
www.usn.no

FMH606 Master’s Thesis 2019
Industrial IT and Automation

Modeling of building occupa on using
mo on sensor data

Jørund Martinsen

Faculty of Technology, Natural Sciences and Mari me Sciences
Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2019
Title: Modeling of building occupation using motion sensor data

Pages: 124
Keywords: PIRMod, PIRSim, Modeling, Simulation, Unified Process, UML

Student: Jørund Martinsen
Supervisor: Nils-Olav Skeie, Veralia Gabriela Sánchez

External partner: SMART Research group at USN
Availability: Open

Summary:
An adaptive model of occupancy, based on simple motion data is proposed. The model
predicts the occupation of the test building with a prediction horizon of one week.

In addition to this model, a simulator is proposed. This simulator has been used to simulate
data, similar to the measured data from the test building.

Both the simulator and model have been implemented in C#, as PIRSim and PIRMod.
This implementation has been done using the Unified Process and documented using UML
documents.

http://www.usn.no

Preface

This report is written to document the project performed as a part of the work of the
SMART research group at USN. The goal of the project is to implement a model in C#,
using UP, and document the software using UML.

The model is to predict the occupation of a building, using motion sensor data. This
model has been implemented, and used to predict a week of occupation. If the data
contains too many exceptions, the model will not be able to predict accurately.

In addition to the model, a simulator is implemented. This simulates a configured sensor
setup. To complement the data from the simulator, data measured in a building is also
used. This building is the home of a SMART group participant. As the data is of a
personal nature, it is not available here. Only fragments of this data has been used to
demonstrate the function of the model, and evaluate the simulator.

The source code for the software is available online, from [1] and [2] via azure devops
services. It is also given to the supervisors via email.

The author would like to extend gratitude to the supervisors and the faculty of USN for
their teachings and support.

Porsgrunn, 13th May 2019

Jørund Martinsen

3

Contents

Preface

Contents

Introduc on
. Background .

. . Previous work .
. This work .
. Report structure .

System descrip on
. Technical proper es .
. Simulator requirements .
. Simulator method .
. Model requirements .
. Different model methods .

. . State space model .

. . Decision trees .

. . Bayesian models .

. . Markov chain .

. . Neural network .

. . Probability func on .

So ware development methods
. Unified Process .

. . Incep on .

. . Elabora on .

. . Construc on .
. Technology .

. . Programming languages .

. . WPF and XAML .

. . Model-View-ViewModel .

4

Contents

System development
. PIRSim .

. . Configure use case .

. . Simula on use case .

. . Present data use case .

. . Simula on realism .
. PIRMod .

. . Top hat combina on .

. . Event series bounds .

. . Parameter genera on .

. . Predict future state use case .

. . Model use case .

. . Configure use case .

Results
. PIRSim speed performance .
. Simula on data comparison .
. PIRMod performance results .

. . Model performance .

Discussion
. Model .
. Simulator .
. Future work .

. . Improving the simula on .

. . Improving the model .

Conclusion

Bibliography

A Task descrip on

B Project Schedule - GANTT

C PIRSim generated data

D Specifica on for PIRSiMo

E UML documents for PIRSim

F UML documents for PIRMod

G PIRSim test document

5

Nomenclature

Symbol Explanation

.NET A software environment
C A programming language
C# Programming language
C++ Programming language
CSV Comma Separated Values
FDUC Fully Dressed Use Case
FDUCD Fully Dressed Use Case Document
GUI General User Interface
MIT Massachusetts Institute of Technology
MVVM Model-View-ViewModel
PIR Passive Infrared sensor
UI User Interface
UML Unified Modeling Language
Unix Operating system
UP Unified Process
VS Visual Studio
WPF Windows Presentation Foundation
XAML eXtensible Application Markup Language
XML eXtensible Markup Language

6

Introduc on

As SMART house technology has emerged, the need to estimate position of residents has
been important for several cases. In this project, a model of PIR sensor data is presented.
The model should be able to predict occupation status, now or in the near future. This
does not include the location inside the house.
Previous work in this area is summarized in [3]. Here, several approaches and methods
are reviewed. Some of these are touched upon here and also implemented in the model.
The software is written in WPF, C#, using the Unified Process as a development process.
Documentation is done using UML schemes.

. Background

As part of the work at USNs research group SMART, a model of movement in homes is
required. This model will enable several other parts of a larger control system to function
more efficiently. The main focus of this research is to be able to minimize energy con-
sumption of buildings, while maintaining a comfortable environment. A large part of this
work is to minimize heating efforts, as these contribute around two thirds of the energy
consumption of residential buildings. [4]
In addition, the model could be used to improve burglary detection and prevention sys-
tems.

. . Previous work

In the previous work, the focus has been to predict where in the building residents are
going to be. This has been done by using advanced sensory equipment and other SMART
devices. Examples of this is described in Sanchez, Pfeiffer and Skeie, where several other
applications are also mentioned. [3]

Dodier, Henze, Tiller et al. describe a system where the occupants are tracked using
simple motion data, however the goal of the project was to determine future location of
occupants. This is close to the work presented here, but does not consider the occupation
status of the building. [5]

7

1 Introduction

. This work

A simulator for motion data has been created. This simulator is made for simulating
several setups. To test and validate the simulator, a house with a sensor system is used.
Data from this house has been gathered since 2018, with additional sensor added in 2019.
Section 2.1 describes the setup of the house.

To predict future occupation, a model has been created. This model uses a top-hat model.
Several other model types have been considered, as described in section 2.5.

Both of these systems have been implemented and tested using C# and WPF. The de-
velopment process has been Unified Process.

. Report structure

This report is structured in three main parts; Theory, implementation and results.

Theory

In chapters 2 and 3, different methods for the model and simulator development are de-
scribed. Chapter 2 describes the overall system, as well as the methods for simulation and
modeling. Chapter 3 describes the methods for software development, and the technology
used in the implementation.

Implementa on

In chapter 4 the implementation of the theory is described. The software is documented
by using class diagrams and descriptions. The documents created as a part of UP are
also included here.

Results

The simulator and model are compared to biologically created data from the house. In
addition the test results are included. These results are then commented on and discussed
in the discussion chapter, chapter 6

8

System descrip on

The system consists of a house, with PIR sensors and a centralized logging system. Two
adults reside in this house, and trigger the PIR sensors naturally. Each trigger of a sensor
is an event. These events are logged to a CSV file.

To develop and test a good model, more types of setups need to be used. To accomplish
this, a simulator has been developed. This simulator has been compared to the naturally
generated data. It is possible to configure the simulator to generate events for multiple
sensors and floors. In addition, different rates of events for different time periods can be
configured.

Finally, a model for estimating future occupation has been developed. This model can
read the data from the house, or the simulator. It is adaptive, as it uses historic data to
retrain itself periodically. Each part of the complete system is designed as a standalone
system, so each part is reusable for future development.

. Technical proper es

When using a PIR sensor several issues need to be considered. In combination with the
limitations of the sensors, there are issues to consider with a system to monitor a building.
These issues are described in the following sections.

PIR sensor

A PIR sensor consists of two main parts. These parts are the actual sensor and a Fresnel
lens. The sensor detects temperature, while the lens splits the detection area into sections.
Separation of detection area allow for motion detection. As an item moves from one section
to another, the temperature sensor will spike for each section. Consecutive spikes are then
an indication of movement. This is shown in figure 2.1 [6]

The main limitation of this setup is the lack of static detection. If there is no movement,
the sensor will not trigger, and the system will not detect occupation. Overcoming this
limitation is a part of this work.

9

2 System description

Figure 2.1: PIR sensor function [6]

Sectioning the detection area modifies it. An example of a modified detection area is
shown in figure 2.2.

To cover a large complicated area, like a building, several sensors are combined. If one
sensor triggers, there is movement in the area. With a detection area like the one in
figure 2.2, the location of sensors inside the building is an important factor when creating
the system. To enable detection of occupation, all passages should be covered, especially
the exit and entry points of the area.

House setup

Biologically created data is generated from a house with PIR sensors mounted at various
locations. The building has two floors with sensors. Some of these sensors were installed
in 2019. Two sensors were installed prior to 2018. For these two sensors, there is data for
most of 2018.

10

2 System description

Figure 2.2: Example of detection are for PIR sensor with Fresnel lens. [6]

These two sensors cover the upstairs living room and the kitchen. The newer sensors
cover the second living room and the top of the stairs. None of these sensors cover the
main door.

. Simulator requirements

The simulator should be able to simulate different setups, like the one in the house. In
addition, the simulation should be faster than reality, i.e. simulating a month should not
take a month.

Simulated data should also be saved in a CSV file, using the same format as that which is
generated in the house. The format is shown in appendix C, which also shows generated
data from the simulator.

In addition to this, the simulator and the probabilities of events should be configurable.

11

2 System description

. Simulator method

To generate events, a random function is used. This function already exists in the .NET
library as a class. This class has the method Next. To be able to adjust the probability
of an event, an array of integers is created. The Next function is used to select a random
index of this array. Figure 2.3 shows the selection from the array. [7]

However, as the probability of a consecutive event is higher than normal events, the array
is filled with the specified ratio of values, plus a margin. The margin area is filled with
1s, and the rest is filled with 2s and 0s.

Figure 2.3: Random selection from array

If the randomly selected value is greater than or equal to 2, an event is triggered and the
limit is set to 1. If the next value is greater than or equal to 1, a new event is triggered.
Should the value be 0, the limit is reset to 2.

. Model requirements

Prediction of occupation enables improvement of heating efficiency. By using a sensor
array, that is already installed, the model is a cost efficient method for prediction. The
model requirements therefore include the usage of PIR-sensors.

In addition, the model should be adaptive, to handle the change in habits from season
to season, changes like summer-time, vacations, spending more time outside and/or less
time outside.

The model should predict when occupants leave the house, and when they come back.
The process of heating is a slow process, so the accuracy requirement is not very strict.
An error of ±10−15 min is acceptable. As the occupation is Boolean, the location is not
of interest, nor the number of people.

This is a simpler model than what is presented in the chapter Previous work, and relies
entirely on PIR sensors. This makes it available to most consumers, without a high
investment. It is also applicable to several areas, such as burglary alarm and vacation
light control.

12

2 System description

Figure 2.4: Flow chart of event triggering

. Different model methods

To model a process, there are many methods. Some of these methods have been con-
sidered and are described here. Each method has some properties that can help model
the occupation state of the house. First, it is necessary to describe the process. This is
done as a state-space model.

. . State space model

This process consists of many inputs, outputs and disturbances. However, there is only
one state. The process can be described using several states, but here the focus is only
occupation.

Figure 2.5 shows a simple state space model. This model has input vector u, disturbance
vectors v and w, state vector x and output vector y

The vectors u,v,w and y contain variables to describe the number of occupants, errors in
the sensor system, changes in occupant schedule etc. Most of these are not observable to
this system. The only observable input is the motion events.

13

2 System description

x contains the occupation state. This state is Boolean, and with only one variable. Equa-
tion 2.1 shows this. x is of course dependent upon the number of occupants and/or
visitors, and their location, but these variables are not observable.

As a consequence of the state space model setup, several methods can be excluded, such
as linear regression or other common machine learning methods.

x = x1 =

{
True, for unumber of occupants + v > 0
False, for unumber of occupants + v < 1

(2.1)

Figure 2.5: State space model

. . Decision trees

This method consists of several ’decisions’ and follows the choice to the next decision.
This gives a tree structure as shown in figure 2.6. This figure is an example of part of a
complex decision tree. Already, there is uncertainty in the model even without prediction.
This is due to the probibalistic nature of the process. [8]

. . Bayesian models

When there is a set of observations, that infer hidden states, a Bayesian network can be
utilized. This has been used successfully in [9], to predict the next location of a person.
In this work it is of no interest where the person is going to be, unless it is inside the
building.

14

2 System description

Figure 2.6: Example decision tree

Recursive Bayesian estimation or Bayesian filter is a probabilistic approach to the Kalman
filter. Given linear transitions and normally distributed values, the Bayesian filter is equal
to a Kalman filter [10, p. 56].

. . Markov chain

The Markov chain is a special implementation of the Bayesian network. Utilizing the
present state, the next states can be inferred. There are many implementations of the
Markov chain, including Hidden Markov Model(HMM).

This method has been implemented and tested in the work of Dodier, Henze, Tiller et al.,
where it showed the capability to estimate occupation of individual offices. [5] This is at
a greater detail than the goal of this work.

. . Neural network

Neural networks are a way to find good estimates of a function. This requires a large
dataset, containing both input data and output data. As the occupancy is not directly
measured, this data is unavailable. Therefore, neural networks are not a good candidate
for prediction of future state of this system. [11]

15

2 System description

. . Probability func on

As an approximation, it is suggested to use a function to estimate the probability of
occupancy. These functions should give an approximation of the probability of occupancy,
based on the previous events. Two functions have been evaluated. These are a triangle
function and a top-hat function.

To create a more complex model, several functions are combined as shown in equa-
tion 2.2

F(x) = max(f1(x), f2(x), . . . , fn−1(x), fn) (2.2)

Triangle func on

The triangle function is a simple triangle, consisting of two linear functions. This approx-
imates the probability of occupation, which is between 0 and 1. A triangle function is
seen in figure 2.7.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

t

P
(t
)

Figure 2.7: Triangle function example. Plot of equation 2.3, where a = 4 and b = 6

P(t) = max(0,min(x−a,b− x)) (2.3)

16

2 System description

Smoothed Top Hat Func on

A similar function to the triangle is the top hat. There are two main differences that
make the top hat a better model candidate. Firstly, the plateau, where the function is 1
for a defined period. Secondly, the inclination from 0 to 1 is a smooth sigmoid. This is a
better representation of the probability of occupation, as there is a period of time where
there is high certainty of occupation, before this moves towards 0. Figure 2.8 shows a top
hat function. There are several parameters to define the shape of the top hat. These are
listed in table 2.1. The equation for this is shown in equations 2 - 5 in Boyd. [12]

Table 2.1: Smoothed Top hat parameters
Parameter Comment

C
Center of top hat function. This enables a shift of the
function.

χ Physical region. This defines the area where the func-
tion is 1.

Ψ Smoothing region. The area where the function moves
between 0 and 1

L Defines the shape of the smoothing region.

Combining the smoothed top hat with the max function gives an approximation of the
probability of occupation throughout a given timespan. It also allows for a complex
function that includes several regions where the probability is 1. An example of two
regions is shown in figure 2.9

Defini on of model regions

To combine several top hat functions, the regions must be defined. This is done by finding
the first and last events in a series of events. This is described in section 4.2.2 and 4.2.3.

Each region is set to before and after a point in the day. This yields two regions per
day, one for the morning and one for the afternoon. Each region has one top hat, with
parameters.

17

2 System description

0 1 2 3 4 5 6 7 8 9 10

0

1

C χ Ψ−χ
−Ψ

t

f(
t)

Smoothed Top hat function

C = 5,χ = 1,Ψ = 2,L = 1

Figure 2.8: Smoothed Top Hat function

18

2 System description

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.8

1

t

f(
t)

Morning
Afternoon

Limit

Figure 2.9: Two Top hat functions overlapping

19

So ware development methods

When developing software, there are a lot of development process to select from. Of these,
the Unified Process is chosen. This process defines a work flow and a few documents.
These documents aid the development process.

In the following sections, the Unified Process and the documents are explained and put
in context with the development of the software.

In addition to the process, several technologies are used. These technologies are Windows
Presentation Foundation, C#, Prism and Unit testing. Sections 3.2 to 3.5 describe these
technologies and why they were chosen.

. Unified Process

Among the many development processes, the Unified Process is one of the most descript-
ive. This process is also iterative, meaning it follows a defined pattern repeatedly.

Each step of the process is called an iteration. These iterations are organized in four
project phases. These phases are:

1. Inception, where the project is planned, estimated and potentially started.

2. Elaboration, where the use cases and requirements are identified and architecture
decided.

3. Construction, where the software is written, based on the Elaboration phase.

4. Transition, where the software is released.

Phase 2-4 builds upon the work of the previous phase. The following sections elaborate
on each phase.

20

3 Software development methods

. . Incep on

The first phase of a project is the inception phase. Here, the project is evaluated and
cost estimations are performed. Based on these evaluations and estimations the project is
moved to the next phase or terminated. The UP requires business use cases to be created
at this stage.

For this project, the inception phase consisted of a brief literature study and defining the
business use cases. As the development of the system is a part of the assignment, the cost
estimation and the decision to carry out the project has already been made. The business
use cases are also a part of the assignment, shown in appendix A.

A progress plan has also been made, describing the number of iterations. This is available
as a GANTT chart in appendix B.

. . Elabora on

After the inception phase, the elaboration phase starts. This phase contains definitions
of requirements, architecture, technology to be used, how many iterations and so on. The
documents produced in this phase consist of use cases for the system,

Figures 3.1 and 3.2 show the use cases made for the simulator and model. Here, the use
case is a short definition of the interaction between the user and the system.

User

Simulation

Configure

Present data

CSV-file

XML-file

Figure 3.1: Simulator use cases

. . Construc on

This is the phase where the software is written. Here, several iterations have been re-
peated. Each iteration generates several documents. The documents are the fully dressed
use case, interaction diagram and class diagram. The interaction and class diagrams are
updated in each iteration. The fully dressed use cases are made for each use case from

21

3 Software development methods

User

External system

Configure

Model

Predict future state

Figure 3.2: Model use cases

the elaboration phase, and as each iteration handles one use case, there is one FDUC for
each iteration.

Fully Dressed Use Case

A FDUC consists of several sections. These sections are shown in table 3.1. Each section
is numbered and the main parts are in bold text. Section 8 describes the main flow of the
function, and section 9 describes the error handling or other exceptions, related to the
items in section 8.

Appendices E and F shows the FDUCDs as developed. These appendices also contain
the class and interaction diagrams

Class diagram

As C# is an object oriented language, the use of classes and objects is necessary. To keep
an overview of the architecture, one or more class diagrams are used. The class diagram is
a representation of each class in the software, and the properties and methods within. It
also shows the dependencies as links. The main class diagram for the simulator is shown
in figure 3.3. Here, several classes are shown. These classes have defined parameters and
methods, with inputs and a return type. The + and − signs indicate the access levels.
To indicate interfaces, a stereotype is used, indicated by << and >>. Associations are
shown as simple lines, while inheritance is shown with an arrow, pointing to the class
inherited from.

Interac on diagram

As the class diagram shows dependencies, properties and functions, it does not indicate
behavior over time. To show this behavior, an interaction diagram is used. One form of

22

3 Software development methods

Table 3.1: FDUC template [13]
Section Comment
1. Use case name Start with a verb
2. Scope The system under design
3. Level ’User goal’ or ’Sub function’
4. Primary Actor The main user of the function
5. Stakeholders and interests Who cares and what they want
6. Preconditions What must be fulfilled before start-

ing
7. Success guarantee What must be fulfilled at a success-

ful completion
8. Main Success scenario

8.1 - A typical set of events

9. Extensions
9.1.a - Alternative scenarios of suc-

cess or failure

10. Special requirements Related non-functional require-
ments

11. Technology list Different I/O methods and data
formats

12. Frequency of occurence Investigation, testing and timing of
implementation

13. Miscellaneous Such as open issues

interaction diagrams is the sequence diagram.

A sequence diagram shows the threading, timing and interaction of the objects. Figure 3.4
shows a sequence diagram for the simulator. This diagram shows a continuation of the
initialization of the simulator, the first part of which is shown in appendix E. In addition
it shows the binding event handling, which is described in section 3.2.2.

Each instance is shown as a box with a ’lifeline’. These lifelines are used to show interaction
between the instances, as arrows with a function call name. To group function calls, a
comment frame is used.

. Technology

The software is developed using C#, WPF and Prism. C# is a programming language
in the .NET suite. In combination with this language, WPF is used. This defines a

23

3 Software development methods

MainViewModel

+
+
+
+
+
+

+
+
+
+

message: object
SaveConfig: Command
ImportData: Command
ImportConfig: Command
SetGraphRange: Command

Cancel: Command

Message(string message)
UpdateStatus(status)
NotifySimulationComplete
GetChartParameters(): chartParameters

MainView

Command properties are used
from View to ViewModel in WPF

View is written in XAML and
does not implement properties
or methods

<<Interface>>

IBindableBase

Simulator

-
+
+
+

+
-
-
-

probability: List<Probability>
generatedData: List<PIRData>
simulationStatus: List<string>
estimatedCompletion: int

StartSimulation()
GenerateData()
CheckCancel()
CheckValues()

Organizer

+
+
+
+

+
+
+
-
-
-

data: List<PIRData>
dataSelection: List<PIRData>
totalTimeSpan: TimeSpan
selectedTimeSpan: TimeSpan

OrganizeData()
ImportData()
ChartParametersUpdated()
Save()
CheckImportedFile()
LoadDataFromFile()

Configurator

+
+
+
+

+
+
+
+
+
+
-
-
-
-

activeConfig: Configuration
holdingConfig: Configuration

lock: bool
configStatus: List<string>

CheckConfig(configuration, save)
CheckConfig(File)
CheckConfig()
LockConfig()
GetActiveConfig()
UnlockConfig()
LoadFile(File)
ChangeActiveConfig()
Save()
SetHoldingConfig(configuration)

ProbabilityGenerator

+

+

probabilities: List<Probability>

Generate()

Bootstrapper

+
+

+
+
-

app: Application

container: Container

Shutdown(): bool
Cancel():
CreateResourcePool()

Figure 3.3: Main class diagram - Simulator

different language for the frontend language, XAML. To connect the frontend to backend,
the Prism library is used. The following sections cover these topics, in addition to the
development architecture used.

24

3 Software development methods

Bootstrapper MainViewModel MainView

Initialize()
return

Initialize(binding)
return

CreateResourcePool()

Initialization, cont.Initialization, cont.

SetValue()

Command()

NotifyPropertyUpdated()

Binding eventsBinding events

Cancel()
Other eventsOther events

Figure 3.4: Interaction diagram - Simulator

. . Programming languages

There are many programming languages to choose from. Each language has its advantages
and disadvantages, and these are too many to list here. However, some comments on the
most popular languages are included.

.NET is a suite of several languages and functions. These are documented in an online
library from Microsoft. [14]

25

3 Software development methods

C family

C is one of the oldest software languages. This language is cross-platform between Mi-
crosoft products and Unix systems. As such it is also very detailed and memory handling
must be configured by the developer. [15]

However, as it is interacting closely with the hardware, it is capable of very fast compu-
tations. This advantage has been reduced due to better hardware. Another disadvantage
is that it is sequentially oriented.

A competitor to the C language is the C++language. This is similar to C, but is object
oriented.

Finally, the C# language, which is object-oriented and supports high abstraction. It does
not support Unix systems, and is slower than its sibling languages. It has automatic
memory handling and the syntax is simpler. It is similar to Java, but benefits from the
functions of the .NET suite.

Java

Java is similar to C#, but is not in the .NET suite. It does support many platforms, and
is a popular language for embedded devices.

. . WPF and XAML

Windows Presentation Foundation is a UI framework. It allows for defining the UI in
XAML, a markup language. This setup allows for a clear separation of frontend and
backend. There is also a function in WPF where bindings can be made. These bindings
tie the data shown in the interface to the data in the system. In addition, commands can
be invoked. [16]

This allows for a multithreaded program, with clear connections between the UI and the
data behind it. To create a proper architecture, with separation of logic, data and UI, the
Prism framework is used. This framework handles the binding and commands to simplify
usage of the MVVM pattern by predefined event handlers and methods. [17]

26

3 Software development methods

. . Model-View-ViewModel

The architecture is chosen for its separation of logic, data and UI. This separation allows
for re-usage of all parts, simplifying the implementation of this model in the external
system. It is also a natural choice in combination with the other technologies. Figure 3.5
shows the MVVM pattern, with a databinding layer. There are three parts to the MVVM
pattern, each explained in the following subsections. [18]

Model

The model consists of the data. This is where the events, configuration and model/simulator
parameters are stored during runtime. As this layer is designed to be a storage layer, there
should be little or no logic.

ViewModel

This layer is responsible for the logic and exposing data to the view. This is also where
the commands are executed and error handling performed.

View

This is the UI layer. It utilizes binding to be able to connect to the ViewModel. In the
Prism framework, each View is connected to a ViewModel, by using a naming convention.
This convention is ’Name’View, ’Name’ViewModel and ’Name’Model. [17]

27

3 Software development methods

Figure 3.5: Model-View-ViewModel [18]

28

System development

The system is developed as two separate programs. These programs are the simulator
and the model. These programs will be called ’PIRSim’ and ’PIRMod’.

PIRSim is a standalone program for simulating events in a building. It produces a log
file in a specified format that PIRMod can read. This is described in section 4.1. This
section is separated in three parts, representing each use case.

PIRMod reads events from a log file, and generates a model from the data in that log file.
Usually there are a lot of events per day, and most of these events occur consecutively.
All events except the first and last of a series do not contribute any information about
the occupation. Because of this, the data must be treated to a selection algorithm. The
first selection is to find the bounds of series. The second is to select what series to use for
the model parameters. This is explained in section 4.2. The first selection is described in
section 4.2.2, the second in 4.2.3.

Testing plans have been made for the PIRSim software, and these tests have been per-
formed. For the PIRMod software, Unit test plans have been implemented. These test are
programmed in advance, and are run on each compilation. These unit tests are available
in the source code. The test plan for PIRSim is available in appendix G. [19]

. PIRSim

PIRSim generates data for a user specified time period. There are several parameters
the user can set. These parameters are listed in table 4.1, with description of each
parameter.

When developing the simulator, the configuration had to be created first. All other
functions depend on the configuration and its parameters. Therefore, the configuration
was created in the first iteration.

The second iteration elaborated the simulation use case. This function is responsible for
creating the event data.

Finally, the ’present data’ function was created. Here, the data is organized and shown
in a chart in the UI.

29

4 System development

Figure 4.1: PIRSim user interface

. . Configure use case

To simplify debugging of the configuration, the GUI was created simultaneously. In
the subsequent iterations, major changes have been done to both the configuration and
the GUI. These changes have been performed after learning of other requirements and
capabilities of WPF, MVVM and other technologies in the project.

The user interface shows the configuration, progress bars, a chart area and a notification
area. All this is shown in figure 4.1. Table 4.1 shows the parameters in the configuration.
Each parameter is represented by a control in the UI. The UI controls are bound to the
ViewModel, where these parameters are exposed.

The ViewModel is connected to the Model, which holds the configuration. In addition, the
ViewModel has the simulator and the event generator. In appendix E, the class diagrams
show these connections.

In order to handle errors and exceptions, a message function has been created. This
function adds the message to a string, which the UI subscribes to. This error handling
gives a good indication of any errors that occur. It also simplifies debugging. Each part
of the system throws events upon error messages or status messages. The ViewModel
listens to these events and fires the message function.

. . Simula on use case

The second major function to be implemented was the actual generation of simulation
data and saving it to file. This is separated in two main parts, the simulation and the
organization of the data.

30

4 System development

Probability generator and simulator

To speed up simulation, the probabilities are generated first. These probabilities are
generated for each minute for the entire time period, for each sensor on each floor. The
formula for the probability is shown in equation 4.1, where ’Base probability’ is the
probability at that time of day. For a reference of base probabilities, see table 4.1.

Floor bias+Sensor gain×Base probability (4.1)

This list of probabilities are then made available to the simulator, which uses the prob-
ability to create the array as described in section 2.3. To simulate, a for-loop is used,
iterating through the entire timespan. In each iteration, the flow chart in figure 2.4 is
repeated.

Organizer

All events are stored in a list of events. This list is passed to an organizer, where it is
organized and saved in the proper format. This format is shown in appendix C, where
some example data can be seen. The table in this appendix is generated from a simulated
CSV file, using a LATEXpackage, pgfplotstable [20].

. . Present data use case

As there is a lot of Boolean data, the presentation of this data is not readable. Therefore
metadata is used in a histogram, showing the number of events grouped by a time period.
This time period can be specified by the user and ranges from days to months. When
selecting days, the plot displays number of events per hour, summing all days, as shown
in figure 4.1. If the user selects week, the groups are the days of the week. For month,
the days of the month.

This selection and generation of metadata is handled by the organizer. By exposing the
data from the organizer to the UI, binding is possible. The controller used for displaying
the histogram is from LiveCharts, published under the MIT license on GitHub. [21]

31

4 System development

Table 4.1: Simulator parameters
Parameter Description
Simulation time Time to simulate
From
To

Base probabilities Probability of event at different times
of day

Vacation t ∈ tVacation
Vacation travelling t ∈ tVacation and travelling is true
Working When occupant is at work
Nighttime 00 : 00 < t < 06 : 00
Evening 20 : 00 < t < 00 : 00
Home When occupant is home
Sensor setup Set sensor configuration

of floors
Sets number of floors. Each floor has
a name, sensor bias and an array of
sensors

Selected floor Floor to configure

Floor bias Probability to add to each sensor of the
floor

of sensors Sets number of sensors on the selected
floor

Selected sensor Sensor to configure
Sensor gain Probability gain for selected sensor
Work time Sets the work schedule
Work hours Sets the work hours
Work days Sets the workdays of the week
Vacations Allows for configuring vacations
From Datetime for when the vacation starts
To Datetime for when the vacation ends
Travelling Sets if the vacation is spent travelling

Configuration settings Sets the save location of configuration
and data

Configuration save location Sets the save location for the configur-
ation

Data save location Sets the save location for the generated
data

DateTime pattern Sets the pattern used for the timestamp
in the data file

32

4 System development

Parameters
Nighttime - 0.01
Evening - 0.05
Home - 0.1
Other - 0.0

Figure 4.2: Simulation of one day

. . Simula on realism

To verify the function of the simulator, the generated data is compared to the biological
data. This comparison is made by loading biological data into the simulator, where it
is plotted using the day setting, as described in section 4.1.3. This gives the two plots
shown in figures 4.3 and 4.4.

The biological data is gathered from 01.01.18 to 30.11.18, using two sensors. The events
are mostly registered during the morning and afternoon. This justifies the use of two
main periods in the model, as described in section 2.5.6.

Compared to the simulated data, the main difference is the smooth transition between
different periods of time in the biological data. There is also some events during the
night.

In figure 4.4, the same time period has been used. By tuning the simulation parameters, it
is possible to adjust these results. If more time periods are added, the smooth transitions
are possible to achieve, however this will increase the number of parameters.

. PIRMod

The model is based upon a top hat function as described in section 2.5.6. This top hat is
used to define a probability function over a time period.

33

4 System development

Figure 4.3: Loaded biological data and plotted with day setting in PIRSim

Figure 4.4: Simulated data for the same time period as the biological data

The top hat function does not describe a complete day or any length of time accur-
ately. To extend the prediction horizon for the model, several top hats are combined.
Sections 4.2.1, 4.2.2 and 4.2.3 describes how this combination is designed.

PIRMod is created, using the same architecture and technology as PIRSim. The exception
is that the modeling functions are separated in a pure C# library and imported into the
main software.

The use cases of PIRMod are described in sections 4.2.4, 4.2.5 and 4.2.6. Each use
case has, as with PIRSim, several documents to describe the function of the software.
These documents are available in appendix F. The use case diagram can also be seen in
figure 3.2.

34

4 System development

Results of the model are described in section 5.3. The UI is also shown there.

. . Top hat combina on

Each day of the modeling time period is divided in two regions. These regions are assumed
to be representative of an event series, as shown in figure 4.3 and described in section 4.1.4
and 4.2.2.

Each event defines a movement, and therefore, the probability of occupation is 1 at that
point in time. Such events occur in a series, as movement usually is continuous for a
certain time period.

If there is a long time between two movements, the building is probably not occupied
during that period. If it is a short time, the building should be occupied. Movement
periods occurring with a short time period between them, is therefore defined as a single
event series. These event series are used to define the parameters for the top hats.

. . Event series bounds

The first period is in the morning, after residents wake up and perform their morning
routine. Then most people leave for work or other activities. The second period is then
the afternoon, when residents come home after their activity. This makes for a natural
divide in the day. There are exceptions for this, like the weekend.

The top hat allows for handling exceptions in the smoothing region. If there is an overlap
of the two top hats, the estimated probability can stay above the confidence limit, as
shown in figure 2.9.

These periods are different for office or other business buildings, where there, usually, is
one main period.

1 2 3 4 5 6 7

t[days]

Raw data
Extremeties pr day

Figure 4.5: Event extremities example

35

4 System development

To extend the model further, several days are combined to a prediction horizon of one
week. The pattern throughout the week is estimated using data from the previous n
weeks. Data from each weekday is grouped and the extremities in the data is found. An
example of this is shown in 4.5. These extremities are found for each weekday of several
weeks, creating a set of candidates for parameters.

. . Parameter genera on

After finding candidates for the desired time periods, the candidates are evaluated. This
evaluation handles outliers and selects witch candidates are used as parameters. Figure 4.6
shows four groups of candidates for a single day. These groups represent the extremities
of that weekday from 4 weeks of data.

1 1.5 2

t[days]

G1
G2
G3
G4

Morning
(G1)

Noon
(G2)

Afternoon
(G3)

Evening
(G4)

W1 1.27 1.32 1.65 1.97
W2 1.28 1.32 1.76 1.96
W3 1.29 1.41 1.68 1.98
W4 1.28 1.31 1.77 1.97

Figure 4.6: Candidates example with matrix

The parameters are found from the four groups. By finding the middle point of the first
in G1 and the last in G2, and comparing each point to this middle point, the smallest
and largest distances are used as parameters for the top-hat model. Repeating this for
each day of the week and for G3 and G4, yields a complete model for an entire week. The
resulting parameters consist of a matrix of four by n values. The middle point is used for
C, L is set as a constant, the smaller distance is used for χ and the larger for Psi

. . Predict future state use case

To predict the future state, several functions must be implemented. These functions are
the top function itself, the combination of several top hats and the search for candidate

36

4 System development

parameters. This use case is concentrated around the two functions regarding the top
hats.

To allow for reuse, the model is contained in a separate VS project, a library. In future
systems, this library can easily be imported or referenced.

There is no defined model in PIRMod, as this role is filled by the model library and
its functions. These functions are referenced and reused in the ViewModel, where they
are made available to the View. This View is constructed in the same manner as with
PIRSim. The main difference is the plotting and configuration areas.

The plotting function shows the predicted future state for the entire prediction horizon,
along with the identified candidates.

. . Model use case

The identification of candidates and model properties is also included in the library. This
function is created as described in section 4.2.3.

To find candidates, the events must be made available to the software. PIRMod is con-
figured to be able to read the files generated by PIRSim, or the biologically created data
file. These files contain the events.

After importing the events, these are iterated through and candidates are identified. After
all candidates are identified, the average of each candidate group is found. If there are
outliers from this average, they are removed and a new average is found and the process
is repeated until no more outliers are found or a quarter of the candidates are removed.

The final set of candidates are used to create the parameters for the combined top hats.

. . Configure use case

The final use case is to allow for configuring the model. The configuration includes any
planned vacations, the location of data files, limits for finding candidates and model mode.
The mode is either business or residential. The difference between the modes is whether
the building is occupied at night or not.

The probability of occupation is set to 0.95 at night, unless the last sensor triggered is an
exit sensor. Should the last sensor be an exit sensor, it is assumed the building was left,
and is therefore not occupied.

In addition, the ’Now’ time can be set manually. This is for testing purposes and is not
intended to be a part of the model.

37

Results

This chapter evaluates the PIRSim and PIRMod software. The first part handles the
PIRSim software. Here the main focus is the speed performance and the similarity com-
pared to biologically created data.

The second part evaluates the model created in PIRMod. Here, the model is created
from biological data and then it is compared to the following week of data. As the
biological data is gathered from a Norwegian household, there are several exceptions from
the average week. In Norway, there were 251 working days in 2018. [22]

. PIRSim speed performance

A requirement for the PIRSim software is a simulation time less than the time simulated.
This requirement is met, as shown in table 5.1 and figure 5.2. These times are the
average of 10 samples, gathered from 4 different settings. These settings are shown in
figure 5.1. For different experiments, the setting changes, specifically number of sensors
and simulation time.

Table 5.1: Average simulation times
Experiment Probabilities Simulation Presentation
1 Month 1 Sensor (1) 1.76 1.89 0.08
1 Month 5 Sensors (2) 8.69 9.66 0.40
3 Months 1 Sensor (3) 11.99 5.64 0.18
3 Months 5 Sensors (4) 59.39 27.91 1.07

As these figures and table show, as the number of sensors increases, so does the computa-
tional time. However, the time span contributes more than the number of sensors, 5 times
the sensors has approximately the same computational time as 3 times the timespan.

. Simula on data comparison

Table 5.2 shows two random segments of data. One from the biological data and one from
the simulated. The data is the same as shown in figures 4.3 and 4.4. From the table, the

38

5 Results

Figure 5.1: Settings for time measurement

biological data contains more clustered data than the simulated. Tuning of the margin,
described in section 2.3 affects this.

The amount of data per time period is shown in the figures 4.3 and 4.4. These figures
show approximately the same amount of data for the simulated and biological data. The
difference being more smoothed transitions for the biological data.

. PIRMod performance results

The model software shows the model as a line chart. This line chart is plotted with the
candidates shown as points. The model sets the occupation probability to 0.95 at night,

39

5 Results

1 2 3 4
0

20

40

60

Experiment #

t[
s]

Simulation
Presentation
Probabilities

Figure 5.2: Average simulation times, as shown in table 5.1

Table 5.2: Simulated and biological data sequence
Simulated Biological
Time Time change Time Time change
15:36:39 - 13:21:33 -
15:42:21 05:42 13:22:08 00:35
15:53:47 11:26 13:22:55 00:47
16:00:13 06:26 13:23:05 00:10
16:01:25 01:12 13:23:18 00:13
16:06:10 04:45 13:23:54 00:36
16:06:48 00:38 13:24:19 00:25
16:08:57 02:09 13:24:48 00:29
16:12:02 03:05 13:24:59 00:11
16:12:56 00:54 13:25:18 00:19
16:21:34 08:38 13:25:44 00:26
16:22:45 01:11 13:26:15 00:31
16:23:00 00:15 13:26:29 00:14
16:23:10 00:10 13:27:30 01:01
16:23:33 00:23 13:28:24 00:54
16:24:34 01:01 13:29:29 01:05
16:26:53 02:19 13:36:08 06:39
16:27:20 00:27 13:39:15 03:07
16:28:13 00:53 13:39:18 00:03
16:31:16 03:03 13:40:23 01:05

unless the last event of the day is created by a sensor defined as an exit point.

Figures 5.3 and 5.4 shows two models generated from 4 and 8 weeks of data. This shows
the result of using more data for training; the more data, the more detailed the model is.
When introducing more data, more error is also introduced.

40

5 Results

Figure 5.3: Modelling one week from 4 weeks data

Figure 5.4: Modelling one week from 8 weeks data

From these two figures, the model can be seen to be adaptive. If the model is retrained
by intervals, it will adapt to changes in behavior.

. . Model performance

Three cases have been evaluated. Each case presents a model predicting one week of
occupation. These cases are listed and commented in table 5.3.

Normal model

Figure 5.5 shows the model and the movement data from the predicted week. There
are no known exceptions during this week, so the measured data is representative of the

41

5 Results

Table 5.3: Model cases
Case name Prediction horizon Comment

Normal model 05.02.18 - 13.02.18
A model with high quality
training data. The data
contains few exceptions.

Depraved model 05.07.18 - 13.07.18

This model is created from
training data with some
exceptions. Outliers have
been removed, yielding a
lack of candidates.

Friday model 30.11.18 - 07.12.18

This model is created on a
Friday. There is little data
to compare the model to,
as there is no data from
December.

occupation. The figure shows a good relation between the predicted and measured state.
An exception is during Thursday and at night. The building is assumed to be occupied
at night.

Figure 5.5: Normal model with candidates and measured data

Depraved model

The depraved model shows a strong mismatch between the model and the measured data,
as seen in figure 5.6. The training data is not consistent enough for a complete model.
As this is from summer, it is probably exceptions to the normal pattern that is the cause
of the inconsistency.

42

5 Results

Figure 5.6: Depraved model with candidates and measured data

Friday model

To demonstrate the effect of inconsistent data, the Friday model is included. It is shown
in figure 5.7, where the only measured data is completely inconsistent with the model.

Figure 5.7: Friday model with candidates and measured data

Pa ern consistency

As shown, the model is very susceptible to inconsistency in the behavior pattern. This is
a consequence of the adaptive nature of the model.

If the behavior pattern is rigid, the model will be adequate for heating purposes, and
the pattern created can be used for vacation light control. However, should the pattern
change abruptly, or frequently, the model can not create the necessary parameters for the
top hat function.

43

Discussion

From the previous work, several methods of determining resident location have been
described. These methods often involve complicated sensory equipment or large amounts
of data. This work has shown the function of a model, created from simple motion sensor
data.

This data has been collected from a house in Norway, during the period of 1.1.18 to 1.12.18.
In addition to this series of biologically created data, a simulator has been created.

The simulator method has been chosen for the capability of adjusting probability of event,
and the margin parameter. This margin enables a higher probability of repeated events.

The model method has been selected for its simplicity and the possibility of defining time
periods with slip, based upon previous events.

. Model

Sections 2.3 and 2.5 describes the different methods considered. From the state space
description, where the state is Boolean, Markov chain, Decision trees and Bayesian models
are not suitable. Neural network requires a large amount of data, and preferably a target
value, for training. As there is not target data, and the data collected is limited to a
few sensors detecting motion, Neural network is not suitable for this model. Finally, a
probability function is described, where the probability of occupation is approximated
using a simple function. This function is then repeated for each time period.

The time periods are chosen to be the morning and afternoon. Other selections of time
periods could improve the model. The function used is a smooth top hat, shown in fig-
ure 2.8. This function could be improved, by allowing for different smoothing parameters
on rising and falling edge.

With the model chosen, the results shown in section 5.3.1 have been achieved. The results
show an adaptive model that reflects the behavior pattern in the training data. As there
are many exceptions to the behavior pattern, regarding occupation of a building, such
as vacations, sick days and other non-working days, the model requires more input to
achieve greater accuracy. This input is described in section 6.3.

44

6 Discussion

. Simulator

The simulator implemented in PIRSim performs as described in the requirements. The
simulation time can be further decreased, by using a faster language like C++. As the
chosen language is C#, a language designed for desktop application, multithreading and
automatic memory handling, the simulation time is increased.

Simulated data is not representative of the biologically created data. This is due to the
harsh limits between the time periods, and the lack of repeating events. In section 6.3,
several suggestions are made to improve the simulator.

Although the simulated data is not representative, the configuration allows for adjusting
and simulating many setups. The adjustment of the probabilities controls the number of
events that are created, similar to effect of more residents. The adjustment of the floor
bias and sensor gain also allows for control of which sensors generate more events, similar
to the location difference of the physical sensors i.e sensors in trafficked areas generate
more events than other sensors.

. Future work

PIRSim and PIRMod have been developed to a first working version. There are many
errors in the code to amend. As the software is designed to create a model and simulate
motion data, most of the auxiliary functions like the color of the charts, abort function,
the possibility of running multiple simulations, certain execution exceptions and so on,
are not listed as improvements here. These errors are assumed to be of minor consequence
to the overall goal of this work.

The points of improvement listed here are therefore oriented towards the modelling and
simulation. The simulation software, PIRSim, does not produce data that is comparable
to the biologically created data. The modelling software, PIRMod, generates an adaptive
model that predicts the occupation of a building, one week in advance, unless the pattern
of the data is not rigid enough.

. . Improving the simula on

To make a data set that is comparable to the biologically created data, the method
requires more tuning. The main difference is the smoothing of the transition between
time periods and the lack of repeating events.

45

6 Discussion

In order to create a smooth transition, the probabilities generator should ’remember’ the
last generated probability, and then move towards the goal. This creates a new smoothing
parameter, used to control the rate of change.

The frequency of repeating events can be increased by increasing the margin parameter.
This frequency is not shown in the software, but has been determined by evaluating the
difference in time between the generated events. A function to show this in PIRSim should
be included, and the margin parameter made available to the user.

The configuration of sensors should be made more intuitive. A suggestion is to allow for
a graphic drawing of the floor, with rooms and doors and then placing the sensors on the
drawing.

. . Improving the model

The choice of model has limitations in compensating for exceptions in the behavior pat-
tern. Other models should be implemented and tested. To allow for better testing and
more models, the collection of data should include a measured occupation. Simple mo-
tion data shows only the occupation at a moment in time. If the occupation was directly
measured, Neural Network or other machine learning methods could be used.

When using the top hat function, the smoothing regions should be made independent, as
the time for leaving for work is very consistent, and the time when one gets out of bed is
varying. This is not represented by making the smoothing regions dependent upon each
other.

In addition, more sensor setups should be included. This work has been limited to one
building. The system was extended early in 2019, but the amount of data collected from
2019 is very limited. There is no sensor covering the exit points in the building, and
therefore, functions including exit sensors have not been tested.

The model has not been implemented in the external system. This should be done, so
that the model can be tested in a real system.

46

Conclusion

This work has shown a simple model for predicting occupation from simple motion data.
The model accuracy has not been measured, as there is no measured data that shows the
occupation. However, the model is shown to predict the approximate occupation, when
compared to the motion data.

Several modeling methods have been considered, where the Probability function method
was chosen. This method uses a max of smoothed top hat functions, combined with an
algorithm for creating parameters for the top hats, using the motion data.

Further, a simulator has been created. The data generated from this simulator, does not
show the same properties as the biologically created data. Suggestions for improving the
simulator are made.

Both of these programs have been created using the Unified Process. As described in the
process, several UML documents have been created, available in the appendices. These
documents describe both PIRSim and PIRMod.

If improved, the model can be used for controlling heating and burglary detection in
residential and business buildings. Other usage for the model is vacation light control.

47

Bibliography
[1] PIRSim - Repos. [Online]. Available: https://automasjonservice.visualstudio.

com/PIRSiMo/{_}git/PIRSim/ (visited on 11/05/2019).
[2] PIRMod - Repos. [Online]. Available: https://automasjonservice.visualstudio.

com/PIRSiMo/{_}git/PIRMod (visited on 11/05/2019).
[3] V. Sanchez, C. Pfeiffer and N.-O. Skeie, ‘A review of smart house analysis methods

for assisting older people living alone’, Journal of Sensor and Actuator Networks,
vol. 6, no. 3, p. 11, 2017.

[4] Norwegian Ministry of Petroleum and Energy, Energy use by sector - Energifakta
Norge, 2019. [Online]. Available: https : / / energifaktanorge . no / en / norsk -
energibruk/energibruken-i-ulike-sektorer/ (visited on 21/01/2019).

[5] R. H. Dodier, G. P. Henze, D. K. Tiller and X. Guo, ‘Building occupancy detection
through sensor belief networks’, Energy and Buildings, vol. 38, no. 9, pp. 1033–1043,
2006, issn: 03787788. doi: 10.1016/j.enbuild.2005.12.001.

[6] A. lady, How PIRs Work | PIR Motion Sensor | Adafruit Learning System, 2014.
[Online]. Available: https://learn.adafruit.com/pir- passive- infrared-
proximity-motion-sensor/how-pirs-work (visited on 29/04/2019).

[7] Random Class (System) | Microsoft Docs. [Online]. Available: https : / / docs .
microsoft.com/en-us/dotnet/api/system.random?view=netframework-4.8
(visited on 02/05/2019).

[8] M. Kulkarni, Decision Trees for Classification: A Machine Learning Algorithm
| Xoriant Blog, 2017. [Online]. Available: https : / / www . xoriant . com / blog /
product-engineering/decision-trees-machine-learning-algorithm.html
(visited on 01/05/2019).

[9] J. Petzold, A. Pietzowski, F. Bagci, W. Trumler and T. Ungerer, ‘Prediction of in-
door movements using bayesian networks’, in International Symposium on Location-
and Context-Awareness, 2005, pp. 211–222.

[10] S. Särkkä, Bayesian filtering and smoothing. Cambridge University Press, 2013,
vol. 3.

[11] N. Siddique and H. Adeli, Computational intelligence: synergies of fuzzy logic, neural
networks and evolutionary computing. John Wiley & Sons, 2013.

48

https://automasjonservice.visualstudio.com/PIRSiMo/{_}git/PIRSim/
https://automasjonservice.visualstudio.com/PIRSiMo/{_}git/PIRSim/
https://automasjonservice.visualstudio.com/PIRSiMo/{_}git/PIRMod
https://automasjonservice.visualstudio.com/PIRSiMo/{_}git/PIRMod
https://energifaktanorge.no/en/norsk-energibruk/energibruken-i-ulike-sektorer/
https://energifaktanorge.no/en/norsk-energibruk/energibruken-i-ulike-sektorer/
https://doi.org/10.1016/j.enbuild.2005.12.001
https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work
https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/how-pirs-work
https://docs.microsoft.com/en-us/dotnet/api/system.random?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.random?view=netframework-4.8
https://www.xoriant.com/blog/product-engineering/decision-trees-machine-learning-algorithm.html
https://www.xoriant.com/blog/product-engineering/decision-trees-machine-learning-algorithm.html

Bibliography

[12] J. P. Boyd, ‘Asymptotic fourier coefficients for a C∞ bell (smoothed-”top- hat”)
& the fourier extension problem’, Journal of Scientific Computing, vol. 29, no. 1,
pp. 1–24, 2006, issn: 08857474. doi: 10.1007/s10915- 005- 9010- 7. [Online].
Available: http://link.springer.com/10.1007/s10915-005-9010-7.

[13] N.-O. Skeie, ‘Object-oriented Analysis, Design, and Programming using UML and
C#’, 2017.

[14] Msdn.microsoft.com, Microsoft API and Reference Catalog, 2015. [Online]. Avail-
able: https://msdn.microsoft.com/library.

[15] C vs. C++: Comparing Two Foundational Programming Languages. [Online]. Avail-
able: https://www.upwork.com/hiring/development/c- vs- c- plus- plus/
(visited on 06/05/2019).

[16] Getting Started (WPF) | Microsoft Docs. [Online]. Available: https : / / docs .
microsoft . com / en - us / dotnet / framework / wpf / getting - started/ (visited
on 06/05/2019).

[17] Introduction to Prism | Prism. [Online]. Available: https://prismlibrary.github.
io/docs/ (visited on 06/05/2019).

[18] Model-View-ViewModel (MVVM) Explained. [Online]. Available: https : / / www .
wintellect.com/model-view-viewmodel-mvvm-explained/ (visited on 06/05/2019).

[19] Unit Test Basics - Visual Studio | Microsoft Docs. [Online]. Available: https://
docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-
2019 (visited on 09/05/2019).

[20] CTAN: Package pgfplotstable. [Online]. Available: https://ctan.org/pkg/pgfplotstable?
lang=en (visited on 07/05/2019).

[21] Live Charts. [Online]. Available: https://lvcharts.net/App/examples/v1/wpf/
BasicColumn (visited on 07/05/2019).

[22] Working days in year 2018 in Norway. [Online]. Available: http : / / norway .
workingdays.org/workingdays{_}holidays{_}2018.htm (visited on 09/05/2019).

49

https://doi.org/10.1007/s10915-005-9010-7
http://link.springer.com/10.1007/s10915-005-9010-7
https://msdn.microsoft.com/library
https://www.upwork.com/hiring/development/c-vs-c-plus-plus/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/
https://docs.microsoft.com/en-us/dotnet/framework/wpf/getting-started/
https://prismlibrary.github.io/docs/
https://prismlibrary.github.io/docs/
https://www.wintellect.com/model-view-viewmodel-mvvm-explained/
https://www.wintellect.com/model-view-viewmodel-mvvm-explained/
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://ctan.org/pkg/pgfplotstable?lang=en
https://ctan.org/pkg/pgfplotstable?lang=en
https://lvcharts.net/App/examples/v1/wpf/Basic Column
https://lvcharts.net/App/examples/v1/wpf/Basic Column
http://norway.workingdays.org/workingdays{_}holidays{_}2018.htm
http://norway.workingdays.org/workingdays{_}holidays{_}2018.htm

Appendix A

Task descrip on - Model development for
building usage pa erns based on PIR sensor
data

50

Appendix B

Project Schedule - GANTT

54

ID
W

B
S

T
a
sk

 N
a
m

e
S
ta

rt
F
in

ish

1
1

M
aste

r th
e

sis Sp
rin

g
1

9
Fri 0

4
.0

1
.1

9
Sat 0

1
.0

6
.1

9

2
1

.1
P

ro
ject

M
an

agem
e

n
t

Fri 0
4

.0
1

.1
9

Sat 0
1

.0
6

.1
9

3
1

.1
.1

M
eetin

gs
Fri 0

4
.0

1
.1

9
Tu

e
 0

7
.0

5
.1

9

4
1

.1
.1

.1
In

itial
m

ee
tin

g w
ith

su
p

erviso
r

Fri 0
4

.0
1

.1
9

Fri 0
4

.0
1

.1
9

5
1

.1
.1

.2
W

eekly
m

e
etin

g
Tu

e
1

5
.0

1
.1

9
Tu

e

0
7

.0
5

.1
9

2
2

1
.1

.2
Set d

ate
 o

f
p

rese
n

tatio
n

M
o

n

2
9

.0
4

.1
9

M
o

n

2
9

.0
4

.1
9

2
3

1
.1

.3
P

ro
ject

d
escrip

tio
n

h

an
d

in

Fri 0
1

.0
2

.1
9

Fri 0
1

.0
2

.1
9

2
4

1
.1

.4
D

ata set given
Fri 0

1
.0

2
.1

9
Fri 1

5
.0

2
.1

9

2
5

1
.1

.5
EX

P
O

p

rep
aratio

n
W

e
d

1

5
.0

5
.1

9
Sat 0

1
.0

6
.1

9

2
6

1
.1

.6
P

resen
tatio

n
Tu

e 2
8

.0
5

.1
9

Tu
e 2

8
.0

5
.1

9

2
7

1
.2

R
e

p
o

rt
W

ed

0
9

.0
1

.1
9

Tu
e

1

4
.0

5
.1

9
3
2

1
.3

Litte
ratu

re stu
d

y
M

o
n

0

7
.0

1
.1

9
Fri 1

8
.0

1
.1

9

3
3

1
.3

.1
P

revio
u

s w
o

rk
M

o
n

 0
7

.0
1

.1
9Fri 1

8
.0

1
.1

9

3
4

1
.3

.2
Sim

ilar syste
m

s
M

o
n

1

4
.0

1
.1

9
Fri 1

8
.0

1
.1

9

3
5

1
.3

.2
.1

B
aye

sian

n
etw

o
rk

M
o

n

1
4

.0
1

.1
9

Fri 1
8

.0
1

.1
9

3
6

1
.3

.2
.2

Fu
zzy lo

gic
M

o
n

 1
4

.0
1

.1
9Fri 1

8
.0

1
.1

9

3
7

1
.3

.2
.3

LeZi m
o

d
el

M
o

n
 1

4
.0

1
.1

9Fri 1
8

.0
1

.1
9

3
8

1
.3

.2
.4

H
id

en

M
arko

v
m

o
d

el

M
o

n

1
4

.0
1

.1
9

Fri 1
8

.0
1

.1
9

3
9

1
.3

.2
.5

O
th

er
M

o
n

 1
4

.0
1

.1
9Fri 1

8
.0

1
.1

9

0
4
.0
1

0
1
.0
2

W
e
e
k
 -1

W
e
e
k
 1

W
e
e
k
 2

W
e
e
k
 3

W
e
e
k
 4

W
e
e
k
 5

W
e
e
k
 6

W
e
e
k
 7

W
e
e
k
 8

P
a
g

e
 1

ID
W

B
S

T
a
sk

 N
a
m

e
S
ta

rt
F
in

ish

4
0

1
.3

.3
Sim

u
latio

n

m
eth

o
d

s
M

o
n

0

7
.0

1
.1

9
Fri 1

8
.0

1
.1

9

4
1

1
.4

Sim
u

lato
r

M
o

n

2
1

.0
1

.1
9

Fri 2
2

.0
2

.1
9

4
2

1
.4

.1
Sp

ecificatio
n

M
o

n
 2

1
.0

1
.1

9Fri 0
1

.0
2

.1
9

4
3

1
.4

.2
Te

st
sp

ecificatio
n

M
o

n

2
1

.0
1

.1
9

Fri 0
1

.0
2

.1
9

4
4

1
.4

.3
First ite

ratio
n

M
o

n
 0

4
.0

2
.1

9Fri 0
8

.0
2

.1
9

4
5

1
.4

.3
.1

U
se case

M
o

n
 0

4
.0

2
.1

9M
o

n
 0

4
.0

2
.1

9

4
6

1
.4

.3
.2

C
lass d

iagram
Tu

e 0
5

.0
2

.1
9

Tu
e 0

5
.0

2
.1

9

4
7

1
.4

.3
.3

U
n

it tests
W

e
d

 0
6

.0
2

.1
9W

ed
 0

6
.0

2
.1

9

4
8

1
.4

.3
.4

W
o

rkin
g

versio
n

Th
u

 0
7

.0
2

.1
9

Fri 0
8

.0
2

.1
9

4
9

1
.4

.4
Seco

n
d

ite

ratio
n

M
o

n

1
1

.0
2

.1
9

Fri 1
5

.0
2

.1
9

5
0

1
.4

.4
.1

U
se case

M
o

n
 1

1
.0

2
.1

9M
o

n
 1

1
.0

2
.1

9

5
1

1
.4

.4
.2

C
lass d

iagram
Tu

e 1
2

.0
2

.1
9

Tu
e 1

2
.0

2
.1

9

5
2

1
.4

.4
.3

U
n

it tests
W

e
d

 1
3

.0
2

.1
9W

ed
 1

3
.0

2
.1

9

5
3

1
.4

.4
.4

W
o

rkin
g

versio
n

Th
u

 1
4

.0
2

.1
9

Fri 1
5

.0
2

.1
9

5
4

1
.4

.5
Th

ird
 ite

ratio
n

?
M

o
n

1

8
.0

2
.1

9
Fri 2

2
.0

2
.1

9

5
5

1
.4

.5
.1

U
se case

M
o

n
 1

8
.0

2
.1

9M
o

n
 1

8
.0

2
.1

9

5
6

1
.4

.5
.2

C
lass d

iagram
Tu

e 1
9

.0
2

.1
9

Tu
e 1

9
.0

2
.1

9

5
7

1
.4

.5
.3

U
n

it tests
W

e
d

 2
0

.0
2

.1
9W

ed
 2

0
.0

2
.1

9

5
8

1
.4

.5
.4

W
o

rkin
g

versio
n

Th
u

 2
1

.0
2

.1
9

Fri 2
2

.0
2

.1
9

5
9

1
.5

M
o

d
el

M
o

n

0
4

.0
3

.1
9

M
o

n

0
1

.0
4

.1
9

6
0

1
.5

.1
Sp

ecificatio
n

M
o

n
 0

4
.0

3
.1

9M
o

n
 0

4
.0

3
.1

9

6
1

1
.5

.2
Te

st
sp

ecificatio
n

M
o

n

0
4

.0
3

.1
9

M
o

n

0
4

.0
3

.1
9

W
e
e
k
 -1

W
e
e
k
 1

W
e
e
k
 2

W
e
e
k
 3

W
e
e
k
 4

W
e
e
k
 5

W
e
e
k
 6

W
e
e
k
 7

W
e
e
k
 8

P
a
g

e
 2

ID
W

B
S

T
a
sk

 N
a
m

e
S
ta

rt
F
in

ish

6
2

1
.5

.3
First ite

ratio
n

Tu
e 0

5
.0

3
.1

9
M

o
n

 1
1

.0
3

.1
9

6
3

1
.5

.3
.1

U
se case

Tu
e 0

5
.0

3
.1

9
Tu

e 0
5

.0
3

.1
9

6
4

1
.5

.3
.2

C
lass d

iagram
W

e
d

 0
6

.0
3

.1
9W

ed
 0

6
.0

3
.1

9

6
5

1
.5

.3
.3

U
n

it tests
Th

u
 0

7
.0

3
.1

9
Th

u
 0

7
.0

3
.1

9

6
6

1
.5

.3
.4

W
o

rkin
g

versio
n

Fri 0
8

.0
3

.1
9

M
o

n

1
1

.0
3

.1
9

6
7

1
.5

.4
Seco

n
d

ite

ratio
n

Tu
e

1
2

.0
3

.1
9

M
o

n

1
8

.0
3

.1
9

6
8

1
.5

.4
.1

U
se case

Tu
e 1

2
.0

3
.1

9
Tu

e 1
2

.0
3

.1
9

6
9

1
.5

.4
.2

C
lass d

iagram
W

e
d

 1
3

.0
3

.1
9W

ed
 1

3
.0

3
.1

9

7
0

1
.5

.4
.3

U
n

it tests
Th

u
 1

4
.0

3
.1

9
Th

u
 1

4
.0

3
.1

9

7
1

1
.5

.4
.4

W
o

rkin
g versio

nFri 1
5

.0
3

.1
9

M
o

n
 1

8
.0

3
.1

9

7
2

1
.5

.5
Th

ird
 ite

ratio
n

Tu
e

1
9

.0
3

.1
9

M
o

n

2
5

.0
3

.1
9

7
3

1
.5

.5
.1

U
se case

Tu
e 1

9
.0

3
.1

9
Tu

e 1
9

.0
3

.1
9

7
4

1
.5

.5
.2

C
lass d

iagram
W

e
d

 2
0

.0
3

.1
9W

ed
 2

0
.0

3
.1

9

7
5

1
.5

.5
.3

U
n

it tests
Th

u
 2

1
.0

3
.1

9
Th

u
 2

1
.0

3
.1

9

7
6

1
.5

.5
.4

W
o

rkin
g versio

nFri 2
2

.0
3

.1
9

M
o

n
 2

5
.0

3
.1

9

7
7

1
.5

.6
Fo

u
rth

 ite
ratio

n
Tu

e
2

6
.0

3
.1

9
M

o
n

0

1
.0

4
.1

9
7
8

1
.5

.6
.1

U
se case

Tu
e 2

6
.0

3
.1

9
Tu

e 2
6

.0
3

.1
9

7
9

1
.5

.6
.2

C
lass d

iagram
W

e
d

 2
7

.0
3

.1
9W

ed
 2

7
.0

3
.1

9

8
0

1
.5

.6
.3

U
n

it tests
Th

u
 2

8
.0

3
.1

9
Th

u
 2

8
.0

3
.1

9

8
1

1
.5

.6
.4

W
o

rkin
g versio

nFri 2
9

.0
3

.1
9

M
o

n
 0

1
.0

4
.1

9

8
2

1
.5

.6
.5

W
e
e
k
 -1

W
e
e
k
 1

W
e
e
k
 2

W
e
e
k
 3

W
e
e
k
 4

W
e
e
k
 5

W
e
e
k
 6

W
e
e
k
 7

W
e
e
k
 8

P
a
g

e
 3

0
4
.0
1

2
9
.0
4

0
1
.0
2

2
8
.0
5

W
e
e
k
 8

W
e
e
k
 9

W
e
e
k
 1

0
W

e
e
k
 1

1
W

e
e
k
 1

2
W

e
e
k
 1

3
W

e
e
k
 1

4
W

e
e
k
 1

5
W

e
e
k
 1

6
W

e
e
k
 1

7
W

e
e
k
 1

8
W

e
e
k
 1

9
W

e
e
k
 2

0
W

e
e
k
 2

1
W

e
e
k
 2

2

P
a
g

e
 4

W
e
e
k
 8

W
e
e
k
 9

W
e
e
k
 1

0
W

e
e
k
 1

1
W

e
e
k
 1

2
W

e
e
k
 1

3
W

e
e
k
 1

4
W

e
e
k
 1

5
W

e
e
k
 1

6
W

e
e
k
 1

7
W

e
e
k
 1

8
W

e
e
k
 1

9
W

e
e
k
 2

0
W

e
e
k
 2

1
W

e
e
k
 2

2

P
a
g

e
 5

W
e
e
k
 8

W
e
e
k
 9

W
e
e
k
 1

0
W

e
e
k
 1

1
W

e
e
k
 1

2
W

e
e
k
 1

3
W

e
e
k
 1

4
W

e
e
k
 1

5
W

e
e
k
 1

6
W

e
e
k
 1

7
W

e
e
k
 1

8
W

e
e
k
 1

9
W

e
e
k
 2

0
W

e
e
k
 2

1
W

e
e
k
 2

2

P
a
g

e
 6

Appendix C

Example data file from simulator - PIRSim
generated data

62

www.usn.no

PIRSim generated data

Jørund Martinsen

Faculty of Technology, Natural Sciences and Mari me Sciences
Campus Porsgrunn

Simulator UI

2

Part of raw data from simulator. Separator = ’;’
Timestamp F0S0 F0S1 F0S2
29apr19192845 100.00 0.00 0.00
29apr19193016 100.00 0.00 0.00
29apr19193023 100.00 0.00 0.00
29apr19193017 0.00 100.00 0.00
29apr19193030 0.00 0.00 100.00
29apr19193203 0.00 100.00 0.00
29apr19193237 100.00 0.00 0.00
29apr19193256 0.00 100.00 0.00
29apr19193406 100.00 0.00 0.00
29apr19193351 0.00 0.00 100.00
29apr19193430 100.00 0.00 0.00
29apr19193508 100.00 0.00 0.00
29apr19193419 0.00 0.00 100.00
29apr19193520 100.00 0.00 0.00
29apr19193555 100.00 0.00 0.00
29apr19193509 0.00 100.00 0.00
29apr19193540 0.00 100.00 0.00
29apr19193547 0.00 100.00 0.00
29apr19193636 0.00 0.00 100.00
29apr19193846 100.00 0.00 0.00
29apr19193908 100.00 0.00 0.00
29apr19193814 0.00 100.00 0.00
29apr19193844 0.00 100.00 0.00
29apr19193814 0.00 0.00 100.00
29apr19193951 0.00 0.00 100.00
29apr19194044 0.00 0.00 100.00
29apr19194149 100.00 0.00 0.00
29apr19194140 0.00 100.00 0.00
29apr19194155 0.00 100.00 0.00
29apr19194110 0.00 0.00 100.00
29apr19194117 0.00 0.00 100.00
29apr19194217 0.00 100.00 0.00
29apr19194224 0.00 100.00 0.00
29apr19194300 0.00 100.00 0.00
29apr19194316 0.00 0.00 100.00

3

Appendix D

Specifica on for PIRSiMo

67

www.usn.no

PIRSiMo Specification and Requirements

Jørund Martinsen

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

Contents

Contents

Introduction

Specification

. Simulator .

. Model .

Requirements

. Simulator .
. . Functional .
. . Usability .
. . Reliability .
. . Performance .
. . Supportability .
. . Other .

. Model .
. . Functional .
. . Usability .
. . Reliability .
. . Performance .
. . Supportability .
. . Other .

Bibliography

2

Introduction

This is the specification of the PIRSiMo software (PIR data, Simulation and Modeling).
The requirements are also included, to keep the information in a single document. In
addition to this, two separate documents are created. These contain the test specifications
and are separated pr. program, i.e. the simulator and model.
The next chapter describes the specification for PIRSiMo, and the next two contain the
requirements from each program.

Specification

To extend the SMART house technology being developed at USN Porsgrunn, an important
part is to be able to determine whether someone is currently occupying a house, or will
be in the future. To generate data, a simulator should be created. To model that data, a
model program must be developed.

. Simulator

This simulator must generate data at a semi-random rate. This rate should be controlled
by a schedule reflecting the normal usage of the building. Two types of buildings should
be included; residential and business. The data generated should be stored in a CSV file
of the format shown in table 2.1. Each Boolean sample is represented by the value 0.0
(False) or 100.0 (True). These values are event driven, meaning that each entry should
be triggered by a rising or falling edge event. In addition, a sensor can have several rising
edge events without a falling edge, within the same timestep, as shown in figure 2.1.
The number of sensors should be configurable and should include which sensors cover the
entry/exit points of the building.
The data generated should be displayed in a readable manner. Suggestion is to use a
histogram with different bars pr. sensor. In addition, the simulator should be able to
import a set of data or configurations.

3

Figure 2.1: Timing diagram for PIR sensor events

Table 2.1: Data file format
Timestamp; LivingRoom; Kitchen; Hall; ...;

01jan18151259; 0.0; 0.0; 100.0; 0.0;
01jan18151305; 0.0; 100.0; 0.0; 0.0;
01jan18151325; 0.0; 0.0; 100.0; 0.0;
01jan18151335; 100.0; 0.0; 0.0; 0.0;

...
ddMMMyyHHmmss 0.0 / 100.0 0.0 / 100.0 0.0 / 100.0 0.0 / 100.0

. Model

To adapt to each implementation, or house, the model needs to consume the data file
from table 2.1. This file is generated by either using sensors or the simulator. This model
should be able to receive a request containing a timestamp and reply with an indication of
whether someone is occupying the building or not. To make the model usable by high-rise
office buildings, each floor is to be treated as a separate building. This is also usable by
residential homes.
The model should be a data driven model, utilizing probabilistic properties of the motion
patterns. It should be able to predict the state, with good accuracy, 24 hours into the
future. It should also be able to predict at least one week ahead, where lower accuracy is
accepted.
Model logic should be separated from the graphics, to make it simpler to re-use model in
other projects

4

3 Requirements

Requirements

The requirements of the system are shown in sections 3.1 and 3.2. These reflect the in-
formation in the previous chapter and is divided in the same manner, as the two programs
should function independently. The requirements are collected using the FURPS+ list as
described in [1].

. Simulator

. . Functional

F1 Generate Boolean PIR data for separate sensors as numeric value 0.0 for false and
100.0 for true. Rising edge events can occur multiple times before a falling edge.

F2 Use different rates to generate data. These rates are based on a schedule provided by
the user

F3 Store event based data in a CSV file, using the format provided in specification. Store
both rising and falling edge.

F4 Use a configurable number of sensors and persons.

F5 Simulate data for a specified time span. The simulation should be faster than realtime.

F6

F7

. . Usability

U1 Graphical interface should be one page only.

U2 Graphics must include a way to enter work hours and vacation time.

U3 Graphics should display the generated data in a histogram.

U4 Be able to import dataset and configuration. Check validity of files on import.

U5 Store last configuration for use later, with a configurable name.

5

3 Requirements

U6 Indicate simulation progress.

U7 Document the software in a .pdf manual

U8

U9

Figure 3.1 shows a proposal for the GUI used with the simulator

Figure 3.1: GUI proposal for simulator program

. . Reliability

R1 The generated data should not be repeatable. There should however be a pattern
reflecting the calendar configuration.

R2 Configuration should include; Type of building, number of floors, number of sensors
on each floor and maximum number of people.

R3

R4

6

3 Requirements

. . Performance

P1 The simulation should not wait for an amount of time. Do simulations as fast as
possible.

P2

P3

. . Supportability

S1 Write in C# on WPF platform.

S2 Use a Model-View-ViewModel pattern.

S3 Write software in English.

S4 Software supports Win10.

S5

S6

. . Other

O1 The software should run on a standard WIN 10 operating system.

O2 The software should run without administrator privileges.

O3

O4

7

3 Requirements

. Model

. . Functional

F1 Read data from file

F2 Create model from patterns in data

F3 Respond to requests, with an indication of occupation

F4

F5

. . Usability

U1 The user interface should be one page only.

U2 Graphics should include a way to enter work hours and planned vacations.

U3 There should be a way to set location of the datafile.

U4 Configuration should be stored to a file.

U5 Configuration should be imported from file at startup

U6 Creation of model should be possible from user interface

U7 There should be a way to test model performance

U8 Document the software in a .pdf manual

U9

U10

8

3 Requirements

. . Reliability

R1 Indicate error messages

R2 Store errors to a log file

R3 There should be a configuration for each floor.

R4 Configuration should include type of building

R5 ... typical work time

R6 ... planned vacations

R7 ... number of sensors

R8 ... if a sensor is at an entry/exit point of the floor

R9

R10

. . Performance

P1 The accuracy of the model should be more than 70% for a time period of 24h

P2 The accuracy of the model can be less than 70% for a time period exceeding 24h

P3

P4

9

3 Requirements

. . Supportability

S1 Graphic interface should be written in C# on WPF platform

S2 Graphic interface should use a Model-View-ViewModel pattern

S3 Model logic should be written in C#

S4 Model should be in a separate project to enable simple import in later projects

S5 Software should be written in English

S6 Software should support Win10

S7

S8

. . Other

O1 The software should run on a standard WIN 10 operating system

O2 The software should run without administrator privileges

O3

O4

10

Bibliography

[1] N.-O. Skeie, ‘Object-oriented Analysis, Design, and Programming using UML and
C#’, 2017.

11

Appendix E

UML documents for PIRSim

80

www.usn.no

PIRSim Documents

Jørund Martinsen

Faculty of Technology, Natural Sciences and Mari me Sciences
Campus Porsgrunn

Contents

Use cases
Configure .
Simula on .
Present data .

Interac on diagrams
Ini aliza on interac on diagram .
Configura on interac on diagram .
Simula on interac on diagram .
Data presenta on interac on diagram .

Class diagrams
Main class diagram .
Types class diagram .

2

Use cases

User

Simulation

Configure

Present data

CSV-file

XML-file

Use case diagram

3

1 Use cases

Section Comment
1. Use case name Configure
2. Scope System
3. Level User goal
4. Primary Actor ’User’
5. Stakeholders and interests ’XML-file’
6. Preconditions ’Simulation’ not running
7. Success guarantee Configuration saved to XML-file
8. Main Success scenario

8.1 ’User’ enters data
8.2 ’User’ selects ’start’
8.3 Configuration is checked for

errors
8.4 ’Simulation’ is started
8.5 Configuration is saved to file

Continued on next page...

4

1 Use cases

Continued from previous page...
Section Comment
9. Extensions

9.0.a Initial values are set to empty
9.1.a Data is entered manually

1 Check data as it is
entered

2 If error - Show error in
data field

9.1.b Data is entered from saved
file

1 Check file format
2 If error - Show error

message
3 Update fields with data

from file
4 Go to 9.1.a

9.2.a User selects ’save’ - Skip 8.4
9.3.a If error in configuration -

Show error message
9.5.a If ’Create rates using config’

does not start - Show error
message

9.+.a ’Cancel’ is selected
1 Ask user to confirm
2 If yes, fire cancel event
3 If no, continue

10. Special requirements None
11. Technology list None
12. Frequency of occurence Upon request
13. Miscellaneous None

5

1 Use cases

Section Comment
1. Use case name Simulation
2. Scope System
3. Level User goal
4. Primary Actor ’User’
5. Stakeholders and interests ’CSV-file’
6. Preconditions Configuration is created/loaded,

and simulation is started
7. Success guarantee Data is generated and stored, using

the configuration
8. Main Success scenario

8.1 Simulation started
8.2 Configuration checked
8.3 Start generating probabilities
8.4 Probabilities are generated
8.5 Start simulating values
8.6 Wait for simulation to com-

plete
8.7 Build data set
8.8 Save data to file
8.9 Send data to ’Present data’

9. Extensions
9.2.a Error in configuration - Show

error message and stop

9.4.a Probailities <= 0 - Show er-
ror message and stop

9.7.a No data - Show error message
and stop

9.8.a File access denied - Show er-
ror message and stop

Continued on next page...

6

1 Use cases

Continued from previous page...
Section Comment

9.+.a Error occurs - Show error
message and stop

9.+.b Cancel requested - Show can-
cel message and stop

9.+.c Data file imported
1 Check file format - If er-

ror, Show error message
and stop.

2 If no error, go to 8.9

10. Special requirements None
11. Technology list None
12. Frequency of occurrence Upon request
13. Miscellaneous None

7

1 Use cases

Section Comment
1. Use case name Present data
2. Scope System
3. Level User goal
4. Primary Actor ’User’
5. Stakeholders and interests ’Simulation’
6. Preconditions Data exists in memory
7. Success guarantee Data is presented in a chart
8. Main Success scenario

8.1 Data is recieved
8.2 Select data based on config
8.3 Show selected data in chart

9. Extensions
9.1.a Configuration changes - Go to

8.2

10. Special requirements None
11. Technology list nuget Package
12. Frequency of occurence On request
13. Miscellaneous None

8

Interac on diagrams

Bootstrapper Simulator Organizer ProbabilityGenerator Configurator

Initialize()
return

Initialize()
return

Initialize()
return

Initialize()
return

InitializationInitialization

Figure 2.1: Initialization interaction diagram

9

2 Interaction diagrams

Bootstrapper MainViewModel MainView

Initialize()
return

Initialize(binding)
return

CreateResourcePool()

Initialization, cont.Initialization, cont.

SetValue()

Command()

NotifyPropertyUpdated()

Binding eventsBinding events

Cancel()
Other eventsOther events

Figure 2.1: Initialization interaction diagram, continued

10

2 Interaction diagrams

MainViewModel Configurator

CheckConfig(configuration, save)
SetHoldingConfig(configuration)

Case:Case: Manual entry

CheckConfig(File)
LoadFile(File)

configuration
SetHoldingConfig(configuration)

Case:Case: Check file import

CheckConfig()

return status

ChangeActiveConfig()

Save()
If:If: save

Message(statusMessage)

If:If: configStatus is ok and lock is ok

Message(errorMessage)
Else:Else:

Figure 2.2: Configuration interaction diagram

11

2 Interaction diagrams

MainViewModel Simulator Organizer ProbabilityGenerator Configurator

StartSimulation()
LockConfig()

Save()
Generate()

GetActiveConfig()

CheckValues()

Message(errorMessage)
If:If: probability data error

GenerateData()

Message(statusMessage)
UpdateStatus(status)

CheckCancel()

status

Loop:Loop: Simulation is running

OrganizeData()
GetActiveConfig()

Save()

Message(statusMessage)
Set status

Else:Else:

Figure 2.3: Simulation interaction diagram

12

2 Interaction diagrams

MainViewModel Simulator Organizer ProbabilityGenerator Configurator

UnLockConfig()

NotifySimulationComplete()

Message(statusMessage)

If:If: simulationStatus is ok

Message(errorMessage)
Else:Else: simulationStatus is not ok

Figure 2.3: Simulation interaction diagram, continued

13

2 Interaction diagrams

MainViewModel Organizer Simulator

ImportData(file)
CheckImportedFile()

Message(errorMessage)
If:If: error in file

LoadDataFromFile()

Message(statusMessage)

Else:Else:

Case:Case: Message from MainViewModel

OrganizeData()
Set status

Case:Case: Data recieved from simulator (See simulation)

Chart Parameters updated
Case:Case: Chart parameters updated event

GetChartParameters()

UpdateChart()

Figure 2.4: Data presentation interaction diagram

14

Class diagrams

15

3 Class diagrams

MainViewModel

message: object
SaveConfig: Command
ImportData: Command
ImportConfig: Command
SetGraphRange: Command
Cancel: Command

Message(string message)
UpdateStatus(status)
NotifySimulationComplete
GetChartParameters(): chartParameters

MainView

Command properties are used
from View to ViewModel in WPF

View is written in XAML and
does not implement properties
or methods

<<Interface>>

IBindableBase

Simulator

probability: List<Probability>
generatedData: List<PIRData>
simulationStatus: List<string>
estimatedCompletion: int

StartSimulation()
GenerateData()
CheckCancel()
CheckValues()

Organizer

data: List<PIRData>
dataSelection: List<PIRData>
totalTimeSpan: TimeSpan
selectedTimeSpan: TimeSpan

OrganizeData()
ImportData()
ChartParametersUpdated()
Save()
CheckImportedFile()
LoadDataFromFile()

Configurator

activeConfig: Configuration
holdingConfig: Configuration
lock: bool
configStatus: List<string>

CheckConfig(configuration, save)
CheckConfig(File)
CheckConfig()
LockConfig()
GetActiveConfig()
UnlockConfig()
LoadFile(File)
ChangeActiveConfig()
Save()
SetHoldingConfig(configuration)

ProbabilityGenerator

probabilities: List<Probability>

Generate()

Bootstrapper

app: Application
container: Container

Shutdown(): bool
Cancel():
CreateResourcePool()

Main class diagram

16

3 Class diagrams

Configuration

simulationTime: TimeSpan
individuals: int
workTimes: List<TimeSpan>
vacations: List<Vacation>
floors: List<Floor>
saveLocationConfig: FilePath
saveLocationData: FilePath

Vacation

startTime: DateTime
endTime: DateTime
traveling: bool

Floor

id: string
sensors: sensor[]
bias: double

Sensor

sensorId: string
gain: double

PIRData

value: bool
time: DateTime
sensorId: string

Probability

value: double
sensorId: string
timespan: TimeSpan

Types class diagram

17

Appendix F

UML documents for PIRMod

99

www.usn.no

PIRMod Documents

Jørund Martinsen

Faculty of Technology, Natural Sciences and Mari me Sciences
Campus Porsgrunn

Contents

Use cases
Model .
Predict future state .
Configure .

Interac on diagrams
Ini aliza on interac on diagram .
Ini aliza on interac on diagram .
Data Binding interac on diagram .
Command interac on diagram, Save .
Command interac on diagram, Train model .

Class diagrams
Main class diagram .
Types class diagram .

2

Use cases

User

External system

Configure

Model

Predict future state

Use case diagram

3

1 Use cases

Section Comment
1. Use case name Model
2. Scope System
3. Level Sub-function
4. Primary Actor None
5. Stakeholders and interests Predict
6. Preconditions Configuration completed
7. Success guarantee Model created
8. Main Success scenario

1 Import Configuration
2 Import data
3 Find first event of each week-

day
4 Find last event of each week-

day, before 12:00
5 Find first event of each week-

day, after 12:00
6 Find last event of each week-

day
7 Add candidate events to lists
8 Remove outliers
9 Find first and last event of

candidates per weekday
10 Create top hat parameters

from candidates

9. Extensions
1.a If no configuration, notify

user and stop
1.b If configuration error, notify

user and stop
2.a If no data, notify user and

stop
8.a If number of outliers exceedes

limit, move to 8.9

10. Special requirements XML reader, CSV reader
11. Technology list None
12. Frequency of occurence Upon request
13. Miscellaneous

4

1 Use cases

Section Comment
1. Use case name Predict future state
2. Scope System
3. Level Sub-function
4. Primary Actor External system
5. Stakeholders and interests None
6. Preconditions Model is configured
7. Success guarantee Result of top hat function returned
8. Main Success scenario

8.1 External system asks for P(t)
8.2 Use model parameters to cre-

ate top hat function
8.3 Return value of top hat func-

tion at t

9. Extensions
9.3.a If value < 0 return 0
9.3.b If value > 1 return 1

10. Special requirements
11. Technology list
12. Frequency of occurence
13. Miscellaneous

5

1 Use cases

Section Comment
1. Use case name Configure
2. Scope System
3. Level Sub-function
4. Primary Actor ’User’
5. Stakeholders and interests ’Model’
6. Preconditions None
7. Success guarantee Configuration saved to XML-file
8. Main Success scenario

8.1 ’User’ enters data
8.2 ’User’ selects ’train’
8.3 Configuration is checked for

errors
8.4 Configuration is saved to file

9. Extensions
9.0.a Initial values are set to empty
9.1.a Data is entered manually

1 Check data as it is
entered

2 If error - Show error in
data field

9.1.b Data is entered from saved
file

1 Check file format
2 If error - Show error

message
3 Update fields with data

from file
4 Go to 9.1.a

9.3.a If error in configuration -
Show error message

9.+.a ’Cancel’ is selected
1 Ask user to confirm
2 If yes, fire cancel event
3 If no, continue

10. Special requirements None
11. Technology list None
12. Frequency of occurence Upon request
13. Miscellaneous None

6

Interac on diagrams

Bootstrapper MainView MainViewModel

Initialize()
return

Initialize()
datacontext = mainView

return

InitializationInitialization

Figure 2.1: Initialization interaction diagram

7

2 Interaction diagrams

MainViewModel ParameterGenerator Configuration

Initialize(t := 86400)
return
Initialize(defaultConfig)

return
LoadSensors()

CreateParameters(Configuration)
Model

InitializationInitialization

Figure 2.1: Initialization interaction diagram

MainView MainViewModel Configurator

UpdateProperty(ref, value)

UpdateProperty(ref, value)

NotifyPropertyUpdated(ref)

NotifyPropertyUpdated(ref)

GetValue(ref)

GetValue(ref)

CaseCase Data binding

Figure 2.2: Data Binding interaction diagram

8

2 Interaction diagrams

MainView MainViewModel Saver

invoke SaveConfigurationCommand

Save(Configuration)
status

execute TrainModelCommand

If:If: Configuration IsValid

CaseCase Save command

Figure 2.3: Command interaction diagram, Save

9

2 Interaction diagrams

MainView MainViewModel ParameterGenerator PIRModel Saver

invoke TrainModelCommand

SetNow()

CreateParameters(Configuration
configuration := Configuration

LoadData(path)
Events

CreateParameters(Events)

LoopLoop For each floor

Initialize(Parameters)
return

return
SetNow()

CreateChart(floorId)

GetProbability(t, floorId)
return P

LoopLoop For each timestep

LoopLoop For each floor

Case:Case: Train model command

Figure 2.4: Command interaction diagram, Train model

10

Class diagrams

11

3 Class diagrams

Saver

SaveAsync(): bool
Save(): bool
SaveAsync(Configuration): bool
Save(Configuration): bool
LoadConfiguration(string): Configuration
LoadConfigurationAsync(string): Configuration
LoadData(string): List<PIRData>
LoadDataAsync(string): List<PIRData>
LoadData(string, ObservableCollection<Sensors>): List<PIRData>

ModelMethods

now: DateTime
parameters: List<Parameters>

E(double, double): double
Erf(double): double
SetNow(): void
SetNow(DateTime): void
TopHat(double x5): double
TopHats(double, double[] x4): double
TopHats(DateTime, String): double
TopHats(DateTime, List<Tuple<double x4>>): double
Triangle(double, double, double): double
Triangles(double x2): double
Triangles(DateTime, String): double
Triangles(DateTime, List<Tuple<double x2>>): double

PIRModel

Parameters: Parameters

ParameterGenerator

timer: Timer
Parameters: Parameters

CreateParameters(Configuration, out PIRModel, string)
CreateParameters(Configuration, out PIRModel)
CreateParameters(Configuration, string)
CreateParameters(Configuration)
TimerElapsed(object, ElapsedEventArgs)

MainViewModel

Model: PIRModel
Configuration: Configuration
ParameterGenerator: ParameterGenerator
Message: Message
SaveConfigurationCommand: DelegateCommand
TrainModelCommand: DelegateCommand

MessageHandler(object, MessageEventArgs): void
ErrorHandler(object, ErrorEventArgs): void
ExecuteSaveConfigurationCommand(): void
CanExecuteSaveConfigurationCommand(): bool
ExecuteTrainModelCommand(): void
CanExecuteTrainModelCommand(): bool

MainView XAML

Main class diagram

12

3 Class diagrams

Configuration

AfternoonLimit: DateTime
ConfigName: String
DateTimePattern: String
FloorCount: int
Floors: ObservableCollection<Floor>
MorningLimit: DateTime
OutlierLimit: TimeSpan
OutlierMaxCount: int
PredictionLimit: int
Residental: bool
SaveLocationConfig: String
Vacations: ObservableCollection<Vacation>
Weeks: int
NotifyError: EventHandler<ErrorEventArgs>
NotifyMessage: EventHandler<MessageEventArgs>

IsValid(): bool
LoadSensors(): void
IsVacation(DateTime): bool

Parameters

Events: List<PIRData>
FloorID: String
TopHatParameters: List<Tuple<double, double, double, double>>
TriangleParameters: List<Tuple<double, double>>

LastEvent(DateTime): PIRData

MessageEventArgs

message: string

ErrorEventArgs

message: string
type: ErrorType

Floor

DataFilePath: String
Id: String
NumSensors: int
Sensors: ObservableCollection<Sensor>

Sensor

SensorId: String
IsExit: bool

Vacation

Name: String
Time: CustomTimeSpan
Traveling: bool

CustomTimeSpan

Start: DateTime
End: DateTime

PIRData

sensorId: string
time: DateTime
value: bool

Types class diagram

13

Appendix G

PIRSim test document

114

www.usn.no

PIRSim Test document

Jørund Martinsen

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

Contents

Contents

Contents

Function

Usability

Reliability

Performance

Supportability

Other

2

Introduction

This is the test document for the simulation part of the PIRSiMo software (PIR data,
Simulation and Modeling). The requirements are available in a separate document. The
chapters describes the test for PIRSim, following the FURPS+ procedure, as described
in Skeie 2017.

Date
Iteration

Passed all

Comment

3

15.03.19
3+

Yes

Function

Data file

(TF1) has at least two records

(TF2) has at least one data value of 0.0, if two sensors or more

(TF3) has at least one data value of 100.0

(TF4) has one column for timestamp

(TF5) has one column for each sensor configured

(TF6) is accessible after simulation

(TF7) is in a CSV format

(TF8) follows the format given in specifications

(TF9) has exactly one header row

(TF10) header row has as many columns as data

Rates

(TF11) are higher for nonworking hours, residential

(TF12) are lower for nonworking hours, business

4

(TF13) are lower for weekend, residential and business

(TF14) are never less than zero

(TF15) are, overall, higher for higher number of persons

PIR data

(TF16) is generated for the configured timespan

Configuration

(TF17) accepts number of sensors greater than one

(TF18) saves in a XML format

(TF19) file is accessible to user after saving

(TF20) file can be imported

(TF21) errors are notified and discarded

(TF22) file format errors are notified and import is stopped

(TF23) name is configurable

(TF24) is saved before simulation

Usability

Graphical user interface

5

2 Usability

(TU1) is shown in one window

(TU2) is one page only

(TU3) includes inputs for configuration

a probabilities for each type

b number of floors

c number of sensors on each floor

d simulation timespan

e residential or business

f workdays

g work time

h vacations, when?, traveling?

i config name

j save location

(TU4) includes status presentation

(TU5) includes message box for errors, status etc

(TU6) includes simulation presentation, histogram

(TU7) histogram time selection

6

a day

b week

c month

d year

(TU8) includes method for importing data

(TU9) includes method for importing configuration

(TU10) includes method for storing configuration

Reliability

Data

(TR1) reflects configured schedule. (Pattern matches)

(TR2) is not repeatable

Configuration includes

(TR3) type of building

(TR4) number of floors

(TR5) number of sensors on each floor

7

(TR6) number of people

(TR7) configured schedule

Performance

(TP1) Simulation is faster than real time

(TP2) Simulation does not wait for a time

Supportability

(TS1) Written in C#

(TS2) Uses WPF platform

(TS3) Uses Model-View-ViewModel pattern

(TS4) Uses English for labels and content

(TS5) Runs on Windows 10

8

6 Other

Other

(TS1) Runs on a normal laptop

(TS2) Does not require administrator privileges

9

	Modeling of building occupation using motion sensor data
	Summary

	Preface
	Contents
	Introduction
	Background
	Previous work

	This work
	Report structure

	System description
	Technical properties
	Simulator requirements
	Simulator method
	Model requirements
	Different model methods
	State space model
	Decision trees
	Bayesian models
	Markov chain
	Neural network
	Probability function

	Software development methods
	Unified Process
	Inception
	Elaboration
	Construction

	Technology
	Programming languages
	WPF and XAML
	Model-View-ViewModel

	System development
	PIRSim
	Configure use case
	Simulation use case
	Present data use case
	Simulation realism

	PIRMod
	Top hat combination
	Event series bounds
	Parameter generation
	Predict future state use case
	Model use case
	Configure use case

	Results
	PIRSim speed performance
	Simulation data comparison
	PIRMod performance results
	Model performance

	Discussion
	Model
	Simulator
	Future work
	Improving the simulation
	Improving the model

	Conclusion
	Bibliography
	Task description
	Project Schedule - GANTT
	PIRSim generated data
	Specification for PIRSiMo
	UML documents for PIRSim
	UML documents for PIRMod
	PIRSim test document

