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Abstract: We report a modeling framework for evaluating the performance of piezoelectri-
cally actuated MEMS tunable lenses. It models the static opto-electromechanical coupling for
symmetric configurations of piezoelectric actuators based on the laminated-plate theory, linear
piezoelectricity, and ray tracing. With these assumptions, it helps to find geometrical parameters
for actuators on clamped square or circular diaphragms that give a diffraction-limited tunable
lens with minimum F-number. The tunable lens’ optical performance and its focusing capability,
alone and in combination with a paraxial fixed lens, were calculated in terms of object distance
and actuation voltage. Using the modeling framework, we confirmed that the modulation transfer
function for objects located at different distances remains the same after voltage adjustment.
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1. Introduction

Autofocus is a crucial feature in cameras, especially when photographing objects at different
distances and having them in sharp focus without any quality loss in the captured image. Over
the last decades, several research efforts have been made to incorporate tunable focus for
mobile-device cameras using micro-scale components. Qualitatively, this enables miniaturized
cameras with lower power consumption, much faster response in scanning focus range and
higher reliability. The microelectromechanical-systems-(MEMS)-based tunable focus lenses are
promising alternatives as autofocus mechanisms when compared to the conventional macro-scale
approaches such as the voice coil motor (VCM) [1] or ultrasonic motor [2]. Moreover, such
MEMS autofocus lenses will achieve higher resolution smartphone cameras without any moving
parts within the camera housing, which consume power during focus adjustment and causes a
loss in the field of view as for the VCM.

In conventional macro-scale focusing systems sold in the camera market nowadays, for
example VCM and ultrasonic motors, tunable focus is achieved through changing the relative
positions of lenses mounted inside a barrel in front of a fixed lens. Each technology moves that
barrel differently within the camera housing. The VCM effectively uses Lorentz forces on current
carrying coils wrapped around the barrel to move it forwards or backwards. Ultrasonic motors
use piezoelectric actuators to generate a traveling wave rotating along the circumference of a
circular disk and couple the resultant circular movement through a gear system to an axially
moving lever attached to the barre.

Tunable focus in micro-scale systems is generally achievable by two approaches. The first
approach is to change the effective refractive index as in a liquid crystal (LC) lens [3]. An
LC lens can converge or diverge light beams by controlling the electric field that reorients LC
molecules causing a spatially dependent refractive index within LC layers. The second approach
is to change the interface slope through which the light rays are passing between two media
with different refractive indices. Tunable microfluidic lenses [4, 5] can use a pump to control the
pressure of a liquid trapped inside a fluidic cavity to deform the cavity’s top surface. A tunable
liquid lens changes the interface curvature between two polar liquids by electrowetting [6].
Piezoelectrically actuated lenses bend a transparent membrane between two media with different
refractive indices to provide a spatially dependent slope at the interface. The media can be air
and a fluid [7], or air and a polymer as in the TLens R© case [8].

In this article, we introduce a modeling framework that predicts the static opto-
electromechanical coupling of different electrode configurations for piezoelectrically actuated
MEMS tunable lenses. The static electromechanical performance is modeled based on variational
methods for square diaphragms. Simple analytical formulas are used for circular diaphragms. To
solve the variational formulation, we found a basis that is practical for calculation of the resulting
variational integrals and that can be simply expressed in terms of Zernike polynomials [9] which
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are convenient for wavefront representations in optical simulations. We provide closed forms for
the variational integrals that simplify the numerical calculations for large numbers of basis func-
tions. We have investigated the tunable lens’s optical performance using ray tracing by analysing
its F-number (F#), RMS wavefront error and Modulation Transfer Function (MTF). The MTF
response of the tunable lens in combination with a paraxial fixed lens remains essentially the
same when the object is located at different distances after actuation voltage adjustment.

2. Principle of operation

The MEMS tunable lenses that we study here are based on piezoelectric actuation as a bending
mechanism of a diaphragm to provide a voltage dependent curvature at the interface between air
and a polymer [8] or air and a fluid [7]. In the paraxial approximation for a thin plano-convex lens
with radius of curvature R and refractive index nmedium, the focal length is f = R/(nmedium − 1).
The lens shown in Fig. 1 consists of four elements: a piezoelectric actuator, a thin transparent
glass layer, a soft polymer gel (or fluid) and a transparent thicker glass layer as substrate. A
DC voltage Vp is applied to the piezoelectric actuator to set an electric field E3 having the
same alignment as the polarization within the piezoelectric material. This causes an in-plane
contraction in the piezoelectric stack and the flexible thin glass layer bends upwards. The upper
surface of the soft polymer (or fluid) is shaped by this bending, forming a complicated refractive
surface for light rays, as shown in Fig. 1. Thus, controlling the actuation voltage Vp makes the
lens’s focusing-power tunable and enables focusing at objects located at different distances from
the camera. This tunable lens could be attached to a fixed-focal-length optical system (e.g. a
smartphone camera) for adjusting the overall focal length based on the object distance from the
photographing device.

Figure 2 shows a planar view of different possible study cases for the tunable lenses. For all
cases, light should only pass through the circular opening. Thus, cases (II, IV) with ring actuators
have an additional opaque area (i.e. the lower Pt electrode of the piezoelectric stack) covering
the diaphragm outside the actuator perimeter till the diaphragm edge in order to block out light.
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Fig. 1. (a) Schematic view showing tunable lens’s principle of operation; both at rest position
when Vp = 0 and at focus when Vp is nonzero. (b) Cross-sectional view of tunable lens
showing dimensions.

3. Electromechanical modeling and simulations

This section describes the models that are used to predict the deformed shape of the transparent
membrane. For the square diaphragms, we have developed a variational formulation. For the
circular diaphragms, we use simple analytical formulas [10, 11]. For the cases of interest, it
is reasonable to use Classical Laminated Plate Theory (CLPT) since the in-plane diaphragm
dimension a is larger than its thickness.
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Fig. 2. Planar view of possible study cases of piezoelectrically actuated MEMS tunable
lenses. A clamped square diaphragm with circular opening: (a) case I and (b) case II ring
actuator with opaque covering outside the ring till the diaphragm edges. A clamped circular
diaphragm with circular opening: (c) case III actuator and (d) case IV ring actuator with
opaque covering outside the ring till the diaphragm edges.

3.1. Square diaphragm

The core of our modeling framework for square diaphragms is a weak formulation based on six
assumptions. First, CLPT [12] which takes into account only first order strains but neglects the
transverse shear engineering strains γxz and γyz . Second, the linear theory of piezoelectricity that
assumes a linear coupling between electric field components and strains. Third, the piezoelectric
layer is a charge free region so that Gauss’s law simplifies to ∇·D = 0. Fourth, quasi-electrostatic
conditions such that there is no time dependence. Fifth, a thin film approximation which neglects
the lack of smoothness at the transitions between areas that are covered by a piezoelectric
thin film and those that aren’t. This approximation is made by using an orthogonal basis that
is continuous and differentiable over the whole diaphragm plane. Sixth, the medium that is
deformed by actuation of the diaphragm is assumed to be weightless and not to affect the
diaphragm bending. This applies whether the medium is a soft polymer as in the TLens device
or a fluid-filled cavity.
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3.1.1. Constitutive equations

For a∞mm [13] piezoelectric material, the constitutive equations referred to the middle plane as
a reference plane (referring to Fig. 1(b)) can be reduced to

Txx

Tyy

Txy

D3

 =


Q11 Q12 0
Q12 Q22 0

0 0 Q66
e31 e32 0


Sxx

Syy
γxy

 −

e31
e32
0
εS33

 E3 (1a)

[
D1
D2

]
=

[
e15 0
0 e24

] [
γyz
γxz

]
+

[
εS11 0
0 εS22

] [
E1
E2

]
(1b)

where Ti j , Si j , γi j , Di and Ei are components of stress, normal strain, shear strain, electric
displacement and electric field respectively. (Qi j , ei j , εSi j ) are effective material properties,
defined in the Appendix. The material axes (1, 2 and 3) coincide with the coordinate axes (x, y
and z). D1 and D2 can be neglected due to negligible transverse shear strains (γxz and γyz ) and
zero E1 and E2 from the electrode configuration.

It is useful to integrate Eq. (1a) over the thickness to get expressions for the stress resultants
as follows [12, 14]
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(2)

where

Ai j =

2∑
k=1

Q
(k )
i j (hk+1−hk ) , Bi j =

1
2

2∑
k=1

Q
(k )
i j (h2

k+1−h2
k ) and Di j =

1
3

2∑
k=1

Q
(k )
i j (h3

k+1−h3
k ).

Q
(k )
i j are the effective stiffness coefficients for the k th layer and (i, j=1, 2, 6). (S0

ii
, γ0

xy ) and (S1
ii

,
γ1
xy ) are membrane stretching strains at middle surface and bending (flexural) strains [12]. Ni j

and Mi j are the thickness integrated forces and moments, respectively. NE
i j

and ME
i j

identified by
a superscript E are terms that originate from the piezoelectric coupling [14]. From Gauss’s law
and electric boundary conditions (v = 0 at (z = h2) and v = Vp at (z = h3)), we can formulate
expressions for E3 and the voltage v in terms of the bending strains, the DC actuation voltage Vp
and layers dimensions (refer to Fig. 1) as

E3(x , y, z) =
−Vp

hp
−

e31

εS33

(
S1
xx + S1

yy

)
(z − zp), (3a)

v(x , y, z) =
Vp

hp
(z − h2) +

e31

εS33

(
S1
xx + S1

yy

) ( (z2 − h2
2)

2
+ zp(h2 − z)

)
(3b)

where zp = (h2 + h3)/2.
The first term on the right hand side of Eqs. (3) is the field one would have without deformation

and the second term is a result of the deformation through the piezoelectric coupling. Thus, we
can express the thickness integrated forces and moments of a piezoelectric origin as

NE
xx = NE

yy = −e31Vp , NE
xy = 0, (4a)

ME
xx = ME

yy = −e31

[
e31

εS33

(
S1
xx + S1

yy

) ( (h3 − h2)3

12

)
+ Vpzp

]
, ME

xy = 0. (4b)
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Since the deflection is dominated by diaphragm bending, we will neglect the stretching strains at
the middle surface (S0

xx , S0
yy and γ0

xy ). This will decouple the cross terms between the thickness
integrated forces and moments in Eq. (2). By backsubstituting from Eqs. (4) into Eq. (2), we get
the thickness-integrated momentsMxx

Myy

Mxy

 =

D∗11 D∗12 0
D∗21 D∗22 0
0 0 D∗66


S

1
xx

S1
yy

γ1
xy

 + e31Vp zp

11
0

 (5)

where

D∗i j = Dgl
i j

+ Dp
i j

=

2∑
k=1

Q
(k )
i j

[ 1
12

(
1 + χ(k )

i j

)
(hk+1 − hk )3

]
and χ(k )

i j
=

e(k )
3i e(k )

3 j

Q
(k )
i j ε

S;(k )
33

.

D∗
i j

are modified membrane flexural stiffnesses, Dgl
i j

is for the glass layer only, Dp
i j

for the
piezoelectric layer only and χi j is a correction factor to the membrane flexural stiffnesses due to
the piezoelectric coupling within the piezoelectric material, as discussed for piezoelectric beams
in [15].

3.1.2. Variational formulation

The variational formulation is based on the principle of virtual work. It can be shown that
the Lagrangian for a piezoelectric material is the kinetic energy minus the electric enthalpy
as opposed to the purely elastic problems where the internal energy appears instead of the
enthalpy [16]. This is the basis for later formulations [17]. For the static case, the Hamilton’s
principle reduces to

δH − δW = 0 (6)

where δH is the virtual variation of the electrical enthalpy and δW is the virtual variation of the
potential energy due to external applied forces. Considering CLPT, neglecting in-plane virtual
displacements and assuming zero residual process stresses, the virtual formulation in Eq. (6) can
be expressed as (see [17] for further details) :

0 =

∫
Ω

(
MxxδS1

xx + MyyδS1
yy + Mxyδγ

1
xy

)
dxdy +

∮
ΓΩ

(
M̂nn

∂δw0

∂n̂
+ M̂ns

∂δw0

∂ŝ

)
ds

+

∫
Ω

qδw0ds (7)

where δw0 is the virtual displacment in z-direction. M̂nn and M̂ns are normal and tangential
external stress moments applied over the domain Ω’s outer boundary ΓΩ, respectively. They
depend on the type of supports that holds the tunable lens. For the clamped case, the second
integral vanishes because of zero displacement and zero slope conditions at the edges. n̂ and
ŝ are the normal and tangential unit vectors along the outer boundary ΓΩ, respectively. The
third integral is the external work due to a pressure force q, which vanishes based on having no
external pressure and the sixth assumption previously made, i.e. that the polymer or fluid don’t
affect the membrane displacement. Thus, the weak formulation can be expressed as

∫
Ω

{ (
D∗11

∂2w0

∂x2 + D∗12
∂2w0

∂y2

) (
∂2δw0

∂x2

)
+

(
D∗12

∂2w0

∂x2 + D∗22
∂2w0

∂y2

) (
∂2δw0

∂y2

)
+

(
2D∗66

∂2w0

∂x∂y

) (
2
∂2δw0

∂x∂y

) }
dxdy = −e31Vpzp

∫
Ωp

{ (
∂2δw0

∂x2

)
+

(
∂2δw0

∂y2

) }
dxdy

= −e31Vpzp

∫
Ωp

∇2
x ,yδw0dxdy (8)
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where Ω = Ωgl ∪Ωp . Ωgl and Ωp are domains for glass and piezoelectric layers, respectively.
The quantities D∗

i j
vary over the plate due to the difference in layer structure between the lens

pupil and the actuator area. To simplify numerical integration, they can be expressed as

D∗i j =Dgl
i j

+


Dp

i j

[
Π (X,Y ) − circ

(
r
γ

)]
Case I actuator

Dp
i j

[
circ

(
r
γ2

)
− circ

(
r
γ1

)]
Case II actuator

(9)

where γ1 = γ = 2c1/a and γ2 = 2c2/a (refer to Fig 2). X = x/(a/2), Y = y/(a/2)) and
r = R/(a/2) are the normalized cartesian and polar coordinates, respectively. The square
function Π(X,Y ) is 1 if |X | ≤ 1&|Y | ≤ 1 and 0 elsewhere. The circle function circ(r) [18] is 1
if r ≤ 1 and 0 if r > 1.

A direct calculation of Eq. (8) at first appears difficult due to the complexity of the integration
domains. However, each subdomain is prismatic with square and circular symmetries of their base
faces. Thus, it is helpful to decompose these complex integrals into simpler ones over domains
with circular or square shape. Based on Eqs. (9), both sides of Eq. (8) can be decomposed as

Ξ
gl
� +

[
Ξ

p
� − ϑ

p
◦,γ

]
= β

p
� − ζ

p
◦,γ Case I actuator (10a)

Ξ
gl
� +

[
ϑ

p
◦,γ2 − ϑ

p
◦,γ1

]
= ζ

p
◦,γ2 − ζ

p
◦,γ1 Case II actuator (10b)

where Ξ� and β� denote integrals in normalized cartesian coordinates over a square domain,
while ϑ◦ and ζ◦ denote integrals in normalized polar coordinates over a circular domain. The
normalized radius of the circle is denoted by γ, γ1 or γ2 in the subscript. The superscripts denote
the layer structures of the domains: “gl” for the glass layer and “p” for the piezoelectric layer.
The variational calculation in Eqs 10 have the same spatial dependence over the plate as the
flexural stiffnesses in Eqs 9. For example, the left hand side of Eq. (10) is the electric enthalpy of
the stacked glass and piezoelectric layers over the whole plane minus the electric enthalpy of a
circular piezoelectric layer with normalized radius γ covering the pupil area. By this construction,
we obtain the electric enthalpy stored in the case-I structure. In the same manner, the right hand
side is the equivalent force due to the piezoelectric coupling for a rectangular piezoelectric layer
extending over the entire diaphragm minus the equivalent force of a circular piezoelectric layer
with normalized radius γ covering the pupil area. This decomposition method was previously
employed in determining approximations for the vibration frequency of rectangular diaphragms
with rectangular cuts [19]. Here, we employed it instead for circular cuts and took into account
the additional complications of piezoelectric coupling.

3.1.3. Solution of the variational problem

To solve Eq. (8) for the deflection w0 , we write an approximate solution wN as a finite linear
combination of basis functions

w0(X,Y, 0) ≈ wN (X,Y, 0) =

N∑
m=1

N∑
n=1

CmnΦmn (X,Y ) (11)

where Φmn (X,Y ) are the basis functions and Cmn are coefficients to be determined. The choice
of basis functions is an important part of the ansatz. They must satisfy the mechanical boundary
conditions. In addition, they should preferably be orthogonal and easy to be mapped to Zernike
polynomials [9]. Zernike polynomials are orthogonal polynomials over a disc and are convenient
for optical representation of wavefronts. Orthogonality of the basis functions helps eliminating
the possibility of a numerically ill-conditioned system of equations arising from the variational
treatment. There are many options for the bases, such as products of trigonometric and hyperbolic
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functions [20] known for doubly-clamped beam or products of squared cosines [21]. The
disadvantage of the latter functions is that they are not orthogonal.

Moreover, for either of these choices, power series expansions of the basis functions in terms
X and Y must be made in order to map to Zernike polynomials. This expansion increases the
calculational burden necessary to avoid significant errors from the mapping. Thus, we propose a
weighted product of Gegenbauer [22] polynomials on the interval [−1, 1]. They are orthogonal
and have a simple mapping to Zernike polynomials as will be discussed later. These basis
functions can be written

Φmn (X,Y ) = φm (X )φn (Y ) = (1 − X2)
(α−1/2)

2 (1 − Y 2)
(α−1/2)

2︸                                 ︷︷                                 ︸
Weight factor enforcing BC

G(α)
m (X )G(α)

n (Y ) (12)

where G(α)
m (X ) is a Gegenbauer polynomial of order m and the parameter α in the weighting

factor should equal 9/2 to force the basis functions to satisfy the clamped boundary conditions
of zero deflection and zero slope along the edges. Due to the symmetry, we will only consider
even polynomials, i.e. only functions with both indices m and n even. Figure 3 shows the x-cross
section of the first six even basis functions of weighted Gegnenbauer polynomials φm (X ). By
backsubstituting from Eq. (11) in Eq. (8), we get a linear system of equations for Cmn on the
form [12]:

[Rmnpq]
N 2×N 2

[Cmn]
N 2×1

= [Fpq]
N 2×1

(13)

where [Rmnpq] and [Fpq] are calculated using the decomposition described above. A simple
way to calculate the integrals is described in the appendix.

The products of finite order Gegenbauer polynomials inside a circle of radius γ = 2c/a can be
expressed as a linear combination of Zernike polynomials with coefficients depending on the
geometrical parameter γ. For example, the first basis function can be expressed as

Φ00(r, θ) =

Ns∑
i=0

Ns∑
j=0

kmni j Z
j

i
(r, θ)

=

(
3γ8

640
−
γ6

16
+

5γ4

12
− γ2 + 1

)
Z0

0 +
γ2

320

(
3γ3 − 36γ4 + 200γ2 − 320

)
Z0

2

+
γ4

1344

(
9γ4 − 84γ2 + 280

)
Z0

4 +
γ4

672

(
−15γ4 + 140γ2 − 168

)
Z4

4

+
γ6

1280

(
3γ2 − 16

)
Z0

6 +
γ6

384

(
−3γ2 + 16

)
Z4

6 +
3γ8

8960
Z0

8 −
γ8

896
Z4

8 +
γ8

128
Z8

8 (14)

where Z j

i
are Zernike polynomials. Ns = m + n + 8 is the order of Zernike polynomials sufficient

for mapping exactly, m, n are the orders of the basis function Φmn . Moreover, based on the
mirror symmetries of the problem under study, we note from Eq. (14) that we have only even
Zernike-polynomial terms in the expansion. Due to this feature, we have an exact representation
of the lens surface in terms of Zernike polynomials.

3.1.4. Variational solutions versus FEM

We consider glass as a material for the transparent diaphragm and the PZT stack in [23] for the
piezoelectric actuator. Their dimensions and material properties are listed in the appendix. Figure
4(a) shows how the variational solutions for case I match with FEM simulations. To check the
convergence of the variational solution to the FEM solution wFEM, we choose to monitor the l2
relative error norm

ε l2 =

√∑
(wFEM − wN )2∑

w2
FEM

. (15)
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Fig. 3. Even Gegenbauer-polynomial basis functions φm (X ) on [−1, 1].

As shown in Fig. 4(b), the error and convergence speed depend on the ratio γ. For example for
γ = 0.1, the variational solution shows large deviation from FEM solution, especially with a
small number of basis functions. The reason is that the spatial frequency of the basis function
Φmn , not to be confused with spatial frequency of light intensity at object plane in the optics part,
has to be high enough to capture the displacement. The higher the number of basis functions, the
better the solution accuracy. From Figs 4(a) and 4(b), the variational solutions have relative error
norms less that 10% at N = 28. Thus, they provide good prediction for deflections for case I to
be used in optical simulations.

It is evident from Fig. 5 that the variational solutions in case II have similar behaviour as the
FEM results, but the error is larger than for case I. The thin-film approximation allows us to use
one set of continuous basis functions over the entire square diaphragm. For the case-I actuator,
this basis is artificially smooth at the rim of the glass opening where the layer structure changes
from glass only to glass and piezoelectric. For the case-II actuator, we have this feature both at
the inner and outer perimeter of the piezoelectric ring. For the simpler radially symmetric cases
III and IV that will be treated in the next subsection, the plate equations are solved exactly and
show very good agreement with FEM.

As shown in Fig. 5(b), it is apparent that having γ2 ≤ 0.5, the displacement in the circular
aperture area becomes nearly flat and it becomes a poor refractive surface adding no optical power
to the passing light. Such behaviour is suitable to operate the structure as a piston micromirror as
in [24].

The presented modeling framework provides a fast tool, compared to FEM, to perform
optimization and exploration of different materials and different layer thicknesses.

3.2. Circular diaphragm

Instead of using variational methods for the two piezoelectric actuator configurations in Fig. 2(c)
and Fig. 2(d), we rely on previous results in [10,11] on analytical formulas for the deflection of a
multi-layered circular diaphragm. Starting from CLPT and using axisymmetry assumptions, the
deflection inside the opening wint can be expressed only in terms of the radial distance R as

wint (R) = C2R2 + C0 =
C2γ

2(a/2)2

2
√

3︸         ︷︷         ︸
k20

√
3(2r2 − 1)︸         ︷︷         ︸

Z0
2

+ C0 +
C2γ

2(a/2)2

2
√

3︸                ︷︷                ︸
k00

(16)

where C2 and C0 are coefficients of R2 and R0 terms, respectively. They are dependent on the
driving voltage Vp and their values arise from solving Eq. (36) in [10] and Eq. (14) in [11]
for piezoelectric actuator of case III and case IV, respectively. k00 and k20 are the piston and
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Fig. 4. (a) Displacement profiles in xz−plane from FEM and the variational tool (N = 28)
for square diaphragm with case I actuator at different values of ratio γ for piezoelectric
material at Vp = −10V . (b) l2 relative error norm versus polynomial order N .
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Fig. 5. Displacement profiles in xz−plane from FEM and the variational tool (N = 28) for
square diaphragm with case II actuator at different values of ratio γ1 when (a) γ2 = 0.9 and
(b) γ2 = 0.5 at Vp = −10V .

defocusing coefficients of the standard Zernike polynomials [9], respectively. r = 2R/a is the
normalized radial distance and γ (= γ1 in case II) is the ratio of the aperture radius to the circular
diaphragm radius. The deflection inside the opening is a perfect circular paraboloid.

Figure 6 shows excellent agreement between the results on membrane deflection for the
analytical model and the FEM simulations. This is expected since the analytical model is an
exact result of CLPT whose assumptions are very good for the thin diaphragms studied here.
Similarly to case II, for γ2 ≤ 0.5, the displacement for case IV in the aperture area becomes
nearly flat so that it becomes a poor refractive surface adding no optical power to the passing
light. However, it has less stroke-down when compared to case II.

4. Optical performance using ray tracing analysis

We perform ray tracing analysis using Zemax [25]; an optical simulation tool. We assume that
the glass and polymer (or fluid) layers have a unity optical amplitude transmittance within
the visible light range and that their refractive index is equal to 1.5. For ray tracing analysis
in Zemax, the tunable lens’s entrance pupil opening is uniformly illuminated by parallel rays.
Moreover, the entrance pupil is set as a stop surface limiting the ray bundle entering the lens.
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Fig. 6. Displacement profiles in xz−plane at Vp = −10V from FEM and the analytical
model for (a) case III actuator at different values of γ and (b) and (c) case IV actuator at
different values of γ1 while γ2 equals to 0.9 and 0.5, respectively.

In the following, we limited our attention to on-axis optical performance and whenever we use
the term ’focal length’, we mean the distance from the lens’ flat face to the minimum spot. We
don’t use the paraxial approximation. The lens sag is imported in Zemax using standard Zernike
coefficients [9] that are calculated using the Gegenbauer-Zernike mapping, see e.g. Eq. (14).
However, we imported a 512 × 512 grid of surface sag from FEM simulations for case II due to
the non-negligible error between variational tool and FEM in that particular case. Surface sag
representation with Zernike coefficients enables an easy expression for RMS wavefront error [9]:

σw =

√√√ ∞∑
j=2

a2
j

(17)

where a j are the coefficients of single index Zernike polynomials. This quantity is a measure of
the deviation of the wavefront from a reference sphere having its center at the image plane and a
radius equal to the separating distance between the exit pupil position and the image plane, as
simulated in Zemax.

4.1. Design criterion: minimum F#

A quantitative figure of merit for tunable lenses is the minimum achievable F# = f /(γa) with
acceptable RMS wavefront error. Thus, using the developed tool, we search for the best set
of geometrical parameters (γ1 or γ) and γ2 to reach this end target. Figure 7(a) shows the
arrangement used in Zemax to determine the focal length and RMS wavefront error for the
tunable lens. The simulated results in Fig. 7(b) for the square diaphragm (case I ) with γ = 0.57
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gives a minimum F-number of 129 with an RMS wavefront error of 0.0137 waves. For a circular
diaphragm (case III), the minimum is F# = 136 and is achieved for γ1 = 0.54 and γ2 = 1 with
a negligible RMS wavefront error, as listed in Tab. 1. Note that the focusing capability of a
clamped square diaphragm (case I with a = 3 mm) lies in between the focusing capability of
clamped circular diaphragms having radii equal to the inscribed (case III with a = 3 mm) and
circumscribed (case III with a = 3

√
2 mm) circles of the square frame. However, it has a wider

aperture that allows a wider ray bundle to enter the lens.
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Fig. 7. (a) Tunable lens arrangement for on-axis optical simulation. (b) Reciprocal F#
versus ratio (γ or γ1) for all tunable lense cases and different γ2, all with Vp = −10V and
λ = 550nm.

Table 1. Table contains minimum F# at different geometrical parameter of PZT actuators at
Vp = −10V . The optimum cases for square and circular diaphragms are written in bold font.

Square diaphragm Circular diaphragm
Case I Case II Case III Case IV

γ2 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6
γ1 (γ) 0.57 0.5 0.45 0.39 0.35 0.54 0.49 0.44 0.39 0.34

F# 129 247 409 759 1800 136 210 343 622 1367

Figure 8 shows the achievable focusing range (∞ to 22.1 cm) and (∞ to 22.3 cm) with optimum
geometrical parameters for case I and case III, respectively, as the voltage is varied from 0 to
−10 V. However, case I achieves slightly lower F# and wider aperture. The voltage was limited
to −10V to comply with the assumptions that the deflection is mainly due to bending and that
nonlinear coupling is insignificant. The square diaphragm suffers from an RMS wavefront error
which depends linearly on the voltage. This linear dependency is due to having the displacement
profiles, by assumption, linearly dependent on voltage. As a consequence, so are the Zernike



coefficients. This causes the RMS wavefront error to be linearly dependent on the voltage.
However, the RMS wavefront error is still less than 0.0137 waves over the focusing range.

For the optimum of case I, the opening diameter is 1.71 mm and the wavefront error, as shown
in Fig. 8(b) is dominated by the Zernike-quadrafoil aberration Z4

4 and arises from clamping
the frame at the four corners. For the optimum of case III, the opening diameter is 1.62 mm,
which is less than for case I, and the wavefront error is negligible, as shown in Fig. 8(c), so that
it can be neglected. This nearly zero RMS wavefront error is due to having the lens sag, from
Eq. (16), as a symmetric circular paraboloid, which will be very similar to a sphere when the
exit pupil transverse dimension is much less than the reference sphere’s radius. It seems that
having a square diaphragm reduces the effect the clamped edges allowing larger displacement at
the diaphragm centre. This contributes to a relative enhancement in the focusing capability and
enables lower F# compared to the circular diaphragm. The introduced RMS wavefront error in
case I is very small compared to λ/14, as in Maréchal’s criterion [26] that judge the deviation
from diffraction-limited performance.
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Fig. 8. (a) Focal length f and RMS wavefront error versus applied voltage on the piezoelec-
tric stack with optimum geometrical values for tunable lens for square/circular diaphragm.
Wavefront map using exit pupil shape at Vp = −10V for (b) square and (c) circular di-
aphragm.

4.2. Tunable lens with a paraxial fixed lens

Figure 9(a) shows the tunable lens arrangement with an ideal fixed lens having F# = 2.8
positioned at the tunable lens’s exit aperture. This fixed lens was modeled using the paraxial
approximation (sin θ ≈ θ) so that it does not introduce aberrations of its own. Its entrance-
aperture dimension equals to the tunable lens’s opening diameter. This layout enable us to put
the object at different focus positions, based on the actuation voltage Vp and monitor MTF at
the image sensor. The sagittal MTF and tangential MTF are the same due to the symmetry of
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our cases. Figures 9(b) shows that the overall spatial cutoff frequency remains the same for
all voltages for both the circular and square diaphragm. Due to the tunable focus feature, the
capability of capturing details remains unchanged for any object distance from the combined
optical system of tunable lens and fixed lens. A closer look at the MTF passband shows that
MTFs for case I at (Vp < −4V ) drop a little from the diffraction-limit behavior due to the
wavefront error. However, the MTF for case III perfectly matches with the diffraction limited
MTF at different voltages due to the negligible wavefront error. In more realistic simulations, a
real fixed lens with its own aberrations will be placed after the tunable lens and the MTF will be
evaluated at different object distances.

Object 

CCD 
Paraxial 

Lens 

fparaxial Lens fTLens 

TLens 

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diff. limited MTF for Case III
MTF for Case III
MTF -1V
MTF -2V
MTF -4V
MTF -6V
MTF -8V
MTF -10V

(b) 
Spatial freq. [cycles/mm] 

Case I 

M
TF

 

149 149.2 149.4 149.6 149.8 150 150.2

0.694

0.695

0.696

0.697

0.698

0.699

0.7

0.701

Case I 

Case III 

Fig. 9. (a) Arrangement of tunable lens with a paraxial fixed lens and image sensor in Zemax
for on-axis optical simulation. Sagittal (tangential) MTF at image plane for tunable lens for
optimum cases I and III at different actuation voltage Vp.

5. Conclusion

The presented modeling framework effectively predicts the linear static opto-electromechanical
performance of different actuator configurations for piezoelectrically actuated tunable lenses
under the assumptions of classical laminated-plate theory, linear theory of piezoelectricity, quasi-
electrostatic condition, a thin film approximation and ray tracing. It provides a fast design tool
for complicated study cases that involve both square and circular symmetries. Its accuracy,
when compared to FEM, depends on the number and boundary of transitions between areas that
are covered by a piezoelectric film and those that aren’t. It is fast due to the simple proposed
numerical representation of variational integrals and the accurate analytic mapping equations
from Gegenbauer product polynomials to Zernike polynomials with no residues. The predicted
deflection from the electromechanical stage in our modelling framework can be used whenever
the relative error norm is less that 10%. The modeling framework can be utilized for the



optimization of different material choices and layers thicknesses to find the optimum ratio γ.
We found out that the circular actuator with a circular opening on the circular diaphragm

can achieve 5 diopters with a 10-V voltage source and has negligible RMS wavefront error
because of the symmetric paraboloid sag shape that is close to reference sphere at the image
plane. However, the square actuator with a circular opening on the square diaphragm reaches the
same 5 diopter with the same 10-V voltage source with a slightly wider aperture and has a RMS
wavefront error less than the Maréchal’s criterion. Their on-axis MTFs, in combination with a
paraxial lens, remain essentially diffraction-limited for different object distances through tuning
the actuation voltage. This effectively changes the overall focal length to focus at different object
planes while still having the same resolution.

6. Appendix

6.1. Materials

In the analyzed structures, we consider glass as the transparent layer and {100}-textured
PbZr0.53Ti0.47O3 thin film [23] as the piezoelectric material. The PZT stack is 2µm thick and
has a 100 nm bottom electrode from Pt {100} grown on 10 nm thick Ti/TiO2 adhesion layers.
Platinum electrodes and adhesion layers are neglected in calculations due to their small thick-
nesses compared to both glass and PZT layers. Material properties are listed in Table 2. The
circular-diaphragm diameter and the side length of the square diaphragm are both a = 3mm.

Table 2. Table contains values for PZT and glass material parameters.
PbZr0.53Ti0.47O3 thin film Glass

hp = 2µm hgl = 20µm
SE

11 SE
12 SE

13 SE
33 SE

44 E
13.8 pPa−1 -4.07 pPa−1 -5.8 pPa−1 17.1 pPa−1 48.2 pPa−1 44 GPa

SE
66 d31 d33 d15 εS33/ε0 ν

35.74 pPa−1 -116.8 pm/V 224.2 pm/V 330 pm/V 854.7 0.2

6.2. Effective parameters

Classical laminted plate theory assumes a plane stress condition (Szz = 0). Thus, an elimination
of stress component Tzz from the constitutive equations, results in effective material parameters

Qi j = Ci j , C11 =
sE11(

sE11 + sE12

) (
sE11 − sE12

) , C12 =
−sE12(

sE11 + sE12

) (
sE11 − sE12

) (18a)

C66 =
1

sE66

, e31 = e32 =
d31

sE11 + sE12

, εS33 = εS33 −
2d2

31

sE11 + sE12

(18b)

6.3. Closed form for integrals

To determine the integrals involving the Gegenbauer polynomials, we use the definition of the
polynomials and two recurrence identities [22]:
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G(α)
n (X ) =

bn/2c∑
k=0

(−1)kΓ(n − k + α)
Γ(α)k!(n − 2k)!

(2X )n−2k , (19)

(2α + i)G(α)
i

(X ) = (i + 1)XG(α)
i+1(X ) + 2α(1 − X2)G(α+1)

i
(X ), (20)

∂G(α)
i

(X )
∂X

= 2αG(α+1)
i−1 (X ). (21)

Based on these identities, the first and second derivatives of the weighted Gegenbauer polynomial
φi (X ) are

∂φi
∂X

= (1 − X2)
(α−5/2)

2

[
− (α + i − 1/2)XG(α)

i
(X ) + (2α + i − 1)G(α)

i−1(X )
]
, (22)

∂2φi

∂X2 = (1 − X2)( α−9/2)
2

[
(α + i − 1/2)

(
(α + i − 3/2)X2 − 1

)
G(α)

i
(X )

− (2α + i − 1)(2α + 2i − 4)XG(α)
i−1(X ) + (2α + i − 1)(2α + i − 2)G(α)

i−2

]
. (23)

The product of first derivatives can be written as

∂φi
∂X

∂φp

∂X
= (1 − X2)(α−5/2)

[
(α + i − 1/2)(α + p − 1/2)X2G(α)

i
(X )G(α)

p (X )

+ (2α + i − 1)(2α + p − 1)G(α)
i−1(X )G(α)

p−1(X ) − (α + i − 1/2)(2α + p − 1)XG(α)
i

G(α)
p−1

− (α + i − 1/2)(2α + i − 1)XG(α)
i−1G(α)

p

]
. (24)

Thus, in general the integrals will be on the form∫
(1 − 2X2 + X4)X βG(α)

i
(X )G(α)

p (X )dX = WTX (25)

where the k th elements for the m × 1 matrices W and X can be written

W(k ) (l , s) =
(−1)l+sΓ(i − l + α)Γ(p − s + α)

[Γ(α)]2l!(i − 2l)!s!(p − 2s)!
(2)η (26a)

X(k ) (l , s) = Xη+β+1
[ 1
η + β + 1

−
2X2

η + β + 3
+

X4

η + β + 5

]
(26b)

where

m = (bi/2c + 1)(bp/2c+1) , η = i + p − 2(l + s), (27)
l = 0, 1, ..., bi/2c , s = 0, 1, ..., bp/2c and k = 0, 1, ...,m. (28)

Futurework

We plan to include the nonlinear behavior in the variational formulation and study the tunable
lens performance in combination with a fixed lens made for a mobile phone.
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