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Ŵ Introduction

OpenHPL is an open-source hydropower library that consists of hydropower unit models
and is encoded in Modelica. Modelica is a multi-domain as well as a component-oriented
modelling language that is suitable for complex system modelling. In order to develop
the library, OpenModelica has been used as an open-source Modelica-based modelling
and simulation environment.

A hydropower library: OpenHPL provides the capability for the modelling of hydropower
systems of different complexity. The library includes the following units:

1. Various waterway units are modelled based on the mass and momentum balances,
i.e., reservoirs, conduits, surge tank, fittings. A modern method for solving more
detailed models (PDEs) is implemented in the library, and enables the modelling of
the waterway with elastic walls and compressible water as well as open channel.

2. A hydrology model has been implemented and makes it possible to simulate the
water inflow to the reservoirs.

3. Mechanistic models, as well as simple look-up table turbine models are implemented
for the Francis and Pelton turbine types. The Francis turbine model also includes
a turbine design algorithm that gives all of the needed parameters for the model,
based on the turbine’s nominal operating values.

4. The capability for multiphysics connections and work with other libraries is ensured,
e.g., connecting with the Open-Instance Power System Library OpenIPSL makes it
possible to model the electrical part for the hydropower system.

A detailed description of each hydropower unit and their uses are presented below in this
user guide.
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ŵ Installation

OpenHPL can be opened either in open-source OpenModelica1 or commercial Dymola2

modelling and simulation environments, which are based on the Modelica language. Here,
OpenModelica is emphasized due to free availability. To install OpenModelica, follow
the instructions at https://openmodelica.org/download/download-windows for Win-
dows users, or find the installation instruction for other operating systems at https:
//openmodelica.org in “Download” tab. Some tutorials exist for Modelica at http:
//book.xogeny.com, and for OpenModelica at https://goo.gl/76274H.

OpenHPL can be found at Github3. To install this library, follow the instructions at the
Github page.

In addition, Modelica models in OpenModelica can be simulated within a scripting lan-
guage (Python4 via the OMPython API5, Julia6 via the OMJulia API7) and further
analysed using the analysis tools in the scripting language. The installation instructions
for both these APIs can be found in the links provided in the footnotes for each API.

1https://openmodelica.org
2https://www.3ds.com/products-services/catia/products/dymola
3https://github.com/usn-modelling/HydroPowerUSN
4https://www.python.org
5https://www.openmodelica.org/doc/OpenModelicaUsersGuide/latest/ompython.html
6https://julialang.org
7https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omjulia.html
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Ŷ OpenHPL elements

An overview of each element of the hydropower library OpenHPL is provided in this
section. A screenshot of OpenHPL in OpenModelica is shown in Figure 3.1.

Figure 3.1: Screen shot of OpenModelica with the hydropower library.

It is visible from Figure 3.1 that the library is divided into various components and classes.
Each of these components and classes is listed below with a short description:

• First, the Copyright element provides a reference to the license for this library.
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3 OpenHPL elements

• Next, the Constants element is a record’s model that determines the common para-
meters for this library. It is possible to insert this class to models and use the
common parameters for the whole library.

• Then, the Examples class provides various examples of using the library for hydro-
power system as well as examples of using OpenHPL together with power system
library — OpenIPSL.

• The Waterway class consists of various unit models for the waterway of the hydro-
power system, such as reservoirs, conduits, surge tank, pipe fittings, etc.

• The ElectroMech class provides the electro-mechanical components of the hydro-
power system and consists of two main sub-classes: Turbines with various turbine
unit models and Generators with models for a synchronise generator.

• Then, the Controllers class holds a simple model for a governor of the hydropower
system.

• The Tests class provides various testing models for all library components.

• Next, the Interfaces class gives connector models for the library components.

• The Functions class consists of three sub-classes that define functions for the cal-
culation of a friction term in the pipe — DarcyFriction, for solving PDEs using
Kurganov-Petrova (KP) scheme — KP07, and for pressure drop calculation in vari-
ous pipe fitting — Fitting.

• Finally, the Icons class holds icons for all library components.

Below, a detailed description of each unit model of the OpenHPL is provided.

Ŷ.Ŵ Interfaces

First, a detailed description of the interface connectors is provided here. In the OpenHPL,
two types of connectors are typically used.The first type is the standard Modelica real
input/output connector, the other type is a set of connectors that represent the water
flow and are modelled similar to the connection in an electrical circuit with voltage and
current, or similar to the idea of potential and flow in Bond Graph models. The water flow
connector which is called Contact in the library, contains information about the pressure
in the connector and mass flow rate that flows through the connector. An example of a
Modelica code for defining the Contact connector looks as follows:
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3.1 Interfaces

connector Contact "Water flow connector"
Modelica.SIunits.Pressure p "Contact pressure";
flow Modelica.SIunits.MassFlowRate m_dot "Mass flow rate

through the contact";
// Creating an icon for connector
annotation (Icon(graphics={ Ellipse(extent

={{-100,-100},{100,100}}, lineColor = {28, 108, 200},
fillColor = {0, 128, 255}, fillPattern =
FillPattern.Solid)}));

end Contact;

In addition, some extensions of this water flow connector are developed for the better use
in the library. These extensions are listed hereby.

• TwoContact is an extension from the Contact model which provides a model of two
connectors of inlet and outlet contacts. A Modelica code for this model looks as
follows:

partial model TwoContact "Model of two connectors"
// Specifying connectors and their placement in

diagram
Contact p "Inlet contact" annotation(Placement(

transformation(extent ={{-110,-10},{-90,10}})));
Contact n "Outlet contact" annotation(Placement(

transformation(extent ={{90,-10},{110,10}})));
end TwoContact;

• ContactPort is an extension from the TwoContact model which also provides in-
formation about a mass flow rate between these two connectors. The mass flow rate
that flows through the inlet connector is equal to the mass flow through the outlet
connector. This model is used for the pipe modelling. A Modelica code for this
ContactPort model looks as follows:

partial model ContactPort "Model of two connectors
with mass flow rate"
Modelica.SIunits.MassFlowRate m_dot "Mass flow rate

";
extends TwoContact;

equation
0 = p.m_dot + n.m_dot;
m_dot = p.m_dot;

end ContactPort;
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3 OpenHPL elements

• ContactNode is an extension from the TwoContact model and provides a node pres-
sure that is equal to the pressures from these two connectors. This model also
defines the mass flow rate that is the sum of the mass flow rates through the inlet
and outlet connectors. This model is used for the surge tank modelling. A Modelica
code for this ContactNode model looks as follows:

partial model ContactNode "Model of two connectors
and node pressure"
Modelica.SIunits.Pressure p_n "Node pressure";
Modelica.SIunits.MassFlowRate m_dot "Mass flow rate

";
extends TwoContact;

equation
p_n = p.p;
p.p = n.p;
m_dot = p.m_dot + n.m_dot;

end ContactNode;

• TurbineContacts is an extension from ContactPort model and provides the real input
and output connectors, additionally. This model is used for turbine modelling. A
Modelica code for this TurbineContacts model looks as follows:

partial model TurbineContacts "Model of turbine
connectors"

extends ContactPort;
// Specifying additional connectors and their

placement in diagram
input Modelica.Blocks.Interfaces.RealInput u_t "[

Guide vane|nozzle] opening of the turbine"
annotation (Placement(transformation(extent =
{{-20, -20}, {20, 20}}, rotation = -90, origin
={0,120})));

Modelica.Blocks.Interfaces.RealOutput P_out "
Mechanical Output power" annotation (Placement(
transformation(origin={0,-110}, extent
={{-10,-10},{10,10}}, rotation = 270)));

end TurbineContacts;

Ŷ.ŵ Functions

Here, a detailed description of the functions and their used algorithms in the library, are
presented.
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3.2 Functions

Ŷ.ŵ.Ŵ Friction term

First, the functions for defining the friction force in the waterway are described. More
details can be found in Bernt Lie’s Lecture notes, [1].

The friction force Ff is directed in the opposite direction of the velocity v (the linear
velocity average across the cross-section of the pipe) of the fluid, [1]. A common expression
for friction force in the filled pipes is the following:

Ff =−1
8

πρLD fDv|v| (3.1)

Here, L and D are related to the pipe width and diameter, respectively. fD is a Darcy
friction factor that is a function of Reynolds’ number NRe, with the roughness ratio ε

D as
a parameter, see Figure 3.2.

In Figure 3.2, the turbulent region (NRe > 2.3 · 103) is a flow regime where the velocity
across the pipe has a stochastic nature, and where the velocity v is relatively uniform
across the pipe when we average the velocity over some short period of time. The laminar
region (NRe < 2.1 ·103) is a flow regime with a regular velocity v which varies as a parabola
with the radius of the pipe, with zero velocity at the pipe wall and maximal velocity at
the centre of the pipe.

Figure 3.2: Darcy friction factor as a function of Reynolds’ number.

Darcy friction factor varies with the roughness of the pipe surface, specified by roughness
height ε . For laminar flow in a cylindrical pipe (NRe < 2.1 ·103), the Darcy friction factor
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3 OpenHPL elements

fD can be found using the following expression:

fD =
64

NRe
(3.2)

Here, Reynolds’ number is found as follows: NRe =
ρ|v|D

µ
, where µ is the the fluid viscos-

ity.

For turbulent flow (NRe > 2.3 ·103), it is common to rewrite the expression for the Darcy
friction factor as

fD =
1(

2log10

(
ε

3.7D + 5.74
N0.9

Re

))2 (3.3)

In order to define the Darcy friction factor in a region between laminar and turbulent flow
regimes, a possibility is to use some interpolation expressions between the laminar value
at NRe = 2100 and the turbulent value at NRe = 2300, e.g., a cubic polynomial fitting with
the same slope as laminar friction at NRe = 2100 and turbulent friction at NRe = 2300, [1].
To achieve the global differentiability, with p(NRe) = aN3

Re +bN2
Re + cNRe +d, thus:

p(NRe = 2100) = f l
D(NRe = 2100)

p(NRe = 2300) = f t
D(NRe = 2300)

d p
dNRe

∣∣∣
NRe=2100

=
d f l

D
dNRe

∣∣∣
NRe=2100

d p
dNRe

∣∣∣
NRe=2300

=
∂ f t

D
∂NRe

∣∣∣
ε

D ,NRe=2300

(3.4)

Hence, the constants a, b, c and d can be found as follows:


a
b
c
d

=


21003 21002 2100 1
23003 23002 2300 1

3 ·21002 2 ·2100 1 0
3 ·23002 2 ·2300 1 0


−1


64

2100
1(

2log10

(
ε

3.7D+ 5.74
23000.9

))2

− 64
21002

−0.25 0.316
23001.25

 (3.5)

Based on the presented equation for calculation of the friction force in the waterway,
two functions are encoded in this class DarcyFriction. The first function is for defining
the Darcy friction factor and called fDarcy. This function has the following inputs: the
Reynolds’ number NRe, the pipe diameter D, and the pipe roughness height ε . Then,
based on Eq. 3.2 for the laminar flow (Reynold number < 2100), Eq. 3.3 for turbulent
flow (Reynold number > 2300), and Eq. 3.5 for transitional zone (2100 < Reynold number
< 2300); the fDarcy function provides value for the Darcy friction factor fD.

Another function, Friction is for defining the actual friction force and is based on a
response from the fDarcy function. This function has the following inputs: the linear
velocity v, the pipe length and diameter L and D, the liquid density and viscosity ρ and
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3.2 Functions

µ , and the pipe roughness height ε . As an output, this function provides a value for the
friction force Ff based on Eq. 3.1. An example of a Modelica code for defining the Friction
function looks as follows:

function Friction "Friction force with Darcy friction factor"
import Modelica.Constants.pi;
input Modelica.SIunits.Velocity v "Flow velocity";
input Modelica.SIunits.Diameter D "Pipe diameter";
input Modelica.SIunits.Length L "Pipe length";
input Modelica.SIunits.Density rho "Density";
input Modelica.SIunits.DynamicViscosity mu "Dynamic

viscosity of water";
input Modelica.SIunits.Height eps "Pipe roughness height";
// Function output (response) value
output Modelica.SIunits.Force F_f "Friction force";

// Local (protected) quantities
protected

Modelica.SIunits.ReynoldsNumber N_Re "Reynold number";
Real f "friction factor";

algorithm
N_Re := rho * abs(v) * D / mu;
f := fDarcy(N_Re, D, eps);
F_f := 0.5 * pi * f * rho * L * v * abs(v) * D / 4;

end Friction;

Ŷ.ŵ.ŵ KP scheme

Here, functions for solving PDEs in Modelica are described. First, the overview of the
KP scheme is presented. More details about this scheme can be found in Roshan Sharma
work, [2], and other works, [3], [4].

This is a well-balanced second-order scheme, which is a Reimann problem solver free
scheme (central scheme) while at the same time, it takes advantage of the upwind scheme
by utilizing the local, one side speed of propagation (given by the eigenvalues of the
Jacobian matrix) during the calculation of the flux at the cell interfaces, [2].

The central-upwind numerical scheme is presented for the one-dimensional case.

∂U (x, t)
∂ t

+
∂F (x, t,U)

∂x
= S (x, t,U) (3.6)

Here, U (x, t) is the state vector, where states are the functions of position x and time t.
F (x, t,U) is the vector of fluxes and S (x, t,U) is the source terms.
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3 OpenHPL elements

In order to solve this PDE, it should be first discretized by finite-volume methods. With
the finite volume method, we divide the grid into small control volumes/cells and then
apply the conservation laws. This control volume/cell with notations are shown in Fig-
ure 3.3.

Figure 3.3: Control volume/cell, [2].

Hence, the semi-discrete (time-dependent ODEs) central-upwind scheme can be then writ-
ten in the following form:

d
dt

Ū j (t) =−
H j+ 1

2
(t)−H j− 1

2
(t)

∆x
+ S̄ j (t) (3.7)

Here, Ū j are the cell centre average values, while H j± 1
2
(t) are the central upwind numerical

fluxes at the cell interfaces and are given by:

H j+ 1
2
(t) =

a+
j+ 1

2
F
(

U−
j+ 1

2

)
−a−

j+ 1
2

F
(

U+

j+ 1
2

)
a+

j+ 1
2
−a−

j+ 1
2

+
a+

j+ 1
2

a−
j+ 1

2
a+

j+ 1
2
−a−

j+ 1
2

[
U+

j+ 1
2
−U−

j+ 1
2

]

H j− 1
2
(t) =

a+
j− 1

2
F
(

U−
j− 1

2

)
−a−

j− 1
2

F
(

U+

j− 1
2

)
a+

j− 1
2
−a−

j− 1
2

+
a+

j− 1
2

a−
j− 1

2
a+

j− 1
2
−a−

j− 1
2

[
U+

j− 1
2
−U−

j− 1
2

] (3.8)

Here, a±
j± 1

2
are the one-sided local speeds of propagation.

For calculating the numerical fluxes H j± 1
2
(t), the values of states at the cell interfaces

U±
j± 1

2
are needed. These values can be calculated as the endpoints of a piecewise linearly
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3.2 Functions

reconstructed function:
U−

j+ 1
2
= Ū j +

∆x
2 s j

U+
j+ 1

2
= Ū j+1 − ∆x

2 s j+1

U−
j− 1

2
= Ū j−1 +

∆x
2 s j−1

U+
j− 1

2
= Ū j − ∆x

2 s j

(3.9)

The slope s j of the reconstructed function in each cell is computed using a limiter function
to obtain a non-oscillatory nature of the reconstruction. The KP scheme utilizes the
generalized minmod limiter as:

s−j = θ
Ū j−Ū j−1

∆x ,sc
j =

Ū j+1−Ū j−1
2∆x ,s+j = θ

Ū j+1−Ū j
∆x

s j = minmod
(

s−j ,s
c
j,s

+
j

)
=


min

(
s−j ,s

c
j,s

+
j

)
, if s−j > 0 & sc

j > 0 & s+j > 0

max
(

s−j ,s
c
j,s

+
j

)
, if s−j < 0 & sc

j < 0 & s+j < 0

0, otherwise

(3.10)

The parameter θ ∈ [1,2] is used to control or tune the amount of numerical dissipation or
numerical viscosity present in the resulting scheme. The value of θ = 1.3 is an acceptable
starting point in general.

It can be observed that for a given jth cell, the information from the neighbouring cells
j−1 and j−2 (to the left) and j+1 and j+2 (to the right) are required for calculating
the flux integrals. This will pose difficulties at the cells on the left and right boundaries.
While evaluating the flux integrals near the left boundary cells ( j = 1 and j = 2) and
near the right boundary cells ( j = N − 1 and j = N; N is the number of cells in the
grid), imaginary cells that lie outside the physical boundary should also be taken into
consideration, see Figure 3.4.

Figure 3.4: Ghost cells at the grid boundaries, [2].

These imaginary cells denoted by j = 0 and j =−1 on the left, and j =N+1 and j =N+2
on the right are called the ghost cells. The average value of the conserved variables at
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3 OpenHPL elements

the centre of these ghost cells depends on the nature of the physical boundary taken into
account. These ghosts cells can be defined in the following way:

Ū j=0 = 2Ū j=1 −Ū j=2
Ū j=−1 = 2Ū j=0 −Ū j=1

Ū j=N+1 = 2Ū j=N −Ū j=N−1
Ū j=N+2 = 2Ū j=N+1 −Ū j=N

(3.11)

The one-sided local speeds of propagation can be estimated as the largest and the smallest
eigenvalues λ1,2 of the Jacobian ∂F

∂U of the system as:

a+
j± 1

2
= max

(
λ
+
1, j± 1

2
,λ−

1, j± 1
2
,0
)

a−
j± 1

2
= max

(
λ
+
2, j± 1

2
,λ−

2, j± 1
2
,0
) (3.12)

Lastly, the source term S̄ j (t) has to be appropriately discretized to ensure the well-
balanced method. This can be written as:

S̄ j (t) = S
(
Ū j

)
(3.13)

Hence, the separate functions for each of these elements defining in Eqs. 3.8-3.12 are
modelled and encoded in OpenHPL. These functions are assembled in the KPfunctions
folder in class KP07, and look as follows:

• GhostsCell function provides values of the conserved variables at the centre of the
ghost cells, using Eq. 3.11. As an input piece of information this function receives
the number of cells N, and the state vector with the cell centre average values
Ū j=1..N . Then, the GhostsCell function returns a state vector with the cell centre
average values for all (including ghost) cells Ū j=−1..N+2.

• SlopeVectoreS function returns the slope vector s j=0..N+1 of the reconstructed func-
tion for each cell, using Eq. 3.10. This function has the following inputs: the number
of cells N, parameters θ and ∆x, and the state vector with the cell centre average
values Ū j=−1..N+2.

• Then, function WiseU is created to define the values of states U±
j± 1

2
as the endpoints

of a piecewise linearly reconstructed function from Eq. 3.9 using the two previous
functions. This function has the following inputs: the number of cells N, parameters
θ and ∆x, condition and values for the boundaries, and the state vector with the
cell centre average values Ū j=1..N .

• Another function as the SpeedPropagationApipe provides the one-sided local speeds
of propagation a±

j± 1
2
, using Eq. 3.12. As an input information this function receives

the number of cells N and vectors of eigenvalues λ
±
1, j± 1

2
and λ

±
2, j± 1

2
of the Jacobian

of the system.
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• The last function FluxesH in the KPfunctions folder, defines the central upwind
numerical fluxes at the cell interfaces H j± 1

2
, using Eq. 3.8. This function has the fol-

lowing inputs: the number of cells N, the values of states at the cell interfaces U±
j± 1

2
,

the one-sided local speeds of propagation a±
j± 1

2
, and the vector of fluxes F

(
U±

j± 1
2

)
.

Then, the primary function for the KP scheme KPmethod is created which uses the last
three presented functions to define the right-hand side of Eq. 3.7 (discretization solution
of PDE). As an input piece of information, this function receives the number of cells
N, parameters θ and ∆x, the state vector with the cell centre average values Ū j=1..N ,
vectors of eigenvalues λ

±
1, j± 1

2
and λ

±
2, j± 1

2
of the Jacobian of the system, the vector of fluxes

F
(

U±
j± 1

2

)
and source terms S̄ j, and condition and values for the boundaries. It should

be noted that the KPmethod function is encoded for the cases of systems with two states
(state vector Ū j=1..N consists of two states) that is common for the detailed model of the
pipe or open channel model (see those unit models below). The boundaries are specified
with the inlet and outlet state values: either inlet (or: outlet) values for both states, or
inlet and outlet values for one of the states.

In the case with the use of the KP scheme for the open channel model [2], [3], one of the
states should be processed through the scheme with some additional vector that is ensured
in this KPmethod function (B j=−1..N+2 vector is also input to the functions KPmethod and
WiseU ).

It should be noted that due to the issues of the simulation speed, all of the presented
functions in class KP07 are implemented as the model type in OpenModelica instead of
the function type. An example of a Modelica code for defining the KPmethod function
looks as follows:

model KPmethod
extends Icons.Method;
parameter Integer N "number of segments";
input Real U[2 * N] "state vector",

dx "length step",
theta = 1.3 "parameter for slope limiter",
S_[2 * N] "source term vector S",
F_[2 * N, 4] "vector F",
lam1[N, 4] "matrix of eigenvalues '+'",
lam2[N, 4] "matrix of eigenvalues '-'",
B[N + 4] = zeros(N + 4) "additional for open

channel",
boundary[2, 2] "values for boundary conditions";
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input Boolean boundaryCon[2, 2] "boundary conditions
consideration";

output Real diff_eq[2 * N] "right hand side for KP solution
";

Real U_[8, N] "matrix with boundary state values. Can be
extracted";

protected
Real H_[2 * N, 2] "matrix of fluxes",

A_speed[N, 4] "matrix of one-side local speeds
propagation";

public
KPfunctions.WiseU wiseU(N = N, theta = theta, U = U, B = B,

dx = dx, boun = boundary, bounCon = boundaryCon) "use
function for defing the piece wise linear reconstruction
of vector U";

KPfunctions.SpeedPropagationApipe speedA(N = N, lamda1 =
lam1, lamda2 = lam2) "use function for defing the
one-side local speeds propagation";

KPfunctions.FluxesH fluxesH(N = N, U_ = U_, A_ = A_speed,
F_ = F_) "use function for defing the central upwind
numerical fluxes";

equation
///// piece wise linear reconstruction of vector U
U_ = wiseU.U_;
///// one-side local speeds propagation
A_speed = speedA.A;
///// central upwind numerical fluxes
H_ = fluxesH.H;
//// right hand side of diff. equation
diff_eq = (-(H_[:, 1] - H_[:, 2]) / dx) + S_;

end KPmethod;

Examples of using the KP scheme for solving PDEs are also provided in the class KP07 in
the TestKPpde folder. More information about using the KPmethod function is presented
below in the waterway modelling section for the PenstockKP and OpenChannel units.

Ŷ.ŵ.Ŷ Fitting

The functions for defining the pressure drop in various pipe fittings are described here.
More details can be found in Bernt Lie’s Lecture notes, [1].
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3.2 Functions

Due to different constrictions in the pipes, it is of interest to define losses in these fittings.
This can be done based on friction pressure drop which can be calculated as:

∆pf =
1
2

φρv|v| (3.14)

Here, the dimensionless factor φ is φ = fD
L
D for a long, straight pipe. Here, φ will be the

generalized friction factor. In this case, it is possible to write pressure drop for different
constrictions. Some cases of various fittings are shown in Figures 3.5-3.8. Equations for
the dimensionless factor φ are also demonstrated in these figures for the presented fittings.

Figure 3.5: Square reduction/expansion fittings, [1].

Figure 3.6: Tapered reduction/expansion fittings, [1].
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Figure 3.7: Rounded reduction/expansion fittings, [1].

Figure 3.8: Sharp/Thick orifice fittings, [1].

Based on the presented equations and figures for the calculation of the dimensionless
factor φ in the various fitting, a set of functions is encoded regarding each specific type
of fittings, such as SquareReduction, SquareExpansion, TaperedReduction, TaperedExpan-
sion, RoundedReduction, SharpOrifice, and ThickOrifice. All these functions receive the
Reynolds’ number NRe, diameters of first and second pipes D1 and D2, and the pipe rough-
ness height ε . Then, based on the equations from Figures 3.5-3.8, these functions provide
value for the dimensionless factor φ . As an example, a Modelica code for defining the
SquareReduction function looks as follows:

function SquareReduction
input Modelica.SIunits.ReynoldsNumber N_Re "Reynold number"

;
input Modelica.SIunits.Height eps "Pipe roughness height";
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input Modelica.SIunits.Diameter D_1, D_2; //Pipe diameters
output Real phi;

protected
Real f_D "friction factor";

algorithm
f_D := Functions.DarcyFriction.fDarcy(N_Re, D_1, eps);
if N_Re < 2500 then

phi := (1.2 + 160 / N_Re) * ((D_1 / D_2) ^ 4 - 1);
else

phi := (0.6 + 0.48 * f_D) * (D_1 / D_2) ^ 2 * ((D_1 / D_2
) ^ 2 - 1);

end if;
end SquareReduction;

Another function, FittingPhi also provides the dimensionless factor φ as an output. This
function calls the presented above functions with a specific type of the fitting in order to
get value for the factor φ . This function has the following inputs: the linear velocity v, the
pipe length L, diameters of first and second pipes D1 and D2, liquid density and viscosity
ρ and µ , the pipe roughness height ε . The last input for this function is a variable with
the specific type FittingType that holds information about the fitting type.

Ŷ.Ŷ Waterway

A typical structure of the waterway of the hydropower system is shown in Figure 3.9.

Ŷ.Ŷ.Ŵ Reservoir

Figure 3.9 shows that the water level in the reservoir Hr is a key quantity, [5]. Similarly
to the water tank, a reservoir model can be described by mass and momentum balances
as following, [6]:

Hr
dṁr
dt = ρ

Ar
V̇ 2

r +Ar (patm − pr)+ρgHrAr −Ff,r
dmr
dt = ṁr

(3.15)

Here, ṁr is the reservoir mass flow rate that can be found from the reservoir volumetric
flow rate V̇r. Ar is a square area of the reservoir. patm and pr are the atmospheric and
the reservoir outlet pressures, respectively. Ff,r is a friction term that can be found using
Darcy friction factor.

In a simple case, it can be assumed that the level of the reservoir is constant, the reservoir
inlet flow equal the outlet flow, and the area of the reservoir is closed to infinity. Then
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Figure 3.9: Reservoir structure, [1].

the reservoir can be presented just as an equation for pressure in the inlet/outlet of the
reservoir, [5], [6].

pr = patm +ρgHr (3.16)

Hence, both of these cases are modelled in the Reservoir unit in the library. This unit
uses the Contact connector and can be connected to other waterway units. The Reservoir
unit can be specified with the following options:

• The user can choose a simple model of the reservoir, and calculate the outlet pressure
depending on the depth of the outlet from the reservoir.

• The user can also choose a more complicated model, add the inflow to the reservoir
and specify the reservoir geometry.

• Also, it is possible to connect an input signal with the varying water level in the
reservoir.

Ŷ.Ŷ.ŵ Fitting

There are various possibilities of the fittings for the pipes with different diameters as well
as the existence of orifices in the pipe. In this unit Fitting, the pressure drop due to
these constrictions is defined using Eq. 3.14 and function FittingPhi. The Fitting unit
uses the ContactPort connector model in order to have inlet and outlet connectors and

24



3.3 Waterway

the possibility to define pressure drop between those connectors. Then, this unit can be
connected to the other waterway units.

When the Fitting unit is in use, the user can postulate the specific type of fitting that is
of interest and required based on the geometry parameters for this fitting.

Ŷ.Ŷ.Ŷ Pipe

The simple model of the pipe unit Pipe gives possibilities for easy modelling of different
conduit: intake race, penstock, tailrace, etc. In these waterway units, there are only small
pressure variations due to the small slope angle (height difference between inlet and outlet
of the component). That is why the model for these units can be simplified by considering
incompressibility of the water and the inelasticity of the walls, [4]–[6]. A sketch of the
pipe with all needed terms for modelling is shown in Figure 3.10.

Figure 3.10: Model for flow through a pipe.

In the case of incompressible water, the mass in the filled pipe is constant, and:

dmc

dt
= ṁc,in − ṁc,out = 0 (3.17)

Here, the mass of the water in the pipe (conduit) is mc = ρVc = ρLcAc, where ρ is the water
density, Vc – the volume of the water in the pipe, Lc – the length of the pipe (conduit)
and Ac – the averaged cross-section area of the pipe that are defined from averaged pipe
diameter Dc. The inlet and outlet mass flow rates are equal with ṁc,in = ρV̇c,in and
ṁc,out = ρV̇c,out respectively, where V̇c,in = V̇c,out – the inlet and outlet volumetric flow rates
in the pipe.

The momentum balance for this simplified model can be expressed as:

dMc

dt
= Ṁc,in − Ṁc,out +Fp,c +Fg,c +Ff,c (3.18)
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Here, the momentum of the water in the pipe is Mc = mcvc, where vc is the average
water velocity and can be defined as vc = V̇c/Ac. The inlet and outlet momentum flow
rates are Ṁc,in = ṁc,invc,in and Ṁc,out = ṁc,outvc,out respectively, where vc,in = V̇c,in/Ac,in and
vc,out = V̇c,out/Ac,out are the velocities in the inlet and outlet of the pipe, respectively; and
are equal in a case with constant diameter of the pipe (Ac,in = Ac,out). Fp,c – the pressure
force, due to the difference between the inlet and outlet pressures pc,1 and pc,2 can be
calculated as follows: Fp,c = Ac,in pc,1−Ac,out pc,2. There is also gravity force that is defined
as Fg,c = mcgcosθc, where g – the gravitational acceleration and θc – the angle of the pipe
slope that can be defined from the ratio of height difference Hc and the length Lc of the
pipe. The last term in the momentum balance is friction force which can be calculated
as Ff,c =−1

8Lc fD,cπρDcvc|vc| using the Darcy friction factor fD,c for the conduit.

The main defined variable is the volumetric flow rate. In this Pipe unit, the flow rate
changes simultaneously in the whole pipe (information about the speed of wave propaga-
tion is not included here). Water pressures can be shown just in the boundaries of pipe
(inlet and outlet pressure from connectors). This unit uses the ContactPort connector
model and can be connected to other waterway units.

When the Pipe unit is in use, the user can specify the required geometry parameters for
this pipe: length Lc, height difference Hc, inlet and outlet diameters Dc,1 and Dc,2, and
pipe roughness height εc. In order to define the friction force Ff,c the Friction function
is used here. It should be noted that this unit provides possibilities for the modelling of
pipes with both positive and negative slopes (positive or negative height difference). This
unit can be initialized by the initial value of the flow rate V̇c,0. Otherwise, user can choose
to an option when the simulation starts from steady-state and the OpenModelica handles
automatically initial steady-state values (does not work properly in OpenModelica).

Ŷ.Ŷ.ŷ Surge Tank

The surge shaft/tank will be presented here as a vertical open pipe with constant diameter
together with manifold, which connecting conduit, surge volume and penstock, [5], [6].
Surge volume (vertical open pipe) is shown in Figure 3.11.

The model for the surge volume can be described by mass and momentum balances as
follows:

dms
dt = ṁs,in = ρV̇s

dmsvs
dt = ṁs,invs,in +Fp,s +Fg,s +Ff,s

(3.19)

Here, the mass of the water in the surge tank is ms = ρVs = ρlsAs = ρAs
hs

cosθs
, where ρ

is the water density, Vs is the volume of the water in the surge tank, hs and ls are the
height and length of the surge tank filled with water and As is the cross-section area of
the surge tank that defined from the vertical pipe diameter Ds. The water velocity vs
can be defined as vs = V̇s/As. The inlet water velocity vs,in = V̇s/As. Fp,s is the pressure
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3.3 Waterway

Figure 3.11: Model for a vertical open pipe.

force, due to the difference between the inlet and outlet pressures ps,1 and patm and can
be calculated as follows: Fp,s = As (ps,1 − patm). There is also gravity force that is defined
as Fg,s = msgcosθs, where g – the gravitational acceleration and θs – the angle of the slope
of the surge tank and can be defined from the ratio of height difference Hs and length
Ls. The last term in the momentum balance is friction force, which can be calculated as
Ff,s =−1

8 ls fD,sπρDsvs|vs| using Darcy friction factor fD,s for the surge tank.

The manifold is described by the preservation of mass in steady-state; the volumetric flow
rate in the intake race V̇i equals to the sum of volumetric flow rates from surge volume
V̇s and penstock V̇p: V̇i = V̇p +V̇s. In addition, the manifold pressure is equal for all three
connections. This manifold is already implemented in the ContactNode connectors model
that is used in this SurgeTank unit. Then, this unit can be connected to other waterway
units.

In the SurgeTank unit, the user can specify the required geometry parameters for the
surge tank (vertical pipe): length Ls, height difference Hs, diameters Ds, pipe roughness
height εs, and value for the atmospheric pressure patm. In order to define the friction force
Ff,s the Friction function is used here. This unit can be initialized by the initial values of
the flow rate V̇s,0 and water height hs,0. Otherwise, the user can decide on an option when
the simulation starts from the steady-state and the OpenModelica automatically handles
the initial steady-state values (does not work properly in OpenModelica).
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Ŷ.Ŷ.Ÿ Pipe with compressible water and elastic walls

Unlike the conduit, the penstock has considerable pressure variation due to a considerable
height drop. Thus, to make the model for the penstock more realistic, the compressible
water and the elastic walls of the penstock should be taken into account. To express the
compressibility/elasticity, some compressibility coefficients which show the relationship
between pressure, water density and pipe inner radius, are used, [4], [6].

The isothermal compressibility βT is defined as follows:

βT =
1
ρ

dρ

d p
(3.20)

Here, ρ and p denote density and pressure, respectively. Assuming that the isothermal
compressibility is independent of the pressure, this equation can be rewritten in a way
that is convenient to calculate the fluid density at different pressures:

ρ = ρ
atmeβT (p−patm) (3.21)

Here patm is the atmospheric pressure and ρatm is the water density at atmospheric
pressure. The relation between density and pressure from this equation is a fairly linear
dependency for the pressure in the range which is normal in hydropower plants. That is
why the previous equation can be simplified as follows:

ρ ≈ ρ
atm(1+βT (p− patm)) (3.22)

In the same way, the relation between pressure and pipe cross-section area can be defined
using equivalent compressibility coefficient β eq due to the pipe shell elasticity; after sim-
plification the relation looks as follows:

A ≈ Aatm(1+β
eq(p− patm)) (3.23)

Here, Aatm is the pipe cross-section area at atmospheric pressure.

It is also possible to define a linear relationship for the product of density and cross-
sectional area that change with the pressure.

A ·ρ ≈ Aatm
ρ

atm(1+β
tot(p− patm)) (3.24)

Here, β tot is the total compressibility due to water compressibility and pipe shell elasticity
(β tot = βT +β eq), and is related to the speed of sound in water inside the pipe.

Hence, using the previous equations for the relationship between the density of the water,
cross-sectional area of the pipe, and pressure in the pipe, ODEs (3.17) and (3.18) for mass
and momentum balances can be further developed into the PDEs, [4]:

Aatm
p ρatmβ tot ∂mp

∂ t =−∂ ṁp
∂x

∂ ṁp
∂ t =− ∂

∂x

(
ṁpvp +Ap pp)+ρApgcosθ − 1

8 fD,pπρDpvp|vp|
(3.25)
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The KP scheme is chosen for the discretization of the model for the elastic penstock
with compressible water. Firstly, PDEs (3.25) for the elastic penstock model should be
presented in vector form as a standard formulation for KP scheme, [2]:

∂U
∂ t

+
∂F
∂x

= S (3.26)

Here, U =
[
pp ṁp

]T is a vector of conserved variables, F =
[

ṁp
Aatm

p ρatmβ tot ṁpvp +Ap pp

]T
is

a vector of fluxes, and S =
[
0 ρApgcosθp − 1

8 fD,pπρDpvp|vp|
]T is a source terms vector.

As shown above in the description of the KP scheme, the eigenvalues λ1,2 of the Jacobian
∂F
∂U of the system are needed and can be found as follows, [4]:

λ1,2 =

vp ±
√

v2
p +

4Ap
Aatm

p ρatmβ tot

2
(3.27)

From these eigenvalues, it can be deduced that the speed of sound is given as c =√
Ap

Aatm
p ρatmβ tot , thus confirming that the total compressibility factor β tot is related to the

speed of sound.

Hence, the function for the KP scheme KPmethod from function class KP07 is then used
in unit PenstockKP in order to discretize the presented PDEs into ODEs. The KPmethod
function provides the right hand side of Eq. 3.7 (discretization solution of PDE) that is
then used for ODE in the PenstockKP. Moreover, the values of states at the cell interfaces
U±

j± 1
2

are taken from function KPmethod in the PenstockKP unit in order to define the

vectors of eigenvalues λ
±
1, j± 1

2
and λ

±
2, j± 1

2
, and the vector of fluxes F

(
U±

j± 1
2

)
. Then, these

vectors together with the state vector with the cell centre average values Ū j=1..N , and
source terms vector S̄ j are used in the function KPmethod. The boundaries conditions
are also specified for the KPmethod function in the PenstockKP unit and are the values
for the inlet and outlet pressures pp,1 and pp,2.

The PenstockKP unit uses the TwoContact connector model that provides information
about inlet and outlet pressure and the mass flow rate of two connectors which can be
connected to other waterway units. In this PenstockKP unit, the user can specify the
required geometry parameters for the: length Lp, height difference Hp, inlet and outlet
diameters Dp,1 and Dp,2, pipe roughness height εp and the number of cells N for the
discretization. In order to define the friction force Ff,p in the cell of the pipe, the Friction
function is used here. This unit can be initialized by the initial value of the flow rate V̇p,0
and pressure pp,0 for each cell of the pipe. In order to simplify the pressure initialization,
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the user can simply specify the initial value for the surge tank water height hs,0 (then an
encoded formula for the pressure initialization is used). Otherwise, the user can choose an
option when the simulation starts from steady-state and the OpenModelica automatically
handles the initial steady-state values (does not work properly in OpenModelica).

Ŷ.Ŷ.Ź Open Channel

Similarly to the detailed model of the pipe, the model of the open channel is also encoded
in the library. The open channel model looks as follows, [2], [4]:

∂U
∂ t

+
∂F
∂x

= S (3.28)

where:

U =
[
q z

]T ,

F =
[
q q2

z−B + g
2 (z−B)2

]T
,

S =

[
0 −g(z−B) ∂B

∂x −
g f 2

n q|q|(w+2(z−B))
4
3

w
4
3

1

(z−B)
7
3

]T

,

with: z = h+B, and q = V̇
w . Here, h is water depth in the channel, B is the channel bed

elevation, q is the discharge per unit width w of the open channel. fn is the Manning’s
roughness coefficient. The KP scheme is described earlier, but some additional specific
details for open channels should be added here. Firstly, the eigenvalues for this model are
defined as follows, [2]:

λ1,2 = u±
√

gh (3.29)

where, u is the cross-section average water velocity. In the channel areas which are dry
or almost dry (if the computational domain contains a dry bed, islands or coastal areas),
the values of h±

i± 1
2

could be very small or even zero. In such cases when h±
i± 1

2
< ε , with

ε being an a-priori chosen small positive number (e.g. ε = 1e−5), the velocity at the cell
centres in the entire domain is recomputed by the ted by the desingularization formula,
[2]:

ū j =
2h̄ jq̄ j

h̄2
j +max

(
h̄2

j ,ε
2
) (3.30)
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Then, the point values of the velocity u±
i± 1

2
at the left/right cell interfaces, i.e., at x j = x j± 1

2

are computed as, [2]
u−

j+ 1
2
= ū j +

∆x
2 su j

u+
j+ 1

2
= ū j+1 − ∆x

2 su j+1

u−
j− 1

2
= ū j−1 +

∆x
2 su j−1

u+
j− 1

2
= ū j − ∆x

2 su j

(3.31)

The slope or the numerical derivative of the velocity su j are calculated using the same
limiter function as in equation 3.10, however, in this case replacing U by u (it has not
been rewritten here for the sake of brevity), [2].

Hence, similar to the PenstockKP unit the function for the KP scheme KPmethod from
function class KP07 is then used in unit OpenCannel in order to discretize the presented
PDEs into ODEs. The values of states at the cell interfaces U±

j± 1
2

are taken from function
KPmethod in the OpenCannel unit in order to define the vectors of eigenvalues λ

±
1, j± 1

2
and

λ
±
2, j± 1

2
, the point values of the velocity u±

i± 1
2
, and the vector of fluxes F

(
U±

j± 1
2

)
. Then,

these vectors together with the state vector with the cell centre average values Ū j=1..N and
source terms vector S̄ j are used in the function KPmethod. The boundaries conditions are
also specified for the KPmethod function in the OpenCannel unit and are the values for
the inlet and outlet flows per unit width q1 and q2.

The OpenCannel unit uses the TwoContact connector model that gives information about
inlet and outlet pressure (water depth in the channel) and the flow rate of two connectors
which can be connected to other waterway units. In this OpenCannel unit, the user can
specify the required geometry parameters for the: length L and width w of the channel,
height vector H of the channel bed with a height from the left and right sides, the Man-
ning’s roughness coefficient fn, and the number of cells N for the discretization. This unit
can be initialized by the initial value of the flow rate V̇0 and water depth h0 for each cell
of the channel. User can also change the boundary condition for the KP scheme.

Ŷ.Ŷ.ź Reservoir Channel

In order to make a more detailed model of the reservoir, the open channel model is used,
where the channel bed is assumed to be flat (no slope). Here, the user also specifies
the geometry parameters of the channel (reservoir) such as length L and width w of the
channel (reservoir), height vector H of the reservoir bed with height from the left and
right sides (should be same number in order to have flatbed), and the number of cells N
for the discretization. This unit can be initialized by the initial value of the water depth
h0 in the reservoir.
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The ReservoirChannel unit uses the Contact connector that provides information about
the outlet pressure and the flow rate from/to the reservoir which can be connected to
other waterway units.

Ŷ.Ŷ.Ż Runoff

Similar to many other hydrological models, the HBV model is based on the land phase
of the hydrological (water) cycle, see Figure 3.12. The figure shows that the HBV model
consists of four main water storage components connected in a cascade form. Using
a variety of weather information, such as air temperature, precipitation and potential
evapotranspiration, the dynamics and the balances of the water in the presented water
storages are calculated. Hence, the runoff/inflow from some of the defined catchment
areas can be found, [7].

Figure 3.12: Structure of the HBV model.

The model is developed for each water storage component to define the dynamics and
balances of the water. In addition, the catchment area is divided into elevation zones
(usually not more than ten) where each zone has the same area. The air temperature and
the precipitation are provided for each elevation zone. Hence, all calculations within each
water storage component are performed for each elevation zone.
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Snow routine

In the snow routine segment, the snow storage, as well as snowmelt are computed. This
computation is performed for each elevation zone. Using the mass balance, the change in
the dry snow storage volume Vs,d, is found as follows:

dVs,d

dt
= V̇p,s −V̇d2w (3.32)

Here, the flow of the precipitation in the form of snow is denoted as V̇p,s. This precipit-
ation in the form of snow is defined from the input precipitation flow, V̇p, based on the
information about the air temperature, T , a threshold temperature for snowmelt, TT, and
for the area that is not covered by lakes (the fractional area covered by the lakes, aL, is
used):

V̇p,s =

{
V̇pKCRKCS(1−aL), if T ≤ TT

0, if T > TT
(3.33)

Precipitation correction coefficients KCR and KCS are also used here, for the rainfall and
snowfall precipitations, respectively. Then, the flow of precipitation in the form of rain is
defined as follows:

V̇p,r =

{
V̇pKCR(1−aL), if T > TT

0, if T ≤ TT
(3.34)

The flow of the melting snow (melting of snow from dry form to water form), V̇d2w, can
be found using the following expression based on the degree-day factor Kdd and the area
of the elevation zone Ae:

V̇d2w =

{
AeKdd(T −TT)(1−aL), if T > TT and Vs,d > 0
0, otherwise

(3.35)

Finally, the flow out of the snow routine to the next soil moisture segment, V̇s2s, is found
as a sum of flows of precipitation in the form of rain, and the melted snow:

V̇s2s = V̇p,r +V̇d2w (3.36)

It should be noted that a simplification related to the threshold temperature, TT, is
assumed here. This threshold temperature describes both the snow melt and the rainfall
to snowfall transition temperatures in the presented model. In reality, this threshold
temperature might differ for each of these processes. In addition, the storage of snow in
water form is not considered here, mostly due to the simplification with the threshold
temperature.
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Soil moisture routine

In the soil moisture segment, the water storage in the ground (soil) is found together with
actual evapotranspiration from the snow-free areas. The net runoff to the next segment
(upper zone) is also defined here. Using the mass balance, the volume of the soil moisture
storage, Vs,m, is found as follows:

dVs,m

dt
= V̇s2s −V̇s2u −αeV̇s,e (3.37)

Here, V̇s2u is the net runoff to the next segment (the upper zone). V̇s,e is the actual
evapotranspiration from the soil, that is taken into account only for the snow-free areas
(zones). To define these snow-free zones, coefficient αe is used and equals one for snow-free
areas and zero for covered-by-snow areas. The actual evapotranspiration can be found
from the potential evapotranspiration, V̇e, the volume of the soil moisture storage, Vs,m,
the area of the elevation zone Ae, and the field capacity — threshold soil (ground) moisture
storage, gT:

V̇s,e =

{
Vs,m
AegT

V̇e, if Vs,m < AegT

V̇e, if Vs,m ≥ AegT
(3.38)

The potential evapotranspiration, V̇e, is defined as the input to the hydrology model,
similarly to the air temperature and precipitations.

The output of the soil moisture segment — the net runoff to the next segment, V̇s2u, can
be found based on the field capacity, gT, as follows:

V̇s2u =


(

Vs,m
AegT

)β

V̇s2s, if 0 ≤Vs,m < AegT

V̇s2s, if Vs,m ≥ AegT

(3.39)

Here, β is an empirical parameter for specifying the relationship between the flow out
of the snow routine, the soil moisture storage, and the net runoff from the soil moisture.
Typically, β ∈ [2,3], which leads to nonlinearity in Eq. 3.39.

Runoff routine

The upper and lower zones from Figure 3.12 are combined into one segment — the runoff
routine. In this segment, the runoff from the catchment area is found based on the outflow
from the soil moisture. The effects of the precipitation to, and evapotranspiration from
the lakes in the catchment area are also taken into account here.

The upper zone characterises components with quick runoff. The following mass balance
is used for the upper zone description:

dVu,w

dt
= V̇s2u −V̇u2l −V̇u2s −V̇u2q (3.40)
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Here, Vu,w is the water volume in the upper zone that depends on the saturation threshold,
sT, which defines the surface (fast) runoff, V̇u2s, and the fast runoff, V̇u2q. V̇u2b is the runoff
to the lower zone and is defined by the percolation capacity, KPC, for the area that is not
covered by lakes:

V̇u2l = Ae(1−aL)KPC (3.41)

The surface runoff, V̇u2s, can be found using the saturation threshold, sT, and the water
volume in the upper zone, Vu,w:

V̇u2s =

{
a1(Vu,w −AesT), if Vu,w > AesT

0, if Vu,w ≤ AesT
(3.42)

Here, a1 is a parameter that represents the recession constant for the surface runoff. A
similar recession constant, a2, is used for the fast runoff, V̇u2q, calculations:

V̇u2q = a2 min(Vu,w,AesT) (3.43)

The lower zone characterises the lake and the groundwater storages and defines the base
runoff from the catchment area. The following mass balance equation is used for the lower
zone description:

dVl,w

dt
= V̇u2l +aLV̇p −V̇l2b −aLV̇e (3.44)

The water volume in the lower zone is denoted as Vl,w. As mentioned previously, V̇p and
V̇e are the precipitation and the potential evapotranspiration flows, respectively. aL is the
fractional area covered by lakes. V̇l2b is the base runoff from the lower zone that can be
found as follows:

V̇l2b = a3Vl,w (3.45)

Here, a3 is the recession constant similar to a1 and a2.

The total runoff from the catchment, V̇tot, is a sum of the base, quick, surface runoffs for
each elevation zones, and is defined as follows:

V̇tot =
n

∑
i=1

(V̇l2b,i +V̇u2s,i +V̇u2q,i) (3.46)

Here, the base V̇l2b,i, quick V̇u2q,i, and surface V̇u2s,i runoffs are first summed up for each
of the n elevation zones and then these sums of the base, quick and surface runoffs are
added together.

Hence, this hydrology model is encoded in the OpenHPL library as the RunOff_zones
unit where the main defined variable is the total runoff from the catchment. This unit
uses the standard Modelica connector RealOutput connector as an output from the model
that can be connected to, for example, simple reservoir model Reservoir unit.
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In order to get historic information about the air temperature, precipitation, and poten-
tial evapotranspiration for each of the elevation zones, the standard Modelica CombiTi-
meTable source models are used in order to read this data from the text files.

When the RunOff_zones unit is in use, the user can specify the required geometry para-
meters for the catchment: the number of elevation zones, all hydrology parameters such
as threshold temperatures, degree-day factor, precipitation correction coefficients, field
capacity and β parameter in soil moisture routine, threshold level for quick runoff in up-
per zone, percolation from upper zone to lower zone, recession constants for the surface
and quick runoffs in upper zone, and recession constant for the base runoff in lower zone.
Finally, the user can also specify the info about the text files where the data for the
CombiTimeTable models are stored.

Ŷ.ŷ Electro-Mechanical

Ŷ.ŷ.Ŵ Turbine

The turbine unit can be expressed with a simple turbine model based on a look-up table
(turbine efficiency vs. guide vane opening). This simple turbine model is described by
Eq. 3.47, [1], [8], where the mechanical turbine shaft power Ẇtr is defined as:

Ẇtr = ηh∆ptrV̇tr (3.47)

Here, ηh gives the turbine hydraulic efficiency that is found from a standard turbine look-
up table and depends on the turbine control signal, uv. ∆ptr is the pressure drop through
the turbine that is defined as the difference between inlet and outlet turbine pressures,
i.e., ∆ptr = ptr1 − ptr2. The relationship between the turbine volumetric flow rate V̇tr and
the pressure drop ∆ptr is described through a simple valve-like expression as follows:

V̇tr =Cvuv

√
∆ptr

pa (3.48)

Here, Cv in Eq. 3.48 is some guide vane “valve capacity” that can be tuned by using the
nominal turbine net head (nominal pressure drop) and the nominal turbine flow rate. pa

is the atmospheric pressure.

Based on Eqs. 3.47 and 3.48, the simple turbine model is implemented in OpenHPL as the
Turbine element. In this Turbine unit, the multi-physic connections are used in order to
stay connected to waterway units as well as to the other electro-mechanical units. Those
connections are already implemented in the TurbineContacts connectors model that is
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Figure 3.13: Key quantities in the Francis turbine model, with blade angles β1 and β2. The water effluent
comes out from the paper plane, [1].

used in this Turbine unit. Then, this unit can be connected to other waterway and
electro-mechanical units.

In the Turbine unit, the user can specify the required parameters for the simple turbine
model: guide vane “valve capacity” Cv, the nominal turbine net head (nominal pressure
drop) and the nominal turbine flow rate, turbine guide vane nominal opening signal uv,n
in per unit value from 0 to 1. The user can also choose either to use the constant turbine
efficiency and specify it, or to use the look-up table for the turbine efficiency and also
specify this table.

Ŷ.ŷ.ŵ Francis

Our library also includes a mechanistic Francis turbine model based on the Euler turbine
equations. The key quantities of the model are shown in Fig. 3.13, and the shaft power
Ẇs produced in the Francis turbine is defined as follows, [1], [9]:

Ẇs = ṁω

(
R1

V̇
A1

cotα1 −R2
(
ωR2 +

V̇
A2

cotβ2
))

. (3.49)

Here, ṁ and V̇ are the mass and volumetric flow rate through the turbine, respectively,
and ω is the angular velocity of the runner. R1 and R2 are the inlet and outlet radius of the
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runner, respectively. A1 and A2 are the inlet and outlet cross-sectional areas, respectively,
and can be defined by using the runner dimensions: R1, R2, and w1 which is the inlet
width/height of the runner/blades. α1 is the inlet guide vane angle that is given by a
control signal. β2 is the outlet blade angle.

The total work rate Ẇt removed through the turbine is:

Ẇt = Ẇs +Ẇf t +∆pvV̇ . (3.50)

Here, ∆pv is the pressure loss across the guide vane due to friction and is often neglected.
The total work rate might also be formulated based on Bernoulli’s law: Ẇt = ∆ptrV̇ +
1
2ṁV̇ 2( 1

A2
0
− 1

A2
2
), from where the total pressure loss across the turbine ∆ptr can be defined;

A0 is the inlet cross section area to the spiral case. Ẇf t – the friction term that represents
various friction losses within the turbine is calculated as follows:

Ẇf t = k f t,1V̇ (cotγ1 − cotβ1)
2

+k f t,2V̇ cot2 α2 + k f t,3V̇ 2.
(3.51)

Here, k f t,1, k f t,2 and k f t,3 are friction coefficients that represent shock, whirl, and pipe
friction losses, respectively. These coefficients are tuning parameters for the mechanistic
Francis turbine model. β1 is the inlet blade angle which in the nominal operating condition
should be equal to the angle of the relative velocity γ1 in order to achieve an influent no-
shock condition (the angle of the relative velocity is defined from: cotγ1 = cotα1− ωR1

V̇ A1).
To satisfy the no-whirl effluent condition, angle α2 should be equal to 0. This angle is
defined as cotα2 = cotβ2 +

ωR2
V̇/A2

.

We propose the following expressions for the turbine loss coefficients, [8]:

k f t,1 = 11.6 ·103e8.9·10−3Hn

k f t,2 = 0
k f t,3 = 720e6.7·10−3Hn

(3.52)

The efficiency of the turbine can be defined as follows:

η =
Ẇs

Ẇt
(3.53)

Turbine design algorithm. Geometry parameters for the Francis turbine must be found
in order to use the mechanistic turbine model as presented above. These parameters, such
as blade angles or runner dimensions, can be found from design data. Typically, for real
(in use) turbines, these data are unavailable due to trade confidentiality. Thus, it is
of interest to develop a design algorithm that can be used to define all the geometry
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Figure 3.14: Block diagram that describes the turbine design algorithm (inputs and outputs).

parameters. The structure of this algorithm is shown in Fig. 3.14, where the input and
output values for the design algorithm are presented.

As input data for the calculation, nominal net head Hn and volumetric flow rate V̇n are
used. A possible turbine design algorithm is as follows, ref. Fig. 3.13, [10]:

1. Choose the outlet blade angle β2 and reference velocity vω,2. These values are
usually in the interval:

158◦ ≤ β2 ≤ 165◦

35m/s ≤ vω,2 ≤ 42m/s (3.54)

Here, the outlet angle and reference velocity take higher values for higher heads.
Brekke suggests that these values may be chosen as β2 = 162.5◦ and vω,2 = 41m/s.

2. Define the outlet runner cross-section area A2 (radius R2) and adjust it together
with reference velocity vω,2 to the normal synchronous rotational speed.
First, the meridional velocity is defined as:

vr
2 =−

vω,2

cotβ2
, (3.55)

then outlet radius can be defined from the outlet cross-sectional area (A2 = πR2
2):

vr
2 =

V̇
A2

⇒ R2 =

√
V̇

πvr
2

(3.56)

Then, the turbine rotational speed n [RPM] can be calculated from the angular
velocity (ω = πn

30 ):

vω,2 = ωR2 ⇒ n =
30vω,2

πR2
(3.57)

After this the turbine speed should be reduced to the nearest synchronous speed
(depends on number of pole pairs p in the generator: n = 60 f

p , where frequency f
is constant 50Hz) and then the outlet radius with the reference velocity should be
recalculated in reverse order, using (3.57), (3.56) and (3.55).
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Normally, the information about the turbine rotational speed is available, so the out-
let runner radius and the reference velocity can be found directly from (3.55), (3.56)
and (3.57).

3. Choosing the inlet runner dimension, inlet cross-section area A1 (radius R1 and
width w1).
The inlet radius can be defined from the reference velocity vω,1 as follows:

R1 =
vω,1

ω
=

30vω,1

πn
(3.58)

Here, the reference velocity can be chosen from the range of reduced value vω,1 ∈
[0.7,0.75], which is dimensionless and expressed as:

vω,1 =
vω,1√
2gH

(3.59)

It is common to use vω,1 = 0.725.
Regularly, in order to avoid backflow in the runner, an acceleration of the flow
through the runner is desirable. That is why the outlet meridional velocity can be
chosen approximately ten per cent higher than the inlet.

vr
2 = 1.1vr

1 (3.60)

Then the inlet runner width w1 can be calculated from the inlet cross-sectional area
(A1 = 2πR1w1):

vr
1 =

V̇
A1

⇒ w1 =
V̇

2πR1vr
1

(3.61)

Here, it should be noted that the blade thickness could be included for improving
the calculation of the inlet cross-section area, e.g., 10% of the perimeter.

4. The inlet blade angle β1 can be found as follows:

tan(180◦−β1) =
vr

1
vω,1 − vt

1
(3.62)

Here, vt
1 is the tangential velocity and can be defined from dimensionless value

vt
1 = 0.48/vω,1, using (3.59) to convert from dimensionless value.

Guide vane actuation. In addition, a model for the guide vane opening is also included
in order to define the inlet guide vane angle α1, [1]. The guide vane geometry is depicted
in Figure 3.15.

From Figure 3.15 (a), assuming that the actuator cylinder is “vertical” in position “0”, it
can be found that

R2
Y = r2

Y +Y 2
0

cosθ0 =
rY
RY

(3.63)
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Figure 3.15: Guide vane geometry relating actuator position Y to guide vane angel α1, [1].

Clearly, d0 = Rv − rv. Next, moving the actuator to position Y , Figure 3.15 (b) with the
cosine law gives

Y 2 = r2
Y +R2

Y −2rY RY cosθ (3.64)

thus specifying angle θ . The change in angel θ is introduced in (Figure 3.14 (b), (c)) as

∆θ ≡ θ −θ0 (3.65)

Then, applying the cosine law to Figure 3.15 (c) gives length d (d ∈ [d0,2l]) from

d2 = r2
v +R2

v −2rvRv cos∆θ (3.66)

and then angle ψ from
r2

v = d2 +R2
v −2dRv cosψ (3.67)

Here, it is necessary to ensure that the sign of ψ equals to the sign of ∆θ .

From Figure 3.15 (d) and applying the cosine law, we find

l2 = l2 +d2 −2ld cosφ ⇒ cosφ =
d
2l

(3.68)

Finally, the guide vane angle can be found as

α1 = φ −ψ (3.69)
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In the above model, it has been assumed that the guide vane is perpendicular to the
attached “arm” of length l, and that in position “0”, a guide vane is at position “9
o’clock”, Figure 3.15 (a), [1].

Hence, together the Francis turbine model, the turbine design algorithm and the guide
vane actuation (servo position) are realized in the Francis turbine element in our library.
In this Francis unit, the multi-physicTurbineContacts connectors model is also used and
ensures connection to other waterway and electro-mechanical units. In addition, this
Francis unit has also the standard Modelica RealInput connector that describes the an-
gular velocity as an input to the Francis turbine model. Typically, this angular velocity
connector is based on the derived info from (connected to) the generator units.

In the Francis unit, the user can specify the required nominal parameters for the Francis
turbine: nominal turbine net head (nominal pressure drop), nominal turbine flow rate,
nominal power, and nominal rotational speed. Then, the user can either choose to use
the design algorithm that automatically defines the turbine geometry parameters (radius
of the turbine blade inlet and outlet, the width of the turbine/blades inlet, the turbine
inlet and outlet blade angles), or specify these turbine geometries manually. Similarly,
the user has the same options for the losses coefficients and parameters for the guide vane
actuation (servo position) model.

Ŷ.ŷ.Ŷ Pelton

Similar to the Francis turbine model, the mechanistic Pelton turbine model is developed
and used. The key quantities of the model are shown in Fig. 3.16, and the shaft power
Ẇs produced in the Pelton turbine is defined as follows, [1]:

Ẇs = ṁvR [δ (uδ ) · v1 − vR] (1− k cosβ ) (3.70)

Here, ṁ is the mass flow rate through the turbine. The reference velocity is equal to
vR = ωR: here, R is a is the radius of the rotor where the mass hits the bucket and ω

is the angular velocity that is normally constrained by the grid frequency. The water
velocity at position “1” (Figure 3.16) is equal to v1 =

V̇
A1

, where V̇ is the volumetric flow
rate through the turbine and A1 is a cross-sectional area at position “1” (the end of the
nuzzle). β is the reflection angle with typical value of β = 165◦, and k < 1 is some friction
factor, typically k ∈ [0.8,0.9], [1]. In practical installations, there is a deflector mechanism
to reduce the velocity v1δ (uδ ) to avoid over-speed.

The total work rate Ẇt removed through the turbine is:

Ẇt = Ẇs +Ẇf t (3.71)
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Figure 3.16: Some key concepts of the Pelton turbine, [1].

Here, Ẇf t is a friction of losses that can be found as follows:

Ẇf t = K (1− k cosβ ) ṁv2
R (3.72)

Here, friction coefficient K equals 0.25, [1].

In addition, the pressure drop across the nozzle (positions “0” and “1’‘) ∆pn can be found
as follows, [1]:

∆pn =
1
2

ρV̇
[
V̇
(

1
A2

1(Y )
− 1

A2
0

)
+ k f

]
(3.73)

Here, A0 is a cross sectional area at position “0” (the beginning of the nuzzle). A1(Y )
means that the cross-sectional area at position “1” is a function of the needle position Y .
k f is a coefficient of friction loss in the nuzzle.

Hence, this Pelton turbine model is realized in the Pelton turbine element in our library.
In this Pelton unit, the multi-physicTurbineContacts connectors model is also used and
ensures connection to other waterway and electro-mechanical units. In addition, this
Pelton unit also has the standard Modelica RealInput connector that describes the an-
gular velocity as an input to the Francis turbine model. Typically, this angular velocity
connector is based on the derived info from (connected to) the generator units.

In the Pelton unit, the user can specify the required geometry for the Pelton turbine:
radius of the turbine runner, input diameter of the nuzzle, runner bucket angle, friction
factors and coefficients, and deflector mechanism coefficient.
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Ŷ.ŷ.ŷ Simple Generator

Here, a simple model of an ideal generator with friction is considered. This model has
inputs as electric power available on the grid and the turbine shaft power. This model
is based on the angular momentum balance which depends on the turbine shaft power,
the friction loss in the aggregate rotation, and the power taken up by the generator. The
rotor angular velocity mainly depends on its inertia, internal friction and available power.
The kinetic energy stored in the rotating generator is Ka =

1
2Jaω2

a , where ωa is the angular
velocity of the rotor and Ja is its moment of inertia. The kinetic energy Ka is changed
by the power terms operating on the generator axis, e.g., the turbine shaft power Ẇs
produced by the turbine, friction power Ẇf ,a, and the power taken up by the generator,
Ẇg, [1], and from energy the balance can be expressed as follows:

dKa

dt
= Ẇs −Ẇf ,a −Ẇg (3.74)

Ẇf ,a is the frictional power loss in the rotor. This frictional power loss is mainly due to
losses in the shaft supporting bearings, losses in the transmission gearboxes and losses in
the windage (air gap). For simplicity, it is assumed that the bearing term is dominating,
and express Ẇf ,a as

Ẇf ,a =
1
2

k f ,bω
2
a (3.75)

Here, k f ,b is the bearing friction factor. The power taken up by the generator is transmit-
ted to the grid with electric efficiency ηe. Thus the electric power available on the grid is
Ẇe = ηeẆg.

Hence, this simple generator model is encoded in the OpenHPL as a SimpleGen unit.
This unit has inputs as electric power available on the grid and the turbine shaft power
which both are implemented with the standard Modelica RealInput connector. This Sim-
pleGen unit also uses the standard Modelica RealOutput connectors in order to provide
output information about the angular velocity and frequency of the generator. All these
connectors can be connected to turbines units and other standard Modelica blocks.

In the SimpleGen unit, the user can specify the required parameters for the generator:
moment of inertia of the generator, generator’s electrical efficiency, friction factor in the
rotor bearing box, the number of the generator poles. This unit can be initialised by the
initial value of the angular velocity ω0. Otherwise, the user can decide on an option when
the simulation starts from a steady-state and the OpenModelica automatically handles
the initial steady-state values (does not work properly in OpenModelica).

Ŷ.ŷ.Ÿ Synchronize Generator

Here, a more detailed model of the synchronous generator is presented. More details in
the Behzad Sharefi master thesis, [6]. This model is based on the d-q decomposition and
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assumed that the generator is connected to the grid, [6]. The voltage-current relation is
given as: [

Ra +Re x′q + xe
−x′d − xe Ra +Re

][
Id
Iq

]
=

[
E ′

d +Vs sinδe
E ′

q −Vs cosδe

]
(3.76)

Here, Ra and Re are the phase winding and equivalent network resistances, xd, xq, x′d, and
x′q are d-/q-axis normal, and transient reactances. xe is the equivalent network reactance.
Id and Iq are the d-/q-axis currents. E ′

d and E ′
q are the d-/q-axis transient voltages. Vs

is the network RMS (Root-Mean-Squared) voltage. δe is the phase shift angle that is
described as follows:

dδe

dt
= (ω −ωs)

np

2
(3.77)

Here, np is the number of poles in the generator, where ω and ωs are the generator and
grid angular velocities, respectively. The Swing equation is used to describe the angular
velocity dynamics and looks as follows:

dω

dt
=

Ẇs −Pe

Jω
(3.78)

The dynamic equations for the transient operation are as follows:

T ′
qo

dE ′
d

dt =−E ′
d +(x′q − xq)Iq

T ′
do

dE ′
q

dt =−E ′
q +(xd − x′d)Id +E f

(3.79)

Here, T ′
do and T ′

qo are the d-/q-axis transient open-circuit time constants. E f is the voltage
across the field winding with the following dynamic equation:

dE f

dt
=

−E f +KE (Vtr −Vt −Vstab)

TE
(3.80)

Here, KE is the excitation system gain and TE — excitation system time constant. Vtr is
the voltage reference set point for the exciter. Vt is the terminal voltage and can be found
as Vt =

√(
E ′

d −RaId − x′qIq
)2

+
(
E ′

q −RaIq + x′dId
)2. Vstab is the stabilisation voltage with

the following dynamic equation:

dVstab

dt
=

−Vstab +KF
dE f
dt

TFE
(3.81)

Here, KF is the stabiliser gain, and TFE — the stabiliser time constant.

The output active and reactive power of the generator can be found as follows:

Pe = 3
(
E ′

dId +E ′
qIq

)
Qe =

√
9V 2

t I2
t −P2

e
(3.82)
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Figure 3.17: Block Diagram of the governor, [6].

Here, the terminate current is given as It =
√

I2
d + I2

q .

Hence, this synchronise generator model is encoded in the OpenHPL as aSynchGen unit.
This unit has inputs as the turbine shaft power, that is implemented with the standard
Modelica RealInput connector. This SynchGen unit also uses the standard Modelica
RealOutput connectors in order to provide output information about the angular velocity
and frequency of the generator. All these connectors can be connected to turbines units
and other standard Modelica blocks.

In the SynchGen unit, the user can specify the required nominal parameters for the gen-
erator: active and reactive powers drawn from the generator at Steady-State operating
condition, phase winding resistance, and the number of poles. The following network para-
meters should be also specified by the user: equivalent network resistance and reactance,
network RMS voltage, grid angular velocity. The user also specifies the d-/q-axis normal
and transient reactances, d-/q-axis transient open-circuit time constants, minimum and
maximum field voltages, excitation system, stabilizer gains, time constants, moment of
inertia of the generator, and the friction factor in the rotor bearing box. This unit can
be initialized, or the user can decide on an option for the self initialisation.

Ŷ.Ÿ Governor

Here, a simple model of the governor that controls the guide vane opening in the turbine
based on the reference power production is described. More details in the Behzad Sharefi
master thesis, [6]. The block diagram of this governor model is shown in Figure 3.17.
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Using the model in Figure 3.17 and the standard Modelica blocks, the governor model is
encoded in our library as the Governor unit. This unit has inputs as the reference power
production and generator frequency that are implemented with the standard Modelica
RealInput connector. This Governor unit also uses the standard Modelica RealOutput
connectors in order to provide output information about the turbine guide vane opening.

In the SynchGen unit, the user can specify the various time constants of this model (see
Figure 3.17): pilot servomotor time constant Tp, primary servomotor integration time
Tg, and transient droop time constant Tr. The user should also provide the following
parameters: droop value σ , transient droop δ , and nominal values for the frequency and
power generation. The information about the maximum, minimum, and initial guide vane
opening should also be specified.

Ŷ.Ź Examples

Here, various models that have been assembled in the Examples class are described.

Ŷ.Ź.Ŵ HPSimple

In this model of the hydropower system, the simplified models are used for conduits and
turbine modelling. The generator is not included in the model. The simple Pipe unit is
used to represent the penstock, intake and discharge races. The simple Turbine unit is
used to represent the turbine. The Reservoir unit is used to represent the reservoir and
the tailwater (here, this unit uses a simple model of the reservoir that only depends on
the water depth in the reservoir). Data from the Sundsbarm hydropower plant is used for
this example model.

Ŷ.Ź.ŵ HPSimple_generator

In this model of the hydropower system, the simplified models are used for conduits,
turbine, and generator modelling. The simple Pipe unit is used to represent the penstock,
intake and discharge races. The simple Turbine unit is used to represent the turbine. The
SimpleGen unit is used to represent the generator. The Reservoir unit is used to represent
the reservoir and tailwater (here, this unit uses a simple model of the reservoir that only
depends on the water depth in the reservoir). Data from the Sundsbarm hydropower
plant is used for this example model.
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Ŷ.Ź.Ŷ HPSimple_Francis

In this model of the hydropower system, the simplified model is used for conduits model-
ling. The turbine and the generator are modelled with more detailed Francis and Synch-
Gen units, respectively. The simple Pipe unit is used to represent the penstock, intake and
discharge races. The Reservoir unit is used to represent the reservoir and the tailwater
(here, this unit uses a simple model of the reservoir that only depends on the water depth
in the reservoir). Data from the Sundsbarm hydropower plant is used for this example
model.

Ŷ.Ź.ŷ HPDetailed

In this model of the hydropower system, the simplified models are used for conduits
and turbine modelling, except for the penstock that is modelled with the more detailed
PenstockKP unit. The generator is not included in the model. The simple Pipe unit
is used to represent the intake and discharge races. The simple Turbine unit is used
to represent the turbine. The Reservoir unit is used to represent the reservoir and the
tailwater (here, this unit uses a simple model of the reservoir that only depends on the
water depth in the reservoir). Data from the Sundsbarm hydropower plant is used for
this example model.

Ŷ.Ź.Ÿ HPDetailed_generator

In this model of the hydropower system, the simplified models are used for conduits,
turbine, and generator modelling, except for the penstock that is modelled with the
more detailed PenstockKP unit. The simple Pipe unit is used to represent the intake
and discharge races. The simple Turbine unit is used to represent the turbine. The
SimpleGen unit is used to represent the generator. The Reservoir unit is used to represent
the reservoir and the tailwater (here, this unit uses a simple model of the reservoir that
only depends on the water depth in the reservoir). Data from the Sundsbarm hydropower
plant is used for this example model.

Ŷ.Ź.Ź HPDetailed_Francis

In this model of the hydropower system, the simplified model is used for conduits mod-
elling, except for the penstock that is modelled with the more detailed PenstockKP unit.
The turbine and generator are modelled with more detailed Francis and SynchGen units,
respectively. The simple Pipe unit is used to represent the intake and discharge races.
The Reservoir unit is used to represent the reservoir and the tailwater (here, this unit uses
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a simple model of the reservoir that only depends on the water depth in the reservoir).
Data from the Sundsbarm hydropower plant is used for this example model.

Ŷ.Ź.ź HPSimple_Francis_IPSLGen

Here, the last example model (uses the PenstockKP and Francis units) is extended by
synergy with the OpenIPSL for generator and power system modelling. The Governor
unit from the OpenHPL is also used here. The penstock is modelled with the more detailed
PenstockKP unit. The turbine is modelled with more detailed Francis unit. The simple
Pipe unit is used to represent the intake and discharge races. The Reservoir unit is used
to represent the reservoir and the tailwater (here, this unit uses a simple model of the
reservoir that only depends on the water depth in the reservoir).

Ŷ.Ź.Ż HPSimple_Francis_GridGen

Here, the HPDetailed_Francis example model (uses the PenstockKP and Francis units) is
also extended by synergy with the OpenIPSL for only generator modelling. The Governor
unit from the OpenHPL is also used here. The penstock is modelled with the more detailed
PenstockKP unit. The turbine is modelled with the more detailed Francis unit. The
simple Pipe unit is used to represent the intake and discharge races. The Reservoir unit
is used to represent the reservoir and the tailwater (here, this unit uses a simple model of
the reservoir that only depends on the water depth in the reservoir).

Ŷ.Ź.ż HPSimple_Francis_IPSLGenGov

Here, the HPDetailed_Francis example model (uses the PenstockKP and Francis units)
is extended by synergy with the OpenIPSL for generator, governor and power system
modelling. The penstock is modelled with the more detailed PenstockKP unit. The
turbine is modelled with the more detailed Francis unit. The simple Pipe unit is used
to represent the intake and discharge races. The Reservoir unit is used to represent the
reservoir and the tailwater (here, this unit uses a simple model of the reservoir that only
depends on the water depth in the reservoir).

Ŷ.Ź.Ŵų HPSimple_Francis_IPSLGenInfBus

Here, the HPDetailed_Francis example model (uses the PenstockKP and Francis units)
is extended by synergy with the OpenIPSL for generator and power system (including
infinite bus) modelling. The Governor unit from the OpenHPL is also used here. The
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penstock is modelled with the more detailed PenstockKP unit. The turbine is modelled
with the more detailed Francis unit. The simple Pipe unit is used to represent the intake
and discharge races. The Reservoir unit is used to represent the reservoir and the tailwater
(here, this unit uses a simple model of the reservoir that only depends on the water depth
in the reservoir).

Ŷ.Ź.ŴŴ HPSimple_OpenChannel

In this model of the hydropower system, the simplified models are used for conduits and
turbine modelling. The generator is not included in the model. The simple Pipe unit is
used to represent the penstock and intake race. The discharge race is an open channel
here, and the OpenChannel unit is used for modelling. The simple Turbine unit is used
to represent the turbine. The Reservoir unit is used to represent the reservoir and the
tailwater (here, this unit uses a simple model of the reservoir that only depends on the
water depth in the reservoir).
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ŷ Basic example

Here, a basic (step-by-step) example is provided in order to show how to connect and
specify elements from the OpenHPL in a flowsheet. Furthermore, an example of how to
set up the OMPython API is also presented.

ŷ.Ŵ Flowsheet

In order to create a flowsheet model for the hydropower system in OpenModelica using
the OpenHPL, the following steps should be performed:

1. Create a new Modelica class that is specified as “Model” and assign a name for this
model. Then, open this model with the “Diagram view”. See example in Figure 4.1.

Figure 4.1: Creating a new model in OpenModelica.

2. Drag and drop all of the needed elements for the hydropower structure from the
OpenHPL and provide a name for each element. Then, connect the connectors of
these elements between each other. See example in Figure 4.2.
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Figure 4.2: Connecting the elements of the hydropower system.

3. Also, insert the records model “Constants” from the OpenHPL with the name
“Const” to the model in order to have control on some constants and properties
that are common for all hydropower elements. As an example in case, typical initial
value of the volumetric flow rate in the system for each “Pipe” unit can be specified.

4. Specify each of the elements with an appropriate geometry. See example for the
specification of the intake race element in Figure 4.3.

Figure 4.3: Specification of the elements.

5. Provide a control signal for the turbine. To make this, you can either add a source
of the ramp signal from the standard Modelica library (“Modelica.Blocks.Sources.
Ramp”), or create an input variable (or just a simple variable) for the example model

52



4.2 OMPython API

Figure 4.4: Creating a control signal for the turbine.

“OpenHPL example” and equate it to the turbine control input. Both possibilities
are shown in Figure 4.4.

6. Specify the simulation setup values and save it in the model. Then, the simulation
can be carried out. See example for the simulation specification and running in
Figure 4.5.

Figure 4.5: Specifying and running simulation.

ŷ.ŵ OMPython API

In order to run the simulations of the developed example hydropower model from Py-
thon, the OMPython API for OpenModelica can be used. The following steps should be
performed to set up the API:

1. Import the “Modelica system” environment form the OMPython package. Then,
create an object in Python of the OpenModelica model “OpenHPL example”. Here,
the libraries that are used in the model should also be loaded to the object which
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in this case, is the standard Modelica library and the OpenHPL. See an example of
the code below:

from OMPython import ModelicaSystem
hps_s = ModelicaSystem("OpenHPL_example.mo", "

OpenHPL_example", ["Modelica", "OpenHPL/package.mo
"])

2. When the object is created, the simulation options, as well as the parameters and
input variables can be specified. In order to check and specify the simulation options,
the following commands can be used:

hps_s.setSimulationOptions(stepSize=0.1, stopTime
=1000) # set simulation options

hps_s.getSimulationOptions() # get list of simulation
options

Similar commands for parameters and input variables look as follows:

hps_s.getParameters() # get list of model parameters
hps_s.setParameters(**{"turbine.H_n":460}) # set

parameter value for the turbine nominal head
hps_s.getInputs() # get list of input variables
hps_s.setInputs(u=[(0,0.75) ,(100,0.75) ,(101,0.7)

,(1000,0.7)]) # set input value over time as a
ramp signal

It should be noted that here, I used the model with input variable for the control
signal of the turbine (see item #5 and Figure 4.4 in the previous flowsheet section).

3. Run the simulation and get the results. An example of these commands are carried
out as follows:

hps_s.simulate() # run simulation
hps_s.getSolutions() # get list of solution variables
time , Vdot , p_tr1 , p_tr2 = hps_s.getSolutions("time",

"turbine.V_dot", "turbine.p_tr1", "turbine.p_tr2"
) # get results of simulation time variable , and
the turbine flow rate, inlet and outlet pressures.

These simulation results can be then plotted using matplotlib package. See the plots
of the turbine flow rate and the pressures in Figure 4.6.

4. It is also possible to linearize the model for the future analysis. The linearization
can be done with one command. However more commands can also be used to
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Figure 4.6: Plotting of simulation results.

check/specify the linearization options and define the states/inputs/outputs. See
the example below:

hps_s.setLinearizationOptions(stopTime=0.1) # set a
stop time for linearization (linearization is
performed in this point)

hps_s.getLinearizationOptions() # get a list of the
linearization options

As,Bs,Cs,Ds = hps_s.linearize() # actual
linearization; defining standard A, B, C and D
matrices.

hps_s.getLinearStates() # get list of states
hps_s.getLinearInputs() # get list of inputs
hps_s.getLinearOutputs() # get list of outputs

It should be noted that the linearized model should include the input variable which
in this case is the input variable for the turbine control signal.
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4 Basic example

Similar to OMPython API, the running of OpenModelica models in Julia using OMJulia
API can also be carried out. See the documentation of OMJulia for more information.
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