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Abstract 

Technology acceptance has been widely discussed and examined in educational contexts. 

Despite the variety of models and measures describing teachers’ technology acceptance, two 

key assumptions persist in the existing body of literature: First, the technology acceptance 

construct can be represented by a set of diverse, yet correlated attitudes and beliefs. Second, 

the effects of technology acceptance on the intentions to use technology and technology use—

two commonly studied outcome variables—follow a cascade. The existing evidence backing 

these assumptions is, however, diverse, as the considerable between-study variation in the 

relations between the technology acceptance and outcome variables shows. This variation 

remained largely unexplained, and the present study offers an explanation from the 

perspective of construct validity. Analyzing a large meta-analytic sample (N = 37211 

teachers) obtained from a previous meta-analysis, we synthesized the correlations among 

measures of teachers’ technology acceptance and found support for the existence of a 

common trait that underlies all technology acceptance variables. This finding remained even 

after distinguishing between different teacher samples (i.e., pre- vs. in-service teachers) and 

types of technology (i.e., technology in general vs. specific technologies). There was no 

convincing evidence for the hypothesized cascade of effects, due to a weak and insignificant 

link between usage intentions and technology use. Our findings provide evidence for the 

representation of teachers’ technology acceptance as a single latent variable and consequently 

offer a way to describe its relations to usage intentions and technology use without 

compromising the validity of the inferences drawn from them. 

Keywords: Attitudes toward technology; meta-analysis; structural equation modeling; 

teachers; technology acceptance 
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Highlights 

§ Technology acceptance measures comprise attitudes and beliefs. 

§ Ongoing debates question the distinction between these measures. 

§ We meta-analyzed a large sample of teacher studies to test different factor models. 

§ A one-factor model described the structure of the measures best. 

§ Technology acceptance measures represent a common trait. 
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All the same or different? Revisiting measures of technology acceptance  

1. Introduction 

Without any doubts, technology has found its way into many classrooms and curricula around 

the world. Despite the great potential technology may have for facilitating and fostering 

student learning (Archer et al., 2014; Chauhan, 2017), teachers are challenged to not only 

familiarize themselves with the technologies but also with their meaningful integration into 

teaching (Lawless & Pellegrino, 2007). This integration, however, does not “happen” 

automatically, and current research shows that several factors determine the success or failure 

of technology integration (Straub, 2009). These factors are summarized under the umbrella of 

“technology acceptance” and comprise attitudes and beliefs (e.g., Marangunić & Granić, 

2015), such as the perceived usefulness of technology (PU), ease of use (PEOU), attitudes 

toward technology (ATT), technology self-efficacy (TSE), subjective norms (SN), and 

facilitating conditions (FC).  

Despite the accumulation of empirical studies that examined the relations among these 

constructs and their prediction of usage intentions (BI) and reported usage of technology 

(USE), the existing body of literature abounds in diverse findings (Marangunić & Granić, 

2015; Scherer et al., 2019). As Scherer and Teo (2019) recently observed, this diversity 

manifests in the considerable variation of the relations between the technology acceptance and 

the outcomes variables across studies, samples, and contexts. To mention a few examples of 

this diversity, Ritter (2017) found a strong relation between ATT and usage intentions (! = 

0.61), while Schepers and Wetzels (2007) identified a weak relation (! = 0.16). Moreover, 

Zhang et al. (2012) could not find support for a significant relation between PU and usage 

intentions (! = 0.07), whereas King and He (2006) identified a strong and positive relation (! 

= 0.51). Even in meta-analyses, the synthesized correlations to the two outcome variables 

vary substantially (for an overview, see Scherer et al., 2019), and the current attempts to 
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explain this variation by study, sample, and contextual variables resulted in only small 

variance explanations (e.g., King & He, 2006; Schepers & Wetzels, 2007; Scherer et al., 

2019; Scherer & Teo, 2019).  

One alternative explanation of this diversity that has been largely unexplored refers to 

one of the key assumptions underlying technology acceptance studies—that is, the 

assumption that the technology acceptance variables are all representative of the technology 

acceptance construct, yet represent different aspects of it (Abdullah & Ward, 2016; Bagozzi, 

2007; Nistor, 2014; Turner et al., 2010). Nistor (2014), for example, argued that the 

technology acceptance variables are oftentimes highly correlated and may therefore be 

indicative of a single technology acceptance construct rather than multiple, loosely connected 

constructs. Scherer et al. (2018) showcased that ignoring such substantial correlations can 

severely bias the effects on outcome variables and, ultimately, the inferences drawn from 

them. Consequently, examining how technology acceptance can be represented as a construct 

measured by several indicators is part of the crafting of a validity argument (American 

Educational Research Association, American Psychological Association, & National Council 

on Measurement in Education, 2014). To our best knowledge, this perspective has largely 

been ignored, and only few studies exist that tested the assumption of an overall technology 

acceptance construct represented by multiple indicators, namely PU, PEOU, ATT, TSE, SN, 

and FC (Teo et al., 2014). 

Taking a construct validity perspective, we offer an explanation for the divergent 

findings surrounding the relations between the technology acceptance and the outcome 

variables by (a) examining the factor structure of the technology acceptance construct for 

teacher samples, and, on the basis of the resultant factor structure, (b) testing the relations to 

the two outcome variables that are assumed to follow a cascade of effects: Technology 

acceptance à Intentions to use technology à Technology use (see Figure 1; Marangunić & 
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Granić, 2015). Ultimately, the knowledge gained from these two lines of inquiry will aid the 

crafting of a validity argument of the technology acceptance construct. Our study is based on 

an existing, large-scale data set that was obtained in a meta-analysis of teachers’ technology 

acceptance (Scherer et al., 2019) and draws from the recent methodological advances in meta-

analytic structural equation modeling (Cheung, 2015). 

2. Theoretical Perspectives 

2.1 Technology Acceptance Models and Measures  

Technology acceptance has been operationalized in many studies, and the extant body 

of literature defines this construct as a set of technology-related attitudes and beliefs that 

explain a person’s intentions to use and actual use of technology (Davis, 1985). These 

attitudes and beliefs typically include diverse variables (e.g., Davis, 1989; Fishbein & Ajzen, 

1975; Scherer et al., 2019; Venkatesh et al., 2003) and can be considered attributes of the 

technology acceptance construct: 

§ Perceived ease of use (PEOU): A person’s belief about the degree to which 

using technology is effort-free. 

§ Perceived usefulness (PU): A person’s belief about the degree to which the 

technology is useful in order to increase his or her performance. 

§ Attitudes toward technology (ATT): A person’s general evaluation of 

technology or a behavior associated with its use. 

§ Technology self-efficacy (TSE): A person’s self-belief about the degree to 

which he or she will be able to perform a specific task using technology. 

§ Subjective norms (SN): A person’s perceptions of the degree to which people 

who are important to him or her think that he or she should or should not use 

technology. 
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§ Facilitating conditions (FC): A person’s perception of the degree to which 

organizational and technical resources exist that support the use of technology. 

Besides these variables representing technology acceptance, a person’s intention to 

use technology, often labelled as “behavioral intentions (BI)”, and their use of technology 

(USE) are considered outcome variables in technology acceptance models (King & He, 2006). 

All models assume that technology users’ attitudes and beliefs, along with external factors, 

stimulate usage intentions and the use of technology as a response (Marangunić & Granić, 

2015). This assumption has led to a wealth of models that describe how the abovementioned 

variables are related to the two outcome variables (Al-Emran et al., 2018). For instance, the 

original Technology Acceptance Model (TAM) hypothesizes structural relations between the 

variables PEOU, PU, and ATT. ATT predicts BI, and BI ultimately predicts USE (Davis, 

1989). This model has pervaded all subsequent technology acceptance models and is therefore 

considered the basis for describing the mechanisms behind technology acceptance (Schepers 

& Wetzels, 2007). Later on, this model was extended by external variables, such as SN, TSE, 

and FC (e.g., Abdullah & Ward, 2016; Marangunić & Granić, 2015). 

Resulting from the updates and extensions of the TAM, the Unified Theory of 

Acceptance and Use of Technology (UTAUT) represents technology acceptance slightly 

differently than the TAM: Whereas the TAM considers both the external variables and the 

perception-based variables PEOU, PU, and ATT to be indicators of technology acceptance, 

technology acceptance is indicated by SN, FC, performance expectancy, and effort 

expectancy in the UTAUT (Venkatesh et al., 2003). Although labelled differently, Nistor and 

Heymann (2010) showed that the latter two correspond to PU and PEOU. The UTAUT 

hypothesizes direct effects of these technology acceptance variables on BI, which in turn 

predicts USE. The Theory of Planned Behavior (TPB) follows a similar setup of structural 

relations, yet groups the technology acceptance variables into behavioral, normative, and 
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control beliefs (Holden & Karsh, 2010). The Decomposed Theory of Planned behavior 

(DTPB) further assumes that ATT is predicted by PEOU, PU, and the perceived compatibility 

of technology, SN is predicted by both peer’s and superior’s influence, TSE and FC predict a 

person’s perceived behavioral control, and these three variables predict BI (e.g., Huh, Kim, & 

Law, 2009). Overall, these models assume a set of variables to be indicative of technology 

acceptance and organize them by hypothesizing structural relations or groupings among them 

(e.g., Šumak et al., 2011; Turner et al., 2010). Moreover, independent of the variety of labels 

and variables included in technology acceptance models, these models all assume that 

technology acceptance is predictive of usage intentions and technology use as part of the 

nomological network of the technology acceptance construct (Marangunić & Granić, 2015). 

This assumption is often referred to as a “cascade of effects” and includes a link between BI 

and USE as well (Scherer et al., 2019; Figure 1). 

In fact, the grouping of the technology acceptance variables (i.e., PEOU, PU, ATT, 

TSE, SN, and FC) can be approached from several perspectives (e.g., Scherer et al., 2019; 

Venkatesh & Bala, 2008): (1) SN and FC both represent external variables and refer to 

sources outside of the Self (i.e., to other persons or external conditions), whereas PEOU, PU, 

ATT, and TSE represent internal variables, as they refer to the Self in the form of self-beliefs 

(TSE) and beliefs about the interaction between technology and a person (PEOU, PU, and 

ATT). Within the latter group, even more conceptual similarities exist. For instance, the 

perceived ease of use reflects the degree to which a person believes that technology is easy to 

use to accomplish a certain task. This belief is, to some extent, also reflected in the person’s 

self-efficacy which represents competence beliefs. In this sense, both PEOU and TSE share 

commonalities, and empirical studies testified that the two constructs are interwoven (Scherer, 

Siddiq, & Teo, 2015); (2) One may distinguish further between the beliefs related to the 

interaction between technology and the Self (PEOU and PU) and the attitudes and self-beliefs 
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(ATT and TSE), next to the external beliefs (SN and FC). The close relationship between 

ATT and TSE, for instance, surfaced in many studies of technology acceptance (e.g., Scherer 

et al., 2018); (3) Finally, it could also be assumed that all variables represent the technology 

acceptance construct without any grouping (Teo et al., 2014). This assumption is based on the 

finding that the technology acceptance variables are all substantially intercorrelated (Scherer 

et al., 2019; Yen, Sousa, & Bakken, 2014), perhaps due to their conceptual overlap (i.e., they 

all represent attitudes and beliefs related to technology) and the common method variance 

their assessments share (i.e., they are all assessed by self-reports; see Sharma, Yetton, & 

Crawford, 2009). Independent of the causes for these intercorrelations, Nistor (2014) argues 

that the technology acceptance construct may therefore be considered unidimensional. To 

summarize, the technology acceptance construct is represented by a set of intercorrelated yet 

diverse attitudes and beliefs which are assumed to predict a person’s usage intentions and 

ultimately their use of technology. 

2.2 The Diversity of Findings on the Relations between Technology Acceptance and 

Outcome Variables 

As noted earlier, technology acceptance has been in the focus of many studies, 

resulting in a large body of research across diverse samples, contexts, technology acceptance 

models, and technologies. Ultimately, the shier amount of studies has resulted in very diverse, 

sometimes even conflicting findings surrounding technology acceptance. Marangunić and 

Granić (2015), for instance, pointed out that the relations among the technology acceptance 

variables and their predictive power concerning the intentions to use technology and 

technology use vary substantially between studies. Nistor (2014) highlighted that several 

studies identified insignificant relations between these variables, while others showed 

moderate to high relations. The claim that these relations are robust across many study 

conditions and contexts may therefore not hold (Hsiao & Yang, 2011; Schepers & Wetzels, 
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2007). Moreover, the hypothesized cascade of effects was confirmed in some studies but 

rejected in others (Nistor, 2014; Scherer et al., 2019). 

While several meta-analyses were aimed at explaining the variation in these relations, 

the between-study variances remained largely unexplained. For instance, King and He (2006) 

found consistent and significant moderator effects of the type of technology usage and users’ 

experience on several relations; Schepers and Wetzels (2007), however, could not confirm 

these consistent effects. Similarly, Šumak et al. (2011) found small to medium variance 

explanations by moderator variables for most relations among the technology acceptance 

variables. Zhang et al. (2012) further testified to some significant moderator effects of 

participants’ cultural background, yet with small effect sizes. Scherer et al. (2019) observed 

some subgroup differences between Asian and non-Asian samples, pre- and in-service 

teachers, and the type of technology referred to in the assessments of the technology 

acceptance variables—these differences were, however, only marginal. Focusing on a reduced 

version of the technology acceptance model with PU, PEOU, and ATT as variables predicting 

BI, Scherer and Teo (2019) observed substantial variation in the effects on BI between the 45 

studies of teachers’ technology acceptance. The variance explanation by study and sample 

characteristics was mainly marginal (with a range between 0 % and 14 %), except for 

teachers’ age and the proportion of female teachers in the samples explaining up to 52 % and, 

respectively, 36 %. The authors, however, encouraged researchers in the field to replicate 

these findings with different modeling approaches and larger samples. Overall, these findings 

suggest that most of the between-study variation was left unexplained by the moderators the 

meta-analysts selected. 

We believe that another explanation for this diversity lies in the validity of the 

technology acceptance variables in general and the extent to which they represent different 

facets of the same construct in particular. As explained earlier, the technology acceptance 
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variables share many commonalities: They all represent perceptions of aspects related to 

technology, they all tap attitudes and beliefs, and they are all assessed by self-reports thus 

sharing common method variance. At the same time, they all have unique features: To recall, 

FC and SN represent external beliefs that refer to either contextual conditions or norms 

associated with an external group, while ATT, PU, PEOU, and TSE represent self-beliefs and 

perceptions of technology related to the self. These two perspectives—the commonalities and 

uniquenesses—explain the substantial, yet not perfect correlations among the variables (e.g., 

Scherer et al., 2019; Teo, 2015). The question, however, remains whether and to what extent 

these variables represent an overall technology acceptance construct (Nistor, 2014). Teo et al. 

(2014), for instance, found that a second-order factor of technology acceptance could be 

established that was indicated by the technology acceptance variables as first-order factors. 

The authors consequently concluded that the first-order variables represented a common 

construct which they interpreted as technology acceptance. 

Furthermore, if indeed the technology acceptance variables are moderately or even 

highly correlated, the prediction of the intentions to use technology and technology use may 

be compromised due to an issue referred to as ‘multicollinearity’. Multicollinearity occurs 

when independent variables in regression-based models are highly related (Farrar & Glauber, 

1967). It can have severe effects on both the reliability and the interpretation of model 

parameters as it may bias regression coefficients substantially. Marsh et al. (2004), for 

instance, explored the relations between self-efficacy, self-concept, and academic 

achievement in mathematics only to find that the high correlation between self-efficacy and 

self-concept caused unreliable regression coefficients in the prediction of achievement that 

have rendered erroneous conclusions. The authors consequently warned researchers against 

assuming that constructs may be distinct while they are not. Similarly, Scherer et al. (2018) 

showed that different aspects of teachers’ attitudes toward technology were highly correlated, 
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thus providing counterintuitive and contradictory findings. The authors conclude that 

researchers need “to account for the methodological issues caused by high correlations among 

several dimensions of attitudes toward ICT” (p. 78). We believe that the sometimes-strong 

relations among the technology acceptance variables found in empirical studies may have 

caused some of the diverse findings in the field. 

Overall, in light of our review of the extant literature, we observe that (a) the 

technology acceptance variables are oftentimes substantially correlated; (b) the cascade of 

effects could not be confirmed in all studies of technology acceptance. 

2.3 The Present Study 

To summarize, the current body of research on technology acceptance is based on two 

key assumptions: First, the simplistic view in the existing technology acceptance models 

considers all of the seemingly different types of indicators, including attitudes, beliefs, and 

perceptions of external factors, to be representative of the construct, yet represent different 

aspects of it. Second, the relations between technology acceptance, the intentions to use 

technology, and the actual use are assumed to be positive, significant, and follow a cascade 

(see Figure 1). 

Concerning the first assumption, clear empirical evidence for the homogeneity of the 

technology acceptance variables is sparse (Nistor, 2014). Some of these studies described the 

structural relations among technology acceptance measures within specific technology 

acceptance models, and resulted in either a multidimensional (e.g., Hong & Walker, 2015; 

Teo, 2018) or unidimensional representations of technology acceptance (e.g., Jones et al., 

2010; Teo et al., 2014). Although some attempts have been made to synthesize the existing 

relations among technology acceptance variables meta-analytically (for an overview, please 

refer to the Supplementary Material, Table S2), only the recent methodological advancements 

in meta-analysis have made it possible for researchers to study the dimensionality and factor 
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structure of measures based on meta-analytic data (Cheung, 2015; Cheung & Cheung, 2016). 

Given the common finding that technology acceptance variables are often substantially 

correlated, it may therefore be tested explicitly and meta-analytically whether they represent 

one common trait, that is, technology acceptance. If, indeed, the different technology 

acceptance variables represent a common factor, this finding would provide evidence for the 

validity of an overall technology acceptance measure. Concerning the second assumption, 

much of the criticism surrounding the technology acceptance measures and models was based 

on small sets of primary studies and meta-analyses, with the latter synthesizing the data 

derived from quite different samples and a broad range of contexts (Scherer et al., 2019). Both 

assumptions are validity issues, and the lack of evidence supporting them and the large 

diversity of findings surrounding them represent threats to the construct validity of 

technology acceptance (American Educational Research Association, American 

Psychological Association, & National Council on Measurement in Education, 2014).  

To address these validity issues, the present study examines the factor structure of the 

technology acceptance measures and the relations among technology acceptance, behavioral 

intention, and technology use based on a large-scale, meta-analytic sample of teachers. 

Examining the factor structure includes the testing of several, theory-driven factor models that 

are based on different assumptions on the grouping of the technology acceptance variables 

(see Figure 2): Model 1 represents technology acceptance as a unidimensional construct 

assuming that there is one common factor underlying all technology acceptance measures. 

Model 2 assumes two factors of technology acceptance, one of which captures internal beliefs 

(i.e., ATT, PEOU, PU, and TSE) and one of which captures beliefs influenced by external 

sources (i.e., FC and SN). Model 3 assumes three factors of technology acceptance, two of 

which have split the measures of technology perceptions (i.e., PEOU and PU) from measures 
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of attitudes and self-beliefs (i.e., ATT and TSE). In the present study, we specify and compare 

these models addressing the following research question: 

1. To what extent can the three proposed factor models represent the structure of the 

technology acceptance construct for the full sample of studies and subgroups 

within the sample? (Factor structure) 

Next, as the intentions to use and the reported use of technology are considered outcome 

variables of technology acceptance (Davis, 1989), the prediction of these two variables 

addresses aspects of criterion validity (Price, 2017). To synthesize the evidence on the 

relations among technology acceptance, behavioral intentions, and technology use, including 

the cascade of their effects, we focus on a second research question: 

2. To what extent are the factors of technology acceptance—as they are identified 

under research question 1—related to teachers’ usage intentions and their reported 

use of technology? (Relations to BI and USE) 

In the present study, we focus on samples of pre- and in-service teachers for several 

reasons: First, studies of technology acceptance in the context of education heavily focus on 

teachers as the decision-makers for including technology in their day-to-day teaching 

practices (Siddiq et al., 2016). Teachers have a large degree of autonomy in their teaching 

practice and, consequently, also have the autonomy to select specific technological 

applications or not (Teo et al., 2009; Vangrieken et al., 2017). This observation motivates the 

study of whether and why teachers voluntarily accept technological applications in their 

educational practice. Second, although the use of technology does not represent a new issue to 

educational research, its integration, however, is still challenging for teachers (Pynoo et al., 

2011). According to these authors, teachers constantly need to adapt to new technologies and 

refine their competencies in order to integrate technology into their teaching and learning 

processes. Besides, the increased focus on digital competences and technology in school 
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curricula requires the teachers to accept and update their own classroom practices (Siddiq et 

al., 2016). As a consequence, the focus on teacher samples in the present study was motivated 

by the relevance of understanding technology acceptance and ultimately technology 

integration in classrooms (Straub, 2009), the focus of existing technology acceptance research 

in education on teachers (Scherer et al., 2019), and the repeatedly reported challenges teachers 

face while integrating technology into their teaching (Pynoo et al., 2011). 

3. Material and Methods 

3.1 Description of the Meta-Analytic Dataset 

3.1.1 Choice of data. This study re-analyzes a recently published, large-scale, and 

meta-analytic data set of technology acceptance variables that had been obtained from more 

than 30,000 pre- and in-service teachers (Scherer et al., 2019). The primary studies included 

in the data set contained the following technology acceptance variables: perceived ease of use, 

perceived usefulness, attitudes toward technology, subjective norms, facilitating conditions, 

and technology self-efficacy. In addition, the authors included measures of behavioral 

intentions and the reported technology use in classrooms as two key outcome variables. The 

details about the search and screening processes are described in Scherer et al. (2019). 

Moreover, the coded study data are presented in the supplementary material (Table S1). 

We chose this data set for several reasons: First, all data were accessible openly so that 

any researcher in the field could test hypotheses on the technology acceptance measures. 

Second, these data resulted from a screening process that only allowed for empirical studies 

of technology acceptance with pre- or in-service teacher samples, contained at least three 

technology acceptance variables and their corresponding correlations, and focused either on 

technology in general or specific technologies. These selection criteria are in line with the 

typical criteria of meta-analyses in the context of technology acceptance (see King & He, 

2006; Schepers & Wetzels, 2007). Third, the data set contained rich information about the 
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study, sample, and measurement characteristics, including the reliability coefficients of 

measures and the publication status (see Supplementary Material, Table S1). Fourth, the 

correlations in the data set showed minimal publication bias, and possible outliers were 

removed. Fifth, the meta-analytic data were representative of the population of technology 

acceptance studies of teachers that had been published between 2000 and 2017. We believe 

that these aspects point to the unique quality of this data set and its appropriateness for the 

present study. In line with the strive for replicating findings and using open-access data for 

follow-up analyses (e.g., Gewin, 2016; Open Science Collaboration, 2015), we re-analyzed 

this existing data set and this ensured that our findings can provide alternative explanations of 

the conflicting findings surrounding the relations among the technology acceptance variables. 

After reviewing the initial meta-analytic sample (m = 142 correlation matrices from 

130 studies) presented by Scherer et al. (2019), a sample of m = 128 correlation matrices that 

provided k = 1113 correlations between the technology acceptance and outcome variables 

could be used for the present meta-analysis. This sample differed slightly from the final 

sample the authors based their analyses on, because Scherer et al. (2019) were aimed at 

testing several technology acceptance models and had to ensure that the same sample was 

used across all models. Due to the fact that these models comprised a different set of 

variables, some correlation matrices may have been positive definite for one model but non-

definite for the other. As a consequence, we set out with the initial sample of primary studies 

before the positive definiteness check had been performed. 

3.1.2 Study characteristics. In total, N = 37211 teachers participated in the primary 

studies, 47.7 % of whom were in-service and 52.3 % pre-service teachers. The primary 

sample sizes ranged between N = 29 and N = 1981 (M = 291, SD = 248), and about 64.7 % of 

the teachers were women (SD = 19.4 %). Teachers’ mean age was 30.5 years (SD = 8.4, Min 

= 19.4, Max = 47.0 years). All primary studies were published between 2002 and 2017, 
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focused either on technology in general (51.6 %) or specific technologies (48.4 %), such as 

learning management systems, tablets, or specific software, and were conducted primarily in 

Asian countries (63.3 %), such as Singapore, Taiwan, SAR Hong Kong, and Malaysia, 

followed by countries in the Americas (16.4 %), such as Brazil and the United States of 

America, Europe (14.1 %), such as Belgium, Norway, and Spain, Australia, New Zealand, 

and others (6.2 %). A detailed account of the countries is given in the supplementary material 

(Table S1). 

3.2 Data Analysis 

3.2.1 Correlation-based meta-analytic structural equation modeling (MASEM). 

Each and every primary study contributed with at least two correlations among the technology 

acceptance variables—the resultant meta-analytic data set consequently had a nested structure 

in which multiple correlations were nested in studies. Only few technology acceptance meta-

analyses have taken into account this data structure (see Supplementary Material, Table S2). 

Although such a data structure violates the key assumption of effect size independence in 

traditional, univariate meta-analysis (Borenstein et al., 2009), recent methodological 

developments resulted in models that can accommodate these dependencies (Cheung, 2015). 

These models explicitly consider the covariances between effect sizes and their variance 

components to provide accurate parameter estimates. For the current data set, meta-analytic 

structural equation model (MASEM)—a recently developed method bringing together meta-

analysis and structural equation modeling—was chosen to address the nested data structure 

and to test a series of models representing the factor structure of technology acceptance. Two 

forms of MASEM allowing for random effects in correlations are dominating the literature 

and research: correlated-based and parameter-based MASEM (Cheung & Cheung, 2016). 

Whereas the latter allows researchers to synthesize specific parameters in a structural equation 

model (e.g., indirect effects, factor loadings, covariances), quantify their heterogeneity 
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between studies, and explain this heterogeneity by categorical and/or continuous moderators, 

the former is more suitable when (a) several structural equation models are tested and 

compared, (b) some correlations in the correlation matrices of the primary studies are missing, 

and (c) structural equation models are compared between subgroups of studies (Cheung, 

2015). Given that our research questions were concerned with the testing of several factor 

models and our data had missing correlations, we chose to perform correlation-based 

MASEM. 

Correlation-based MASEM, in its original form, follows two steps (Cheung & Chan, 

2005): In the first step, the correlation matrices obtained from the primary studies are 

synthesized to an overall population correlation matrix. This stage is based on maximum-

likelihood estimation and therefore allows for missing correlations in the primary correlation 

matrices. From this step, an overall correlation matrix, its variance components comprising 

the sampling and between-study variances, and an asymptotic covariance matrix of 

correlations are obtained (Cheung, 2015). In the second step, the structural equation model is 

specified on the basis of the aggregated correlation matrix (Cheung & Chan, 2005). All model 

parameters are estimated through weighted least squares estimation. This stage is key to the 

testing and comparing of models that represent different assumptions on the factor structure 

of constructs or the structural relations between variables (Cheung & Cheung, 2016). 

3.2.2 Correcting correlations for unreliability. The measures of technology 

acceptance contain measurement error, as indicated by reliability coefficients of less than 1. 

Schmidt and Hunter (2014) consequently suggested correcting any correlation between two 

variables in a meta-analysis for unreliability by attenuation. If " and # represent two 

technology acceptance variables, $%% and $&& their score reliabilities, and $%& their correlation, 

then '%& = $%& √$%% ∙ $&&⁄  represents the corrected correlation. Although such corrections are 

generally recommended, they may not necessarily provide more accurate parameters of the 
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meta-analytic model (Michel, Viswesvaran, & Thomas, 2011). In the context of correlation-

based MASEM, corrections for unreliability can produce correlation matrices that are not 

positive definite and thus reduce the sample of primary studies available for meta-analysis 

(Cheung, 2015). In the present study, we did not correct the correlations among the 

technology acceptance variables for unreliability in the main analyses, but conducted 

sensitivity analyses with the corrected correlations to examine the effects of attenuation. 

3.2.3 Evaluating model fit. To evaluate the fit of the three factor models and the 

structural equation model linking technology acceptance, behavioral intention, and 

technology use, we examined the typical goodness-of-fit indices and referred to the common 

guidelines concerning their values. Specifically, we first evaluated the results of the chi-

square test which compared the model-implied and the observed covariance matrices 

underlying a specific model—a significant test statistic indicates that these matrices differ, 

and thus the proposed model may not perfectly fit the data (Brown, 2015). This test, however, 

is sensitive to the sample size and was therefore supplemented by alternative indices (e.g., 

Wolf et al., 2013). These indices were as follows: Comparative Fit Index (CFI) ³ .90 or .95, 

Root Mean Square Error of Approximation (RMSEA) £ .08 or .05, Standardized Root Mean 

Square Residual (SRMR) £ .10 or .08 for a reasonable or acceptable fit (e.g., Little, 2013; 

Marsh, Hau, & Grayson, 2004). For model comparisons, we performed chi-square difference 

testing and considered differences in the information criteria (Akaike’s Information Criterion 

[AIC] and Bayesian Information Criterion [BIC]). 

4. Results 

4.1 Aggregation of Correlation Matrices 

In the first step of the correlation-based MASEM approach, we aggregated the 

correlation matrices of the primary studies. This aggregation can be based either on the 

assumption of fixed or random effects in the correlations between the technology acceptance 
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variables. As a consequence, we tested which of the two assumptions, fixed or random 

effects, held for our data set. The fixed-effects model showed a poor fit to the meta-analytic 

data (c2 [1085] = 15297.0, p < .001, RMSEA = 0.212, CFI = 0.764, SRMR = 0.166, AIC = 

13127.0, BIC = 3878.1) and was thus rejected. The random-effects model was statistically 

preferred over the fixed-effects model, as indicated by the significant test statistic of the 

homogeneity test, Q(1085) = 9245.1, p < .001. Overall, these findings suggested that the 

correlation matrices were heterogeneous, that is, correlations varied significantly between 

studies, and we therefore accepted the random-effects model as the basis for aggregating the 

correlation matrices from the primary studies. The resultant, aggregated correlation matrix, 

along with the between-study variance components, is shown in Table 1. All correlations 

were positive and statistically significant. Due to the small number of correlations available to 

describe the relation between USE and the three external variables (SN, TSE, and FC), the 

between-study variances were flagged as insignificant. 

4.2 Meta-Analytic Confirmatory Factor Analysis (Research Question 1) 

On the basis of the aggregated correlation matrix with random effects, we specified 

the three factor models depicted in Figure 2, examined their fit to the data, and compared 

them against each other. All relevant model parameters are shown in Table 2. 

4.2.1 Model 1: One-factor model. The one-factor model of technology acceptance 

showed a very good fit to the data, c2(9) = 33.1, p < .001, RMSEA = 0.009, CFI = 0.994, 

SRMR = 0.039, AIC = 15.1, BIC = -61.6. All factor loadings were positive and statistically 

significant, and ranged between l = 0.44 (SN) and l = 0.77 (ATT), with a median of Mdn(l) 

= 0.63 (Table 2). These loadings and the corresponding residual variances resulted in an 

overall internal consistency of McDonald’s w = 0.79. Overall, this model represented the data 

well, yet indicated some degree of heterogeneity between the technology acceptance variables 

due to the variation in factor loadings. 
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4.2.2 Model 2: Two-factor model. Differentiating the technology acceptance 

variables into two factors, namely general technology attitudes (indicated by PU, PEOU, 

ATT, and TSE) and external beliefs (indicated by SN and FC), resulted in a factor model that 

exhibited a very good fit to the data, c2(8) = 29.7, p < .001, RMSEA = 0.009, CFI = 0.994, 

SRMR = 0.038, AIC = 13.7, BIC = -54.4. The factor loadings ranged between l = 0.48 (SN) 

and l = 0.77 (ATT), with a median of Mdn(l) = 0.63, and the two technology acceptance 

factors were highly correlated, r = .90 (Table 2). This model represented another model that 

fitted the data. 

4.2.3 Model 3: Three-factor model. Finally, we specified the three-factor model to 

the data and found that, although this model showed a very good fit (c2[6] = 23.4, p < .001, 

RMSEA = 0.009, CFI = 0.995, SRMR = 0.032, AIC = 11.4, BIC = -39.7), one correlation was 

estimated to be larger than 1, r = 1.13 (between the technology perceptions and the attitudes 

and self-beliefs factors). This so-called ‘Heywood case’ was most likely caused by the high 

correlations among all three factors of technology acceptance (see also Dillon, Kumar, & 

Mulani, 1987). After exploring the effects of certain model modifications on the estimation of 

the problematic factor correlation (e.g., by introducing equality constraints to the loadings of 

different factors), we addressed this issue by constraining the correlation to 0.999—a value 

close to its upper boundary (Brown, 2015). The resultant, refined model showed a very good 

fit to the data, (c2[7] = 28.6, p < .001, RMSEA = 0.009, CFI = 0.994, SRMR = 0.038, AIC = 

14.6, BIC = -45.1), with a significant yet marginal loss in goodness-of-fit after introducing the 

constraint (Dc2[1] = 5.2, p = .02, DRMSEA = 0.000, DCFI = -0.001, DSRMR = +0.006, DAIC 

= +3.2, DBIC = -5.4). Nonetheless, we accepted the three-factor model with the factor 

correlation constraint in order to have a well-specified measurement model that can be 

compared with Models 1 and 2. This model further revealed high correlations between the 
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external beliefs factor and the attitudes and beliefs factor (r = 0.85), as well as the external 

beliefs factor and the technology perceptions factor (r = 0.92; Table 2). 

4.2.4 Model comparisons. Conducting chi-square difference testing, we compared 

these three factor models against each other. First, we compared the one-factor model with the 

two- and three factor model and found that neither the differentiation between two technology 

acceptance factors (Dc2[1] = 3.3, p = .07) nor the differentiation into three factors (Dc2[2] = 

4.5, p = .11) improved the model fit significantly. Second, comparing the two- and three-

factor models showed a similar result, Dc2(1) = 1.2, p = .28. Considering the high correlations 

among the technology acceptance factors, the occurrence of a Heywood case in the three-

factor model, and the results of the model comparisons, we conclude that the one-factor 

model represents the meta-analytic data best.  

4.2.5 Sensitivity Analyses. To challenge our findings, we conducted two types of 

sensitivity analyses: First, we replicated our analyses using attenuated correlations among all 

variables. Second, we examined the factor structure using exploratory factor analysis. 

Corrected correlations. After testing the attenuated correlation matrices for positive 

definiteness, we identified 19 matrices that did not fulfill this criterion—these matrices were 

not submitted to the meta-analytic structural equation modeling. The aggregated correlation 

matrix under the random-effects model formed the basis for testing the three factor models. 

Factor model 1 showed a very good fit to the data (c2[9] = 30.4, p < .001, RMSEA = 0.008, 

CFI = 0.994, SRMR = 0.040, AIC = 12.4, BIC = -64.4), with factor loadings ranging from l = 

0.43 (SN) to l = 0.79 (ATT). The two-factor model showed a very good fit as well, c2(8) = 

26.9, p < .001, RMSEA = 0.008, CFI = 0.995, SRMR = 0.039, AIC = 10.9, BIC = -57.3. The 

resultant correlation between teachers’ general attitudes toward technology and their external 

beliefs was high, r = .89. Nonetheless, there was no evidence that this model outperformed 

the one-factor model, Dc2(1) = 3.4, p = .06. Finally, the three-factor model had a very good 
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fit, c2(7) = 25.6, p < .001, RMSEA = 0.008, CFI = 0.995, SRMR = 0.038, AIC = 11.6, BIC = 

-48.1. This model did not improve the fit in comparisons to models 1 (Dc2[1] = 4.8, p = .09) 

and 2 (Dc2[1] = 1.4, p = .24). Overall, the reanalysis of the attenuated correlation matrices 

yielded similar results, and we essentially arrived at the same conclusions drawn from the 

analyses of the uncorrected correlation matrices. 

Exploratory factor analysis. We further submitted the aggregated correlation matrix 

to an exploratory factor analysis within the oblique GEOMIN rotation in the software Mplus 

7.3 (Muthén & Muthén, 1998-2015). The resultant eigenvalues were 2.91, 0.80, 0.75, 0.65, 

0.48, and 0.41, and the corresponding Empirical Kaiser criteria were 1.03 for the first 

eigenvalues and 1 for all others (for more details on the Empirical Kaiser criterion, please 

refer to Braeken & van Assen, 2018). The exploratory factor analyses with three factors did 

not converge; however, a two-factor solution could be retained. This solution did not result in 

a clear factor loading pattern, as the variables TSE and FC, for instance, could not be clearly 

assigned to one of the two factors. Overall, the eigenvalues and the unclear assignment of 

some variables in the two-factor model supported our decision for the one-factor model as a 

better representation of the data. 

4.2.6 Subgroup Analyses. To further substantiate the evidence base, we replicated all 

confirmatory factor analyses, including the model comparisons, for specific subgroups of 

primary studies. First, we differentiated between studies involving in-service teachers (N = 

17533, k = 319, m = 61) and pre-service teachers (N = 19678, k = 359, m = 67). Similar to the 

full sample of primary studies, there was no evidence supporting the preference of either the 

two- or the three-factor model of technology acceptance (see Table 3). In fact, the one-factor 

model was preferred over these two models for both groups of teacher samples. Second, we 

differentiated between studies in which the technology acceptance measures referred to 

technology in general (N = 19027, k = 383, m = 71) and specific technologies (N = 18184, k = 
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295, m = 57). For primary studies that referred to specific technologies, the one-factor model 

was again preferred over the alternative models (Table 3). However, the model comparisons 

indicated that both the two- and the three-factor models was superior to the one-factor model 

for samples with a reference to technology in general, as indicated by the significant chi-

square difference test statistics. Although this finding may suggest some multidimensionality 

in the data, the factor correlations in these two models were high (Model 2: r = .85; Model 3: 

rs = .84-.99)—hence, these factors were practically indistinguishable. Overall, the subgroup 

analyses supported the preference of the one-factor model of technology acceptance and thus 

provided additional evidence in the crafting of a validity argument. 

4.3 Meta-Analytic Structural Equation Modeling (Research Question 2) 

Having establish an appropriate measurement model of the technology acceptance 

variables, we added the two outcome variables, behavioral intention and technology use, to 

the one-factor model and estimated the direct and indirect effects of technology acceptance on 

these two outcomes (see Figure 1). Although it has been established in previous studies and 

even meta-analyses that technology acceptance may not only indirectly relate to technology 

use via behavioral intention but also directly (Scherer et al., 2019), we tested whether this 

finding held for our meta-analytic sample. The structural equation model without the direct 

effect of technology acceptance on technology use exhibited a good fit to the data, c2(20) = 

100.9, p < .001, RMSEA = 0.010, CFI = 0.987, SRMR = 0.063, AIC = 60.9, BIC = -109.6. 

This model explained about 37.4 % of the variance in USE and 49.6 % in BI, and the indirect 

effect of technology acceptance on technology use via behavioral intention was statistically 

significant, b = 0.43, 95 % LBCI [0.39, 0.47]. Behavioral intentions and technology use were 

also significantly related, b = 0.61, 95 % LBCI [0.55, 0.67]. Adding the proposed direct effect 

to the model yielded a structural equation model with a very good fit to the data, c2(19) = 

55.9, p < .001, RMSEA = 0.007, CFI = 0.994, SRMR = 0.038, AIC = 17.9, BIC = -144.1. In 
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fact, this model outperformed the model without the direct effect (Dc2[1] = 45.0, p < .001), 

testifying to the importance of this effect. We consequently accepted the model with the direct 

effect as the better representation of the data. The resultant model parameters are shown in 

Figure 3. 

Overall, the final model indicated positive and significant relations of teachers’ 

technology acceptance with behavioral intentions and technology use. However, due to the 

strong effect on technology use, both the link between BI and USE and the indirect effect 

were no longer significant (see Figure 1). Despite this observation, the hypothesized effects of 

technology acceptance on the outcome variables could be established. 

5. Discussion 

5.1 Summary of Key Findings 

The present study was aimed at examining meta-analytically the evidence that may 

support the crafting of a validity argument for the existing technology acceptance measures. 

Specifically, we first analyzed the factor structure of these measures and found that a one-

factor model represented the data best. This finding was robust against the correction of 

correlations for unreliability, differentiating between subgroups of studies (i.e., teacher 

samples and types of technology), and the method of factor analysis (i.e., confirmatory vs. 

exploratory factor analysis). Second, we analyzed the relations between the technology 

acceptance factor and two outcome variables, namely behavioral intentions and technology 

use. Performing structural equation modeling, we found positive, moderate, and statistically 

significant relations to technology acceptance, yet no support for the hypothesized cascade of 

effects, Technology acceptance à Behavioral intention à Technology use.  

5.2 Validity Evidence for the Measurement of Technology Acceptance 

Crafting a validity argument for the measurement of educationally relevant constructs 

is considered key to any inference drawn from the resultant scores (Kane, 2013). The present 
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study was concerned with the evidence for the validity of the technology acceptance measures 

as it brought together information about the dimensionality of the technology acceptance 

measurement and its relations to relevant outcome variables. These two sources of 

information are in fact critical to the crafting of a validity argument (American Educational 

Research Association, American Psychological Association, & National Council on 

Measurement in Education, 2014). Consequently, our study contributes to the field of 

research with knowledge about the validity of technology acceptance measures, supporting 

the continued use of technology acceptance models to inform policy and practice. In fact, 

reliable knowledge about pre- and in-service teachers’ technology acceptance and use is 

considered important for constructing targeted and relevant teacher development courses and 

strategies (Tondeur, Pareja Roblin, van Braak, Fisser, & Voogt, 2013). In addition, our study 

showcases how novel approaches within meta-analysis, that is, meta-analytic structural 

equation modeling, can be utilized to obtain validity evidence across these (i.e., on the 

construct level and not the item level which is the widely taken approach in primary studies). 

The finding that technology acceptance could be represented by a single latent 

variable has several interpretations: First, the technology acceptance measures are 

substantially intercorrelated (Nistor, 2014) and indeed measure a common trait which could 

be interpreted as technology acceptance. Second, the commonalities between the technology 

acceptance variables can be interpreted from both a substantive and a methodological 

perspective. Some of these variables have similar conceptualizations and are assessed with 

similar items (e.g., PEOU and TSE). These similarities ultimately bring to attention the 

question whether they in fact represent different sub-constructs of technology acceptance 

(e.g., Scherer, Siddiq, & Teo, 2015). Concerning the methods of assessment, the included 

studies exclusively contained self-report measures. The commonalities between the 

technology acceptance variables may therefore be due to common method (co-)variance. 
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Sharma et al. (2009) even claimed that much of the covariation between the variables might 

be due to the use of a single assessment method. The knowledge about the factor structure of 

the technology acceptance measurement does, however, not yet provide any evidence on 

whether the resultant factor indeed represents the technology acceptance construct—it may 

well be that it represents a simple method factor underlying all subscales. Hence, it is critical 

to the study of technology acceptance to move beyond the exploration of factor structures and 

consider further sources of evidence.  

Third, along the lines of the previous points, we argue that the investigation of the 

factor structure, possible interpretations thereof, and its generalizability across subgroups of 

teachers or studies are keys to the understanding how technology acceptance measures 

operate. The knowledge gained from these aspects is much needed, especially for interpreting 

any relation between technology acceptance and other variables. As the technology 

acceptance variables are substantially intercorrelated, relations to other variables may be 

interpreted erroneously due to the issue of multicollinearity. Nevertheless, the finding that the 

technology acceptance variables can be aggregated to a common factor provides an approach 

to circumvent this issue and to draw valid inferences from the data (Scherer et al., 2018) and 

supports the continued use of the technology acceptance model for capturing this trait within 

education. 

Fourth, we notice that our study was not concerned with validating specific items or 

assessment formats of technology acceptance (item level); in contrast, our study was 

concerned with the representation of technology acceptance as a construct that is measured by 

several subscales (subscale level). Drawing from the principles of confirmatory factor 

analysis, any factor identified based on manifest subscale scores could be interpreted as a 

second-order factor (Brown, 2015). Whereas the notion of a second-order factor is well-

known to, for instance, the disciplines of cognitive psychology (Gustafsson, 1984) and 
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personality psychology (Digman, 1997), it has hardly been considered in educational 

technology in general (Scherer et al., 2018) and as a vehicle to represent technology 

acceptance in particular (Sharma et al., 2009). Meta-analyzing correlations and correlations 

matrices provides a powerful tool to examine the factor structure of measures and to 

understand the nature of constructs (Cho, 2015; Hong & Cheung, 2015), as the following two 

examples illustrate: Ackerman, Beier, and Boyle (2005) studies the relation between working 

memory and intelligence extracting correlations among several subscales that measured the 

two constructs from 86 samples. Using meta-analytic procedures to combine correlations and 

performing confirmatory factor analysis, the authors found evidence for a second-order factor 

representing both cognitive skills. Naragon-Gainey, McMahon, and Chacko (2017) explored 

the structure of common emotion regulation strategies based on correlations from 331 

samples. They found that three factors represented the structure of the data best—these factors 

suggested a specific grouping of strategies that informed the understanding of emotion 

regulation. Both example studies made use of correlations among subscales and testified to 

the existence of higher-order factors. Similar to these studies, our findings testify to the 

existence of a second-order factor of technology acceptance which captures the covariation 

between the measures and therefore suggest that the seemingly different measures are, to a 

substantial extent, similar. From a measurement perspective, this finding raises the question 

whether a set of several scales comprising the technology acceptance measures is in fact 

needed to represent the construct. The answer to this question may have direct implications 

for future studies of technology acceptance, in which assessments of the constructs are 

included. Similar to this discussion, researchers in the field of cognitive psychology obtained 

evidence for a hierarchical structure of cognitive abilities and thus argued that, in order to 

represent a person’s cognitive ability, only a selection of assessments, yet not a lengthy 

battery assessing the full range of sub-abilities would be needed (McGrew, 2009). For the 
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assessment of technology acceptance as a construct, selecting the best indicators could be 

guided by the size of the factor loadings: some of the measures showed higher factor loadings 

(ATT and PU) than others (FC and SN). In light of these findings, it seems as if the external 

factors of technology acceptance (Abdullah & Ward, 2016) are less indicative of the overall 

technology acceptance construct (see also Teo, 2018). To substantiate this finding further, we 

encourage researchers in the field of educational technology to explore this hierarchy of 

technology acceptance measures in greater detail, for instance, through the usage of multi-

sample and multi-method assessments (e.g., Teo, 2015). Ultimately, the insights gained from 

this line of research may lead to a reduced set of items needed to measure technology 

acceptance. 

We supplemented the investigation of the factor structure by examining the relations 

between technology acceptance, represented by a single latent variable, behavioral intentions, 

and technology use. These relations had been well-described in technology acceptance 

models; yet, the indicators of technology acceptance were hypothesized to show several 

structural relations (see Figure 4a). As noted earlier, the existing body of research diverges 

with respect to these structural relations. Hence, the diversity in these structural relations 

compromises the validity of the technology acceptance construct representation (Scherer et 

al., 2019). The findings of our meta-analysis address this validity threat by proposing to 

consider a unidimensional representation of the construct (see Figure 4b). 

As for the findings on the factor structure, we interpret the findings on the relations in 

several ways. To illustrate, the relations identified in our meta-analysis confirm that 

technology acceptance can explain significant variation in the two outcome variables. This 

observation can be considered further evidence for the validity of the measurement. 

Moreover, despite common expectations, we did not find evidence for the proposed cascade 

of relations (see Figure 1). Technology acceptance was directly, yet not indirectly related to 
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BI and USE. This finding challenges the assumptions on the mechanisms of how technology 

acceptance operates and how BI and USE are linked. Together with Nistor (2014), we argue 

that the BI-USE link, which was insignificant in our meta-analysis, may not be positive and 

significant at all—perhaps it is time to abandon the underlying assumptions. This implies that 

researchers may need to supplement their studies that are solely based on surveys with other 

information on teachers’ actual use of technology (e.g., learning analytics, log file data). 

Moreover, the simplistic view of the hypothesized cascade does not take into account the 

complexities of turning intentions into actual behavior (Bagozzi, 2007). We therefore 

encourage researchers to further explore these complexities along with possible moderators of 

the BI-USE link and to retrieve information about possible causes that weaken this link 

(Montes de Oca & Nistor, 2014). Furthermore, a comprehensive TAM instrument that 

integrates types of technology acceptance in the context of education can be a next important 

step in order to measure the differential impact on specific types of technology acceptance. 

Most primary studies assessed the use of technology via self-reports and only obtained 

proxies of teachers’ actual technology integration. This, however, threatens the validity of this 

outcome measure and calls for including alternative sources of information about the USE 

variable (e.g., classroom observations, log file data). Overall, we argue that analyzing the 

relations among technology acceptance, behavioral intentions, and technology use provided 

further evidence for the validity of the technology acceptance measurement. At the same time, 

some findings revealed the perhaps outdated assumptions on these relations. 

5.3 Limitations and Future Directions 

This study set out with the goal to examine whether the close relations between the 

variables relevant to teachers’ technology acceptance may require researchers to rethink the 

structure of current technology acceptance models. Although the finding that the technology 

acceptance variables are indeed closely related and thus hardly distinct empirically may 
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explain the diversity of results in existing studies (e.g., weak to strong links between 

technology acceptance, behavioral intentions, and technology use; differential prediction of 

perceived usefulness and ease of use by external variables), other factors may explain this 

diversity as well. For instance, Nistor (2014) argues that certain relations in the TAM are 

moderated by contextual factors and norm-related beliefs. We encourage researchers to 

consider the moderating effects of such contextual variables when explaining the between-

study variation in relations. Next, from a methodological perspective, correlation-based 

MASEM—a method that overcomes several challenges associated with the pooling of 

multiple correlations from the primary studies—still has shortcomings, especially concerning 

quantifying the between-study variation of parameters in the structural equation model. To 

become more accurate in the explanation of this variation, novel methodological approaches, 

including multilevel MASEM, may be feasible alternatives; however, these approaches still 

have to deliver on their promises (Cheung, 2018; Ke, Zhang, & Tong, 2018). Finally, our 

meta-analysis focused on samples of teachers, probably the most prominent group to be 

studied in the context of technology acceptance in education (Scherer et al., 2019). This focus 

restricts our inferences to pre- and in-service teachers, and we would like to encourage 

replications and extensions of our meta-analysis to student samples and samples outside of 

educational contexts. The resultant knowledge may provide insights into the generalizability 

of our results across samples and contexts. 

5.4 Implications 

To summarize, our analysis of the existing meta-analytic data set of teachers’ 

technology acceptance measures has substantive, methodological, and practical implications. 

5.4.1 Theoretical Implications 

Our study sheds light on the link between teachers’ intentions to use technology in 

educational settings and their reported use and thus directly responds to Nistor’s (2014) call 
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for examining this link. The finding that usage intentions and reported usage behavior were 

not linked in our study implies that (a) this link is clearly not as solid as anticipated in 

previous literature, therefore possible reasons for this missing link should be explored in 

future research; (b) teacher education or professional development programs should not stop 

at facilitating and fostering teachers’ intentions to use technology but follow up on the actual 

implementation in classrooms and decrease possible barriers of technology usage.  

Next, the finding that technology acceptance is directly related to usage intentions and 

reported usage behavior implies not only the relevance of the construct of technology 

acceptance but also to the relevance of what is shared among all its indicators for technology 

integration. The latter defines the construct as a latent variable (for a general note on this 

issue, please refer to Borsboom, Mellenbergh, & van Heerden, 2003). Besides, informing 

schools and educational policy-makers about the relevance of factors determining the 

adoption of technology is critical to the implementation of technologies in classrooms, 

schools, and educational systems, especially when teachers have large degrees of autonomy 

with respect to technology integration in classrooms (Fraillon, Ainley, Schulz, Friedman, & 

Gebhardt, 2014; Siddiq et al., 2016).  

Finally, our study relied on an existing meta-analytic data set and explored an 

alternative explanation for the seemingly conflicting findings surrounding the relations among 

the technology acceptance variables. In this sense, we contributed to extending the existing 

meta-analysis and to clarifying some of the previous findings. For instance, Scherer et al. 

(2019) noted the considerable between-study variation of correlations among technology 

acceptance variables—an indicator of what we referred to as “conflicting findings”—and they 

explored whether study- and sample-level characteristics could explain this variation. 

However, as the variance explanation were considerably small in their study, the proposed 

characteristics did not have strong explanatory power of the varying findings (see also 
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Scherer & Teo, 2019). Relying on this observation, we proposed another possible 

explanation, that of the dimensionality of the technology acceptance construct. We found 

evidence supporting this explanation by further analyzing their data set. This process of 

replicating or, more precisely, reiterating research approaches and considering alternative 

hypotheses is at the heart of science and has found its way into the current debates of 

educational and psychological research (Hedges & Schauer, 2018; Makel & Plucker, 2014).  

Overall, we argue that reconsidering the representation of the technology acceptance 

construct is critical to the inferences draw from the empirical tests of complex, structural 

models, such as the Technology Acceptance Model and its versions. As Lim (2018) 

suggested, reconsidering the conceptualization of technology acceptance as a construct or a 

“conceptual lens […] for behavioural modelling in technology-mediated environments” 

through new forms of replication is needed to advance technology acceptance research. Our 

re-analysis of a meta-analytic data set offers such a replication by extending existing insights 

and answers Lim’s (2018) call. More generally, considering Makel’s and Plucker’s (2014) 

and Hodges’ (2015) plea for replications in education technology research, we believe that 

crafting a validity argument for this construct is as important as striving for novelty in this 

area. The reason for this is that building on false theoretical assumptions may lead to 

erroneous conclusions and further ineffective interventions. 

5.4.2 Methodological Implications 

 Our study provided new insights into the ways to represent the technology acceptance 

construct in future studies. Specifically, we observed that a single factor underlies the key 

indicators of technology acceptance (i.e., PU, PEOU, ATT) alongside the external variables 

(i.e., SN, TSE, and FC). This observation informs (a) the way the technology acceptance 

construct can be represented as a latent variable indicated by six manifest variables in 

structural equation models, and (b) the interpretation of the results obtained from empirical 
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studies of technology acceptance models. Concerning the latter (b), our findings warrant 

investigating the factor structure of technology acceptance before the six variables (i.e., PU, 

PEOU, ATT, SN, TSE, and FC) are submitted to path or structural equation modeling. In case 

their correlations are substantially high, the resultant path coefficients will be biased due to 

the issue of multicollinearity Marsh et al. (2004) warned against. This bias can lead to 

erroneous conclusions drawn from the structural models (Scherer et al., 2018). Hence, the 

findings from our study have direct implications for research on technology acceptance as it 

informs the way how the construct can be represented and how researchers can ensure the 

validity of their findings. In conclusion, our study offers a way to circumvent the issue of 

multicollinearity that can compromise the crafting of a validity argument (Borsboom, 

Mellenbergh, & van Heerden, 2004). 

Besides, our study showcased how researchers in the field of technology acceptance 

can utilize correlation-based MASEM to synthesize research findings across studies. The 

potential of this approach lies in the correct aggregation of multiple correlations and the 

flexible specification of multiple structural equation models (Cheung, 2015)—in our case, 

these models represented multiple assumptions on the structure of technology acceptance 

(e.g., unidimensional vs. two-dimensional). The modeling steps taken in our study were based 

on the standards for MASEM (Sheng et al., 2016) and can be transferred to other scenarios. 

We therefore hope to stimulate meta-analysts to consider performing MASEM instead of the 

biased univariate approaches when synthesizing correlation matrices. 

5.4.3 Managerial Implications 

Despite the fact that our meta-analysis mainly has direct implications for theory-

building and empirical research in the context of technology acceptance, it may have some 

practical implications for teacher education and professional development. As stated before, 

teachers have a large degree of autonomy to select specific technological applications (e.g., 
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Vangrieken et al., 2017), but at the same time it is still challenging for teachers to adequately 

integrate them in their educational practice (Pynoo et al., 2011). Moreover, because of the fast 

development of ICT, teachers constantly need to update their educational technology use. The 

overall finding of the current study that technology acceptance explains variance in both the 

teachers’ usage intentions and the reported usage offers some directions for interventions in 

schools: fostering the different aspects of technology acceptance could probably enhance 

teachers’ usage-relevant outcomes. The finding that technology acceptance is represented as a 

unidimensional construct further supports the argument to develop interventions that do not 

only focus on one aspect of it (e.g., supporting only teachers’ technology self-efficacy) but 

multiple (Scherer et al., 2019). Moreover, the missing link between usage intentions and 

usage calls for developing educational and training programs for teachers that focus explicitly 

on the transfer from intention to practice (Nistor, 2014). To illustrate, this unidimensional 

construct to measure the effect on teachers’ usage intentions can provide more insight  to 

organizational professional development initiatives that take place before the introduction of 

new technologies in education.  Such programs may include approaches to help seeking, 

knowledge sharing, and peer support among teachers to support usage intentions (e.g., 

Montes de Oca & Nistor, 2014; Venkatesh & Bala, 2008). 

6. Conclusions 

The seemingly diverse measures of technology acceptance—measures that tap 

teachers’ attitudes, beliefs, and their perceptions of norms and facilitating conditions alike—

represent a common trait that can be interpreted as an indicator of the technology acceptance 

construct. This homogeneity among the measures, although not perfect, provides some 

evidence for the validity of the technology acceptance measurement. Moreover, the 

robustness of this finding across several conditions (e.g., subgroups within the sample, 

treatment of correlations, psychometric approaches) strengthens this evidence base. At the 
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same time, the fact that technology acceptance can be represented as a second-order trait 

questions the empirical distinction between the first-order indicators. Specifically, the 

indicators measuring the technology acceptance construct are substantially intercorrelated, 

and their use in well-established technology acceptance models that propose certain structural 

relations among them may be problematic—in fact, some of the diverse findings on the 

relations between technology acceptance and outcome variables may be due to the substantial 

relations among the technology acceptance measures.  

We consequently encourage researchers in the field not to take for granted the 

distinction between technology acceptance measures, but to examine the structure of these 

measures in their studies, and, ultimately, to consider representing the technology acceptance 

construct as a second-order trait. Together with Bagozzi (2007) and Nistor (2014), we also 

argue that the unchallenged assumption of a positive and significant link between the 

intentions to use technology and the use of it must be challenged, examined, and perhaps even 

abandoned. We believe that there is a need for explaining the lack of this link by bringing 

together psychological and contextual perspectives on technology acceptance. Crafting a 

validity argument for the measurement of technology acceptance should become part of the 

standard repertoire of any study in this area.   

Next to these substantive conclusions, the present study has also demonstrated how 

meta-analytic structural equation modeling—one of the recent advancements in meta-

analysis—allows researchers to test hypotheses on measurement and structural models based 

on the correlation matrices that were obtained from primary studies. This opens new 

possibilities to advance the knowledge in the field of educational technology through research 

syntheses. 
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Tables 

Table 1 

Aggregated correlation matrix of the technology acceptance variables (PU, PEOU, ATT, SN, TSE, FC) and the two outcome variables (BI, USE) 

 PU PEOU ATT SN TSE FC BI 

PEOU        

!̅  .47*       

95 % CI [.43, .50]       

N 28639       

#$ 108       

τ2 0.026*       

SE(τ2) 0.004       

I2 90.9 %       

ATT        

!̅ .58* .51*      

95 % CI [.54, .61] [.48, .55]      

N 21829 19871      

#$ 73 70      

τ2 0.020* 0.024*      

SE(τ2) 0.004 0.005      

I2 87.8 % 88.9 %      

SN        

!̅  .38* .25* .31*     

95 % CI [.33, .42] [.21, .29] [.25, .36]     

N 12265 11886 8575     

#$ 40 38 23     

τ2 0.021* 0.015* 0.013*     

SE(τ2) 0.006 0.004 0.005     
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I2 86.3 % 81.3 % 78.5 %     

TSE        

!̅  .41* .46* .39* .27*    

95 % CI [.36, .46] [.40, .51] [.32, .46] [.18, .36]    

N 16636 10871 8229 4682    

#$ 53 43 24 16    

τ2 0.031* 0.032* 0.023* 0.029*    

SE(τ2) 0.007 0.008 0.008 0.012    

I2 90.4 % 90.5 % 86.8 % 89.4 %    

FC        

!̅  .32* .39* .36* .26* .27*   

95 % CI [.28, .36] [.34, .44] [.30, .42] [.21, .30] [.20, .34]   

N 19416 14636 11443 10011 10945   

#$ 55 47 27 32 29   

τ2 0.021* 0.028* 0.021* 0.014* 0.028*   

SE(τ2) 0.005 0.007 0.006 0.005 0.008   

I2 86.7 % 89.3 % 86.4 % 79.9 % 89.2 %   

BI        

!̅  .54* .40* .51* .34* .39* .35*  

95 % CI [.51, .58] [.37, .44] [.46, .56] [.28, .39] [.34, .44] [.30, .40]  

N 25307 20993 17981 9402 12175 12359  

#$ 89 79 57 31 43 38  

τ2 0.025* 0.018* 0.028* 0.018* 0.028* 0.021*  

SE(τ2) 0.004 0.004 0.006 0.006 0.007 0.006  

I2 91.0 % 85.3 % 90.4 % 84.0 % 89.3 % 86.4 %  

USE        

!̅  .39* .32* .40* .27* .42* .31* .44* 

95 % CI [.32, .46] [.24, .39] [.29, .51] [.19, .35] [.34, .49] [.15, .47] [.37, .52] 

N 7604 6383 4252 2833 2873 2427 4749 

#$ 24 20 13 8 12 7 14 

τ2 0.023* 0.027* 0.036* 0.008 0.010 0.042 0.016* 

SE(τ2) 0.008 0.010 0.015 0.006 0.006 0.024 0.008 
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I2 86.8 % 88.8 % 91.3 % 69.7 % 74.9 % 92.4 % 82.1 % 

Note. The aggregated correlation matrix was based on a random-effects model quantifying the variation of correlations between the m = 128 

correlation matrices (τ2) that yielded k = 1113 correlations. !̅ = Aggregated correlation between variables, 95 % CI = 95 % Wald confidence 

interval, N = Size of the teacher samples in the primary studies, #$ = Number of available correlations that were obtained from the m correlation 

matrices, I2 = Heterogeneity coefficient. ATT = Attitudes toward technology, BI = Behavioral intentions to use technology, FC = Facilitating 

conditions, PEOU = Perceived ease of use, PU = Perceived usefulness, SN = Subjective norms, USE = Technology use. * p < .01
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Table 2 

Parameters of the three technology acceptance measurement models 

Element Parameter Model 1: One-factor model Model 2: Two-factor model Model 3: Three-factor model 

  Estimate 95 % LBCI Estimate 95 % LBCI Estimate 95 % LBCI 

Factor 

loadings 

       

 PEOU 0.671 [0.457, 0.533] 0.673 a [0.640, 0.707] 0.669 c [0.635, 0.704] 

 PU 0.723 [0.690, 0.757] 0.725 a [0.692, 0.759] 0.719 c [0.684, 0.755] 

 ATT 0.767 [0.729, 0.805] 0.769 a [0.731, 0.807] 0.779 d [0.737, 0.822] 

 TSE 0.582 [0.535, 0.630] 0.583 a [0.536, 0.631] 0.589 d [0.541, 0.638] 

 SN 0.443 [0.405, 0.483] 0.479 b [0.425, 0.533] 0.479 b [0.426, 0.534] 

 FC 0.495 [0.457, 0.533] 0.538 b [0.478, 0.598] 0.538 b [0.478, 0.597] 

Residual 

variances 

       

 PEOU 0.549 [0.503, 0.593] 0.547 [0.500, 0.591] 0.552 [0.505, 0.596] 

 PU 0.477 [0.427, 0.524] 0.474 [0.424, 0.522] 0.483 [0.430, 0.532] 

 ATT 0.412 [0.352, 0.469] 0.409 [0.348, 0.466] 0.393 [0.325, 0.457] 

 TSE 0.661 [0.603, 0.714] 0.660 [0.602, 0.713] 0.653 [0.593, 0.708] 

 SN 0.803 [0.767, 0.836] 0.771 [0.716, 0.819] 0.770 [0.715, 0.819] 

 FC 0.755 [0.716, 0.791] 0.711 [0.643, 0.771] 0.711 [0.643, 0.771] 

Factor 

correlations 

       

 gATT WITH EB - - 0.897 [0.807, 1.008] - - 

 TP WITH ASB - - - - 0.999 e - 

 TP WITH EB - - - - 0.924 [0.821, 1.046] 

 ASB WITH EB - - - - 0.851 [0.736, 0.986] 

Note. 95 % LBCI = 95 % Likelihood-based confidence interval. ASB = Attitudes and self-beliefs, ATT = Attitudes toward technology, EB = 

External beliefs, FC = Facilitating conditions, gATT = general attitudes toward technology, gTA = general technology acceptance, PEOU = 

Perceived ease of use, PU = Perceived usefulness, SN = Subjective norms, TP = Technology perceptions, TSE = Technology self-efficacy.  
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a Variables assigned to the factor gATT, b Variables assigned to the factor EB, c Variables assigned to the factor TP, d Variables assigned to the 

factor ASB, e This correlation was constrained to 0.999 (Heywood case). 
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Table 3 

Fit of the three factor models for subgroups of teachers and the specificity of technology in the technology acceptance measures 

Subgroup Model c2(df) RMSEA CFI SRMR AIC BIC Comparison Dc2(Ddf) 

Teacher level 

In-service teachers 1 28.9 (9), p < .001 0.011 0.990 0.054 10.9 -59.0 1 vs. 2 2.1 (1), p = .15 

 2 26.9 (8), p < .001 0.012 0.991 0.053 10.9 -51.3 2 vs. 3 0.3 (1), p = .56 

 3 26.5 (7), p < .001 0.013 0.990 0.053 12.5 -41.9 1 vs. 3 2.4 (2), p = .30 

Pre-service teachers 1 16.0 (9), p = .07 0.006 0.996 0.039 -2.0 -73.0 1 vs. 2 3.1 (1), p = .08 

 2 12.9 (8), p = .11 0.006 0.998 0.037 -3.1 -66.2 2 vs. 3 1.6 (1), p = .20 

 3 11.3 (7), p = .13 0.006 0.998 0.036 -2.7 -57.9 1 vs. 3 4.7 (2), p = .10 

Specificity of technology 

Technology in general 1 23.6 (9), p < .01 0.009 0.995 0.037 5.6 -65.1 1 vs. 2 6.8 (1), p < .01 

 2 16.8 (8), p < .05 0.008 0.997 0.035 0.8 -62.0 2 vs. 3 -0.1 (1), p = .99 

 3 16.9 (7), p < .05 0.009 0.997 0.035 2.9 -52.1 1 vs. 3 6.8 (2), p < .05 

Specific technologies 1 17.8 (9), p < .05 0.007 0.994 0.049 -0.2 -70.5 1 vs. 2 0.1 (1), p = .77 

 2 17.7 (8), p < .05 0.008 0.992 0.048 1.7 -60.7 2 vs. 3 1.4 (1), p = .24 

 3 16.3 (7), p < .05 0.009 0.993 0.047 2.3 -52.3 1 vs. 3 1.5 (2), p = .48 

Note. Model comparisons are based on the chi-square difference testing (see Brown, 2015). 
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Figures 

 

 

Figure 1. Structural model linking technology acceptance, behavioral intention, and 

technology use. 

  

Technology acceptance Behavioral intention Technology use
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Figure 2. Three competing models of technology acceptance. 

Note. ASB = Attitudes and self-beliefs, ATT = Attitudes toward technology, EB = External 

beliefs, FC = Facilitating conditions, gATT = general attitudes toward technology, gTA = 

general technology acceptance, PEOU = Perceived ease of use, PU = Perceived usefulness, 

SN = Subjective norms, TP = Technology perceptions, TSE = Technology self-efficacy. 
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Figure 3. Meta-analytic structural equation model describing the relations between 

technology acceptance (gTA), behavioral intention (BI), and technology use (USE). 

Note. The 95 % Likelihood-based confidence intervals are shown in brackets. ATT = 

Attitudes toward technology, FC = Facilitating conditions, PEOU = Perceived ease of use, PU 

= Perceived usefulness, SN = Subjective norms, TSE = Technology self-efficacy. 
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Figure 4. Conceptual models of technology acceptance hypothesizing (a) structural relations 

between the predictors of behavioral intentions (BI) and technology use (USE), and (b) a 

unidimensional representation of the technology acceptance variables as a general factor 

(gTA). 

Note. PEOU = Perceived ease of use, PU = Perceived usefulness, ATT = Attitudes toward 

technology, TSE = Technology self-efficacy, SN = Subjective norms, FC = Facilitating 

conditions. 
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