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Abstract: The main goal of this study is to estimate the pullout forces by developing various modelling
technique like feedforward neural network (FFNN), radial basis functions neural networks (RBNN),
general regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS).
A hybrid learning algorithm, including a back-propagation and least square estimation, is utilized to
train ANFIS in MATLAB (software). Accordingly, 432 samples have been applied, through which
300 samples have been considered as training dataset with 132 ones for testing dataset. All results
have been analyzed by ANFIS, in which the reliability has been confirmed through the comparing
of the results. Consequently, regarding FFNN, RBNN, GRNN, and ANFIS, statistical indexes of
coefficient of determination (R2), variance account for (VAF) and root mean square error (RMSE) in
the values of (0.957, 0.968, 0.939, 0.902, 0.998), (95.677, 96.814, 93.884, 90.131, 97.442) and (2.176, 1.608,
3.001, 4.39, 0.058) have been achieved for training datasets and the values of (0.951, 0.913, 0.729, 0.685
and 0.995), (95.04, 91.13, 72.745, 66.228, 96.247) and (2.433, 4.032, 8.005, 10.188 and 1.252) are for testing
datasets indicating a satisfied reliability of ANFIS in estimating of pullout behavior of belled piles.

Keywords: machine learning; belled piles; pullout behavior

1. Introduction

Belled piles constructed from concrete and have been designed to raise the bearing capacity
of embedded piles. On the other hand, the base geometry is as inverted to the cone. Accordingly,
different computational models have been used to analyze the pile behavior in various independent
loadings, lateral loadings, vertical-uplift, and vertical compressive [1–5], besides, the forecasting of
the (1) bearing capacity of pile foundation [6,7]; (2) uplift capacity of suction caisson [8]; (3) pile
dynamic capacity [9,10]; (4) pile setup [11]; and (5) pile settlements [12] has defined artificial neural
network (ANN) to forecast the pullout capacity of suction foundations through the applying of a
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database, including the results of centrifuge tests. Moreover, Ardalan et al. [13] have investigated
GMDH (group method of data handling from neural networks’ family) with GA (genetic algorithms)
indicating the effectual cone point resistance and cone sleeve friction on the inputs values of pile unit
shaft resistance. Furthermore, Alavi et al. [14] have explained TGP (tree formed genetic programming),
LGP (linear-genetic programming) and GEP (gene expression programming) to surpass the prediction
equation formula of the pullout capacity of suction caissons utilizing dataset according to literature.
ANFIS in geotechnical engineering is well explained by Cabalar et al. [15]. Yilmaz et al. [16] have
studied artificial neural networks (ANNs) and ANFIS to predict the permeability of coarse-grained
soils. Cheng et al. [17] have used RBF (radial basis function) neural network hybrid inference model
(IFRIM), artificial bee colony (ABC), and fuzzy logic (FL) to forecast the suction caissons’ pullout
capacity. Wu et al. [18] have defined an analysis method in a single axially loaded bored pile through the
conduction of a nonlinear soft method resulting that the skin friction’s soft features in the bored pile have
not been appropriately simulated when the pile has been adjusted to small loads. Thomas et al. [19]
have developed an innovative model as randomized ANFIS to forecast the ground motion’s parameters
associated with seismic signals. Ganjidoost et al. [20] have used ANFIS and Genetic Algorithms (GAs)
(joint applying) to forecast the soil permeability coefficient. The potential of ANFIS to say resilient
modulus of flexible pavements subgrade soils has also been investigated by Sadrossadat et al. [21].
On the other hand, Shi et al. [22] has presented a few field tests on bearing capacity of enlarged base
piles, besides the verifying of the primary majors affecting the load and deformation behaviors of
enlarged piles, such as installing method, main size of piles and hydro-geologic case resulting that
the belled piles in length (5 m and 15 m) are grouped as the end bearing piles, due to the lack of skin
friction design in a pile bearing capacity.

Chae et al. [23] have studied the pullout resistance of belled pile located in weathered sandstones
of Persian Gulf, including few full-scale pullout loading experiments on piles’ belled tension located
in Abu Dhabi. The comparison of 3D finite element (FE) results and theoretical models, the later has
overestimated the final pullout resisting of the belled pile without the bell-shaped consideration [23].
Xu and Hou [24] have investigated the belled large-diameter PHC pipe’s behavior resulting that the
ultimate bearing resistance of that pipe is superior to the regular bored pile. Zhu et al. [25] have
investigated the uplift resistance of a new type umbrella-shaped ground anchor in clay along with
the tests (field and laboratory uplift tests) and numerical perspective. Therefore, the outcome has
revealed that conventional anchors have lower uplift capacity than the new type of umbrella-shaped
anchor. The anchor embedment depth and diameter have influenced the anchors uplift resistance.
An elastic-plastic computing solution for the pullout of the belled pile has been performed by Yao
and Chen [26]. Qian et al. [27] were examined the behavior of 15 belled shafts for many collapsible
losses used into loess soils, in an arid environment, and 18 tensile uplifts straight side. The considered
environments for these tests were documented. After that, belled shafts into the loess and tensile
uplift straight-sided were suggested to modify regarding the capacity and also displacement. Scholars
developed diverse methods for predicting the pile’s pullout capacity like ABC algorithm, RBF (IFRIM),
and FL recently [28,29], but there are not uniform and also reliable results (under different conditions)
that making uncertainty in predicting the pullout capacity. In addition, there is not a proper analysis
according to an extensive number of experimental laboratory schedule. It should be noted that only
a few pieces of research are performed in belled piles, because of problems existing in large-scale
laboratory data collection and full scale.

Through the use of ANFIS, this study has performed a reliable prediction in the belled pile’s pullout
capacity of embedded in coarse-grained soil. Therefore, the angle of enlarged base, base diameter,
embedment ratio, and shaft diameter have been taken as input, while the belled pile’s pullout capacity
is output. This article consists of: (i) The introduction providing the literature with the significance
of the study; (ii) methodology that explains four of the proposed machine learning-based solutions;
(iii) data collection and model evaluation that defined the training and testing datasets subjected to
various machine learning methods. The model evaluation section also exhibits the obtained results and
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provide an initial comparison between the predicted outputs from each of the four proposed techniques;
and finally (iv) network performance of the fuzzy system (i.e., selected as the best machine learning
solution for this study) provided the comparison charts of the actual and ANFIS-based predicted Pu.

2. Methodology

2.1. Machine Learning Techniques

Several machine learning techniques have been used to forecast the final pullout capacity of the
under-reamed piles placed in dense and loose coarse-grained soil.

2.1.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy inference system is to say any real continuous function in a complex set by using ANNs [30]
in which the input has been planned to the input membership parameters mapped out to a set of fuzzy
if-then rule mapped out to output parameters planed to the output membership functions that are
mapped out to a single output. Regarding Fuzzy inference system (FIS) with one output (f ) and inputs
(x, y), an individual fuzzy if-then rule in the case of the first-order Sugeno model (Figure 1a,b) is:

Rule 1: If x is A1 and y is B1,
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pi, qi and ri (i = 1,2) are the output linear factors (consequent parameters). ANFIS with five layers
has been explained as follows (Figure 1b):
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Layer 1: All adaptive nodes of the layer has included one node as Equations (1) and (2):

O1,i = µAi(x), i = 1, 2, (1)

O1,i = µBi−2(y), i = 3, 4, (2)

i stands for the membership grade for a set of fuzzy (A1, A2, B1, B2).
O1,i shows the node output i in layer 1.
Gaussian function as a common membership function in Equation (3):

µA(x) = exp

− (x− c)2

2σ2

. (3)

In Equation (6), c and σ are the premise parameters.
Layer 2: The certain nodes of the layer multiply all input signals representing the firing intensity

of order as Equation (4):
O2,i = wi = µAi(x)µBi(y), i = 1, 2. (4)

Layer 3: In the layer, the fixed nodes has computed the ratio of i-th rule’s firing strength for the
summation of whole rule’s firing strengths called the normalized firing strength as Equation (5):

O3,i = wi =
wi

w1 + w2
, i = 1, 2 (5)

Layer 4: The adaptive nodes have the node functions as Equation (6):

O4,i = wi fi = wi(pix + qiy + ri), i = 1, 2. (6)

wi shows a normalized firing strength of layer 3.{
pi, qi, ri

}
stand consequent parameters.

Layer 5: One fixed node of the layer labelled
∑

, whole computing output as the summation of all
incoming signals as Equation (7):

O5,i =
∑

i

wi fi =

∑
i wi fi∑
i wi

, i = 1, 2. (7)

ANFIS has included two parameter sets as (1) adaptive and (2) consequent defined by using a
two-step process as a hybrid algorithm. While the former (adaptive) is used to be constant, the later
(consequent) is computed by the least-squares method called forward pass. In the backward pass
(second process), the ultimate factors are constant, while the adaptive is gained by gradient descends
method. On obtaining the model parameters, output values are computed for all order-paired of
training data, then compared to the model’s anticipated values (see more in seeing Jang and Sun [30]
and Cabalar et al. [15]). In the case of the appropriate performance of the model, the gap between the
predicted and observed data has gained the lowest error ratio. Meanwhile, in this paper, ANFIS has
been applied to forecast ultimate under-reamed piles’ pullout capacity embedded in dense and loose
coarse-grained soil, so the input parameters have been obtained as; (1) base diameter (Db), (2) angle of
enlarged base (α), (3) shaft diameter (Ds), (4) embedment ratio (L/Db) and (5) ultimate pullout load (Pu)
(output parameter). ANFIS data set (Table 1) has been divided into two datasets as (1) training and (2)
testing, in which MATLAB 7.0.4 has been applied to train ANFIS indicating the characteristic of the
most appropriate obtained ANFIS model (Figure 2).



Sensors 2019, 19, 3678 5 of 25

Table 1. The details of the ANFIS method.

Type Sugeno

Inputs/outputs 1/4
No. of input membership functions 67 for each input
No. of output membership functions 67
Input membership function type Gaussian
Output membership function type linear
No. of fuzzy rules 67
No. of nonlinear parameters 1336
No. of linear parameters 402
No. of epochs 250
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2.1.2. Feedforward Neural Network (FFNN)

FFNN, as a simple structure, has been applied for (1) modelling many non-linear
phenomena [31–33] (2) forecasting results for complex systems comprising (a) one layer of input, (b) one
output layer, and (c) one or more hidden layer(s). The input consists of pre-mapped in the layer of input
prior to enter the hidden layer, accordingly. In hidden layers and also output layer, the information
multiplied with a weight matrix that is joined to a bias vector and transferred, so add block (+) has
represented a plain operator of vector summation; On the other hand, for hidden layers, the transfer
functions are any tangent sigmoid-like logarithm sigmoid. Figure 3 has shown a single-layer FFNN.
The transfer function of the hidden layer (f1), as well as the output layer (f2), has been regarded to be
pure linear (purelin) and tangent sigmoid (tansig). While the purely function of variable x has returned
the identical value of x, the function of tansig for x has returned an amount of (−1 and 1) as Formulas (8)
and (9):

purelin(x) = x, (8)

tansig(x) =
2

1 + e−2x − 1. (9)
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2.1.3. Radial Basis Function Based Neural Network (RBNN)

Broomhead and Lowe [34] have suggested the RBNN for the neural network. Figure 4 shows the
RBNN layers. As seen, there are two different layers, which output nodes make a linear set of the basis
functions. When the input added into a small localized area of the input space, these functions that are
in the hidden layer generate a considerable non-zero response to the only input stimulus. In Ref. [35],
this approach has been introduced as a localized, acceptable field network [35]. Figure 2 shows the
relation between input and output. As seen, in empirical modelling, the input transformation is
necessary for fighting the curse of dimensionality. With a radial constant shape basis function, the input
transformation type of the RBNN is the local nonlinear paradigm. The radial base functions have an
effective role as regressors, since squashing the multi-dimensional input without applying any the
output space, nonlinearly. After a linear regressor is considered in the output layer, the adjustable
factor is the regressor weight. By utilizing the linear least square method, these factors can be easily
determined. Moreover, it suggests a proper advantage in the case of convergence. We have described
an algorithm of the RBNN and the basic concept as follows:

We have introduced a nonlinear function h(x,t) (x stand for the input variable, and also t shows its
center) that is named a radial basis function. It is based on the radial distance r = ‖ x− t ‖. N is real
numbers

{
yi ∈ R

∣∣∣i = 1, 2, 3, . . . , N
}
, and N stands for different points {xi ∈ Rn

|i = 1, 2, 3, . . . , N}, we
can obtain the function (f ) from Rn to R satisfying the interpolation states: f (xi) = yi, i = 1, 2, 3, . . . , N.
The approach of RBNN includes in selecting the function a linear space of dimension N that is based
on the data points {xi}. This space was selected as a set of functions.{

h(‖ x− xi ‖)
∣∣∣i = 1, 2, 3, . . . , N

}
. (10)

‖ shows the Euclidean norm of Rn. Hence, the solution of the interpolation issue may be obtained
as the below form:

f (x) =
N∑

i = 1

cih(‖ x− xi ‖). (11)
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One can obtain the unknown parameters (ci) setting the interpolation states
f (x) = yi, (i = 1, 2, 3, . . . , N) on Equation (12). It can yield the linear system.

f (x) =
∑N

i = 1
cih

(
‖ x j − xi ‖

)
, j = 1, 2, 3, . . . , N. (12)

The coefficients ci can be determined by c = H−1y and considering the vectors y, c and the
symmetric matrix H as (y) j − y j, (c)i − ci, and

(
Hi j

)
− h

(
‖ x j − xi ‖

)
. Therefore, the RBNN is a particular

case of a linear regression approach. The RBNN approach carries out linear regulation of the weights
in the case of radial bases and does not do factor learning as in the back-propagation networks.
This specific of the RBNN provides the benefit of a quick converging time without local minima. In the
present work, we have exanimated many numbers of hidden layer neurons. After that spread constants
were tested for the models of RBNN with a plain trial and error approach may add some loops in the
program codes.
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Figure 4. The schematic view of the radial basis functions neural networks (RBNN) structure.

In general, similar to the FFNN, RBNN technique is a single layer (as shown in Figure 4) indicating
the input and output of the network, meanwhile, in the hidden layer, a radial basis (radbas) features
has been used (instead of a sigmoid function) adding that radial basis was a transferring action taking
x variance and providing the value of (0–1) as formulating in Equation (13):

radbas(x) = exp
(
−x2

)
. (13)

Additionally, in the hidden layer, an element - element vector operator has been applied instead
of a vector adding (+) operator known as dot product operator (*) containing many neurons, due to
their simple designing and training. In the availability of the large quantity of training data, RBNN is
preferable. Moreover, RBNN has been conducted through the neurons addition. Because quantity
equality exists among the neurons along with the vectors of input data.
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2.1.4. Generalized Regression Neural Networks (GRNN)

Figure 5 shows a GRNN schematic. In the Ref. [20] the theory of the GRNN has been introduced
and stated that GRNN has four layers: Summation, input, layers of output, and pattern. In the first
layer, the total number of factors are identical to the number of input units. In addition, this layer is
connected to the pattern layer that is known as the second layer. In this layer, each unit indicates a
training pattern, and also its output can be a measure of the distance of input from the stored patterns.
In the layer of summation, each unit of pattern layer has been connected to the two neurons as follows:
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S-summation neuron as well as D-summation neuron.
D-summation neuron computes the unweighted outputs in the case of the pattern neurons.

In addition, the S-summation neuron also calculates the weighted outputs summations of the pattern
layer. In the layer of pattern, we can show the connection of weight among the ith neuron and the
S-summation neuron by yi and unity is the connection weight in the case of D-summation neuron.
The layer in output distributes the output of each S-summation neuron, merely, using that of each
neuron in D-summation, leading the estimated value to an undetermined input vector x as

yi(x) =
∑n

i = 1 yiExp[−D(x−xi]∑n
i = 1 Exp[−D(x−xi]

. (14)

n indicates the number of training patterns, and the Gaussian D function in Equation (15) is
defined as

D(x, xi) =
∑p

j = 1

(x j − xi j

ζ

)2

. (15)

p stands for the number of parameters in a vector of input. The x j and xi j show the jth element of x
and xi, respectively. The ζ relates to the spread factor, which the optimized value can be experimentally
determined [36]. In this way, a large spread relates to a function of smooth approximation. Too large a
spread is defined many neurons that need to appropriate a fast-changing function. Moreover, it also
causes the network to malfunction. In the present work, various spreads have been exanimated
for discovering the best value in the case of the given issue. Noted that, as for the method of
backpropagation, GRNN does not require an iterative training trend [37].
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2.2. Data Collection

In the current study, few data sets defined by Nazir et al. [38] have been used based on a series of
small scale laboratory tests. Considering material parameters used in ANFIS and laboratory work,
the input parameters have included (1) enlarged base angle (α) of 30, 45, and 60 degree, (2) shaft
diameter (Ds) of 30, 40, and 50 mm, (3) base diameter (Db) of 75, 100, 125, and 150 mm, and four
embedment ratio (L/Db) of 1, 2, 3, 4, and 5, while the output parameter is pullout load (Pu) (Figure 6).
The uplift resistance (i.e., obtained from a series of experimental work) collected from a laboratory
works presented by Nazir et al. [38] is shown (Table 2). Figure 7 shows the graphical database utilized
that means training and testing).
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Table 2. Physical amounts of the uplift resistance within artificial neural network (ANN) and
laboratory work.

Material Parameters Values Symbol Units

Soil

Dry unit weight 14.7, 18.0 γd kN/m3

Relative density Dense—85% Id %Loose—35%

Pile

Shaft diameter 30-40-50 Ds mm
Base diameter 75-100-125-125 Db mm

Base angle 30-45-60 α º
Embedment ratio 0-1-2-3-4-5 L/Db –
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3. Results and Discussion

3.1. Model Evaluation

Considering the results of pullout behavior forecasting of belled piles, R2, RMSE and variance
account for (VAF) have been used providing the equations as follows:

R2 = 1−

∑N
i = 1(y− y′)2∑N
i = 1

(
y−

∼
y
)2 , (16)

VAF = [1−
var(y− y′)

var(y)
] × 100, (17)

RMSE =

√
1
N

∑N

i = 1
(y− y′)2. (18)

y and y′ as forecasted and measured variances.
∼
y as the mean of y and N as whole data.
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The method has been performed superlatively if R2 = 1, VAF = 100 and RMSE = 0. Comparing
the aforementioned methods (ANFIS, FFNN, RBNN, and GRNN) with the results achieved by ANFIS
have indicated a close performance to one another (Table 3) (see Wang [39]). In order to distinguish a
supreme model, one ranking technique proposed by Zorlu et al. [40] (also well discussed in Moayedi
and Hayati [41], Moayedi et al. [42] and Moayedi and Rezaei [43]) has been applied in which each
performance index (VAF, RMSE, or R2) has been ordered in their level, so the most significant function
index has shown the highest rating [44].

Table 3. Comparing various neural network models and results in pullout capacity forecasting of the
enlarged base pile.

Technique

Network Result Ranking

Total RankTR TR TR TR

R2 VAF RMSE R2 VAF RMSE R2 VAF RMSE R2 VAF RMSE

FFNN 0.957 95.677 2.176 0.951 95.040 2.433 2 2 2 3 3 3 15
RBNN 0.968 96.814 1.608 0.913 91.130 4.032 3 3 3 2 2 2 15
GRNN 0.939 93.884 3.001 0.729 72.745 8.005 1 1 1 1 1 1 6
ANFIS 0.998 97.442 0.058 0.995 96.247 1.252 4 4 4 4 4 4 24

3.2. Performance of the Selected Model

To verify ANFIS performance, the forecasting results have been compared to the laboratory test
results. Provided data points was included of 432 samples, while 300 belonged to training dataset
and 132 belonged to testing dataset (Figure 8). Accordingly, the estimated values using ANFIS is
near the measured outcomes proving ANFIS as a precise and valid prediction model for ultimate
upload resistance in a belled pile. The variation of the pullout capacity (Pu) of the single belled pile
has been presented in Figures 9–14. The predicted values of Pu obtained by ANFIS for different Ds,
Db, and L/Db have been compared to measure Pu within the data set provides the results of Pu for
the belled pile embedded in dense sand (Figures 9–11) and loose sand (Figures 12–14). When the
test results are shown with a continuous line, ANFIS results are dashed. The pullout capacity tests
have been performed in various terms, as defined in Table 1. Pu of the belled pile has been inclined
to compare to the normal system of the simply bored pile. Considering ANFIS and LAB results, the
pullout capacity in piles embedded in dense sand is higher than belled piles in loose sand, say in dense
and loose sand, Pu for a particular embedment ratio L/Db = 1, 2, 3, 4, 5; Ds = 30 mm, α = 30◦, and for
Db of 150 mm are 0.03, 0.18, 0.66, 1.83, 3.40, 5.02 kN, and 0.03, 0.14, 0.34, 0.86, 1.75, 2.70 kN (refer to
Figure 9a, Figure 10a, and Figure 11a). The pullout capacity has been raised on soil density increment,
base diameter enlargement, embedding ratio and slightly decline with the shaft diameter confirmed by
the value of Pu obtained from ANFIS. For example, to control the influence of the bell’s diameter on the
pullout behavior of belled pile from the proposed model, the pullout pile load in dense soil condition
are 0.79, 1.76, 3.09, and 4.60 kN when for the loose sand with a similar test condition, Pu is 0.34, 0.82,
1.48, and 2.69 kN. (test condition of L/Db = 5, Ds = 40 mm, and Db = 75, 100, 125, and 150 mm).
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Figure 8. ANFIS training and testing results for Pult. (a) the training data, (b) the testing data.

Bell-shape in belled pile (loose sand) has insignificantly affected comparing dense soil, so the
findings of the current study have confirmed the influence of the pile geometry; On the other hand,
likewise the estimated results of ANFIS, the experimental output has obviously proved the results (i.e.,
the influence of the bells angle) because Pult in belled pile is α = 30, 45, and 60◦, L/Db of 5; Ds = 40 mm;
Db = 125 mm, for loose sand test as 1.46, 1.48, 1.35 kN, and for dense soil test as 3.55, 3.02, 3.25 kN
(Figures 9b, 10b, 11b, 12b, 13b and 14b). Testing the pile in different embedment ratio has determined
the effect of penetration depth across the pile installation. The pullout load capacity increment in a
belled pile (loose and dense sand) with the embedment ratio raising (from 1 to 5) have confirmed the
effect of penetration depth across the pile installation observed in ANFIS and measured results.
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Figure 9. Pu for various Ds, Db, and L/Db in laboratory model and predicted from ANFIS when α = 30◦

in dense sand.
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Figure 10. Pu for various Ds, Db, and L/Db in laboratory model and predicted from ANFIS when α = 45◦

in dense sand.
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Figure 11. Pu for various Ds, Db, and L/Db in laboratory model and predicted from ANFIS when α = 60◦

in dense sand.
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Figure 12. Pu for various Ds, Db, and L/Db in laboratory model and predicted from ANFIS when α = 30◦

in loose sand.
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The results of measured data compared to ANFIS prediction results in loose and dense sand
have comprised the pullout load (Pu) for predicted and measured method according to the key inputs’
variation like bell’s angle, enlarged base diameter (Db), and shaft diameter (Ds) along the various
embedment ratio (L/Db)( Figures 15 and 16). As a comparison between the experimental and ANFIS
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output data in both sand types, the results have followed various diameters (Db of 75 mm, 100 mm,
125 mm, and 150 mm) for dense sand (Figure 15) and loose sand (Figure 16). A plain regression on the
measured and predicted output for two sand types had presented R-square = 0.98 indicating ANFIS
accuracy, reliability and flexibility with minimum error in the complex phenomenon and adequate
correlation to the experimental data (Figure 17).Sensors 2019, 19, x FOR PEER REVIEW 22 of 28 
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Figure 17. The results of Pult obtained from ANFIS prediction model and measured from the laboratory;
(a) dense sand, (b) loose sand.

4. Conclusions

In this paper, several machine learning techniques have been studies to model and predict the
influence of the angle of enlarged base, shaft diameter, and base diameter, as well as embedment
ratio on the ultimate pullout capacity in under-reamed single concrete piles proving the flexibility,
reliability, fast operation and accuracy of these techniques. Likewise, the laboratory data, the predicted
pullout capacity from machine learning-based methods have mainly depended on shaft diameter
(Ds), enlarged base diameter (Db), density condition (i.e., a geological ground condition such the soil
density), and penetration depth (or embedment ration, L/Db). Considering the experimental and
ANN-based data, it can be seen that the influence of the penetration depth across the pile installation is
stronger than other factors. Consequently, based on this study, in a comparison of ANFIS to FFNN,
RBNN, and GRNN (i.e., 24, 15, 15, and 6), ANFIS with the total ranking value of 24 has gained the
highest rank among the machine learning techniques.
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