of active power to 
apparent/total power. Active power is the power delivered to the grid, while the total 
(apparent) power is the sum of active power and reactive power. Reactive power is typically 
stored in the system due to induction and capacitance. A higher Power Factor thus implies: 

• Less power stored in the system, i.e., less reserve power. 

• More power through the system, which implies higher currents in the generator, and 
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It is of interest to consider the possibility of relaxing on the constraint of the Power Factor. 
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however, be balanced against the added strain on the generator due to thermal heating, 
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In a recent Ph.D. study (Øyvang, 2018), the possibility of modelling and controlling the 
thermal development in a synchronous generator was developed. That study includes a 
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detailed 3D simulations, for the combined thermal model with a simple electric generator 
model. A reformulation of the thermal model has been studied in a group project in course 
FM1015 Modelling of Dynamic Systems (Lie, 2018). 

 

It is of interest to further develop the thermal model with the electric model. Specifically, 
the thermal model should use the approach in Lie (2018). The thermal model should be 
extended with a simple electric model of the generator. It is of particular interest to study 
how model parameters can be adjusted to make the model better fit experimental data. 
Furthermore, it is of interest to study state estimation for the model, and how model fitting 
(parameter estimation) and state estimation can be carried out with a model implemented 
in Modelica and/or Julia. Even without background in state estimation, it is relatively 
straightforward to understand the basics of state estimation. 

 
Modelica is a suitable language for implementing models of the resulting system. Julia is a 
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OMJulia is a tool for integrating Julia with OpenModelica. Together, OpenModelica and Julia 
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Appendix B Model equations for DAE models

Model equaࢢons for DAE models

Model 1
dUr

dt
= Q̇σ

r − Q̇r2δ (B.1)

dUs

dt
= Q̇σ

s − Q̇s2Fe (B.2)

dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (B.3)

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (B.4)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (B.5)

Ur = Hr − paVr (B.6)
Us = Hs − paVs (B.7)
UFe = HFe − paVFe (B.8)
Hr = mrĤr (B.9)
Hs = msĤs (B.10)
HFe = mFeĤFe (B.11)
Ĥr = Ĥo

Cu + ĉp,Cu (Tr −T o
Cu) (B.12)

Ĥs = Ĥo
Cu + ĉp,Cu (Ts −T o

Cu) (B.13)
ĤFe = Ĥo

Fe + ĉp,Fe (TFe −T o
Fe) (B.14)

Ĥc
a = Ĥo

a + ĉp,a (T c
a −T o

a ) (B.15)

Ĥδ
a = Ĥo

a + ĉp,a

(
T δ

a −T o
a

)
(B.16)

Ĥh
a = Ĥo

a + ĉp,a

(
T h

a −T o
a

)
(B.17)

Ḣc
a = ṁaĤc

a (B.18)

Ḣδ
a = ṁaĤδ

a (B.19)

Ḣh
a = ṁaĤh

a . (B.20)
Q̇σ

r = 1.1RrI2
f (B.21)

Q̇σ
s = 3RsI2

t (B.22)
Q̇σ

f = 0.8Ẇf (B.23)

Q̇r2δ =UAr2δ

(
Tr −T δ

a

)
(B.24)

Q̇s2Fe = U As2Fe (Ts −TFe) (B.25)

Q̇Fe2a = U AFe2a

(
TFe −T h

a

)
(B.26)

T h
w =

Nw
St

(
1− e−N∆

St

)
T h

a +N∆
Ste

−N∆
St T h

w

Nw
St −Na

Ste
−N∆

St
(B.27)

T c
a =

N∆
StT

h
a +Na

St

(
1− e−N∆

St

)
T c

w

Nw
St −Na

Ste
−N∆

St
(B.28)

Q̇w2a =
e−N∆

St −1
1

ĉp,aṁa
e−N∆

St − 1
ĉp,wṁw

(
T c

w −T h
a

)
(B.29)

Nw
St =

U Ax

ĉp,wṁw
(B.30)

Na
St =

U Ax

ĉp,aṁa
(B.31)

N∆
St = Nw

St −Na
St. (B.32)

Model 2
dUr

dt
= Q̇σ

r − Q̇r2δ (B.33)

dUs

dt
= Q̇σ

s − Q̇s2Fe (B.34)

dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (B.35)

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (B.36)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (B.37)

Ur = Hr − paVr (B.38)
Us = Hs − paVs (B.39)
UFe = HFe − paVFe (B.40)
Hr = mrĤr (B.41)
Hs = msĤs (B.42)
HFe = mFeĤFe (B.43)
Ĥr = Ĥo

Cu + ĉp,Cu (Tr −T o
Cu) (B.44)

Ĥs = Ĥo
Cu + ĉp,Cu (Ts −T o

Cu) (B.45)
ĤFe = Ĥo
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Fe) (B.46)
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T δ
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(B.48)

Ĥh
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a

)
(B.49)

Ḣc
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a (B.50)
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a (B.51)

Ḣh
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Q̇σ

f = 0.8Ẇf (B.55)
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Q̇Fe2a = U AFe2a

(
TFe −T h

a

)
(B.58)

T h
w =

Nw
St

(
1− e−N∆

St

)
T h

a +N∆
Ste

−N∆
St T h

w

Nw
St −Na

Ste
−N∆

St
(B.59)

T c
a =

N∆
StT

h
a +Na

St

(
1− e−N∆

St

)
T c

w

Nw
St −Na

Ste
−N∆

St
(B.60)

Q̇w2a =
e−N∆

St −1
1

ĉp,aṁa
e−N∆

St − 1
ĉp,wṁw

(
T c

w −T h
a

)
(B.61)

Nw
St =

U Ax

ĉp,wṁw
(B.62)

Na
St =

U Ax

ĉp,aṁa
(B.63)

N∆
St = Nw

St −Na
St. (B.64)104



Model 3a
dUr

dt
= Q̇σ

r − Q̇r2δ (B.65)

dUs

dt
= Q̇σ

s − Q̇s2Fe (B.66)

dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (B.67)

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (B.68)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (B.69)

Ur = Hr − paVr (B.70)
Us = Hs − paVs (B.71)
UFe = HFe − paVFe (B.72)
Hr = mrĤr (B.73)
Hs = msĤs (B.74)
HFe = mFeĤFe (B.75)

Ĥr = Ĥo
Cu +

∫ Tr

T o
Cu

ĉp,Cu(T )dT (B.76)

Ĥs = Ĥo
Cu +

∫ Ts

T o
Cu

ĉp,Cu(T )dT (B.77)

ĤFe = Ĥo
Fe +

∫ TFe

T o
Fe

ĉp,Fe(T )dT (B.78)

Ĥc
a = Ĥo

a +
∫ T c

a

T o
a

ĉp,a(T )dT (B.79)

Ĥδ
a = Ĥo

a +
∫ T δ

a

T o
a

ĉp,a(T )dT (B.80)

Ĥh
a = Ĥo

a +
∫ T h

a

T o
a

ĉp,a(T )dT (B.81)

Ḣc
a = ṁaĤc

a (B.82)

Ḣδ
a = ṁaĤδ

a (B.83)

Ḣh
a = ṁaĤh

a (B.84)
Q̇σ

r = 1.1RrI2
f (B.85)

Q̇σ
s = 3RsI2

t (B.86)
Q̇σ

f = 0.8Ẇf (B.87)

Q̇r2δ =UAr2δ

(
Tr −T δ

a

)
(B.88)

Q̇s2Fe = U As2Fe (Ts −TFe) (B.89)

Q̇Fe2a = U AFe2a

(
TFe −T h

a

)
(B.90)

T h
w =

Nw
St

(
1− e−N∆

St

)
T h

a +N∆
Ste

−N∆
St T h

w

Nw
St −Na

Ste
−N∆

St
(B.91)

T c
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N∆
StT

h
a +Na

St

(
1− e−N∆

St

)
T c

w

Nw
St −Na

Ste
−N∆

St
(B.92)

Q̇w2a =
e−N∆

St −1
1

ĉp,aṁa
e−N∆

St − 1
ĉp,wṁw

(
T c

w −T h
a

)
(B.93)

Nw
St =

U Ax

ĉp,wṁw
(B.94)

Na
St =

U Ax

ĉp,aṁa
(B.95)

N∆
St = Nw

St −Na
St. (B.96)

Model 4a
dUr

dt
= Q̇σ

r − Q̇r2δ (B.97)

dUs

dt
= Q̇σ

s − Q̇s2Fe (B.98)

dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (B.99)

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (B.100)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (B.101)

Ur = Hr − paVr (B.102)
Us = Hs − paVs (B.103)
UFe = HFe − paVFe (B.104)
Hr = mrĤr (B.105)
Hs = msĤs (B.106)
HFe = mFeĤFe (B.107)

Ĥr = Ĥo
Cu +

∫ Tr

T o
Cu

ĉp,Cu(T )dT (B.108)

Ĥs = Ĥo
Cu +

∫ Ts

T o
Cu

ĉp,Cu(T )dT (B.109)

ĤFe = Ĥo
Fe +

∫ TFe

T o
Fe

ĉp,Fe(T )dT (B.110)

Ĥc
a = Ĥo

a +
∫ T c

a

T o
a

ĉp,a(T )dT (B.111)

Ĥδ
a = Ĥo

a +
∫ T δ

a

T o
a

ĉp,a(T )dT (B.112)

Ĥh
a = Ĥo

a +
∫ T h

a

T o
a

ĉp,a(T )dT (B.113)

Ḣc
a = ṁaĤc

a (B.114)

Ḣδ
a = ṁaĤδ

a (B.115)

Ḣh
a = ṁaĤh

a . (B.116)
Q̇σ

r = 1.1Rr (1+αCu (Tr −T o
Cu)) I2

f (B.117)
Q̇σ

s = 3Rs (1+αCu (Ts −T o
Cu)) I2

t (B.118)
Q̇σ

f = 0.8Ẇf (B.119)

Q̇r2δ =UAr2δ

(
Tr −T δ

a

)
(B.120)

Q̇s2Fe = U As2Fe (Ts −TFe) (B.121)

Q̇Fe2a = U AFe2a
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TFe −T h
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)
(B.122)
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Ste
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Q̇w2a =
e−N∆

St −1
1

ĉp,aṁa
e−N∆
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ĉp,wṁw
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T c

w −T h
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(B.125)

Nw
St =

U Ax

ĉp,wṁw
(B.126)

Na
St =

U Ax

ĉp,aṁa
(B.127)

N∆
St = Nw

St −Na
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Appendix B Model equations for DAE models

Model 3b
dUr

dt
= Q̇σ

r − Q̇r2δ (B.129)

dUs

dt
= Q̇σ

s − Q̇s2Fe (B.130)

dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (B.131)

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (B.132)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (B.133)

Ur = Hr − paVr (B.134)
Us = Hs − paVs (B.135)
UFe = HFe − paVFe (B.136)
Hr = mrĤr (B.137)
Hs = msĤs (B.138)
HFe = mFeĤFe (B.139)

Ĥr = Ĥo
Cu +

∫ Tr

T o
Cu

ĉp,Cu(T )dT (B.140)

Ĥs = Ĥo
Cu +

∫ Ts

T o
Cu

ĉp,Cu(T )dT (B.141)

ĤFe = Ĥo
Fe +

∫ TFe

T o
Fe

ĉp,Fe(T )dT (B.142)

Ĥc
a = Ĥo

a +
∫ T c

a

T o
a

ĉp,a(T )dT (B.143)

Ĥδ
a = Ĥo

a +
∫ T δ

a

T o
a

ĉp,a(T )dT (B.144)

Ĥh
a = Ĥo

a +
∫ T h

a

T o
a

ĉp,a(T )dT (B.145)

Ḣc
a = ṁaĤc

a (B.146)

Ḣδ
a = ṁaĤδ

a (B.147)

Ḣh
a = ṁaĤh

a (B.148)
Q̇σ

r = 1.1RrI2
f (B.149)

Q̇σ
s = 3RsI2

t (B.150)
Q̇σ

f = 0.8Ẇf (B.151)

Q̇r2δ =UAr2δ

(
Tr −T δ
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)
(B.152)

Q̇s2Fe = U As2Fe (Ts −TFe) (B.153)

Q̇Fe2a = U AFe2a

(
TFe −T h

a

)
(B.154)

dTw

dx
=

U ℘
R

Mw
(aw +bwTw) ṁw

(Tw −Ta) (B.155)

dTa

dx
=

U ℘
R
Ma

(aa +baTa) ṁa
(Tw −Ta) (B.156)

Tw(x = Lx) = T c
w (B.157)

Ta(x = 0) = T h
a . (B.158)

Model 4b
dUr

dt
= Q̇σ

r − Q̇r2δ (B.159)

dUs

dt
= Q̇σ

s − Q̇s2Fe (B.160)

dUFe

dt
= Q̇σ

Fe − Q̇Fe2a + Q̇s2Fe (B.161)

dUδ
a

dt
= Ḣc

a − Ḣδ
a + Q̇r2δ + Q̇σ

f ≈ 0 (B.162)

dUh
a

dt
= Ḣδ

a − Ḣh
a + Q̇Fe2a ≈ 0. (B.163)

Ur = Hr − paVr (B.164)
Us = Hs − paVs (B.165)
UFe = HFe − paVFe (B.166)
Hr = mrĤr (B.167)
Hs = msĤs (B.168)
HFe = mFeĤFe (B.169)

Ĥr = Ĥo
Cu +

∫ Tr

T o
Cu

ĉp,Cu(T )dT (B.170)

Ĥs = Ĥo
Cu +
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T o
Cu

ĉp,Cu(T )dT (B.171)

ĤFe = Ĥo
Fe +

∫ TFe

T o
Fe

ĉp,Fe(T )dT (B.172)

Ĥc
a = Ĥo

a +
∫ T c

a

T o
a

ĉp,a(T )dT (B.173)

Ĥδ
a = Ĥo

a +
∫ T δ
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T o
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ĉp,a(T )dT (B.174)

Ĥh
a = Ĥo

a +
∫ T h

a

T o
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ĉp,a(T )dT (B.175)

Ḣc
a = ṁaĤc
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Ḣδ
a = ṁaĤδ
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Ḣh
a = ṁaĤh
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Q̇σ
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Cu)) I2

f (B.179)
Q̇σ

s = 3Rs (1+αCu (Ts −T o
Cu)) I2

t (B.180)
Q̇σ

f = 0.8Ẇf (B.181)

Q̇r2δ =UAr2δ

(
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(B.182)

Q̇s2Fe = U As2Fe (Ts −TFe) (B.183)

Q̇Fe2a = U AFe2a
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dx
=

U ℘
R
Ma
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(Tw −Ta) (B.186)

Tw(x = Lx) = T c
w (B.187)

Ta(x = 0) = T h
a . (B.188)
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The integral terms in Model 3 and Model 4 should be replaced as,∫ Tr

T o
Cu

ĉp,Cu(T )dT =
R
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bCu

2
T o2

Cu

))
∫ Ts

T o
Cu
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(
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Appendix C

Code lisࢢng

All the code listing written in Jupyter notebook can be found at

https://github.com/pandeysudan27/MasterThesis2019.

The link cosists of notebooks named as,

1. ComparisionOfKalmanFilter.ipynb

2. ComputingTimeForDAEModelsOMJulia.ipynb

3. DAEModelsSimulationJuliaHeatExchangerProfiles.ipynb

4. KalmanFilterModel1.ipynb

5. KalmanFilterModel2.ipynb

6. KalmanFilterModel3a.ipynb

7. KalmanFilterModel3b.ipynb

8. KalmanFilterModel4a.ipynb

9. KalmanFilterModel4b.ipynb

10. LewisCoefficientsLinearAndQuadApproximation.ipynb

11. LinearizationStabilityControllabilityObservabilityModel1and2.ipynb

12. OverViewOfExperimentalData.ipynb

13. ParameterOptimization.ipynb

14. ParametersSensitivityAnalysis.ipynb

15. SimulatorVersusRealMeasurements.ipynb

It also contains Modelica code for Model 1, 2, 3a, and 4b with file name as Model1.mo,
Model2.mo, Model3a.mo, and Model4a.mo.
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State Estimation of a Thermal Model of Air-cooled Synchronous
Generator
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Abstract
In this paper, we extend a previous study on a totally en-
closed thermal model of a synchronous generator, with
temperature state estimation using experimental data. The
extension includes a new formulation of the system model,
with 4 different model variations with and without tem-
perature dependence in the metal, air, and water heat ca-
pacities and the copper resistances, where temperature
variation in water and/or air requires a non-standard heat
exchanger model. In the former study, the Unscented
Kalman Filter (UKF) was used for state estimation. Here,
we include both the UKF as well as the Ensemble Kalman
Filter (EnKF) in the comparison. UKF and EnKF are com-
pared based on estimation accuracy and computational
speed. Results show that EnKF exhibits lower RMSE for
the innovation process and thus is more accurate than the
UKF even with a “minimum” of 50 particles, but the UKF
with 6 sigma points (3 states) is faster. It is too early to
conclude which of 4 models is more accurate, as they need
to be tuned individually wrt. parameter fitting. Keywords:
Air-cooled synchronous generator, dynamic model, state
estimation, Unscented Kalman filter, Ensemble Kalman
filter

1 Introduction
1.1 Background
Due to the increase in intermittent renewable energy re-
sources, hydropower plants will become a key compo-
nent to provide higher operational flexibility in the fu-
ture power system. In European hydropower generation,
the synchronous generator power factor is restricted to
the range [0.85,0.95], (ENTSO-E, 2016); for Norway, the
power factor should be less than 0.86, (Statnett, 2012).

The power factor is the ratio of active power to apparent
(complex) power. A small power factor implies a reduced
active power production compared to a higher power fac-
tor. High production of active power is desired by the plant
owners, but an increased power factor may cause prob-
lems due to the thermal design limitation of the machine.
An important question is: would it be acceptable to relax
on the constraint on the power factor for a limited time pe-
riod in order to take out unexploited power in critical situ-
ations? To allow for such a relaxation in the power factor,
it is important to have a measure of the temperature evolu-
tion, and how this influences the lifetime of the generator.

Figure 1. Thermal model of air-cooled synchronous generator,
from (Lie, 2018).

In this paper, we consider how to obtain information about
the temperature evolution.

A thermal model of a totally enclosed air-cooled hy-
dro generator was developed in (Øyvang, 2018), using
a closed-loop, water cooled heat exchanger for cooling
heated air from the outlet of generator, and applied to a
case study of a vertically mounted 103MVA air-cooled
hydro generator at Åbjøra, Norway. A similar model with
more general structure and more efficient heat exchanger
description was developed in (Lie, 2018).

It is of interest to extend the description in (Lie, 2018)
with temperature dependent heat capacities (metals, air)
and temperature dependent copper resistances. Further-
more, it is of interest to carry out a more extensive study on
state estimation compared to (Øyvang, 2018), using sev-
eral variations of the Unscented Kalman Filter (UKF) as
well as introducing the Ensemble Kalman Filter (EnKF).

1.2 Organization of paper
The paper is organized as follows. The mathematical
model is presented in Section 2. State estimation algo-
rithms UKF and EnKF are presented in Section 3. Results
are presented and discussed in Section 4. Finally, conclu-
sions are drawn in Section 5, together with possible future
work.

2 Mathematical model
Figure 1 shows the thermal operation of an air-cooled syn-
chronous generator.

The cold air out of the heat exchanger is blown by a fan
into the rotor/stator air gap. The air is heated by heat flow
from rotor, air gap windage, and bearing friction. Next,
air is forced into ducts through the stator iron core where
it gets heated by heat flow from the iron. At the outlet



Figure 2. Functional diagram for air-cooled synchronous gen-
erator, from (Lie, 2018).

from the stator ducts, the heated air is collected and passed
through a counter-current heat exchanger. The heated air
is cooled down through the heat exchanger using continu-
ous cold water circulation, before it is re-injected into the
air gap in a continuous, closed loop process.

The water mass flow rate through the heat exchanger is
ṁw, and it enters at temperature T c

w and leaves the heat ex-
changer at temperature T h

w . The air mass flow rate is ṁa
with temperature T h

a at stator outlet and heat exchanger
entry; through the heat exchanger, the air is cooled down
to temperature T c

a . The metal volumes are assumed to be
homogeneous in temperature, with rotor copper at temper-
ature Tr, stator copper at temperature Ts, and stator iron at
temperature TFe. Rotor copper is heated by heat rate Q̇σ

r
due to resistive electric loss from the field current If. Sim-
ilarly, the stator copper is heated by heat rate Q̇σ

s due to
stator terminal current It. The stator iron is heated by heat
rate Q̇σ

Fe due to eddy current losses and hysteresis losses,
(Hargreaves et al., 2011). The air gap between rotor and
stator is heated at heat rate Q̇σ

f due to bearing and windage
losses, (Øyvang, 2018). In addition, heat conduction/con-
vection between the various volumes take place. It is of
interest to consider how the inputs ṁw, ṁa, T c

w, Q̇σ
Fe, Q̇σ

f ,
It and If influence the temperatures in the generator met-
als, Tr, Ts, and TFe. A functional diagram for the air-cooled
synchronous generator is shown in Figure 2 relating inputs
and outputs.

The mathematical model governing generator metal
temperatures is taken from (Lie, 2018),

mrĉp,Cu
dTr

dt
= 1.1RrI2

f −U Ar2δ

(
Tr −T δ

a

)
(1)

msĉp,Cu
dTs

dt
= 3RsI2

t −U As2Fe (Ts −TFe) (2)

mFeĉp,Fe
dTFe

dt
= U As2Fe (Ts −TFe)

−U AFe2a

(
TFe −T h

a

)
+ Q̇σ

Fe. (3)

Here, mr, ms, and mFe are the masses of the respective
metal volumes. ĉp,Cu and ĉp,Fe are specific heat capaci-
ties of copper and iron, respectively. Rr and Rs are re-
sistances of copper in the rotor and stator, respectively,
U Ar2δ , U As2Fe, and U AFe2a are heat transfer factors be-
tween rotor metal and rotor-stator air-gap, stator copper
and stator iron, and stator iron and stator duct air gaps,

respectively. T δ
a and T h

a are air temperatures in the rotor-
stator air-gap and in the stator duct, respectively.

Similarly, for air inside the generator,

0 = ṁaĉp,a

(
T c

a −T δ
a

)
+U Ar2δ

(
Tr −T δ

a

)
+ Q̇σ

f (4)

0 = ṁaĉp,a

(
T δ

a −T h
a

)
+U AFe2a

(
TFe −T h

a

)
. (5)

Here, ĉp,a is the specific heat capacity of air.
For the heat exchanger, we introduce Stanton numbers

Nw
St and Na

St,

Nw
St =

U Ax

ĉp,wṁw

Na
St =

U Ax

ĉp,aṁa

N∆
St = Nw

St −Na
St.

Here, ĉp,w is the specific heat capacity of water, and U Ax
is the heat transfer factor between water and air in the heat
exchanger. Provided that the Stanton numbers are constant
and independent of (i) position, and (ii) temperatures, the
counter-current heat exchanger model is

(
Nw

St −Na
St exp

(
−N∆

St

))
T c

a =N∆
StT

h
a +Na

St

(
1− exp

(
−N∆

St

))
T c

w.

(6)
The heat exchanger model in Eq. 6 is the result of analyti-
cally solving a linear two point boundary value problem.

This model can be extended in several directions, by (a)
introducing temperature dependence in the specific heat
capacities ĉp, j, (b) introducing temperature dependence
in the copper resistances Rr and Rs, and (c) in principle
also in the heat transfer factors U A j. The only substantial
change in the model is that if any of the Stanton numbers
become temperature dependent, this will invalidate Eq. 6,
and the involved two point boundary value problem must
be solved numerically instead of analytically. Here, we
assume constant Stanton numbers, even when the specific
heat capacity of air is allowed to vary in Eqs. 4–5.

To this end, four different models will be considered
here:

• Model 1: constant values, ĉp, R

• Model 2: constant specific heat capacity, temperature
dependent resistance, ĉp, R(T )

• Model 3: temperature dependent specific heat capac-
ity, constant resistance, ĉp (T ), R

• Model 4: temperature dependence specific heat ca-
pacity and resistance, ĉp (T ), R(T ).



To simplify the discussion and avoid invalidating the heat
exchanger model in Eq. 6, we will assume that specific
heat capacity of air is constant in the heat exchanger but
varies with temperature in the air gap/air duct, while we
will introduce temperature dependence in copper and iron.
To this end, for ĉp, j (T ), j ∈ {a,Cu,Fe}, we will use a lin-
ear approximation given as,1

ĉp, j (T ) =
R

M j
(a j +b jT ) , (7)

where R is universal gas constant and M j is the molecular
mass. For the copper resistance,

R j (Tj) = R◦
j (1+αCu (Tj −T ◦

Cu)) , j ∈ {r,s} (8)

where αCu is temperature coefficient of resistance for cop-
per.

The parameters for the model of (Øyvang, 2018) are
given in Table 1.

Operating conditions for the model are given in Table 2.

2.1 Overview of experimental data
A heat-run test of the synchronous hydro generator ma-
chine was performed for 600min, (Øyvang, 2018). Table 3
lists measured quantities in the test.

Measurements were logged every minute for a sup-
plied field current (If) from cold-start. The cold-run lasted
53min, where the terminal voltage was built-up by resid-
ual flux in rotor windings. After the cold-run period, the
supplied field current was increased leading to an increase
in the measured stator copper and iron temperatures. The
experimental results are displayed in Figure 3.

3 State Estimation
Notation used in the state estimation algorithms are given
in Table 4.

A relatively general nonlinear system model can be rep-
resented as

xk+1 = f (xk,uk)+wk (9)
yk = h(xk)+ vk

with wk ∼ N (w̄k,Wk) and vk ∼ N (v̄k,Vk).
For our model, the state is x =

(
Tr Ts TFe

)
, while

the measurements are y =
(

Ts TFe
)
. We wish to com-

bine the measurements (y) with the state space model to
estimate the unmeasured rotor copper temperature Tr and
air gap temperature T δ

a . To do that, we use two different
Kalman Filter algorithms: the Unscented Kalman Filter
(UKF) is presented in (Simon, 2006), while the Ensemble
Kalman Filter (EnKF) is succinctly described in (Brastein
et al., 2019). A summary of the UKF and EnKF algo-
rithms are given in Tables 5 and 6, respectively.

1We will be considering linear approximation for temperature de-
pendent specific heat capacity. The 7-coefficients, often called as NASA
Lewis coefficients, power series form is given in (McBride et al., 2002;
Zehe et al., 2002) which is converted to linear approximation for sim-
plifying mathematical models.

Table 1. Parameters for air-cooled synchronous generator
model. For the NASA Lewis coefficients, see Eq. 7.

Quantity Symbol Value
Atmospheric
pressure

pa 1.01 ·105 N/m2

Specific heat
capacity, air

ĉp,a 1.15kJ/kg/K

Specific heat
capacity, water

ĉp,w 4.2kJ/kg/K

Specific heat
capacity, copper

ĉp,Cu 385J/kg/K

Specific heat
capacity, iron

ĉp,Fe 465J/kg/K

Universal gas
constant

R 8.314J/K/mol

Molar mass, air Ma 28.97g/mol
Molar mass, water Mw 18.01g/mol
Molar mass, copper MCu 63.54g/mol
Molar mass, iron MFe 55.84g/mol
NASA Lewis
coefficient-linear
approx., air

aa, ba 3.28, 6.72 ·10−4

NASA Lewis
coefficient-linear
approx., copper

aCu, bCu 2.56, 1.2 ·10−3

NASA Lewis
coefficient-linear
approx., iron

aFe, bFe 0.19, 6.76 ·10−3

Copper mass, rotor mr 9260kg
Copper mass, stator ms 6827kg
Iron mass, stator mFe 71.2 ·103 kg
Heat transfer, rotor
to air gap

U Ar2δ 2.7kW/K

Heat transfer, stator
copper to iron

U As2Fe 20kW/K

Heat transfer, stator
iron to air

U AFe2a 14.3kW/K

Heat transfer, solid
to air

haAx 55.6kW/K

Heat transfer, solid
to water

hwAx 222kW/K

Heat transfer, air to
water

U Ax 1/
(

1
haAx

+ 1
hwAx

)
Reference
temperature air

T ◦
a 25 ◦C

Rotor copper ohmic
resistance,
T ◦

r = 15.7 ◦C

R◦
r 0.127Ω

Stator copper ohmic
resistance,
T ◦

s = 20 ◦C

R◦
s 1.95mΩ

Resistance nominal
temperature

T ◦
Cu 25 ◦C

Resistance
temperature coeff.

αCu 4.04 ·10−3 ◦C−1



Table 2. Operating conditions for air cooled synchronous gen-
erator model.

Quantity Symbol Value
Initial value, rotor
temperature

Tr (t = 0) 28 ◦C

Initial value, stator
copper temperature

Ts (t = 0) 28 ◦C

Initial value, stator
iron temperature

TFe (t = 0) 28 ◦C

Influent water
temperature

T c
w 3.8 ◦C

Water mass flow
rate

ṁw 53.9kg/s

Air mass flow rate ṁa 49.2kg/s
Rated rotor field
current

If 1055A

Rated stator
terminal current,
rated

It 5360A

Stator iron
generated heat

Q̇σ
Fe 212kW

Friction work Ẇf 528kW
Friction heating Q̇σ

f 0.8 ·Ẇf

Table 3. Measured quantities.

Quantity Symbol Units Sensor #
Generator
terminal
voltage

Vt kV – –

Active power
of generator

Pg MW – –

Reactive
power of
generator

Qg MVar – –

Rotor field
current

If A – –

Temperature
of stator
copper

Ts
◦C PT100 15

Temperature
of stator iron

TFe
◦C PT100 4

Hot air
temperature

T h
a

◦C PT100
/CTD

2/2

Cold air
temperature

T c
a

◦C PT100
/CTD

2/2

Cold water
temperature

T c
w

◦C Analog –

Hot water
temperature

T h
w

◦C Analog –

Terminal
current

It =
P2

g +Q2
g√

3·Vt

A – –

Figure 3. Experimental data for generator model from a 600min
heat-run test.

Table 4. Notations for the UKF and EnKF algorithms.

Symbol Description
x, x̄, x̂ State vector, its mean, its estimate
xk Vector x at time instance k
x̂k|k−1 a priori estimate of xk based on

measurements up to time tk−1
x̂k|k a posteriori estimate of xk based

on measurements up to time tk
X State co-variance
w Process noise
v Measurement noise
W Process noise co-variance
V Measurement noise co-variance
K Kalman gain
E Innovation co-variance
Z Cross co-variance
ε Error between measurement and

estimate



Table 5. Algorithm: UKF.

Initialization, k = 1 :
x̂1|1 = E(x1) = x̄1
X1|1 = X1
for k = 2, 3, ...
Propagation step:
1. Generate sigma points using unscented transformation
x(i)k−1|k−1 = x̂k−1|k−1 + x̃(i), i ∈ {1,2, ...2n}
where, with Cholesky root R: RT R = n ·Xk−1|k−1,
x̃(i) = R:,i, i ∈ {1,2, ...n}
x̃(n+i) =−R:,i, i ∈ {1,2, ...n}

2. Propagate sigma points through process model
x(i)k|k−1 = f

(
x(i)k−1|k−1,uk−1, w̄k

)
, i ∈ {1,2, ...2n}

3. a priori state and co-variance estimate
x̂k|k−1 =

1
2n ∑2n

i=1 x(i)k|k−1
Xk|k−1 =

1
2n ∑2n

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
x(i)k|k−1 − x̂k|k−1

)T
+Wk

Information update:
1. Propagate sigma points through measurement equation
y(i)k|k−1 = h

(
x(i)k−1|k−1,uk−1, v̄k

)
, i ∈ {1,2, ...2n}

2. Predicted measurements
ŷk|k−1 =

1
2n ∑2n

i=1 y(i)k|k−1

3. Innovation and cross co-variance
Ek|k−1 =

1
2n ∑2n

i=1

(
y(i)k|k−1 − ŷk|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T
+Vk

Zk|k−1 =
1

2n ∑2n
i=1

(
x(i)k|k−1 − x̂k|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

4. Kalman gain
Kk = Zk|k−1E

−1
k|k−1

5. a posteriori update
εk|k−1 = yk − ŷk|k−1
x̂k|k = x̂k|k−1 +Kkεk|k−1

Xk|k = Xk|k−1 −KkEk|k−1KT
k

Table 6. Algorithm: EnKF

Initialization, k = 1 :
xi

1|1 ∼ N (x̄1,X1), i ∈
{

1,2, ...,np
}

wi
k ∼ N (w̄1,Wk), i ∈

{
1,2, ...,np

}
vi

k ∼ N (v̄1,Vk), i ∈
{

1,2, ...,np
}

x̂1|1 =
1

np
∑np

i=1 x(i)1|1

X1|1 =
1

np−1 ∑np
i=1

(
x(i)1|1 − x̂1|1

)(
x(i)1|1 − x̂1|1

)T

for k = 2, 3, ...
Propagation step:
1. Propagate particles through process model
x(i)k|k−1 = f

(
x(i)k−1|k−1,uk−1,w

(i)
k−1

)
i ∈

{
1,2, ...,np

}
2. a priori state and co-variance estimates
x̂k|k−1 =

1
np

∑np
i=1 x(i)k|k−1

Xk|k−1 =

1
np−1 ∑np

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
x(i)k|k−1 − x̂k|k−1

)T

Information update:
1. Propagate particles through measurement equation
y(i)k|k−1 = h

(
x(i)k−1|k−1,uk−1,v

(i)
k−1

)
i ∈

{
1,2, ...,np

}
2. Predicted measurements
ŷk|k−1 =

1
np−1 ∑np

i=1 y(i)k|k−1

3. Innovation and cross co-variance
Ek|k−1 =

1
np−1 ∑np

i=1

(
y(i)k|k−1 − ŷk|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

Zk|k−1 =

1
np−1 ∑np

i=1

(
x(i)k|k−1 − x̂k|k−1

)(
y(i)k|k−1 − ŷk|k−1

)T

4. Kalman gain
Kk = Zk|k−1E

−1
k|k−1

5. a posteriori update of state and co-variance
ε(i)k|k−1 = yk − y(i)k|k−1

x(i)k|k = x(i)k|k−1 +Kkε(i)k|k−1

x̂k|k =
1

np−1 ∑np
i=1 x(i)k|k

Xk|k =
1

np−1 ∑np
i=1

(
x(i)k|k − x̂k|k

)(
x(i)k|k − x̂k|k

)T



The UKF and EnKF are initialized with W =
diag(4,4,4), V = diag(1,1) and X = 10 ·W . Both the
process noise w and measurement noise v are considered
to be white Gaussian noise with zero-mean. The simu-
lation time step ∆t is set to 1min and the total time of
simulation is 584min.

The simulation environment is the Julia programming
language2. UKF and EnKF are compared based on root
mean square error (RMSE) of innovation residuals, ε =
yk − ŷk|k−1, and computational speed3.

4 Results and Discussion
The result for air and metals temperature estimation for
Model 1 (ĉp, R) using UKF and EnKF for different parti-
cles is given in Figure 4.

Similarly, for four different models the estimates using
UKF is given in Figure 5 and using EnKF with np=1000
is given in Figure 6.

The rotor copper temperature and air gap temperature
estimates using EnKF, for Model 1, with different particles
is given in Figure 7.

Figure 5 and 6 show a substantial difference in rotor
copper and air gap temperature estimates for Model 3 and
Model 4: models with temperature dependence in ĉp tend
to decrease the temperature of metals, but increase the air
temperatures. In opposition to this, models with tempera-
ture dependence in R show an increase in both metal and
air temperatures.

Figure 7 shows a comparison of EnKF depending on
particle number np: with increased np, the estimates con-
verge better and give a result similar to that of the UKF.

A comparison of UKF and EnKF with different number
of particles, based on RMSE of innovation residuals and
computational speed, is given in Table 7.

The results show that the RMSE of the UKF is larger
than that of the EnKF. Furthermore, for EnKF the resid-
uals decrease with increased number of particles np. The
RMSE of residuals were lowest for Model 2 as compared
to the other models. The computational time increases
from UKF to EnKF and with np. The computational time
also increases when the model complexity increases from
Model 1 to 2 to 3 to 4 for EnKF with np = 1000.

5 Conclusions and future work
State estimation using UKF, and EnKF with different
number of particles, have been studied for four differ-
ent models. Results indicate that temperature dependent
heat capacities increase air temperatures and reduce metal
temperatures, while temperature dependent resistances in-
crease all temperatures. EnKF shows better estimation
accuracy than UKF, but with a penalty in computational
speed. In the comparison, we have re-used the constant

2Version 1.0.3 (2018-12-18)
3Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 2901

Mhz, 2 Core(s), 4 Logical Processor(s)

Figure 4. Air and metal temperature estimates using UKF and
EnKF for Model 1 (ĉp, R). Subscript k | k represents a posteriori
estimate.



Figure 5. Air and metal temperature estimates using UKF for
different models.

Figure 6. Air and metal temperature estimates using EnKF
(np = 1000) for different models.



Figure 7. Rotor copper temperature and air gap temperature
estimates using different number of particles for EnKF.

Table 7. Comparing Kalman filters with different models.

Model KF RMSE(ε) Elapsed[s]
UKF 2.215 0.338
EnKF(np = 50) 2.066 1.088

1 EnKF(np = 100) 2.039 2.211
EnKF(np = 500) 2.010 10.860
EnKF(np = 1000) 2.012 26.343
UKF 1.652 0.744
EnKF(np = 50) 1.573 1.774

2 EnKF(np = 100) 1.524 3.414
EnKF(np = 500) 1.500 16.729
EnKF(np = 1000) 1.492 32.225
UKF 3.137 1.041
EnKF(np = 50) 2.735 3.238

3 EnKF(np = 100) 2.729 7.643
EnKF(np = 500) 2.705 36.663
EnKF(np = 1000) 2.701 58.595
UKF 2.730 0.798
EnKF(np = 50) 2.407 3.154

4 EnKF(np = 100) 2.342 5.287
EnKF(np = 500) 2.331 35.877
EnKF(np = 1000) 2.327 60.993

model parameters in all the models. Because these param-
eters essentially have been tuned for Model 1, it is difficult
to draw strong conclusions on which model is best at this
moment.

Future work will involve studies of (i) temperature de-
pendent specific heat capacity for air and water with nu-
meric solution of the resulting two point boundary value
problem, (ii) extending the number of outputs from two
(Ts, TFe) to four (Ts, TFe,T c

a , and T h
a ), (iii) and a more for-

mal model fitting for the various models.
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