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Monitoring of scale progression in a pneumatic conveying systemoperating in ametal production plantwas con-
ducted during a five-month longmonitoring period. A combination of an acousticmonitoringmethod and a laser
imaging method provided detailed information of gradual scale growth in a test pipe. The results show that the
scale grew steadily throughout the test campaign. Periods of increasing and decreasing scale growth rate as well
as episodes where the scale was detached from the pipe surface could be identified. Additionally, visual inspec-
tion of images obtained by the laser device offered information about the spatial distribution of the scale in a cross
section of the test pipe.
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1. Introduction

Pneumatic conveying is widely used to transport powder materials
in many industries due to its many advantages such as flexibility in
pipeline layout with possibility of several pick-up and delivery points,
easy automation and fully enclosed transportation enabling dust-free
transfer of materials [1]. Although the theoretical understanding of
dense phase conveying is not as complete as for dilute phase, dense
phase conveying is often the preferred option because of low energy
cost and lowwear [2]. In dense phase conveying, powder is transported
with lower gas velocities and thereby, wear of equipment and particle
attrition can be reduced. Furthermore, longer transportation distances
become feasible and increased material throughput can be achieved
with additional rewards of lower energy consumption and lower cost
of operation [1,3]. However, some challenges with potential to hamper
both dilute and dense phase pneumatic conveying systems remain. One
such challenge is the deposition of unwanted material, also referred to
as scale formation, in pipelines.

Deposition of a material called hard grey scale (HGS) on process
equipment is a considerable issue in aluminium production plants [4].
In such plants, powdered alumina is used as a sorbent in dry scrubbing
systems, adsorbingfluorides and other compounds from the production
off-gases and thus forming secondary alumina [5]. Subsequently, it is
used as a raw material in the aluminium production process. HGS de-
posits in the distribution systems for secondary alumina, particularly
nd).
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in pneumatic conveying lines transporting the material to metal pro-
duction pots. Scale formation interferes with the operation of the con-
veying systems, resulting in both the need for cleaning and
maintenance of the equipment, but also operational down time [4].
The formation mechanism of alumina scale is assumed to be complex
and depending on several factors such as moisture, temperature and
the composition of the process off-gas. Additionally, chemical reactions
of compounds adsorbed on alumina in the dry scrubbing process may
be involved. Scaling is also found to be more severe in high-turbulent
areas along the secondary alumina transportation path. Some possible
formation mechanisms have been suggested in the literature [4,6], but
no final conclusion explaining the scaling issue has been reached.

Process analytical technology (PAT) is an emerging field focusing on
monitoring of critical process parameters and quality attributes in in-
dustrial applications using advanced sensor technology and data analy-
sismethods [7]. Acoustic chemometrics is a non-invasive, real-time PAT
technique [8]. In a recent study, a new, active version of the acoustic
monitoring technique was presented. Feasibility tests of the active
acoustic method suggested that it can be used for monitoring of scaling
in pneumatic conveying systems. However, a challenge of themethod is
that it relies on model calibration against reliable reference measure-
ments of scale growth. Also, the method is sensitive to specific physical
properties of the monitored system. Thus, on site calibration is neces-
sary [9]. To solve this issue, a technique for obtaining reference mea-
surements of scale depositions in pipelines by use of a laser device
was developed in a previous study [10].

This studywas conducted as a part of a project focusing on investiga-
tion of scale formation in aluminium production plants. In this paper,
mons.org/licenses/by-nc-nd/4.0/).
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Table 1
Typical values of some properties for secondary alumina.

Description Value

x10 [μm] 30.0
X50 [μm] 81.6
x90 [μm] 142.0
Particle density [g/cm3] 3.497
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the results of a test campaign in which the active acoustic method was
used together with the laser imagingmethod tomonitor scale propaga-
tion in a pneumatic conveying system is presented. The tests were per-
formed in a Norwegian aluminium smelter where the monitoring
equipmentwas installed in an area along a pipeline known to be partic-
ularly exposed to scaling. In the analysis of the measurements obtained
during the test campaign, special emphasis was placed on detecting pe-
riods where the scaling rate had increased or decreased. Such periods
would be of great interests for the continuing studies in this project. It
is assumed that if periods of increased or decreased scaling rate can be
found, an analysis of the prevailing ambient and process conditions dur-
ing these periods can provide useful information related to the under-
laying scaling mechanism. Also, the most important factors
influencing scaling may be identified. Thus, the results from this paper
wasused in a followup study focused on discussion of possible scale for-
mation mechanisms [11].

2. Materials and methods

2.1. The pneumatic conveying system

In this study, a pneumatic conveying system located in a Norwegian
aluminium smelter, transporting secondary alumina from a gas treat-
ment centre (GTC) to a group of metal production cells, was considered.
The pneumatic conveying system is a version of the ALESA system
which is described in somedetail in [12]. Consisting of a blow tank send-
ing off batches of material which is conveyed through a pipeline (l =
160 m, d = 88.9 mm), the conveying system distributes secondary alu-
mina to small storage silos on top of each of the metal production cells.
The pipelinehas several bends of various angles and both horizontal and
vertical sections. The bends are of a special design referred to as “pot
bends” in [12]. Dense phase conveying of secondary alumina particles
is facilitated by a pipe-in-pipe design, with narrow internal air bypass
pipe segments attached in the top of the main pipeline. During opera-
tion of the conveying system, a dispatched batch of material will be
transported for somedistance before thematerial falls out of suspension
and clogs the pipeline. Subsequently, air will flow through the bypass
lines and emerge to break the blockage into shorter plugs. The short
plugs are conveyed further through the pipeline by the available pres-
sure in the system before new blockages form and the process repeats
[12]. The pneumatic conveying system is operated in four-hour cycles
in which secondary alumina is filled to each of the silos on the metal
production cells before the system is shut down for a shorter period
awaiting start-up of the next cycle.

In the test campaign performed in the production plant, scale
growthwas monitored in a test area along a horizontal part of the pipe-
line. Located after a 90° “pot bend”, the test area was situated in a zone
of turbulent flow which represents a problematic spot where a lot of
scale typically forms. Equivalent pipe sections have been choked by
the scale in the past.

2.2. The conveyed material

Secondary alumina is formed when primary alumina (also referred
to as smelter grade alumina [5]) is used to clean production off-gas in
gas treatment centres. In addition to adsorbing gaseous and particulate
fluoride components, the alumina also captures various impurities from
the off-gas. Some of themain contaminations are P, Fe, Mn, Si, Ti, Zn, Ga,
Be, Li andMg [13]. Secondary alumina typically has a smaller mean par-
ticle size than primary alumina, partly due to attrition of the particles in
the gas cleaning and transport processes and partly as a result of the fine
pot gas dust, which transfersmore or less unchanged into the secondary
alumina during the dry scrubbing of production off-gas [13]. Typical
values for some properties of secondary alumina are given in Table 1.
The properties of the secondary alumina will vary in accordance with
variations in primary alumina used in the gas scrubbing process, the
raw gas composition and process parameters such as gas velocity and
particle attrition in the dry scrubbers.

2.3. Active acoustic monitoring method

The active acoustic method is a recently developed version of acous-
tic chemometrics. The basic idea of the new version of acoustic
chemometrics is that an acoustic signal which is sent into a system
will bemodified by the system in amanner influenced by various phys-
ical system properties. Thus, the frequency response output signals
resulting from exiting the system by acoustic stimuli contain latent in-
formation about the system properties. In the active method, acoustic
signals are sent into a system by a transducer and the output signals
are measured by acoustic sensors. The measured signals are processed
and transformed to produce frequency domain acoustic spectra. Multi-
variate analysis methods are used to extract the underlaying informa-
tion from such spectra and relate it to the monitored characteristics of
the system. The active acoustic method is discussed in detail in [9].
More information about acoustic chemometrics can be found in [8].

In comparison to other PAT monitoring methods, the equipment
needed for acoustic chemometrics is relatively inexpensive and easy
to install. Furthermore, the method is non-invasive, meaning no part
of the measuring equipment needs to be placed inside the pipeline.
This is essential to successfullymonitor alumina scaling as scalematerial
would otherwise quickly attach to the measuring equipment and im-
pede the monitoring process. Also, any disturbance in the gas flow
could create more turbulence in the pipeline and thus lead to more
scale growth. The dense phase transportation process, with periods of
choking of the pipeline and subsequent formation of plugs, could poten-
tially induce much noise in the measurements. However, the active
acoustic method is relatively robust against influence from noise and
fluctuations in the monitored system. Finally, the acoustic method can
provide real-time predictions of scale growth once a model relating
acoustic spectra to scaling has been calibrated. Altogether, these advan-
tagesmake the acousticmethod suitable formonitoring of alumina scal-
ing in pneumatic conveying systems. Nevertheless, the method is
indirect and completely dependent upon the availability of reliable ref-
erence measurements to calibrate models [14] of scale growth,
representing a challenge of the method.

2.4. Reference measurements by laser device

Recently, a technique was developed to solve the challenge of
obtaining reliable reference measurements of scale growth in pipes
[10]. In this technique, a device is used to capture images of laser light
tracing an inner cross section of a pipe by slow shutter photography. Im-
ages captured by the device are pre-processed in order to isolate the
laser traces before the images are analysed. Calculation of some statisti-
cal values describing the scale thickness and distribution in the pipe
cross section as well as the cross-sectional area of the pipe covered by
the scale are performed to quantify the scale growth.

2.5. Experimental setup and procedure

The measurement equipment was permanently installed in the test
area for the duration of the test campaign. Four piezo elements (one
transducer and three sensors, 7BB-20-6 L0) were glued to the surface
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of the pipe section in the test area, hereafter referred to as the test pipe,
in the configuration shown in Fig. 1. A function generator (Escort EGC-
3230) was used to produce the acoustic input signals (square wave-
forms with increasing frequency (0–20 kHz) and constant amplitude).
A SAM-unit (developed by the applied chemometrics research group
at the University of South-Eastern Norway) amplified the measured
signals before A/D conversion was performed by a DAQ-device (NI-In-
struments). The data acquisition was performed by a LabVIEW (NI-In-
struments) code running in a remote-controlled computer (LogMeIn
Pro) stationed near the test area in the plant. Throughout the test cam-
paign, three replicate measurements were obtained by each acoustic
sensor while powder transport was ongoing during each four-
hour cycle in the pneumatic conveying system. Thus, six groups of rep-
licate measurements for each sensor were normally obtained each day
of the campaign.

Images were obtained by the laser device from the spot marked in
Fig. 1 a) by plant personnel on a weekly basis when possible. However,
limitations in the time schedules of the operators restricted the oppor-
tunity to obtain images in some periods, especially during the summer
vacation season. When the images were captured, the test pipe had to
be disconnected from the main pipeline and any remaining powder
had to be removed. The images where captured during the cyclic
down-times of the pneumatic conveying systems.

Image processing software (GIMP 2.0) was used to pre-treat the im-
ages captured by the laser device. The images were slightly aligned and
cropped to the same size before various selection toolswere used to iso-
late the laser traces in the images. Subsequently, a MATLAB (version
9.1.0.441655, R2016b) code was used to perform calculations of scale
growth based on the images. Due to the presence of the internal bypass
pipe segments discussed in Section 2.1., an area of the photographed
Fig. 1. A picture (a) and a schematic overview (b) of the test area and measureme
pipe cross section was blocked from the view of the camera. This area
was disregarded during the image analysis, as discussed in detail in [10].

2.6. Multivariate data analysis

As acoustic spectra consist of inputs from multiple frequencies and
the shape of the spectra normally depends on several different vari-
ables, theymake upmultivariate data [15]. Thus,multivariate data anal-
ysis techniques are needed to investigate and extract information from
such measurements. Multivariate data is normally structured in a n*p
matrix X in preparation for the data analysis. The rows and columns in
X are usually referred to as objects and variables, respectively. When
analysing acoustic spectra, every row in X contains an acoustic spec-
trum and every column corresponds to a certain frequency in the spec-
tra. Various pre-processing techniques are often carried out on the data
in X prior to the data analysis in order to remove disturbing effects and
convert the data into a suitable form [14]. Mean centring and variance
scaling of the columns in X are commonly used pre-processing tech-
niques when analysing acoustic spectra [16].

2.6.1. Principal component analysis
Principal component analysis (PCA) is the standard technique of

choice for performing exploratory analysis of a dataset and for obtaining
an overview of the main structures and systematic variations in the
data. In PCA, a matrix X is decomposed into a principal components,
each represented by two vectors t and p, and a matrix E, as described
in Eq. (1). The vectors t and p are called the score and loading vector, re-
spectively. For each principal component, the loading vector defines
the relationship between the component and the variables in X and
the score vector specifies the location of each object relative to the
nt setup, where T stands for a transducer and S1, S2 and S3 for three sensors.
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component. The E matrix contains the residuals: the remaining varia-
tion from X which is not explained by the principal components [14].

X ¼ t1pT
1 þ t2pT

2 þ…þ tapT
a þ E ð1Þ

Thematrix decomposition is essentially a division of the data into an
“information” part (the a principal components) and a “noise” part (the
residual matrix E). Calculation of the principal components is done by a
maximumvariance criterion. Thus, thefirst principal componentwill al-
ways lie in the direction of maximum variance in the dataset. The sec-
ond principal component explains the maximum variance in the
remaining data after removal of the first component. The resulting com-
ponents aremutually orthogonal. By thismanner, up toA principal com-
ponents can be calculated, where A is the mathematical rank of the X
matrix [14]. However, normally only a few components are needed to
describe the main trends in the data [15], particularly a b b A. Thus,
PCA provides a substantial reduction of dimensionality from the n col-
umns of the matrix X to a small set of components, without significant
loss of information in the process. Focusing on only a few components
greatly simplifies the analysis of the data. The information contained
in the principal components is normally investigated using various
plots to visualize the data. One of the most commonly used type of
plots is the score plot. A score plot is a scatter plot of the score vectors
of two different principal components, and can reveal trends, groupings
and outliers in the data. Outliers are measurements that differ from the
majority of the data in some way [14]. If an outlier results from a faulty
measurement or a failure during the data acquisition process, it should
be removed from the dataset prior to further analysis of the data.
Table 2
Calculated values quantifying the scale growth in the test pipe during the measurement
campaign.

Date Area [cm2] Area [%] Mean thickness [mm]

2/21/2017 0.4 1.0 0.2
4/26/2017 3.0 7.1 1.5
5/3/2017 3.4 8.1 1.7
5/11/2017 3.2 7.6 1.6
5/19/2017 3.4 8.1 1.7
5/30/2017 5.3 12.6 2.7
6/9/2017 5.3 12.6 2.7
6/16/2017 5.6 13.3 2.9
8/24/2017 9.7 23.1 5.1
9/1/2017 10.0 23.8 5.2
9/15/2017 11.0 26.2 5.8
10/19/2017 12.3 29.3 6.6
11/22/2017 11.6 27.6 6.2
2.6.2. Partial least squares regression
Whereas PCA considers the internal variation in theXmatrix, partial

least squares regression (PLS-R) establishes how this matrix relates to a
response vector y. PLS-R also involves matrix decomposition as de-
scribed in Eq. (1), but in this case, it is a criterium of maximum correla-
tion between X and y which guides the decomposition. Thus, the
components obtained by the PLS-R method are different from the prin-
cipal components found in PCA. The “information” part ofX extracted in
the PLS-R matrix decomposition is connected to the relation between X
and y. This information is used to calibrate a linear model describing the
relationship between X (independent variables) and y (dependent var-
iable) based on the data in a calibration data set containingmeasured X
data and corresponding y values [15].

Various plots providing geometrical representations of the data are
normally used to simplify interpretation and aid in the model calibra-
tion. For example, t-u scatter plots show the “inner relation” between
X and y and are typically inspected to search for outliers. Furthermore,
the number of components to include in the model can be decided by
finding the first minimum value in a residual validation variance plot
[14]. Numerous other plots are also available and can be used as
needed.

In order to evaluate how well the calibrated model will be able to
predict future values of y based on future X measurements, it must be
validated against a test set containing new, independentmeasurements
ofX and y [17]. In test set validation, the calibratedmodel is used to pre-
dict values of y based on input X measurements. The reliability of the
model's predictions can be assessed based on inspection of a scatter
plot of predicted versus measured values of y and calculation of some
diagnostic statistics; the slope, offset and correlation coefficient (r2) of
a linear curve fitted to the points in the scatter plot. Additionally, the
root mean squares error of prediction (RMSEP) can be calculated by
comparing the predicted values of y with the measured values
contained in the validation dataset as described in Eq. (2). The RMSEP
value has the same unit as y and gives an estimation of the error
associated with future predictions by the calibration model [14].

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ŷi;predicted−yi;reference
� �2

n

vuut
ð2Þ

Unscrambler version 10.3 (Camo Software AS, Norway) and
MATLAB (version 9.1.0.441655, R2016b) was used to perform the data
analysis.

3. Results and discussion

3.1. Images obtained by the laser device

A total of 13 images were captured by the laser device throughout
the plant test campaign. When analysing these images, it was found
that the positions of the laser traces sometimes shifted slightly relative
to each other from one picture to the next. This shows that it was not
possible to place the laser device in the exact same position in the
pipe every time an image was captured. To counteract the uneven po-
sitioning of the laser device, some of the images were aligned to ob-
tain the best fit of the laser traces. The further analysis of the images
and the measured data was based solely on the calculations of area
blocked by the scale, as this property should not be affected by the
alignment of the images and thus is more reliable than the statistical
properties described in [10]. Based on the estimated values for the
area of the pipe blocked by scale, a mean scale thickness value was
also calculated for each image. The mean scale thickness value con-
tributes to concretize the scale build-up in the pipe, but it should be
kept in mind that the scale considered in this study does not deposit
in even layers.

Table 2 lists the calculated values describing the area of the test pipe
cross section which was covered by scale as well as the mean scale
thickness based on each of the images obtained in this study. A part of
the pipe cross section was disregarded during calculations of the values
in Table 2 as discussed in Section 2.5 and in [10]. Thus, the values in
Table 2 describe only the scale growth in the area considered when
analysing the images.

Some of the images of the scale in the test pipe obtained by the laser
device are shown in Fig. 2. Table 2 and Fig. 2 show that the laser imaging
methodhas been capable of documenting the growthof scale in the pipe
over time. The images captured by the laser device also describe the dis-
tribution of the scale over the pipe cross section during the test cam-
paign. In general, the scale grew mostly on the side walls of the pipe
and less in the bottom of the pipe. At the start of the test campaign,
some scale had already deposited on the leftwall of the test pipe section,
consecutive to the inner wall of the upstream pot bend. Scaling contin-
ued mainly in this region for some time before significant depositions



Fig. 2. Some of the images of the scale in the test pipe obtained in the test campaign. a) 21.02.17, b) 19.05.17, c) 24.08.17, d) 22.11.17.
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started to form on the right pipewall following the outerwall of the up-
streampot bend. The imagesdonot provide sufficient information tode-
scribe scale growth in the top of the pipe because of the inner pipe
section blocking the view in this area. However, it can be seen from vi-
sual inspection of the images that the inner pipe segment in the top of
the pipe is gradually chocked by the scale. These observations are only
valid for the specific position where the images where captured and
for the specific time period when the test campaign was conducted.
Scale formation could develop in a differentmanner in similar positions
in thepipelineandeven in thesame location at adifferent timeperiod. In
order to make any general conclusions on the distribution of the scale
after a pot bend, further tests from several different locations are
needed.

From visual inspection of the images, wear patterns in the form of
grooves in the scale in the direction of the gas flow, as described in
[4], can be seen. The depth of these grooves seems to increase with
time. Also, several occurrences of lumps of scale forming and later
disappearing were found. The most noticeable example is a lump of
scale that gradually formed in the left lower region of the test pipe
(Fig. 2 c). In Fig. 2 d), the lump has disappeared and a smooth surface
is left where it used to be located. This could be a result of erosion by
the conveyed powder, mechanical chip off of the scale pieces, or a com-
bination of both. The test pipe had to be detached from the pipeline
every time an image was obtained, and it is plausible that pieces of
scale broke off when this was done, especially if scale had grown across
the pipe flanges joining the test pipe to the main pipeline.
3.2. Estimation of scale growth curve based on images

A curve was fitted to the values calculated from the images obtained
by the laser device (Table 2) using the curve fitting tool in MATLAB
(smoothed spline method). Fig. 3 shows a plot of the resulting scale
growth curve, the calculated values of the area of pipe cross section
blocked by scale (Table 2) and the associated pre-treated images for
each calculated value. The scale growth curve was re-sampled to get
one value per day, providing estimations of the scale progression
throughout the test campaign.
3.3. Development of acoustic chemometrics models of scale growth

The analysis of the data measured by the acoustic sensors was con-
ducted in two separate steps. First PCA was used to perform an explor-
atory analysis of the data, then calibration of PLS-R models of scale
growth based on a portion of the data selected in step one was con-
ducted. All variables were mean centred and scaled to unit variance
prior to the data analysis.
3.3.1. Step 1: exploratory data analysis
PCAwasperformed ona dataset containing all the acousticmeasure-

ments obtained during the test campaign in order to get an overview of
themain data structures and look for groupings and outliers in the data.
Score plots for the first component plotted against the second and third
component, respectively, is shown in Fig. 4. The plots in Fig. 4 are based
on data from sensor 1 (S1 in Fig. 1).

Several groupings of measurements can be seen in the plots in Fig. 4,
some groups can be found in both plots and some are only distinct in
one of the plots. Themeasurements in each of these groups were inves-
tigated further to uncover why they differ from the main group. It was
found that a cable had detached from the sensor before the measure-
ments in group 1 were obtained, explaining their deviating positions
in the score plots. The measurements in group 2 were obtained during
the initiation of the test campaign in periods of temporary shutdown
of the pneumatic conveying system from which the measurements
were acquired. Unsurprisingly, thesemeasurements differ substantially
from measurements obtained while powder was transported through
the pipeline. During down-time of the pneumatic conveying system,
varying amounts of powder would be present in the bottom of the
test pipe. As the variations in powder content in the test pipe during
downtimes would create a lot of noise in the measurements, it was de-
cided to conduct measurements only while powder transport was on-
going for the remainder of the test campaign. No clear reasons were
found explaining why the measurement in group 3 is positioned away
from themain group, but the deviation is significant. Themeasurements
in group 1, 2 and 3 were all considered as outliers, and they were re-
moved from the dataset before proceeding to step 2 of the data analysis.



Fig. 3. Scale growth curve fitted by smoothing spline based on calculated values from the images obtained by the laser device.
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There was a temporary break in the acoustic monitoring of the scale
growth for a period during the test campaign (mid-April to mid-May
2017) as some of the equipment used for obtaining the measurements
accidentally shut down. The measurements in group 4 were obtained
prior to this disruption. Only the measurements from the period after
Fig. 4. Score plot for PC-1 vs PC-2 a
the breakdown (mid-May to mid-October 2017), located in group 5 in
Fig. 4, were included in the development of the models in step 2. For
these data, mean values of all measurements from each daywere calcu-
lated to create a dataset with one acoustic spectrum per sensor for each
day of the test campaign.
nd PC-1 vs PC-3, respectively.
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Similar plots as the ones shown in Fig. 4 were also created based on
data from sensor 2 and sensor 3 (S2 and S3 in Fig. 1), and comparable
groupings were found in the analysis of these plots.
3.3.2. Step 2: development of calibration models
Every other measurement obtained during the test campaign were

assigned to a calibration set and a validation set, respectively. PLS-R
modelswere calibrated using themeasurements from sensor 1 and sen-
sor 2 as independent variables and the estimated values for scale
growth calculated in Section 3.2 as the dependent variable. Plots de-
scribing the calibration results of the models based on data from sensor
1 and 2 are shown in Fig. 5 and Fig. 6, respectively. No model was cali-
brated based on the data from sensor 3 as there were too fewmeasure-
ments available; the sensor had accidentally been ripped off the test
pipe in the middle of the test campaign.

A few measurements are located somewhat far away from the
straight regression lines in the X-y Relation Outlier plots (t-u plots) in
Fig. 5 and Fig. 6. These measurements constitute outlier candidates.
However, the deviations of these points are not major, and a closer in-
vestigation of the measurements did not reveal any specific reason
explaining why they differ from the other points. Thus, it was assumed
that the outlier candidates were correctly obtained measurements
representing unusual conditions in the pneumatic conveying system,
and they were not removed from the dataset.
Fig. 5. PLS calibration re
The selection of the number of components to include in each of
the models were done by inspection of the Residual Variation Vari-
ance plots in Fig. 5 and Fig. 6. Three components were used in each
model.

The Predicted vs. Reference plots in Figs. 5 and 6 and the correspond-
ing model statistics confirm that the PLS-R models based on acoustic
measurements from sensor 1 and 2 have been successful in describing
the scale growth in the test pipe in detail. However, the validation tech-
nique used in the study does not constitute a complete test set valida-
tion as a new and independent test set would be required for this and
such a test set was not available. Thus, no conclusion can be made
concerning how well the method would be able to predict new re-
sponse values in real-time given new and independent acoustic mea-
surements at this stage. Further tests are needed to investigate this
matter.

The scale growth predicted by the PLS-R models was compared to
the scale growth curve derived from the images obtained by the laser
device in the Predicted and Reference plots in Figs. 5 and 6. These
plots reveal a very good agreement between the scale growth curves
obtained by the two different methods. Furthermore, it is apparent
that the scale growth curve predicted based on acoustic model might
contain more information about the scale progression during the test
period, indicating periods where the scale growth has intensified or de-
creased and periods where a piece of scale seems to have been removed
from the pipe wall. Examples of the latter were also seen during the
sults for sensor 1.



Fig. 6. PLS calibration results for sensor 2.
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analysis of the images captured using the laser device, as discussed in
Section 3.1. The curve describing the predicted scale growth based on
sensor 1 in Fig. 5 is fluctuating with high amplitudes in the beginning
of the modelled period. The amplitudes of the fluctuations decrease
with time. Most likely, this is an effect of the system becoming more
stiff and robust and less prone to vibration induced by the transducer
as the amount of scale in the pipe increase. As a result, the acoustic re-
sponse measured by sensor 1 decrease. The corresponding curve
Fig. 7. A plot of the scale growth curves based on the acoustic measurem
based on measurements from sensor 2, shown in Fig. 6, did not follow
the same trend; no systematic change was found in the amplitude of
the fluctuations in this case. Sensor 2 was placed on the bottom of the
pipe (Fig. 1), where the acoustic response would generally be lower
than for sensor 1, which was placed on the top of the pipe (Fig. 1),
due to the dense phase conveying of powder through the pipeline.
Large amounts of powder conveyed primarily along the bottom of the
pipeline is the cause of this effect.
ents from sensor 1 and sensor 2 after detrending and smoothing.
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3.4. Further processing of the scale growth curve

In order to highlight the main changes in the scale growth for the
test period covered by the models (i.e., from mid-May to mid-October
2017), further processing of the predicted scale growth curves based
on the acoustic measurements was performed. Linear detrending of
the curves followed by smoothing by moving average (window size
5) was conducted to remove the generally increasing time trend and
focus on the sub trends consisting of changes in the scaling rate. The
processed curves are plotted in Fig. 7.

As can be seen in the plots in Fig. 7, themain trends in the two curves
are coinciding. The curve based on measurements from sensor 1 seems
to have a higher resolution and contain more detailed information
about the scale growth than the corresponding curve for sensor 2. As
discussed in Section 3.3.2, themost likely reason for this is that the con-
veying of powder along the bottom of the pipe during measurements
has resulted in lower acoustic responses for sensor 2. During the test
campaign, various process and other data was collected. In a follow-up
study, the scale growth curve based on sensor 1 measurements was
compared with variations in the data collected in the same test period
to identify variables and process conditions which could influence scal-
ing [11].

4. Conclusions

This paper demonstrates how the active acoustic method can be
combinedwith a laser imagingmethod tomonitor scaling in pneumatic
conveying systems. The results from a five-month long monitoring pe-
riod in which the two methods have been applied is presented, provid-
ing the first ever in-depth study of scale progression in an aluminium
production plant.

The laser device used in this study was at a prototype stage, and the
results showed that constant positioning of the device in the test pipe
has not been possible when obtaining images during the test campaign.
Thus, efforts should bemade to improve theprecision of the device's po-
sitioning function and make the design more robust and stable for fu-
ture applications of the method. Nevertheless, the laser device was
successful in providing reliable reference measurements of the scale
thickness by calculation of the cross-sectional pipe area blocked by the
scale from the images. Additionally, visual inspection of the images of-
fered information about the spatial distribution of the scale growth in
the pipe cross section.

Calibration results indicate that the acousticmethodhas been able to
capture the scale growth in a reliable manner. Models calibrated based
on each of the two sensors showed the same main trends in scale pro-
gression for the monitoring period. Prediction results from the cali-
brated models demonstrated that the scale is generally growing
relatively steadily during the measuring campaign. Some periods of in-
creasing or decreasing scale growth rate as well as periods where scale
seemed to have been removed from the pipe surface were found. These
trends were highlighted by detrending and smoothing of the scaling
curves. The scale growth curves obtained in this study were compared
with data collected during the same test period to investigate which
variables and process parameters could have influence on the scale for-
mation in a follow-up study [11].

Nomenclature
A Maximum number of components that can be extracted from

X
a Number of components extracted from X
Calibration set Dataset containingmeasurements ofX and correspond-

ing measurements of y, used to calibrate models
E Matrix containing X-residuals
GTC Gas treatment centre
HGS Hard grey scale
Offset Offset of the regression curve in a predicted vs. measured plot
Outlier Deviating measurement
n Number of rows in X and y
p Number of columns in X
p Loading vector
PAT Process analytical technology
PCA Principal component analysis
PLS-R Partial least squares regression
r2 Squared correlation coefficient
RMSEP Root mean square error of prediction
Secondary alumina Alumina which has been used for dry scrubbing of

process off-gas
Slope Slope of the regression curve in a predicted vs. measured plot
t Score vector
Validation set Dataset containing measurements of X and correspond-

ing measurements of y, used to validate models
X Multivariate datamatrix, independent variables in calibration
y Response variable, dependent variable in calibration
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