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Abstract: The mangrove ecosystem plays a vital role in the global carbon cycle, by reducing
greenhouse gas emissions and mitigating the impacts of climate change. However, mangroves
have been lost worldwide, resulting in substantial carbon stock losses. Additionally, some aspects
of the mangrove ecosystem remain poorly characterized compared to other forest ecosystems due
to practical difficulties in measuring and monitoring mangrove biomass and their carbon stocks.
Without a quantitative method for effectively monitoring biophysical parameters and carbon
stocks in mangroves, robust policies and actions for sustainably conserving mangroves in the
context of climate change mitigation and adaptation are more difficult. In this context, remote
sensing provides an important tool for monitoring mangroves and identifying attributes such
as species, biomass, and carbon stocks. A wide range of studies is based on optical imagery
(aerial photography, multispectral, and hyperspectral) and synthetic aperture radar (SAR) data.
Remote sensing approaches have been proven effective for mapping mangrove species, estimating
their biomass, and assessing changes in their extent. This review provides an overview of the
techniques that are currently being used to map various attributes of mangroves, summarizes
the studies that have been undertaken since 2010 on a variety of remote sensing applications for
monitoring mangroves, and addresses the limitations of these studies. We see several key future
directions for the potential use of remote sensing techniques combined with machine learning
techniques for mapping mangrove areas and species, and evaluating their biomass and carbon stocks.
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1. Introduction

Mangrove forests are found in the intertidal zone along tropical and subtropical coasts, and play
a vital role in the coastal zone by providing a range of different ecosystem services to coastal
populations [1]. For example, mangrove forests are important in global carbon cycling and the
reduction of atmospheric greenhouse gas (GHG) concentrations [2,3]. Mangroves are efficient
carbon sinks [4] by sequestering carbon in their above-ground [5,6] and below-ground biomass
and sediments [7]. Mangroves are also able to stabilize coastlines and protect the land from erosion.
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Mangrove forests also contribute significantly to the livelihoods of coastal dwellers through fisheries,
sources of timber and firewood, and non-timber forest products [8,9].

Despite their benefits and services, mangroves continue to be threatened by high population
growth and migration into coastal areas, leading to coastal development and increased demand for
aquaculture and agriculture products. The situation is further exacerbated by poor land-use planning,
weak governance, and uncoordinated economic development in the coastal zone. Up to 3.6 million
hectares of mangrove forests may have been lost worldwide between 1980 and 2005 [10], although
rates of loss regionally and globally have reduced in the first decade of the 21st century [11–13].
Mangrove loss releases a substantial proportion of their stored carbon into the atmosphere (Figure 1),
with mangrove deforestation in Indonesia contributing 10–31% of the country’s land-use sector-linked
carbon emissions [14,15].

Figure 1. Major carbon flux pathways in mangrove forests. Modified from http://
thebluecarboninitiative.org/.

Drivers of mangrove deforestation vary regionally, but include conversion to aquaculture,
agriculture (particularly rice and oil palm in West Africa and Southeast Asia), urban development, salt
pond construction, and overexploitation [12,16,17]. Importantly, drivers of deforestation operate at
large spatial scales, and in the past, we have had a poor idea of exactly how much mangrove forest
is being lost and by what driver [18]. We also have little knowledge of the impact of deforestation
on ecosystem services such as carbon at large spatial scales. Standardized remote sensing techniques
offer a way to reduce uncertainty in estimates of mangrove ecosystem service loss, and are needed for
the monitoring, reporting, and verification (MRV) of international conservation programs that protect
carbon, such as Reducing Emissions from Deforestation and forest Degradation (REDD+).

Remote sensing offers opportunities for mapping the biophysical and structural parameters of
mangroves (including biomass and carbon stocks) with lower cost, faster speed, and at a wider scale
than field measurements. The recent application of machine learning algorithms and data integration to
mangrove mapping has contributed to a number of new publications that shed light on various aspects
of the mangrove ecosystem, especially those that have data with high dimensionality [19]. As this
is an emerging field, machine learning techniques for discriminating mangrove species, monitoring
mangrove structures, and estimating mangrove biomass are not well documented, and the current
literature does not critically analyze the advantages and disadvantages of these approaches.

This review provides a critical overview of the key studies that have been undertaken after the
year 2010 on a variety of remote sensing applications for monitoring mangrove forests, highlighting the
limitations of current studies and future directions for the use of remote sensing techniques combined
with state-of-the-art machine learning algorithms. This review updates previous reviews of mangrove
remote sensing by Heumann [20], Kuenzer et al. [21], and Lucas et al. [22], but importantly, it focuses on
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the methodologies that discriminate mangrove species, quantify biophysical parameters and structure,
and estimate mangrove biomass.

2. Remote Sensing of Mangrove Species

The identification of mangrove species is important for management, as understanding the
characteristics of each species can provide necessary information on geomorphic and environmental
conditions and changes [23]. However, mapping mangrove species still remains a challenge [20,21],
as it is difficult to map individual trees that may be smaller than the resolution of the imagery,
and mangrove tree species are often found in mixed communities with closely related species and
genera that exhibit a similar spectral reflectance. We review the current approaches used for identifying
and mapping the spatial distribution of mangrove species using traditional and machine learning
methods based on various optical, synthetic aperture radar (SAR), and hyperspectral sensors, and a
fusion of optical and SAR data.

2.1. Traditional Approaches to Discriminate Mangrove Species

While traditional image classification approaches have struggled to discriminate mangrove
species due to spatial and spectral constraints, very high spatial resolution data and novel techniques
have shown success in mapping mangrove species (Table 1). High spatial resolution images can be
space-borne, i.e., IKONOS, Quick Bird, GeoEye, and WorldView, all of which feature spatial resolution
of less than five m. The spatial resolution of the panchromatic data of WorldView, Quick Bird, IKONOS,
and GeoEye are 0.50 m, 0.61 m, 0.83 m, and two meters, respectively. Visual interpretation can be
used for both aerial photographs and high spatial resolution satellite images, i.e., WorldView-2.
However, the overall accuracy employed by these techniques is traditionally quite low, ranging
from 42% to 68% [24]. Pixel-based image classification approaches are often utilized for identifying
mangrove species’ distribution, especially for very high spatial resolution sensors such as QuickBird
and IKONOS data. Using pixel-based maximum likelihood classification (MLC) on these data can
produce products with an accuracy ranging from 63% to 82% [25]. Pixel-based fuzzy classification
approaches can achieve an overall accuracy of 72% for discriminating several mangrove species using
pan-sharpened QuickBird data, or less than 60% using hyperspectral CASI-2 data [26].

Recently, object-based image classification approaches using image segmentation such as
object-based image analysis (OBIA) have been frequently employed for mapping mangrove species.
Several studies have concluded that OBIA approaches can provide higher overall accuracy than
pixel-based approaches for detecting mangrove species communities [26–28]. Hyperspectral datasets
such as the EO-1 Hyperion and the CASI-2 play an important role in discriminating mangrove
species [27,29]. In most cases, OBIA approaches outperformed traditional pixel-based methods for
mapping mangrove species using high spatial resolution and hyperspectral data (see Table 1). A hybrid
method based on OBIA with a lacunarity spatial measure or machine learning algorithm can improve
accuracy assessment when mapping mangrove species to >80% for medium spatial resolution imagery
i.e., Landsat, and >94% for higher resolution Pléiades-1 imagery [30]. Feature extraction from very high
spatial resolution imagery also improves image classification for discriminating mangrove species and
communities; grey-level co-occurrence matrix (GLCM) is increasingly used for classifying mangrove
species, showing the promising accuracies of >81% using IKONOS and ~89% using WorldView-2
imagery [24].

Remote sensing products beyond optical imagery have also been used to discriminate
mangrove species. A recent study by Pham et al. [31] showed that the Advanced Land Observing
Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data can be employed
for classifying mangrove species in Vietnam using an object-based logistic model tree (LMT) algorithm
with an accuracy of >80%. A more recent study conducted by Valderrama-Landeros et al. [32] showed
the potential use of normalized difference vegetation index (NDVI) pixel-based classifier for mapping
mangrove species in Mexico using different remote sensing data sources from medium to very high
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spatial resolution (i.e., Landsat-8 OLI, SPOT-5, Sentinel-2A, and WorldView-2) and concluded that the
higher spatial resolutions produce higher accuracy (Table 1).

Table 1. Traditional remote sensing approaches to discriminate mangrove species.

Technique Used Sensor Location Performance Reference Year

Unsupervised
ISODATA classifier IKONOS Guinea, West Africa 78% [33] 2010

NDVI
pixel-based methods

Landsat 8 OLI,
SPOT-5,

Sentinel-2,
WorldView-2

Mexican Pacific

64%
75%
78%
93%

[32] 2017

Pixel-based methods
Linear spectral

unmixing (LSU)
Hyperspectral CASI-2 Southeast

Queensland, Australia 56% [26] 2011

K-means
cluster analysis Hyperspectral Surdarbans, Indian [34] 2013

Subpixel classification/
Constrained and

unconstrained LSU
Hyperspectral Hyperion Sundarbans Delta, India 55–74% [35] 2013

Visual
interpretation methods

Aerial photographs
WorldView-2 Darwin, Australia 68%

42–58% [24] 2014

Object-based
image classifier

Hyperspectral Hyperion
Hyperspectral CASI-2

Mai Po Hong Kong
Southeast

Queensland, Australia

88%
69–76%

[27]
[26]

2014
2011

Object-based
image classifier Rapid Eye and LiDAR South Sumatra Indonesia N/A [36] 2016

Maximum
likelihood classifier

Ikonos, Geoeye,
QuickBird,

and WorldView-2
Bali, Indonesia 66–80% [25] 2016

Hybrid methods
Landsat

Landsat and
Pléiades-1

Lampi Island, Myanmar
Guangzhou city, China

88–92%
Over 80%

94.2%

[37]
[30]

2016
2018

Pixel-based methods
Maximum

likelihood algorithm
ALOS AVNIR-2 East Malaysia 80% [38] 2018

Object-based logistics
model tree

(LMT) algorithm

ALOS PALSAR and
ALOS-2 PALSAR-2 Hai Phong city, Vietnam 80.2–83.8% [31] 2018

2.2. Machine Learning Approaches for Mapping Mangrove Species

Recent advances in computer vision, pattern recognition, and artificial intelligence (AI)
technologies have resulted in the development of new machine learning techniques, allowing the
discrimination of mangrove species with higher accuracy than traditional classification techniques
(Table 2). Machine learning techniques can be employed for classifying mangrove species using
both optical [24,30,39,40] and hyperspectral imagery [41,42], as well as SAR data [31,39]. Several
classic machine learning algorithms such as decision trees (DT), i.e., CART (classification and
regression tree), and C4.5 algorithms, which are used in other ecosystems, are rarely used for classifying
mangrove species [30,39]. Instead, mangrove researchers tend to use support vector machine (SVM),
artificial neural network (ANN), and random forests (RF) for classifying mangrove communities,
as these techniques are able to construct non-parametric classification models that do not rely on
any assumption about data distribution [30,39,40,43,44]. For instance, Wang et al. [30] compared
the performance of selected machine learning algorithms for mapping artificial mangrove species
using Pléiades-1 data. This study showed that among the common machine learning algorithms,
SVM produced higher overall accuracy for pixel-based image analysis, while RF yielded the highest
performance for object-based image classification (see Table 2). Algorithms such as SVM can classify
mangrove species using pan-sharpened WorldView-2, producing accuracies over 87% [24] and using
Satellite Pour l’Observation de la Terre (SPOT) and Gaofen-1 (GF-1) time-series data with overall
accuracies ranging from 67% to 92% [40].
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Machine learning techniques are particularly promising for discriminating mangrove species
when they use a combination of textural and differential spectral features [45]. For example,
clustering-based neural networks can discriminate certain mangrove species to an overall accuracy
of >90% using high-resolution multispectral imagery combined with textural information from the
panchromatic band. Wong and Fung [42] compared selected machine learning algorithms for mangrove
species classification at the Mai Po Ramsar site (Hong Kong) and suggested that a combination of
optical and radar can improve the classification accuracy. A more recent study by Zhang et al. [39]
reported that a combination of optical and SAR data can improve the overall accuracy and Kappa
coefficient for discriminating mangrove species using rotation forest (RoF). This study also compared
several machine learning algorithms for classifying mangrove species, showing that RoF performs
well (85.23%) and outperforms SVM and RF algorithms (Table 2).

Table 2. Machine learning approaches to discriminate mangrove species.

Technique Used Sensor Location Performance Reference Year

Artificial neural network (ANN)
SPOT and Gaofen-1
EO-1 Hyperion and

Envisat ASAR

Mai Po Ramsar Site,
Hong Kong

Mai Po Ramsar Site,
Hong Kong

63%–92%
72%–74%

[40]
[42]

2018
2014

Rotation forest (RoF) WorldView-3
and Radarsat-2

Mai Po Ramsar Site,
Hong Kong 85.2% [39] 2018

Random forest (RF)

Landsat
Pléiades-1

WorldView-3
and Radarsat-2

Darwin Australia
Guangzhou city, China

Mai Po Ramsar Site,
Hong Kong

82%
82.4%
84.1%

[43]
[30]
[39]

2017
2018
2018

Sentinel-2, Landsat-8,
Pléiades -1

Hainan island,
Dongzhaigang, China 68.57%–78.57% [44] 2018

k-nearest neighbor (NN)

Landsat TM, ALOS
AVNIR-2, WorldView-2

& LiDAR
UAV Hyperspectral

Queensland, Australia &
Karimunjawa Central

Java, Indonesia
Zhuhai City, Guangdong,

China

53%–59%
76.1%–82.1%

[28]
[46]

2015
2018

Support Vector Machines (SVM)

Pan-sharpened
WorldView-2
WorldView-3

Pléiades-1
SPOT and Gaofen-1
UAV hyperspectral

and Pleiades-1B

Darwin, Australia
Mai Po Hongkong
Guangdong, China
Mai Po Ramsar Site,

Hong Kong
Setiu Wetland, Malaysia

87%–89%
83.8%–94.4%

79.6%
67%–92%

82.4%–88.7%
77.2%–94%

[24]
[45]
[30]
[40]
[47]

2014
2016
2018
2018
2018

Sequential forward selection (SFS)
using spectral angle

mapper (SAM)

Hyperspectral
EO-1 Hyperion

Thammarat Province,
Thailand 86–92% [41] 2013

Decision tree (DT)
Pixel-based methods

Object-based methods

EO-1 Hyperion and
Envisat ASAR

Landsat and Pléiades-1

Mai Po Ramsar
Site,Hong Kong

Mai Po Ramsar Site,
Hong Kong

46%–71%
65.7%
75.9%

[42]
[30]

2014
2018

3. Modeling Mangrove Characteristics and Structure

Various remotely sensed data have been used to better understand the spatial ecology and
characterize the biophysical parameters of mangroves [22], such as tree and canopy heights, basal area
(BA), crown diameter, tree density, leaf area index (LAI), and leaf pigments of mangrove ecosystems
i.e., nitrogen and chlorophyll concentrations. Mangrove biophysical parameters have been mapped
using passive spectral data, and active remote sensing technologies such as light detection and ranging
(LiDAR) and synthetic aperture radar (SAR) have been widely used to map and estimate these
structural parameters of mangrove ecosystems from various satellite, airborne, and unmanned aerial
vehicle (UAV) platforms. Multispectral data can determine parameters such as LAI and leaf pigments
(chlorophyll and nitrogen concentrations), whereas SAR and LiDAR data can estimate tree and canopy
height, basal area, and crown diameter. Table 3 summarizes recent studies from 2010 to 2018 that
employed spectral, optical, LiDAR, and SAR data to characterize, measure, and map the biophysical
parameters of the mangrove ecosystem.
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Table 3. Examples of recent studies that examined mangrove biophysical parameters using
remote sensing.

Sensor Task Location Performance Reference Year
Passive sensors

QuickBird, IKONOS
Tree height, diameter at breast
height (DBH), leaf area index

(LAI), basal area (BA)
Guinea, West Africa N/A [33] 2010

Landsat TM Tree height, DBH, LAI Sinaloa, Mexico N/A [48] 2011

Hyperspectral data Leaf pigments: chlorophyll a,
b, and carotenoid content Mexican Pacific R2 = 0.46–0.87 [49] 2012

Hyperspectral data Leaf chlorophyll a Mexican Pacific R2 = 0.68–0.80 [50] 2013
Hyperspectral data Leaf nitrogen concentration Mexican Pacific R2 = 0. 71–0.91 [51] 2013
Hyperspectral data

HyMap Foliar nitrogen concentration Mahakam delta of East
Kalimantan, Indonesia R2 = 0. 48–0.74 [52] 2013

Hyperspectral data
HyMap Foliar nitrogen concentration Berau Delta, Indonesia R2 = 0. 67

RMSE = 0.17
[53] 2013

Worldview-2 Tree canopies and crowns Moreton Bay,
Queensland Australia N/A [54] 2014

Landsat-8 OLI Leaf chlorophyll Yucatan Peninsula, Mexico R2 = 0.70
RMSE = 1.5 g m−2 [55] 2015

Worldview-2 Leaf chlorophyll, LAI Darwin, Australia R2 = 0.44–0.50
RMSE = 0.6–0.8 g m−2 [56] 2015

WorldView-2 and Landsat TM LAI Florida, United States (USA) R2 = 0.60–0.84
RMSE = 0.36–0.67

[57] 2015

High-resolution stereo-imagery
from WorldView-1 Canopy height Southern Mozambique R2 = 0.81

RMSE = 1.4 m
[58] 2015

WorldView-2, ALOS AVNIR-2
and Landsat TM LAI

Moreton Bay, Australia and
Karimunjawa

Island, Indonesia

R2 = 0.50–0.83
RMSE = 0.54–1.31

[59] 2016

WorldView-2 LAI Rapid Creek,
Northern Territory, Australia

R2 = 0.49–0.64
RMSE = 0.75–0.78

[60] 2016

High-resolution stereo-imagery
from WorldView-1 Canopy height Zambezi

Delta, Mozambique
R2 = 0.73

RMSE = 3.9 m
[61] 2016

MODIS Terra, Landsat and
Sentinel-1 Leaf chlorophyll, LAI Coastal Odisha, India R2 = 0.47–0.61

RMSE = 0.76–1.47
[62] 2017

WorldView-2 LAI Dawei Bay, Guangdong
province, China

R2 = N/A
RMSE = 0.45–0.51

[63] 2017

WorldView-2 LAI, tree height Guangxi province, China R2 = 0.64–0.82
RMSE = 0.42–0.54

[64] 2017

Sentinel-2 LAI Philippines R2 = 0.64 [65] 2017

RapidEye, PlanetScope, Sentinel-2 LAI, Leaf chlorophyll Masinloc,
Zambales, Philippines R2 = 0.80–0.92 [66] 2018

Hyperspectral data
EO-1 HYPERION Leaf chlorophyll Quanzhou, China R2 = 0.72–0.82 [67] 2018

MODIS
Phenological parameters

climatic variables, salinity,
and litterfall

Yucatan peninsula,
southeast Mexico R2 = 0.49–0.77 [68] 2018

Active sensors

ICESat/GLAS and SRTM Canopy height and
(3D) structure Africa R2 = N/A

RMSE = 3.55 m
[69] 2013

ALOS PALSAR LAI, tree height, BA, DBH,
tree density Isla La Palma, Pacific coast R2 = 0.65–0.79

RMSE = 0.34–0.51
[70] 2013

Radarsat-2 LAI, BA, DBH, tree density Isla La Palma, Pacific coast R2 = 0.53–0.70 [71] 2013

Hyperpectral and SAR data LAI Mai Po Ramsar Site of Hong
Kong

R2 = 0.68–0.78
RMSE = 0.2

[72] 2013

LiDAR Crown diameter and
tree height

Samut-Prakan
province, Thailand

R2 = 0.75–0.80
RMSE = 1.4–1.6 m

[73] 2013

TanDEM-X Pol-InSAR data Tree canopy height
Campeche, Mexico,

and Zambezi
Delta, Mozambique

R2 = 0.72– 0.84
RMSE = 1.1–1.7 m

[74] 2015

Radarsat-2 (C band) Tree height, DBH, and
basal area (BA) Amazon River, Brazil

R2 = 0.63–0.81
R2 = 0.52–0.79
R2 = 0.46–0.67

[75] 2015

ALOS PALSAR Tree and canopy height, DBH,
and BA

Southern coast of São Paulo,
Brazi R2 = 0.67–0.73 [76] 2016

Landsat OLI and ALOS PALSAR Canopy height Mimika district,
Papua, Indonesia

R2 = 0.80
RMSE = 2.7 m

[77] 2016

TanDEM-X, SRTM and
airborne LiDAR Canopy height Zambezi Delta,

Mozambique
R2 = 0.69–0.71

RMSE = 2.5–5.8 m
[61] 2016

UAV borne LiDAR Canopy height, canopy cover,
and LAI Guangdong province, China R2 = 0.81

RMSE = 1.1 m
[78] 2017

LiDAR and TanDEM-X Canopy height Everglades National
Park, USA

R2 = 0.85
RMSE = 1.9 m

[79] 2017

ALOS-2 PALSAR-2 Tree height Hai Phong city, Vietnam R2 = 0.61 [80] 2018

TanDEM-X InSAR data Tree height Kanda and Pongara
National Parks, Gabon

R2 = 0.98
RMSE = 2.7 m

[81] 2018

ALOS PRISM Canopy height
Mimika Papua and

Mahakam Delta Indonesia,
Sundarbans, Bangladesh

R2 = N/A
RMSE = 3.6–4.1 m

[82] 2018

SRTM and LiDAR Canopy height Globally R2 = 0.73
RMSE < 3 m

[83] 2019
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3.1. Relationships between Biophysical Parameters of Mangroves and Spectral Remotely Sensed Data

The key issue for the use of multispectral remotely-sensed data is to understand the correlation
between the spectral reflectance of mangrove forests and their biophysical parameters. Spectral data
ranging from low resolution (i.e., MODIS, 250 m), medium resolution (i.e., Landsat TM, Landsat OLI,
30 m), and high resolution (ALOS AVNIR-2, Sentinel-2, SPOT, ~10 m) to very high spatial (Rapid Eye,
QuickBird, IKONOS, WorldView-2, ~2 m) resolutions have been used to map the various biophysical
parameters of mangrove forests. In most cases, higher spatial resolution spectral data often produces a
higher accuracy when modeling parameters such as LAI [56,57] and leaf chlorophyll [56]. Spectral
remote sensing is effective at retrieving the leaf pigments such as chlorophyll a, b, and nitrogen
concentrations [49–53]. Recently, Kamal, Phinn, and Johansen [59] investigated the ability of different
optical sensors such as WorldView-2, ALOS AVNIR-2, and Landsat TM for measuring and monitoring
mangrove LAI, and showed that ALOS AVNIR-2 data yields the highest accuracy for the LAI estimation
of mangrove ecosystems in Karimunjawa Island, Indonesia. More recently, Sentinel-2A data have
been employed to retrieve and model mangrove biophysical parameters such as LAI, leaf chlorophyll,
and tree density [66,84]. Mangrove canopy heights can also be estimated using the high-resolution
stereo-photogrammetry of WorldView-1 data in the Mozambique [58,61].

A wide range of studies have been conducted using different remote sensing approaches
to estimate the biophysical parameters of mangroves, which can be grouped into two main
categories: radiative transfer models and empirical–statistical regression models [85]. The former
are developed to inverse forest biophysical parameters [86,87], while the latter are commonly
utilized to retrieve these parameters based on parametric statistical and non-parametric machine
learning algorithms [53,56,60,63]. Among the various biophysical parameters, leaf area index (LAI)
is considered an important biophysical parameter for understanding mangrove forest conditions.
Our review of the current literature shows that the methods that have been used for estimating the
biophysical parameters of mangrove ecosystems using remotely sensed data are diversified from
multilinear regression models to machine learning approaches such as: artificial neural networks
(ANN), support vector machines (SVM), and random forests (RF) [56,63]. In most cases, machine
learning techniques i.e., ANN, SVM, and RF outperform parametric regression models in estimating
the leaf pigments of mangrove forests. For instance, Zhang, et al. [51] reported that the ANN model
produced better performance (R2 = 0.91) for the N concentration estimations of black mangrove
(A. germinans) than the stepwise multiple linear regression model (SMLR) (R2 = 0.71). Zhu et al. [63]
suggested that machine learning can be used to accurately estimate the LAI of mangrove forests and
RF algorithms, outperforming other algorithms in estimating LAI across a mangrove forest.

3.2. Relationships between Biophysical Parameters of Mangroves and SAR and LiDAR Data

Active remote sensing techniques such as SAR and LiDAR have distinct advantages over spectral
data when mapping the biophysical parameters of mangroves. Firstly, SAR sensors can remotely
sense the land surface through clouds, which is a perennial problem when mapping mangroves in the
tropics. Secondly, they can effectively measure forest structure such as biomass and canopy crowns,
where passive data must indirectly infer these attributes from their spectral response. The recent
launch of the Sentinel-1 (SAR) missions offers a new opportunity to estimate the biophysical structure
parameters of mangrove ecosystems [65,66].

Wavelength and Polarization of SAR Data

SAR data can be acquired at different wavelengths, including X, C, L, and P bands with different
polarizations, which have a wide range of azimuth resolutions (Figure 2). Each band has its own
characteristics and capability related to forest stand parameters [88]. Short wavelengths such as
the X-band (3.75–2.5 cm) and C-band (7.5–3.75 cm) strongly interact with the surface of the canopy,
whilst long wavelengths such as the L-band (30–15 cm) and P-band (68 cm) penetrate into the canopy
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and reflect information on branches and stems [89–94]. The longer wavelengths are more strongly
correlated with forest biomass and other biophysical parameters than short wavelengths [95].

Figure 2. Wavelength illustration of multi-frequency radar system through vegetation. Source:
modified from the European Space Agency (ESA ).

The polarization of SAR plays an important role in understanding the interactions between
electromagnetic waves and reflectors. There are two ways of emitted a signal in horizontal (H) or
vertical (V) polarizations [96].

Different frequencies (C/X/L/P bands) of microwave radar have been employed to examine the
biophysical parameters of mangrove ecosystems using airborne multi-polarimetric SAR (PolSAR) and
polarimetric SAR interferometry (Pol-InSAR) data. Several studies have shown relationships between
the backscatter coefficients of the ALOS PALSAR L-band and Radarsat-2 C-band and mangrove
structural parameters such as tree height, diameter at breast height (DBH), basal area (BA), LAI,
and stem density. For instance, significant negative correlation coefficients were observed between
the HH backscatters of Avicennia germinans and biophysical parameters such as tree stand height, BA,
and mean DBH [70]. In contrast, strong positive significant correlation coefficients were observed
between the cross-polarization HV backscatter and LAI of mangrove forest stands. Pereira, Kampel,
and Cunha-Lignon [76] showed that ALOS PALSAR L-band imagery can be used to characterize tree
and canopy height, as well as the DBH of mangrove forests with satisfactory results. Kovacs et al. [71]
and Cougo et al. [75] concluded that Radarsat-2 C-band at VH and VV polarizations can be used to
estimate the LAI, stem density, BA, and DBH of several mangrove species with differing structures,
such as Rhizophora mangle, Avicennia germinans, Avicennia schaueriana, and Laguncularia racemosa in
the Amazon River, Brazil. Recent studies indicated that a strong correlation was observed between
biophysical parameters such as the tree height, DBH, biomass, crown diameter, and crown area of
several mangrove species and backscatters at dual HH and HV polarizations of ALOS-2 PALSAR-2
L-band data [5]. The stepwise multiple regression models were commonly used to estimate LAI based
on quad polarization texture parameters derived from the grey-level co-occurrence matrix (GLCM) of
the Radarsat-2 C-band data [71].

Active remote sensing techniques can also be used to estimate tree height compared to
ground elevations. For example, Pol-InSAR has been used to estimate forest height through the
inversion of a scattering model of the forest canopy [61,97]. Mangrove tree height also shows a strong
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correlation with interferometric coherence using TanDEM-X InSAR data. These results show the
sensitivity of the InSAR inversion to mangrove canopy heights, and choosing an appropriate baseline
elevation is required for the estimation of mangrove forest canopies. Additionally, multi-baseline
InSAR inversion models can produce accurate estimates of mangrove heights [81].

LiDAR has been increasingly used to estimate mangrove tree stand diameters (Table 3), and can
be combined with TanDEM-X to estimate mangrove canopy height [61] and tree height [73,81,98].
Full waveform LiDAR is able to map three-dimensional (3-D) vegetation structures because it can
penetrate the forest canopy [78], unlike passive optical sensors. Thus, LiDAR is effective when
combined with optical data—i.e., Landsat 8 OLI [99], Rapid Eye [36], and SAR data—to map the canopy
height and biomass of mangrove forests [79,100]. Several studies found the potential use of LiDAR and
the Shuttle Radar Topography Mission (SRTM) global digital elevation model (DEM) for estimating
the canopy height of mangrove forests [83,100] and tree height using calibration equations [101].

4. Estimating Mangrove Biomass Using Remote Sensing

Mangrove structure influences other vegetation characteristics such as above-ground
biomass (AGB). Understanding the distribution of mangrove AGB is important in order to estimate
the above-ground carbon pool [102]. Globally, mangroves store 1.23 Pg of carbon in their biomass [15],
and the ‘blue carbon’ sequestered and stored by such coastal ecosystems has become an important part
of the international climate change agenda as a potential method of mitigating anthropogenic climate
change emissions [103,104]. Therefore, information on AGB and carbon is required in national carbon
accounting (e.g., nationally determined contributions linked to the Paris Climate Agreement) and for
carbon credit schemes that pay for forest carbon stocks in order to incentivize their conservation [105].

Numerous studies have developed methods to estimate mangrove AGB based on the relationship
between the biophysical parameters of forests or plantations such as DBH, BA, tree height, crown
cover, and age [105–108]. Field-based biomass surveys have been conducted in mangrove forests
for decades [109–112], and various studies have established allometric equations to estimate
mangrove AGB from in situ measurements [113] and inventory data on stem weights, trees height,
and DBH [111,114]. However, these studies are based on small-scale, plot-based research, and can be
influenced by site selection biases. Additionally, other factors such as tidal inundation and time and
labor constraints may lead to difficulty in estimating mangrove structure and biomass on a large scale
in the field [2,115]. Remote sensing approaches have shown their effectiveness for assessing mangrove
AGB at large scales. These methods are becoming popular for estimating forest AGB due to their ability
to capture spatial variation in biomass and allow repeatable monitoring in remote regions [116–118].
Remote sensing techniques have numerous advantages in estimating above-ground biomass (AGB)
over traditional field-survey measurement approaches, as they can estimate forest AGB at different
scales [119].

Methods used to estimate mangrove AGB include parametric regression models [113,120] and
non-parametric machine learning approaches [5,6,121]. Recently, machine learning approaches have
been proven to be effective for modeling mangrove AGB biomass using multispectral imagery [121]
and SAR data [6,122,123], as they often outperform the parametric regression models.

4.1. Mangrove Biomass Estimation Using Optical Data

Optical remotely sensed data especially high spatial resolution (HR) and very high spatial
resolution (VHR) data may play a crucial role in assessing the AGB of mangroves. Recent studies
have used HR and VHR optical data such as LISS IV, SPOT 5, IKONOS, RapidEye, WorldView-2,
and Quick-Bird for AGB estimation in mangrove forests [67,106,123–125]. Optical remote sensing data
can be used to estimate AGB with different parametric approaches, including multiple regression
models and non-parametric sophisticated machine learning approaches such as support vector
machines and neural networks [121,126], and can also be estimated from canopy parameters such
as crown diameter [127,128]. For instance, Jachowski et al. [121] used machine learning trained on
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Geoeye-1 and Landsat data to estimate the AGB and the below-ground biomass (BGB) of a mangrove
in Southwest Thailand with a promising R2 result of 0.66. Friess et al. [129] employed generalized
linear models (GLMs) to predict AGB and BGB biomass in mangroves across the entire nation of
Singapore using two-meter Pleiades data and associated field measurements. This method was more
accurate than using field data alone, because Singapore’s mangroves show substantial variation in
the geomorphic setting and the degree of degradation experienced, which significantly influences the
spatial distribution of AGB across the country.

Hirata et al. [106] showed the use of Quick-Bird and multispectral data to estimate the AGB of
four mangrove species in the coastal zone of Southern Ranong province (Thailand). The regression
analysis results showed that the biomass derived from the field survey and estimated biomass
from Quick-Bird data reached R2 = 0.65. A recent study reported by Pham and Brabyn [123] in
Vietnam combined spectral, vegetation association type, texture, and vegetation indices to model
AGB. Nevertheless, stand AGB estimates based on Quick-Bird data can be underestimated due
to a lack of data availability on individual mangrove species biomass and the crowns of large
trees [106]. Additionally, there are several drawbacks of using high spatial resolution data. The first
drawback is that forest canopy complexity can affect the generation of predicted AGB models.
Secondly, high spectral resolution data often lack shortwave infrared data. This is a useful wavelength
for estimating forest AGB, as shortwave-infrared wavelengths are sensitive to forest biomass [130–132].
However, high-resolution data can also be more expensive and require more resources to process,
which are two important factors that limit the application of high spatial resolution data for AGB
retrieval at large scales [119].

Recent launches of Sentinel-2A, 2B optical sensors have provided more opportunities for
estimating mangrove AGB in the tropics. For instance, Castillo et al. [65] and Baloloy et al. [66]
compared the performance of different optical sensors and concluded that Sentinel-2A data showed a
promising result (R2= 0.92) for the estimation of mangrove forest AGB in the Philippines. To date, a few
studies have employed these new satellite sensors for estimating mangrove AGB at the species level.
Thus, more research needs to be undertaken to clarify the potential and limitations of the new optical
sensors for the AGB estimation of mangrove species derived from high to very high spatial resolution
data in the future.

4.2. Biomass Estimation for Mangrove Forests Using SAR Data

Active sensors such as SAR offer unique benefits that have several advantages over optical
sensors [95], including day and nighttime capability (SAR is independent of intensity and sun
illumination angle); data acquisition in all weather conditions (including cloud cover; penetration
capability through vegetation); sensitivity to surface roughness, dielectric properties and moisture;
and sensitivity to wave polarization and frequency.

While SAR data is useful for modeling structure and biomass, it suffers from saturation. The level
of saturation depends on the wavelength (C, L, or P bands), polarizations (HH, HV, VH, and VV),
and the characteristics of ground conditions. Shugart et al. [133] showed that the L-band saturates at
around 100–150 Mg ha−1, whilst the P-band could be sensitive for biomass estimation at a saturation
level of 100–300 Mg ha−1 [134]. The saturation level of the AGB estimation in a mangrove ecosystem
using L-band SAR data was at over 100–150 Mg ha−1 depending on the tidal inundation level of
different mangrove species in tropical and subtropical climates [6,135].

Previous studies indicated that SAR data plays a crucial role in AGB retrieval, especially in the
tropics where cloud conditions occur frequently. Nevertheless, SAR image processing requires more
skills, specific software, and scientific knowledge, and is time consuming due to the many steps
involved, such as pre-processing and noise removal. In addition, the long wavelengths, i.e., ALOS-2
PALSAR-2 L-band SAR data, may be costlier than the short wavelengths i.e., RADARSAT C-band.
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There are two main approaches to estimate mangrove AGB using SAR—backscatter coefficient
extraction and polarimetric SAR interferometry (Pol-InSAR)–with the latter based on the coherent
combination of both polarimetric and interferometric observables.

4.2.1. Backscatter Coefficient Extraction for Mangrove Biomass Estimation

The most common method for biomass estimation uses regression based on extracted backscatter
coefficients and field survey biomass measurements (Table 4).

Table 4. Methods used for above-ground biomass (AGB) estimation using backscatters.

Year Research Study Sensor/SAR Dataset Study Site Model Performance /Range
of Value

2011 [90] ALOS PALSAR,
TerraSAR-X band

Central Kalimantan,
Borneo, Indonesia Regression model R2 = 0.43–0.53

AGB ~ 600 Mg ha−1

2012 [136] ALOS PALSAR Mozambique, Africa BagSGB model R2 = 0.90
AGB = 4.0–91.1 Mg ha−1

2013 [137] ALOS PALSAR Western Siberia Backscatter water
cloud model

R2 =0.35–0.49
AGB = 30–190 Mg ha−1

2014 [107] ALOS PALSAR Matang
Forest, Malaysia Regression models R2 = 0.43–0.62

AGB = 3.0–378.3 Mg ha−1

2014 [138] ALOS PALSAR Quang Ninh, Ca Mau,
Kien Giang of Vietnam Regression models R2: N/A

AGB ~ 150 Mg ha−1

2015 [75] RADARSAR-2 Amazon River, Brazil Regression models R2 = 0.52–0.79
AGB = 100–400 Mg ha−1

2017 [5] ALOS-2 PALSAR-2 Hai Phong, Vietnam Regression models R2 = 0.51–0.64
AGB = 27.6–209.2 Mg ha−1

2017 [79] TanDEM-X band
Everglades

NationalPark, South
Florida, USA

Regression models R2 = 0.85
AGB ~ 250 Mg ha−1

2017 [122] ALOS-2 PALSAR-2 Coastal area, Hai
Phong city, Vietnam

Multilayer perceptron
neural

networks (MLPNN)

R2 = 0.78
AGB = 2.8–298.9 Mg ha−1

2018 [6] ALOS-2 PALSAR-2 Mangrove
plantation, Vietnam

Support vector
regression (SVR)

R2 = 0.60
AGB = 36.2–230.1 Mg ha−1

2018 [65] Sentinel-1 C-band SAR Honda Bay,
Philippines

Support vector
regression (SVR)

R2 = 0.67
AGB ~ 180 Mg ha−1

2019 [139] Sentinel-1 C-band
Sine Saloum and

Casamance
Deltas, Senegal

Support vector
regression (SVR)

R2 = 0.90
AGB = 2.51–37.4 Mg ha−1

Regression analysis is the most common method used to estimate the AGB of mangrove forests.
This method was investigated by several authors in different case studies in French Guiana,
Malaysia [107], and Vietnam [5,138,140]. More recently, machine learning techniques have been
used for mangrove AGB estimation. For instance, the AGB of Sonneratia caseolaris was estimated
by the multilayer perceptron neural networks (MLPNN) model with leave-one-out cross-validation
technique, showing a promising result with R2 = 0.78 and the model-estimated AGB ranging between
2.78–298.95 Mg ha−1 [122]. A recent study used the Sentinel-1A imagery in the retrieval and mapping of
mangrove biomass in Honada Bay in the Philippines [66]. Recent research using L-band ALOS PALSAR
to estimate the AGB of the Matang mangrove in Malaysia found that HV backscatter gave the best
correlation coefficient between polarimetric ALOS PALSAR backscatter and AGB for three dominant
species: Rhizophora apiculata, Avicennia alba, and Bruguiera parviflora. HV backscatter coefficients became
saturated at AGB estimates exceeding 100 Mg ha-1, and the error of the estimation increased when the
AGB exceeded 150 Mg ha−1 [107]. This can limit the utility of SAR for quantifying mangrove biomass,
because the average AGB may exceed this [4] for many mangrove types.

4.2.2. Biomass Estimation using Interferometry (InSAR) and Pol-InSAR Techniques

Interferometry is a technique based on interference, where two waves superimposed lead to a
wave of greater or lower amplitude, and is used in remote sensing through. Interferometric synthetic
aperture radar (InSAR) and polarimetric interferometric SAR (Pol-InSAR) techniques use at least
two SAR images in the phase and the coherence of the waves [95]. InSAR and Pol-InSAR techniques
can overcome the saturation problem of backscatter approaches [94,141] and provide more accurate
results than using a single SAR image [142]. These techniques can be used to estimate tree height
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by subtracting a digital terrain model (DTM) from an InSAR height, or by dual Pol-InSAR data
generated from TanDEM-X and TerraSAR-X, or at low frequencies (L and P-bands) [143–145]; then,
forest AGB can be estimated based on regression analyses [146,147]. Several models have been
developed using InSAR and Pol-InSAR to estimate forest AGB such as the interferometric water
cloud model (IWCM), random volume over ground (RVoG) model, motion-over-ground (RMoG),
random-motion-over-ground-legendre (RMoGL), and a simple model based on penetration depth
(PD) [143,145,148,149]. The RVoG model does not take into consideration the temporal decorrelation,
whereas the RMoG and RMoGL models consider this issue, resulting in better results for biomass
estimation [145,148].

4.3. Mangrove Biomass Estimation Using LiDAR and Data Fusion

LiDAR is an active sensor that utilizes a pulsed laser to measure ranges and examine the surface
of the Earth [150,151]. The LiDAR data have important roles in estimating AGB, since LiDAR pulses
can penetrate vegetation canopies. LiDAR can estimate vegetation biomass, as various LiDAR-derived
metrics can correlate with AGB [152,153].

Biomass estimation using airborne LiDAR can offer higher accuracy in tree extraction [154],
tree height estimation [155], and AGB estimation [156] than those from radar and optical data [157],
since LiDAR can characterize both horizontal and vertical canopy structures [130]. A recent study by
Feliciano et al. [99] used a terrestrial laser scanner (TLS) and a tripod mounted LiDAR to estimate
the mangrove AGB in the western Everglades National Park in the United States (USA). A more
recent study by Fatoyinbo et al. [153] used airborne LiDAR to estimate mangrove AGB in the Zambezi
Delta, Mozambique with R2 values between 0.80–0.88 with a mean AGB value of 203 Mg ha−1.
However, the coverage and availability of LiDAR data are generally limited to small areas, and may
be more costly than data obtained from space-borne sensors over a large area [119]. In addition,
LiDAR has limited spectral information, in most cases, having only one wavelength of laser point
intensity [130].

Several studies have demonstrated the potential use of data fusion or multisource data for
mangrove AGB estimation [6,77]. Table 5 shows recent studies that employed multisensor data
for the estimation of mangrove AGB and carbon stocks. For instance, Aslan et al. [77] used quantile
regression models with an integration of Landsat 8 OLI and ALOS PALSAR to estimate a mean standing
biomass of 237.52 ± 98.2 Mg ha−1 for Avicennia and Sonneratia species to 353.52 ± 98.43 Mg ha−1 in
Rhizophora stands. A recent study by Pham et al. [6] estimated the biomass of a mangrove plantation in
North Vietnam based on the incorporation of ALOS-2 PALSAR-2 and Sentinel-2A data and SVR models,
with mean AGB values ranging from 36.22 to 230.14 Mg ha−1. Navarro et al. [139] estimated mangrove
AGB in deltaic settings in Senegal by a combination of Sentinel-1A C-band and Sentinel-2A data using
SVR models, with mean AGB values ranging between 6.04–9.12 Mg ha−1. A more recent work reported
by Simard et al. [83] showed that the SRTM and the GLAS (Geoscience Laser Altimeter System) GLAS
LiDAR data can be accurately used for a large-scale mangrove AGB estimation with an accuracy of
84.2 Mg ha−1 (Table 5).
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Table 5. Examples of multisensor data used for mangrove AGB estimation.

Year Research Study Multisensor Study Site Model Performance /Range of Value

2016 [80] Landsat 8 OLI and
ALOS PALSAR Papua, Indonesia Regression models

R2 = 0.46

AGB = 237.52–353.52 Mg ha−1

2017 [79] LiDAR and TanDEM-X South Florida
peninsula, USA Regression models

R2 = 0.82

AGB ~ 250 Mg ha−1

2018 [6] ALOS-2 PALSAR-2
and Sentinel-2 MSI

Mangrove plantation,
North Vietnam

Support vector
regression (SVR)

R2 = 0.60

AGB = 36.2–230.1 Mg ha−1

2018 [65] Sentinel-1 C-band SAR
and Sentinel-2 MSI

Honda
Bay, Philippines

Support vector
regression (SVR)

R2 = 0.69

AGB ~ 346 Mg ha−1

2018 [99] Landsat 8 OLI
and LiDAR Northwest Australia Regression models

R2= 0.78

AGB ~ 70 Mg ha−1

2019 [83]

Shuttle Radar
Topography Mission

(SRTM) and
ICESat/GLAS LiDAR

Global scale Regression models R2= 0.73
RMSE = 84.2 Mg ha−1

2019 [139] Sentinel-1 C-band and
Sentinel-2 MSI

Sine Saloum and
Casamance

Deltas, Senegal

Support vector
regression (SVR) R2 = 0.89RMSE = 2.35 Mg ha−1

4.4. Biomass Estimation Using Hyperspectral Data

Hyperspectral sensors can acquire rich spectral information of the surface with a large
number of spectral bands from visible to near infrared (NIR) or shortwave infrared (SWIR) range.
Hyperspectral imaging has potential for classifying vegetation cover and estimating vegetation
biomass compared with other multispectral sensors. For instance, Sibanda et al. [158] reported
that hyperspectral data can provide slightly higher accuracies in estimating grass biomass than
the Sentinel-2A multispectral images (MSI). However, Vaglio Laurin et al. [159] claimed that
hyperspectral data had limited predictive ability using the partial least square (PLS) regression models
(R2 = 0.36, RMSE = 91.1 Mg ha−1), even when vegetation indices (VIs) were entered into the models.
However, combining the hyperspectral bands to LiDAR metrics using the PLS model increased the
accuracy moderately (R2 = 0.70, RMSE = 61.7 Mg ha−1), whilst replacing the hyperspectral bands with
the VIs led to a smaller increment (R2 = 0. 67, RMSE = 64.3 Mg ha−1) due to limited information from
the vertical structure i.e., tree height and canopy height. The integration of LiDAR and hyperspectral
or multisource data improved biomass estimation significantly with a relative high accuracy [160].
The hyperspectral data used in the literature were mainly airborne and captured in small and limited
areas [119]. Space-borne hyperspectral satellites are anticipated to offer a large coverage and further
promote the research of biomass estimation in mangroves.

5. Limitations and Uncertainties in Mangrove Remote Sensing

The classification of tree species and estimation of AGB are limited by the different spatial,
spectral, and radiometric resolutions of remote sensing data. Medium to low spatial resolution
data, i.e., Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI with 30-m spatial resolution contain
many mixed pixels that have information for different tree species in a single pixel. Thus, medium
spatial resolution data may have difficulties in classifying mangrove species due to the complexity of
mangrove communities. Additionally, spectral resolution is also needed to be taken into consideration
when choosing an appropriate satellite sensor for different tasks. For instance, Landsat sensors have six
multispectral bands ranging from visible, near infrared, and shortwave infrared, as well as one thermal
band, which could limit distinguishing certain mangrove species, whereas Sentinel-2 provides better
spatial and spectral resolutions, and thus can play an important role for tree species classification and
AGB retrieval. Wang et al. [44] pointed out that the red-edge band derived from the Sentinel-2 imagery
is the most important feature for mangrove discrimination. Meanwhile, Zhu et al. [125] found that
the red-edge band derived from the WorldView-2 is more sensitive than vegetation indices and other
multispectral bands to mangrove AGB. In addition to spectral resolution, radiometric resolution also
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needs to be taken into consideration, such as eight-bit of the Landsat 5 TM and 12-bit of the Landsat
8 OLI data, because the digital number (DN) value saturates the AGB estimation due to similarities
between mangrove stand structures and their biomass. Hyperspectral imagery could improve these
limitations due to a larger number of bands with narrow wavelengths [119].

Optical imagery often requires radiometric and atmospheric correction to reduce topographic
effects and minimize atmospheric conditions such as water vapor content and aerosols, particularly
in forested areas [125,161]. The accuracy of mangrove AGB remote sensing may be influenced by
radiometric and atmospheric corrections. Different approaches for radiometric and atmospheric
correction have been developed and proposed for specific case studies to overcome this issue [162–165].
For instance, Xu et al. [163] used multivariate alteration detection (MAD) transformation-based
normalization and principal component analysis (PCA)-based correction to retrieve forest attributes.
Pons et al. [164] developed an automatic and improved radiometric correction of Landsat imagery
based on the reference values from MODIS surface reflectance images. The most common methods
for atmospheric correction are the fast line-of-sight atmospheric analysis of the spectral hypercubes
(FLAASH), the dark-object subtraction (DOS), the ATmospheric CORection (ATCOR), and the Second
Simulation of Satellite Signal in the Solar Spectrum models (6S) for multispectral sensors i.e., Landsat
TM, SPOT 5, and WorldView-2 [161,165,166], and the Sen2Cor available in the Sentionel-2 toolbox
used for Sentinel-2 data [167]. Nguyen et al. [161] and López et al. [165] suggested that the 6S model is
optimal for AGB estimation based on optical remote sensing data.

For SAR data, speckling is a common problem that influences the accuracy of SAR image
classification and AGB retrieval. Despeckling SAR data by applying a filter can remove noise and retain
image features, although it may also result in blurring or filtered images, which affects the accuracy of
AGB retrieval and image classification. Nonlocal filters for reducing noise in SAR images [168–171]
should be performed cautiously in order to solve the limitations of speckles in future studies.

As optical or SAR sensors have their own characteristics in reflecting land surfaces and forest
structures, we recommend the integration of different and complementary satellite remotely sensed
data to enhance the information extracted for mangrove species, structure, and AGB. Data fusion of
multi-sensors or multi-resolution data can offer a variety of advances for the improvement of AGB
estimation. Several research studies have attempted data fusion for AGB estimation based on the
integration of different optical sensors, such as SPOT HRV and Landsat TM [172], or SPOT multispectral
and panchromatic bands [173,174]. In addition, the integration of SAR and optical data, such as
Landsat TM and ALOS PALSAR, or Sentinel-2A [175] and ALOS-2 PALSAL-2 [6,176], can provide
higher accuracies in quantifying biophysical parameters such as LAI, leaf pigments, and canopy height,
and assessing tropical forest biomass. Despite the advantages of using data fusion, the time and
labor constraints involved in image processing should be taken into consideration, especially over
large areas [77,119]. More research on data fusion is needed for exploring the improvement of AGB
estimation for mangrove forests.

6. Conclusions

Mangrove forests are important to coastal populations, but continue to be threatened throughout
their range. Since they cover large areas and are often inaccessible for field research, remote sensing
is a key tool with which to characterize mangroves and their structure, and quantify the benefits
(such as carbon) that they provide. This review highlighted the recent trends for the use of remote
sensing approaches for the analysis of mangroves, and showed the advantages of using machine
learning techniques for discriminating mangrove species, characterizing biophysical parameters,
and estimating mangrove biomass. Machine learning approaches have generally been proved to be
effective for estimating mangrove biophysical parameters, i.e., LAI, tree height and leaf pigments,
classifying mangrove communities, and provide a better overall accuracy in estimating mangrove
biomass using various remotely sensed data in comparison to parametric approaches.
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Very high spatial resolution data can contribute to higher accuracies in classifying mangrove
species and AGB at a range of spatial scales. Nevertheless, the cost of data acquisition, the effects
of shadows, and huge data storage requirements are important drawbacks of very high spatial
resolution data, limiting their application at large scales. Medium to high spatial resolution data such as
Sentinel-2A and Landsat imagery can be used to classify mangrove species and assess AGB at a regional
scale; however, the mixed pixel and data saturation associated with optical imagery are the primary
problems for classification of species. Low spatial resolution data such as MODIS would be used at
a national or global scale, but have not yet been utilized extensively due to difficulties in accurately
linking low spatial resolution data to field survey measurements. Combining multi-resolution and
multisource data may improve the accuracy of mangrove species classification, structure, and AGB
retrieval at the continental and global scale.

Active remote sensing data such as SAR and LiDAR may offer other approaches for tree
and canopy height retrieval and AGB estimation, and can overcome the disadvantages of optical
remotely sensed data. The COSMO-SkyMed (Constellation Of small Satellites for Mediterranean basin
Observation) system, which consists of four satellites with a high-resolution SAR at the X-band, plays
an important role in monitoring forest dynamics, thus providing an alternative SAR data source to
monitor mangrove structures. The cross-polarization of long wavelengths such as L and P-bands
in SAR would be more sensitive to the biomass and structure of mangrove forests. A combination
of texture SAR image analysis, backscattering coefficients, interferometry analysis, and polarimetric
analysis of SAR data is useful for improving mangrove height and AGB estimations. Using multiple
independent measurements derived from LiDAR, InSAR, Pol-InSAR, or very high resolution
stereophotogrammetry techniques are the most appropriate approaches for estimating mangrove
canopy height. The integration of multi-temporal optical, microwave (SAR/InSAR/Pol-InSAR),
and LiDAR would be the best choice for estimating mangrove biophysical parameters and AGB.

Several future directions exist for mangrove remote sensing, including the choice of remote
sensing data and the variety of machine learning approaches available for the monitoring of
mangrove species, structure, and biomass (Table 6). Machine learning approaches are likely to
become more attractive in mangrove remote sensing. Recent developments of deep learning for
texture information in classification can provide further directions for mangrove remote sensing.
Deep learning plays an important role in identifying appropriate window sizes and spectral bands;
thus, it may provide potential directions for tree species classification using very high spatial
resolution imagery. Additionally, novel machine learning algorithms should be also taken into
consideration to develop a guideline on how to select suitable image textures for monitoring mangrove
ecosystems in future research. Further studies should focus on the development and the choices of
novel machine learning algorithms for monitoring mangrove ecosystems in the context of REDD+ and
blue carbon programs.
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Table 6. Recommendations for monitoring mangrove areas and structures. InSAR: interferometric
synthetic aperture radar, Pol-InSAR: polarimetric SAR interferometry.

Task Remote Sensing Data Method Recommendation

LAI estimation Sentinel-2,
WorldView-2, Pléiades-1 Machine learning techniques Optical high spectral and

spatial resolutions

Canopy height estimation WorldView-2, Pléiades-1 Stereophotogrammetric
techniques

Optical high spatial
resolutions

Tree height, canopy
height estimation

COSMO-SkyMed,
TerraSAR, TanDEM,

LiDAR

InSAR and
Pol-InSAR techniques

Machine learning techniques

SAR data, data fusion,
and integration

Leaf pigments Sentinel-2, WorldView-2,
Pléiades-1 Machine learning techniques Optical high spectral and

spatial resolutions

Tree species classification
WorldView-2,

RapidEye -1,Pléiades-1 Deep learning techniques Very high
spatial resolution

Sentinel-2, ALOS-2
PALSAR-2 Machine learning techniques Data fusion and

integration

Biomass and carbon stocks
Sentine-2, ALOS-2

PALSAR-2
LiDAR

Machine learning techniques Data fusion: optical and
SAR fusion
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