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Abstract: Surveillance of the rheological properties of

drilling fluids is crucial when drilling oil wells. The pre-

vailing standard is lab analysis. The need for automated

real-time measurements is, however, clear.

Ultrasonic measurements in non-Newtonian fluids

have been shown to exhibit a non-linear relationship be-

tween the acoustic attenuation and rheological proper-

ties of the fluids. In this paper, three different fluid sys-

tems are examined. They are diluted to give a total of

33 fluid sets and their ultrasonic and rheological proper-

ties are measured. Machine learning models are applied

to develop soft sensors that are capable of estimating the

rheological properties based on the ultrasonic measure-

ments. This study explores three different machine learn-

ing model types and, extensive training and tuning of the

models is carried out. Thebestmodel types that showgood

results and the potential to develop a real-time sensor sys-

tem suitable for use in oil & gas drilling process automa-

tion are selected.

Keywords: Ultrasonic measurement, non-Newtonian flu-

ids, rheology, machine learning, artificialneural network,

drilling.

Zusammenfassung: Die Überwachung der rheologischen

Eigenschaften von Bohrflüssigkeiten ist bei der Erdölex-

ploration von entscheidender Bedeutung. Der derzeit vor-

herrschende Standard ist die chemische Laboranalyse. Es

besteht aber der Bedarf nach einer automatisierter Echt-

zeitmessung. In nicht-Newtonschen Flüssigkeiten besteht

eine nicht-lineare Beziehung zwischen der Schallabsorpti-

on und den rheologischen Eigenschaften der Flüssigkeit.
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In dieser Arbeit werden drei verschiedene Systeme von

Bohrflüssigkeiten, aus denen 33 unterschiedlich zusam-

mengesetzte Mischungen hergestellt wurden, hinsichtlich

ihre Ultraschall- und rheologischen Eigenschaften unter-

sucht. Mithilfe vonModellen fürmaschinelles Lernenwer-

den virtuelle Sensoren entwickelt, mit denen die rheo-

logischen Eigenschaften auf der Grundlage von Ultra-

schallmessungen abgeschätzt werden können. Diese Stu-

die vergleicht drei verschiedene Methoden des maschinel-

len Lernens hinsichtlich ihrer Eignung in einem Echtzeit-

Sensorsystem bei der Automatisierung von Öl- und Gas-

bohrprozessen eingesetzt zu werden.

Schlagwörter: Ultraschallmessung, nicht-Newtonsche

Flüssigkeiten, Rheologie, maschinelles Lernen, künstli-

ches neuronales Netz, Bohrtechnik.

1 Introduction

When drilling an oil well, the drilling fluid is circulated

in a closed loop. Figure 1 shows a typical drilling opera-

tion, the focus of the illustration being on the drilling fluid

circulation system. Drilling fluid is continuously pumped

down the wellbore through the drill pipe and is circulated

through the annulus back to the surface. The returning

fluid also contains drill cuttings, formation fluids and pos-

sibly gas from the formation. The drilling fluid then en-

ters the treatment system, which handles the gas and re-

moves drill cuttings, the drilling fluid running through a

storage tank (active pit) before being pumped back into

the well. This completes one circulation of the system. The

returning fluid is pumped back into the well. It is there-

fore important to monitor the rheological properties and

ensure they remainwithin certain specifications. Intermit-

tent manual lab analysis of the drilling fluid is the mea-

suring method used today. The focus of our work has,

however, been on the automation of this process by de-

veloping methods and sensor technology to measure in-
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2 | M.H. Jondahl and H. Viumdal, Developing ultrasonic soft sensors

Figure 1: Overview of drilling operation, with emphasis on the sys-
tem for drilling fluid circulation. The fluid is pumped along the cir-
culation system as shown by the red arrows, down into the well
through the drillpipe, returning through the annulus. It then enters
a gravity drained return channel which leads to the shaker and pits,
where it is treated before being pumped back into the well.

line rheological properties of the drilling fluid based on

time of flight measurements, using ultrasonic through-

transmission measurement principles, measuring attenu-

ation and sound of speed [1].

Drilling fluid design uses additives to achieve the

properties required by the particular drilling operation.

Three main drilling fluid objectives are: (1) bottom hole

pressure control, (2) the cooling, lubrication and clean-

ing of the drill bit and (3) removal of rock cuttings from

the well [2]. In this work, the main focus is on pressure

control. A safe and stable drilling operation requires bot-

tomhole pressure (Pb) to be controlled very closely. The

upper bound is the formation fracture pressure (Pf), the

point at which the formation will break down. If the well-

bore pressure exceeds this limit, severe loss of drilling

fluid and subsequent loss of pressure in the wellbore may

result. The lower bound is the formation pore pressure

(Pp) which is the pressure of the formation fluids. If Pb

Figure 2: Drilling window. Pore pressure, Pp, represents the lower
bound for the wellbore pressure, Pb. The fracture pressure, Pf rep-
resents the upper bound. If Pb exceeds either of these, a kick/loss
situation will most likely occur, as indicated in the figure.

falls below Pp, then an influx of formation fluids into the

wellbore will occur. This influx, called kick, is a com-

mon scenario when drilling oil & gas wells. Detected in

a timely manner, at a moderate volume, the kick can be

handled using normal procedures. It does, however, rep-

resent a severe risk if not detected at an early stage, or

if the influx volume is too great, the Deepwater Horizon

incident [3] being an extreme case. It furthermore results

in non-productive time in an already costly drilling op-

eration. The pressure span between Pp and Pf is com-

monly named the drilling window and is illustrated in

Fig. 2.

Early detection of these two events, kick and loss, is

therefore essential for safe and efficient drilling opera-

tions. A crucial role of the equipment and systems used to

log data during drilling, both downhole and topside (the

drilling system at the surface), is therefore the early de-

tection of kick and loss. The varied environments, equip-

ment and companies involved indrilling operationsworld-

wide, however, mean that common practices for detect-

ing kick and loss are not well developed. Pit level moni-

toring, and trendbased measurements of the flow out of

the well, through the use of a paddle meter, are the stan-

dard indications of kick and loss [4]. A proposed method

for more precise detection of kick/loss situations during

drilling is monitoring the difference between fluid flow

into and out of the well. This is referred to as the delta flow

method [5].

The delta flow kick and loss detection method pro-

posed by Speers and Gherig [5] relies on an accurately

measured return flow and comparison to an equally (but

more commonly) accurately measured inflow. The prevail-

ing standard instrument for measuring volumetric flow in
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the return flow is the paddle meter, which has poor accu-

racy and reliability. This instrument is therefore not good

enough to facilitate this method. The fluid level in the ac-

tive pit (the fluid pit that is part of the circulation system)

is also monitored. Any difference between the inflow rate

and the return flow rate will result in a level change in

the pit. Any drilling progress will result in a loss of pit

level, as the well is drilled ahead and the effective vol-

ume of the well and circulation system is increased. Pit

level response may, however, be slow and incremental,

depending on the total volume of the wellbore, surface

pipes and pit volume. Furthermore, the effect of drilling

progress and the consequent loss of pit level may mask

kick/loss effects. The response times and accuracies cur-

rently available show that there is a need for improved

sensor technology. One approach that could be applied is

improvements in the measurement of return flow, which

would allow the delta flow method to be used. Although,

as pointed out by Schafer et al. [6], several flowmeters

were in development as early as in 1992, but the indus-

try standard instrument is still the flow paddle to the best

of our knowledge. Other flowmeters maybe be available,

but are used only as redundancy [7]. Improving return flow

measurements in some instances, however, requires good

knowledge of fluid rheological properties, as pointed out

by Chhantyal et al. [8]. Improved sensor technology for

early kick and loss detectionmay furthermore increase the

degree of automation in drilling operations. In-line sen-

sor technology in such applications is an important pre-

requisite, as the rheological measurements made today

aremanual, intermittent, offlinemeasurementsperformed

around4 times every 24 hours. For these reasons,we chose

to focus on developing an automated measurement prin-

ciple capable of non-invasive and non-intrusive measure-

ment of fluid rheological properties. The variation of the

acoustic properties of fluids with rheological properties

makes ultrasonic through-transmission measurements a

very interesting measurement principle to explore. Podio

and Gregory [9] found a non-linear relationship between

attenuation and frequency for any fluid density, and found

that the non-linear effect is increasing with density. Pope,

Veirs and Claytor [10] developed technology that estimates

drilling fluid density using a function of resonant peaks

in a FFT spectrum. These developments were made in the

early 90’s, but do not seem to have been further developed

in later years, or resulted in applied sensor technology.

Pappas, Bamberger, et al. [11] and Greenwood and Bam-

berger [12], [13] have described a densimeter that is op-

erating by measuring ultrasonic impedance, and velocity

of sound, which is also able to estimate viscosity in slur-

ries based on shear wave velocity. The published works do

not specify whether these slurries are non-Newtonian, or

show us whether the technique is relevant to our applica-

tion. Non-Newtonian fluids behave very differently from

Newtonian fluids, the viscosity of non-Newtonian fluids

being shear-rate dependent. Thismeans that viscosity will

change with flow or any other agitation of the fluid. This

property is a vital part of the design of any drilling fluid.

In practice this means that the drilling fluid is designed to

behave like shear-thinning, such that it can keep pressure

integrity when stationary, but is still able to be pumped at

high flow rates. Thus, the rheological properties of these

fluids are challenging to measure, and so is further defin-

ing good models that can relate rheological properties to

propagation of ultrasonic longitudinal waves in the fluid.

Shear waves are not considered as they do not propagate

well in fluids. Scattering effects are known to be apparent

in drilling fluids, as they are made up from particulates in

base fluid [14], [15]. In addition, cuttings from the drilling

process will further add to this effect in field applications.

We have chosen not to quantify this effect, as we focus on

the acoustic measurements and the mathematical models

which will be affected by this.It was therefore decided that

the first step of the development process would explore

the relationship between ultrasonic waves and fluid rhe-

ological properties. This began as a MSc project [16], ex-

ploring Newtonian fluids (tap water), and later also non-

Newtonian drilling fluids, a water based fluid (WBF) [17].

The latest development of thiswork reportedhere includes

a new type of non-Newtonian drilling fluid system, an oil-

based fluid (OBF) and the further development ofmachine

learning (ML)models, support vectormachines (SVM) and

fuzzy-neural systems.

2 Methods

2.1 Ultrasonic measurements

The setup used to perform the measurements consists of

a fluid tank, a transmitter a receiver, and a supporting

frame to submerge and move the transmitter/receiver, see

Fig. 3. An ultrasonic through-transmission principle was

utilized by including one transmitter and one receiver,

whichmeasured the received signal amplitude and time of

flight (ToF). The tank held around 82 litres of the fluid un-

der study. Three pairs of transducers, Olympus Videoscan

Large Diameter [18], were used, all with the element diam-

eter of 25.4mmbut using different frequencies: 0.5, 1.0 and

2.25MHz. The linear distance (x) between transmitter and

receiver was adjusted during the experiments from 3 cm
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Figure 3: Ultrasonic measurements setup. x is the linear distance
between transmitter and receiver. A(x) is the amplitude as a func-
tion of the linear distance, relative to the reference amplitude A0
measured at x = 3 cm.

up to 45 cm. Investigation in our preceding work [16], [17]

showed that the submersion of the transmitter/receiver re-

sulted in negligible noise, and that near-field effects were

negligible from a linear distance of 3 cmbetween transmit-

ter and receiver for the chosen frequencies. The measure-

ment at 3 cm has been used as the reference for all exper-

iments to calculate attenuation, and a stepwise increase

in linear distance of 2 cm has been used in all measure-

ment series. TheOlympusEpoch 1000i instrument [19]was

used to transmit and receive the ultrasonic square waves.

Pulse voltage was set to 300V and the gain was adjusted

during measurements to ensure detection at the receiver

end.

Three different drilling fluids were used, two WBFs

(fluids A and B) and one OBF (fluid C). The range of the

fluid rheology properties are representative for fluids in

normal offshore operations. We, after consulting with the

manufacturer, designed a process in which we diluted

each of the three samples, this resulting in 33 fluids. Each

fluid was diluted by its base (water or oil-premix) stepwise

by adding 5 volume-percentage of base fluid of the initial

volume, until each had been diluted 10 times. We could

therefore collect ultrasonic measurements in fluids with a

verywide range of rheological properties. Table 1 shows an

overview of the fluids, the numbers indicating the diluted

samples (1 designates the original fluid).

2.2 Fluid analysis

The fluids used in the study were sampled and then were

analysed at Equinor’s lab facilities, where the rheological

properties were determined. These were used as the ref-

erence for our developed models. The properties of great-

est interest in this study are given in Table 1. The measure-

ments were performed with an Anton Paar Modular Com-

pact Rheometer MCR 502, which gives highly reliable and

accurate data. The values given as references are based on

the analysis of two, or in some cases four, samples of the

actual fluid.

In this study we have chosen to focus on drilling fluid

density,ρ, andplastic viscosity,μp. The termplastic viscos-

ity refers to the commonly used rheological model to de-

scribe a non-Newtonian drilling fluid, the Bingham-Plastic

model [20]. Non-Newtonian fluids have shear-dependent

viscosity. Plastic viscosity can therefore be used to charac-

terize and distinguish different fluids with shear thinning

non-Newtonian behaviour. This is therefore not the exact

viscosity, as this can not be quantified for non-Newtonian

fluids. The fluids were also analysed for gel strength (S).

This property is the shear strength, force required to ini-

tate flow of the fluid after a period of time without any stir-

ring or flow, for 10 seconds or 10 minutes. This must not

be confused with the yield point of the Bingham-Plastic

model, which has a similar physical interpretation. This

Table 1:Measured fluid properties. Density in kg/m3 and plastic viscosity in Pa⋅s.

Fluid Density Viscosity Fluid Density Viscosity Fluid Density Viscosity

A1 1350 0.0397 B1 1750 0.0111 C1 1510 0.0208
A2 1320 0.0371 B2 1680 0.01 C2 1450 0.0177
A3 1320 0.0345 B3 1680 0.0089 C3 1440 0.0153
A4 1300 0.0316 B4 1630 0.0081 C4 1390 0.0134
A5 1300 0.027 B5 1600 0.0072 C5 1360 0.0119
A6 1290 0.0236 B6 1550 0.0066 C6 1330 0.0106
A7 1270 0.021 B7 1530 0.006 C7 1280 0.0094
A8 1240 0.0185 B8 1510 0.0055 C8 1240 0.0086
A9 1250 0.0156 B9 1480 0.005 C9 1230 0.0077

A10 1200 0.0129 B10 1460 0.0046 C10 1200 0.0069
A11 1180 0.0101 B11 1410 0.0042 C11 1180 0.0062
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Figure 4: Sketch of rheological models for non-Newtonian fluids.
Emphasis on Bingham plastic model and the plastic viscosity given
as the slope of the line. The idea of the API standard is that the
Bingham Plastic model may satisfactorily describe the approxi-
mately linear portion of the curve for typical drilling mud shown.

yield point is, however, amodel parameter, and not amea-

sured value. The Bingham-plastic model is defined as

τ = μpγ̇ + τy

the parameters being: τ – shear stress in Pa; μp – plas-

tic viscosity in Pa⋅s; γ̇ – shear rate in s−1; τy – yield point

in Pa. The model is shown in Fig. 4, where it is compared

to a Newtonian model for viscosity, and Power Law. The

Power Law closely describes the whole curve of viscos-

ity, but according to the API [21] standard, the Bingham-

Plasticmodel is chosen as it represents the fluid properties

well enough for the typical shear rates that applies during

drilling.

Models for estimating gel strength were developed in

earlier studies, but with poor results. We include these

measurements in this project, for parameter analysis, to

see whether this could provide answers to the poor perfor-

mance of the models that estimate this property. No new

models to estimate gel strength are developed.

2.3 Machine learning models

The differentMLmodels used in this study are defined and

described in this section. Our previous work [16], [17], [22],

[23] has explored simple regressionmethods, and artificial

neural networks (ANNs). Here, however, we present two

more advanced ML models to further accommodate non-

linearity in the relationship between inputs and outputs

of themodels, and to relate more than two variables. Com-

mon to all of the models analysed here, and to previous

models, are the inputs and outputs, see Fig. 5: The division

into training data and validation data in the algorithms for

training the models differs somewhat, i. e. the dataset is

the same, but the subsets used for training and validation

are randomly selected each time. All models use valida-

tion to counter the problem of overfitting. The randomly

selected validation data was used in the supervised train-

ing algorithm, so training is ended before overfitting oc-

curs. Furthermore, 20% of the total dataset was set aside

in a test dataset before running the training algorithms,

such that the performance of all models can be compara-

ble through using an identical dataset. This test data set

has not beenusedduring training, and is presented as new

measurements to the models. An overview of the phases

included in collecting data, training models and a com-

parison of them are shown in Fig. 6. The training and se-

lecting model process is carried out separately for density

and viscosity measurements. All models are trained using

MATLAB, Neural Networks Toolbox 11.0 and Statistics and

Figure 5: General model overview of inputs and outputs.
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6 | M.H. Jondahl and H. Viumdal, Developing ultrasonic soft sensors

Figure 6:Machine learning model training and selection flowchart. In the first phase, the ultrasonic data is collected and organized in the
training phase. The three models are trained repeatedly to find the best meta parameters for each model type. The models are compared
against each other using mean square error (MSE), as this is the default performance value for the training algorithms used. The best model
of each type is then used in the last phase, these being compared. This is carried out using the test data set extracted in the data collection
phase, which has not been used for any of the models during training. The output from the models using this data set is compared to the lab
measurements of the rheological properties. This is, in turn, used to calculate the model performances and finally select the best perform-
ing model, these two phases being carried out separately using density or viscosity as model output and target.
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Machine Learning Toolbox 11.2. The training data and val-

idation data are presented to the training algorithm as one

set. The validation procedure in the algorithm handles the

separation of the set into training and validation samples.

In search of a best possible model, the machine learn-

ing models were trained in a number of steps. Some learn-

ing points were taken from the exploratory analysis work,

the choice being to focus on the 0.5MHz data as input for

all the models developed. Two classes of models, one for

water based drilling fluids, and one for oil based were de-

veloped. This choice was made to reflect the ultimate ap-

plication of themodels in a drilling environment. The fluid

in a drilling process is either oil based or water based.

The fluid base is not changed during the drilling process

and there is therefore no need for models that generalize

this parameter. Thenmodels were developed for these two

fluid types that predict drilling fluid density, ρ, or plastic

viscosity, μp. This resulted in four models for each of the

three types of machine learning models described above,

in total 12 models to be evaluated.

Extensive and repetitive trainingwas carried out in the

development and search for the optimal machine learning

model for each of the twelve cases. The model types were

trained in total 1000 times for each type, using the same

training data. The best model for each type in each case,

based on model performance with the validation data set.

The best of each type were compared with each other in

each case, so allowing the ultimate best model to be cho-

sen.

The mean square error (MSE) of the training process

was used to choose the best model of each type from the

trained models. This is the default performance output

from the training algorithms, and well suited to a compar-

ison of the models. The test data was then used to eval-

uate the model types against each other. The mean abso-

lute percentage error (MAPE) was used to choose the best

model type in each case.MAPEwas chosen as it gives clear

and easily interpreted performance information while still

being comparable to industry specifications [24].

MSEval =
1

q

q

∑
i=1
(Yi − ̂Yi)

MAPEtest =
100

p

p

∑
i=1

(Yi − ̂Yi)
Yi

Where q denotes the number of elements in the validation

set. Y is the observed value of either ρ or μp as measured

in the lab analysis. Ŷ is the model predicted value of Y .

p is the number of elements in the subset for testing,where

the different model types are compared according to their

MAPE values.

2.3.1 Artificial neural networks

Artificial neural networks (ANN) are models that imitate

the structure of parts of the human brain [25], [26]. The

neurons are represented as computation points organized

in layers. The neurons in the different layers are connected

by weights representing the synapses of the human brain.

Theseweights are adjusted during training of the network.

Figure 7 shows such a general network with three input

neurons and one output neuron. This represents the gen-

eral structure of the network used in this study. As de-

scribed above, three inputs are used in developing our

models, and one output is selected. These are in the in-

put and output layers, as shown. The inputs and outputs

are normalized and the default in the fitnet function in

MATLAB ANN is to normalize the data such that the mean

is 0 and the range is [−1, 1] using the mapminmax func-

tion [27].

The number of neurons in the hidden layer varies, the

number being dependent on the results ofmeta-parameter

tuning. The architecture of the network is decided in this

process. The number of hidden layers and the number of

neurons in these layers are selectedmanually tomaximize

model performance.

The problem we want to solve, with just three in-

puts and one output, is relatively simple. Previous stud-

ies have furthermore shown that the relationship be-

tween inputs and output can to a certain degree be

described by linear regression. We therefore chose a

simple network architecture. Choosing only one hidden

layer, we trained the network repeatedly with hidden

neurons ranging from 3 to 50. This process showed us

that the networks could be trained with 3 to 20 hid-

den neurons, this securing both performance and com-

putational efficiency. Neural networks with larger num-

bers of neurons may result in overfitted models, and

should be avoided. Based on the experiments, the low-

est number of neurons that did not result in any signif-

icant reduction of performance was 15. Hence, this be-

came the selected number of hidden neurons in our mod-

els.

The training was performed using the Levenberg-

Marquardt backpropagation algorithm. This algorithm

was chosen as it is a fast backpropagation algorithm that

converges well. It does, however, require more memory

than some of the other training algorithms implemented

in the MATLAB fitnet function. We chose not to take into

consideration the memory requirement, as the time avail-

able for training the models would not be an issue in this

project, due to the relatively small dataset and a quite sim-

ple artificial neural network [28].
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8 | M.H. Jondahl and H. Viumdal, Developing ultrasonic soft sensors

Figure 7: ANN general overview. ANN with one hidden layer, three input neurons and one output neuron. The circles represent the neurons,
the purple arrows show the forward connection between the neurons. The error signals (red arrows) are generated by comparing the desired
output (if known) to the network output. This error can then be used to adjust the weights between the neurons, to train the network and
increase performance. The distribution of the error signal to the weights depends on the training scheme.

2.3.2 Support vector machines

Support vector machines (SVMs) is a branch of ML mod-

els that is capable of solving both regression problems

and classification problems. The basic principle of a SVM

is to solve a non-linear problem, either a non-linear clas-

sification problem, or a non-linear curve fitting problem,

by mapping the original dataset into a new space of

higher dimensionality. In this higher dimensional space,

the dataset may be linearly separable by a hyperplane in

case of a classification problem, or in case of a curve fit-

ting problem linear regression may be used. This is ex-

plained concisely and to the point by Noble [29], using

classification as the case. For further details and full de-

tails of mathematical descriptions, the reader is recom-

mended to reviewHaykin [25]. The practical approach for a

SVM is tofindas fewdatapoints as possible to support a re-

gression function that describes the data in a satisfactory

manner. This involves choosing an acceptable error range

for the function, and to train the function and find these

data points that typically are referred to as support vec-

tors. SVMs, which use the data points to describe the func-

tion, may therefore be more efficient than an ANN model,

which uses a large network of weights and layers. The SVM

algorithm we used is part of the MATLAB toolbox Statis-

tics and Machine Learning Toolbox™ and is described in

detail in the documentation [30]. We also used the Regres-

sion Learner App, which is part of this toolbox. The tool-

box can be used to explore several regression models with

the same dataset, and to give an overview of the models

and methods best suited to our needs. We chose, based

on analysing the different models in this app, to develop

a SVM regression model with a Gaussian kernel function,

as this gave the best results based on the models tested.

The kernel scale gives the three differently named Gaus-

sian SVM (fine, medium and coarse). The adjective refers

to the value of the kernel scale that all inputs are divided

by, fine scale being a value closer to 0, effectively influenc-

ing the Gram matrix and the kernel functions [31].

The Gaussian kernel function means the model is ca-

pable of treating non-linearity in the mapping of input

data to output data, something earlier works shows exists

in our dataset. The SVMwas trained using the same train-

ing dataset as the ANNmodels. The MATLAB fitrsvm func-

tion for training SVM calls normalization standardization

and uses an algorithm in which the values are standard-

ized using the weightedmeans and weighted standard de-

viations [31].

2.3.3 Adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy inference system (ANFIS) is a

type of machine learning model that combines the ap-
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proach of two different systems into a hybrid. A neural

network approach is taken to adjust membership func-

tions, parameters and rules of a fuzzy logic inference sys-

tem [32]. A fuzzy logic system may therefore be used with-

out analysing the input data. It furthermore constructs the

fuzzy logic system using user-defined membership func-

tions. In this work, the fuzzy logic parameters are adjusted

according to the training data set, whichmeans the system

learns from data, i. e. machine learning.

TheANFISof this studywas createdusing theMATLAB

toolbox Neuro-fuzzy designer. The same training set as

used by the other models was used here. Cost function op-

timization for training themodel was a hybridmethod and

used both back propagation and the least squares method

[33]. The data was grid-portioned to create a fuzzy system

structure with Gaussian membership functions. The hy-

brid learning algorithm, as described by Jang et al. [32],

was chosen. Least squares estimate ensures the backprop-

agation algorithm is not stuck in local minima, and in-

creases the chance of convergence to a well performing

model.

3 Results

3.1 Machine learning model results

We also investigated how the attenuation of the ultrasonic

signals was affected by frequency in the three drilling fluid

systems. This is shown in Figs 8–10, attenuationbeing rep-

resented as relative amplitude AR in dB as a function of

the distance, x [cm]. Attenuation is shown for the water

Figure 8: Attenuation dependency on frequency, fluid system A.

Figure 9: Attenuation dependency on frequency, fluid system B.

Figure 10: Attenuation dependency on frequency, fluid system C.

based fluid systems (A and B) and for the oil based fluid

system (C). These show that the 0.5MHz data sets yield the

largest range of distances, as attenuation is in general less

at this frequency. We, for this reason, chose 0.5MHz as the

most optimal frequency for our purposes. Our findings fur-

thermore agree well with Podio and Gregory’s findings, in

which we see that the attenuation/frequency relationship

is non-linear, and increases with density.

The model performances for oil based fluids (OBF)

and for water based fluids (WBF) are shown in Table 2.

This shows that when applied to the test data sets, the

ANN models outperform the other model types in all four

cases. Although only marginal for the water based fluid

density case. The performance of the selectedmodels used

on the test data sets are shown in Fig. 11. The plots show
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Figure 11: Results from the chosen models on test data sets. a) shows ANN predicted plastic viscosity for the OBF test data set (C4,C8, from
left to right). Pink circles are the predictions, and blue are the known values from the lab analysis. b) shows ANN predicted density on the
same test data set. c) the ANN predicted plastic viscosity for the WBF test data set (B4, B8, A4,A8 (from left to right)). d) shows the ANN
predicted density for the same test data set.

Table 2:Model performances. Mean absolute percentage error
(MAPE) in %, for all best models of each type for two fluid systems.

Model OBF WBF

ANN Density, ρ 1.17 0.69
ANN Viscosity, μp 4.66 4.07
SVM Density, ρ 2.87 1.27
SVM Viscosity, μp 13.6 22.2
ANFIS Density, ρ 1.79 1.52
ANFIS Viscosity, μp 10.60 19.5

the model performance compared to measurements from

the rheological lab analysis. The estimated plastic vis-

cosity (pink dots) is compared on the left side with the lab

measurements (blue dots). The industry standard formea-

suring drilling fluid density using a mud balance, as spec-

ified by API [21], gives a typical uncertainty of 10 kg/m3,

which would be 0.01SG, and 0.6–0.8% for the fluids used

in this study. However, the Norwegian standard NORSOK

D-001 [24] requirement for an online drilling fluid den-

sity meter is a maximum uncertainty of 2.0%. The plastic

viscosity of drilling fluid is not specified, and neither is

the offline manual measurement. According to Table 2
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Figure 12: Errorbars showing the mean calculated output for each of the test fluids. The number of measurements for each fluid varies, as
they were picked at random from the whole set. The red bars and points represent the lab measurement of density and viscosity, with ± 2%
as per the specifications mentioned above. The blue bars and points represent the mean of the model outputs and the 95% confidence
interval.

the WBF-models provide the best statistical results. The

viscosity range for the WBF is larger than for the OBF, as

the WBF is based on two different original drill fluids. The

reason for the impaired WBF might therefore be related

to the two different WBFs included in the dataset that are

used to train the ML models. When estimating values in

theupper endof the viscosity range, larger errors are there-

fore introduced. On the other side, theWBF-model is likely

to be a more generalized model compared to the OBF-

model. To further address the uncertainties of the models,

we looked at the confidence interval of the model outputs.

The results shown were averaged, and the standard devi-

ation within each test fluid set was calculated. These are

shown in Fig. 12 which also indicates the 95% confidence

intervals compared to the measurements specification of

maximum 2% uncertainty. No specification for maximum

uncertainity in viscosity was given in the references. We

therefore also show this with the 2% intervals. The overall

MAPE values for the models were good. Figure 12 however

shows that model performance varies, being within the

specification for some of the test fluid densities, but out-

side the specification for most of the viscosity outputs. It

should, however, be pointed out that confidence interval

calculation success varied, as test samples for each of the

test fluids were drawn at random from the complete fluid

type set, and the number therefore is varying.

The results show that developing a sensor system

based on these principles is possible. The application of
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Figure 13:Model application overview. Inputs to the left, the soft sensor discussed in the paper outputting either density or plastic viscos-
ity. This may then be used either directly as measurements in the general drilling process control, or as inputs into soft sensors for flow
estimation, which again can be used in either drilling process control or kick/loss detection.

the measurements is twofold: to improve measurements

of the rheological properties compared to 6 hour interval

manual measurements and to enable soft sensor systems

for flow estimation using reliable rheological inputs. Fig-

ure 13 shows the principle for such an application. The

output of the sensor system that we aim to develop will

be used as a measurement in the general drilling process

control tomonitor the rheological properties of the drilling

fluid used. It may also be used to enable soft sensor sys-

tems to estimate the drilling fluid return flow. As pointed

out by Chhantyal et al. [5], knowledge of fluid rheology is

essential for many flow estimators. The placement of the

sensor would be along the fluid return flowline, indicated

as between the blowout preventer (BOP) and the shaker

indicated in Fig. 1. An important point is that the sensor

should be placed as close to the well as possible, but still

on the surface, as this will give the shortest time delay to

downhole conditions, which is particularly important for

kick/loss detection. This placement will, however, present

two challenges that we have not had the opportunity to

evaluate so far in our study. The sensor system needs to

function also in a partially filled pipe, as the flow here

is gravity-driven, and full pipe conditions can not be en-

sured. It furthermore needs to measure correctly for con-

taminated fluid, as the placement before the shaker will

mean the fluid is not treated in any way. A natural next

step would then be to build a suitable measurement sys-

tem to test these two challenges, flowing fluid and con-

taminated fluid. One option is to add a by-pass-pipe with

sieves, which can be opened and closedwith valves, so en-

suring steady conditions and the filtering out of contami-

nations in the fluid. The drawback is a semi-in-line sen-

sor system,with potential interruptions due tomechanical

failures.

4 Conclusions

It is apparent from reviewing the results shown in Fig. 13

and the performance values given in Tables 2 thatmachine

learning models have great potential in the estimation of

fluid density using ultrasonic measurements. The perfor-

mance of the ANN models are furthermore slightly worse

than previous models, as presented in earlier work [22].

The MAPE performance for the density models is partic-

ularly promising, and the measurement principle should

apply to this application. This is also supported by the av-

eraged errors for the test fluids, as shown in Fig. 12. The

presented results are based on a large number of data

points. The range in rheological properties is quite large,

indicating that this should apply to a large range of differ-

ent fluids, and also to the two types, OBF and WBF. The

findings are also supported by a parameter analysis and

PCA that show that the measurements made are precise,

and that there is a relationship between themeasurements

and the rheological properties of the fluids.

Our proposed measurement principle has therefore

been studied for stationary conditions, which can be used

in storage tanks in current operations. Further research

may result in a system that is applicable to flowing con-

ditions. The measurement principle and models may re-

sult in an improvement in the monitoring and control of

drilling operations, and increased safety. We can also con-

clude that there is room for improvement and fine tun-

ing, as we see that the performance values vary between

the different models, but are generally in the same range.

The data used in this study was limited to the data from

one frequency pair. The experiment setup did not allow

for recording the waveforms or frequency spectra of the

received signals. The frequency is therefore not applica-
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ble as an input to the models used, as it would be a con-

stant for a whole dataset of ultrasonic measurements from

each transmitter/receiver pair. Capturing the waveforms

and frequency spectra in future experiments might re-

sult in measurements that can help improve the proposed

models. Of themodels used, it seems that the ANNmodels

have greatest promise. The other models are also promis-

ing, but are outperformed by ANN marginally in some of

the cases. It is in general easy to conclude thatwith the cur-

rent experimental setup, the principles applied look to be

promising as ameasurement principle. However, to evalu-

ate this, the design of a setupwhichwould work on a flow-

ing system would be a crucial next step.
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