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THE ALGEBRA OF OBSERVABLES IN NONCOMMUTATIVE

DEFORMATION THEORY

EIVIND ERIKSEN AND ARVID SIQVELAND

Abstract. We consider the algebra O(M) of observables and the (formally)
versal morphism η : A → O(M) defined by the noncommutative deformation
functor DefM of a family M = {M1, . . . ,Mr} of right modules over an asso-
ciative k-algebra A. By the Generalized Burnside Theorem, due to Laudal,
η is an isomorphism when A is finite dimensional, M is the family of simple
A-modules, and k is an algebraically closed field. The purpose of this paper
is twofold: First, we prove a form of the Generalized Burnside Theorem that
is more general, where there is no assumption on the field k. Secondly, we

prove that the O-construction is a closure operation when A is any finitely
generated k-algebra and M is any family of finite dimensional A-modules, in
the sense that ηB : B → OB(M) is an isomorphism when B = O(M) and M is
considered as a family of B-modules.

1. Introduction

Let k be a field, let A be a finite dimensional associative algebra over k, and let
M = {M1, . . . ,Mr} be the family of simple right A-modules, up to isomorphism.
We consider the algebra homomorphism

ρ : A→
r
⊕
i=1

Endk(Mi)

given by right multiplication of A on the family M. By the extended version of
the classical Burnside Theorem, ρ is surjective when k is algebraically closed, and
if A is semisimple, then it is an isomorphism. We remark that Artin-Wedderburn
theory gives a version of the theorem that holds over any field:

Theorem (Classical Burnside Theorem). Let A be a finite dimensional k-algebra,
and let {M1, . . . ,Mr} be the family of simple right A-modules. If EndA(Mi) = k
for 1 ≤ i ≤ r, then ρ : A→ ⊕i Endk(Mi) is surjective.

In Laudal [3], a generalization called the Generalized Burnside Theorem was
obtained. This is a structural result for not necessarily semisimple algebras, and
the essential idea of Laudal was to replace ρ with the versal morphism η defined by
noncommutative deformations of modules. Let us recall the construction:

Let A be an arbitrary associative k-algebra, let M = {M1, . . . ,Mr} be a family
of right A-modules, and consider the noncommutative deformation functor DefM.
This functor has a pro-representing hull H and a versal family MH if M is a swarm.
Following Laudal [3], we define the algebra of observables of a swarm M to be
O(M) = EndH(MH) ∼= (Hij ⊗k Homk(Mi,Mj)), and its versal morphism to be the
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2 EIVIND ERIKSEN AND ARVID SIQVELAND

algebra homomorphism η : A → O(M) given by right multiplication of A on the
versal family MH . It fits into the commutative diagram

A
η

//

ρ
++

(Hij ⊗k Homk(Mi,Mj))

��

⊕r
i=1 Endk(Mi)

where ρ : A→ ⊕r
i=1 Endk(Mi) is the algebra homomorphism given by right multi-

plication of A on the family M. By Theorem 1.2 in Laudal [3], it follows that η is
an isomorphism when A is finite dimensional, M is the family of simple A-modules,
and k is algebraically closed. In this paper, we prove a more general version of this
result:

Theorem (Generalized Burnside Theorem). Let A be a finite dimensional k-algebra,
and let M be the family of simple right A-modules, up to isomorphism. The versal

morphism η : A→ O(M) is injective. If EndA(Mi) = k for 1 ≤ i ≤ r, then η is an

isomorphism. In particular, η is an isomorphism if k is algebraically closed.

In case Di = EndA(Mi) is a division algebra with dimk Di > 1 for some simple
module Mi, it is often not difficult to describe the image of η as a subalgebra of
O(M), and we shall give examples. As an application of the theorem, we introduce
the standard form of any finite dimensional algbra A, given as

A ∼= O(M) = (Hij ⊗k Homk(Mi,Mj))

when EndA(Mi) = k for 1 ≤ i ≤ r, or as a subalgebra of O(M) in general.
Let A be any finitely generated k-algebra and let M be any family of finite

dimensional right A-modules. In this more general situation, the versal morphism
η : A → O(M) is not necessarily an isomorphism. However, we may consider the
algebra B = O(M) of observables, andM as a family of right B-modules, and iterate
the process. We prove that the operation (A,M) 7→ (B,M) has the following closure

property :

Theorem (Closure Property). Let A be a finitely generated k-algebra, let M be

a family of finite dimensional A-modules, and let B = O(M). Then the versal

morphism ηB : B → OB(M) of M, considered as a family of right B-modules, is an

isomorphism.

One may consider a noncommutative algebraic geometry where the closed points
are represented by simple modules; see for instance Laudal [4]. With this point of
view, one may use versal morphisms η : A → O(M) for families M of A-modules
to construct noncommutative localization homomorphisms ηs : A → As for any
s ∈ A. We explain this construction in Section 6. These localization maps are
universal S-inverting localization maps, where S = {1, s, s2, . . . }, and can be used
as an essential building block for structure sheaves on noncommutative schemes.

2. Noncommutative deformations of modules

Let A be an associative algebra over a field k. For any right A-module M , there
is a deformation functor DefM : l→ Sets defined on the category l of commutative
Artinian local k-algebras R with residue field k. We recall that DefM (R) is the
set of equivalence classes of pairs (MR, τR), where MR is an R-flat R-A bimodule
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on which k acts centrally, and τR : k ⊗R MR → M is an isomorphism of right
A-modules. Deformations in DefM (R) are called commutative deformations since
the base ring R is commutative.

Noncommutative deformations were introduced in Laudal [3]. The deformations
considered by Laudal are defined over certain noncommutative base rings instead
of the commutative base rings in l. In what follows, we shall give a brief account of
noncommutative deformations of modules. We refer to Laudal [3], Eriksen [2] and
Eriksen, Laudal, Siqveland [1] for further details.

For any positive integer r and any family M = {M1, . . . ,Mr} of right A-modules,
there is a noncommutative deformation functor DefM : ar → Sets, defined on the
category ar of noncommutative Artinian r-pointed k-algebras with exactly r simple
modules (up to isomorphism). We recall that an r-pointed k-algebra R is one fitting
into a diagram of rings kr → R → kr, where the composition is the identity. The
condition that R has exactly r simple modules holds if and only if R ∼= kr, where
R = R/J(R) and J(R) denotes the Jacobson radical of R.

The noncommutative deformations in DefM(R) are equivalence classes of pairs
(MR, τR), where MR is an R-flat R-A bimodule on which k acts centrally, and
τR : kr⊗RMR →M is an isomorphism of right A-modules with M = M1⊕· · ·⊕Mr.
In concrete terms, an algebra R in ar is a matrix ring R = (Rij) with Rij = eiRej .
By abuse of notation, we write ei for the idempotent ei = (0, 0, . . . , i, . . . , 0) in kr,
and also for its image in R via the structural map kr → R. As left R-modules,
we have that MR

∼= (Rij ⊗k Mj) and its right A-module structure is given by an
algebra homomorphism

ηR : A→ EndR(MR) ∼= (Rij ⊗k Homk(Mi,Mj))

that lifts ρ : A→ ⊕i Endk(Mi). Explicitly, we interpret ηR(a) as a right action of
a on MR via

ηR(a) =
∑

i

ei⊗ρi+
∑

i,j,l

rlij⊗φ
l
ij ⇐⇒ (ei⊗mi)a = ei⊗(mia)+

∑

j,l

rlij⊗φ
l
ij(mi)

where ρi : A→ Endk(Mi) is the algebra homomorphism given by the right action of
A on Mi, such that ρ = (ρ1, . . . , ρr), and where rlij ∈ Rij and φl

ij ∈ Homk(Mi,Mj).
Deformations in DefM(R) can therefore be represented by commutative diagrams

A
ηR

//

ρ
++

(Rij ⊗k Homk(Mi,Mj))

��

⊕r
i=1 Endk(Mi)

These deformations are called noncommutative deformations since the base ring R
is noncommutative.

For any r-pointed algebra R, with structural maps kr → R → kr, we write
I(R) = ker(R → kr). Recall that the pro-category âr is the full subcategory of
the category of r-pointed algebras consisting of algebras R such that R/I(R)n is
Artinian for all n and such that R is complete in the I(R)-adic topology.

The family M = {M1, . . . ,Mr} is called a swarm if dimk Ext
1
A(M,M) is finite.

In this case, the noncommutative deformation functor DefM has a pro-representing
hull H in the pro-category âr and a versal family MH ∈ DefM(H); see Theorem 3.1
in Laudal [3]. The defining property of the miniversal pro-couple (H,MH) is that
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the induced natural transformation

φ : Mor(H,−)→ DefM

on ar is smooth (which implies that φR is surjective for any R in ar), and that φR

is an isomorphism when J(R)2 = 0. The miniversal pro-couple (H,MH) is unique
up to (non-canonical) isomorphism.

Let M be a swarm of right A-modules, and let (H,MH) be the miniversal pro-
couple of the noncommtutative deformation functor DefM : ar → Sets. We define
the algebra of observables of M to be

O(M) = EndH(MH) ∼= (Hij⊗̂k Homk(Mi,Mj))

where ⊗̂ is the completed tensor product (the completion of the tensor product),
and write η : A → O(M) for the induced versal morphism, giving the right A-
module structure on MH . By construction, it fits into the commutative diagram

A
η

//

ρ
**

(Hij⊗̂k Homk(Mi,Mj))

��

⊕r
i=1 Endk(Mi)

Remark 1. Notice that the diagram extends the right action of A on the family M

to a right action of O(M), such that M is a family of right O(M)-modules.

Remark 2. For any R in ar and any deformation MR ∈ DefM(R), there is a

morphism u : H → R in âr such that DefM(u)(MH) = MR by the versal property,

and the deformation MR is therefore given by the composition ηR = u∗ ◦ η in the

diagram

A
η

//

ηR

))

O(M)

u∗=u⊗id

��

(Rij ⊗k Homk(Mi,Mj))

In this sense, the versal morphism η : A → O(M) determines all noncommutative

deformations of the family M.

3. Iterated extensions and injectivity of the versal morphism

Let E be a right A-module and let r ≥ 1 be a positive integer. If E has a
cofiltration of length r, given by a sequence

E = Er
fr
−→ Er−1 → · · · → E2

f2
−→ E1

f1
−→ E0 = 0

of surjective right A-module homomorphisms fi : Ei → Ei−1, then we call E an
iterated extension of the right A-modules M1,M2, . . .Mr, where Mi = ker(fi). In
fact, the cofiltration induces short exact sequences

0→Mi → Ei
fi
−→ Ei−1 → 0

for 1 ≤ i ≤ r. Hence E1
∼= M1, E2 is an extension of E1 by M2, and in general, Ei

is an extension of Ei−1 by Mi.
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Let M = {M1, . . . ,Mr} be a swarm of right A-modules, and let DefM : ar → Sets

be its noncommutative deformation functor. Then DefM has a miniversal pro-
couple (H,MH), and we consider the induced versal morphism η : A→ O(M) and
its kernel K = ker(η).

We note that Theorem 3.2 in Laudal [3] holds without assumptions on the base
field k, since the construction that precedes this theorem works over any field. From
this observation, we obtain the following lemma:

Lemma 3. Let M be a swarm of right A-modules. For any iterated extension E of

the family M, we have that E ·K = 0.

Let A be a finite dimensional k-algebra and let M be the family of all simple right
A-modules, up to ismorphism. Then M is a swarm, and we may consider the versal
morphism η : A→ O(M). If k is algebraically closed, then the versal morphism η is
injective by Corollary 3.1 in Laudal [3]. Using Lemma 3, we generalize this result:

Proposition 4. If A, considered as a right A-module, is an iterated extension of a

swarm M, then the versal morphism η : A→ O(M) is injective. In particular, η is

injective when A is a finite dimensional algebra and M is the family of simple right

A-modules.

Proof. If A is an iterated extension of M, then 1 · K = 0 by Lemma 3, and this
implies that K = 0. If A is finite dimensional, then the right A-module A has finite
length, and it is an iterated extension of the simple modules. �

We remark that our proof, based on Lemma 3, holds whenever there is an element
e ∈ E such that a 7→ e·a defines an injective right A-module homomorphism A→ E.
This means that η : A→ O(M) is injective if there is an iterated extension E of M
such that E contains a copy of AA.

4. The Generalized Burnside Theorem

Let A be a finite dimensional k-algebra, and let M = {M1, . . . ,Mr} be the family
of simple right A-modules, up to isomorphism. Then M is a swarm, and we consider
the versal morphism η : A→ O(M) and the commutative diagram

A
η

//

ρ
++

(Hij ⊗k Homk(Mi,Mj))

��

⊕r
i=1 Endk(Mi)

Clearly, ρ factors through A/ J(A), and if EndA(Mi) = k for 1 ≤ i ≤ r, then
A/ J(A) → ⊕i Endk(Mi) is an isomorphism by the Artin-Wedderburn theory for
semisimple algebras. This proves the Classical Burnside Theorem mentioned in the
introduction. By Theorem 3.4 in Laudal [3], the versal morphism η : A→ O(M) is
an isomorphism when k is algebraically closed. We generalize this result:

Theorem 5. Let A be a finite dimensional k-algebra and let M be the family of

simple right A-modules, up to isomorphism. Then η : A → O(M) is injective, and

it is an isomorphism if EndA(Mi) = k for 1 ≤ i ≤ r. In particular, the versal

morphism η : A→ O(M) is an isomorphism if k is algebraically closed.
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Proof. By Proposition 4, the versal morphism η is injective, and it is enough to
prove that η is surjective when EndA(Mi) = k for 1 ≤ i ≤ r. Note that η maps the
Jacobson radical J(A) of A to the Jacobson radical J = (J(H)ij⊗kHomk(Mi,Mj))
of O(M). Moreover, A is J(A)-adic complete since it is finite dimensional, and
O(M) is clearly J-adic complete. By a standard result for filtered algebras, it is
therefore sufficient to show that gr1(η) : J(A)/J(A)2 → J/J2 is surjective, since
gr0(η) : A/J(A) → ⊕i Endk(Mi) is an isomorphism by the Classical Burnside
Theorem. We notice that

J/J2 ∼= ((J(H)/J(H)2)ij⊗kHomk(Mi,Mj)) ∼= (Ext1A(Mi,Mj)
∗⊗kHomk(Mi,Mj))

since J(H)/J(H)2 is the dual of the tangent space (Ext1A(Mi,Mj)) of DefM. We
note that Lemma 3.7 in Laudal [3] holds over any field. Hence the map

J(A)/J(A)2 → (Ext1A(Mi,Mj)
∗ ⊗k Homk(Mi,Mj))

induced by η is an isomorphism, and this completes the proof. �

5. The closure property

Let A be a finitely generated k-algebra of the form A = k〈x1, . . . xd〉/I, and let
M = {M1, . . . ,Mr} be a family of finite dimensional right A-modules. Then M is a
swarm, since

dimk Ext
1
A(Mi,Mj) ≤ dimk Derk(A,Homk(Mi,Mj)) ≤ dimk Homk(Mi,Mj)

d

The last inequality follows from the fact that any derivationD : A→ Homk(Mi,Mj)
is determined by D(xl) ∈ Homk(Mi,Mj) for 1 ≤ l ≤ d. We consider the algebra
of observables B = O(M) of the swarm M, and write η : A → B for its versal
morphism. In general, M = {M1, . . . ,Mr} is a family of right B-modules via η.

Lemma 6. The family M = {M1, . . . ,Mr} of right B-modules is the simple right

B-modules, and it is swarm of B-modules.

Proof. It follows from the Artin-Wedderburn theory that M = {M1, . . . ,Mr} is the
family of simple modules over

B = B/J(B) ∼= (H/J(H)⊗k Homk(Mi,Mj)) ∼= ⊕
i
Endk(Mi).

Since B and B = B/J(B) have the same simple modules, it follows that M is
the family of simple right B-modules. We have that Ext1B(Mi,Mj) is a quotient
of Derk(B,Homk(Mi,Mj)), and any derivation D : B → Homk(Mi,Mj) satisfies
D(J2) = JD(J) + D(J)J = 0 when J = J(B) since M is the family of simple
B-modules. From the fact that

B/J2 ∼= ((H/ J(H)2)ij ⊗k Homk(Mi,Mj))

is finite dimensional, and in particular a finitely generated k-algebra, it follows from
the argument preceding the lemma that M is a swarm of B-modules. �

In this situation, we may iterate the process. Since M is a swarm of right
B-modules, the noncommutative deformation functor Def

B
M of M, considered as

a family of right B-modules, has a miniversal pro-couple (HB ,MB
H ). We write

OB(M) = EndHB (MB
H ) ∼= (HB

ij ⊗k Homk(Mi,Mj)) for its algebra of observables

and ηB : B → OB(M) for its versal morphism.
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Theorem 7. Let A be a finitely generated k-algebra, let M = {M1, . . . ,Mr} be

a family of finite dimensional A-modules, and let B = O(M). Then the versal

morphism ηB : B → OB(M) of M, considered as a family of right B-modules, is an

isomorphism.

Proof. Since M is a swarm of A-modules and of B-modules, we may consider the
commutative diagram

A
η

//

ρ

$$

B = O(M)

��

ηB

// C = OB(M)

ww

⊕
i
Endk(Mi)

The algebra homomorphism ηB induces maps B/ J(B)n → C/ J(C)n for all n ≥ 1,
and it is enough to show that each of these induced maps is an isomorphism. For
n = 1, we have

B/J(B) ∼= C/J(C) ∼= ⊕
i
Endk(Mi)

so it is clearly an isomorphism for n = 1. For n ≥ 2, we have that Bn = B/J(B)n is
a finite dimensional algebra with the same simple modules as B sinceMiJ

n = 0. We
may therefore consider the versal morphism of the swarm M of right Bn-modules,
which is an isomorphism by the Generalized Burnside Theorem since EndB(Mi) = k
for 1 ≤ i ≤ r. Finally, any derivation D : B → Homk(Mi,Mj) satisfies D(Jn) = 0
when n ≥ 2. Therefore, we have that

Ext1Bn
(Mi,Mj) ∼= Ext1B(Mi,Mj)

and this implies that B/J(B)n → C/J(C)n coincides with the versal morphism of
the swarm M of right Bn-modules. It is therefore an isomorphism. �

Theorem 7 implies that the assignment (A,M) 7→ (B,M) is a closure operation
when A is a finitely generated k-algebra and M = {M1, . . . ,Mr} is a family of
finite dimensional right A-modules. In other words, the algebra B = O(M) has the
following properties:

(1) The family M is the family of simple right B-modules.
(2) The family M has exactly the same module-theoretic properties, in terms

of extensions and matric Massey products, considered as a family of B-
modules and as a family of A-modules.

Moreover, these properties characterize the algebra of observables B = O(M).

Remark 8. Assume that k is a field that is not algebraically closed. When A is

a finite dimensional k-algebra and M is the family of simple right A-modules, it

could happen that the division algebra Di = EndA(Mi) has dimension dimk Di > 1
for some simple A-modules Mi. In this case, η : A → O(M) is not necessarily

an isomorphism. However, if the subfamily M′ = {Mi : EndA(Mi) = k} ⊆ M is

non-empty, we may consider the algebra B = O(M′), and it follows from the closure

property that η : B → OB(M′) is an isomorphism. This means that the Generalized

Burnside Theorem holds for the family M′ of right B-modules.
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6. Noncommutative localizations via the algebra of observables

Let A be a finitely generated k-algebra, and denote by X = Simp(A) the set of
(isomorphism classes of) simple finite dimensional right A-modules. For any s ∈ A,
we write

D(s) = {M ∈ X : M
·s
−→M is invertible} ⊆ X.

We note that {D(s)}s∈A is a base for a topology on X, since D(s)∩D(t) = D(st),
which we call the Jacobson topology on X = Simp(A).

For any inclusion M ⊆ M′ of finite subsets of D(s), there is a surjective algebra
homomorphism O(M′)→ O(M). We may consider the algebra homomorphism

ηs : A→ lim
←−

M⊆D(s)

O(M)

where the projective limit is taken over all finite subsets M ⊆ D(s). Notice that
ηs(s) is a unit, since it is a unit in O(M) for any finite subset M ⊆ D(s). We define
As to be the subring of the projective limit

lim
←−

M⊆D(s)

O(M)

generated by ηs(A) and ηs(s)
−1. By abuse of notation, we write ηs for the algebra

homomorphism ηs : A→ As into the subring As.
Let S be the multiplicative subset S = {1, s, s2, . . . } ⊆ A. Then ηs : A → As is

an S-inverting algebra homomorphism, and it has the following universal property:
If φ : A → B is any S-inverting algebra homomorphism, then there is a unique
algebra homomorphism φs : As → B such that φs ◦ ηs = φ. We remark that As is
a finitely generated k-algebra, generated by the images of the generators of A and
ηs(s)

−1. In general, it is not a (left or right) ring of fractions.

7. Applications

LetA be a finite dimensional k-algebra. We consider the familyM = {M1, . . . ,Mr}
of simple right A-modules. By the Generalized Burnside Theorem, A can be written
in standard form as

A ∼= im(η) ⊆ (Hij ⊗k Homk(Mi,Mj)) = O(M)

If EndA(Mi) = k for 1 ≤ i ≤ r, then the standard form of A is A ∼= O(M), and in
general, it is a subalgebra of O(M).

The standard form can, for instance, be used to compare finite dimensional
algebras and determine when they are isomorphic. Let us illustrate this with a
simple example. Let k be a field, and let A = k[G] be the group algebra of G = Z3.
In concrete terms, we have that A ∼= k[x]/(x3−1), and over a fixed algebraic closure
k of k, we have that

x3 − 1 = (x− 1)(x2 + x+ 1) = (x− 1)(x− ω)(x− ω2)

with ω ∈ k. If char(k) 6= 3 and ω ∈ k, then the simple A-modules are given by
M = {M0,M1,M2}, where Mi = A/(x − ωi). Furthermore, a calculation shows
that Ext1A(Mi,Mj) = 0 for 0 ≤ i, j ≤ 2. Hence, the noncommutative deformation
functor DefM has a pro-representing hull H = k3 (it is rigid), and the versal mor-
phism η : A→ O(M) is an isomorphism. The standard form of A is therefore given
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by

A = k[Z3] ∼= k3 =



k 0 0
0 k 0
0 0 k


 .

If char(k) = 3, then M0 is the only simple A-module since x3−1 = (x−1)3, and we
find that Ext1A(M0,M0) = k. In this case, it turns out that H ∼= k[[t]]/(t3), and the
standard form of A is given by A = k[Z3] ∼= k[t]/(t3). In both cases, it follows from
the Generalized Burnside Theorem that η is an isomorphism, since EndA(M) = k
for all the simple A-modules M .

If char(k) 6= 3 and ω 6∈ k, then the simple A-modules are given by M = {M,N},
where M = M0 = A/(x−1) is 1-dimensional, and N = A/(x2+x+1) ∼= k(ω) = K
is 2-dimensional. In this case, we have that EndA(M) = k and EndA(N) = K, and
we find that the standard form of A is given by

H =

(
k 0
0 k

)
⇒ A ∼= im(η) =

(
k 0
0 K

)
⊆ O(M) =

(
k 0
0 Endk(K)

)
.

It follows from Proposition 4 that η : A→ O(M) is injective. However, it is not an
isomorphism in this case.
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