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Abstract: Slump is a workability-related characteristic of concrete mixture. This paper investigates
the efficiency of a novel optimizer, namely ant lion optimization (ALO), for fine-tuning of a neural
network (NN) in the field of concrete slump prediction. Two well-known optimization techniques,
biogeography-based optimization (BBO) and grasshopper optimization algorithm (GOA), are also
considered as benchmark models to be compared with ALO. Considering seven slump effective
factors, namely cement, slag, water, fly ash, superplasticizer (SP), fine aggregate (FA), and coarse
aggregate (CA), the mentioned algorithms are synthesized with a neural network to determine the
best-fitted neural parameters. The most appropriate complexity of each ensemble is also found by
a population-based sensitivity analysis. The findings revealed that the proposed ALO-NN model
acquires a good approximation of concrete slump, regarding the calculated root mean square error
(RMSE = 3.7788) and mean absolute error (MAE = 3.0286). It also outperformed both BBO-NN (RMSE
= 4.1859 and MAE = 3.3465) and GOA-NN (RMSE = 4.9553 and MAE = 3.8576) ensembles.

Keywords: concrete; slump; neural computing; ant lion optimizer

1. Introduction

As a fundamental material in almost every civil engineering activity, concrete is a widely-used
man-made mixture, composed of some basic elements (like cement and water) and additional materials.
Other than the reasonable compressive strength of concrete, flowability is another determinant factor
which helps workers to form concrete into any desired shape [1]. Up to now, considering the various
properties of concrete (e.g., durability and early age strength), different versions of this material (e.g.,
ready mix (RM) and self-compacting concretes) have been produced. Out of those, high performance
concrete (HPC) is special; it is famous for its workability, which is mainly influenced by the ratio of finer
particles [2]. Slump is a determinant factor of concrete which directly contributes to the workability of
a mixture [3]. Hence, producing a mixture with a proper slump is significant. On the other hand, there
are various parameters like cement/water ratio that considerably affect the slump. Therefore, indirect
measurement of slump has received growing attention for analyzing the effect of these ingredients.
Among the diverse methods suggested for evaluating and predicting slump, intelligent models like
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artificial neural networks (ANNs) have shown promise. ANNs are capable predictive tools that mimic
the biological neural systems [4–8]. The main advantage of this model in comparison with traditional
predictive models (like linear regression) lies in the capability of analyzing the non-linear relationship
between independent and dependent variables (slump and effective factors in the present work) [9],
which has driven many scholars to employ it for various engineering issues [10–13]. More specifically,
the network tries to adjust the computational parameters pertaining to effective factors through a
back-propagation procedure. In this method, the error of the performance is calculated and then,
is considered in a back-ward path. This process leads to setting more compatible parameters of a
network [14–18]. Different intelligent models have been used to investigate various characteristics of
concrete [19–22]. In the case of ANNs, Öztaş et al. [23] successfully used this tool for predicting the
slump and compressive strength of high strength concrete. Yeh [24] investigated the effect of slump
influential factors, including superplasticizer-binder ratio (SP/B), water/binder ratio (w/b), and water
content using ANNs. Yeh [25] developed an ANN-based methodology for simulating the slump of fly
ash and slag concrete (FSC). Additionally, the relationship between the slump and concrete component
was examined by response trace plots.

Moreover, a number of researchers have used hybrid evolutionary algorithms in different
fields [26–29]. For slump modelling, Xu et al. [30] established a geometric semantic genetic programming
(GSGP) for predicting recycled concrete slump. Chandwani et al. [31] coupled ANN with a genetic
algorithm (GA) for estimating the slump of RM concrete. With respect to the obtained root mean square
errors (RMSEs) of 3.4634 and 2.4994, as well as regressions of 0.9605 and 0.9791, respectively, for the
typical ANN and GA-ANN models, they concluded that the proposed hybrid model was suitable for
the purpose of slump prediction. Likewise, Chen et al. [32] used a parallel hyper-cubic gene expression
programming (GEP) for estimating the slump flow of HPC concrete. Their findings showed that
the proposed hybrid model outperformed typical GEP approach. As stated above, despite the wide
application of typical predictive methods for slump prediction issues, few studies have conducted
optimization of these networks using metaheuristic approaches. Hence, the focal objective of this
paper is to present a novel optimization of an ANN, namely ant lion optimization (ALO), used for
fine-tuning the computational parameters in concrete slump simulation.

2. Methodology

The steps taken for fulfilling the objective of this research are depicted in Figure 1. According to
this figure, after providing the required data, the proposed ALO, as well as the benchmark methods of
biogeography-based optimization (BBO) and the grasshopper optimization algorithm (GOA), were
mathematically coupled with a typical NN using the programming language of MATLAB 2014. The
best complexity of each ensemble is then determined by testing different population sizes for each
network. The results of the elite structures are then evaluated by two broadly used error criteria,
namely root mean square error (RMSE) and mean absolute error (MAE). The formulation of these
criteria is explained below:

MAE =
1
N

N∑
I=1

∣∣∣∣Yiobserved −Yipredicted

∣∣∣∣ (1)

RMSE =

√√√
1
N

N∑
i=1

[(
Yiobserved −Yipredicted

)]2
(2)

in which N is the number of samples, Yi observed and Yi predicted denote the actual and predicted
slump values.
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As a novel swarm-based optimization technique, Mirjalili [33] introduced ant lion optimization 
(ALO) by mimicking the behavior of ant lions during their larvae life cycle. Similar to any 
optimization method, ALO aims to find the most fitted solution for a problem within a number of 
iterations. Initial positions of the ant lion and the prey are stochastically set within the search space. 
Figure 2 shows the flowchart of this algorithm. Six operations that are implemented in each iteration 
are (i) random walk of prey; (ii) trapping in holes; (iii) constructing a trap; (iv) sliding of prey towards 
the ant lion; (v) catching the prey/reconstructing the hole; and (vi) determining the elite ant lion 
[33,34]. 

Figure 1. The graphical methodology of the present ant lion optimization (ALO)-based study.

The used methods are described in the following:

2.1. Ant Lion Optimization

As a novel swarm-based optimization technique, Mirjalili [33] introduced ant lion optimization
(ALO) by mimicking the behavior of ant lions during their larvae life cycle. Similar to any optimization
method, ALO aims to find the most fitted solution for a problem within a number of iterations. Initial
positions of the ant lion and the prey are stochastically set within the search space. Figure 2 shows
the flowchart of this algorithm. Six operations that are implemented in each iteration are (i) random
walk of prey; (ii) trapping in holes; (iii) constructing a trap; (iv) sliding of prey towards the ant lion; (v)
catching the prey/reconstructing the hole; and (vi) determining the elite ant lion [33,34].
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As Equation (3) expresses, the movement of the considered prey in this algorithm (i.e., ants) is
expressed with a cumulative sum (Csum) function:

X(t) = [0, Csum (2r(t1)) − 1, . . . , Csum (2r(tn)) − 1] (3)

r(t) =
{

1, rand (0, 1) > 0.5
0, rand (0, 1) ≤ 0.5

(4)

where rand stands for a random number which is uniformly distributed in the interval of [0,1].
Then, assuming Xt

i as the position of the ith variable in the tth iteration, a normalization function is
applied at each iteration as follows:

Xt
i =

(
Xt

i − ai
)
.
(
dt

i − ct
i

)
bi − ai

+ ct
i (5)

where dt
i and ct

i define the maximum and minimum of the proposed variable, bi and ai are maximum
and minimum of random walk in the ith variable.

Equations (6) and (7) describe the mathematical effect of the ant lion’s holes on the prey random
walk (Figure 3a):

ct
i = Antliont

j+ct (6)

dt
i = Antliont

j+dt (7)

in which Antliont
j is the position of jth ant lion. In addition, dt and ct symbolize the vectors including

the maximum and minimum of all variables.
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In the ALO algorithm, it is assumed that each prey is trapped by one hunter. Since the goodness
of the prey contributes to the ant lion hunting capability, a so-called function “roulette wheel selection
(RWS)” is executed here. With this work, the ants with higher fitness have more chance to catch
better prey. Considering I as a factor which depends on the ratio of the current repetition and the
number of repetitions. The prey sliding in the trap (Figure 3b) is mathematically expressed by below
equations. Applying this decrease in the search space helps to achieve a more proper convergence
toward optimization.

ct = ct/I (8)

dt = dt/I (9)

Eventually, catching the prey, as well as ant lion reposition, are defined as follows:

f
(
Antt

i

)
< f

(
Antliont

j

)
→ Antliont

j = Antt
i (10)

The elite ant lion is then determined, and the position of all relations in the search space is assumed
to be affected by the position of the elite member. Let Rt

A be a random walk of the prey near ant lion
selected through the RWS, and also Rt

E be the random walk of the same prey near the best hunter, then
this process is expressed as follows [33]:

Antt
i =

Rt
A + Rt

E
2

(11)

2.2. Benchmark Models

As explained earlier, two recently-developed metaheuristic algorithms of biogeography-based
optimization (BBO) [35] and the grasshopper optimization algorithm (GOA) [36] are considered
as benchmark models for evaluating the results of the proposed ALO technique. The BBO and
GOA are nature-inspired algorithms which respectively mimic the biogeography knowledge (i.e.,
the distribution of different species) and herding behavior of grasshoppers to achieve the optimal
solutions of a mathematically defined problem. As a common trait, both methods draw on two
major steps, namely migration and mutation in the BBO and exploration and exploitation in the
GOA [37,38]. As the first action, some individuals (i.e., the initial population) are generated randomly
which represent possible solutions to the problem. During the next steps, the algorithms try to improve
the goodness of them by taking special policies. In combination with the ANN [39], these algorithms
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aim to overcome the drawbacks of back-propagation technique, like local minima, by suggesting
solutions for adjusting the weights and biases. More details about the BBO and GOA are presented
in [40–42] and [36,43], respectively.

3. Data Collection and Statistical Analysis

The used database is created by measuring the slump of 103 concrete specimens based on a research
by Yeh [2]. Seven slump influential factors, cement (C), slag (S), water (W), fly ash (F), superplasticizer
(SP), fine aggregate (FA), and coarse aggregate (CA) are considered as input variables, while the slump
is taken to be the output of the predictive models. According to reference paper, the standards of
American society or testing and materials (ASTM) was considered for creating concrete specimens.
Meanwhile, the conventional slump test (ASTM C143/C143M-00) [44] was used to determine the
consistence of fresh concrete. More details about data provision and carried out tests are presented in
References [2,45].

Considering the famous ratio of 80:20, the dataset was divided into the training (composed of
82 concrete slump tests) and testing (composed of 21 concrete slump tests) phases. The results of the
statistical analyses (i.e., the values of minimum, maximum, mean, and standard deviation) of these
factors are presented in Table 1. Moreover, Figure 4a–g show the graphical relationship between the
slump and each effective factor.

Table 1. Statistical analyses of the used dataset.

Slump
(cm)

Cement
(kg/m3)

Slag
(kg/m3)

Water
(kg/m3)

Fly ash
(kg/m3)

SP
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

Minimum 0.0 137.0 0.0 160.0 0.0 4.4 640.6 708.0
Maximum 29.0 374.0 260.0 240.0 193.0 19.0 902.0 1049.9

Mean 18.0 229.9 149.0 197.2 78.0 8.5 739.6 884.0
Standard deviation 8.7 78.9 85.4 20.2 60.5 2.8 63.3 88.4

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 16 

suggesting solutions for adjusting the weights and biases. More details about the BBO and GOA are 
presented in [40–42] and [36,43], respectively. 

3. Data Collection and Statistical Analysis

The used database is created by measuring the slump of 103 concrete specimens based on a 
research by Yeh [2]. Seven slump influential factors, cement (C), slag (S), water (W), fly ash (F), 
superplasticizer (SP), fine aggregate (FA), and coarse aggregate (CA) are considered as input 
variables, while the slump is taken to be the output of the predictive models. According to reference 
paper, the standards of American society or testing and materials (ASTM) was considered for creating 
concrete specimens. Meanwhile, the conventional slump test (ASTM C143/C143M-00) [44] was used 
to determine the consistence of fresh concrete. More details about data provision and carried out tests 
are presented in References [2,45]. 

Considering the famous ratio of 80:20, the dataset was divided into the training (composed of 82 
concrete slump tests) and testing (composed of 21 concrete slump tests) phases. The results of the 
statistical analyses (i.e., the values of minimum, maximum, mean, and standard deviation) of these 
factors are presented in Table 1. Moreover, Figure 4a–g show the graphical relationship between the 
slump and each effective factor. 

Table 1. Statistical analyses of the used dataset. 

Slump 

(cm) 

Cement 

(kg/m3) 

Slag 

(kg/m3) 

Water 

(kg/m3) 

Fly ash 

(kg/m3) 

SP 

(kg/m3) 

FA 

(kg/m3) 

CA 

(kg/m3) 

Minimum 0.0 137.0 0.0 160.0 0.0 4.4 640.6 708.0 

Maximum 29.0 374.0 260.0 240.0 193.0 19.0 902.0 1049.9 

Mean 18.0 229.9 149.0 197.2 78.0 8.5 739.6 884.0 

Standard 

deviation 
8.7 78.9 85.4 20.2 60.5 2.8 63.3 88.4

(a) (b) 

0

5

10

15

20

25

30

35

600 700 800 900 1000

Sl
um

p 
(c

m
)

FA (kg/m3)

0

5

10

15

20

25

30

35

600 700 800 900 1000 1100

Sl
um

p 
(c

m
)

CA (kg/m3)

0

5

10

15

20

25

30

35

0 5 10 15 20

Sl
um

p 
(c

m
)

SP (kg/m3)

0

5

10

15

20

25

30

35

0 100 200 300

Sl
um

p 
(c

m
)

Fly ash (kg/m3)

(c) (d)

Figure 4. Cont.



Appl. Sci. 2019, 9, 4340 7 of 15Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 16 

(e) (f) 

(g) 

Figure 4. The graphical description of the concrete slump influential factors. (a) FA (kg/m3), (b) CA 
(kg/m3), (c) SP (kg/m3), (d) Fly ash (kg/m3), (e) Water (kg/m3), (f) Slag (kg/m3), (g) Cement (kg/m3) 

4. Results and Discussion

Evaluating the efficiency of the ant lion optimization technique for predicting concrete slump is 
the pivotal objective of this paper. To fulfil this purpose, the ALO algorithm is coupled with a multi-
layer perceptron neural network to fine-tune its parameters. The performance of BBO and GOA 
optimization techniques was also investigated as benchmark models. In the first stage, based on the 
number of neurons, a trial and error process was carried out to determine the most suitable NN 
structure. In this regard, the MLP with 6 nodes in its unique hidden layer produced the most 
consistent results. Therefore, this structure was considered as the basic NN for being combined with 
the optimization techniques. In the following, the mathematical equation of the MLP is given to the 
ALO, BBO, and GOA as the problem function. The optimization process is detailed in the below 
section. 

4.1. ALO, BBO, and GOA Conventional Methods for Optimizing the NN 

When it comes to hybrid optimization techniques, population size is considered an influential 
parameter which highly affects the performance of the proposed algorithm. In fact, this value 
indicates the number of the individuals in the society (e.g., the number of ant lions in the ALO 
technique). Each network was tested by nine different population sizes (i.e., 10, 25, 50, 75, 100, 200, 
300, 400, and 500) [46]. The RMSE was defined as the objective function to measure the error of the 
performance at the end of each iteration. Each model performed within 1000 repetitions to optimize 
the neural parameters (i.e., connecting weights and biases) of the proposed NN. More clearly, at each 
iteration, the found solution contained the mentioned parameters. The NN was reconstructed by 
means of the obtained parameters and performed to estimate slump. Then, the RMSE between the 
targets and outputs was measured as the objective function. The result was a convergence curve 

0

5

10

15

20

25

30

35

150 170 190 210 230 250

Sl
um

p 
(c

m
)

Water (kg/m3)

0

5

10

15

20

25

30

35

0 50 100 150 200

Sl
um

p 
(c

m
)

Slag (kg/m3)

0

5

10

15

20

25

30

35

120 220 320

Sl
um

p 
(c

m
)

Cement (kg/m3)

Figure 4. The graphical description of the concrete slump influential factors. (a) FA (kg/m3), (b) CA
(kg/m3), (c) SP (kg/m3), (d) Fly ash (kg/m3), (e) Water (kg/m3), (f) Slag (kg/m3), (g) Cement (kg/m3).

4. Results and Discussion

Evaluating the efficiency of the ant lion optimization technique for predicting concrete slump is the
pivotal objective of this paper. To fulfil this purpose, the ALO algorithm is coupled with a multi-layer
perceptron neural network to fine-tune its parameters. The performance of BBO and GOA optimization
techniques was also investigated as benchmark models. In the first stage, based on the number of
neurons, a trial and error process was carried out to determine the most suitable NN structure. In
this regard, the MLP with 6 nodes in its unique hidden layer produced the most consistent results.
Therefore, this structure was considered as the basic NN for being combined with the optimization
techniques. In the following, the mathematical equation of the MLP is given to the ALO, BBO, and
GOA as the problem function. The optimization process is detailed in the below section.

4.1. ALO, BBO, and GOA Conventional Methods for Optimizing the NN

When it comes to hybrid optimization techniques, population size is considered an influential
parameter which highly affects the performance of the proposed algorithm. In fact, this value indicates
the number of the individuals in the society (e.g., the number of ant lions in the ALO technique). Each
network was tested by nine different population sizes (i.e., 10, 25, 50, 75, 100, 200, 300, 400, and 500) [46].
The RMSE was defined as the objective function to measure the error of the performance at the end
of each iteration. Each model performed within 1000 repetitions to optimize the neural parameters
(i.e., connecting weights and biases) of the proposed NN. More clearly, at each iteration, the found
solution contained the mentioned parameters. The NN was reconstructed by means of the obtained
parameters and performed to estimate slump. Then, the RMSE between the targets and outputs was
measured as the objective function. The result was a convergence curve showing the decrease of the
error. Figure 5a–c shows the obtained convergence curves of the implemented BBO-NN, GOA-NN,
and ALO-NN ensembles, respectively.
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Figure 5. The sensitivity analysis based on the model complexity for the (a) BBO-NN, (b) GOA-NN,
and (c) ALO-NN.

As is illustrated, all three models decreased the majority of the RMSE within the first 600 iterations.
For better illustration, Figure 6 denotes the best response of the tested networks in terms of the RMSE.
Accordingly, the ALO, BBO, and GOA with population sizes of 400, 50, and 300 performed more
efficiently than other versions. It is also seen that the overall behavior of the RMSE is downward for
GOA-NN, while it fluctuates for the two other algorithms. The proposed ALO-NN achieved the RMSE
of 4.955 at the 678th try, and remained steady thereafter. As for the BBO and GOA, the RMSE was
obtained 4.4508 and 4.9552, respectively. Notably, the implementation time (for all 1000 repetitions)
were obtained 32,784.89, 645.38, and 4273.3 seconds on an operating system at 2.5 GHz and 6 Gigabytes
of RAM.
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4.2. Performance Evaluation and Discussion

After determining the best-fitted structures of the ALO-NN, BBO-NN, and GOA-NN, their
responses were evaluated to measure the accuracy of the models. To this end, the RMSE and MAE
were calculated. Figures 7 and 8 depict the graphical comparisons between the actual and predicted
slumps in the training and testing phases, respectively. The error values (i.e., the difference between
the target and outputs) are also depicted in these figures.
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The calculated RMSEs for the training samples (4.4509, 4.9553, and 4.8051, respectively, for the
BBO-NN, GOA-NN, and ALO-NN) indicate that the computational parameters suggested by all
three metaheuristic algorithms develop an MLP with an acceptable accuracy. This claim can also be
supported by the training MAEs (3.5513, 3.8576, and 3.8055). From a comparison viewpoint, regarding
the lower error values, the BBO acquired a better understanding of the relationship between slump
and its effective factors, compared to the two other networks. Moreover, the ALO outperformed GOA
in this phase.

As for the testing phase, the computed RMSEs (4.1859, 4.0171, and 3.7788) showed disagreement
between the learning and generalization power of the used ensembles. In this sense, despite the higher
accuracy of the BBO in the training phase, the ALO produced more consistent results for concretes
with unseen conditions. Furthermore, GOA performed more efficiently than BBO in the testing stage.



Appl. Sci. 2019, 9, 4340 12 of 15

In addition to RMSE, the obtained MAEs (3.3465, 3.2013, and 3.0286) revealed that the ALO was the
most effective evolutionary algorithm for optimizing MLP, followed by GOA and BBO.

Overall, it was concluded that, although the BBO trained the ANN more effectively than the
two other techniques, the ALO was found to have the highest generalization capability. However,
investigating the reason for this requires further analysis and expert coding knowledge; one possible
reason could be the greater number of steps taken by ALO to achieve the target, because it is an obvious
distinction between the mechanisms of the mentioned techniques. As explained, six major steps are
needed to implement the ALO, whilst both BBO and GOA execute the optimization with two steps.

Focusing on the range of the products, there are some negative values in the training data. In
details, the actual slump values in the training phase vary from 0 to 29 cm, while the predicted values
by the BBO-NN, GOA-NN, and ALO-NN range in, [–1.922, 28.761], [–3.113, 27.742], and [–5.346,
29.722], respectively. Needless to say, negative slump values do not indicate any physical meaning.
The authors believe that the reason for this can be sought in the wide range of actual slumps (sample
variance = 76.57). The distribution of input data might be another misleading parameter. Referring
to Figure 4d–f, for instance, it can be seen that there is a considerable number of concrete specimens
which did not show any sensitivity to the changes in the amount of slag and fly ash (slump equals 0 for
these data). However, it should be noted that the slump is a function of all input parameters.

In comparison with some of previous studies which have used the same dataset to train their
intelligent approaches, or same statistical indexes to assess their model performance [47–52], the
result of our study are more promising. Yeh [24], for example, found that the ANN with an RMSE
of 4.12 cm is a capable tool for simulating the slump. Likewise, Yeh [25] and Yeh [2] achieved the
RMSEs of 4.03 and 8.51 by employing ANN in their research. This is because the RMSE of the elite
model of the current study was less than 4 cm (i.e., 3.7788 cm) obtained by the proposed ALO-NN
ensemble. Another item which could be pointed out is the enhancement of the ANN performance in
incorporation with the ALO optimization algorithm. In other words, the weights and biases suggested
by ALO constructed a more capable ANN compared to those suggested through its regular learning
model. Noting that the current study was carried out for typical concrete mixture (i.e. used Portland
cement), and it is found that the employed metaheuristic sciences have excellent performance and
potential to predict the slump simulation of special concrete like self-compacting concrete (SCC) [47],
high strength concrete (HSC) [23], and so on. Testing the used networks for the mentioned aims could
be an appropriate idea for future studies.

Moreover, according to Yeh [25], the American Concrete Pavement Association (ACPA) [53]
has considered that measured differences in slumps of lower than 2 inches (5.08 cm) are typical for
sampling, testing, and material variation. Therefore, the prediction error of the all three implemented
models, and especially the ALO-NN, is relatively low, and lies in an acceptable extent. Hence, the
suggested models are potent enough to be properly used in the industry. As difficulties have been
associated with laboratory models, and considering the high robustness of soft computing methods
in the field of slump modelling, intelligent tools may be accurate and inexpensive alternatives to
traditional approaches.

In the last part of this study, a slump predictive formula is presented (Equation (12)). Note that,
this formula is developed based on the weights and biases that have been suggested by the most
successful neural ensemble (i.e., the ALO-NN). More specifically, this equation indicates the neural
relationship established in the unique output neuron of the used MLP network. Therefore, utilizing it
entails calculating some middle parameters which are the outputs of the hidden neurons.

Slump = −0.1317 × Z1 − 0.8109 × Z2 + 0.5922 × Z3 + 0.3680 × Z4 + 0.8241 × Z5 − 0.5218 × Z6 − 0.2127 (12)

In above formula, Z1, Z2, . . . Z6 are middle parameters and are obtained by Equation (13). This is
worth noting that the activation function of the hidden neurons is “Tangent-Sigmoid” (briefly Tansig)
which is expressed by Equation (14).
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

Z1
Z2
Z3
Z4
Z5
Z6


= Tansig







0.0384 −0.7997 −0.0212 −0.8032 0.8395 −0.6082 −0.9534
−0.5088 0.7849 −0.9327 −0.8099 0.5248 0.5034 0.5838
−0.4529 −0.2884 −0.9269 −1.0198 0.7335 −0.7290 −0.1157
−0.3728 −0.9210 0.3470 0.5572 0.7748 −0.9547 0.5835
−0.9642 0.3015 0.6630 0.1027 −0.1102 −0.9227 0.9675
−0.3548 −0.0485 −0.2256 1.5514 0.0741 −0.6239 −0.5380





C
S
F
W
SP
CA
FA




+



−1.8084
1.0850
0.3617
−0.3617
−1.0850
−1.8084




(13)

Tansig (x) =
2

1 + e−2x − 1 (14)

5. Conclusions

The applicability of a state-of-the-art metaheuristic technique was investigated for modelling
the slump of concrete. The ant lion optimizer was applied to a neural network for fine-tuning the
computational parameters contributing to slump effective parameters. In addition, two well-known
evolutionary techniques of BBO and GOA were considered as benchmark models. The MLP network
with six processor units in the hidden layer was mathematically introduced to the mentioned algorithms
to find the most appropriate weights and biases for predicting the slump. The carried-out sensitivity
analysis outlined that the ALO, BBO, and GOA with population size 400, 50, and 300 present the
best-fitted neural ensemble. The calculated error criteria revealed that the ANN constructed by the
BBO understood the relationship between the slump and influential factors better than the two other
algorithms, while the ALO surpassed both benchmark models of GOA and BBO in predicting the
slump pattern. Meanwhile, regarding the acceptable prediction error (3.3465, 3.2013, and 3.0286,
respectively, for the BBO-NN, GOA-NN, and ALO-NN), this study showed that the combination of the
ANN and hybrid optimizers can construct robust and inexpensive alternatives to traditional models
of slump evaluation. The slump predictive formula of the MLP optimized by the ALO evolutionary
technique was also presented.
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17. Aksoy, H.S.; Gör, M.; İnal, E. A new design chart for estimating friction angle between soil and pile materials.
Geomechanics and Engineering 2016, 10, 315–324. [CrossRef]

18. Nguyen, H.; Moayedi, H.; Sharifi, A.; Amizah, W.J.W.; Safuan, A.R.A. Proposing a novel predictive technique
using M5Rules-PSO model estimating cooling load in energy-efficient building system. Eng. Comput. 2019,
35, 1–11. [CrossRef]

19. Vakhshouri, B.; Nejadi, S. Prediction of compressive strength of self-compacting concrete by ANFIS models.
Neurocomputing 2018, 280, 13–22. [CrossRef]

20. Bilgehan, M.; Kurtoglu, A.E. ANFIS-based prediction of moment capacity of reinforced concrete slabs
exposed to fire. Neural Comput. Appl. 2016, 27, 869–881. [CrossRef]

21. Juncai, X.; Qingwen, R.; Zhenzhong, S. Prediction of the strength of concrete radiation shielding based on
LS-SVM. Ann. Nucl. Energy 2015, 85, 296–300. [CrossRef]

22. Li, X.; Yi, G.; Wang, W.; Sun, J.; Li, Y. Research and Application of RBF Neural Network-Based Osmotic Pressure
Forecast Model for Concrete-Faced Rockfill Dam; IOP Publishing: Bristol, UK, 2018; Volume 198. [CrossRef]
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