
 International Journal of

Geo-Information

Article

The Feasibility of Three Prediction Techniques of the
Artificial Neural Network, Adaptive Neuro-Fuzzy
Inference System, and Hybrid Particle Swarm
Optimization for Assessing the Safety Factor of
Cohesive Slopes

Hossein Moayedi 1,2 , Dieu Tien Bui 3,4,* , Mesut Gör 5 , Biswajeet Pradhan 6,7

and Abolfazl Jaafari 8

1 Department for Management of Science and Technology Development, Ton Duc Thang University,
Ho Chi Minh City, Vietnam; hossein.moayedi@tdtu.edu.vn

2 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
4 Geographic Information System Group, Department of Business and IT, University of South-Eastern Norway,

N-3800 Bø i Telemark, Norway
5 Department of Civil Engineering, Division of Geotechnical Engineering, Firat University,

23119 Elâzığ, Turkey
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Abstract: In this paper, a neuro particle-based optimization of the artificial neural network (ANN)
is investigated for slope stability calculation. The results are also compared to another artificial
intelligence technique of a conventional ANN and adaptive neuro-fuzzy inference system (ANFIS)
training solutions. The database used with 504 training datasets (e.g., a range of 80%) and testing
dataset consists of 126 items (e.g., 20% of the whole dataset). Moreover, variables of the ANN
method (for example, nodes number for each hidden layer) and the algorithm of PSO-like swarm
size and inertia weight are improved by utilizing a total of 28 (i.e., for the PSO-ANN) trial and error
approaches. The key properties were fed as input, which were utilized via the analysis of OptumG2
finite element modelling (FEM), containing undrained cohesion stability of the baseline soil (Cu),
angle of the original slope (β), and setback distance ratio (b/B) where the target is selected factor of
safety. The estimated data for datasets of ANN, ANFIS, and PSO-ANN models were examined based
on three determined statistical indexes. Namely, root mean square error (RMSE) and the coefficient of
determination (R2). After accomplishing the analysis of sensitivity, considering 72 trials and errors of
the neurons number, the optimized architecture of 4 × 6 × 1 was determined to the structure of the
ANN model. As an outcome, the employed methods presented excellent efficiency, but based on
the ranking method, the PSO-ANN approach might have slightly better efficiency in comparison to
the algorithms of ANN and ANFIS. According to statistics, for the proper structure of PSO-ANN,
the indexes of R2 and RMSE values of 0.9996, and 0.0123, as well as 0.9994 and 0.0157, were calculated
for the training and testing networks. Nevertheless, having the ANN model with six neurons for
each hidden layer was formulized for further practical use. This study demonstrates the efficiency
of the proposed neuro model of PSO-ANN in estimating the factor of safety compared to other
conventional techniques.
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1. Introduction

In most engineering problems such as stability of slopes, many parameters need to be taken
into account (e.g., soil stiffness, soil-interface interaction parameters, etc.) [1–3]. Most conventional
approaches are very complicated, an in most cases, not considered reliable solutions (e.g., consisting
nonlinear finite element model or finite difference method analysis consideration). In fact, in most
cases, traditional solutions require heavy experimental equipment too. Up to now, the developed
solutions explained how a particular slope (for example height, slope angle, soil characteristics, and so
on) affects the above infrastructures but did not present a general solution in the case of other slope
conditions. In this regard, the applied stresses on the slope, along with its distance from the crest of
slope, are known as an essential factor that affects the stability of the slope [4–6]. The slope stability
(e.g., subjected to vertical stresses or seismic loading) is demonstrated as a function of different key
parameters that are called initial ground properties (e.g., soil elastic modulus (E), internal friction angle
(ϕ) which for the cohesive slope is equal to zero, unit weight (γ), undrained cohesion strength (Cu)
which for the sandy slope is considered to zero, Poisson’s ratio (v)).

Particle swarm algorithm (PSO) provides an excellent population-based stochastic model (for
example, start with specified population size), which may be utilized to set the biases and weights of an
artificial neural network (ANN) to optimize its network efficiency. Several works like Nguyen et al. [7],
Moayedi et al. [8], and Moayedi et al. [9] used hybrid PSO-ANN predictive approaches for dissolving
complex engineering issues. However, none of them provided a proper structure for the problem of
slope stability failure. Li and Wang [10] investigated the prediction of steel plate temperature using the
PSO-ANN algorithm. The result revealed that the new PSO-ANN model estimated predicated speed,
plate temperature, and precision of control with reasonable accuracy. Song et al. [11] used PSO-ANN
successfully to find rock parameter identification surrounding tunnels. Alnaqi et al. [12] explored
the possibility of the PSO-ANN model in order to estimate structure federate photovoltaic/thermal
method via ANN, and also hybrid PSO models. The outputs of this work indicate that the method of
PSO-ANN is capable of predicting efficient energy of the structure integrated photovoltaic/thermal
apparatus with higher precision than the traditional ANN method. Moayedi et al. [9] assessed the
feasibility of the surficial settlement prediction using the PSO-ANN model. The obtained results from
their investigation proved that the combination of PSO-ANN could enhance the prediction reliability,
since a higher degree of agreement was obtained in comparison with the conventional ANN techniques.
Moayedi and Hayati [13] emphasized that the PSO-ANN model may be used to estimate the final
bearing capacity concerning rock-socketed piles. Therefore, a database including 132 piles was collated
from the project of Klang Valley Mass Rapid Transit, Malaysia. However, it has been recommended
that the new PSO-ANN model should be used in the preliminary stages of pile design.

In general, understanding the factor of safety of homogeneous undrained slope is the main
parameter in scheme most civil engineering planes, as the stability of these slopes directly impacts
both short as well as high-rise structures. Various factors like soil properties of elements are used
in the structure, foundation flexibility, soil condition, geological condition, and type of the soil
(e.g., cohesionless or cohesive, or both as different soil layers) influence horizontal displacement of
every node and result in changing the initial slope geometry. Moayedi et al. [14], Raftari et al. [15],
and Jiao et al. [16] investigated and suggested formulas to calculate a reliable estimation of the factor
of safety of slopes. However, in real-world examples, all of these rules are not sufficiently accurate
because they did not take the most influential input layers into account. Recently, ANN-based solutions
are vastly proposed for supporting the prediction of a factor of safety of homogeneous undrained
slope (e.g., Pourghasemi et al. [17], Moayedi and Armaghani [18], and Moayedi et al. [19]). In this
study, to predict the minimum factor of safety subjected to an external vertical stress (e.g., high-rise
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building next to the slope crest), 48 distinct ANN approaches (6 iterations along with 10 distinct
number of neurons) and also 29 hybrid PSO-ANN algorithms (for example, PSO helping the ANN to
predict better results) are provided. While the constructed models are evaluated, their main factors
such as a number of swarm sizes, acceleration coefficients, and inertia weight of the models are
optimized by taking advantage of a set of trial and error prediction approaches. The introduced hybrid
PSO-ANN approaches that are introduced in this paper are not widely utilized in civil engineering
usages. Reviewing the literature, there is almost no work that has assessed the utilization of the hybrid
neuro particle-based optimization of artificial neural network (PSO-ANN)-based learning approaches
to predict the factor of safety after the slope is subjected to heavy vertical stress from structures near
the slope’s crest. Therefore, in this research, the basic objective was to investigate the possibility of
an optimal hybrid ANN method, along with algorithms of PSO for estimating a parameter of the
safety of cohesive slopes contained to external forces. Note that the results of this assessment are
provided as a chain of design solution charts that may simply be utilized as a fast solution for practical
engineering proposes.

2. Data Collection and Methodology

2.1. Data Collection

To calculate the factor of safety of the slopes (i.e., that is subjected to the vertical stresses exerted
from a shallow footing), a total of 630 plane strain finite element limit equilibrium analysis (FELE) were
simulated on a pure cohesive slope (e.g., having a strip footing on top with model width equal to 1.0 m)
(as shown in Figure 1) were conducted. To analyze the slopes, an individual layer of cohesive soil
(with a change in cohesion strength) was utilized. As to make the problem more applicable, a particular
shallow footing type was considered on the slope crest. A commercial FELE-based software called
OptumG2 was used to calculate the effects of subjected stresses on the slope, along with other practical
factors which generally impact the slope stability. OptumG2 was selected since it is a user-friendly and
intuitive geotechnical finite element modelling (FEM) software [20]. The influential factors and an
instance of result from OptumG2 were demonstrated in Figure 2 graphically. Note that as the footing
properties and slope height were not varied through the input database, they were not considered as
influential parameters. Therefore, footing flexibility and its material properties were not considered as
part of the database used in this study.
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Figure 1. A schematic view of the data collection and analysis procedure used in this study (single 
cohesive slope). 
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Figure 1. A schematic view of the data collection and analysis procedure used in this study (single
cohesive slope).
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Figure 2. Graphical figure of the input information range against the numbers of data for (a) Cu, (b) 
angle of the slope from the baseline, β, (c) Setback ratio (b/B), and (d) vertical stress on top of the slope. 
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specific training database, were investigated by Ahmadi et al. [25], Wang [26], Gao et al. [27], and 
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according to the dataset, applied for training [29]. The suggested networks approximate the values 
for unknown results. It is important to note that the primary concern in these works is how they can 
estimate the unknown outcomes, which may call it an aim that requires to be obtained using the 
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Figure 2. Graphical figure of the input information range against the numbers of data for (a) Cu,
(b) angle of the slope from the baseline, β, (c) Setback ratio (b/B), and (d) vertical stress on top of
the slope.

2.2. Methodology

2.2.1. Artificial intelligence Implementation

Artificial neural network (ANN): The algorithm of ANN was firstly developed by McCulloch
and Pitts [21]. However, Hebb [22] was the first person who proposed this approach. Generally,
there are various rules in the case of the ANN model that are provided based on observations
as well as the hypothesis of neuro-physiologic nature. The expansion of complex, non-linear,
and also pure mathematical-based solutions have been widely investigated according to the biologic
neuron. These works have provided various optimal network learning methods (for example,
Moayedi et al. [19], Gao et al. [23], and Gao et al. [24]). The ANN learning approaches, utilized to
find the links in a specific training database, were investigated by Ahmadi et al. [25], Wang [26],
Gao et al. [27], and Gao et al. [28]). The ANN in a network can estimate results according to a
training approach that is, according to the dataset, applied for training [29]. The suggested networks
approximate the values for unknown results. It is important to note that the primary concern in these
works is how they can estimate the unknown outcomes, which may call it an aim that requires to
be obtained using the trained network. To assess the method verification (for example, comparison
among the favorite target, as well as the output of output network), calculation method of the error
was assumed according to a comparison among the predicted result and exact data. An example of the
proposed 4 (input) × 3 (nodes in the first hidden layer) × 1 (output) neural network structure (e.g.,
the example) is shown in Figure 3.

Particle swarm optimization (PSO): The particle swarm optimization approach that facilities
the ANN to provide a more trustworthy outcome was considered by Huang and Dun [30]. Figure 4
presents the details about an algorithm of PSO. These investigations were studied concerning the major
effective factors in the algorithm of PSO. They showed that the four major parameters in the algorithm
of PSO were: (a) Population number, (b) private learning factor (which is denoted with C1 and the key
learning coefficient determined by C2), and (c) inertial weight (Iw). Note that the PSO-ANN method is
well described in other investigations like Alsarraf et al. [31] and Moayedi et al. [32]. The PSO-ANN
method begins with installing the initialization particle set and keeps selecting the particles with
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new adjustment of a location to each particle (for instance, providing an initial bias and also weight).
The Pseudo-Code for the PSO algorithm is presented in Figure 5.
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Adaptive neuro-fuzzy inference system (ANFIS): ANFIS is a hybrid ANN, along with a fuzzy
inference system (FIS), that has the benefits of both approaches [34,35]. In the structure of the ANFIS,
ANN adapts fuzzy orders from among input information, and the factors of fuzzy membership functions
have sets pending the abovementioned process. This hybrid approach may create a relationship among
inputs and outputs according to human knowledge by considering input information and output data,
along with utilizing a hybrid learning approach. ANFIS has been known as a multi-layer feedforward
network that is combined of five classes. In ANFIS, each class algorithm structure includes various
nodes, demonstrated using the function of the node. The learning approach of ANFIS is properly
investigated in the studies performed by Jang [36] and Thomas et al. [37]. Figure 6 shows the structure
of ANFIS, as well as its learning approach.
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2.2.2. Model Development for Estimation of a Factor of Safety

An appropriate estimation approximation, which is implemented by the models of the hybrid
technique of PSO-ANN, needs to be evaluated from various stages like: (a) normalization or data
pre-processing, as well as information processing; (b) choosing a proper hybrid approach; and eventually,
(c) discovering a proper hybrid construction to expand the model. An appropriate hybrid structure can
be obtained through a set of trial and error methods using major varying factors of the hybrid model.
The utilized database is made by four main inputs that are the three effective factors. The database
includes undrained cohesion stability of the baseline soil (Cu), angle of the original slope (β), applied
surcharge (w), and setback distance ratio (b/B) where the target is selected factor of safety. Table 1
shows the abovementioned data as an example. Note that these values are derived from the OptumG2
simulation and, as illustrated, the four effective parameters.
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Table 1. Databases includes input layers and output used for the trained network.

Model Number
Inputs Output

Model Number
Inputs Output

Cu (kN/m2) β (◦) b/B (-) W (kN/m2) Safety Factor Cu (kN/m2) β (◦) b/B (-) W (kN/m2) Safety Factor

1 25 15 0 50 1.872 570 400 30 3 150 14.06
2 25 15 0 100 1.196 571 400 30 4 50 23.24
3 25 15 0 150 0.8154 572 400 30 4 100 19.63
4 25 15 1 50 1.852 573 400 30 4 150 14.11
5 25 15 1 100 1.324 574 400 30 5 50 22.82
6 25 15 1 150 0.8981 575 400 30 5 100 19.63
7 25 15 2 50 1.834 576 400 30 5 150 14.07
8 25 15 2 100 1.354 577 400 45 0 50 22
9 25 15 2 150 0.9133 578 400 45 0 100 13.76
10 25 15 3 50 1.824 579 400 45 0 150 9.387
11 25 15 3 100 1.356 580 400 45 1 50 21.32
12 25 15 3 150 0.9169 581 400 45 1 100 16.36
13 25 15 4 50 1.825 582 400 45 1 150 11.94
14 25 15 4 100 1.356 583 400 45 2 50 21.11
15 25 15 4 150 0.9171 584 400 45 2 100 16.52
16 25 15 5 50 1.832 585 400 45 2 150 13.08
17 25 15 5 100 1.357 586 400 45 3 50 21.16
18 25 15 5 150 0.9179 587 400 45 3 100 16.85
19 25 30 0 50 1.597 588 400 45 3 150 13.49
20 25 30 0 100 1.035 589 400 45 4 50 21.47
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2.2.3. Network Structure Optimization

In order to determine the optimized architecture for the selection of the predictive network of
ANN (to certify the capability of the ANN algorithm for estimating the results reliably), six distinct
randomly chosen training and testing databases (for example, each iteration utilized a novel training
and testing databases) were used to suggest the best intelligent method. Based on similar studies
mentioned before, about 80% of the FEM result (504 databases) is randomly chosen for the training,
along with 126 databases utilized for testing the expanded approaches. The ANN algorithm has to
prepare in its proper architecture for optimizing the PSO-ANN estimating model. The optimization
process of the ANN can be performed in preference to the PSO-ANN. This is because of the fact that
the PSO always produces its outcomes based on the ANN results. The optimization of the ANN
may be performed in the case of the nodes or neurons number. The hidden layer number may be
chosen more than one that enhances the complication of the final result. In this work, an offered
learning method from the Levenberg–Marquardt training back-dissemination (trainlm) as a neural
network-based function that is sometimes selected to train the network of the ANN. Accordingly,
48 trainlm models were produced. In this regard, the predictive outputs of the networks and their
efficiencies were investigated to discover their most appropriate efficiencies.

It should be noted that a network prediction output, along with the lower values of RMSE and
higher values of R2, were used for suggesting a proper outcome. A novel color intensity rating approach
(known as CER) was utilized by using the total ranking system (or TRS). As seen in Figures 7 and 8,
the RMSE as well as R2 (as a network performance) outcomes varied according to the hidden nodes
number in each layer. According to the calculated result, the best ANN architecture was 4 × 6 × 1.
Looking for the negligible variation at the network efficiency, as well as to possess a structure with a
simpler network, the optimal structure (4 × 8 × 1) can be decreased to the 4 × 6 × 1 (four input layers,
six neurons at one single hidden along with output layers). Therefore, as for the optimal ANN in the
present article, the neurons number in one hidden layer is selected to be equal to six. The outcomes of
the ANN modeling utilized for the hybrid PSO-ANN. Therefore, the appropriate structure in terms of
the ANN model before being forwarded for the algorithm of PSO is found to be 4 × 6 × 1.
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3. Results and Discussion

The base target of the current study was assessing the consistency of a cohesive slope by using
three intelligent methods of ANN, ANFIS, and hybrid neuro PSO-ANN methods. The significant
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factor in predicting the factor of safety was considered as the output of the networks. In this way, four
effective parameters were recognized as the input dataset: (i) The setback distance (b/B), (ii) the slope
angle (β), (iii) the undrained cohesion strength, and (iv) the vertical load on the slope (Fy). Similar
to former research, the database was divided, randomly, into two sections—training and testing the
approaches, to a ratio between 80 and 20 percentages, respectively. These ratios are properly described
in similar works (e.g., Dieu Tien et al. [38] and Moayedi et al. [32]). To assess the most suitable
approximation networks, we compared the improved models with each other.

3.1. Neuro PSO-ANN Optimization

For measuring the credibility of the suggested PSO-ANN approach, a wide number of FELE
simulations were suggested. For the structure of the optimal estimation network, the calculated
outcomes from each method were evaluated and also compared where the influence of important
factors was investigated. Different statistical indices were utilized in order to classify the results
(for example, targets against calculated from the constructed network) to predict the strength of each
approach. These CRS and TRS classifying methods were performed based on the result of various
statistical indicators (R2 and RMSE). Figures 9–11 show the efficiency outcomes for various values of
population sizes—C1, C2, and IW, respectively. Additionally, we inferred that the model of PSO-ANN,
along with a number of swarm size (400), C1 and C2 (i.e., acceleration constants) equal to 0.67 and
3.33, respectively, and inertia weight of about 0.8, present the best predictive model of PSO-ANN.
Outcomes from the suggested predictive networks are presented for datasets of training and testing
approaches, according to the achieved results (for example, measured from FELE simulations, as well
as estimated from the whole three suggested artificial intelligent models). Hence, the abovementioned
models possess satisfactory estimation outcomes to estimate the factor of safety. The model of hybrid
PSO-ANN can be prepared as a highly acceptable predictive network (for example, preparing higher
accuracy in comparison to measured values) in the estimation of the factor of safety. Accordingly,
in all predictive approaches, the learning method was great (for example, showed a high R2 rate and a
low RMSE rate), which can be obviously observed from the high-efficiency outcomes of the training
and testing networks. According to the R2 and RMSE approaches, respectively, the values of 0.9996,
and 0.0123, as well as 0.9994, and 0.0157, were obtained. For the best structure of the ANN-based
model, both the R2 as well as the RMSE for the databases of training and testing were 0.999, and 0.236,
and 0.998, and 0.313, respectively. Note that an excellent level of precision can be determined in the
network results, particularly for the testing dataset. From all of the suggested models, the predictive
model PSO-ANN presented higher efficiency results in the case of all statistical indexes (for example
RMSE and R2). Figures 9–11 show training and testing outcomes of the ANN, along with six neurons,
ANFIS, and the predictive models of PSO-ANN, in estimating the factor of safety.
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3.2. Model Assessment

In this way, the obtained outcomes of the proposed models of ANN, ANFIS, and neuro PSO-ANN
are shown in Figure 12a–c, respectively. The design solution charts based on the proposed hybrid
PSO-ANN predictive network for β = 15◦ (Figure 13), β = 30◦ (Figure S1), β = 45◦ (Figure S2), β = 60◦

(Figure S3), and β = 75◦ (Figure S4). Noting that the Figures S1–S4 are provided as Supplementary
Materials. These design solution charts are varied according to the applied vertical stresses on the
shallow footings that are placed on the slope with a particular setback distance (b/B). In these graphs,
other critical factors on the slope stability such as slope angle (β) and undrained cohesion strength (Cu)
of the cohesive soils are taken into consideration. Note that different setback distance ratio (b/B ratio
between 0 to 5) was used.
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4. Conclusions

In this study, three predictive networks in their optimized structures were proposed. In fact,
the basic aim of the present study was to propose a proper predictive approach in order to estimate
the factor of safety of a single layer pure cohesive slope subjected to vertical stresses. The vertical
stresses were applied considering strip footing with a particular setback ratio. The slopes were also
built with different geometry parameters. Therefore, data gathered by a big number of finite element
limit equilibrium analysis (FELE) were employed as the input layer. After analyzing the predicted
networks obtained from the three proposed models’ artificial neural network, adaptive neuro-fuzzy
inference system, and also a hybrid model of PSO-ANN, an explanation on the constructed dataset and
network modeling methods is presented. The results of each technique analyzed were then compared
with other approaches. In the optimal predictive model of PSO-ANN, namely the R2 as well as the
RMSE in the case of the training and testing databases were 0.9996 and 0.0123 as well as 0.9994 and
0.0157, respectively—that is, more in their R2 and lower in their RMSEs amounts in comparison with
two other suggested approaches in this paper. It is important to note that our approach is suitable for
implementation on reconfigurable system-like field-programmable gate array (FPGA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/8/9/391/s1,
Figure S1: PSO-ANN solution charts for the β = 30◦. Figure S2: PSO-ANN solution charts for the β = 45◦.
Figure S3: PSO-ANN solution charts for the β = 60◦. Figure S4: PSO-ANN solution charts for the β = 75◦.
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