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Preface 

This thesis is submitted for the partial fulfilment of the degree of Doctor of Philosophy 

to the Department of Electrical Engineering, Information Technology and Cybernetics, 

Faculty of Technology, Natural Sciences and Maritime Sciences at University of South-

Eastern Norway (USN). The research work was funded by the Ministry of Education 

and Research of the Norwegian Government for a period of four years including 25% 

teaching duties starting from February 2014. The research described herein was 

conducted under the supervision of Associate Professor Maths Halstensen (Applied 

Chemometrics and Research Group, USN), and with the guidance from co-supervisor 

professor Klaus-Joachim Jens (Head, Institute of Process, Energy and Environmental 

Technology, USN).  

The research was application oriented addressing an overwhelming urge in in-situ 

liquid phase speciation in solvent based CO2 capture process. Although the main focus 

of the research was developing such a method which could give fast and reliable 

complete speciation data using a spectroscopic method, the thesis presented here was 

compiled addressing the general concepts of implementation of Process Analytical 

Technology (PAT) to the CO2 capture process providing the reader as a guideline to 

implement such PAT based approaches for other applicable areas in the industry. The 

study comprised Raman spectroscopy based model development and validation based 

on experimental data. Laboratory experiments were carried out at the CO2 laboratories 

at Porsgrunn campus, USN and reference analysis by NMR spectroscopy was carried 

out by SINTEF Laboratory, Oslo. Mini pilot scale tests were performed at CO2 rig, 

Process Hall, USN under the supervision and guidance of Professor Lars Erik Øi, USN. 

Model demonstration in continuous CO2 absorption and desorption process was 

conducted at PACT Facility at Sheffield, UK under the guidance and supervision of 

Associate Professor Mathieu Lucquiaud, The University of Edinburgh, UK. 

Chemometric models were developed in Matlab PLS toolbox and the online monitoring 

graphical user interface was developed in Labview platform.   

 

The thesis is structured in three parts: 

Part 1 – gives the background information related to the application and focus of the 

thesis which are, role of fossil fuels in present and future energy systems, carbon dioxide 

capture, storage and sequestration (CCS) and its role in 2DS climate change mitigation 

scenario, CO2 capture technologies, process analytical technology, chemometrics, Raman 

spectroscopy and liquid phase speciation in amine based capture processes. 

Part 2 – consists of the description of initial model development using chemometrics 

based regression modelling. Model demonstration in continuous CO2 capture process is 

described, a road map for calibration model maintenance is provided and model update 

procedures to specific capture scenarios are explained.  

Part 3 – consists of the collection of publications (published and submitted) under this 

research.  
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Abstract 

Dependency on fossil fuel energy systems is unavoidable until there is a complete shift 

to alternative energy systems which have no/less impact for global warming. Rapid 

deployment of carbon capture and sequestration (CCS) projects for large scale power 

plants and industrial sectors is a timely need to follow climate change mitigation action 

by reduced CO2 gas emission. It is logically and scientifically understood that more 

amine based CO2 capture plants should be implemented and the existing facilities 

should be scaled up. A properly established reliable in-situ solvent analysis system can 

speed up this movement. From laboratory to industrial scale, process analytical tools 

have replaced most of traditional chemical analysis methods because of their massive 

chemical information packed in a single measurement, fast response, real- time / in-situ 

use, time saving, minimal errors in sample handing and quick identification of process 

related problems and ability to integrate with process control. Raman spectroscopy 

combined with multivariate analysis is a proven methodology for the determination of 

various chemical concentration profiles in chemical solvents for CO2 capture.  

 

Seven multivariate regression models were developed under this study to predict 

species concentrations of carbonate, bicarbonate, sum of carbonate and bicarbonate, 

carbamate, protonated amine, free amine and CO2 loading in an MEA-CO2-H2O system 

based on their Raman spectra. Reference measurements were collected from 13C NMR 

spectroscopy for individual chemical analysis which were used for the regression. The 

model performance was demonstrated in continuous operation at USN CO2 rig and 

PACT Facility in Sheffield and the initial laboratory based model methodology was 

further updated to yield better predictability for each plant. The reliability of the 

predicted speciation were assessed in several ways both theoretically and 

experimentally. In addition, Raman spectroscopic measurements acquired during PACT 

campaign and the corresponding offline titration measurements were used to develop a 

new calibration model to predict amine weight percentage and sum of protonated amine 

and free amine in the chemical system. A graphical user interface was built in Labview 

to make a user friendly environment for monitoring in-situ speciation. CO2 loading was 

determined when 3-amino-1-propanol, 3-dimethylamino-1-propanol and methyl 

diethanolamine were used as CO2 capture solvents using Raman spectroscopy with 

multivariate modelling to show the method applicability in other solvents except    MEA. 

The combination of Raman spectroscopy, chemometrics use for data treatment and 

variable selection, PLSR regression, reference analysis by 13C NMR spectroscopy, and 

test set validation were the key contributors to obtain reliable regression models in this 

study. In addition, concepts of process analytical technology such as elements of PAT 

implementation, design of experiments, process sampling and calibration transfer 

procedures were adhered throughout the plant campaigns and they contributed to 

achieve higher accuracy and precision from the developed methods.     
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Papers summary 

Paper A presents the development of seven multivariate calibration models to determine 

chemical composition (carbonate, bicarbonate, carbamate, sum of carbonate and 

bicarbonate, protonated amine, free amine and total CO2 loading) in a CO2 absorbed 

monoethanolamine solution. Models were calibrated and validated using laboratory 

samples. It is a novel approach where 13C NMR spectroscopy was used to produce 

reliable speciation values to use as reference measurements in PLSR regression; included 

maximum chemical information from the process analyzer (Raman spectrometer) for 

model development by using a range of wavenumbers and validated using adequate 

number of test set samples.  

  

Paper B shows the demonstration of the seven chemometric models in continuous 

absorption and desorption process using experiments performed at USN CO2 rig. Model 

predictivity was assessed for steady state operation and dynamic conditions covering 

reasonably different combinations of process conditions, plant start-up, plant shut down 

and absence of reboiler duty. Model predictivity was compared with offline 

measurements and models were updated to be harmonious with the plant operations 

(Jinadasa et al., 2017).  

 

Paper C is a book chapter written to describe how process analytical technology is 

imbedded to a carbon capture technology. It gives examples of implementation of a 

process analyzer to CO2 capture by alkanolamine absorption process. Five elements of a 

PAT implementation process are described which are, selecting an appropriate process 

analyzer, integration the analyzer to process, model development to enable the analyzer 

to predict a process-related chemical or physical attribute, use of the developed model 

in real-time application and use of the data obtained from the analyzer as an input to a 

process control unit. In this chapter, four calibration models were prepared to predict 

CO2 loading concentration in CO2 absorbed two primary amines (monoethanolamine 

and 3-amino-1-propanol) and two tertiary amines (3-dimethylamino-1-propanol and 

methyl diethanolamine). The objective of the model development was to show the 

feasibility of Raman spectroscopic based multivariate calibration to evaluate chemical 

characteristics in amines other than monoethanolamine (Jinadasa et al., 2018b).     

 

Paper D shows the use of principal component analysis and Raman spectroscopy to 

monitor dissolved CO2 in a mixture of propylene oxide / polypropylene carbonate and 

to monitor absorbed CO2 in four alkanolamine solutions (monoethanolamine, 3-Amino-

1-propanol, 3-dimethylamino-1-Propanol and Methyl diethanolamine). Raman active 

bands in these chemical systems were identified and PCA plots were used to 

characterize CO2 composition, process dynamics and equilibrium conditions in these 

two chemical systems (Jinadasa et al., 2016). 

 

Paper E is a continuation of paper D where the application of PCA to assess the level of 

species concentration in an MEA-CO2-H2O system is described using score plots. 

Hoteling T2 and residual Q values were used as multivariate statistical process control 
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to quick identification of abnormalities in continuous CO2 absorption process by amine 

(CO2 rig experiments).  

 

Paper F – Typical procedure for acquiring measurements from RXN2 Kaiser Raman 

Analyzer is performed in iC Raman 4.1 software and the PLS model prediction is 

performed in PLS toolbox in Matlab.  iC Raman 4.1 software has the facility to run in 

continuous mode to collect Raman measurements in a given frequency, but the 

measurements are required to transfer by an operator to PLS toolbox for determining 

speciation (by models developed in Paper A). As a result, this system does not give 

concentration value at the same time as the measurement is taken. It takes time to import 

the data from iC Raman software to Matlab and follow the preprocessing steps. There 

should be always an operator to carry out these steps and he needs to have knowledge 

and experience in use of the mentioned software. The objective of Paper F is to remove 

this barrier by merging these two software platforms and make a fully automated system 

to predict real time speciation. A graphical user interface was built in Matlab/Labview 

to make this system more user friendly and facilitate to use speciation for process control 

applications (Jinadasa et al., 2018a).  

 

Paper G reports on the development of a method for speciation of the CO2-NH3-H2O 

equilibrium system using Raman spectroscopy and PLS-R modeling (Halstensen et al., 

2017). It is a novel approach to provide rapid and reliable predictions of the carbon 

distribution in a mixture of CO2-NH3-H2O. Three calibration models were prepared by 

different concentrations of Na2CO3, NaHCO3, and NH4NH2CO2 solutions. Three models 

developed in this study were used by (Henrik et al., 2015) in a VLE study of chilled 

ammonia system and showed good agreement with the offline measurements (BaCl2 

precipitation-titration method). 
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1 Introduction 

1.1 Motivation 

The most popular method for determining CO2 removal efficiency in CO2 capture plants 

is gas phase analysis using gas analyzers such as Fourier transform infrared instrument. 

Liquid phase analysis in practice is mostly offline and laboratory-based but is one of the 

routine tasks in any CO2 capture related R&D work and pilot plant trials. Depending on 

the requirement, the frequency of this offline analysis varies.  

 

CO2 loading and MEA concentration are the most common analysis typically 

determined by titration, but this method has several drawbacks that make it not 

attractive for plant operations such as the time required for titration. For instance, the 

BaCl2-titration precipitation method which is used to determine CO2 loading and MEA 

concentration, demands approximately two hours for analysis per sample with three 

replicates. In offline methods, a sample is collected from the process streams, 

transported to the laboratory and preserved until analysis. During the analysis,  

chemicals are prepared, a portion from the primary sample is extracted, and titration is 

performed. All these steps must be carried out cautiously to reduce sampling errors. 

These errors make the final result to be less representative of the actual value. The ideal 

investigation for a continuous plant operation is in-situ analysis for all (or at least 

leading) chemical compositions. Although several methods have been proposed, they 

are still being tested in pilot plant trials for validation in different process conditions. No 

reliable methods have yet been recommended/accepted for standard use in CO2 capture 

plants among the research community. Liquid analysis using vibrational or absorption 

spectroscopic methods such as IR, NIR, and Raman have an immerging interest due to 

their low acquisition times, ability to reveal complete chemical information and 

applicability for in-situ monitoring.  

 

In general, Raman spectroscopy can identify many organic and inorganic substances 

from their specific spectral patterns, and it shows weak scattering for water. It can be 

used for remote sensing as the Raman light can be transmitted via fibre optic cables over 

long distances. It is a non-destructive investigation; no sample preparation is needed, 

and a small volume for analysis is enough. Several studies have been done analyzing 

Raman spectra both univariately and multivariately to quantify concentration profiles 

in CO2 capture plants. The Applied Chemometrics and Research Group (ACRG) at 

University of South-Eastern Norway (USN) has experience working with Raman 

spectroscopy to analyse liquid phase speciation in CO2 capture solvents (Halstensen et 

al., 2017; Henrik et al., 2015; Idris et al., 2014; Samarakoon et al., 2013). Raman 

spectroscopy is a process analyzer and converting the instrument to predict in-situ 

speciation involves calibration model development, which is based on theories and 

concepts in Process Analytical Technology (PAT). CO2 capture processes (R&D, pilot 

scale and commercial scale) are still not effectively benefited with PAT tools such as 
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multivariate data analysis, chemometrics and ‘Theory of Sampling’ and this research 

aims to make these concepts prevalent in the CO2 capture nomenclature. 

1.2 Objectives of the thesis 

The objectives of the present study are fourfold. 

1. Explain the necessity of using Process Analytical Technology tools, concepts and 

approaches for commercial deployment of amine-based CO2 capture plants 

2. Development of speciation models to completely characterize the chemical 

composition of CO2 capture by aqueous monoethanolamine solution 

3. Demonstration of the model validity for in-situ monitoring of CO2 absorption-

desorption process 

4. Provide a roadmap for continuous improvement of Raman process analyzer to 

an amine-based CO2 capture process  

1.3 Structure of the thesis 

The thesis is presented in three parts.  

Part 1 gives the background information related to the application and focus of the thesis 

which are, role of fossil fuels in present and future energy systems, carbon capture and 

sequestration (CCS) and its role in 2DS climate change mitigation scenario, CO2 capture 

technologies, CO2 capture by chemical absorption using monoethanolamine solution, 

liquid phase speciation in amine-based capture processes, process analytical technology, 

chemometrics and Raman spectroscopy. 

Part 2 consists of multivariate model development using partial least squares regression 

modelling and shows results on model implementation in two demonstration plants for 

in-situ speciation. It presents methods for model updating and improvement.  

Part 3 consists of published and submitted collection of papers connected to this 

research.  

1.4 Main contributions  

Following contributions were made during experimental and theoretical work carried 

out under this study. They can be found either in the context of this thesis or in published 

and submitted manuscripts (refer Fig. 1:1) which are attached to this thesis. Results from 

the PACT campaign, and Raman study on amine degradation and some of their 

highlights are presented in chapter 7 and 8 of the thesis. Three papers will be published 

in journals related to these findings during 2019.  

Main contributions are; 

 Introduce process analytical technology to CO2 capture process and highlight the 

advantages of having PAT concepts embedded in CO2 capture framework   

 Development of a novel and reliable method (real-time/in-situ) for  liquid 

speciation in CO2 capture process by monoethanolamine solvent  
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 Demonstration of the developed method in continuous CO2 capture process and 

their relationship with process trends 

 Development of multivariate calibration models to determine CO2 loading in 

three other alkanolamine systems   

 Present a user-friendly software environment for real-time conversion of raw 

Raman signals to chemical concentrations in the CO2 capture process by 

monoethanolamine solvent 

 Understanding the presence of heat stable salts/degradation through Raman 

spectroscopic measurements 

 Highlight the importance of the use of multivariate data analysis methods and 

chemometrics to extract hidden chemical information from a process analyser 

 Application of multivariate techniques such as PCA for screening chemical 

equilibrium, composition and abnormal behaviours   

 

 

 
Fig. 1:1. Structure of main elements and publications of the research 
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2 CCS – a ‘must’ or a ‘choice’? 

Key  

The relationship between greenhouse gases, global warming and 

climate change is almost known and live. The unusual rapid increase in Earth’s 

average surface temperature (global warming) causes long term changes in the 

natural climate in a geographical area, including seasonal variability of 

temperature and precipitation. This phenomenon is referred as climate change. 

Human activities such as the burning of fossil fuels, deforestation, livestock 

farming and fertilizer usage unnecessarily increase the concentration of heat-

trapping gases in the atmosphere such as carbon dioxide, methane and nitrous 

oxides. These gases act as a blanket between sun and earth, trapping heat and 

are given the name greenhouse gases (GHGs). Saturation of GHGs in the 

atmosphere leads to global warming, attacks to the natural balance of earth and 

accelerates climate changes such as extreme weather conditions, rising sea 

levels, extinction of living species and ocean acidification. Unless otherwise 

there is a mechanism to control the atmospherics GHGs well below to a level 

that the earth can naturally balance them, no guarantee can be provided that 

the living beings can protect themselves from the adverse effects of climate 

change.  

 

2.1 Global energy supply and greenhouse gas emissions 

Energy fulfils our demands for daily routine activities such as cooking and residential 

heating. Without energy, we are unable to activate transportation mediums, energy-

driven appliances, and manufacturing operations. After about 12000 years from 

civilization, today, it is hard to imagine a world without energy. Major power cuts in the 

world which have made interruptions in hospital services, water supplies, industrial 

sector railway and airline operations (Duddu, 2015) are more than enough evidence to 

prove this statement. Fig. 2:1  shows that the global energy demand in 2017 reached more 

than 13 gigatonnes of oil equivalent (Gtoe), compared with 10 Gtoe in 2000 (BP, 2019). 

In 2017 petroleum oil made up of over a third of all energy consumed, coal covered a 

market share of 27.6%; natural gas recorded a 23.4% share while renewables recorded a 

market share of 3.65% (Fig. 2:2). This energy distribution based on the source proves that 

fossil fuels (oil, coal and natural gas) have been playing the leading role representing 

81% of global energy supply in 2017, over hydroelectricity, nuclear energy and 

renewable and a similar trend has been followed over several years. The energy demand 

for fossil fuels rose mainly due to oil use in transportation and petrochemical sector, 

relatively low-cost supplies in natural gas and the demand for coal-fired electricity 

generation especially in Asia (IEA, 2017b). 



2   CCS – a ‘must’ or a ‘choice’? 

 

 

6   

 

   

Fig. 2:1. Global energy consumption (in Gtoe) by different sources (With courtesy 

BP p.l.c, London (Sato et al., 2019)) 

 

 

 
 

Fig. 2:2. The share of world energy consumption from 1900 to 2017 by different 

sources (Sato et al., 2019) 

 

 

According to (BP, 2018b) in 2017 global oil consumption rose by 96 billion cubic meters 

and coal production grew by 105 Mtoe. Supplying the energy that the world needs to 

develop, is necessary but the climate change experts have alarmed the future of global 

natural systems if the dependencies of energy supply on fossil fuels are further 

continued.   

IPCC report (IPCC, 2014) says that by the end of 2010, the highest share of total annual 

anthropogenic GHG Emissions originated from CO2. This share was 76%, and methane 

recorded the second largest GHG emission with a share of 16%. Contribution from 

nitrous oxide was 6% and from F-gases (HFC, CF4, and SF6) was 2% (Fig. 2:3).  Key 

drivers for CO2 gas emissions in 2017 were identified as 40% from coal combustion, 31% 

from oil combustion, 18% from natural gas combustion and 4% from cement clinker 

production (Olivier et al., 2018). 
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The long-term trend of production growth in energy-intensive industrial processes is 

continuing and the industrial sector accounted for 154 exajoules (EJ), or 36% of global 

total energy consumption in 2014 (IEA, 2017c). Out of this, 10.8 EJ was consumed by the 

cement industry. The energy demand for these industries are covered mainly by fossil 

fuel combustion, and therefore their contribution to global CO2 emissions is 

considerable.  Iron, steel, cement, chemicals, petrochemicals, pulp, paper and 

aluminium, are the largest CO2 industrial emitters as shown in Fig. 2:4.  

 

 

 
 

Fig. 2:4. Global direct CO2 emissions by industrial sector in 2014 (IEA, 2017c) 

 

Historical emission records reveal that the atmospheric CO2 emissions were stable 

between 270-285 ppm until the 18th century, but the industrial revolution triggered this 

value rapidly (Fig. 2:5 (a)). Fig. 2:5(b) illustrates the change in global surface temperature 

relative to 1951-1980 average temperatures which indicate 0.8 °C of an average annual 

anomaly in 2018. 

 
Fig. 2:3. Greenhouse gas emissions by group of gases (IPCC, 2014) 
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(a) (b) 

Fig. 2:5. (a) Global average atmospheric CO2 concentration (Source: (NOAA/ESRL, 

2019)) ; (b) change in global surface temperature relative to 1951-1980 average 

temperatures (Source :(NASA/GISS, 2018)) 

 

Recent studies have used a number of diverse independent approaches to conclude the 

contributions of natural and human effects on global warming. (IPCC, 2007) claims that 

most of the observed increase in global average temperatures since mid-20th century is 

very likely due to the observed increase in anthropogenic greenhouse gas 

concentrations. Discernible human influences now extend to other aspects of climate, 

including ocean warming, continental-average temperatures, temperature extremes and 

wind patterns Lean and the co-authors found that natural changes cannot account for 

significant long-term warming in the historical global surface temperature anomalies 

(Lean et al., 2008). Human influences have been detected in changes in local 

temperatures, precipitation changes, atmospheric humidity, drought, Arctic ice decline, 

extreme heat events, ocean heat and salinity changes, and a number of other regional 

climate impacts (Stott, 2016). GHGs, followed by human aerosol emissions were the two 

largest factors influencing global temperatures in every study over every timeframe. 

 

2.2 Trends in future energy 

How far can the world sustain with the current energy systems remaining within the 

boundaries of greenhouse gas emissions? The BP Energy Outlook 2018, considers the 

energy transition from three different viewpoints (sectors, regions and fuels) and by 

exploring a number of different scenarios. In their predictions based on evolving 

transition (ET) scenario, a continuation of the recent progress and momentum in policies 

and technologies are assumed. Evolution on fuel consumption by region, by fuel type 

and total CO2 emissions is graphed in Fig. 2:6 based on these assumptions.  According 

to ET scenario, energy consumption in all the regions except OECD countries increase 

gradually in the coming years. Oil (27%), gas (26%), coal (21%), nuclear (5%), hydro (7%) 

and renewables (14%) will share the world’s energy consumption in 2040. The market 

share by total fossil fuels will drop from 74% to 58% from 2016 to 2040, but this shows 

that more than half of the energy demand will be further supplied by fossil fuels in 2040. 

This will lift the CO2 emissions to 36.8 (in 2040) billion tons.  

http://www.skepticalscience.com/lean-and-rind-estimate-man-made-and-natural-global-warming.html
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(a) (b) 

Fig. 2:6. Prediction of (a) fuel consumption based on the region and source ; (b) CO2 

emissions based on three transitions (evolving, faster and even faster ) (Source :(BP, 

2018a)) 

 

2.3 CCS role in reducing GHG emissions 

Increased need to control global warming will have a huge impact on the use of fossil 

fuels in future. A global agreement to maintain global warming less than 2°C was 

adopted by consensus on the 12th of December 2015 at the United Nations Climate 

Change Conference. International Energy Agency (IEA) launched Energy Technology 

Perspectives (ETP) models in 2001 to analyse how the deployment of new greenhouse 

gas mitigation technologies can affect to the fuel market, energy security and greenhouse 

gas emissions and since then these models have evolved over time. In these models, 

carbon capture and sequestration (CCS) is shown as a mandatory requirement for GHG 

emission reduction. In ETP models, the Reference Technology Scenario (RTS) takes into 

account today’s commitments by countries to limit emissions and improve energy 

efficiency. It will result in an average temperature increase of 2.7°C by 2100. The 2°C 

Scenario (2DS) lays out an energy system pathway and a CO2 emissions trajectory 

consistent with at least a 50% chance of limiting the average global temperature increase 

to 2°C by 2100. Annual energy-related CO2 emissions are reduced by 70% from today’s 

levels by 2060. To stay within this range, CO2 emissions from fuel combustion and 

industrial processes must continue their decline after 2060, and carbon neutrality in the 

energy systems must be reached before 2100. The Beyond 2°C Scenario (B2DS) explores 

to achieve net-zero emissions by 2060 and to stay net zero or below after that. According 

to (IEA, 2013a), if no action is taken to reduce GHG emission, the forecasted temperature 

in 2100 will be 4.5°C. 

Billion toe 
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Fig. 2:7. Comparison of RTS with 2DS and B2DS ((IEA, 2017a)) 

 

Fig. 2:7 shows a comparison between RTS with 2DS and B2DS which explains the role 

of CCS for future CO2 reduction. It declares a ‘do-list’ for movements to low emission 

levels which includes energy efficiency in energy systems, use of renewable energy, 

CCS, nuclear and fuel switching. Renewable energy which is the most sustainable option 

for reaching climate change goals cannot handle alone the trajectory to 2DS and B2DS 

limits without CCS. According to ETP models, CCS must store over 400 Mt CO2 per year 

by 2025 and 142 Gt CO2 per year by 2060 to reach 2DS goals. Within the power sector 

and industry CCS should contribute for 48% and 26% reduction respectively to in-line 

with 2DS. CCS contribution is much higher in B2DS (32%) where more CO2 should be 

captured than under the 2DS by 2060.  CCS complements renewables by reducing 

emissions in industries that renewable energy cannot penetrate – notably, steel, cement, 

chemicals, fertilisers, petrochemicals, paper and pulp with more than 28 Gt of emissions 

captured cumulatively in 2DS before 2060 (GCCSI, 2018). World Health Organization 

shows the threat climate change poses to health, equity, and development and 

immediate public health benefits by reducing the upward trajectory of greenhouse gas 

emissions (Hosking et al., 2011). IEA in their CCS roadmap (IEA, 2013b) states seven key 

actions to meet 2°C goal, which are 1). Introduce financial support mechanisms for 

demonstration and early deployment of CCS, 2). Implement policies that encourage 

storage exploration, characterisation and development for CCS projects 3). Develop 

national laws and regulations for fossil-fuel power generation capacity to be CCS-ready, 

4). Prove capture systems at pilot scales in industrial applications where CO2 capture has 

not yet been demonstrated, 5). Improve understanding among public and stakeholders, 

6). Reduce the cost of electricity in capture plant integrated power plants and 7). Develop 

CO2 transport infrastructure. This report highlights that 100 CCS projects need to be 

established between 2010 -2020 storing 300 Mt CO2 per year.  

 

In conclusion, the world has now reached a critical juncture to accept that CCS is not a 

‘choice’ anymore but a ‘must’. The world is entirely dependent on fossil fuels and it will 
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take several decades to switch entirely to alternatives. Climate change will not wait until 

then and it is hard to see any effective solution than CCS as long as the dependencies of 

fossil fuel power generation exist.  

 

2.4 CCS technology overview 

CCS technology comprises three main steps, CO2 capture from fuel combustion or 

industrial processes, transport of CO2 via ships or pipelines and store in geological sites. 

The term “carbon capture utilization and storage,” or CCUS, is also used in cases where 

utilization of CO2, such as for enhanced oil recovery (EOR), can reduce the overall cost 

of capture and storage. The term BECCS (also abbreviated as BCCS or biomass CCS) 

refers to the concept of combining bioenergy applications (including all forms of power, 

heat, and fuel production) with CCS. BECCS projects have the potential to be negative 

emissions technologies, but still there is limited practical and research experience of 

dedicated BECCS.  

 

Over the other CO2 emission reduction options such as improving energy efficiency, 

shift to renewable energy and use of low carbon fuels, CCS is prominent as it can reduce 

a vast amount of CO2 from emission sources such as power plants or cement factories 

with capture efficiency greater than 80%. Several types of capture technologies are 

available but their selection is based on the type of combustion process which produces 

CO2. In general, CO2 capture represents 75-80% of the cost of CCS where the balance is 

the transport and storage cost (Davidson, 2007). Post-combustion, pre-combustion and 

oxyfuel combustion processes are associated with capture mechanisms in combustion 

processes (Section 2.6). CO2 captured from these processes are then separated from the 

rest of components in the captured stream via different mechanisms which are also 

common to other chemical gas processing applications such as absorption (chemical or 

physical), adsorption, chemical looping, membrane separation, hydrate-based 

separation and cryogenic distillation.  

 

After the separation, CO2 is compressed to a dense phase and transported to the storage 

facilities or industrial sites for utilization. Transportation will be taken by road tankers, 

ships or pipelines and it depends on the CO2 volume and available infrastructure 

facilities (Norişor et al., 2012; Svensson et al., 2004). CO2 injection to depleted oil and gas 

reservoirs to extract residual oil left has been in practice over several decades because of 

its economical advantage. However, they should be injected into geological formations 

such as saline aquifers when large quantities of CO2 are captured. According to the 

report by (Hosking et al., 2011), the United States, Canada, and Australia likely have 

more than enough theoretical CO2 storage capacity to meet their needs for this century 

and perhaps beyond. This report says that the estimated CO2 storage capacity is nearly 

11,000 Gt CO2 worldwide and for CO2 stabilization from 450 to 750 ppm, the demand for 

CO2 storage space does not exceed 2,220 Gt CO2 throughout this century which further 

adds confidence on CCS as a doable option for emission reduction. After storage, long-
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term post-injection monitoring phase begins for potential leakages. Current CO2 storage 

facilities such as Sleipner – Norway, Frio - US, Nagaoka – Japan, Ketzin - Germany and 

Weyburn - Canada frequently monitor for CO2 leaks using different monitoring tools 

such as 3D seismic, microseismic and geochemical sampling (Leung et al., 2014). 

Captured CO2 can be utilized in industry, agriculture and energy production. In 

industry, CO2 can be used as a raw material in the synthesis of chemicals such as 

carboxylates, carbonates and carbamates. 

 

2.5 CCS facilities 

Information about the current status of CCS facilities is reported in (GCCSI, 2018). It says 

that there are now 23 commercial large-scale global CCS facilities; 18 in operation and 5 

in construction. The total capture rate from them is close to 40 million tons of CO2 per 

annum (Mtpa). Further 28 pilot and demonstration-scale facilities are in operation or 

under construction which collectively, will capture more than 3 Mtpa of CO2. Most of 

the facilities capture CO2 from natural gas processing and store for enhanced oil 

recovery. The earliest large scale CCS facility started in 1972 in the US connected to Val 

Verde Natural Gas Plants. Shute Creek Gas Processing Plant and Enid Fertilizer were 

retrofitted to CO2-EOR operation in 1986 and 1982 respectively. Enid plant captures 7 

Mtpa of CO2.  

 

Four large-scale CCS facilities which commenced operations after 2009 in the US are 

Century Plant (8.4 Mtpa, natural gas processing), Air Products Steam Methane Reformer 

(1.0 Mtpa, hydrogen production), Coffeyville Gasification Plant (1.0 Mtpa, fertiliser 

production) and Lost Cabin Gas Plant (0.9 Mtpa, natural gas processing). In the rest of 

the world, Great Plains Synfuels Plant & Weyburn-midale  (Canada, 1.4 Mtpa, synthetic 

gas), Quest (Canada, 1 Mtpa, hydrogen production), Sleipner (Norway, 0.9 Mtpa, 

natural gas processing), Snøhvit (Norway, 0.7 Mtpa, natural gas processing), Abu Dhabi 

CCS (UAE, 0.8 Mtpa, iron and steel production), Petrobras Pre-salt (Brazil, 0.7 Mtpa, 

natural gas processing), Uthmaniyah (Saudi Arabia, 0.8 Mtpa, natural gas processing), 

Gorgon CO2 injection project (Australia, 3.4-4 Mtpa natural gas processing) and  CNPC 

Jilin (China, 0.6 Mtpa, natural gas processing) are remarkable CCS deployments. A 

detailed overview of the global CCS facilities under operation, evaluation and planned 

to commence can be found in Global CCS Institute's website 

(https://www.globalccsinstitute.com/)  which is summarized in (Luis, 2016) and in the 

database of (OpenDataSoft). Upto date, there are only two large-scale CCS facilities 

connected to power generation sites in the world which are Boundary Dam Unit 3 in 

Saskatchewan, Canada and Petra Nova, US. Since start-up Boundary Dam capture plant, 

reported over 2 Mt of CO2 captured by March 2018. Petra Nova has the capture facility 

of 1.4 million tonnes per annum.

https://www.globalccsinstitute.com/
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2.6 CO₂ capture technologies  

CO2 capture is classified according to the type of combustion process as post combustion, 

pre-combustion, oxy-fuel combustion and chemical looping system which is shown in 

Fig. 2:8.  

 

Post- combustion capture (PCC) -  

In post combustion capture process CO2 comes out from the flue gas stream from boilers, 

heaters or turbines, passes through the gas purification process such as NOx, SOx, 

particulate removal and then enters the capture process. This technology has been 

demonstrated in several natural gas-fired and coal-fired power plants in small scales and 

is the most suitable technology for retrofitting the existing combustion technology 

(Wang et al., 2015). The CO2 concentration which enters the capture plant by this 

combustion process is very low and it affects the plant efficiency.  

 
Fig. 2:8. Different CO2 capture technologies; Source : (Leung et al., 2014) 

 

Pre- combustion capture - 

Fuel is first reacted with an air/oxygen stream to produce syngas which is composed of 

H2 and CO in pre-combustion capture. The syngas stream is then sent to a catalytic 

reactor also known as a shift converter where CO is reacted with steam to produce CO2. 

After separating CO2 chemically or physically, the remaining stream is rich in hydrogen 

which can be used as a fuel for many applications such as in boilers, furnaces, engines 
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and fuel cells. The advantage of pre-combustion capture is that it produces higher CO2 

concentration to feed to the capture plant increasing the CO2 removal efficiency than in 

the post-combustion process. Examples of commercial scale pre-combustion capture 

plants are Uthmaniyah, Weyburn, Val Verde, Snøhvit, In Salah, Petrobras and Sleipner. 

The pre-combustion capture process is a highly developed technology and is most 

suitable for new plants. 

 

Oxyfuel combustion capture –  

In the oxyfuel combustion, oxygen in the air is separated using a cryogenic air separation 

unit, and fuel is combusted with a nearly pure oxygen environment. Combustion 

generates a stream mainly with higher CO2 concentration and water. The water can be 

easily separated, and the remaining CO2 is ready for sequestration. This method reduces 

the volume of exhaust gas after the combustion which affects the subsequent separation 

and has low NOx emissions. Oxy-fuel combustion applies to both coal fired, and gas-

fired plants, but the corrosion problems and the cost of cryogenic separation are main 

disadvantages.  

 

Chemical looping capture (CLC) - 

Chemical looping combustion consists of two steps, where in the first step O2 is 

separated from N2 and transferring oxygen from the air to the fuel in the second step. 

This process can separate both CO2 and H2O from the N2 gas stream and therefore results 

in a higher efficiency in the capture process (Li et al., 2017). CLC is a diversified process 

to post-combustion, pre-combustion and oxyfuel combustion CO2 capture process. 

Calcium sorbent-based looping process is a chemical looping based process, where CaO 

is used as the regenerable sorbent for CO2. 

 

2.7 CO₂ separation technologies  

According to Fig. 2:8, CO2 comes with flue gas stream in post-combustion, oxy-fuel 

combustion and chemical looping while it comes with fuel gas stream in pre-combustion 

process. A number of technologies are available to separate this CO2 from the rest of the 

components before it is compressed for transportation. 

In the report of (IEAGHG, 2014) a list of different technologies used to separate CO2 from 

combustion processes are given and they have been ranked by their technology 

readiness level (as ‘demonstrated, developed or research’).  Ethanolamine based CO2 

absorption process has the highest readiness level which has passed research, 

development and demonstration levels and now fully prepared for full-scale commercial 

deployment. This technology is used as the benchmark to compare the other separation 

technologies. Improved conventional solvents, polymeric membranes, precipitating 

solvents and biphasic solvents are in the development stage. For pre-combustion, 

physical absorption of CO2 by Selexol is at the highest readiness level for commercial 

scale. Other pre-combustion technologies are hydrogen separation membrane, low 

temperature separation, sorption enhanced water gas shift. Unlike post-combustion, 
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pre-combustion CO2 capture technologies are difficult to demonstrate in full scale with 

existing power plants because of complexity in process integration. Fig. 2:9 outlines the 

available CO2 capture technologies in all states of readiness level (screening, research, 

development and demonstration).  

 

 
Fig. 2:9. CO2 separation technologies (Liguori et al., 2017) 

 

2.8 Post-combustion MEA based CO₂ capture  

The historical origination of the CO2 capture facilities in the world implies that the idea 

of CO2 captured from power plants started not with the climate change concern but as 

an economical value addition to the oil production by enhanced oil recovery   (Herzog 

et al., 1997) and to take advantage of some of the economic incentives from the 

governments. Such a CO2 capture plant is North American Chemical Plant in Trona, 

California (started in 1978). Post combustion CO2 capture technology has been widely 

used in refining and gas processing since many years giving experience to consider this 

process as ‘commercially available’. Pre- and oxy-combustion technologies are 

considered to be ‘emerging technologies’ in contrast. Of all the post-combustion 
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technologies, chemical absorption is considered so far the most suitable one, and among 

many solvents tested for chemical absorption process, monoethanolamine (MEA) is 

undoubtedly the most extended solvent (Luis, 2016).  

 

 

 

 

Fig. 2:10. Global CCS status around the world; source :  (GCCSI, 2014) 

 

State of the-art of CCS development projects around the world with its application area, 

is shown in Fig. 2:10. With the lessons learned from Boundary Dam 3 project and Petra 

Nova, a number of plants are in the queue and at their earlier stage of development 

related to power generation. The preferred solvent is amine for most of these facilities. 

Amines can react with CO2 to form water-soluble components at a low CO2 partial 

pressure, have reversible reactions with CO2 and therefore fulfil the primary 

requirement for separation of CO2 from many CO2 containing gas mixture. The 

performance of the CO2 absorption system by amines are dictated by properties such as 

solvent working capacity, solvent concentration, the heat of reaction, absorption rate and 

solvent stability (Raksajati et al., 2018).  

 

Although there is a momentous research focus on more advanced ways of capturing CO2 

from combustion flue gas, it is expected that amine solvents will remain the dominant 

large-scale technology for power plant retrofits for at least the next decade. The most 

likely approach to retrofitting CCS is post-combustion CO2 capture using an amine 

solvent-based system in the timeframe to 2050 (IEA, 2015). Most existing power plants 

in China, are recently built (since 2005) and will be 20 to 30 years old if retrofit between 

2025 and 2035, making the need for upgrades less acute than at Boundary Dam 



2.8   Post-combustion MEA based CO₂ capture 

  

 

  17 

 

experiences (IEA, 2016). Solvent based CO2 capture systems are generally considered to 

be more flexible as they can be fully or partially bypassed to allow the plant to operate 

in a non-CCS mode even after CCS retrofit. So, the amine technology for post combustion 

capture becomes the dominant technology considering the balance between technology 

know-how, economics, political constraints and time frame.  

 

2.8.1 Process description of CO₂ capture by amine 

Cyclic CO2 absorption-desorption mechanism by amine is the current industry standard 

for separating CO2 from a flue gas stream. A simplified schematic representation of this 

technology is shown in Fig. 2:11. The process starts with introducing flue gas to the 

absorber after desulfurization, denitrification and particulate removal processes. It goes 

from absorber bottom to the top while amine flows counter-currently from absorber top 

to bottom. During the process CO2 in the flue gas is absorbed by the amine, the clean flue 

gas is vented from absorber top and CO2 absorbed amine (rich amine) is sent through a 

cross flow heat exchanger. Rich amine then enters to the CO2 stripper where by the heat 

supplied from steam CO2 is liberated in a pure form. The solvent which is lean in CO2 

concentration (lean amine) is then recycled to the CO2 absorber via the cross flow heat 

exchanger where its temperature is reduced. The base case conditions for an amine 

capture plant is considered as 30 w/w% MEA (MEA weight per sum of MEA and water 

weight), lean amine absorber inlet at 40 °C, CO2 concentration in the flue gas between 

10-12 v/v% and stripper bottom temperature of 115-120 °C. The CO2 liberated from 

stripper top, is compressed to pipeline pressure and piped offsite to be transported for 

use or storage.  

 

 
Fig. 2:11. Process flow of a post-combustion CO2 capture facility (Wang et al., 2017) 
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The energy required for heating such as the reboiler in the stripper is typically taken 

from the power plant. (Lucquiaud et al, 2009) mentions a steam pressure of around 4.5 

bar as ideal for today’s solvents in order to minimise energy losses. Electricity from the 

power plant generators is used to run compressors, fans and pumps. Cooling is supplied 

by cooling water and is used for cooling the flue gas feed to the absorber, condense out 

any remaining solvent from the CO2 stripped before compression, and cooling CO2 

during compression. The capture plant process remains almost untouched from the 

power plant giving the advantage for easy retrofitting. 
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3 Process Analytical Technology  

Chemical processes such as pharmaceutical manufacturing, food & beverage 

production, mining process and biogas production have gained the advantage of Process 

Analytical Technology (PAT) and its concepts to increase efficiency, reduce time-

consuming activities and facilitate intelligent decisions. PAT helps to make the right 

solution at the right time at the right place. It is interesting to explore how PAT can be 

applied to the CO2 capture process.  

 

PAT was initially defined by the Food and Drug Administration (FDA)  for the 

pharmaceutical industry, as a system for designing, analysing, and controlling manufacturing 

through timely measurements (i.e., during processing) of critical quality and performance 

attributes of raw and in-process materials and processes, with the goal of ensuring final product 

quality (FDA, 2004). Process analysis is the chemical or physical analysis of materials in a 

process stream through an in-line or on-line analyzer (Guenard et al., 2010).  Process 

analyzers measure directly physical or chemical attributes in a system and supply data 

which are then directly or indirectly used to map with attributes related to the process. 

Some key features of process analysis concerning the laboratory analysis are the speed 

of the analysis, fewer sample errors and the ability to integrate real-time data with 

process control. A typical PAT framework consists of 4 parts, as 1). Process monitoring 

using modern process analyzers, 2). Process analysis using multivariate data analysis 

(MVDA) and chemometrics, 3). Process design with concepts from Quality by Design 

(QbD) and Design of Experiments (DoE) and 4). Process control.  

 

PAT tools are used to enable scientific and risk managed manufacture and quality 

assurance. They are categorized as 1). Multivariate data acquisition and analysis tools, 

2).  Modern process analyzers or process analytical chemistry tools, 3). Process and 

endpoint monitoring and control tools and 4). Continuous improvement and knowledge 

management tools. Implementation of PAT to a particular application composes an 

appropriate combination of some, or all, of these tools and the boundary, can be a single-

unit operation, or to an entire manufacturing process. By integrating these categories, a 

platform is built to make a communication between the process (or single process 

equipment) and the process analyzers harmonizing the real-time data and offline data 

which are ultimately used for real-time trending, process control and quality control. By 

storing the real-time data during a long run, it provides ample opportunities to take 

suggestions to improve the process which would otherwise not perfectly successful with 

frequent process monitoring. To turn data into knowledge, a specific mathematical tool 

is used which is called multivariate data analysis (MVDA).  

 

PAT is the sub-discipline under Process Analytical Chemistry (PAC). If PAT is excluded 

from PAC, then PAC consists time-consuming manual off-line sampling analysed in 

laboratories. The measured properties of process analyzers, can be univariate (scalar) 

quantities such as process flowrate, temperature, pH, or multivariate such as 

chromatogram, vibrational spectra and acoustic signals. Modern process analyzers 
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include UV-Visible (UV-Vis), near and mid-infrared (NIR and MIR), Raman 

spectroscopy, hyperspectral image sensors, tomography, NMR spectroscopy, acoustic 

and tetrahertz spectroscopies. The choice of process analyser to a particular application 

is highly specific. Several factors should be optimized such as the quality of the analyser 

response (depends on the complexity of raw data obtained from the analyser and the 

effort needed to turn data into information), required precision, accuracy, project time, 

budget and flexibility of the instrument for a given application (Robert Guenard, 2010). 

(Lyndgaard, 2013) used the following criteria to conclude which spectroscopic method 

is more appropriate out of five spectroscopies for a multivariate calibration process. 

They are, resolution, sensitivity, selectivity, interference, sample preparation, sampling 

flexibility, analysis time, and prize and stability. The comparison is presented in Table 

3.1. 

 

Table 3.1. Comparison of multivariate use of five spectroscopic methods  

(Lyndgaard, 2013) 

 
 

Multivariate analysis refers to all statistical techniques that simultaneously analyze 

multiple measurements. Data are said to be multivariate when each observation has 

values for two or more random variables such as a spectroscopic signal. Multivariate 

statistics are used in several disciplines; some examples are in 1). Psychology – called 

psychometrics, 2). Taxonomy – called taxometrics, 3). Biology – called biometrics, 3). 

Engineering – called technometrics 4). Chemistry – called chemometrics.  
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3.1 Chemometrics 

Chemometrics is the related discipline to this study where statistics and mathematics in 

chemical sciences are used to measure and interpret chemical data. “Chemometrics’’ was 

initially coined by the Swedish chemist Svante Wold for his research grant application 

in 1971 (Wold, 2015). Fig. 3: shows different chemometrics methods which are used to 

plan experiments, exploratory (qualitative) analysis, classification, process control, 

quantitative analysis and multi-way analysis.  DoE -Design of Experiments, (Deming et 

al., 1991) provides methods to obtain data sets which are more likely to contain the 

desired information with a reduced number of trials at less cost and time. PCA (Principal 

Component Analysis) is a dimension-reduction technique which is used to reduce a 

large set of independent variables to a small set and describe the variation and structure 

of the data using principal components. MSPC (Multivariate Statistical Process Control) 

uses techniques to monitor and control the operating performance of batch and 

continuous processes. MCR (Multivariate Curve Resolution) can be used to resolve 

mixtures by determining the number of constituents and their response profiles even 

when no prior information is available about the nature and composition of the mixture. 

[MLR, PCR, PLS] consist of algorithms to build regression models to predict properties 

such as concentrations based on multivariate measurements.  Mathematical outline 

under these chemometric methods with examples of analysis data sets can be found in 

(Esbensen et al., 2010b).  
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Fig. 3: 1. Different chemometric methods to analyse multivariate data; Source : 

(Roussel et al., 2014) 

 

3.2 Raman spectroscopy  

Raman scattering was first observed by Sir Chandrasekhara Venkata from his naked 

eyes where he used sunlight as the source and a telescope as the collector. Later 

quantitative results were published in 1928 after using a quartz spectrograph to 

photograph the spectrum of scattered light (Bohning et al., 1998).  Since then gradual 

progress in the physical units such as detection systems, light sources and 

monochromators, development of Fourier transformation techniques and use of 

computers for data handling have brought the present state of the art of the commercial 

Raman instrument.   

Either dispersive Raman or Fourier transform Raman technologies are used in 

commercially available Raman spectrometers. In dispersive Raman instruments, 

separation of the collected Raman scattered light into its composite wavelengths is 

accomplished by focusing the Raman scattered light onto a diffraction grating (Fig. 3:1). 

It splits the beam into its relevant wavelengths and directs onto a charge-coupled device 

(CCD detector). Wavelengths 780 nm, 633 nm, 532 nm, and 473 nm are typically used for 

laser radiation. Shorter excitation wavelengths give stronger Raman signals nevertheless 

fluorescence is also much more likely to occur under these conditions (Li et al., 2014). 
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Non-dispersive Fourier transform (FT) Raman spectroscopy (Fig. 3:2) uses IR excitation 

sources and has three main advantages than dispersive Raman spectroscopy by having 

a higher spectral resolution, less laser-induced fluorescence and ease of operation.  

 

 

 
 

 
 

Fig. 3:1. Schematic layout of a typical 

dispersive micro-Raman spectrometer. 

CCD = charge coupled device; 

DG = diffraction grating; 

DM = dichroic mirror; L = laser; 

M = monochromator; MS = microscope; 

O = objective lens; OF = optical filters; 

S = sample; SL = slits. 

Source : (Li et al., 2014) 

Fig. 3:2. Schematic layout of a typical 

Fourier transform (FT) - Raman 

spectrometer. D = detector; L = laser; 

MI = Michelson interferometer; 

O = objective lens; RF = Rayleigh 

filter; S = sample. 

Source : (Li et al., 2014) 

3.2.1 Light scattering and Raman effect 

When light interacts with a matter, it can be either transmitted, absorbed or scattered. 

Rayleigh (elastic) scattering occurs when the scattered light has the same energy as the 

incident light it is. If the scattered photons have a different energy than the incident 

photon, it is called Raman or (inelastic) scattering which is two-fold as Stokes Raman 

scattering and Anti-Stokes Raman scattering. Fig. 3:3 shows the Jablonski diagram which 

illustrates the difference between Rayleigh and Raman scattering. This diagram is used 

to understand the photon scattering process where photons are assumed to move to a 

virtual state during an excitation but immediately transit back to a vibrational level of 

the ground state. Stokes Raman scattering happens when an atom or molecule absorbs 

energy and creates the scattered photon to have less energy than the incident photon. 

Anti-Stokes Raman scattering happens when an atom or molecule loses energy resulting 

in the scattered photon has more energy than the incident photon.  
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Fig. 3:3. Representation of Rayleigh, Stokes and anti-Stokes scattering by Jablonski 

diagrams 

 

The classical theory and the quantum theory are used to describe the Raman effect where 

the first theory explains the polarizability concept of molecules and the latter one 

explains the photon transfer phenomena related to Raman effect. According to the 

classical theory, Raman scattering depends on the change in polarizability of the 

molecule when it vibrates due to incident radiation. The magnitude of the induced 

dipole moment depends both on the magnitude of the intensity of laser light and the 

ability to change the electron cloud in the molecule. In Raman spectroscopy, the change 

in polarizability (α) is measured and presented as a function of Raman intensity vs 

wavenumber.  There is no Raman band if a molecular vibration does not change the 

molecular polarizability. Strong Raman scattering typically arises from double bonds 

(eg: C=C) than from highly polar bands because the electron cloud can be easily changed 

in double bonds. There are different types; stretching or bonding vibrations alter the 

bond length, bending or deformation vibrations alter the bond angles (in-plane and out-

of-plane twisting, wagging and rocking) whereas torsion vibrations alter the torsion 

angle. Fig. 3:4 shows three types of vibrations for a linear ABA molecule and the 

rationale behind a Raman active vibration and infrared active vibration. The first 

vibration mode is Raman active because it makes the polarizability derivative at 

equilibrium coordinate to be non-zero. The second and third vibrations are infrared 

active because they make dipole moment derivative at equilibrium position to be non-

zero.  
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Fig. 3:4. Polarizability and dipole moment variations in the neighbourhood of the 

equilibrium position and vibrational Raman and infrared activities for a linear ABA 

molecule (Long, 2002) 
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4 Speciation in CO₂ Capture Solvents 

Amines, carbonates and aqueous ammonia are typical systems for chemical absorption 

in CO2 capture (Fig. 2:9). Among amine based systems, monoethanolamine (MEA), 

diethanolamine (DEA), methyl diethanolamine (MDEA), diglycolamine (DGA), 

diisopropanolamine (DIPA), piperazine (PZ), sterically hindered amines such as 2-

amino-2-methyl-1-propanol (AMP) or a mixture of amines are popular CO2 absorbing 

solvents. According to the IUPAC definition (Templeton et al., 2000) a chemical specie is a 

specific form of an element defined as to isotopic composition, electronic or oxidation 

state, and/or complex or molecular structure. Speciation analysis is referred to analytical 

activities of identifying and/or measuring the quantities of one or more individual 

chemical species in a sample; and speciation is referred to the distribution of an element 

amongst defined chemical species in a system. Understanding a liquid-gas absorption 

system is started by investigating the chemical reactions where speciation details are 

important. 

 

4.1 Reaction of CO₂ with aqueous amine solutions 

The chemical behaviour between primary amines such as MEA with CO2 has been 

reviewed several times in recent and past literature (Crooks et al., 1989). As shown in 

equation 1 and 2 (Versteeg et al., 1988) two step Zwitterion mechanism describes the 

reaction between a primary/secondary amine 𝑅1𝑅2𝑁𝐻  and CO2 ( 𝑅1,𝑅2  are organic 

radicals; for primary amines 𝑅2 = 𝐻). This mechanism was first introduced by (Caplow, 

1968) and reintroduced by (Danckwerts, 1979). 

 

𝐶𝑂2(𝑎𝑞)+𝑅1𝑅2𝑁𝐻 ↔ 𝑅1𝑅2𝑁𝐻+𝐶𝑂𝑂− (1) 

𝑅1𝑅2𝑁+𝐻𝐶𝑂𝑂− + 𝐵 ↔ 𝑅1𝑅2𝑁𝐶𝑂𝑂− + 𝐵𝐻+ (2) 

 

Here CO2 reacts with an amine to form an intermediate and this intermediate 

immediately reacts with another molecule (B), usually a second amine molecule, to form 

a carbamate and a protonated amine. This reaction describes the carbamate formation. 

Bicarbonate/carbonate formation, and protonation/deprotonation of amine are 

described by (Nichola McCann, 2009) using a set of reaction schemes given from 

equation (3) to (6) for primary and secondary amines.  

 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻𝐶𝑂3
− + 𝐻+ ↔ 𝐶𝑂3

2− + 2𝐻+ (3) 
𝑅1𝑅2𝑁𝐻 + 𝐻2𝑂 ↔ 𝑅1𝑅2𝑁𝐻2

+ + 𝑂𝐻− (4) 
𝐶𝑂2(𝑎𝑞) + 𝑂𝐻−  ↔ 𝐻𝐶𝑂3

− (5) 
𝐶𝑂2 + 2𝑅1𝑅2𝑁𝐻 ↔ 𝑅1𝑅2𝑁𝐻 + 𝑅1𝑅2𝑁𝐶𝑂𝑂𝐻 ↔ 𝑅1𝑅2𝑁𝐻2

+ + 𝑅1𝑅2𝑁𝐶𝑂𝑂− (6) 
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Tertiary amines do not form carbamate and their reaction with CO2 leads to form 

bicarbonate and protonated amine as given in equation (7) where 𝑅3  is an organic 

radical.  

 

𝐶𝑂2 + 𝑅1𝑅2𝑁𝑅3+𝐻2𝑂 ↔ 𝑅1𝑅2𝑁𝑅3𝐻+ + 𝐻𝐶𝑂3
− (7) 

 

MEA contains one amine functional group and one alcohol functional group. For 

primary amines, the reactions showing water dissociation, carbon dioxide hydrolysis, 

carbonate/bicarbonate formation, amine protonation, carbamation and decarbamation 

generate a pool of cations and anions which include 𝑂𝐻−, 𝐻+,  𝐻𝐶𝑂3
−,  𝐶𝑂3

  2−, 𝑅𝑁𝐻𝐶𝑂2
−  

and 𝑅𝑁𝐻3
+. These reactions include instantaneous equilibria, quantitatively defined by 

equilibrium constants, and kinetically observable reactions, defined by rate constants 

(Nichola McCann, 2009).  They explain that the carbamate is much more stable with a 

half-life of about 2.5 h at 30 °C whereas carbamic acid is very labile. The graphical 

representation of these reactions (Nichola McCann, 2009) which is presented in Fig. 4:1 

shows that there are three parallel, reversible reactions of the free amine with CO2, 

carbonic acid, and the bicarbonate ion. The relative importance of the three paths is 

strongly pH dependent. 

 

. 

 
Fig. 4:1. General reaction scheme including all reactions between a primary amine, the 

CO2 /carbonate group and protons. Single line/double arrow represent instantaneous 

protonation equilibria, double lines  represent kinetically observable reactions for 

which rate constants are known in literature (Adapted with permission from (Nichola 

McCann, 2009). Copyright (2009) American Chemical Society 
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4.2 Recent developments in speciation of amine-CO₂-H₂O 

systems  

The chemical analysis for amine-CO2-H2O systems is typically expressed in terms of CO2 

loading (mol CO2 / mol MEA) and amine concentration. Among these analysis, barium 

chloride (BaCl2) titration-precipitation method  (Idris et al., 2014; Weiland et al., 1969), 

analysis via acidic evolution (Hilliard, 2008), BaCl2 - sulfuric acid method (Hilliard, 2008) 

and phosphoric acid - UOP Method 826-81 (ASTM, 2010) have been used in practice 

from lab to industry as offline measurements techniques. (Knudsen et al., 2014) used LC-

MS to determining total amine concentration and (Morton et al., 2013) have used 

automatic titration for CO2 loading analysis. (Masohan et al., 2009) suggested a method 

using a pH graph to calculate CO2 content in amine. (Montañés et al., 2017) used 

correlation from direct measurements such as pH, density, viscosity, conductivity and 

temperature of the solvent streams to determine CO2 loading during TCM Mongstad 

Plant campaigns. Most of these analyses give only the total CO2 loading and the MEA 

concentration in the system although a complete speciation details are required to 

understand the system in broader context.  

 

Table 4.1 shows research attempts where Fourier transform infrared (FTIR), near-

infrared (NIR), attenuated total reflectance-FTIR (ATR-FTIR), Uv-vis and Raman 

spectrometers have been used in qualitative and quantitative analysis of CO2 loaded 

amine solutions. They have used different approaches to derive chemical data from raw 

spectroscopic measurements. They are univariate analysis method where peak intensity 

or area is used for calibration; using internal standards such as ClO4- for normalizing 

data; data preprocessing using baseline correction; PLS approach using a variable range 

and calibration model development based on thermodynamic model data or chemical 

equilibrium constants. Absorption and vibrational spectra of the CO2 loaded amine 

solutions contain overlapping peaks. Some peaks are related to chemical vibrations and 

some are related to noise (see Fig. 5:8). A logical approach to understand which of these 

bands are chemically significant is observing peaks, which appear in a pure carbonate, 

bicarbonate, carbamate, amine or protonated amine in an aqueous medium. Isolating 

those individual peaks is challenging and tedious in CO2 loaded amine spectra (see from 

Fig. 5:3 to Fig. 5:5).  (Samarakoon et al., 2013) fitted Raman active bands, to an area-

normalized Gauss-Lorentzian peak function along with a polynomial baseline where 

they stated that the accuracy of the method would be dependent on sufficient resolution 

to clearly distinguish the bands to be analyzed.  (Wong et al., 2016) used curve-fitting to 

resolve complex experimental band envelopes and deconvolution method for band 

resolution. Using calibration curves, which are obtained from pure chemical spectra, for 

speciation analysis of the amine-CO2-H2O system, is questionable because of the shifts 

in Raman wavenumbers that were observed in our previous study (Table 5.3). Use of an 

internal standard and concentration determination based on scattering molar intensity 

factor also have provided promising results in literature but they cannot be used in in-

situ analysis.  Thermodynamic models are based on assumptions and limited for pre-

defined conditions. Therefore developing calibration models using the thermodynamic 
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model data is also not always reliable. For spectroscopic data, PLS calibration with test 

set validation, adequate number of calibration and validation data and reliable reference 

analysis method generates more reliable quantitative results because it is built on 

realistic data. This approach has more representation of the actual chemical data without 

losing important information and it allows updating the calibration model for changes 

in the measured system (see section 8.2.2).  

 

Table 4.1. Spectroscopic methods in analyzing CO2 absorbed amine solutions  
Reference Instrument Solvents 

analyzed 

What were 

analyzed by 

spectrometers? 

Description 

(Robinson et 

al., 2011) 

ATR- FTIR piperidine Qualitative 

analysis of 

carbamate and 

bicarbonate 

Analysis by peak intensity variation. The 

chemical reactions between CO2 and the 

functionalized piperidines were followed 

in-situ. 

(Archane et al., 

2011) 

FTIR Water- DEA- 

polyethylene 

oxide 400 

system 

Concentration of 

the molecular 

form of absorbed 

CO2 and the 

evolution of the 

carbamate species 

Calibration based on peak intensity 

variation 

(Richner et al., 

2012) 

ATR-FTIR MEA, DEA, 

and AMP 

Bicarbonate, 

carbamate, 

protonated amine, 

free amine and 

total CO2 

The method is based on a mathematical 

hard modeling. Equilibrium constants 

were fitted from the absorbance at 

different peaks 

(van der Ham 

et al., 2014) 

 

UV-vis 
 

MEA - For all measured wavelengths, UV-vis 

measurements was not successful for pilot 

scale samples and therefore MEA wt% and 

CO2 wt% were determined based on 

correlation from conductivity, pH, density 

and refractive index. 

 

(van Eckeveld 

et al., 2014) 

NIR 

UV−vis 

MEA MEA wt% 

CO2 wt% 

Density, conductivity, pH, viscosity, sonic 

speed, refractive index, NIR spectra, and 

UV−vis spectra were assessed when 

solvent composition was changed and in 

the presence of contamination. Density, 

conductivity, pH, refractive index, sonic 

speed, and NIR were included to prepare 

calibration model. 

(Kachko et al., 

2016a). 

NIR, 

ATR-FTIR 

MDEA, PZ MDEA, PZ  

CO2 in mol/L 

A chemometric model was built using 

measurements of density, pH, 

conductivity, sound velocity, refractive 

index, and NIR spectra. In-line PLS model 

was validated using ATR FTIR 

measurements 

(Rogers et al., 

1997). 

FTIR DEA CO2 

H2S 

The spectral area over a variable range 

was used to prepare the calibration model 

(Diab et al., 

2012) 

FTIR DEA DEA, DEAH+, 

DEACOO−, 

HCO3−, molecular 

CO2 in mol/m3 

Based on peak intensity 

(Archane et al., 

2008) 

FTIR- ATR Water-DEA-

CO2-methanol 

system 

Molecular CO2, 

carbamate and 

bicarbonate 

Determination based on peak area 

(Einbu et al., 

2012) 

ATR MEA MEA (mol/kg) 

CO2 (mol/kg) 

PLS regression on selected variable ranges 
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(Geers et al., 

2011). 

FTIR- ATR equimolar 

solution of β-

alanine and 

potassium 

hydroxide 

CO2 

SOx, 

β-alanine 

PLS regression on selected variable ranges 

(Derks et al., 

2011) 

 

FTIR MDEA MDEAH+ 

HCO3- 

MDEA in kmol/m3 

Calibration curves were constructed for 

molecular MDEA, protonated MDEA and 

bicarbonate ions using peak absorbance at 

a certain wavenumber 

(Jackson et al., 

2009) 

ATR-FTIR MEA 

AMP 

MDEA 

 

Qualitative 

analysis of 

carbamate and 

carbonate 

Demonstrated that both carbamate and 

carbonate formation can be monitored 

(Beumers et 

al., 2016) 

 

Raman MEA MEA 

MEAH+ 

HCO3- 

MEACOO| in 

mol/L 

Calculated the concentration of all 

components from the areas of all 

components. To determine the areas,  

Indirect Hard Modeling was used 

(Puxty et al., 

2016) 

IR-ATR and 

Raman 

MEA and 3-

piperidinemet

hanol 

MEA and 

3-

piperidinemethan

ol, 

CO2 in mol/L 

Compared IR-ATR and Raman 

spectroscopy by developing PLS models to 

predict amine and CO2 concentrations. 

They experienced that fluorescence 

disturbed the Raman measurement 

acquisition in pilot plant data while IR-

ATR was successful. 

(Ohno et al., 

1999) 

Raman 2-(N-

methylamino)

ethanol 

- Vibrational assignments to carbonate, 

bicarbonate and amine carbamate of the 

system 

(Kachko et al., 

2016b) 

Raman, NIR, 

ATR-FTIR 

MEA CO2 loading They claim that all three spectroscopies 

well suit for CO2 loading analysis 

 

(Souchon et 

al., 2011) 

Raman MEA, DEA, 

MDEA 

free amine, 

protonated amine, 

bicarbonate and 

carbonate anions 

are determined for 

MDEA in mol/L 

Reference spectra were recorded from 

pure CO32-, HCO3– and protonated amine 

solutions, which were used to quantify 

species in MDEA by Direct Classical Least 

Squares algorithm. 13C NMR spectroscopy 

was used to compare the Raman 

speciation. 

 

(Wong et 

al., 2015; 

Wong et al., 

2016) 

Raman MEA 

systems 

Complete 

speciation 

Based on calibration by peak area with the 

use of an internal calibration standard 

(Samarakoo

n et al., 2013) 

Raman MEA, 

DEA 

 

HCO3- , CO32-, 

carbamate 

Speciation using molar scattering factor 

and ClO4- internal standard 

(Idris et al., 

2014) 

Raman MEA Bicarbonate, 

carbonate, 

carbamate 

Calibration plots for bicarbonate, 

carbonate and carbamate species  based on 

peak areas of various concentration of 

individual species 

(Vogt et al., 

2011) 

Raman MEA, 

diglycolamine 

and MDEA 

 

 

CO2 loading 

analysis and 

qualitatively 

reaction 

monitoring 

PLS calibration 

 

(Perinu et al., 2014) showed NMR spectroscopy as a potential candidate for speciation in 

CO2 loaded alkanolamine systems reviewing approximately 50 published work such as 

the work by (Böttinger et al., 2008), (Jakobsen et al., 2005) and (Hilliard, 2008). The time 
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spend for NMR analysis has the limitation of its use in in-situ applications. Real-time 

process analyzers are demanded, which allow investigating compositions and structures 

of matters in molecular scale to replace time-consuming laboratory methods. Complete 

speciation, which can give fast and accurate data independent of process conditions, is 

a timely need from lab to industry in the field of CO2 capture by alkanolamine solutions.  

 

4.3 Multivariate calibration  

Multivariate calibration (MVC) is the methodology for using multiple signals to determine 

property/s of interest and six steps are declared to perform a complete multivariate 

calibration in determining a concentration of an analyte (Wold et al., 2006 ). 

1. Specification of the analytes with concentration ranges and selection of the 

instrumental method 

2. Selection of a representative set of calibration samples  

3. Data pre-processing and transformation to make it suitable for the subsequent data 

analysis 

4. Recording the multivariate signal; and measuring the sample concentration by a 

reference method 

5. Developing the calibration model  

6. Use the model to estimate the analyte concentrations in new samples (prediction set)  

Out of these six steps, the first five belong to the training phase, and the last belongs to 

the prediction phase. Most of the process analyzers are multivariate-calibrated using 

PLS regression which is the most popular application in chemometrics.   

4.4 Speciation from Raman spectra 

The relationship between Raman intensity and the concentration can be explained by 

the equation 8 presented by (Larkin, 2011) which says that the Raman scattered light 𝐼𝑅 

is a function of the incident laser intensity 𝐼0 , number of scattering molecules N, 

frequency of exciting laser 𝑣 and the squared term of (
𝜕𝛼

𝜕𝑄
) where α is the polarizability 

of the molecule and Q is the vibrational amplitude.  

 

𝐼𝑅 ∝ 𝑣4𝐼0𝑁 (
𝜕𝛼

𝜕𝑄
)

2

 
(8) 

 

Two important conclusions can be derived from this equation. The quantification is 

possible from a Raman signal since the peak intensity is concentration dependent (𝐼𝑅 ∝

 𝑁), and Raman intensity can be increased by using shorter excitation wavelength or 

increased laser flux. (Ni et al., 1985) pointed out the incorrect use of peak height to be 

proportional to peak intensity. They say that spectral intensity is always proportional to 

the area under a peak and only when two peaks have the same half-widths, peak heights 

can be used to compare relative intensities. Area under the Raman band is dependent 
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on temperature. For instance, in the Raman spectral analysis in the C-H stretching region 

of proteins and amino Acids by (Howell et al., 1999), they have noticed a change in 

spectral band area with temperature. Since more photons are measured when 

determining peak area and inclusion of band width and shape changes, this method has 

been proven to be more accurate than peak height method (Pelletier, 1999 ).  

 

4.5 Speciation and thermodynamic models 

Thermodynamic modelling of CO2-H2O-alkanolamine systems provide a theoretical 

approach for speciation even though it has still many unresolved issues (Hessen et al., 

2009). These models, which are important in design, and optimization of the CO2 capture 

processes, have been widely used is modelling and simulation software packages for 

amine-CO2-H2O systems. The Kent-Eisenberg model (Kent et al., 1976) is an example 

which has a simple approach where the equilibrium constants of carbamate formation 

and dissociation of proton are developed only as a function of temperature.  Desmukh 

Mather model (Deshmukh et al., 1981) utilizes the extended Debye-Hückel expression to 

represent activity coefficients. The Electrolyte NRTL model (Chen et al., 1986) examines 

the behaviour of aqueous multicomponent electrolyte systems to predict excess Gibbs 

energy.  This model was chosen by (Austgen et al., 1989) and (Posey et al., 1997) to 

describe speciation in amine- CO2 -H2O systems. (Hilliard, 2008) updated these models 

using speciation data from NMR spectra. The extended UNIQUAC model was 

developed by (Thomsen et al., 1999) and this model requires binary interaction 

parameters and UNIQUAC volume, surface area parameters and standard 

thermodynamic properties for calculations.  (Faramarzi et al., 2009) applied the extended 

UNIQUAC model to represent carbon dioxide absorption in aqueous 

monoethanolamine (MEA), methyldiethanolamine (MDEA) and their mixtures. 

Accurate modelling of thermodynamic properties requires the availability of reliable 

experimental speciation data and their dependence on thermodynamic state (eg: 

temperature, pressure).  Thermodynamic models should be updated with speciation 

data to make them representative to real data. 
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5 Multivariate Model Development 

 
 

Graphical Abstract 

 

In chemometrics knowledge, information, data and measurements are combined 

together using a set of mathematical tools to describe science based on the experimental 

results. A calibration model in chemometrics deviates far more than traditional 

modelling which are based on assumptions or theories because it is built on an 

experimental investigation.    

5.1 Seven chemometric calibration models for complete 

speciation 

The overall objective of this chapter is to provide the underlying concept of model 

calibration while presenting the methodology and results of the seven chemometrics 

models developed for complete speciation in an amine-based CO2 capture process. 
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MEA-CO2-H2O system is converted into a pool of multiple cations, free molecules and 

anions after they have reached their chemical and vapour-liquid equilibrium. For 

instance, some part of the CO2 is converted into carbonate and bicarbonate while the 

amine is converted into protonated amine and carbamate. A small proportion of water 

is also protonated. These conversions eventually result in ionic and neutral species in 

the solution as shown in Fig. 5:1. The concentrations of these species are constrained on 

the mass balance and the reaction equilibrium which are again dependent on several 

factors such as temperature, pressure and pH. When the reaction is taken place in a 

continuous process such as in packed columns then several other factors also govern the 

specie concentrations such as gas and liquid flow rates, packing type and their physical 

properties. Determining these specie concentrations is important in lab experiments as 

well as in industry because these values describe the fate of solvent and solute in the 

solution. For R&D people working with solvent development, reaction kinetics, and 

thermodynamic model development each of these species concentration are important 

and for people working in the plant, plant design and scale up the total CO2 loading and 

the MEA concentration are important values.  Considering the requirements of all these 

groups, the complete speciation in the MEA-CO2-H2O system can be segregated into 

seven parts (models) as shown in Fig. 5:1 and Table 5.1. For a given temperature and 

pressure condition, the complete speciation results in an MEA-CO2-H2O system can be 

adequately described by model number 2,3,4,6 and 7. The total CO2 and amine 

concentrations can be obtained from the sum of values of models [2+3+4] or and [2+6+7] 

respectively but for easiness a unique model was developed as CO2 loading model which 

can directly give the value (model 1). Formation of carbonate and bicarbonate in the 

system is comparatively very low and hence some are interested in the total of carbonate 

and bicarbonate concentration. This can be satisfied as the summation of models [3+4] 

but a unique model was developed to determine the total of carbonate and bicarbonate 

(model 5) directly from the Raman measurements. 

 

Table 5.1. Seven Raman spectroscopy based calibration models  

(* considering C specie balance; **considering amine specie balance) 
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Fig. 5:1. Seven models developed in this study (modified diagram with permission 

from (Nichola McCann, 2009). Copyright (2009) American Chemical Society 

 

 

X data which are the measurements from the Raman spectrometer was common for all 

the models (prior to preprocessing, variable selection and outlier removal). Y data which 

consisted of individual speciation results from reference analysis (NMR - Bruker Avance 

III 400 MHz spectrometer) were used for each respective model. The basic definitions of 

abbreviations which are written throughout this chapter can be found in Table 5.2.  

 

Table 5.2: Basic definitions of abbreviated terms related to model development 

 

An i PLSR model predicts specie i concentration using, 

X data  Raman spectroscopy measurements for a set of CO2 loaded amine 

samples and 

Yi data  concentration of specie i in a set of CO2 loaded amine samples as 

determined by the reference analysis (NMR spectroscopy) 

 

 

Two unloaded (without CO2) and loaded (with CO2) amine stock solutions were used to 

prepare a series of samples having different total CO2 absorbed. The term “CO2 loading” 

is expressed in units of mol CO2 per mol amine (if not explicitly stated otherwise) to 

indicate the absorbed CO2 in the solution. A complete description of sample preparation, 

methodology and laboratory measurements related to calibration model development is 

presented in Paper A. For the preparation of validation series,  the same procedure was 

followed at same environmental conditions to that of calibration series (room 

temperature and pressure) but different stock solutions were used to make the 

validation set (test set) to realistically represent inherent variations in a new data set 

which could contribute to validate the models sucessfully (Esbensen et al., 2010a).  



5   Multivariate Model Development 

 

 

40   

 

5.2 Raman vibrational modes related to the MEA-CO₂-H₂O 

system 

  

 
 

 

CO32- HCO3- CO2 H3O+ OH- 

Fig. 5:1. 3-D molecular structures of CO32-, HCO3- , CO2, H3O+ and OH- 

 

 
. 

  

HOCH2CH2NH2 

(MEA) 

HOCH2CH2NH2COO- 

(MEACOO-) 

HOCH2CH2NH3+ 

(MEAH+) 

 

Fig. 5:2.   3-D molecular structures of MEA, MEACOO- and MEAH+ 

 

Fig. 5:1 and Fig. 5:2 show 3-D structures for the chemical species that are found in a CO2 

loaded aqueous monoethanolamine solution in equilibrium or non-equilibrium 

conditions. A linear molecule (one where all the atoms are in a straight line in space, eg: 

carbon dioxide) consisting of N atoms, has 3N - 5 fundamental vibrations. A nonlinear 

molecule with N atoms has 3N - 6 fundamental vibrations (Socrates, 2000). Vibrations 

can be Raman active or infrared active.  The characteristic absorptions of functional 

groups over the entire infrared region can be found in literature which assist to identify 

the Raman active bands for the above molecular structures (Larkin, 2011; Socrates, 2000). 

Fig. 5:3, Fig. 5:4 and Fig. 5:5 provide a summary of Raman active vibrational modes that 

can be typically observed for the species in an MEA-CO2-H2O. This summary was used 

as guideline to select wavelength ranges for calibration models in the following sections. 
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Literature references are mentioned within brackets  are, 

(1) (Socrates, 2000), (2) (Larkin, 2011), (3) (Davis et al., 

1972a), (4)(Samarakoon et al., 2013) 

 

Fig. 5:3. Vibrational assignments of the chemical species present in an MEA-CO2-

H2O system between Raman shift  from 500 to 1000 cm-1  
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Literature references are mentioned within brackets where 

(1) (Socrates, 2000), (2) (Larkin, 2011), (3) (Davis et al., 1972a), 

(4)(Samarakoon et al., 2013) 

 

Fig. 5:4. Vibrational assignments of the chemical species present in an MEA-CO2-

H2O system between Raman shift  from 900 to 1700 cm-1  
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Literature references are mentioned within brackets where 

(1) (Socrates, 2000), (2) (Larkin, 2011), (3) (Davis et al., 1972a), 

(4)(Samarakoon et al., 2013) 

 

Fig. 5:5. Vibrational assignments of the chemical species present in an MEA-CO2-

H2O system between Raman shift  from 2600 to 3600 cm-1  

 

 

A typical multivariate calibration model is developed in three stages as shown in Fig. 

5:7. In the first stage, the X calibration data is used to build a relationship with the Y 

calibration data. This relationship (model) is then used to predict new Y data based on 

X validation data. This predicted Y validation data is compared with the measured Y 

validation data. The model is optimized to achieve a minimum deviation between the 

predicted and measured Y validation data. The process flow of the chemometric model 

development used in this study is explained in Fig. 5:10 when X data were Raman 

spectroscopic measurements and Y data were chemical concentration of a component or 

a group of components. 
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Fig. 5:6 shows the experimental set up which includes the Raman spectrometer (Kaiser 

RXN2 analyzer), fibre optic cables (5m in length) and Raman MR immersion probe (1/4 

inch diameter probe head).  

 

 
 

Fig. 5:6. (a) RXN2 analyzer and the fiber optic cables; (b). lab experimental set up 

using Raman immersion probe to measure a lab samples(c) Fiber configuration of 

the immersion probe  providing focus at the tip of the optics (diagram from 

(Lyndgaard, 2013)) 

 

 
Fig. 5:7. Multivariate model calibration and validation  

 

As shown in Fig. 5:7, the calibration and validation objects are CO2 loaded aqueous 

amine samples while calibration and validation measurements (Xcal and Xval) are Raman 

spectra of them. Xcal and Xval were preprocessed and mean-centered while Ycal and Yval 

were mean-cantered and then models were calibrated and validated with preprocessed 

data. Raman measurements of these samples spanned in the wavenumber region from 

100 to 3426 cm-1 as shown in Fig. 5:8 which show different Raman intensities based on 

their compositions. 

 

The initial run of the calibration models was performed for raw Raman data using the 

entire wavelength but the model predictability was poor due to the inclusion of noisy 

(unwanted) wavenumbers. Therefore the optimum wavelength range was selected 
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which also included vibrational modes of the specie to which the model was built. The 

optimum preprocessing combination for the X data set of MEA-CO2-H2O solution was 

found as baseline correction using the Whittaker filter (Eilers, 2003) with lamba = 100 

and P = 0.001, scaling by standard normal variate (SNV) and finally mean centering for 

X data. Fig. 5:9 shows baseline corrected Raman measurements for some of the Xcal data 

where arrow marks point to some Raman active vibrational modes related to CO32-, 

HCO3-, MEACOO-, MEA and MEAH+. In addition, Table 5.3 shows vibrational modes 

identified in this study. The information provided by the PLS loading plot was used in 

combination of the vibrational modes to select the variable range in this study. PLS 

toolbox 7.3 in Matlab 2016a was used for preprocessing and data analysis. 

 

Table 5.3. Vibrational assignments of species in MEA-CO2-H2O system  

(modified table from (Jinadasa et al., 2017)) 

Specie 

Frequency (cm-1) 

observed in 
Vibrational mode [reference] 

Bands identified in 

our 

studies 

literature 
1 2 3 

MEA 417 417 CC deformation (Socrates, 2000) √ √ √ 

481 481 CC deformation (Socrates, 2000) √ √ √ 

843 845 
CH2 rocking + CN stretching (Batista 

De Carvalho et al., 1995) 
√ √ √ 

871 873 
CH2 rocking + CN stretching (Batista 

De Carvalho et al., 1995) 
√ √ √ 

1029 1030 CN stretching (Larkin, 2011) √ √ √ 

1464 1460 CH bend (Larkin, 2011) √ √ √ 

2885 2870 CH2 symmetric stretch (Larkin, 2011) √ √ √ 

2934 2930 CH2 asymmetric stretch (Larkin, 2011) √ √ √ 

MEACOO- 1160 1155 C N stretching (Coates, 2006) 
 

√ √ 

MEAH+ 1277 1274 N-CH stretch (Tseng et al., 2010)  √ √ 

1320 1320 CC stretch (Tseng et al., 2010)  √ √ 

2894 2700-3000 NH2+ stretching (Socrates, 2000)  √ √ 

2975 2700-3000 NH2+ stretching (Socrates, 2000)  √ √ 

CO32- 
1070 1065 

Symmetric CO stretching (Davis et al., 

1972b) 
 √ √ 

1385 1380 
Antisymmetric CO stretching (Davis 

et al., 1972b) 
 √ √ 

HCO3- 1024 1017 C-OH stretching (Davis et al., 1972b)  √ √ 

       

CO2 
1278 1274 

CO2 symmetric stretch + CO2 bend 

overtone (Larkin, 2011) 
 √ √ 

1389 1383 
CO2 Symmetric stretch + CO2 bend 

overtone (Larkin, 2011) 
 √ √ 

1 = in CO2 unloaded 30% MEA samples; 2 = in calibration and validation samples – PLSR; 3 = lean and 

rich amine streams in USN rig 
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Results of the seven chemometric models are presented in Fig. 5:11 and Fig. 5:12 where 

the predicted vs measured concentrations of the calibration and validation samples are 

shown for all the seven models and an additional model prepared for total CO2 loading 

with the units of mol CO2 per kg H2O. These results are also presented in Paper A. 

  

  
(a) (b) 

 
 

(c) (d) 

 

Fig. 5:11. Comparison of measured vs predicted concentrations for validation dataset 

using the developed models; (a). CO2 loading model (mol/mol MEA); (b). CO2 

loading model (mol/kg H2O); (c). carbamate (mol/kg H2O); (d). carbonate (mol/kg 

H2O); plots also include calibration data 

 

For each model, the number of PLS components selected (latent variable), RMSEP 

values, r2 of the test set and calibration data, target line (as 1:1), regression line (fit) and 

estimated error from the model are presented. The definition of RMSEP is given in 

equation (9) where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the predicted value from the PLSR model, 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is 

the measured value from NMR spectroscopy and I is the number of samples in the 

validation data set. 

𝑅𝑀𝑆𝐸𝑃 = √∑ (𝒚𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝒚𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
2𝐼

𝑖=1

𝐼
 

(9) 
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(e) (f) 

  
(g) (h) 

 

Fig. 5:12. Comparison of measured vs predicted concentrations for validation dataset 

using the developed models; (e). bicarbonate (mol/kg H2O); (f). 

bicarbonate+carbonate (mol/kg H2O); (g). free MEA (mol/kg H2O); (h). protonated 

MEA (mol/kg H2O); plots also include calibration data 

 

 

 

The range of the initial calibration set was 0 to 0.612 CO2 loading. After reducing outliers 

this range was contracted but remains in the industrial lean and rich CO2 loading range. 

r2 is more than 0.979 for calibration sets in all the models while  that for prediction was 

gained more than 0.96. All the models are expressed in units of mol/kg H2O. Molal 

concentration (amount of substance per mass of solvent) was used instead of molar 

concentration (amount of substance per unit of volume) to remove the effect of volume 

expansion when the temperature increases. 
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Fig. 5:13. 13C NMR analysis - concentration of different species vs  CO2 loading  

 
Fig. 5:14. Speciation for MEA-CO2-H2O system by NMR; Comparison of this 

study (after removing outliers) with work by Hilliard (2008) 

 

Results in Fig. 5:11 and Fig. 5:12 reveal that the calibration and validation samples span 

unbiasedly in the concentration ranges for all the species except for plot (e) and (f). The 

reason can be explained by Fig. 5:13 which gives an overview of the NMR analaysed 

concentrations of all the species in the calibration and validation data. A sudden 

exponential increase of bicarbonate concentration after some CO2 loading due to the 

increase of pH value in the system can be seen in this figure which is the reason for 

unbiased data in Fig. 5:12 (e) and (f). 

 

The number of calibration and validation samples used for each model and the selected 

wavelength range which yielded the optimum RMSEP value are shown in Table 5.4. 
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Table 5.4. Summary of PLSR models for speciation 

Model 

no: 
Model name Wavelength range [cm-1] 

Number of samples 

(after removing outliers) 

Calibration Validation 

1 

 

CO2 loading 

(mol/mol MEA) 
[770-901] ,[991-1202] ,[1398-1498] 22 16 

CO2 loading 

(mol/mol kg H2O) 
[770-901] ,[991-1202] ,[1398-1498] 20 15 

2 Carbamate [1100-1200] 22 17 

3 
Carbonate 

[1493-1404] , [1091-1047] , [853- 

895] 
22 21 

4 Bicarbonate [1047-773] 21 21 

5 Carbonate + 

bicarbonate 
[1513-1410] , [1138-779] 21 22 

6 Free MEA [2996-2867] ,  [1508-803] 22 20 

7 MEAH+ [3010-2887] , [1336-1251] 22 20 

 

5.3 From a ‘bad’ model to a’ good’ model 

The chances of developing a calibration model to a satisfactory level in a single attempt 

are occasional. Several iterative cycles are performed to get a better prediction from a 

regression model. The results presented in Fig. 5:12 are those obtained after several such 

attempts. The aim of this section is to describe the possibilities to achieve a ‘good’ model 

(more robust, less prediction error) from an initial ‘bad’ model (unstable, high prediction 

error) using same calibration/validation X/Y data. Fig. 5:15, is an extended version of Fig. 

5:10 where the dotted lines mark the options (A-I) that were followed in this 

chemometric study during the model development stage until a satisfied model is 

achieved. A detailed description of improvement strategies for a chemometric model is 

provided from 5.3.1 to 5.3.8, based on the experiences gained from this study. 
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5.3.1 Removing outliers  

Outliers represent irrelevant (erroneous or abnormal) data with respect to the data 

structure of the majority samples. Presence of outliers in a model is responsible of 

making the model unstable, poor predictable or sometime mislead the entire model 

development process. Outliers represent some sort of ‘bad’ errors and should be 

eliminated, corrected or unaltered only after a thorough investigation because they 

sometimes reveal important information about the sample composition or process (Næs 

et al., 1984). In PLS since both X and Y data are used, outliers can be in objects, variables 

or reference values which are associated with operator mistakes, instrument noise and 

drift, out-of-spec samples, incorrect sample preparations, sample deterioration due to 

environmental discrepancies, and sampling errors. In spectroscopic measurements 

cosmic spikes can be one of the reasons for X outliers which appear as very narrow peaks 

caused by high energy cosmic rays typically due to an issue in CCD detectors. These 

detectors have photon noise, dark noise and read noise which make such spikes. In 

chemometrics, outlier detection is scoped in entire cradle to grave process. But in 

conventional analytical chemistry or data analysis, outliers are just considered as errors 

in the analytical methods, results mis-manipulation and operator mistakes. Some people 

are over confident of the results from analytical instruments just because they are 

sophisticated and give digital results.  

 

 
Fig. 5:16. Two outliers with abnormal specie concentrations spotted from Y data – 

calibration/validation samples in the CO2 loading range 0.4 to 0.5 

 

There are several ways to detect outliers. In this study, two outliers were early spotted 

by checking the y reference values. As shown in Fig. 5:16 sample marked as O_1 and O_2 

show an over estimated protonated MEA values and under-estimated carbonate, 

bicarbonate and free MEA values which could be easily identified as they are located 

outside of the trend after plotting the standard speciation graph for amine speciation 

data which is CO2 loading vs. specie concentrations. It is always less time consuming 

and easy to detect such abnormalities using bi-plots other than reading tabulated values. 

Checking outliers in y reference values including checking whether standard procedures 

are followed and reference analysis instrument behaved normally for all the Y 

measurements. Such an investigation revealed that the reason for two outliers was a 
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measurement error from NMR instrument.  Sample O_1 and O_2 did not show a peak 

for free amine and bicarbonate in the NMR spectra respectively. A, H, G, D and E in Fig. 

5:15 marks the places where outliers in X and Y measurements should be spotted. Out 

of these D and E are  referred for checking irrelevant data structures from X 

measurements. In spectroscopic data, the number of peaks, their position and intensity 

reveal information required for modelling and hence it is required to assure the accuracy 

and precision of the instrument for spectral resolution, wavenumber and intensity 

response. These factors are dependent on various components of the instrument such as 

optics, grating, detector, slit, laser excitation wavelength, temperature and time stability. 

Normally the vendor specifies the required time for wavelength and intensity 

calibration. They also provide guidelines of the maintenance frequency. If such 

calibration requirements are only for once (during the life time of the instrument) or 

annual basis, the user can set up an own schedule and procedure for a simple calibration. 

Throughout this study, an acetone Raman spectrum was taken before starting each new 

measurement series and was compared with a library spectrum for peak position and 

intensity as a confirmation that the instrument, fibre optic cables and immersion probes 

were performing as intended.  

 

An abnormal spectrum is easy to identify in preprocessed data because they are de-

noised. When such an observation is made it is mandatory to check whether it is 

spectroscopy related or sample related.  Some of the operator related mistakes that can 

result in abnormal spectra are probes not cleaned well, lose connections between probe 

and fibre optic cables, contact of probe tip with foregin matters such as the walls of the 

sample container, inadequate probe immersion depth, air bubbles on the probe tip and 

fluoresence. In this study, the fluorescent effect from external lights was avoided by 

covering the sample containers with a black box (Jinadasa et al., 2018b).  

 Several mistakes can happen during the sample preparation stage such as not using 

properly cleaned glassware, sample inhomogeneity within same container, phase 

separation inside the sample container, evaporation of chemical components in the 

sample (solvents, water or carbon dioxide), change in environmental conditions that 

alter the chemical equilibrium, long time duration between X and Y measurements, 

sample deterioration due to inappropriate storage and interfrences from gaseous/solid 

or liquid impurities and they contribute for poor predictability in the model. t-u plots in 

PLS analysis provide opportunities to detect outliers easily while the residual Q vs. 

Hotteling T2 diagrams (influence plots) also do the same job.  In the paper (Rodionova et 

al., 2004) samples in the calibration set are classified as insiders, outsider and absolute 

outsiders and the authors provide a method called SIC model connected to PLS 

modelling to identify outliers in calibration data.  

5.3.2 Optimising signal to noise ratio 

Maintaining a good signal to noise ratio (SNR) is required to view all the peaks related 

to a chemical mixture. SNR should be optimum to the eintre concentration in calibration 

data. Methods to obtain good SNR are ensuring that the instrument is cooled down 

sufficiently before measurements, have longer exposure times and increase number of 
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scans per measurement. The model development stage is normally performed in the 

laboratory where the total exposure time for sample measurements are not a time 

constraint but when the same model is used in process monitoring, this total exposure 

time determines the frequency of real time measurements where small time intervals 

between each measurement are preferred. Therefore SNR is a bottleneck between quality 

of the spectrum and how fast the the sample should be analyzed. In this study the 

optimized SNR was gained as 60 second total exposure time which included 6 scans each 

having 10 second individual exposure times.  

5.3.3 Suitable preprocessing and variable selection 

An unsatisifed model can be due to the worng chemometric approach used for model 

development (marked as B and C in Fig. 5:15).  

 

The two main chemometric methodologies followed in this analysis were preprocessing 

and variable selection. While there are chemical, physical and instrumental ways to 

obtain a less noisy Raman data, a mathematcal preprocessing method can become the 

only feasible option to address some inherent or unavoidable properties in a Raman 

spectra. Such common properties are baseline drift, peak overlapping and wavenumber 

shifts. Basic preprocessing approaches applied to Raman data can be found in (Liland et 

al., 2016). Fig. 5:17 shows how the fingerprint area of MEA-CO2-H2O Raman spectra 

behave for different preprocessing methods compared to raw spectra. Some of the 

preprocessing methods such as detrend, Savitzky Golay and SNV appear to make same 

conditioning but the subtle differences they have made on the spectra can only be 

concluded by making a proper quantitative analysis. Suitable preporcessing method/s is 

specific to the sample type and the measurement instrument. A preprocessing method 

which filters noise for a one chemical solution can amplify noise for another different 

solution. Quantitatively how these preprocessing methods affect to the model can be 

monitored by comparing the RMSEP for different combinations of preprocessing 

methods. 

 

In this study, variable selection for each PLS model was chosen based on the knowledge 

of vibrational modes and the information gained from loading plots and regression 

coefficient plots. However, there are chemometric based mathematical solutions to 

determine the optimum variable ranges and these are very useful when analysing 

chemicals which do not have sufficent literature on their vibrational modes. Genetic 

algorithms and iPLS have proven their capcities for succesful variable selection from 

spectral measurements (Andersen et al., 2010).  
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Fig. 5:17. Different preprocessing methods applied to Raman spectra of CO2 loaded 

MEA  

 

 

5.3.4 Cross validation or test set validation? 

Another important aspect of yielding an overfitting or underfitting model is the type of 

validtion method. Namely there are three main validation approaches used in 

 

 
 

(a) 1 st order derivative (15 window width, polynomial order 2) (b) Detrend 

 
 

(c) Savitzky Golay (15 window width, polynomial order 1) (d) Baseline automatic weighted least square (order=2) 

 
 

(e) Whittaker filter & normalized to an area (dashed boundary) (f) SNV 

   
(g) Whittaker filter (h) Raw spectra 
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chemometrics, leverage correction, cross validtion and test set validation. Although 

there are several published chemometrics models based on cross validation, the risk of 

getting an overfitting model is high as illustred in Fig. 5:18. In the reference literature 

from (Esbensen et al., 2010a), a comprehensive description on how each type of 

validation methods affect to the model predictivity is presented. Their explanation is 

that the test set validation is the only valid paradigm and in contrary, cross-validation is 

a monolithic application and just a sub-optimal simulation of test set validation. They 

claim that the future prediction situation will have to be characterized by at least one 

new data set (test set) and eventhough the model RMSE for prediction is higher, test set 

validation makes a more robust model by inclusion of the sampling errors incurred in 

all ‘future’ situations in which the validated model must performed.  This is the reason 

for using test set validation only for all the chemometric models developed in this 

research.  

 

 
 

Fig. 5:18. Relationships between root mean square error RMSE of cross-validation 

(CV) / prediction (P) / leverage correction ((lev.corr.) as a function of model complexity 

(number of PLS components) Source : Modified diagram based on orginal work by 

(Esbensen et al., 2010a) 

 

5.3.5 Number of samples for calibration and validtion 

Another important factor which should be considered even before the model 

development is started is the minimum number of samples in the calibration/validation 

set. Higher the number of samples, more robust the  model is. Depending on the 

complexity and the diversity of the sampless, some model model might require 

hundreds or even thousands of samples for calibration. (Workman, 2001) suggests that 

10 or more samples should be used in the calibration set for every  principal component 

in the model.  In early studies of chemometrics (Naes et al., 1986) have shown that using 
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a fewer number of calibration samples and reduced number of wavelengths of the 

spectra, acceptable results can be obtained where the same number of calibration 

samples failed to achieve the same results with univariate approach (by MLR). Fig. 5:19 

shows how the estimation error curve move depending on the amount of data. When 

the number of data and their preceision are higher a model can be developed with a less 

number of latent variables and lower prediction error than when using few or noisy 

data. Cost of sample preparation and analysis (specially the reference analysis), time and 

resoruces become constraints for having a large number of data set. In this study, cost of 

NMR analysis became the limiting factor for maximum number of calibration samples 

used in the initial model development.  

 

 
Fig. 5:19. The effect of increased amount of data and better data to the complexity 

and prediction error ; Modified diagram based on original work by (Næs et al., 1984) 

 

5.3.6 Type of regression model  

In many analytical situations by spectroscopy, the instrument response is assumed to 

follow Beer’s model where the instrument response is a linear function of chemical 

concentration and error. Alternative to Beer’s model, MLR, PCR and PLSR develop 

relationship between chemical concentration and instrument response plus instrument 

noise in a different logic as shown in Fig. 5:20. This logic is a central part to the success 

of the prediction model development. Therefore, it is suggested to check which 

regression algorithm is the proper approach for the given task.  

In practice, it is common to use PCA and linear PLS (commonly written as PLS) as the 

first chemometric method because of their ability in dimensionality reduction and the 

separation of chemical model from the noise part. But the new generation of 

chemometrics have more rigorous algorithms than the traditional regression algorithms 
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Multiple linear 

regression 

(MLR) 

-----> Chemical concentration  𝑐 = 
= 𝑓(𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑥1, 𝑥2, … ) + 𝑒𝑟𝑟𝑜𝑟 

 

Beer’s model 

methods 

 

-----> Instrument responses 𝑥1, 𝑥2, … … . . , 𝑥𝑝 =

𝑓(𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑐1, 𝑐2, … … , 𝑐𝑝) +

𝑒𝑟𝑟𝑜𝑟𝑠 
 

PLSR and PCR 

 

-----> Chemical concentration 𝑐 =
𝑓(𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎1, 𝑎2, … . . ) + 𝑒𝑟𝑟𝑜𝑟𝑠 

 

Instrument responses  𝑥1, 𝑥2, … … . . , 𝑥𝑝 =

𝑔(𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑐1, 𝑐2, … … , 𝑐𝑝) + 𝑒𝑟𝑟𝑜𝑟𝑠 

 

Fig. 5:20. Comparison of different groups of indirect multivariate calibration 

methods Source : (Næs et al., 1984) 

 

PLS projection of data into latent variables was developed by Herman Wold and the 

team during 1975-1982 (Wold, 1975) and is built on maximising the covariance between 

X and Y data (Wold et al., 2001). PLS is normally abbreviated to introduce linear partial 

least square regression. There are other  approaches such as multiple linear regression 

(MLR), principle component regression (PCR), polynomial partial least square 

regression (poly-PLS) , spline partial least square regression (spline-PLS) and artificial 

neural network (ANN).  Among these the most applied linear and non-linear 

calibrations methods are PLS and ANN respectively. The best fit out of these methods 

rely on the nature of the data and their non-linearity. In MLR, a linear signal to property 

relationship is assumed (a single variable – eg:peak height is regressed with a single 

property – eg: concentration). In PCR, the linear signal to property relationship is built 

after reducing the number of variables to principal components. A comparison of these 

methods (interms of their prediction error, computation time and ease of use) applied to 

NIR data for prediction gasoline properties can be found in (ref. comparison of linear 

and non linear models)  

 

Some researchers have used combination of PLS algorithm with selection of the 

wavelength selection strategies such as genetic algorithm, interval PLS (Nørgaard et al., 

2000), uninformative varialbe eliminations (Centner et al., 1996), competitive adaptive 

reweighing sampling (Li et al., 2009) and successive projection algorithm (Araújo et al., 

2001). Numerous studies report modified versions of the original PLS algorithms and 

their applicability is again highly dependent on the nature of the data. Such examples 

are modification of PLS algorithm for fault diagnosis (Lee et al., 2004) and for control 

community (Ergon et al., 2001).   
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5.3.7 Choosing the right reference analysis method 

The fundamental assumption behind developing a calibration model is believing the 

reference data and its analytical method, which in this study is the NMR spectroscopic 

measurements. If this analysis does not yield accurate results, then the entire process of 

model calibration is a failure. The most powerful method for studying chemical 

equilibria in aqueous alkanolamine solutions is NMR spectroscopy. The NMR analysis 

for speciation was used in this study based on the available literature results for 

speciation of amine systems. (Perinu et al., 2014) reports that by NMR spectroscopy, 

quantification is in most cases easier for NMR spectra than for optical spectroscopy or 

chromatography as no calibration is necessary. (Böttinger et al., 2008; Jakobsen et al., 

2005; Yang et al., 2009) are some examples on recent NMR investigations on CO2 

absorption by aqueous amines. In paper A, a comparison of three different reference 

analysis method is given which determines the CO2 loading of the calibration and 

validation samples used in this study which shows that although scientifically these 

three methods should give accurate measurements there can be chances of getting 

erroneous results which if used for calibration modelling can lead to problems.  

 

5.3.8 Number of PLS components 

After optimising all kinds of possibilities mentioned above, the model may still not be 

accepted due to higher prediction error. The aim of using multivariate calibration over 

traditional univariate analysis is to reduce the prediction error by modelling the 

interfearences (chemical or physical) from external environment. If the impact of these 

interferences are not correctly addressed during the model calibration, it will destroy the 

true value of the property to be predicted. These interferences are stored in one or more 

of the PLS components in the model together with the variations related to the main 

chemical/physical attributes in the system and a certain level of noise. Fig. 5:21 that the 

prediction error is composed with two components - the undelying error and the 

estimation error. 

 
Fig. 5:21 . How underfitting and overfitting affect the prediction ability (Næs et al., 

1984) 
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As marked by the arrow the optimum number of components for the model must be 

used. Beyond this point the interference errors are reduced because of increasing amount 

of interfrences in the model with increasing number of compoents but the statistical 

errors are increased when including more independent model parameters from the data 

(Næs et al., 1984).  

 

5.4 In-situ Monitoring and Speciation - Introduction 

The chemometric models developed which were validated in the lab (batch wise) are 

needed to be validated in the plant environment (continuous process) to check their 

predictable capacity and the robustness for speciation in steady and dynamic conditions. 

It was performed in two phases in this research. In the first phase, the Raman 

spectrometer was integrated at-line to an R&D prototype CO2 capture plant which is 

located at USN, Porsgrunn, Norway. This USN CO2 rig (Fig. 5:22) is specifically built for 

teaching and research purposes. In the second phase, the instrument was connected at-

line to the Pilot-scale Advanced CO2 Capture Technology (PACT) facilities, Sheffield, 

UK (Fig. 5:23). In each phase, CO2 absorption and desorption process was continuously 

monitored through the spectrometer where two Raman immersion probes were 

connected to lean and rich amine lines. Spectra were acquired and chemical 

concentrations were determined from the calibration models developed. Manual 

samples were withdrawn from lean and rich amine lines during sometime intervals and 

they were compared with respective model predicted values. The initial calibration 

models were updated based on this comparison and models were finalised to perform 

in-situ speciation in future experiments for the two plants.  

 

 

 

 

 

 

 

 

Fig. 5:22. CO2 capture rig at USN, Norway 
Fig. 5:23. Picture of PACT Core 

Facilities at Sheffield, UK 

 

The two plants have main differences between equipment sizes, performance wise (CO2 

capture rate and solvent regeneration rate) and variability in process parameters such as 

liquid and gas flow rates.  These differences allowed for a smooth transition of validation 
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approach from ‘lab to process’ because the learnings and experiences from phase 1 were 

useful for the success of phase 2 V&V (validation and verification). USN CO2 rig has an 

absorber of diameter 0.1 m and 2.5 m height, steam heated desorber. It is operated with 

synthetic gas (air mixed with CO2) upto 40 Nm3/h and a maximum liquid circulation 

rate of 250 kg/h. PACT solvent based capture plant has an absorber and desorber both 

having diameter 0.3 m and 8 m overall height. Typical flue gas flow rate and solvent 

flow rate are 200 m3/h and 1200 kg/h. Carbon dioxide removable rate is up to 50 kg/h 

with MEA and can remove 1 tonne of CO2 per day using MEA (>85% capture). It has an 

integrated flue gas desulphurization and can use flue gas from coal or biomass co-firing 

in air or O2/CO2. 

 

(Bingue et al., 2014) say that there are three interconnected domains in process 

verification and validation process as user domain, problem domain and tool domain 

which is illustrated in Fig. 5:24. The validation and verification process is ended if and 

only these three domains are satisfied adequately. This domain concept was transformed 

into the validation of chemometric calibration model in this study such that the ‘CO2 

capture process’ became the user domain, ‘in-situ speciation’ became the problem 

domain and ‘Raman spectroscopy’ became the tool domain. 

 

 
Fig. 5:24. Three domains in validation process; Source : (Bingue et al., 2014)  

 

The validation and verification process was ended up when the goal was achieved, 

which is ‘Raman spectroscopy can be used for in-situ speciation in amine based CO2 

capture plant’. During this process, the Raman spectroscopy together with the 

chemometric models are implemented in the plant and tested for how and how far 

accurately [spectroscopy + models] can represent the ‘real-process’ by giving results for 

its intended use.  Fig. 5:25 graphically represent this domain concept. After the 

validation process is successful, the Raman process analyser and the chemometric 

models are ready for real-time prediction of speciation in the CO2 capture process 
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Fig. 5:25. Three domains in validation process for in-situ speciation of CO2 capture 

process by Raman spectroscopy and chemometrics models 
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6 In-situ Monitoring and Speciation – Phase I   

 

6.1 Understanding the process variations 

As the first PAT implementation approach to a continuous operation, understanding the 

process and its variations reduce the number of experiments needed for validation and 

verification. This indirectly accelerates the success rate of validation while reducing the 

time and resources spent on unnecessary trials and mistakes. All the possible major and 

minor variations that can happen in the plant should be listed and discussed with plant 

engineers and plant operators. For instance, plant start up, shut down, interruptions 

from utility supply, pump & compressor failures, electric power cuts and changes from 

 
Graphical Abstract 
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upstream processes are typical variations. Some of these variations affect the property 

that is tested by the process analyser (eg: chemical concentration) while some affect the 

performance of the analyser. There can also be planned/unplanned process changes that 

have either high or low or no impact on the analyser outputs.  

 

After a discussion with personnel who have experience with the operation of the CO2 

capture facility at USN, five process variations were listed as those which would 

influence to the speciation results of CO2 absorption and the analyser performance. They 

are the amine flow rate, flue gas flow rate, temperature of the liquid inlet to the absorber, 

CO2 % in the flue gas, and desorber regeneration state.  

 

The capacity of the CO2 rig is such that the possible changes in the process conditions 

mentioned can be spanned as liquid flow rate from 30-250 kg/hr, gas flow rate from 5-

40 Nm3/h, absorber liquid temperature inlet upto 55°C and CO2 volumetric percentage 

in the flue gas upto 12 v/v%. (Øi et al., 2017; Øi et al., 2014). The responses of the 

chemometrics models must be reliable for all kinds of possible combinations of these 

process variations, steady state and dynamic plant conditions. Within a 4-day trial 

period, these conditions were changed for validation of the speciation models. The inlet 

CO2 v/v% and the temperature of the absorber liquid inlet were maintained at 10 v/v% 

and 40°C respectively for all the cases. Since these two values were optimised 

parameters for the plant they were kept constant because changing them would not 

create an impact on the model predictions but only extend the time duration to achieve 

the loading saturation points in each trial. It would be a waste of time and resources. 

Day 1 tests included step changes in gas flow rate by 5 Nm3/h in the range of 5-30 Nm3/h, 

Day 2 tests for step changes in liquid flow rate by 10-15 kg/h in the range of 60-115 kg/h 

when the gas flow rate was constant at 30 Nm3/h. Day 3 and Day 4 tests included step 

changes in liquid flow rate by 10 kg/h in the range of 300-115 kg/h when the gas flow 

rate was constant at 20 Nm3/h. This experimental plan was somewhat close to a 

traditional approach where one or couple of parameters did vary while keeping other 

parameters constant. But it is not a recommended chemometric approach when there 

are several factors affecting to a model. But this trial was conducted with these 

conditions to maintain a balance between the practical limitations, time and 

requirement. During these 4 days, manual samples were withdrawn from the plant for 

laboratory analysis. Since the plan in the Table 6.1 does not possess abrupt changes in 

process parameters, additional 4 demonstration test cases were carried out as shown in 

Table 6.2 which also included the regeneration on/off condition and changes in flue gas 

CO2 concentration. The gas flow rate, liquid flow rate, CO2 % in the flue gas inlet were 

spanned between 4-30 Nm3/h, 30-200 kg/h and 0-11 v/v% respectively which resulted in 

the lean and rich loading variations from 0.03-0.43 and 0.03-0.44 mol CO2/mol MEA 

respectively. For all the test cases 7 chemometric models were used for prediction of total 

CO2, carbonate, bicarbonate, carbamate, free MEA, protonated MEA in lean and rich 

amine streams. These model responses and validation results with offline measurements 

are presented in Paper B.  
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Table 6.1. Description of process conditions maintained during the 4-day trial period 

at CO2 rig 
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Table 6.2 Process conditions in the demonstration test cases and their impact to lean 

and rich loading  - CO2 rig 
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6.2 Correct installation of process analyser 

 
Fig. 6:1. Issue of representative sampling through a process valve and sensor 

(modified diagram from (Esbensen, 2009))  

 

Process understanding allows designing a plant test trial conserving time, resources and 

money. The correct installation of the analyser allows getting reliable data from plant 

trial. The objective of the validation and verification process is to check the predictability 

and limitations of the models. Therefore the process analyser should be installed 

correctly to the plant such that its connection method, location of installation and 

mechanical set up at the installation do not hinder for giving “representative sampling”.  

An integral part of validation of process analyzers is the comparison of analyser results 

with the offline methods. In CO2 capture plants, both in industry and lab, the traditional 

method of analysing the liquid concentration is limited for determination of CO2 loading 

and amine concentration which is commonly performed by titration. Experience in 

titration, availability of the chemicals and apparatus for titration measurements have 

made it the preferred option while other instruments which can determine complete 

chemical analysis are scarce.  When a process analyser such as Raman spectrometer is 

intended to replace the traditional analysis method, the validation is performed by 

matching the process analyzer result at time t with the standard offline measurement 

which represents the same sample. Obtaining this kind of a representative process 

sampling is not straight forward from a liquid flowing stream. A simple explanation 

about this issue is schematically represented in Fig. 6:1 where a fluid flows inside a pipe; 

heterogeneity of the fluid is shown by two different coloured segments (eg: ions, 

molecules, particulate matters); valves (V1,V2,V3) represent locations of the manual 

sampling points while the sensor (S1, S2, S3) tips represent the area that they measure 

(Esbensen, 2009). This issue is critical when the fluid flow is less homogeneous. A typical 

example is when there is a mixture of different solvents having different densities where 

a phase separation can occur in a fluid stream. The chances of extracting a different 

sample from valve than that measured by the sensors is obvious from this figure.  
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If representative sampling cannot be obtained from both sensor and valve, then the 

entire validation becomes a failure (Esbensen, 2018; Esbensen, 2009; Petersen et al., 2005).   

 

In-line, on-line, at-line, or off-line sampling strategy can be used to connect a process 

sensor like Raman immersion probe to a process stream. Fig. 6:2 shows the differences 

between these strategies and how they influence the representability of the actual 

process by their measurement. Real-time measurements are only possible in in-line and 

on-line, however it is difficult to assure that the by-pass line always carries the same 

constituents to that of the main line in on-line installation. On the other hand if the 

process line has a large diameter, then there can be variations in concentration across the 

pipe cross-sectional area. In this case, the sensor measurement deviates far from the 

offline measurement (sample collected from the valve). The process flow should be fully 

closed in in-line case or the by-pass flow should be closed for sensor cleaning, sensor 

mounting/removing while the process is going on. However, they permit continuous 

process control.  

 
Fig. 6:2. Difference between in-line, on-line, at-line and off-line configurations  

 

It was logical to select the in-line set up for connecting the Raman sensor and the process 

sampling valve to the CO2 rig. Two in-line connections were built using standard 

Swagelok connections to the 1 cm outlet diameter process lines of rich and lean amine 

streams. Fig. 6:3 shows the orientation of the mechanical set up which was used to 

connect the two Raman probes to the process line. Fig. 6:3(a) represents the flow 

measurement which comes out from the absorber bottom while Fig. 6:3(b) shows the 

flow measurement which enters to the absorber top.  These two locations are also shown 

in the process flow diagram Fig. 6:4. 
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        (a)       (b) 

Fig. 6:3. Raman sensor in-line to the (a) rich amine stream, (b) lean amine stream 
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Fig. 6:4. Process flow diagram of the CO2 rig; Raman probe locations to the lean & 

rich streams and sampling measuring points are shown 

 

6.3 Updating the calibration model  

The predicted results from the seven chemometric models (in Paper B) were finalised 

after a thorough investigation of model updating. Such a calibration update is required 

when a model calibrated and validated in laboratory behave less predictively in the 

process environment. This was performed in two steps as marked in the blue and green 

area in Fig. 6:5. In the figure an absorber is shown with gas and liquid flow directions. 

Connections of the offline sampling point and the Raman integration point for the rich 

amine line are also shown. This absorber represents the absorption column of the USN 
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CO2 rig. Markers in blue belong to the initial steps where the existing model performance 

was analysed with respect to the plant operation. There were two Raman immersion 

probes connected to the lean and rich amine lines in the plant and the model deployment 

was same for both Raman measurements. 

 

 
Fig. 6:5. Updating procedure of the lab-based calibration model to the CO2 rig 

environment 

 

According to Fig. 6:5, when the process is on-going the online Raman analyzer generates 

a pool of real-time data (step A) which is transferred simultaneously to the originally 

developed calibration model (lab-based). The original model parameters are first used 

to execute the real-time data and the model output (step B) values are compared with 

the values given by reference analysis. Through this comparison, an assessment is made 

on the accuracy, stability, repeatability and the precision of the predicted values. This 

assessment is made with the ideas, suggestions and complaints from the process 

engineers, operation management, process operators, maintenance technicians, project 

engineers and the chemometrician. This group of people can comment on the required 

precision of the analyzer, how often and to what extent the analyser outputs are useful 

to them, challenges with the sample extraction for reference analysis and associated 

errors and relationship of the model outputs to the plant trends. Based on this 

assessment, the existing chemometric model is improved. Such possible improvement 

strategies are listed in (Miller, 2010) and are mentioned briefly in Fig. 6:5 from step D to 

F. Step D implies using additional calibration data to the existing model to reduce the 

estimation error (refer Fig. 5:19). ‘Better’ extra calibration data can be used for the model 

such as those obtained from the process itself which inherit more process variations than 

the synthetic lab prepared samples. Several replicate sampling can be taken and time 

delays between X and Y measurements can be reduced. The next strategy is the 
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amendments made to the preprocessing and variable change in X data (step E and F). 

This strategy is required when the noise in the X data that is observed in the lab samples 

is not be the same as those generated in the process by a moving fluid. This can be due 

to many reasons. Diferent noise can be observed in spectra due to change in the 

configuration of the analyzer such as use of longer fibre optic cables for the plant trial, 

use of multiple immersion probes in the plant which are different than the ones used in 

the lab for model development, impurities or air bubbles in the process stream and 

impurities in the gas stream.  

 

Similar to the improvements performed for the X calibration data, it is also important to 

assure the reliability of the reference analysis (Y data) method because it is the criteria 

that assesses the model predictions. A proper sampling protocol should be established 

when extracting samples from the plant, the method of transportation samples to the lab 

and preservation of the sample until lab analysis is performed (step G). This model 

updating is a continuous process to preserve the model predictive capacity.  

 

Fig. 6:6 shows an example of the complete speciation interface for the rich amine stream 

when the CO2 rig runs in a rather steady operation. Plot (a) and (b) show the increasing 

concentrations of protonated amine, carbamate, carbonate and bicarbonate and 

decreasing concentration of free amine as the CO2 loading is increased in the process 

line. Fig. 6:6(c) shows determination of CO2 loading with three different models/model 

combinations out of the total seven models.  It provides an internal assurance of the 

model precision when reference validation analysis is not present for each specie.
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(a) Predicted concentrations for CO2 loading, carbamate, free MEA and 

protonated MEA in lean amine line at USN mini pilot CO2 capture plant 

 
(b) Predicted concentrations for CO2 loading, carbonate and bicarbonate in lean 

amine line at USN mini pilot CO2 capture plant 

 

(c) Comparison of predicted total CO2 loading in the system in three different 

combinations of developed models 

Fig. 6:6. Demonstration of liquid phase complete speciation in rich amine for a test 

run in CO2 rig  
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7 In-situ Monitoring and Speciation – Phase II   

 
Graphical Abstract 

 

Main products from a post combustion CO2 capture process are the ‘CO2-depleted flue 

gas’ from absorber top and ‘product CO2’ from desorber top. The input materials are the 

flue gas from the power plant and makeup water for solvent preparation. The energy 

inputs are mainly hot water for the reboiler, cooling water for condensers and electricity 

for pumps, fans and compressors.  

 

In a typical capture plant, flue gas flow rate, flue gas inlet temperature, steam flow rate, 

liquid flow rate, steam pressure, desorber pressure, solvent temperature at absorber inlet 

and solvent temperature at desorber inlet are controllable variables while CO2 capture 

rate, reboiler duty, liquid/gas ratio, lean solvent loading and rich solvent loading are 

measured parameters.  
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In a typical manufacturing process, the process parameters are optimized to achieve 

required output quality. Supplementary the plant is adjusted to timely process 

variations from upstream and downstream. The situation is same for a CO2 capture plant 

as well. The controllable process parameters are varied to achieve a higher CO2 capture 

rate and less energy consumption. The capture plant is susceptible to changes generated 

within plant boundaries such as ramping up/down of process parameters due to 

imbalance/malfunctioning in process equipment, controllers and utilities. Further, the 

capture plant is constrained by the operation of its integrated emission source partner. 

This means that a post-combustion CO2 capture should have flexible operations to the 

variations of the power stations such as varying electricity generation. Flø et al. (2015) 

mention three operating modes during peak electricity price periods which are, 1). 

power station exhaust gas is vented; 2).steam rate utilized for solvent regeneration is 

decreased and 3). rich solvent is stored in a tank and regenerated. Tait et al. (2016) 

considers five dynamic scenarios for a CO2 capture plant which is integrated to a natural 

gas combined cycle (NGCC) plant when electricity price is high. They show the effect of 

gas turbine shut down/ start up, rapid stop of the flow of steam to the reboiler and the 

flue gas entering to the absorber (by-pass of capture plant), reboiler steam decoupling 

and rapid increase of reboiler steam flow to the CO2 capture rate, lean loading, rich 

loading and absorber temperature profile. This concludes that the capture plant 

undergoes various types of dynamic situations. Understanding the variations of these 

parameters and the degree of their impact to the liquid concentrations is vital to launch 

an effective model validation for a process analyser implemented in a CO2 capture plant 

to determining specie concentration. 

 

7.1 Implementation of Raman spectrometer at PACT 

facility 

7.1.1 Design of experimental plan  

 It is often difficult to understand all the possible permutations and effects on the 

absorption and desorption process of the capture plant and even if all such process 

variations are known, the economic factor, time and limited human resources prevent 

for testing all the combinations of such relationships. But DoE provides methods to 

understand the effects of possible multidimensional combinations and interactions of 

various parameters on product quality. As mentioned in Fig. 5:25, the goal of the 

validation process is to confirm that the Raman spectroscopy can be used for in-situ 

speciation in CO2 capture plants. To reduce the complexity of experimental plan it is 

easy to set a single component as the ‘output parameter’ and the most suitable candidate 

is ‘CO2 loading’ because almost all the species concentration vary relative to the CO2 

loading. So fundamentally, the validation process should record CO2 loading values 

spanned unbiasedly in the operating range, including extreme values such as highest 

possible to the lowest possible. It should include sudden ramp up/down of CO2 loading 

values due to fluctuations of controllable process parameters. To achieve these loading 
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variations which are due to both steady and dynamic operations, six process parameters 

were changes. They are solvent flow rate, flue gas inlet temperature, flue gas flow rate, 

solvent temperature at absorber inlet, CO2 concentration in the flue gas and reboiler 

duty. The test was scheduled for 3 days as shown in Fig. 7:1. The process conditions for 

each day was decided to find answers for questions from Q1 to Q7 as shown in the 

figure.  Objective of Day 3 tests were to see how the Raman based models were affected 

by presence of SO2 in the flue gas.  This would give an initial glimpse for the future 

model improvement strategy which is the development of Raman speciation models 

when solid/liquid/gaseous impurities presence in the MEA-CO2-H2O system.  
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 . 

 

Fig. 7:1. Design of the plant schedule 

 

 

 

Overview of the PACT facility test 
campaign schedule

Day 1 

March 16, 2017

-Complete absorption  cycle, 
no desorption 

-Complete desorption cycle, 
no absorption 

Q1: Do the models response 
satisfactorily for a gradual increase

in CO2 loading?

Q2: Do the models response 
satisfactorily for a gradual decrease

in CO2 loading?

Q3: Do lean an rich Raman probes 
response equally for the same CO2

loading?

Updating original 
calibration models

Day 2  

March 17, 2017

Different changes 
in process 

parameters

Q4 : How far the 
models response is 

affected by 
physical 

interferences 
(different process 

conditions)?

Q5 : How fast the  
models understand 

the change in 
concentrations?

Updating original 
calibrtion models

Day 3 

March 22, 2017

Presence of SO2 in 
the flue gas stream

Q6 : Are the models 
affected when flue 
gas contains SO2 ?

Q7 : Colour change 
in solvent stream 

and model 
responses?

Updating original 
calibration models
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7.1.2 Choosing installation location  

The Raman RXN2 analyser is equipped with 4 channels where it has facilities to connect 

four Raman sensors to a single analyser each acquiring and saving signals at the same 

time. But the RXN2 analyser available at USN was equipped only with two Raman 

probes and extension cables during the plant trial at PACT. Therefore the two PAT 

sensors should be located in the plant such that to get the maximum data relationships.   

 

 
Fig. 7:2. Process flow diagram of PACT facility;  (Locations of Raman probe in rich and 

lean streams are shown) 

 

Having two PAT sensors in the liquid input and output streams to the absorber is useful 

for developing the mass balance to the absorber, to determine absorption capacity and 

to determine impact of process variations to the absorption.  Locating two PAT sensors 

in the liquid input and output streams is useful the same performance evaluation of the 

desorber. There should be also manual sampling extraction points close to the sensor 

locations which provide opportunities for representative sampling to validate the 

analyser data. This will result to have a considerably a small time interval for a liquid 

volume (10 ml) to travel between the manual sampling point and the sensor location at 

typical liquid flow rate ranges for the plant. The liquid extraction from the sampling 

point should not create any impact to the sensor output such as by creating turbulence 

in the liquid stream. Similarly the probe tip should not immersed in areas where there 

is high turbulence and gas bubbles. Since the equilibrium reaction between CO2 and 

amine is temperature sensitive, there should also be no temperature deviations between 

manual sampling point and Raman immersion probe. Considering all these facts and the 
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space availability of the process lines, one of two Raman sensors was located between 

the rich amine pump and cross flow heat exchanger (Raman probe- rich) and the 

remaining one was located between the lean amine pump and the cooler (Raman probe- 

lean) providing opportunities on commenting both absorber and desorber performance 

simultaneously (refer Fig. 7:2). Fig. 7:3 shows the connection points of the Raman sensors 

at the PACT facility.  

 

  
Raman probe 1 - rich amine line 

 

Raman probe 2 - lean amine line 

 

Fig. 7:3. Raman probe locations at the PACT capture plant (marked in circle) 

 

7.2 Model validation results 

Fig. 7:4 and Fig. 7:5 show raw and pre-processed Raman spectra recorded during the 

test campaign. Typical spectra challenges associated with the Raman measurements can 

be seen from raw data such as baseline drift.   
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Day 1 – rich – raw spectra (365 spectra) Day 1 – rich – preprocessed spectra (365 spectra) 

 

 

 

Day 2 – rich – raw spectra (383 spectra) Day 2 – rich – preprocessed spectra (383 spectra) 

 

  

Day 3 – rich – raw spectra (362 spectra) Day 3 – rich – preprocessed spectra (362 spectra) 

 

 

Fig. 7:4. Raman measurements (probe 1)  in the rich amine line (raw and preprocessed) 

  



7   In-situ Monitoring and Speciation – Phase II 

 

 

82   

 

  
Day 1 – lean – raw spectra (330 spectra) Day 1 – lean – preprocessed spectra (330 spectra) 

 

 

 

Day 2 – lean – raw spectra (351 spectra) Day 2 – lean – preprocessed spectra (351 spectra) 

 

 
 

Day 3 – lean – raw spectra (346 spectra) Day 3 – lean – preprocessed spectra (346 spectra) 

 

Fig. 7:5. Raman measurements (probe 2)  in the lean amine line (raw and preprocessed) 

 

Fig. 7:6 presents the region between wavenumber 700 – 1500 cm-1 with some of selected 

Raman spectra from rich and lean streams showing their intensity variations around 

Raman active vibrational band. After preprocessing the spectra for baseline correction 

and noise reduction, the chemical information are easy to reveal based on their spectral 

changes. Fig. 7:6 is an indication that both Raman measurements show variations in the 

chemically important vibrational modes.  
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Fig. 7:6. Baseline corrected spectra (selected from lean and rich amine) 

showing their Raman intensity variations for carbon and amine species  

 

7.3 Updating calibration models  

In this section, the PLS prediction results are shown for all the chemometric models for 

the three tests. The only offline titration experiments performed related to this test 

campaign were CO2 loading analysis (mol/mol MEA) and MEA concentration (w/w%). 

Results from these two analysis were used in different ways to understand the process 

trends, to update calibration models and to comment on the model predictions given by 

each calibration model. 

 

Table A-1 and A-2 in appendix  show the titration values for CO2 loading (mol/mol 

MEA) with the Raman predictions for CO2 loading(mol/mol MEA). The calibration 

models (Fig. 5:1and Table 5.1) were developed for 30 w/w % MEA but during the PACT 

campaign the solvent concentration was between 30-40 w/w%.  Since the model 1 is 

expressed per amine moles, the effect of change in solvent concentration was negligible 

in model 1. This was also previously confirmed with the CO2 rig results. However, we 

observed a large deviation (but almost a constant offset) between the predicted and 

measured CO2 loading (mol/mol) for the lean amine Raman measurements. This 

measurement used a completely new hardware set up (immersion probe, fibre optic 

cable) which was not used during the initial calibration of the models and therefore this 

offset was assumed to be due to this new instrument accessories. The initial models were 

therefore calibrated following the routes shown in Fig. 5:15. The optimum model update 

for this campaign was a change in variable selection and the slope/bias correction (refer 

section 8.2.2).  
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Table 7.1. Description of available prediction models, units and conditions based 

on the results from PACT campaign 

Output property (unit) Models 

developed in lab * 

Models 

developed/updated 

after PACT campaign**  

CO2 loading (mol/mol MEA) 

CO2 loading (mol/kg H2O) 

1 PACT_1_1 

PACT_1_2 

Carbamate (mol/kg H2O) 2 PACT_2 

Carbonate(mol/kg H2O) 3 - 

Bicarbonate (mol/kg H2O) 4 - 

Carbonate + bicarbonate (mol/kg H2O) 5 PACT_5 

Free MEA (mol/kg H2O) 6 - 

MEAH+ (mol/kg H2O) 7 - 

Free MEA + MEAH+ (mol/kg H2O) - PACT_8 

Total MEA (wt%) - PACT_9 

***Total MEA (wt%) - PACT_10 

Total MEA (mol/kg H2O) - PACT_11 

 

* models developed with NMR speciation reference values; valid for 30 wt% 

MEA at room temperature (T ) and pressure (P); 

** Valid for T, P conditions and other process conditions maintained during 

PACT campaign; 

PACT_9 model was newly developed based on titration  values obtained during 

PACT campaign; 

***PACT_11 model was calculated based on the predictions from PACT_9 model; 

Other PACT models were results from initial lab based 7 models. Several 

calibration transfer procedures were used for model update.  

 

 

A new notation was used to differentiate between the original speciation models with 

the updated or newly calibrated models after the PACT campaign as shown in Table 7.1. 

Fig. 7:7 to Fig. 7:12 present the comparison of CO2 loading results from the Raman 

models (PACT_1_1 in Table 7.1) and the titration results.   
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Fig. 7:7. CO2 loading predictions  by Raman spectroscopy and titration measurements 

with time  - Day 1 rich line 

 

 

 
Fig. 7:8. CO2 loading predictions  by Raman spectroscopy and titration measurements 

with time  - Day 1 lean line 
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Fig. 7:9. CO2 loading predictions  by Raman spectroscopy and titration measurements 

with time  - Day 2 rich line 

 
Fig. 7:10. CO2 loading predictions  by Raman spectroscopy and titration measurements 

with time  - Day 2 lean line 
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Fig. 7:11. CO2 loading predictions  by Raman spectroscopy and titration 

measurements with time  - Day 3 rich line 

 
 

Fig. 7:12. CO2 loading predictions  by Raman spectroscopy and titration 

measurements with time  - Day 3 lean line 
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7.4 Calibration of a new chemometric model to determine 

MEA w/w% 

MEA weight percentage plays an important role in a continuous process because this 

value can be changed as the process is going on due to the water loss in the plant due to 

temperature effect. In the initial model developments, there was no separate MEA wt% 

model as all the models were developed for 30 w/w % MEA. Therefore with the results 

obtained in this plant trial, two models were developed for MEA concentration. One 

model was developed directly from the offline MEA weight measurements (Ycal, Yval) 

and taking the corresponding Raman spectra at the time of Ycal and Yval (Xcal, Xval). This 

model is mentioned as “PACT_9 model” was a completely new calibrated and validated 

chemometric model based on the first principals.  

 

The second model is mentioned as “PACT_10 model” which was calculated by the 

values obtained from model predictions for MEA concentration in mol/kg H2O. Fig. 7:13 

presents the comparison between the titration results, PACT_9 model results and 

PACT_10 model results for MEA wt% for rich amine line. Fluctuations of the MEA wt% 

between adjacent measurements are rather large for Raman predictions. Predictability 

from “PACT_9 model” is better than the “PACT_10 model”.  

  



7.4   Calibration of a new chemometric model to determine MEA w/w% 
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Fig. 7:13. Comparison of different predictions from models for MEA wt% with the 

titration values for rich amine line 
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7.5 Complete speciation   

 
 

Fig. 7:14. Species concentration with time for rich amine stream 

 



7.6   Process understanding through PAT 
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The main objective of this study was to observe complete speciation with time and Fig. 

7:14 presents rich amine speciation with time observed during Day 1 (a), Day “(2) and 

Day (3) based on the updated speciation models for PACT plant. From these plots, it can 

be clearly distinguish how the relationship between chemical compositions in the 

equilibrium in the system. For example, when the CO2 loading in the system is increased 

(upto 0.5), carbonate/ bicarbonate and carbamate concentrations are increased in the 

system.  

 

7.6 Process understanding through PAT  

As mentioned in section 1, one of the greatest advantages of using a PAT tool instead of 

a traditional offline analysis is the ability to use the results obtained from the PAT 

analyser to control, understand and gain knowledge about the process during an after a 

process cycle. In the carbon dioxide absorption desorption process by amine, the 

required local performance is to capture more CO2 from the flue gas (absorption rate/ 

CO2 removal efficiency) and strip out more CO2 from the CO2 absorbed amine 

(desorption rate/amine regeneration efficiency). But it is not always possible to maintain 

the capture plant at optimum process parameters to achieve higher absorption and 

desorption rates especially due to the dependency of the upstream combustion process 

(power plant / industrial unit). As a result the capture process need to be controlled in 

odd process conditions.  For instance , (Tait et al., 2016) mentions a strategy to capitalise 

on high electricity selling price by decoupling of steam flow from the reboiler such as 

flow of solvent to the absorber is reduced to 50% in addition to the reduction of hot water 

flow to zero. When the plant is switched to such a change, the data from a real-time 

process analyser can be used to comment on process trends and their impact to the 

absorption/desorption capacities. The process changes occurred during the 3 days were 

mapped with the Raman predictions and checked whether they generate sensible 

information.  
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Fig. 7:15. Speciation results in Day 1 as function of total CO2 loading (mol/mol MEA)  

 
Fig. 7:16. Speciation results in Day 2 as function of total CO2 loading (mol/mol MEA) 

 
Fig. 7:17. Speciation results in Day 3 as a function of total CO2 loading (mol/mol MEA) 
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8 Continuous Improvement  

8.1 Impurities in the solvent stream vs model predictivity 

The calibration models which predict liquid speciation in real-time plant operation 

become invalid when the solvent stream contains impurities. In a CO2 capture plant, 

these impurities are introduced either from the flue gas stream entering to the absorber, 

or from the degradation products and heat stable salts or from make-up water. Although 

most of the research, simulation and modelling work are carried out on synthetic flue 

gas compositions where CO2, O2 and N2 are the main components, CO2 emission sources 

such as power plants and manufacturing facilities include several other chemical 

components. According to (Zhang et al., 2017) flue gas from a 555 MWe natural gas 

combined cycle (NGCC) power plant includes 4.1% CO2, 7.9% moisture, 12.1 % oxygen 

and 75.9% nitrogen from the exit of  heat recovery steam generator while 550 MWe 

pulverized coal (PC) has 13.8% CO2, 7.5% moisture, 3.6 % oxygen and 75.1% nitrogen 

from the exit of  flue gas desulpharization unit. The flue gas from the NGCC power plant 

has a much higher O2 concentration at 12.1% comparing with 3.6% for the PC case which 

may cause greater oxidative degradation problems for the amine based capture plant. 

Lee et al. (2008) found that flue gas from 500 MW pulverized coal combustion power 

plants could result in impurities of 500 and 3000 parts per million by volume (ppmv) of 

SO2, 5-60 ppmv of SO3, 10-40 ppmv of NO2 and 5-100 ppmv of HCl. Apart from CO2, 

NOx, SO2, CO, and small quantities of VOC, ammonia (NH3), chlorine, and HCl  may be 

emitted in the manufacture of Portland cement (Last et al., 2011). emissions from natural 

gas-fired boilers and furnaces include CO, NOx, CO, CO2, CH4, N2O, VOCs, trace 

amounts of SO2, and particulate matter (Last et al., 2011). Chloride, nitrate and nitrite are 

sources for heat stable salts coming from make up water.  

 

Technologies have resulted significant emission reductions such as selective catalytic 

reduction, flue gas desulphurization and activated carbon filtering. Therefore, the 

concentration of impurities in flue gas is considerably very low when entering the 

capture plant. However if they contaminate the solvent stream, the chemistry between 

CO2 and amine is affected making adverse impact on absorption and desorption 

performance. For instance, SO2, SO3 and NO2 (in the range of 10 – 40 ppmv) react with 

MEA and form heat-stable salts such as isothiocynatoethane and tetrahydrothiophene 

(Lee et al., 2009). Heat stable salts are connected to the amine degradation. Amine 

degradation can be oxidative or thermal. It is an irreversible transformation of an 

absorbent solution into other compounds. Ammonia, aldehydes and carboxylic acids are 

primary oxidative degradation compounds and HEIA (N-(2-hydroxyethyl) 

imidazolidinone), HEEDA (N-(2-hydroxyethyl) ethylenediamine) and OZD (2-

Oxazolidinone) are three main thermal degradation products. Anions of strong 

carboxylic acids (eg: formic acid and oxalic acid,) form heat stable salts (HSS) (Fytianos 

et al., 2016). Common HSS species present in amine based gas units are nitrate, nitrite, 

formate, oxalate, acetate, sulfate, sulfite, phosphate, thiosulphate, thiocyanate and 
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glycolate (Stewart et al., 1994). Source of flue gas and plant operational conditions mainly 

determine the amount of above unwanted chemical components in the capture plant.  

 

The in-situ speciation predicted by the models presented in Table 7.1, may not be reliable 

when these chemical components present in the system. The solution is two-fold. 1). 

New models can be developed (calibration validation demonstration) using samples 

containing degraded compounds and heat stable salts. 2). Existing models can be 

recalibrated with the same samples used in this study but with a different variable range. 

This range should exclude the Raman active bands related to those impurities. In the 

PAT perspective, solution 1 is more reliable than solution 2.  An experiment was 

performed to determine the impact of these impurities to the multivariate models 

developed in this study. Eleven aqueous solutions containing potassium acetate, sodium 

oxalate, sodium formate, potassium sulphate, sodium hydrogen sulphite, sodium 

chloride, glycine, sulphanilic acid, nitric acid, sulphuric acid and formaldehyde solution 

were prepared and their Raman spectra were examined. Fig. 8:1 shows these spectra 

together with Raman spectra for loaded and unloaded MEA solutions. Spectra shown 

are baseline corrected and offset for clarity. The dashed boundary show the Raman 

variable range used for the multivariate models in this study. Almost all solutions 

exhibit one or more Raman active band in the areas within dashed lines. These areas 

contain Raman bands which are rich with chemical information for amine species (MEA, 

MEAH+, MEACOO-) and carbon species (CO32-, HCO3-, MEACOO-) and these bands 

were used for developing speciation models (refer Table 5.4). 

 

Fig. 8:2 compares the Raman signal between a loaded 30% MEA, an unloaded 30% MEA, 

aqueous potassium acetate, potassium acetate in loaded MEA and potassium acetate in 

unloaded MEA. The Raman signals are shown from 780 cm-1 to 3420 cm-1. The purpose 

of this comparison was to understand the presence of acetate in the amine solvent system 

to multivariate models. Three Raman active bands ([935, 1350 and 1417]cm-1) were 

observed for all the acetate containing mixtures in the fingerprint region. Fig. 8:3 shows 

a similar spectral investigation when oxalate is introduced the amine system. Presence 

of oxalate introduces several Raman active bands in the fingerprint and low frequency 

region of the MEA-CO2-H2O system. Similarly  Fig. 8:4 to Fig. 8:9 show the effect of 

sulphate, sulphite, glycine, nitrate, nitrite and aldehyde. This investigation covers only 

a few number of compounds. However, there are hundreds of such degraded 

compounds and HSSs in a commercial scale amine based capture plant.   
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Fig. 8:2. Effect of acetate on CO2 loaded aqueous MEA system 

 

 

 
Fig. 8:3. Effect of oxalate on CO2 loaded aqueous MEA system 
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Fig. 8:4. Effect of sulphate on CO2 loaded aqueous MEA system 

 

 

 
Fig. 8:5. Effect of hydrogen sulphite on CO2 loaded aqueous MEA system 
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Fig. 8:6. Effect of glycine on CO2 loaded aqueous MEA system 

 

 

 
Fig. 8:7. Effect of nitrate on CO2 loaded aqueous MEA system 
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Fig. 8:8. Effect of nitrite on CO2 loaded aqueous MEA system 

 
 

Fig. 8:9. Effect of aldehyde on CO2 loaded aqueous MEA system 

 

The conclusion from this investigation is that the presence of impurities in the solvent 

stream reduces the robustness of the multivariate models developed in this study. The 

speciation will be over predicted or under predicted. It is recommended to perform a 

similar experiment with thermal and oxidative degradation products which were not 

included in this experiment. In addition samples from pilot plant facilities which contain 

degraded solvents can be used for the analysis. New multivariate models should be 

developed addressing these scenarios.  
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8.2 Lifecycle management of PAT procedure  

8.2.1 Risk assessment  

The predictability of the chemometric models developed/updated so far during this PhD 

research are valid only to the calibrated & validated conditions in the respective cases. 

The original models developed in lab (section 5) went through a number of changes in 

mini-pilot scale experiments (CO2 rig) and pilot scale (PACT) experiments. The effect of 

different impurities in flue gas, make up water and solvent degradation products to the 

model predictivity was understood with the investigation in section 8.1. When the 

environmental conditions lie beyod the boundary limits (valid region) of multivariate 

models, the process analyser may still provide a result which is not reliable. Several 

chemical and physical factors contribute to such abnormalities and therefore it is 

important to set up a risk assessment plan to respond when the calibration model 

performance show abnormalities.  

 
Table 8.1. Example of a risk assessment based on FMEA 

6 M category Failure mode Failure cause Failure effect 

MAN  Incorrect handing 

of analyser 

infrastructure; 

chemometrics 

software 

Operator not trained Incorrect results 

MACHINE  Probe; 

Fibre optic cables 

Probe tip not cleaned;  

Permanent damage to the 

fibre optic cables due to 

bending 

 

Incorrect results 

MATERIALS Contamination in 

flue gas; 

Contamination in 

solvent stream 

 

NOx, SOx, HSS, 

degradation products 

Over/under predicted 

results 

METHOD Manual sampling; 

Offline analysis 

method 

Sampling errors during 

sample extraction, 

transportation to the lab, 

and sample preparation 

for chemical analysis, 

Errors in chemical 

analysis 

Predictions and offline 

measurements are not 

matched 

MOTHER 

NATURE 

Loose connections 

between analyzer 

accessories 

Hollow accessories are 

contaminated with 

solvent vapour, water 

vapour, rain water, 

particulate matters 

Damage to the analyzer 

MEASUREMENT Improper 

signal/noise ratio 

Higher laser 

temperature; 

Saturation of spectral 

output 

Analyser malfunctioning; 

No spectral change with 

time 
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This plan is useful specially for people such as plant operators who use the process 

analyser in the plant but have little or no knowledge about chemometrics or PAT.  Table 

8.1 shows an example of a risk assessment plan based on failure mode and effects 

analysis (FMEA) (Abou El Hassan et al., 2017). It introduces some of the potential failures 

which make the Raman spectrometer unsuccessful for intended purpose (complete 

speciation) when it is used in the same capture plants or different plants. These failures 

are divided into 6 categories as man, machine, materials, method, mother nature and 

measurement and are known as ‘6M category’. This FMEA should be extended further 

to include risk priority numbers to identify risk level, an action plan and control 

mechanism for each failure.  

8.2.2 Calibration model maintenance  

These types of risk assessments encourage to find preventive actions for failures. 

Physical failures can be  prevented with careful practices such as careful handling of 

process accessories and proper training of operator. The chemical failures can be 

addressed with a proper calibration model maintenance plan. Fig. 8:10 provides a 

roadmap to sustain or improve models over time and changing conditions with the least 

amount of cost and effort (Wise et al., 2015). Based on the experiences with CO2 rig and 

PACT trials, this roadmap describes adequately the challenges with the PAT tool in this 

study and hence is recommended to follow. It contains model updating methods which 

are slope/bias correction, adding samples to calibration set and instrument 

standardization  and calibration transfer procedures (GLS = Generalized Least Squares; 

OSC = Orthogonal Signal Correction; DS = Direct Standardization ; PDS = Piece-wise 

Direct Standardization; SST = Spectral Space Transformation).  
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Fig. 8:10. Model maintenance flow chart (Source : (Wise et al., 2015)) 

 

Information given in Fig. 8:10 is comparable to the ‘laboratory to in-situ speciation model 

update’ approach that was followed in this study.  



 

   

 

  103 

 

9 Conclusion and Recommendations 

Carbon capture and sequestration is obligatory to reach climate change mitigation 

targets and keep the global atmospheric temperature increase well below 2 °C. 

Commercial deployment of several large scale CO2 capture facilities should be 

established within the next few years to agree with 2DS scenario. The ability of process 

analytical technology to increase efficiency, reduce time-consuming activities and 

facilitate intelligent decisions through timely measurements is useful to improve R & D 

activities, pilot plant campaigns and chemical management in the CO2 capture process.  

 

Liquid phase speciation by Raman spectroscopy together with multivariate modelling 

is such a process analytical technology which was the focus of this research study. 

Conventional aqueous monoethanolamine system was selected for this study because it 

is the preferred CO2 capture technology for commercial deployment. The procedure of 

converting a spectroscopic signal into a concentration value is not straight forward and 

includes several steps which are, the preparation of samples for calibration and 

validation, sample measurements from the spectrometer and reference analysis from a 

standard reliable method, data pretreatment, variable selection, multivariate calibration 

and validation. Each of these steps must be addressed carefully to obtain a reliable and 

robust calibration model for the process analyser. Seven multivariate calibration models 

were developed under this study to predict the species concentrations of carbonate, 

bicarbonate, carbamate, sum of carbonate and bicarbonate, protonated amine, free 

amine and CO2 loading in an MEA-CO2-H2O system. The models were demonstrated in 

continuous operation at CO2 rig, USN and PACT Facility, Sheffield and calibration 

models were further updated to yield better predictability for each situation. In addition, 

Raman spectroscopic measurements acquired during PACT campaign and the 

corresponding offline titration measurements were used to develop a new calibration 

model to predict amine weight percentage. Reliability of the Raman spectroscopic 

measurements together with multivariate calibration models were assessed during 

PACT campaign. In-situ speciation opens opportunities of using this spectrometer for 

other areas such as to understand chemical kinetics, reaction mechanisms, process 

optimization, fault detection and process control.    

 

Fig. 9:1 illustrates a complete process analytical technology overview that can be applied 

to a CO2 capture plant when a single process analyser such as Raman spectroscopy is 

used for speciation. It shows the application of chemometrics in different aspects where 

PLSR is used to characterise chemical concentrations and MSPC is used to detect process 

abnormalities and fault detection. Long term results of the routine laboratory 

measurements, spectroscopic measurements and process data (eg: pressure, 

temperature, flow rate and flue gas properties) are used to build relationships between 

different attributes which can be used to enhance process understanding. For example, 

the time required for saturation of the rich amine line can be monitored by Raman CO2 

loading predictions while process conditions which make this saturation faster or slower 

can be found by mapping process data. Start of formation of heat stable salts and 
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degradation products can be detected from the spectrometer while the process 

conditions that trigger the degradation can be mapped from process data. Concepts of 

Theory of Sampling should be adhered during both lab sampling and process sampling. 

There is also an opportunity to make a plant-wide chemometric evaluation as shown in 

Fig. 9:1 to build relationships between gas measurements from flue gas input, gas output 

from absorber top, gas output from desorber top, specifications of process equipment, 

process parameters, hot and cold water utilities and levelized cost of electricity (for CCS 

integration in power plants). As mentioned in section 8, the developed method should 

undergo continuous improvement to preserve its reliability to various physical and 

chemical interferences that were not included in the initial model development stage. 

Specially the model predictivity, limitations and fluorescent which can arise from 

discoloration of solvent due to degradation should be assessed with future plant trails.  

 

Raman spectroscopy reveals chemical information in MEA-CO2-H2O system.  It is easy 

to integrate into the capture facility for real-time speciation monitoring. However, 

solvent degradation and colour change are the main challenges to resolve when 

continuing this instrument for a long period in the plant. The solvent is transformed 

from colourless to yellow, orange, brown, dark brown and finally black with time. 

Fluorescence from coloured compounds hinder the chemical information in Raman 

spectra.   Therefore it is recommended to investigate the spectral behaviour and model 

predictivity when solvent degradation is started in a real capture plant.  Other 

disadvantage of the method is that a chemometric model development is time-

consuming. Reference analysis (13C NMR analysis in this study) are normally expensive.  

The prediction results are valid only to the conditions maintained for calibration data 

and therefore the models are required to update for specific applications.   The Kaiser 

RXN2 analyzer used in this study was compatible for outdoor use, could be remotely 

operated and was easy to integrate to capture plants inline.  But the instrument is 

expensive and improper handling can cause the instrument and its accessories to be 

permanently damaged.  For instance, amine leaks or amine vapours can damage the 

analyser if they are not properly sealed.  The instrument uses 785 nm NIR diode laser 

with 400 mW maximum power.  Direct contact of laser cause permanent eye damage 

and the operator should always follow the laser safety rules. 



 

   

 

  105 

 

 

 

 

F
ig

. 9
:1

. C
o

m
p

le
te

 P
A

T
 o

v
er

v
ie

w
 f

o
r 

th
e 

C
O

2 
ca

p
tu

re
 p

ro
ce

ss
 a

ft
er

 i
n

te
g

ra
ti

n
g

 t
h

e 
R

am
an

 s
p

ec
tr

o
sc

o
p

y
 





8.2 Lifecycle management of PAT procedure 

  

 

  107 

 

References 

Abou El Hassan, D. S., Elsherpieny, E. A., Kholif, A. M., & Khorshid, M. A. (2017). The 

role of failure mode and effects analysis in improving the quality performance of 

dairy laboratories. Journal of Food Safety, 37(4). doi:10.1111/jfs.12364 

Andersen, C. M., & Bro, R. (2010). Variable selection in regression - a tutorial. Journal of 

Chemometrics, 24(11‐12), 728-737. doi:10.1002/cem.1360 

Araújo, M. C. U., Saldanha, T. C. B., Galvão, R. K. H., Yoneyama, T., Chame, H. C., & 

Visani, V. (2001). The successive projections algorithm for variable selection in 

spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory 

Systems, 57(2), 65-73. https://doi.org/10.1016/S0169-7439(01)00119-8 

Archane, A., Fürst, W., & Provost, E. (2011). Influence of poly(ethylene oxide) 400 

(PEG400) on the absorption of CO2 in diethanolamine (DEA)/H2O systems. Journal 

of Chemical & Engineering Data, 56(5), 1852-1856. 10.1021/je100854j 

Archane, A., Gicquel, L., Provost, E., & Fürst, W. (2008). Effect of methanol addition on 

water–CO2–diethanolamine system: Influence on CO2 solubility and on liquid 

phase speciation. Chemical Engineering Research and Design, 86(6), 592-599. 

10.1016/j.cherd.2008.03.005 

ASTM. (2010). ASTM UOP 826 : Carbon dioxide in amine solution In: American Society 

for Testing and Materials. 

Austgen, D. M., Rochelle, G. T., Peng, X., & Chen, C. C. (1989). Model of vapor-liquid 

equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL 

equation. Industrial Engineerign Chemistry, 28(7), 1060-1073. 10.1021/ie00091a028 

Batista De Carvalho, L. A. E., & Teixeira-Dias, J. J. C. (1995). Raman spectra, 

conformational stability and normal coordinate analysis of ethylmethylamine. 

Journal of Raman Spectroscopy, 26, 653–661.  

Beumers, P., Brands, T., Koss, H.-J., & Bardow, A. (2016). Model-free calibration of 

Raman measurements of reactive systems: Application to 

monoethanolamine/water/CO2. Fluid Phase Equilibria, 424, 52-57. 

https://doi.org/10.1016/j.fluid.2015.10.004 

Bingue, E. W. P., & Cook, D. A. (2014). A Practical Approach to Verification and 

Validation. http://conferences.computer.org/stc/2014/papers/5034a024.pdf 

Bohning, J. J., Misra, T. N., & Choudhury, M. (1998). An International Historic Chemical 

Landmark. The Raman Effect (Vol. 2019). Calcutta: the Office of Communications, 

American Chemical Society 

https://doi.org/10.1016/S0169-7439(01)00119-8
https://doi.org/10.1016/j.fluid.2015.10.004
http://conferences.computer.org/stc/2014/papers/5034a024.pdf


9 Conclusion and Recommendations 

 

 

108   

 

BP. (2018a). BP Energy Outlook 2018 edition. 

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-

economics/energy-outlook/bp-energy-outlook-2018.pdf 

BP. (2018b). BP Statistical Review of World Energy London  

BP. (2019). BP Energy Outlook : 2019 edition.  

Böttinger, W., Maiwald, M., & Hasse, H. (2008). Online NMR spectroscopic study of 

species distribution in MEA–H2O–CO2 and DEA–H2O–CO2. Fluid Phase Equilibria, 

263(2), 131-143. https://doi.org/10.1016/j.fluid.2007.09.017 

Caplow, M. (1968). Kinetics of carbamate formation and breakdown. Journal of the 

American Chemical Society, 90(24), 6795-6803. 10.1021/ja01026a041 

Centner, V., Massart, D.-L., de Noord, O. E., de Jong, S., Vandeginste, B. M., & Sterna, C. 

(1996). Elimination of uninformative variables for multivariate calibration. 

Analytical Chemistry, 68(21), 3851-3858. 10.1021/ac960321m 

Chen, C.-C., & Evans, L. B. (1986). A local composition model for the excess Gibbs energy 

of aqueous electrolyte systems. AIChE Journal, 32(3), 444-454. 

doi:10.1002/aic.690320311 

Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. In Analytical 

Chemistry: John Wiley & Sons, Ltd. 

Crooks, J. E., & Donnellan, J. P. (1989). Kinetics and mechanism of the reaction between 

carbon dioxide and amines in aqueous solution. Journal of the Chemical Society, 

Perkin Transactions 2(4), 331-333. 10.1039/P29890000331 

Danckwerts, P. V. (1979). The reaction of CO2 with ethanolamines. Chemical Engineering 

Science, 34(4), 443-446. https://doi.org/10.1016/0009-2509(79)85087-3 

Davidson, R. M. (2007). Post-combustion carbon capture from coal fired plants - solvent 

scrubbing. United Kingdom http://www.iea-

coal.org.uk/content/default.asp?PageId=802 

Davis, A. R., & Oliver, B. G. (1972a). A vibrational-spectroscopic study of the species 

present in the CO2−H2O system. Journal of Solution Chemistry, 1(4), 329-339. 

10.1007/bf00715991 

Davis, A. R., & Oliver, B. G. (1972b). A vibrational-spectroscopic study of the 

speciespresent in the CO2-H2O system. Journal of Solution Chemistry, 1, 329–339.  

Deming, S. N., Palasota, J. A., & Palasota, J. M. (1991). Experimental design in 

chemometrics. Journal of Chemometrics, 5(3), 181-192. doi:10.1002/cem.1180050306 

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf
https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf
https://doi.org/10.1016/j.fluid.2007.09.017
https://doi.org/10.1016/0009-2509(79)85087-3
http://www.iea-coal.org.uk/content/default.asp?PageId=802
http://www.iea-coal.org.uk/content/default.asp?PageId=802


8.2 Lifecycle management of PAT procedure 

  

 

  109 

 

Derks, P. W. J., Huttenhuis, P. J. G., van Aken, C., Marsman, J.-H., & Versteeg, G. F. 

(2011). Determination of the liquid-phase speciation in the MDEA-H2O-CO2 

system. Energy Procedia, 4, 599-605. https://doi.org/10.1016/j.egypro.2011.01.094 

Deshmukh, R. D., & Mather, A. E. (1981). A mathematical model for equilibrium 

solubility of hydrogen sulfate and carbon dioxide in aqueous alkanolamine 

solutions. Chemical Engineering Science, 36(2), 355-362.  

Diab, F., Provost, E., Laloué, N., Alix, P., Souchon, V., Delpoux, O., & Fürst, W. (2012). 

Quantitative analysis of the liquid phase by FT-IR spectroscopy in the system 

CO2/diethanolamine (DEA)/H2O. Fluid Phase Equilibria, 325, 90-99. 

https://doi.org/10.1016/j.fluid.2012.04.016 

Duddu, P. (2015). The 10 worst blackouts of the last 50 years. Retrieved from 

https://www.power-technology.com/features/featurethe-10-worst-blackouts-in-

the-last-50-years-4486990/ 

Eilers, P. H. C. (2003). A Perfect smoother. Analytical Chemistry, 75(14), 3631-3636.  

Einbu, A., Ciftja, A. F., Grimstvedt, A., Zakeri, A., & Svendsen, H. F. (2012). Online 

analysis of amine concentration and CO2 loading in MEA solutions by ATR-FTIR 

spectroscopy. Energy Procedia, 23, 55-63. 

https://doi.org/10.1016/j.egypro.2012.06.040 

Ergon, R., & Esbensen, K. (2001). A didactically motivated PLS prediction algorithm. 

Modeling, Identification and Control, 22(3), 131-139. 10.4173/mic.2001.3.1 

Esbensen, K. (2018). Pierre Gy (1924-2015): The key concept of sampling errors. 

Spectroscopy Europe, 30(4), 25-28.  

Esbensen, K. H. (2009). Process sampling – the missing link in Process Analytical 

Technology (PAT). https://www.camo.com/downloads/ESS-2009/process-

sampling-missing-link-pat.pdf 

Esbensen, K. H., & Geladi, P. (2010a). Principles of Proper Validation: use and abuse of 

re-sampling for validation. Journal of Chemometrics, 24(3 ‐ 4), 168-187. 

doi:10.1002/cem.1310 

Esbensen, K. H., Guyot, D., Westad, F., & Houmoller, L. P. (2010b). Multivariate data 

analysis: in practice: CAMO Software 

Faramarzi, L., Kontogeorgis, G. M., Thomsen, K., & Stenby, E. H. (2009). Extended 

UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous 

alkanolamine solutions. Fluid Phase Equilibria, 282(2), 121-132. 

https://doi.org/10.1016/j.fluid.2009.05.002 

https://doi.org/10.1016/j.egypro.2011.01.094
https://doi.org/10.1016/j.fluid.2012.04.016
https://www.power-technology.com/features/featurethe-10-worst-blackouts-in-the-last-50-years-4486990/
https://www.power-technology.com/features/featurethe-10-worst-blackouts-in-the-last-50-years-4486990/
https://doi.org/10.1016/j.egypro.2012.06.040
https://www.camo.com/downloads/ESS-2009/process-sampling-missing-link-pat.pdf
https://www.camo.com/downloads/ESS-2009/process-sampling-missing-link-pat.pdf
https://doi.org/10.1016/j.fluid.2009.05.002


9 Conclusion and Recommendations 

 

 

110   

 

FDA. (2004). FDA Guidance for Industry: PAT - A Framework for Innovative 

Pharmaceutical Development, Manufacturing and Quality Assurance Retrieved 

from http://www.gmp-compliance.org/guidemgr/files/PAT-FDA-6419FNL.PDF 

Flø, N. E., Knuutila, H., Kvamsdal, H. M., & Hillestad, M. (2015). Dynamic model 

validation of the post-combustion CO2 absorption process. International Journal of 

Greenhouse Gas Control, 41, 127-141. https://doi.org/10.1016/j.ijggc.2015.07.003 

Fytianos, G., Ucar, S., Grimstvedt, A., Hyldbakk, A., Svendsen, H. F., & Knuutila, H. K. 

(2016). Corrosion and degradation in MEA based post-combustion CO2 capture. 

International Journal of Greenhouse Gas Control, 46, 48-56. 

https://doi.org/10.1016/j.ijggc.2015.12.028 

GCCSI. (2014). The global CCS status 2014. Australia  

GCCSI. (2018). The Global Status of CCS: 2018. Australia  

Geers, L. F. G., van de Runstraat, A., Joh, R., Schneider, R., & Goetheer, E. L. V. (2011). 

Development of an online monitoring method of a CO2 capture process. Industrial 

& Engineering Chemistry Research, 50(15), 9175-9180. 10.1021/ie102418m 

Guenard, R., & Thurau, G. (2010). Implementation of Process Analytical Technologies. 

In Bakeev, K. A. (Ed.), Process Analytical Technology: Spectroscopic Tools and 

Implementation Strategies for the Chemical and Pharmaceutical Industries (pp. 17-36). 

Chichester: John Wiley & Sons, Ltd.10.1002/9780470689592.ch2 

Halstensen, M., Jilvero, H., Jinadasa, W. N., & Jens, K.-J. (2017). Equilibrium 

measurements of the NH3-CO2-H2O system: Speciation based on Raman 

spectroscopy and multivariate modeling. Journal of Chemistry, 2017, 13. 

10.1155/2017/7590506 

Henrik, J., Jens, K.-J., Normann, F., Andersson, K., Halstensen, M., Eimer, D., & 

Johnsson, F. (2015). Equilibrium measurements of the NH3–CO2–H2O system – 

measurement and evaluation of vapor–liquid equilibrium data at low 

temperatures. Fluid Phase Equilibria, 385, 237-247.  

Herzog, H., Drake, E., & Adams, E. (1997). CO2 Capture, Reuse, and Storage Technologies 

for Mitigating Global Climate Change : A White Paper. US  

Hessen, E. T., Haug-Warberg, T., & Svendsen, H. F. (2009). Thermodynamic models for 

CO2-H2O-alkanolamine systems, a discussion. Energy Procedia, 1(1), 971-978. 

https://doi.org/10.1016/j.egypro.2009.01.129 

Hilliard, M. D. (2008). A predictive thermodynamic model for an aqueous blend of potassium 

carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas. 

(PhD), The University of Texas at Austin, Austin, Texas.  

http://www.gmp-compliance.org/guidemgr/files/PAT-FDA-6419FNL.PDF
https://doi.org/10.1016/j.ijggc.2015.07.003
https://doi.org/10.1016/j.ijggc.2015.12.028
https://doi.org/10.1016/j.egypro.2009.01.129


8.2 Lifecycle management of PAT procedure 

  

 

  111 

 

Hosking, J., Mudu, P., & Dora, C. (2011). Health co-benefits of climate change mitigation - 

Transport sector Health in the green economy. Switzerland  

Howell, N. K., Arteaga, G., Nakai, S., & Li-Chan, E. C. Y. (1999). Raman Spectral Analysis 

in the C−H Stretching Region of Proteins and Amino Acids for Investigation of 

Hydrophobic Interactions. Journal of Agricultural and Food Chemistry, 47(3), 924-933. 

10.1021/jf981074l 

Idris, Z., Jens, K. J., & Eimer, D. A. (2014). Speciation of MEA-CO2 adducts at equilibrium 

using Raman spectroscopy. Energy Procedia, 63, 1424-1431. 

https://doi.org/10.1016/j.egypro.2014.11.152 

IEA. (2013a). Redrawing the Energy - Climate Map. World Energy Outlook Special Report. 

Paris  

IEA. (2013b). Technology roadmap carbon capture and storage Paris  

IEA. (2015). Energy Technology Perspectives 2015. Mobilising Innovation to Accelerate Climate 

Action. Paris  

IEA. (2016). Ready for CCS retrofit. The potential for equipping China’s existing coal fleet with 

carbon capture and storage. Paris  

IEA. (2017a). Energy Technology Perspectives 2017. Catalysing Energy Technology 

Transformations. Paris  

IEA. (2017b). Global Energy & CO2 Status Report 2017. Paris  

IEA. (2017c). Tracking Clean Energy Progress 2017. Energy Technology Perspectives 2017 

Excerpt Informing Energy Sector Transformations. Paris  

IEAGHG. (2014). Assessment of Emerging CO2 Capture Technologies and Their Potential to 

Reduce Costs, Report 2014/TR4. UK  

IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working 

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 

Change Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, USA  

IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working 

Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change.  

Jackson, P., Robinson, K., Puxty, G., & Attalla, M. (2009). In situ Fourier Transform-

Infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine 

solutions. Energy Procedia, 1(1), 985-994. 

https://doi.org/10.1016/j.egypro.2009.01.131 

https://doi.org/10.1016/j.egypro.2014.11.152
https://doi.org/10.1016/j.egypro.2009.01.131


9 Conclusion and Recommendations 

 

 

112   

 

Jakobsen, J. P., Krane, J., & Svendsen, H. F. (2005). Liquid-phase composition 

determination in CO2−H2O−alkanolamine systems:  An NMR study. Industrial & 

Engineering Chemistry Research, 44(26), 9894-9903. 10.1021/ie048813+ 

Jinadasa, M. H. W. N., Chandra, K. A., & Halstensen, M. (2018a, 26-28 September 2018). 

System development for on-line monitoring using Raman spectroscopy for CO2 absorption 

by MEA. Paper presented at the 59th Conference on Simulation and Modelling 

(SIMS 59), Oslo Metropolitan University, Norway.10.3384/ecp18153328 

Jinadasa, M. H. W. N., Jens, K.-J., & Halstensen, M. (2018b). Process Analytical 

Technology for CO2 Capture. In Karamé, I., Shaya, J., & Srour, H. (Eds.), Carbon 

Dioxide Chemistry, Capture and Oil Recovery: IntechOpen.10.5772/intechopen.76176 

Jinadasa, M. H. W. N., Jens, K.-J., Øi, L. E., & Halstensen, M. (2017). Raman spectroscopy 

as an online monitoring tool for CO2 capture process: Demonstration using a 

laboratory rig. Energy Procedia, 114, 1179-1194. 

https://doi.org/10.1016/j.egypro.2017.03.1282 

Jinadasa, W. N., Jens, K.-J., Pffeifer, C., Ronasi, S., Solar, C. B., & Halstensen, M. (2016). 

Principal Component Analysis applied to CO2 absorption by propylene oxide and amines. 

Paper presented at the 9th EUROSIM Congress on Modelling and Simulation, 

Oulu, Finland.10.3384/ecp17142207  

Kachko, A., van der Ham, L. V., Bakker, D. E., van de Runstraat, A., Nienoord, M., Vlugt, 

T. J. H., & Goetheer, E. L. V. (2016a). In-Line Monitoring of the CO2, MDEA, and 

PZ Concentrations in the Liquid Phase during High Pressure CO2 Absorption. 

Industrial & Engineering Chemistry Research, 55(13), 3804-3812. 

10.1021/acs.iecr.6b00141 

Kachko, A., van der Ham, L. V., Bardow, A., Vlugt, T. J. H., & Goetheer, E. L. V. (2016b). 

Comparison of Raman, NIR, and ATR FTIR spectroscopy as analytical tools for in-

line monitoring of CO2 concentration in an amine gas treating process. International 

Journal of Greenhouse Gas Control, 47, 17-24. 

https://doi.org/10.1016/j.ijggc.2016.01.020 

Kent, R. L., & Elsenberg, B. (1976). Better Data for Amine Treating. Hydrocarbon Process, 

55(2), 87-90.  

Knudsen, J., Bade, O., Askestad, I., Gorset, O., & Mejdell, T. (2014). Pilot plant 

demonstration of CO2 capture from cement plant with advanced amine technology (Vol. 

63).10.1016/j.egypro.2014.11.682 

Larkin, P. (2011). Infrared and Raman Spectroscopy; Principles and Spectral Interpretation (1 

ed.). USA: Elsevier 

https://doi.org/10.1016/j.egypro.2017.03.1282
https://doi.org/10.1016/j.ijggc.2016.01.020


8.2 Lifecycle management of PAT procedure 

  

 

  113 

 

Last, G. V., ,, & Schmick, M. T. (2011). Identification and Selection of Major Carbon Dioxide 

Stream Compositions. Richland, Washington  

Lean, J. L., & Rind, D. H. (2008). How natural and anthropogenic influences alter global 

and regional surface temperatures: 1889 to 2006. 35(18). doi:10.1029/2008GL034864 

Lee, G., Han, C., & Yoon, E. S. (2004). Multiple-Fault Diagnosis of the Tennessee Eastman 

Process Based on System Decomposition and Dynamic PLS. Industrial & 

Engineering Chemistry Research, 43(25), 8037-8048. 10.1021/ie049624u 

Lee, J.-Y., Keener, T., & Yang, Y. J. (2008). Impacts of flue gas impurities in sequestered CO2 

on groundwater sources: A process analysis and implications for risk management. Paper 

presented at the US EPA/DOE/EPRI Combined Power Plant Air Pollutant Control 

Symposium: "Mega Symposium”, Baltimore. 10.3155/2008CP175.19 

Lee, J.-Y., Keener, T. C., & Yang, Y. J. (2009). Potential flue gas impurities in carbon 

dioxide streams separated from coal-fired power plants. Journal of the Air & Waste 

Management Association, 59(6), 725-732. 10.3155/1047-3289.59.6.725 

Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current 

status of carbon dioxide capture and storage technologies. Renewable and 

Sustainable Energy Reviews, 39, 426-443. https://doi.org/10.1016/j.rser.2014.07.093 

Li, H., Liang, Y., Xu, Q., & Cao, D. (2009). Key wavelengths screening using competitive 

adaptive reweighted sampling method for multivariate calibration. Analytica 

Chimica Acta, 648(1), 77-84. https://doi.org/10.1016/j.aca.2009.06.046 

Li, J., Zhang, H., Gao, Z., Fu, J., Ao, W., & Dai, J. (2017). CO2 capture with chemical 

looping combustion of gaseous fuels: An overview. Energy & Fuels, 31(4), 3475-

3524. 10.1021/acs.energyfuels.6b03204 

Li, Y.-S., & Church, J. S. (2014). Raman spectroscopy in the analysis of food and 

pharmaceutical nanomaterials. Journal of Food and Drug Analysis, 22(1), 29-48. 

https://doi.org/10.1016/j.jfda.2014.01.003 

Liguori, S., & Wilcox, J. (2017). Chapter 11 - Silica Membranes Application for Carbon 

Dioxide Separation. In Basile, A. & Ghasemzadeh, K. (Eds.), Current Trends and 

Future Developments on (Bio-) Membranes (pp. 265-294): 

Elsevier.https://doi.org/10.1016/B978-0-444-63866-3.00011-X 

Liland, K. H., Kohler, A., & Afseth, N. K. (2016). Model-based pre-processing in Raman 

spectroscopy of biological samples. 47(6), 643-650. doi:10.1002/jrs.4886 

Long, D. A. (2002). Classical Theory of Rayleigh and Raman Scattering. In The Raman 

Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules: John Wiley 

& Sons Ltd 

https://doi.org/10.1016/j.rser.2014.07.093
https://doi.org/10.1016/j.aca.2009.06.046
https://doi.org/10.1016/j.jfda.2014.01.003
https://doi.org/10.1016/B978-0-444-63866-3.00011-X


9 Conclusion and Recommendations 

 

 

114   

 

Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: 

Consequences and alternatives. Desalination, 380, 93-99. 

https://doi.org/10.1016/j.desal.2015.08.004 

Lyndgaard, L. B. (2013). Apppplications of Raman Spectroscopy and Multivariate Data 

Analysis in Food and Pharmaceutical Sciences. (PhD), University of Copenhagen, 

Copenhagen.  

Masohan, A., Ahmed, M., Nirmal, S. K., Kumar, A., & Garg, M. O. (2009). A simple pH-

based method for estimation of CO2 absorbed in alkanolamines. Indian Journal of 

Science and Technology 2(4), 59-64. 10.17485/ijst/2009/v2i4/29433 

Miller, C. E. (2010). Chemometrics in Process Analytical Technology (PAT). In Bakeev, 

K. A. (Ed.), Process Analytical Technology.doi:10.1002/9780470689592.ch12 

Montañés, R. M., Flø, N. E., Dutta, R., Nord, L. O., & Bolland, O. (2017). Dynamic process 

model development and validation with transient plant data collected from an 

MEA test campaign at the CO2 Technology Center Mongstad. Energy Procedia, 114, 

1538-1550. https://doi.org/10.1016/j.egypro.2017.03.1284 

Morton, F., Laird, R., & Northington, J. (2013). The National Carbon Capture Center: 

Cost-effective test bed for carbon capture R&D. Energy Procedia, 37, 525-539. 

https://doi.org/10.1016/j.egypro.2013.05.139 

Naes, T., Irgens, C., & Martens, H. (1986). Comparison of Linear Statistical Methods for 

Calibration of NIR Instruments (Vol. 35).10.2307/2347270 

NASA/GISS. (2018, 08/02/2018). Global Temperature. Retrieved from 

https://climate.nasa.gov/vital-signs/global-temperature/ 

Ni, F., & Scheraga, H. A. (1985). Resolution enhancement in spectroscopy by maximum 

entropy fourier self-deconvolution, with applications to Raman spectra of peptides 

and proteins. 16(5), 337-349. 10.1002/jrs.1250160512 

Nichola McCann, D. P., Xiaoguang Wang, William Conway, Robert Burns, Moetaz 

Attalla, Graeme Puxty, Marcel Maeder. (2009). Kinetics and Mechanism of 

Carbamate Formation from CO2(aq), Carbonate Species, and Monoethanolamine 

in Aqueous Solution. The Journal of Physical Chemistry A, 113(17), 5022-5029. 

10.1021/jp810564z 

NOAA/ESRL. (2019). Trends in Atmospheric Carbon Dioxide. Retrieved from 

https://www.esrl.noaa.gov/gmd/ccgg/trends/ 

Norişor, M., Badea, A., & Dincǎ, C. (2012). Economical and technical analysis of CO2 

transport ways. UPB Scientific Bulletin, Series C: Electrical Engineering, 74(1), 127-

138.  

https://doi.org/10.1016/j.desal.2015.08.004
https://doi.org/10.1016/j.egypro.2017.03.1284
https://doi.org/10.1016/j.egypro.2013.05.139
https://climate.nasa.gov/vital-signs/global-temperature/
https://www.esrl.noaa.gov/gmd/ccgg/trends/


8.2 Lifecycle management of PAT procedure 

  

 

  115 

 

Næs, T., & Martens, H. (1984). Multivariate calibration. II. Chemometric methods. TrAC 

Trends in Analytical Chemistry, 3(10), 266-271. https://doi.org/10.1016/0165-

9936(84)80044-8 

Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & Engelsen, S. B. (2000). 

Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric 

Study with an Example from Near-Infrared Spectroscopy. Applied Spectroscopy, 

54(3), 413-419. 10.1366/0003702001949500 

Ohno, K., Inoue, Y., Yoshida, H., & Matsuura, H. (1999). Reaction of Aqueous 2-(N-

Methylamino)ethanol Solutions with Carbon Dioxide. Chemical Species and Their 

Conformations Studied by Vibrational Spectroscopy and ab Initio Theories. The 

Journal of Physical Chemistry A, 103(21), 4283-4292. 10.1021/jp984821q 

Olivier, J. G. J., Schure, K. M., & Peters, J. A. H. W. (2018). Trends in global CO2 and total 

greenhouse gas emissions: 2018 report. The Hague  

OpenDataSoft. Large Scale Carbon Capture Projects Database.  Retrieved 31/01/2019 

https://data.opendatasoft.com/explore/embed/dataset/large-scale-carbon-capture-

projects-

database@kapsarc/table/?disjunctive.capture_type&disjunctive.country&disjuncti

ve.industry&disjunctive.primary_storage_type&disjunctive.project_lifecycle_sta

ge&disjunctive.project_name&sort=time_period 

Pelletier, M. J. (1999 ). Analytical applications of Raman spectroscopy. Oxford: Blackwell 

Science 

Perinu, C., Arstad, B., & Jens, K.-J. (2014). NMR spectroscopy applied to amine–CO2–

H2O systems relevant for post-combustion CO2 capture: A review. International 

Journal of Greenhouse Gas Control, 20, 230-243. 

https://doi.org/10.1016/j.ijggc.2013.10.029 

Petersen, L., & Esbensen, K. H. (2005). Representative process sampling for reliable data 

analysis—a tutorial. 19(11‐12), 625-647. doi:10.1002/cem.968 

Posey, M. L., & Rochelle, G. T. (1997). A thermodynamic model of 

Methyldiethanolamine−CO2−H2S−water. Industrial & Engineering Chemistry 

Research, 36(9), 3944-3953. 10.1021/ie970140q 

Puxty, G., Bennett, R., Conway, W., & Maher, D. (2016). A comparison of Raman and IR 

spectroscopies for the monitoring and evaluation of absorbent composition during 

CO2 absorption processes. International Journal of Greenhouse Gas Control, 49, 281-

289. https://doi.org/10.1016/j.ijggc.2016.03.012 

https://doi.org/10.1016/0165-9936(84)80044-8
https://doi.org/10.1016/0165-9936(84)80044-8
https://data.opendatasoft.com/explore/embed/dataset/large-scale-carbon-capture-projects-database@kapsarc/table/?disjunctive.capture_type&disjunctive.country&disjunctive.industry&disjunctive.primary_storage_type&disjunctive.project_lifecycle_stage&disjunctive.project_name&sort=time_period
https://data.opendatasoft.com/explore/embed/dataset/large-scale-carbon-capture-projects-database@kapsarc/table/?disjunctive.capture_type&disjunctive.country&disjunctive.industry&disjunctive.primary_storage_type&disjunctive.project_lifecycle_stage&disjunctive.project_name&sort=time_period
https://data.opendatasoft.com/explore/embed/dataset/large-scale-carbon-capture-projects-database@kapsarc/table/?disjunctive.capture_type&disjunctive.country&disjunctive.industry&disjunctive.primary_storage_type&disjunctive.project_lifecycle_stage&disjunctive.project_name&sort=time_period
https://data.opendatasoft.com/explore/embed/dataset/large-scale-carbon-capture-projects-database@kapsarc/table/?disjunctive.capture_type&disjunctive.country&disjunctive.industry&disjunctive.primary_storage_type&disjunctive.project_lifecycle_stage&disjunctive.project_name&sort=time_period
https://data.opendatasoft.com/explore/embed/dataset/large-scale-carbon-capture-projects-database@kapsarc/table/?disjunctive.capture_type&disjunctive.country&disjunctive.industry&disjunctive.primary_storage_type&disjunctive.project_lifecycle_stage&disjunctive.project_name&sort=time_period
https://doi.org/10.1016/j.ijggc.2013.10.029
https://doi.org/10.1016/j.ijggc.2016.03.012


9 Conclusion and Recommendations 

 

 

116   

 

Raksajati, A., Ho, M. T., & Wiley, D. E. (2018). Comparison of solvent development 

options for capture of CO2 from flue gases. Industrial & Engineering Chemistry 

Research, 57(19), 6746-6758. 10.1021/acs.iecr.8b00283 

Richner, G., & Puxty, G. (2012). Assessing the chemical speciation during CO2 absorption 

by aqueous amines using in situ FTIR. Industrial & Engineering Chemistry Research, 

51(44), 14317-14324. 10.1021/ie302056f 

Robert Guenard, G. T. (2010). Implementation of Process Analytical Technologies. In 

Bakeev, K. A. (Ed.), Process Analytical Technology Spectroscopic Tools and 

Implementation Strategies for the Chemical and Pharmaceutical Industries (2 ed.). UK: 

John Wiley & Sons Ltd 

Robinson, K., McCluskey, A., & Attalla, M. I. (2011). An FTIR spectroscopic study on the 

effect of molecular structural variations on the CO2 absorption characteristics of 

heterocyclic amines. ChemPhysChem, 12(6), 1088-1099. doi:10.1002/cphc.201001056 

Rodionova, O. Y., Esbensen, K., & Pomerantsev, A. (2004). Application of SIC (simple 

interval calculation) for object status classification and outlier detection - 

comparison with regression approach. Journal of Chemometrics, 18(9), 402-413. 

doi:10.1002/cem.885 

Rogers, W. J., Bullin, J. A., Davison, R. R., Frazier, R. E., & Marsh, K. N. (1997). FTIR 

method for VLE measurements of acid-gas–alkanolamine systems. AIChE Journal, 

43(12), 3223-3231. doi:10.1002/aic.690431210 

Roussel, S., Preys, S., Chauchard, F., & Lallemand, J. (2014). Multivariate data analysis 

(Chemometrics). In al., C. P. O. D. e. (Ed.), Process Analytical Technology for the Food 

Industry, Food Engineering Series. New York Springer Science Business Media. DOI 

10.1007/978-1-4939-0311-5_2 

Samarakoon, P. A. G. L., Andersen, N. H., Perinu, C., & Jens, K.-J. (2013). Equilibria of 

MEA, DEA and AMP with bicarbonate and carbamate: A Raman study. Energy 

Procedia, 37, 2002-2010. https://doi.org/10.1016/j.egypro.2013.06.080 

Sato, M., & Hansen, J. (2019). Updating the Climate Science. What Path is the Real World 

Following? Retrieved from http://www.columbia.edu/~mhs119/EnergyConsump/ 

Socrates, G. (2000). Alkane Group Residuals: C–H Group Infrared and Raman Characteristic 

Group Frequencies: Tables and Charts (3 ed.). West Sussex: John Wiley & Sons Ltd 

Souchon, V., Aleixo, M. d. O., Delpoux, O., Sagnard, C., Mougin, P., Wender, A., & 

Raynal, L. (2011). In situ determination of species distribution in alkanolamine-

H2O-CO2 systems by Raman spectroscopy. Energy Procedia, 4, 554-561. 

https://doi.org/10.1016/j.egypro.2011.01.088 

Stewart, E. J., & Lanning, R. A. (1994). Reduce amine plant solvent losses; Part 1 (Vol. 74:6) 

https://doi.org/10.1016/j.egypro.2013.06.080
http://www.columbia.edu/~mhs119/EnergyConsump/
https://doi.org/10.1016/j.egypro.2011.01.088


8.2 Lifecycle management of PAT procedure 

  

 

  117 

 

Stott, P. (2016). How climate change affects extreme weather events. 352(6293), 1517-

1518. 10.1126/science.aaf7271 %J Science 

Svensson, R., Odenberger, M., Johnsson, F., & Strömberg, L. (2004). Transportation 

systems for CO2 - application to carbon capture and storage. Energy Conversion and 

Management, 45(15), 2343-2353. https://doi.org/10.1016/j.enconman.2003.11.022 

Tait, P., Buschle, B., Ausner, I., Valluri, P., Wehrli, M., & Lucquiaud, M. (2016). A pilot-

scale study of dynamic response scenarios for the flexible operation of post-

combustion CO2 capture. International Journal of Greenhouse Gas Control, 48, 216-

233. https://doi.org/10.1016/j.ijggc.2015.12.009 

Templeton, Douglas M. , Ariese, F., Cornelis, R., Danielsson, L.-G., Muntau, H., 

Leeuwen, H. P. V., & Łobiński, R. (2000). Guidelines for terms related to chemical 

speciation and fractionation of elements. Definitions, structural aspects, and 

methodological approaches. Pure Applied Chemistry, 72(8), 1453–1470.  

Thomsen, K., & Rasmussen, P. (1999). Modeling of vapor–liquid–solid equilibrium in 

gas–aqueous electrolyte systems. Chemical Engineering Science, 54(12), 1787-1802. 

https://doi.org/10.1016/S0009-2509(99)00019-6 

Tseng, C.-L., Chen, Y.-K., Wang, S.-H., Peng, Z.-W., & Lin, J.-L. (2010). 2-Ethanolamine 

on TiO2 Investigated by in Situ Infrared Spectroscopy. Adsorption, 

Photochemistry, and Its Interaction with CO2. The Journal of Physical Chemistry A, 

114(27), 11835-11843.  

van der Ham, L. V., Bakker, D. E., Geers, L. F. G., & Goetheer, E. L. V. (2014). Inline 

monitoring of CO2 absorption processes using simple analytical techniques and 

multivariate modeling. Chemical Engineering and Technology, 37(2), 221-228. 

doi:10.1002/ceat.201300249 

van Eckeveld, A. C., van der Ham, L. V., Geers, L. F. G., van den Broeke, L. J. P., Boersma, 

B. J., & Goetheer, E. L. V. (2014). Online monitoring of the solvent and absorbed 

acid gas concentration in a CO2 capture process using monoethanolamine. 

Industrial & Engineering Chemistry Research, 53(13), 5515-5523. 10.1021/ie402310n 

Versteeg, G. F., & van Swaaij, W. P. M. (1988). On the kinetics between CO2 and 

alkanolamines both in aqueous and non-aqueous solutions—I. Primary and 

secondary amines. Chemical Engineering Science, 43(3), 573-585. 

https://doi.org/10.1016/0009-2509(88)87017-9 

Vogt, M., Pasel, C., & Bathen, D. (2011). Characterisation of CO2 absorption in various 

solvents for PCC applications by Raman spectroscopy. Energy Procedia, 4, 1520-

1525. https://doi.org/10.1016/j.egypro.2011.02.020 

https://doi.org/10.1016/j.enconman.2003.11.022
https://doi.org/10.1016/j.ijggc.2015.12.009
https://doi.org/10.1016/S0009-2509(99)00019-6
https://doi.org/10.1016/0009-2509(88)87017-9
https://doi.org/10.1016/j.egypro.2011.02.020


9 Conclusion and Recommendations 

 

 

118   

 

Wang, M., Joel, A. S., Ramshaw, C., Eimer, D., & Musa, N. M. (2015). Process 

intensification for post-combustion CO2 capture with chemical absorption: A 

critical review. Applied Energy, 158, 275-291. 

https://doi.org/10.1016/j.apenergy.2015.08.083 

Wang, Y., Zhao, L., Otto, A., Robinius, M., & Stolten, D. (2017). A review of post-

combustion CO2 capture technologies from coal-fired power plants. Energy 

Procedia, 114, 650-665. https://doi.org/10.1016/j.egypro.2017.03.1209 

Weiland, R. H., & Trass, O. (1969). Titrimetric determination of acid gases in alkali 

hydroxides and amines. Analytical Chemistry, 41(12), 1709-1710. 

10.1021/ac60281a024 

Wise, B. M., & Roginski, R. T. (2015). A Calibration Model Maintenance Roadmap. IFAC-

PapersOnLine, 48(8), 260-265. https://doi.org/10.1016/j.ifacol.2015.08.191 

Wold, H. (1975). Soft modeling by latent variables: the nonlinear iterative partial least 

squares approach. Journal of Applied Probability, 12(S1), 117-142. 

10.1017/S0021900200047604 

Wold, S. (2015). Chemometrics and Bruce: Some Fond Memories. In 40 Years of 

Chemometrics – From Bruce Kowalski to the Future (Vol. 1199, pp. 1-13): American 

Chemical Society.doi:10.1021/bk-2015-1199.ch001 

Wold, S., & Josefson, M. (2006 ). Multivariate Calibration of Analytical Data. In Meyers, 

R. A. & Brown, S. D. (Eds.), Encyclopedia of Analytical Chemistry: John Wiley & 

Sons.doi:10.1002/9780470027318.a5205 

Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: A Basic Tool of 

Chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. 

10.1016/S0169-7439(01)00155-1 

Wong, M. K., Bustam, M. A., & Shariff, A. M. (2015). Chemical speciation of CO2 

absorption in aqueous monoethanolamine investigated by in situ Raman 

spectroscopy. International Journal of Greenhouse Gas Control, 39, 139-147. 

https://doi.org/10.1016/j.ijggc.2015.05.016 

Wong, M. K., Shariff, A. M., & Bustam, M. A. (2016). Raman spectroscopic study on the 

equilibrium of carbon dioxide in aqueous monoethanolamine. RSC Advances, 6(13), 

10816-10823. 10.1039/C5RA22926J 

Workman, J. (2001). NIR spectroscopy calibration basics. In Burns, D. A. & Ciurczak, E. 

W. (Eds.), Handbook of Near-Infrared Analysis (pp. 123-149). Boca Raton: CRC Press 

Yang, Q., Bown, M., Ali, A., Winkler, D., Puxty, G., & Attalla, M. (2009). A carbon-13 

NMR study of carbon dioxide absorption and desorption with aqueous amine 

https://doi.org/10.1016/j.apenergy.2015.08.083
https://doi.org/10.1016/j.egypro.2017.03.1209
https://doi.org/10.1016/j.ifacol.2015.08.191
https://doi.org/10.1016/j.ijggc.2015.05.016


8.2 Lifecycle management of PAT procedure 

  

 

  119 

 

solutions. Energy Procedia, 1(1), 955-962. 

https://doi.org/10.1016/j.egypro.2009.01.127 

Zhang, W., Sun, C., Snape, C. E., Irons, R., Stebbing, S., Alderson, T., . . . Liu, H. (2017). 

Process simulations of post-combustion CO2 capture for coal and natural gas-fired 

power plants using a polyethyleneimine/silica adsorbent. International Journal of 

Greenhouse Gas Control, 58, 276-289. https://doi.org/10.1016/j.ijggc.2016.12.003 

Øi, L. E., Hansen, P. M., & Henriksen, M. (2017). CO2 absorption efficiency and heat 

consumption measured at high gas to liquid ratios in laboratory rig. Energy 

Procedia, 114, 1273-1281. https://doi.org/10.1016/j.egypro.2017.03.1381 

Øi, L. E., Lundberg, J., Pedersen, M., Hansen, P. M., & Melaaen, M. C. (2014). 

Measurements of CO2 absorption and heat consumption in laboratory rig. Energy 

Procedia, 63, 1569-1577. https://doi.org/10.1016/j.egypro.2014.11.166 

 

 

 

https://doi.org/10.1016/j.egypro.2009.01.127
https://doi.org/10.1016/j.ijggc.2016.12.003
https://doi.org/10.1016/j.egypro.2017.03.1381
https://doi.org/10.1016/j.egypro.2014.11.166




 

   

 

  121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART 3 

Published and submitted papers 





   

  

 

  123 

 

Paper A 

In-situ monitoring method for CO2 capture process - complete 

liquid speciation 
 

Jinadasa, M. H. W. N., Jens, K-J., & Halstensen, M. (2019). Paper accepted in Journal of 

Raman Spectroscopy, and is in the first stage of minor corrections. The initial manuscript 

submitted to the journal is attached in this thesis. 

 



9 Conclusion and Recommendations 

 

 

124   

 

  



 1 

In-situ Monitoring Method for CO2 Capture 

Process – Complete Liquid Speciation 

M. H. Wathsala N. Jinadasa*, Klaus-Joachim Jens, Maths Halstensen 

Applied Chemometrics and Research Group (ACRG), Faculty of Natural Sciences and 

Maritime Sciences – University of South-eastern Norway, Post box 235, N-3603 Kongsberg, 

Norway 

KEYWORDS  

CO2 absorption by amine, speciation; Raman spectroscopy; partial least squares regression, in-

situ monitoring 

ABSTRACT  

A reliable in-situ liquid analysis method is crucial in the deployment of CO2 capture plants in 

industrial scale.  A method for determining chemical concentration profiles in an amine based 

CO2 capture process by continuous measurements from Raman spectroscopy is presented. 

Total CO2 loading, concentration of protonated amine, free amine, carbonate, bicarbonate, 

carbamate and sum of carbonate and bicarbonate in a lab scale or industrial scale capture 

process can be quantified directly and fast such as in every minute using the developed method 

and hence Raman spectroscopy becomes a versatile tool for process monitoring, 

thermodynamic modeling and plant optimization scenarios. In the model development stage, 

Raman spectroscopy measurements from 30 w/w% MEA solution at 25℃ and atmospheric 

pressure were calibrated and validated with complete speciation results from NMR reference 

analysis. A chemometric based approach was used to develop prediction models using partial 
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least square regression because of its superiority than univariate analysis to handle 

spectroscopic data. Validation results show an acceptable prediction accuracy for all seven 

models. The paper presents a complete guide for the model development that can be imitated 

to similar solvent systems. Raman spectroscopy can be easily integrated in-line to any location 

in the CO2 capture plant and it has a non- invasive, zero sampling handling approach and hence 

is a promising candidate for in-situ monitoring. 

1. INTRODUCTION 

Amine scrubbing has been in practice to separate CO2 from natural gas since 1930 and is 

considered as a robust technology for CO2 capture from coal-fired power plants 1. Due to the 

availability of related engineering and technical knowledge, the amine technology is closest to 

retrofit of existing power plants as a post-combustion capture solution. Speciation values 

(concentration of species) of amine-CO2-H2O system plays a substantial role to characterize 

vapour liquid equilibrium, thermodynamic modelling, reaction mechanisms and reaction 

kinetics and further helps to improve process configuration, process parameters and scale up 

scenarios. In real-time applications, they can be used as manipulators for process control.  

In this study, we present the development of speciation models, which can be used for 

complete speciation of an MEA-CO2-H2O system. The models are based on Raman 

spectroscopic measurements which were regressed by the PLSR multivariate regression 

technique (partial least square regression)2,3 with reference values obtained from NMR 

spectroscopy.  The models can be used in both offline and in-situ operation and provide a 

simple, fast and robust approach for real-time observation of speciation data in both dynamic 

and steady state conditions. This paper explains the methodology of how the models were 

developed and how they are used in application. The base case for CO2 removal by an aqueous 

monoethanolamine solution is reported as absorption taking place by 30 w/w % MEA solution 
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at 40°C at atmospheric pressure. Typical lean loading can vary between 0.1 to 0.3 mol CO2/mol 

MEA4 and rich loading can go as high as 0.5 mol CO2/mol MEA. The experiments in this study 

was carried out at atmospheric pressure and room temperature with 30 wt% MEA and the CO2 

loading was spanned from upto 0.6120 mol / mol MEA. The upper limit of the loading was the 

highest achievable CO2 concentration using our CO2 loading set up. Raman spectroscopy as a 

process analytical technology has shown a significant progress for speciation in amine based 

chemical systems during past ten years. Enabling Raman spectroscopy for speciation 

minimizes the number of experiments required during plant design and operation while 

increasing the amount of information extracted in experiments and trials. It also supports pilot 

plant tests and commercial CO2 capture test facilities providing required concentration 

variations during the absorption and desorption process representing a role as a controller for 

many process parameters. 

1.1 Chemistry of CO2 with aqueous MEA 

The chemical reaction between primary amines such as MEA with CO2 has been reviewed 

several times in recent and past literature5. MEA contains one amine functional group and one 

alcohol functional group. Tthe reaction between amine and CO2 by two steps as shown in 

equation 1 and 26 which was first introduced by 7 and reintroduced by 8. 

𝐶𝑂2(𝑎𝑞)+𝑅1𝑅2𝑁𝐻 ↔ 𝑅1𝑅2𝑁+𝐻𝐶𝑂𝑂− (1) 

𝑅1𝑅2𝑁+𝐻𝐶𝑂𝑂− + 𝐵 ↔ 𝑅1𝑅2𝑁𝐶𝑂𝑂− + 𝐵𝐻+ (2) 

Here CO2 reacts with the amine to form an intermediate and this intermediate immediately 

reacts with another molecule (B) to form a carbamate and a protonated amine. This reaction 

describes the carbamate formation where B is a base, usually a second amine molecule. The 

mechanism is usually referred as the zwitterion mechanism. However, the bicarbonate 

formation cannot be described by zwitterion reaction. Bicarbonate/carbonate formation, 
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protonation/deprotonation of amine, carbamate formation further can be described using 

equation (3) to (12). 

𝐻2𝑂 ↔ 𝑂𝐻− + 𝐻+ (3) 

𝐶𝑂2(𝑎𝑞) + 𝑂𝐻−  ↔ 𝐻𝐶𝑂3
− (4) 

𝐶𝑂2(𝑎𝑞) +  𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 (5) 

𝐻2𝐶𝑂3 ↔ 𝐻𝐶𝑂3
− + 𝐻+ (6) 

 𝐻𝐶𝑂3
− ↔ 𝐶𝑂3

2− +  𝐻+ (7) 

𝑅𝑁𝐻2 + 𝐻+ ↔ 𝑅𝑁𝐻3
+ (8) 

𝑅𝑁𝐻2 +  𝐻𝐶𝑂3
− ↔ 𝑅𝑁𝐻𝐶𝑂2

− + 𝐻2𝑂  (9) 

𝑅𝑁𝐻2 + 𝐶𝑂2 ↔ 𝑅𝑁𝐻𝐶𝑂𝑂𝐻  (10) 

𝑅𝑁𝐻𝐶𝑂2
− + 𝐻+ ↔ 𝑅𝑁𝐻𝐶𝑂𝑂𝐻 (11) 

𝑅𝑁𝐻𝐶𝑂2
− + 𝐻2𝑂 ↔ 𝐻𝐶𝑂3

− + 𝑅𝑁𝐻2 (12) 

 

The equations show water dissociation, carbon dioxide hydrolysis, carbonate/bicarbonate 

formation, amine protonation, carbamation and decarbamation. These reactions generate a pool 

of cations and anions which include 𝑂𝐻−, 𝐻+,  𝐻𝐶𝑂3
−,  𝐶𝑂3

  2−, 𝑅𝑁𝐻𝐶𝑂2
−  and 𝑅𝑁𝐻3

+ which are in 

equilibrium. The graphical representation of these reactions9 which is presented in Fig. 1 shows 

that there are three parallel, reversible reactions of the free amine with CO2, carbonic acid, and 

the bicarbonate ion; the relative importance of the three paths is strongly pH dependent. 

 

Fig. 1.General reaction scheme including all reactions between amine, the CO2/carbonate group and 

protons. Single line/double arrow represent instantaneous protonation equilibria, double lines  represent 

kinetically observable reactions for which rate constants are known in literature (Adapted with 

permission9. Copyright (2009) American Chemical Society 
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1.2 Motivation 

The most popular method for determining CO2 removal efficiency in CO2 capture plants is 

gas phase analysis using gas analyzers such as FTIR10. Liquid phase analysis in practice are 

mostly offline and laboratory-based but is one of routine tasks in any CO2 capture related R&D 

work and pilot plant trials. Depending on the requirement, the frequency of this offline analysis 

varies but more conclusions that are useful can be derived if in-situ analysis is possible where 

plant trends can be observed with respect to different parameters such as time, process 

conditions and system configuration. Analysis of CO2 loading by BaCl2 titration-precipitation 

method is commonly used but it is time consuming and tedious and the analysis takes around 

2 hours per sample for an experienced chemist. Time-consuming methods are not suitable 

candidates for plant operations. During offline measurements, samples are collected from the 

system and the method of sample extraction, sample preservation, transportation to the lab, and 

mass/volume reduction of sample for chemical analysis increase the sampling error percentage 

and becomes less representative to the required measurement.   

The ideal situation for in-situ analysis is direct measurement of the composition. Although 

several methods have been proposed they are still in the probationary period and are tested in 

pilot plant trials for validation in different process conditions. No reliable methods have yet 

been recommended/accepted for standard use in CO2 capture plants among the research 

community. The most popular three composition readings from a CO2 capture plant are the 

CO2 loading, solvent capacity and degradation products. From lab to industry, the standard 

methods of analysis composition are acid-base titrations, total inorganic carbon analysis, ion 

chromatography and gas chromatography. The National Carbon Capture Centre, USA uses 

automatic titration for determining CO2 loading in some of their R&D work 11. Another 

solution is calculating the CO2 loading based on correlation from direct measurements such as 

pH, density, viscosity, conductivity and temperature of the solvent streams. In one of the 
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dynamic test campaign at TCM Mongdad Plant, CO2 loading was determined in lean and rich 

lines based on a correlation from direct measurement readings for total alkalinity, density and 

temperature of the solvent 12. The relationship between such physical properties and chemical 

properties are complex and requires a detailed knowledge on solvent concentration, CO2 

loading and temperature13. 1H, 13C, 15N NMR data are growing interest in the speciation of 

amine-CO2-H2O. It is a non-invasive analytical technique, which allows the study of atoms that 

have nuclei with a magnetic moment.  NMR can also characterize unknown compounds 

without the use of any standard reference. NMR studies were carried out to investigate the 

liquid-phase composition in samples where various amounts of CO2 were dissolved in different 

alkanolamines at various temperatures14. A literature review on NMR spectroscopy applied to 

amine–CO2–H2O is presented 15 based on approximately 50 articles. The main drawback of 13C 

NMR spectroscopy is its long measurement times such as hours. However, there are instances 

where NMR has been used for online monitoring16,17 for speciation and reaction monitoring 

but the time scale between each measurements were 1-2 hours.  

Liquid analysis using vibrational or absorption spectroscopic methods such as IR, NIR, 

Raman have growing interest due to their low acquisition times and applicability for in-situ 

monitoring. A screening experiment was performed18 to investigate the relations between  UV-

vis spectroscopy,  density, refractive index, conductivity, and pH and a multivariate 

chemometric method was developed19 combining density, conductivity, refractive index, and 

sonic speed measurements for monitoring of acid gas and MEA concentrations in CO2 

absorption processes in the presence of some degradation products.  this multivariate model 

predictivity in the presence of degradation products was also compared20. A predictive 

statistical model was built using chemometrics method and measurements of density, pH, 

conductivity, sound velocity, refractive index, and Near InfraRed (NIR) spectroscopy and 

concentrations of MDEA, PZ, and CO2 were predicted real-time21. Measurements of carbon 
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dioxide and hydrogen sulfide in aqueous solutions of DEA using FTIR is presented in earlier 

studies22. Since then the use of FTIR for speciation in CO2 loaded aqueous amine have been 

performed by several researchers such as FT-IR for DEA system23, PLS +ATR-method  for 

MEA system24 and FTIR- ATR for monitoring CO2, SOx, and solution of β-alanine and 

potassium hydroxide 25. FTIR was used for MDEA system26, ATR-FTIR was used27 for MEA, 

DEA, and AMP systems while ATR-FTIR was used 28 for four industrial capture solvents. 

A completely different approach is presented 29 where they used indirect spectral hard 

modelling to calibrate Raman data. Recently, a comparison of vibrational spectroscopic 

methods for liquid speciation is reported30 who made a comparison between the IR-ATR and 

Raman spectroscopy  by developing PLS models to predict amine and CO2 concentrations in a 

blend of MEA and 3-piperidinemethanol. They experienced that fluorescence disturbed the 

Raman measurement acquisition in pilot plant data while IR-ATR was successful. Raman, NIR 

and ATR FTIR methodsvwere compared31 in CO2 loaded MEA solutions where they claim that 

all three spectroscopies well suit for the application. 

Speciation using molar scattering factor and ClO4
- internal standard for Raman 

measurements were performed for MEA, DEA and AMP32, for MEA systems33,34 and for 

aqueous N-methylpiperidine, 2-methylpiperidine and 4-methylpiperidine35. Calibration plots 

for bicarbonate, carbonate and carbamate species  based on peak areas of various concentration 

of individual species are presented36 which can be used for speciation in amine systems. A 

qualitative analysis from Raman spectroscopy for MEA, diglycolamine and MDEA for 

reaction monitoring with CO2 was studied37 and they found that the temperature dependency 

of Raman spectroscopy can be neglected in this temperature range of 25°C to 60°C. Raman 

investigations were done for different concentrations of CO2 loaded MEA, DEA and MDEA38. 

Reference spectra were recorded from CO3
2-, HCO3

– and  protonated amine solutions which 
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were used to quantify species in MDEA and 13C NMR spectroscopy was used to compare the 

Raman speciation. 

In summary, for the prediction of individual species, calibration models developed based on 

pure components have been used in many studies mentioned above assuming that the system 

obeys Beer Lambert law. Absorption and vibrational spectra of the CO2 loaded amine solutions 

contain overlapping peaks in the same area detected by individual spectrum and hence isolating 

this region is challenging and can result in losing information. Regression with data obtained 

by thermodynamic models lacks of reliability because even the thermodynamic models are 

based on assumptions and may not always true for transient conditions. Some studies present 

only the speciation for total CO2 loading and solvent concentration. The analysis performed 

using internal standard are not suitable for in-situ monitoring.  

In general, Raman spectroscopy can identify many organic and inorganic substances from 

their specific spectral patterns, gives weak scattering for water, can be used for remote sensing 

as the Raman light can be transmitted via fibre optic cables over long distances, no sample 

preparation needed, non-destructive and needs only a small volume for analysis. Several 

research have been done analyzing Raman spectra both univariately and multivariately to 

quantify concentration profiles in CO2 capture plants. The Applied Chemometrics and 

Research Group (ACRG) at University of South-Eastern Norway (USN) has developed a 

method using Raman spectroscopy which is described in this paper, to determine chemical 

concentration profiles in an MEA-CO2-H2O system based on multivariate analysis. The method 

was validated by results from mini-pilot CO2 capture plant facility in Porsgrunn, Norway39. 

The developed method can be used for laboratory experiments, R&D tasks, pilot plant 

operations and commercial applications of the CO2 absorption process.  
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1.3 Raman spectroscopy and PLSR 

The Raman spectrometer available at USN is the Kaiser RXN2 analyzer with 785 nm laser 

wavelength, 400 mW maximum laser power and 100-3425 cm-1 spectral range. An immersion 

optic probe is connected to the RXN2 analyzer via a fibre optic cable, which conveys the laser 

light back and forth from instrument to sample. The Raman scattered light is displayed by the 

analyzer as a plot of Raman intensity (y-axis) which is the Raman scattered radiation and 

Raman wavenumber (x-axis) which is the frequency difference from the incident radiation40. 

Peaks, which appear in this plot and their intensity, carry information about the chemicals 

present in the system and their composition respectively.  Based on the Fig. 1 almost all the 

reactions happen in the MEA-CO2-H2O system are related to each other. A change in 

concentration in one component affect to the overall equilibrium in the system. The system is 

also pH dependent. PLSR models have been proven a successful candidate in the analysis of 

CO2 capture solvents. In our previous study of CO2 absorption in chilled ammonia 41 and CO2 

capture in four different amine types including MEA42, the use of PLSR method for chemical 

speciation are reported. In this study, we report how PLSR method was used to combine Raman 

and NMR spectroscopic data to achieve a reliable complete speciation in amine system.   

2 Methodology 

2.1 Experimental Procedure 

‘Loaded solution’ refers to 30 w/w% MEA with CO2 bubbled while ‘unloaded solution’ 

refers to 30 w/w% MEA without CO2 bubbled in this text. Two CO2 loaded sample sets were 

prepared separately in room temperature and pressure (25 0C and 1 bar) maintaining the same 

experimental conditions. One set included 23 calibration samples and the other set was 22 

validation samples.  CO2 received from “AGA” with an initial mole fraction of 0.9999, and 

MEA, received from “Merck” with an initial mole fraction of 0.995, were used as received. For 

the preparation of 30 % MEA stock solutions, pure MEA and Milli-Q water (18.2 MΩ·cm) 
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was degassed using Rotavapor® R-300. Two amine stock solutions to obtain 30 w/w% were 

prepared by mixing degassed Milliq water and 99% MEA gravimetrically using analytical 

balance (Mettler Toledo AS120S within ± 0.0001 g) followed by stirring at 400 rpm for 30 

minutes to ensure homogeneity in the mixture. One stock solution was loaded with CO2 to react 

with the MEA molecules present in the solution by bubbling a CO2 gas stream (0.15 L/min) 

through a fritted glass and bubbling was carried out for a sufficient time for the 30 % MEA 

solution to load with equilibrium CO2 concentration at the experimental temperature and 

pressure. This CO2 loaded solution was then allowed to cool down to the room temperature 

and stirred at 400 rpm in a closed vessel for another 30 minutes. The stock solution was then 

allowed to reach equilibrium for 24 hours in a closed container prior to further analysis. The 

loaded amine sample series in the calibration set were prepared by diluting the CO2 loaded 

aqueous amine solution with unloaded solution in different mass ratios. This resulted in a series 

of CO2 loading samples spanning from a higher to lower CO2 loading level. Each sample was 

approximately 10 g weighed in total and was prepared in airtight glass bottles. The same 

procedure was followed when preparing the validation sample set.  

In this study, three analysis methods were used namely BaCl2-titration, Raman spectroscopy 

and NMR spectroscopy. The purpose of titration was to determine CO2 loading and MEA 

concentration while NMR measurements determined the concentrations of free MEA, 

protonated MEA, carbonate, bicarbonate and carbamate in each calibration and validation 

samples. 43,44 showed that the uncertainty of BaCl2
 titration method is ±1.3% and ±2%. It is 

possible to get a reliable quantification of peak area fractions down to 0.05% by NMR 45. The 

Raman measurements were regressed based on the NMR speciation data and PLSR models 

were developed.  
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2.1.1 Titration 

Determining the CO2 loading and amine concentration using BaCO3 precipitation titration 

method is describe below. Approximately, 0.25 g of the loaded sample was mixed with 50 cm3 

of 0.3 M BaCl2 and 50 cm3 of 0.1 M NaOH. The mixture was boiled for 7 minutes, and cooled 

down to room temperature. The sample was then filtrated, and the BaCO3 filter cake was 

transferred to 100 cm3 of degassed, deionized water. Stirring was carried out to dissolve all 

BaCO3 particles. The mixture was then titrated with 0.1 M HCl (from Merck) until the solution 

reached pH 2. The sample was then boiled at 2700C for 7 minutes and titrated with 0.1 M NaOH 

(from Merck) to achieve pH 7, which was the end point for the acid-base titration. The mass of 

the sample and volumes of HCl and NaOH added during the titration were used for the 

calculation of CO2 loading. Another 1 g of CO2 loaded sample was mixed with 100g of 

deionized water and titrated with 1M HCl. The exact weight of CO2 loaded sample and the 

volume of 1 M HCl were used to calculate the MEA concentration. All the samples in the 

calibration set, validation set and the stock solution were titrated using the above procedure.  

2.1.2 Raman measurements 

Before taking Raman measurements, the Raman immersion probe was cleaned with 

deionized water followed by acetone to remove any impurities on the probe tip.  Raman 

measurements are light sensitive. Therefore, each sample to be measured were wrapped in an 

aluminum foil to get rid of disturbances from fluorescence from the background light. The 

sample to be measured was placed inside a plastic black box to further avoid fluorescent 

disturbances and the Raman immersion probe was dipped into the solution 42. The distance 

between the tip of the Raman probe and the bottom of the sample container was maintained to 

be more than 2.5 mm and absence of air bubbles on the tip of the Raman probe was ensured. 

Fig. 2 shows the Raman set up used for this study which includes the laser excitation unit, fibre 

optic cable, immersion probe. The Raman instrument (RXN2 Kaiser Raman System) was then 
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configured. The signal to noise ratio was optimized by varying the acquisition time and number 

of scans.  The best compromise between the acquisition time and spectral quality of a Raman 

measurement for an MEA-CO2-H2O solution was configured as 6 scans having 10-second 

exposure time per each scan and this configuration was maintained for all the measurements in 

this study. Data were acquired and saved using iC Raman 4.1 software. 

 

 

Fig. 2 .Raman set up used for the study 

2.1.3 NMR measurements 

Quantitative 13C NMR experiments were carried out at 298 K for all the calibration and 

validation to quantify the species formed in solution. The experimental method was similar to  

the reported method in46.  13C-NMR experiments were performed by 9.4 T on a Bruker Avance 

III 400 MHz spectrometer using a BBFO Plus double resonance probehead and the spectra 

were acquired using MestreNova software v 7.1.1. Acetonitrile (CH3CN) and deuterated water 

(D2O), inserted in a sealed capillary, were used as the standard reference and lock solvents, 

respectively.  

2.1.4 Selection of calibration/validation set and other process conditions during experiment  

As presented in 47, in typical CO2 absorption and desorption process by MEA, 30 wt% is 

used where gas contacts the aqueous MEA at 1 atm. Typical values for lean loading is 0.1-
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0.22mol/mol MEA, and the rich loading is 0.4-0.5 mol/mol MEA. Typically, the absorber inlet 

temperature of the liquid is maintained at 40℃ and exothermic reaction between CO2 and MEA 

creates a temperature increase in the system. The concentration of the chemical intermediates 

are dependent on the temperature. Since the final goal of this study was model development to 

use Raman spectroscopy as an in-situ application in CO2 absorption plants, the conditions for 

the calibration and validation set was selected to represent a typical MEA based plant condition. 

Therefore MEA concentration for all the samples in this study were kept at 30wt% and CO2 

loading was selected to span between the lowest and highest loading level that could be 

obtained from our experimental loading set up which was from 0.039-0.6120 mol / mol MEA. 

All the experiments were performed at atmospheric pressure of 1 atm. Since the temperature 

of the MEA solution is not constant along the absorption/desorption tower or anywhere else in 

the absorption/desorption process cycle it is not possible to justify which temperature is 

reasonable for this experiment. As a strategy to cater for this temperature problem, the 

concentration in each model were expressed as mol/kg H2O instead of mol/L of the solution. 

Preparing the samples and performing analysis at room temperature allowed the samples to 

maintain similar chemical equilibrium conditions throughout the experiment. The homogeneity 

within the sample container of each calibration and validation set was also important to get 

representative measurements in this experiment. From each 10 g weighed CO2 loaded sample, 

first the Raman signal was taken and then a portion was taken to determine CO2 loading and 

MEA concentration by titration. Another portion was transferred to a different container to 

measure NMR spectra. The sample portion used for three types of analysis should be 

representative to each other and therefore analysis of samples only after they have reached 

equilibrium was a mandatory step in this study. 
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2.1.5 Model development to predict concentrations 

After having the measurements from both Raman and NMR spectroscopy for all the 

calibration and validation samples, a chemomtric approach was followed to develop seven 

models to predict the species concentration. Data analysis was done by PLS toolbox 7.3 in 

Matlab 2016a. Model development steps are shown Fig. 3 for a particular specie. The main 

challenges in developing chemometric based regression models are selecting the suitable 

preprocessing method/s, variable range, number of PLS components and optimum prediction 

error. There are different preprocessing techniques available in chemometrics such as mean 

centering, auto scaling, Savitzky Golay, baseline correction, multiplicative scatter correction. 

The main objective of the preprocessing is to correct abnormal features of the spectra, filter the 

noise and and achieve meaningful chemical information. Their applicability is strongly 

dependent on the type of the solution, interference with other chemical impurities in the system, 

type of instrument and auxiliaries, noise coming from the instrument and instrument parts as 

well as environmental conditions. Selecting the optimum preprocessing method was a trial and 

error technique. As shown in Fig. 3 first a preprocessing method or a combination of two or 

three such methods were proceeded with the rest of the steps according to Fig. 3. If the final 

PLSR model was not satisfied, preprocessing method/s was altered. The optimum 

preprocessing combination for the data set of MEA-CO2-H2O solution resulted as baseline 

correction by Whittaker filter 48 with lamba = 100 and P = 0.001, standard normal variate and 

mean centering. The preprocessed X data matrix was then used to identify most suitable 

variable range. This variable range should include the vibrational modes of the specie to which 

the model is built. Performing a PCA (principle component analysis) provides additional 

benefit to quick identification of samples showing abnormal Raman measurements using their 

score plot and important variables using the loading plot. The information provided by the 

loading plot was used in combination of the vibrational modes to select the variable range in 
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this study. PLSR calibration and validation using the test set method was finally performed 

using Matlab and the resulting model was evaluated with their statistical results. Use of test set 

validation method strengthened the model to consist real data and variance generating factors 

such as sampling errors than using cross validation method which over-estimates the model by 

giving a lower RMSE because of its monolithic behavior 49. Until a satisfactory model was 

developed, an iteration was performed by varying the preprocessing methods and variable 

range. The final model was saved in the PLS toolbox which can be directly used to feed with 

data from Raman instrument for future CO2 loaded samples and predict the specie 

concentrations.    
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Fig. 3. Development of a PLS model for a specie using Raman spectroscopy and NMR spectroscopy 

3 Results and Discussion 

Speciation analysis by 13C NMR spectroscopy, BaCl2 precipitation-titration method for 

loading analysis and Raman spectroscopy followed by the model development combining the 

two spectroscopic methods are presented in this section. 
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3.1 13C NMR results 

Based on the CO2 loading of calibration and validation samples, the peak intensity and the 

width for each specie appeared differently in 13C NMR measurements. To calculate the area 

integrals, the 13C NMR spectra were fitted and the area of each peak was related to that of the 

C-2# of the CH3CN standard 46 . Example for a 13C NMR spectra and assignment of peaks is 

shown in Fig. 4. According to this figure, intensity at 166.16 ppm was assigned to C which 

appear in C of the carbonate and bicarbonate reversible reaction. Intensity at 60.25 ppm and 

42.4 ppm were assigned to two Cs in the  alkyl group (R) of MEA/MEAH+. C in the two alkyl 

groups of amine carbamate were assigned to 61.91 ppm and 43.9 ppm while the C in COO- 

group was assigned to 165.23 ppm. C related to the CH3CN standard appears at 119.74 ppm 

and 1.47 ppm. 

 

 

Fig. 4. Example for 13C NMR spectra for a CO2 loaded MEA sample 

Fig. 5 shows the calculated species concentration using NMR measurements expressed in 

units of moles per kg water for each calibration and validation sample with respect to their total 
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CO2 loading expressed in units of moles per moles of amine. The lowest and highest CO2 

loading reported were 0.039 and 0.612 mol / mol MEA respectively. When the CO2 loading 

was increased, the amount of carbonate, bicarbonate, carbamate and protonated MEA were 

increased while free MEA concentration was decreased. Carbamate concentration was 

increased with increasing CO2 loading until 0.5 loading and then decreased gradually. This is 

due to the stoichiometry of the reaction between CO2 and MEA.  

  

Fig. 5. 13C NMR analysis - concentration of 

different species with respect to the CO2 loading  

Fig. 6. Speciation for MEA-CO2-H2O system by 

NMR; Comparison of this study (after removing 

outliers) with work by Hilliard (2008) 

 

The model results by Raman spectroscopy is dependent on the accuracy of the reference 

method which in this case is the 13C NMR. The 13C NMR speciation of this study was compared 

with the study50 for 7 M MEA solution at 270C and is shown in Fig. 6. A comparison of BaCl2 

titration-precipitation results, loading estimated by dilution ratio and NMR based loading 

values are presented in Fig. 7. When the CO2 loading of the stock solution and the weight ratio 

between the CO2 loaded and unloaded sample is known, the CO2 loading of each calibration 

and validation sample can be calculated based on dilution ratio. The titration was performed 

by the same operator once per sample and is the average of three replicates. Theoretically all 

these three methods should yield a same result.   
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Fig. 7. Comparison of CO2 loading based on mass ratio of loaded/unloaded and NMR results 

 

There is a good match between NMR measurements with calculated CO2 loading based on 

dilution ratio.  There is also a considerable match between the BaCl2 titration results and NMR 

measurements for about 75% of samples. Errors associated with dilution factor comes mainly 

from weighing errors. On the other hand, titration includes several sources of errors such as 

sampling errors, sample and chemical preparation errors, titration apparatus errors, human 

errors43. This is an evidence to show that when an analysis involves many operations to a 

sample (chemical preparation, sample transferring, boiling, volume reduction,  such as those 

in titration procedure), the error percentage is increased and that error can be minimized when 

analysis is performed with respect to ‘representative process sampling’51. Lower deviations 

could be observed between the results from dilution-based calculation and NMR 

measurements. Such an accuracy is an indication that all the samples were at homogenous 

condition, equilibrated and minimal error in both measurement techniques which resulted 

representative samples.  

3.2  Raman experiments 

When calibration and validation samples were measured using the Raman spectroscopy, a 

plot of Raman shift vs. intensity was obtained by the iC Raman software. For each sample 

(object), there is an arbitrary value (peak intensity) for each Raman shift between 100 cm-1 to 
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3426 cm-1 (variables) and this data is called raw data.  Fig. 8 shows some of raw Raman spectra 

varied with different CO2 loadings.  

 

Fig. 8. Raman spectra for CO2 loaded MEA samples ; wavelength region (a) [3426-100]cm-1, (b) [3426-

2600]cm-1(a) , [1700-1000]cm-1(a) [1000-100]cm-1 

 

Between the Raman shift from 100-3426 cm-1, all features of Raman bands such as strong, 

weak, broad and sharp were observed. All the samples showed noisy measurements in low and 

high frequency levels (before 250 cm-1 and after 3250 cm-1) which were assumed to be noise 

from the instrument and its accessories and a flat broad area in the middle range approximately 

from 1750 cm-1 to 2500 cm-1 showing hardly any significant chemically important details. 

Since there are many neighboring peaks in some wavelength areas, spectral features has been 

shown with respect to different variable sections in  Fig. 8.  The Raman phenomenon is based 

on vibrational changes of Raman scattered electromagnetic radiation. Vibrational modes 

relevant to different chemical species in MEA-CO2-H2O which are reported in Fig. 9, can be 

compared with Fig. 8. Most of the strong vibrational modes mentioned in literature for each 

chemical specie in the solution were observed in this study.  These vibrational modes provide 

key information to identify and isolate important peaks. However, with reference to Fig. 8 and 
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Fig. 9 it is visible that the peak isolation is challenging due to the overlapping Raman features. 

For all the amine and carbon species in the system have more than one frequency which vary 

with respect to CO2 loading. The variation of the peak intensities for increasing CO2 loading is 

not systematic due to the baseline drift and the correlation between different Raman shifts.  

Overlapping features can be resolved through spectral deconvolution and band fitting 34. The 

peak maximum frequency, peak height, width, and shape (Gaussian, Lorentzian, or mixed) are 

commonly used for regression. Raman intensity is affected by instrumental settings, such as 

laser power, as well as sample factors. The peak height, shape and area are affected by these 

factors and in univariate analysis these factors are minimized by normalizing species peak 

against another component which in most cases an internal standard. The models developed 

using such techniques have limitations such as inability for in-situ usage or over/under 

predicting due to noise.   

3.3 PLSR models 

According to studies38,52-54 different vibrational modes for the wavenumber region from 

[500-1700] cm-1 and [2600-3600] cm-1 that can be identified in a CO2 loaded aqueous amine 

solution is summarized Fig. 9. The information in Fig. 9 shows that Raman peaks changing 

with concentrations are located in this region but not as Gaussian shapes but as several 

correlated overlapping peaks. This is an evident for why the traditional univariate approach 

fails in this chemical system and the need of considering more than one variable to regress with 

a specie concentration. Therefore in the current study calibration was performed using variable 

groups instead of using a region related to an individual peak. In multivariate analysis, 

overlapping and baseline shifted spectra are addressed to overcome inclusion of noisy 

information to the model and prevent exclusion of important chemical information from the 

model. The exact lengths and margins of the variable group were decided by trial and error 

which gave the lowest RMSEP value for PLSR models. Several plots are derived during a PLS 



 22 

calibration and validation procedure using a chemometrics software. These plots can be used 

to understand more about data structure, pattern, correlations between data, uncommon 

samples with respect to the majority of data(outliers) and correlation of data with the property 

to be measured.  

 

Fig. 9. Vibrational assignments of species in CO2 loaded MEA solution; Numbering refers to following 

literature,(1)52 , (2)53 , (3)54 , (4)32  

 

From Fig. 10 to Fig. 16 PLSR model results are presented. Our interest in this paper is to see 

the predictability of chemical concentration by the Raman spectroscopy in anMEA-CO2-H2O 

system than presenting an in-depth analysis of the chemometric evaluation of data. Therefore 

for each PLSR model, the spectral changes, regression coefficient vector and the measured vs 

predicted values for test set data are shown. RMSEP (root mean square error of prediction) 

compares the predictions of test set (validation samples) with reference values and is used to 

assess the predictability of multivariate models. Regression coefficient vector is software 

generated based on the data given (preprocessed calibration data, variable range and number 
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of PLS components in the model). Positive regression coefficients come from the positively 

correlated peaks to the predicted parameter. The plot of RMSEP variation determines the 

optimum number of PLS components to be selected for the final model. When a lower number 

of PLS components are used for a model such as one or two, less noise is included but may 

sometimes exclude important chemical information too. Finally each model is presented with 

a plot (Fig. 17) which matches the concentration of reference set (also called as test 

set/validation set) with respect to the predicted value. This graph is the evidence of how well 

the model predicts completely new CO2 loaded MEA solutions. The statistical parameters 

presents the number of PLS components used for the model, RMSEP value and r2 for 

calibration and test set.  

3.3.1 CO2 loading model 

 

CO2 reacts with MEA to produce different chemical species as shown in Fig. 1 where the C 

species are converted into carbonate, bicarbonate and carbamate. When developing the model 

for CO2 loading (mol/mol MEA) in the system, the vibrational modes which exist in the system 

relevant to carbon species were accounted. Fig. 10(a) shows the spectral variation and Fig. 

10(b) shows the regression coefficients for the 770-901 cm-1, 991-1202 cm-1 and 1398-1498 

cm-1 variable range for CO2 loading model.  Positive regression coefficients are related to the 

vibrational modes of  carbamate, carbonate and bicarbonate. When the CO2 loading in a sample 

is increased the concentrations of carbonate, bicarbonate and carbamate (upto 0.5 loading) is 

increased and the vibrational modes of these specie appear positively in the regression 

coefficient plot.  
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3.3.2 Carbamate model 

With reference to the Fig. 1 carbamate concentration is dependent on the concentration of 

amine and CO2. Fig. 11 shows the wavenumber region and regression coefficient vector for 

carbamate. The variable range which yielded the lowest RMSEP for carbamate model was 

between 1100 to 1200 cm-1 which included C-N stretching vibration of carbamate at 1159cm-

1 (this study) and it showed ±1 cm-1 peak shift for some measurements. 

 

Fig. 10. PLSR model for CO2 loading ; (a) Preprocessed spectra and  (b) Regression coefficients in the 

selected wavelength 

 

Fig. 11. PLSR model for carbamate ; (a) Preprocessed spectra and  (b) Regression coefficients in the 

selected wavelength 
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3.3.3 Carbonate model 

In the MEA-CO2-H2O system carbonate is produced in small quantities compared to other 

chemical concentrations and is not produced at low CO2 loadings. It is produced when the pH 

is higher in the system (Fig. 1). In carbonate model (Fig. 12), three variable ranges were 

selected which are 853-895, 1047-1091 and 1404-1493 cm-1. According to the regression 

coefficients Fig. 12(b), there are positively and negatively related variables to the model.  

 

 

3.3.4 Bicarbonate model 

 

As shown in Fig. 1 when the pH of the solution changes both the ionic form and their 

concentration varies. Conversion of carbonate into bicarbonate is taken place when pH is 

decreased when the solution goes from strong base to weak base. When the CO2 loading is 

increased carbonate, bicarbonate, carbamate and protonated amine are increased but at loadings 

 

Fig. 12. PLSR model for carbonate ; (a) Preprocessed spectra and  (b) Regression coefficients in the selected 

wavelength 
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higher than 0.5, protonated amine continues to further rise by reacting with carbamate and the 

CO2 which is released to the system is converted to bicarbonate. Fig. 13(a) shows several peaks 

varying with CO2 loading value in the variable range from 773-1047 cm-1. In Fig. 13(b) the 

highest positive regression coefficient at the C-OH stretching vibration of HCO3- is recorded 

at 1021cm-1.  

 

 

Fig. 13.PLSR model for bicarbonate ; (a) Preprocessed spectra and  (b) Regression coefficients in the 

selected wavelength 

 

 

Fig. 14. PLSR model for sum of carbonate and bicarbonate ; (a) Preprocessed spectra and  (b) Regression 

coefficients in the selected wavelength 

 

3.3.5 Carbonate and bicarbonate model 

The total of carbonate and bicarbonate concentrations can be obtained from individual 

models of carbonate and bicarbonate developed in this study. The uncertainly is higher when 
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summing up the results from two models and therefore a separate model was developed to 

quantify the total of carbonate and bicarbonate concentration (Fig. 14). A larger variable range 

was selected to the model to include the variation of both carbonate and bicarbonate 

concentrations. The lowest RMSEP was given by the wavelength range from 779-1138 cm-1 

and 1410-1513 cm-1. In the regression coefficient plot, in Fig. 14(b) 1021 cm-1 shows the 

highest positive impact.  

 

3.3.6 Free MEA model 

The vibrational modes for monoethanolamine lie across the entire wavenumber region as 

shown in Fig. 9 Intitally the free MEA Model was calibrated and validated including 

wavenumber region above 2600 cm-1 but the resulting RMSEP was very high due to the 

dependency of amine species on carbon species in the system. By further adding the variable 

ranges related to carbonate, bicarbonate and carbamate a less prediction error was gained. The 

selected range was from 803-1508 cm-1 and 2867 to 2996 cm-1. Highest positive and negative 

impact of regression coefficients lie in the region of 2867 to 2996 cm-1 (Fig. 15(b)).  

 

 

Fig. 15. PLSR model for free MEA ; (a) Preprocessed spectra and  (b) Regression coefficients in the selected 

wavelength 
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3.3.7 MEAH+ model 

The selected variable range is from 1251-1336 cm-1 and 2887 -3010 cm-1 and however 

significant impact comes from the higher wavenumber region for the model prediction as seen 

in Fig. 16(b).  

 

3.4 Model predictivity 

Fig. 17 displays the model results as a function of measured concentration vs predicted 

concentration for test set samples. It also shows the calibration samples in the same plot. The 

measured concentrations are those obtained from NMR spectroscopy while the predicted 

concentrations are those which were predicted by the model. Eight plots are presented 

representing model results for CO2 loading in unit of mol/ mol MEA, CO2 loading in unit of 

mol/ kg H2O and molal concentration of [carbonate, bicarbonate, carbamate, sum of 

bicarbonate and carbamate, free MEA, protonated MEA]. For all the models, number of PLS 

components selected, RMSEP values, r2 of the test set (as (R^2(Pred)) and calibration data (as 

R^2(plotted)), target line (as 1:1), regression line (fit) and estimated error from the model are 

presented.  

 

Fig. 16. PLSR model for protonated MEA ; (a) Preprocessed spectra and  (b) Regression coefficients in the 

selected wavelength 
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(a)   (b)  

 

 (c)  
 (d)  

 

 (e)   (f)  
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 (g)  
 (h)  

Fig. 17 :Comparison of measured vs predicted concentrations for validation dataset using the 

developed models; plots include calibration data ; R^2(plotted)=R^2(calibration) 

 

The number of calibration and validation samples used for each model and the selected 

wavelength range which yielded the optimum RMSEP value and number of PLS components 

are shown in Table 1. The range of the initial calibration set was upto 0.612 loading, but after 

reducing outliers this range was lowered but  sufficiently covers the industrial lean and rich 

loading levels. r2 is more than 0.979 for calibration sets in all the models while  that for 

prediction was gained more than 0.96. All the models are temperature independent as the 

concentrations are expressed in mol/kg H2O. CO2 loading model is presented here both in 

mol/kg H2O basis and in the units of traditional interpretation which is mol CO2/ mol MEA to 

ease for better understanding. 
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3.5 Demonstration of model use 

A chemometric model validation by a completely new data set provides a guarantee that they 

provide reasonable results for estimation of the interested property for future samples. This 

completely new data set which we call as validation set in this text, is a valid representation of 

the relevant ‘heterogeneity information’ pertaining to the future use 49. In many chemometrics 

model development, cross validation and leverage-corrected validation have been used but 

these methods use the same calibration data set used for model development thus the model 

over-fits to the purpose. A detailed description of the importance of test set validation is 

given49. Since the Raman spectroscopic model development in this study is not limited to be 

used for batch samples, it is interesting to know how the models response when estimating the 

concentration profiles in continuous process in a real CO2 capture plant. We have reported the 

use of these models in such a process 39 and the Raman measurements generated at the same 

test campaign have been used for demonstration of reaction monitoring here. The Raman 

instrument was intergrated to the rich amine line as shown in Fig. 2(c), few centimeters after 

the absorber amine outlet in the CO2 rig available at University of South-eastern Norway. The 

measurements represent the absorber amine outlet composition. Industrial processes include 

many process variations and hence models should be updated for individual processes. This 

model re-validation to the plant can include less or extremely more work and that depends on 

the process, analytical instrument and measurement types. In the demonstration example, the 

plant trend based on the total CO2 loading and different specie concentration is explained with 

time highlighting the importance of these models together with Raman instrument as a 

mandatory process measurement in a CO2 capture plant.  

Fig. 18 shows the Raman predictions when the absorption column reaches equilibrium CO2 

loading with time while Fig. 19 represents the same scenario but with different initial CO2 

loading and with some abrupt process variations which make changes to the liquid 
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composition. According to both figures, the carbamate, protonated MEA and carbonate 

predictions follow the same trend as CO2 loading and free amine inversely obey the trend which 

is chemically acceptable for CO2 loading less than 0.5. The carbon species in the system can 

exist as carbonate, bicarbonate and carbamate under equilibrium conditions and since the 

Raman probe was connected to the amine line very close to the CO2 gas inlet to the absorber, 

there can also be small amounts of dissolved CO2 in the system which with time will absorb to 

the solvent. Fig. 18(c) and Fig. 19(c) show a comparison of predictions from three model 

combinations; total CO2 loading model, [carbonate model + bicarbonate model + carbamate 

model] and [sum of bicarbonate and carbonate model + carbamate model].  
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(a) Predicted concentrations for CO2 loading, carbamate, free MEA and protonated MEA in rich amine line 

at USN mini pilot CO2 capture plant 

 

(b) Predicted concentrations for CO2 loading, carbonate and bicarbonate in rich amine line at USN mini pilot 

CO2 capture plant 

 

(c) Comparison of predicted total CO2 loading in the rich amine line using three different combinations of 

developed models 

Fig. 18. Demonstration of the model performance  - test 1 
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(a) Predicted concentrations for CO2 loading, carbamate, free MEA and protonated MEA in rich amine line at 

USN mini pilot CO2 capture plant 

 

(b) Predicted concentrations for CO2 loading, and carbonate in rich amine line at USN mini pilot CO2 capture 

plant; bicarbonate predictions were almost zero and hence not shown in the plot 

 

(c) Comparison of predicted total CO2 loading in the system in three different combinations of developed 

models 

 

Fig. 19. Demonstration of the model performance  - test 2 
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4 Conclusion  

Raman spectroscopy is a promising analytical method for obtaining quantitative and 

qualitative information on the species distribution in MEA-CO2-H2O systems due to its fast 

response, non-invasive approach and applicability for in-situ monitoring. But the raw Raman 

signals originally come as a combination of both chemical information and noise. Multivariate 

calibration methods can handle such noisy measurements to extract hidden chemical 

information. In this study, the model development approach using Raman spectroscopic 

measurements together with multivariate modeling using test set validation method is described 

for a complete speciation of CO2 loaded aqueous amine solutions where differently CO2 loaded 

30 w/w% MEA solutions were used for demonstration. The seven models developed, were 

used to estimate in-situ speciation from in-line measurements acquiring from a mini-pilot scale 

MEA based CO2 capture plant. Such an in-situ speciation facility is mandatory requirement for 

complete deployment of CO2 capture plants in industrial scale. The study highlights the 

importance of using multivariate analysis methods over traditional univariate analysis to 

interpret chemically important information. Models developed from experimental results 

accounting real variations in a process system  are far reliable than theoretical models based on 

assumptions. Raman spectroscopic measurements is a potential candidate for in-situ 

monitoring of speciation in CO2 capture plants. The same modelling approach described in this 

paper can be applied for other amines and amine blends. 
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Table 1. Summary of PLSR models for speciation 

Model name Wavelength range (cm-1) 

Number of samples 

(after removing outliers) 

Calibration Validation 

CO2 loading (mol/mol MEA) [770-901] ,[991-1202] ,[1398-1498] 22 16 

CO2 loading (mol/mol kg H2O) [770-901] ,[991-1202] ,[1398-1498] 20 15 

Carbamate [1100-1200] 22 17 

Carbonate [1493-1404] , [1091-1047] , [853- 895] 22 21 

Bicarbonate [1047-773] 21 21 

Carbonate + bicarbonate [1513-1410] , [1138-779] 21 22 

Free MEA [2996-2867] ,  [1508-803] 22 20 

MEAH+ [3010-2887] , [1336-1251] 22 20 
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Abstract 

A laboratory CO2 capture rig at USN was used as a demonstration plant to show the feasibility of Raman spectroscopy for online 
monitoring of speciation in CO2 capture process. The spectroscopy was integrated to lean and rich amine streams and 
experiments were carried out in dynamic and steady state conditions. Multivariate models were used to predict the speciation 
with time. Predicted CO2 and MEA concentrations were compared with offline analysis and the ion speciations were compared 
with a thermodynamic model. Results indicated that the Raman spectroscopy together with chemometrics based approach is an 
effective tool for online monitoring of speciation.   
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1. Introduction 

According to IEA Technology Roadmap 2013[1], the next step for many CO2 capture technologies is to move to 
demonstration scale by 2020. Successful demonstration criteria should include online monitoring and real time 
analysis where the need of process analytical methods such as infrared, Raman and nuclear magnetic resonance 
spectroscopy will become an integral part in CO2 capture plants in near terms. There is an emerging research 
interest of using these analytical techniques from lab to industrial scale as online monitoring tools for speciation in 
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MEA-CO2-H2O system ([2-4]).  Raman spectroscopy is a powerful Process Analytical Technology (PAT) and its 
feasibility for fast response, remote sampling and water-independent spectral features, make it a possible candidate 
for online applications in CO2 capture process than IR spectroscopy or NMR spectroscopy. The Raman 
phenomenon is based on vibrational changes of Raman scattered electromagnetic radiation. Previous studies [5-7] 
show that the Raman signal is highly rich with chemical information on carbon and amine species. However, 
converting Raman spectra into chemical information requires data pre-processing prior to interpretation and 
quantification. Raman intensity is always a combination of noise and chemical signal due to changes of baseline and 
peak overlaps and may result in erroneous data interpretation. Chemometrics is a multivariate analysis approach 
which is often preferred to deal with these spectral challenges and is used to calibrate reliable prediction models [8]. 
In PAT applications, widely used chemometrics method for regression modelling is partial least square regression 
(PLSR). The output of a PAT instrument comes with hundreds of wavenumbers which are more or less important 
with the measured property. Using PLS method, x variables (wavenumbers) are correlated with y variable 
(measured property), such that covariance between x and y are maximized.  

This study is the second step of ongoing research at University College of Southeast Norway (USN) to enable 
Raman spectroscopy for industrial scale CO2 capture process. In the first step, Raman and multivariate based PLS 
models were calibrated and validated for complete speciation analysis of CO2 absorption process based on lab scale 
experiments. Measurements were taken at equilibrium conditions. In the second step, which is described in this 
paper, the models were assessed in terms of predictability and robustness in insitu application.  

1.1. Chemistry and speciation 

Reaction of aqueous alkanolamines with carbon dioxide involves an acid–base buffer mechanism where it finally 
forms a large number of carbon species and amine species in the liquid phase.  The equilibrium reactions can be 
written as shown in (1) to (6).  
 

 (1) 

 (2) 

+  (3) 

+  (4) 

 (5) 

 (6) 

 
Overall mass balance for amine species in the solution can be defined as the summation of protonated amine, 

carbamate and free amine (7) while that for carbon species is the sum of bicarbonate, carbonate and molecular CO2 
(8).  
  

(7) 

  
(8) 

 
Thermodynamic property models related to MEA-CO2-H2O systems represent vapor-liquid equilibrium (VLE) 

and they are extensively used in process design and optimization. Kent and Eisenberg model [9], Deshmukh and 
Mather Model [10]  and electrolyte nonrandom-two-liquid (NRTL) model[11] are some of such models referred in 
CO2 capture research.  
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2. Experimental section 

2.1. CO2 rig at USN 

The rig consists of an absorption column with an inner diameter of 0.1 m and height of 2.5 m. Desorption column 
has an inner diameter of 0.26 m, a packing height of 1 m with a steam heated reboiler. The maximum liquid 
circulation and gas flow rates are 250 kg/h and 40 Nm3/h respectively. Fig. 1 shows the process flow diagram of the 
rig. A buffer tank is located between the absorber and the desorber.  Liquid is loaded to the buffer tank before the 
circulation begins and synthetic CO2 is fed to the system by mixing with an air supply to the required volumetric 
ratio. Locations of Raman sensors, T1/T2 temperature sensors and nondispersive infrared sensor (NDIR) for CO2 
gas measurement are shown in the figure. Two manual sampling valves are located soon after the Raman flow cells 
to extract samples for offline analysis.  

 

Absorber Desorber

Purified gas

Air +CO2

Raman probe
(rich)

Sampling
point

RXN2 Raman
Analyzer

Raman
probe
(lean)

Buffer tank

Cooler

CO2 out

Sampling
point

NDIR

Rich/lean
amine heat
exchanger

T2

T1

R

R

 
(a). Process flow diagram of CO2 rig 

(b) Picture of CO2 rig (c)  Raman sensor locations ; rich stream (left), lean stream (right) 
 

Fig.  1: Layout of USN CO2 rig (R=Raman sensor; T=Temperature sensor) 

Raman sensors Raman
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2.2. Instruments and chemicals 

RXN2 portable multichannel Raman spectrometer (Kaiser Optical Systems Inc.) was the newly integrated system 
to the rig. The instrument is equipped with NIR dioder laser with wavelength of 785 nm spanning in the spectral 
range of 100–3425 cm-1. Four fiber optic probes can be connected and utilized through an automatic sequential 
scanning system that is integrated into the instrument. The Raman spectra were acquired using a short-focus (200 
µm)-sapphire-window- Hastelloy probe optic which should be in direct contact with a solution. 99% MEA solvent 
purchased from VWR was used for the rig experiments. 0.1M Sodium hydroxide (NaOH), 0.1 M hydrochloric acid 
(HCl) and 1 M HCl purchased from Merck were used for the titration experiments. Titrator Mettler Toledo T50, 
were used for determining pH, CO2 loading and MEA concentration.  

2.3. PLSR models and predictions 

There are six PLSR models developed using different CO2 loaded 30% MEA equilibrium samples at room 
temperature and pressure. The aim of these models were to enable Raman spectroscopy to use as an analytical 
method for speciation of MEA-CO2-H2O system. Five out of these models can predict the species of carbonate, 
bicarbonate, carbamate, protonated amine and free amine and the remaining one can predict the total CO2 loading. 
23 calibration and 22 validation samples were used for the model development. Quantitative analysis of species 
distribution for each sample was performed by 13C NMR experiments. Raman spectra were collected, smoothed and 
important wavenumbers were cropped based on the prior knowledge on their characteristic Raman bands. They were 
then regressed with respect to the species concentrations (y variable) in Matlab PLS toolbox to develop PLS models.  
Table 1 summarises the results of these models for 6 constituents including the range and root mean square error of 
prediction (RMSEP). The definition of RMSEP is given in (9) where ypredicted is the predicted value from the PLSR 
model, yreference  is the measured value and I is the  number of samples in the validation data set. 
 

Table 1 : Summary of 6 PLSR models 

 
Species Range  + RMSEP 

CO2 loading (mol  CO2 / mol MEA) (0.0 – 0.49) + 0.0109 

Carbonate (mol / kg H2O) (0.0 – 0.09)  + 0.0033 

Bicarbonate (mol / kg H2O) (0.0 – 1.33) + 0.0519 

Carbamate (mol / kg H2O) (0.0 – 3.08)  + 0.0565 

MEAH+ (mol / kg H2O) (0.0 – 3.9) + 0.054 

Free amine (mol / kg H2O) (0.0 -5.8) + 0.236 

 

 (9) 

 
These PLSR models can be used to predict the species concentrations in future MEA-CO2-H2O samples based 

on their Raman spectra.   

2.4. Screening experiments – model validation 

Tasks carried out in this research are twofold. First set of experiments were meant to assess the validity of the 
PLSR models against offline measurements while the second set was aimed at demonstrating the model capacity in 
dynamic process situations. 
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In the ‘model validation’ experiments, the rig was operated for 4 days changing liquid flow rates (30 - 115 kg/h) 

and gas flow rates (5-20 Nm3/h). The absorber liquid inlet temperatures was set to 400C and the CO2 content to the 
absorber was maintained at 10 vol-% to allow sufficient CO2 to react with MEA. Raman spectra were acquired in 1 
minute intervals by the Raman analyser and automatically imported to Matlab/Labview interface where further 
signal processing was done and selected Raman wavenumbers were exported to perform PLSR model predictions. 
Only one Raman probe was used during these experiments except for run 1-6. At certain times, 28 liquid samples 
were collected manually from the sampling points located adjacent to each Raman probe locations for offline 
measurements.  

Key process conditions of the test rig during 4-day trials are given in Table 2. Run 1-6 was related to increasing 
the gas flow from 5 to 30 Nm3/h while maintaining the liquid flow at 40 kg/h. In Run 7-12, liquid flow was 
decreased from 115 to 60 kg/h while keeping gas flow constant at 30 Nm3/h.  Run 13-21 and 22-28 are similar trials 
where liquid flow was decreased from 115 to 30 kg/h while keeping gas flow constant at 20 Nm3/h. CO2 removal 
efficiency calculated based on gas flow measurements by NDIR is also included in Table 2.  

2.5. Screening experiments – demonstration 

The purpose of screening experiments-demonstration was to see the effect of dynamic process conditions to the 
model predictions. The easily controllable process conditions of the rig were gas flow rate, liquid flow rate, CO2 % 
in flue gas and absorber inlet temperature.   CO2 concentration in the rich and lean streams was expected to vary in 
the range of 0-0.45 when the above conditions were varied. Variations of MEA concentrations were also expected 
due to the water loss at high temperatures of the desorber operation. Four demonstration cases were defined with 

Table 2 : Description of process conditions in screening experiments – model validation 

 
Run 
No: 

Day Time CO2 in 
(vol%) 

CO2 out 
(vol %) 

Gas flow 
(Nm3/h) 

Liquid flow 
(kg/h) 

T1 (0C) T2 (0C) Boiler 
temperature 

(0C) 

CO2 
removal 

efficiency 
1 Day 1 11.41 9.9 0.7 5 39 46 39 120 0.93 
2 11.52 10 2.8 10 39 40 39 120 0.72 
3 12.02 10.1 4.8 15 33 32 37 120 0.52 
4 12.18 9.9 6.1 20 40 27 38 119 0.38 
5 12.31 10 6.9 25 40 24 39 119 0.31 
6 12.43 10 7.3 30 40 22 37 120 0.27 

 
7 Day 2 11.03 9.9 5.2 30 114 38 38 119 0.47 
8 11.37 9.8 5.8 30 100 35 38 118 0.41 
9 11.46 9.9 5.8 30 88 33 39 118 0.41 

10 12.06 10.2 6.5 30 100 31 38 117 0.36 
11 12.22 10.1 6.6 30 70 29 39 117 0.35 
12 12.37 - - 30 60 24 38 117 - 

 
13 Day 3 11.41 10 5.2 20 112 37 33 117 0.48 
14 11.55 10.2 5.36 20 100 38 38 117 0.47 
15 12.10 9.8 5.4 20 90 38 39 117 0.45 
16 12.27 10.1 5.23 20 80 37 39 118 0.48 
17 12.44 10 5.55 20 70 35 39 118 0.44 
18 12.57 9.9 5.7 20 60 41 34 118 0.42 
19 13.09 9.9 5.9 20 50 31 36 118 0.40 
20 13.26 9.8 6.1 20 40 27 37 118 0.37 
21 13.37 9.8 6.8 20 30 23 37 119 0.30 

 
22 Day 4 11.22 10.2 4.4 20 110 42 39 119 0.59 
23 11.38 10.1 4.4 20 100 41 40 119 0.57 
24 11.58 10.2 5 20 90 40 40. 119 0.54 
25 12.23 10 5 20 80 37 40 118 0.5 
26 12.46 10.1 5.7 20 70 35 39 118 0.45 
27 13.04 10.2 5.7 20 60 33 39 119 0.44 
28 13.27 9.9 6.3 20 50 31 39 119 0.41 
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varying process conditions as shown in Table 3. Only one case was run per day and each case was around 2.5 hour 
duration. 

 

3. Results and discussion 

A CO2 loaded MEA sample produces a Raman spectrum with several bands from 300 to 1700 cm-1, a broad area 
from 1700 to 2700 cm-1 and a couple of sharp overlapped bands from 2850 to 3050 cm-1 as illustrated in Fig. 2. 
Characteristic Raman bands and vibrational assignments of the species that were found in liquid phase of unloaded 
MEA and CO2 loaded aqueous MEA during this study are given in Table 4. All the Raman bands identified in CO2 
loaded 30% MEA samples at equilibrium conditions in the calibration and validation set used for PLSR models 
could be identified in the Raman signals acquired during this online study.  

  
 

Table 3: Description of process conditions in screening experiments – demonstration ((*reg = regeneration in the desorber)) 

 

Experiment 
Gas flow rate 

(Nm3/h) 

Liquid flow rate 

(kg/h) 

CO2 v/v% in 

flue gas 
Desorber condition lean loading rich loading 

Case 1 4 200 4 without reg*. 0.03-0.06 0 .03-0.06 

Case 4 4 200 0 with reg. 0.25-0.28 0.25-0.28 

Case 1 4 150 0 without reg. 0.03-0.06 0 .03-0.06 

Case 1 4 80 4 without reg. 0.03-0.06 0 .03-0.07 

Case 3 4 30 10 with reg. 0.22-0.43 0.37-0.44 

Case 1 14 200 4 without reg. 0.03-0.1 0.04-0.1 

Case 2 14 150 10 without reg. 0.2-0.33 0.2-0.36 

Case 3 14 150 11 with reg. 0.36-0.42 0.36-0.42 

Case 2 14 150 0 without reg. 0.3-0.32 0.3-0.32 

Case 3 14 150 0 with reg. 0.36-0.38 0.36-0.38 

Case 4 14 150 0 with reg. 0.17-0.28 0.17-0.28 

Case 1 14 80 4 without reg. 0.03-0.06 0.15-0.18 

Case 4 14 80 4 with reg. 0.24-0.25 0.3-0.38 

Case 4 14 80 10 with reg. 0.24-0.28 0.26-0.38 

Case 1 14 30 4 without reg. 0.03-0.06 0.03-0.1 

Case 4 14 30 10 with reg. 0.18-0.19 0.4-0.44 

Case 3 14 30 10 with reg. 0.22-0.24 0.41-0.44 

Case 1 30 200 4 without reg. 0.08-0.12 0.08-0.12 

Case 1 30 200 10 without reg. 0.21-0.26 0.24-0.29 

Case 1 30 150 4 without reg. 0.12-0.14 0.13-0.16 

Case 1 30 150 10 without reg. 0.17-0.23 0.24-0.26 

Case 3 30 150 11 with reg. 0.35-0.38 0.32-0.35 

Case 1 30 80 4 without reg. 0.13-0.16 0.18-0.29 

Case 1 30 80 10 without reg. 0.14-0.19 0.25-0.42 

Case 1 30 30 4 without reg. 0.12-0.14 0.26-0.29 

Case 1 30 30 10 without reg. 0.13-0.15 0.40-0.43 

Range (for 

all the 

cases) 

4-30 30-200 0-10 
 

0.03-0.43 0.03-0.44 
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Fig.  2 :   Comparison of Raman signals for CO2 loaded and unloaded MEA  
 

 
Table 4: Vibrational assignments of species in MEA-CO2-H2O system 

 

Specie 
Frequency 
(cm-1) 

 

Vibrational mode [reference] 

Bands identified in 

Frequency 
(cm-1) 
(Literature) 

CO2 unloaded 
30% MEA 

samples 

calibration 
and validation 

samples - 
PLSR 

lean and rich 
amine 

streams in 
USN rig  

MEA 417 417 CC deformation [12] √ √ √ 
481 481 CC deformation [12] √ √ √ 
843 845 CH2 rocking + CN stretching [13] √ √ √ 
871 873 CH2 rocking + CN stretching [13] √ √ √ 
1029 1030 CN stretching [14] √ √ √ 
1464 1460 CH bend [14] √ √ √ 
2885 2870 CH2 symmetric stretch [14] √ √ √ 
2934 2930 CH2 asymmetric stretch [14] √ √ √ 

       
MEACOO- 1160 1155 C N stretching [15]  √ √ 
       
MEAH+ 1277 1274 N-CH stretch [16] √ √ 

1320 1320 CC stretch [16] √ √ 
2894 2700-3000 NH2+ stretching [12]  √ √ 
2975 2700-3000 NH2+ stretching [12]  √ √ 

       
CO32- 1070 1065 Symmetric CO stretching [17] √ √ 

1385 1380 Antisymmetric CO stretching [17] √ √ 
       
HCO3 - 1024 1017 C-OH stretching [17] √ √ 
       
CO2 

1278 1274 
CO2 symmetric stretch + CO2 bend 
overtone [14]  

√ √ 

1389 1383 
CO2 Symmetric stretch + CO2 bend 
overtone [14]  

√ √ 

 
The comparison of Raman bands between CO2 loaded samples and unloaded amine samples give an indication 

about the newly appeared Raman bands due to the CO2 absorption by amine.  
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3.1. Screening experiments – model validation 

Based on the equilibrium or non-equilibrium conditions, variations of different CO2 loadings and amine 
concentration with time was expected in the CO2 rig operation. According to the experimental conditions stated for 
run 1-28 in Table 2, the behavior of model predictions in such dynamic environment was assessed. By applying six 
PLSR models, species concentrations of each run were predicted using Matlab PLS toolbox and results are shown in 
Table 5. 28 runs given in Table 5-1 corresponds to the same run number in Table 2. From the results presented in 
Table 5-1 and 5-2, total CO2 loading determined from offline titration measurement can be compared with the CO2 
loading – PLS model predictions as well as the summation of carbonate-bicarbonate-carbamate – PLS models. In 
run number 8-L and 20-R, predictions highly deviate from the rest of runs and this was assumed due to an 
instrument noise. The difference between the CO2 loading – PLS model and the summation of PLS predictions by 
three carbon species (carbonate + bicarbonate + carbamate) was assumed to be equal to the molecular CO2 which 
had not reacted with amine. This difference was higher in rich stream than the lean stream as rich stream Raman 
measurement point was located very close to the CO2 inlet to the absorber and hence more CO2 could exist in 
aqueous level. Less quantitative difference between column 1 and 9, is an indication of the validity of CO2 loading 
– PLS predictions.  

 
Table 5-1 :  Speciation results from 28 runs; 
( Uc = uncertainties calculated by Matlab Toolbox(Uc = uncertainties calculated by Matlab Toolbox) 

 
    Predictions from PLSR models 

   Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

Run 

no: 

Day Time 

(L=lean;  

R= rich) 

CO2 loading 

 Uc
* 

(mol / mol 

MEA) 

Carbonate 

 Uc 

(mol / kg 

H2O) 

Bicarbonate  

Uc 

(mol / kg 

H2O) 

 

Carbamate 

Uc 

(mol / kg 

H2O) 

MEAH+ 

 Uc 

(mol / kg 

H2O) 

Free MEA 

 Uc 

(mol / kg 

H2O) 

1 Day 1 11:41 - R 0.3319  

0.0173 

0.049  

0.006 

0.041  

0.021 

2.352  

0.143 

2.50  

0.24 

2.28  

0.36 

3 12:02 - R 0.4118  

0.0176 

0.065  

0.007 

0.055  

0.021 

2.706  

0.144 

2.81  

0.22 

1.63  

0.38 

6 12:43 - R 0.4290  

0.0178 

0.069  

0.007 

0.057  

0.022 

2.793  

0.144 

2.86  

0.22 

1.47  

0.39 

1 11:41 - L 0.2244  

0.0174 

0.030  

0.007 

0.011  

0.021 

1.437  

0.146 

1.39  

0.23 

4.19  

0.41 

3 12:02 - L 0.2361  

0.0174 

0.028  

0.007 

0.021  

0.021 

1.297  

0.148 

1.40  

0.21 

4.35  

0.42 

6 12:43 - L 0.2591  

0.0173 

0.038  

0.007 

0.023  

0.021 

1.465  

0.146 

1.97  

0.28 

3.97  

0.40 

8 Day 2 11:37 - R 0.2345  

0.0175 

0.034  

0.006 

0.029  

0.020 

1.519  

0.150 

2.38  

0.32 

2.94  

0.37 

10 12:06 - R 0.4066  

0.0179 

0.066  

0.007 

0.056  

0.021 

2.291  

0.151 

2.82  

0.22 

2.00  

0.38 

12 12:37 - R 0.4436  

0.0173 

0.079  

0.008 

0.072  

0.021 

2.432  

0.147 

3.72  

0.36 

1.84  

0.37 
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8 11:37 - L 0.2774  

0.0174 

0.106  

0.015 

0.108  

0.034 

0  

0.406 

3.20  

0.71 

6.38  

0.54 

10 12:06 - L 0.2850  

0.0173 

0.041  

0.006 

0.031  

0.020 

2.119 

0.143 

2.12  

0.23 

2.81  

0.39 

12 12:37 - L 0.3075  

0.0173 

0.049  

0.006 

0.039  

0.020 

2.093  

0.143 

2.38  

0.23 

2.84  

0.39 

14 Day 3 11:55 - R 0.3985  

0.0176 

0.065  

0.006 

0.064  

0.021 

2.628  

0.144 

2.51  

0.26 

1.79  

0.41 

16 12:27 - R 0.3111  

0.0175 

0.047  

0.007 

0.045  

0.020 

1.893  

0.145 

2.23  

0.26 

2.99  

0.36 

18 12:57 - R 0.2849  

0.0176 

0.045  

0.006 

0.045  

0.020 

1.911  

0.143 

2.10  

0.24 

3.09  

0.37 

20 13:26 - R 0.3832  

0.0178 

0.089  

0.010 

0.122  

0.030 

0  

0.442 

3.19  

0.78 

7.07  

0.59 

14 11:55 - L 0.4221  

0.0173 

0.068  

0.007 

0.070  

0.021 

2.761  

0.144 

2.59  

0.25 

1.71  

0.39 

16 12:27 - L 0.2805  

0.0173 

0.044  

0.006 

0.051  

0.021 

0.515  

0.267 

3.21  

0.66 

4.62  

0.41 

18 12:57 - L 0.2604  

0.0173 

0.040  

0.006 

0.036  

0.020 

1.742  

0.144 

1.86  

0.25 

3.54  

0.38 

20 13:26 - L 0.4360  

0.0173 

0.072  

0.007 

0.068  

0.021 

2.869  

0.145 

2.83  

0.25 

1.40  

0.42 

23 Day 4 11:38 - R 0.3424  

0.0174 

0.055  

0.006 

0.055  

0.021 

2.321  

0.143 

2.46  

0.22 

2.18  

0.39 

25 12:23 - R 0.2232  

0.0175 

0.028  

0.006 

0.032  

0.020 

1.566  

0.144 

1.83  

0.25 

3.76  

0.37 

27 13:04 - R 0.2600  

0.0177 

0.036  

0.006 

0.031  

0.020 

1.775  

0.143 

1.87  

0.24 

3.37  

0.36 

29 13:56 - R 0.3859  

0.0175 

0.066  

0.006 

0.058  

0.021 

2.541  

0.143 

2.59  

0.22 

2.00  

0.39 

23 11:38 - L 0.4195  

0.0174 

0.068  

0.007 

0.068  

0.021 

2.618  

0.143 

2.82  

0.22 

1.67  

0.39 

25 12:23 - L 0.2734  

0.0173 

0.040  

0.007 

0.030  

0.020 

1.697  

0.144 

1.90  

0.25 

3.53  

0.37 

27 13:04 - L 0.2672  

0.0173 

0.037  

0.006 

0.031  

0.020 

1.763  

0.143 

1.94  

0.27 

3.43  

0.37 

29 13:56 - L 0.3837  

0.0173 

0.070  

0.006 

0.056  

0.021 

2.274  

0.143 

2.42  

0.32 

2.31  

0.46 
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Table 5-2 : Offline measurements and calculated species concentrations based on PLS models 

 
   Offline measurements Calculated concentrations based on Raman 

PLS predictions 

   Column 7 Column 8 

 

Column 9 

 

Column 10 = 

(column 1-11) 

Column 11 = 

(column 2+3+4) 

Run 

no: 

Day Time 

(L=lean;  R= rich) 

pH 

 

Total MEA 

(w/w%) 

CO2 

(mol / mol MEA) 

Molecular CO2 

(mol / mol MEA) 

Sum of carbon species 

(mol / mol MEA) 

1 Day 1 11:41 - R 10.1 38.6 0.3286 -0.001 0.333 

3 12:02 - R 9.8 40.2 0.3593 0.029 0.383 

6 12:43 - R 9.7 27.5 0.5754 0.033 0.396 

1 11:41 - L 10.5 38.8 0.2258 0.016 0.209 

3 12:02 - L 10.5 38.6 0.2232 0.048 0.188 

6 12:43 - L 10.5 39.7 0.2682 0.057 0.202 

        
8 Day 2 

 

11:37 - R 10.3 32.3 0.2303 0.008 0.226 

10 12:06 - R 10.0 33.7 0.4451 0.080 0.326 

12 12:37 - R 9.8 33.4 0.3952 0.136 0.308 

8 11:37 - L 10.4 32.7 0.2618 0.272 0.005 

10 12:06 - L 10.3 33.0 0.2730 -0.019 0.304 

12 12:37 - L 10.2 33.6 0.3063 0.018 0.290 

        
14 Day 3 

 

11:55 - R 9.9 34.0 0.3972 0.015 0.383 

16 12:27 - R 10.3 33.7 0.3010 0.041 0.270 

18 12:57 - R 10.3 34.1 0.2756 0.012 0.273 

20 13:26 - R 9.8 35.2 0.3974 0.379 0.004 

14 11:55 - L 9.8 37.2 0.3958 0.027 0.395 

16 12:27 - L 10.3 33.9 0.2684 0.216 0.065 

18 12:57 - L 10.4 34.6 0.2514 0.013 0.248 

20 13:26 - L 9.7 36.1 0.4392 0.028 0.408 

        
23 Day 4 11:38 - R 10.1 35.8 0.3534 0.005 0.338 

25 12:23 - R 10.4 35.0 0.2510 0.001 0.222 

27 13:04 - R 10.4 35.8 0.2610 0.003 0.257 

29 13:56 - R 9.9 37.6 0.4020 0.026 0.360 

23 11:38 - L 9.8 36.7 0.4122 0.047 0.372 

25 12:23 - L 10.4 36.4 0.2742 0.032 0.242 

27 13:04 - L 10.4 36.9 0.2640 0.016 0.251 

29 13:56 - L 9.7 39.2 0.5048 0.055 0.328 

 

3.2. CO2 absorption profiles with time 

Observation of CO2 absorption with time is an important aspect to understand the CO2 removal efficiency, 
absorption rate and the impact of process conditions to the absorber performance. Raman analyser was configured to 
collect data with total exposure time of 1 minute during this study. Therefore fast responses as well as numerous 
predictions were obtained during a total run time of couple of hours. Fig.  3-6 show how predicted CO2 loading 
evolve with time for four different days run time (given in Table 2). Offline titration results at some certain times are 
also presented in each graph for comparison.  
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Fig.  3 is related to run 1-6 where the gas flow rate in the rig was changed from 5 to 30 Nm3/h while keeping the 
liquid flow rate at 40 kg/h. Two channels of the Raman analyser were operated at the same time and hence lean and 
rich amine stream profiles could be observed simultaneously. Eventhough the gas flow rate was increased from time 
11.41 to 12.43, a considerable change in CO2 concentration in both streams cannot be observed. Raman predictions 
for lean amine stream shows better fit with the titration results than the rich amine stream. This was assumed to be 
due to the more dynamic conditions at the rich stream measurement location. For all the other runs, only one 
channel of the Raman analyser was used and both rich and lean stream could not be monitored simultaneously (Fig. 
4-6). Switching of the operating channel between two Raman probes (lean and rich amine streams) during the run 
time was performed instead.  

  
Fig.  3 : Comparison of titration and Raman predictions for 
CO2 loading ( run 1-6)  

Fig.  4 : Comparison of titration and Raman predictions for 
CO2 loading ( run 7-12) 

Run 7-12 was monitored using one channel in the Raman analyser switching the channel between two streams 
time to time. According to Fig.  4, Point A-B , D-E and H-I are measurements from the rich stream. C and F-G are 
those for lean stream. During the time from B-C and E- F, Raman probe was transferred from rich to the lean amine 
stream and from C -D, it was transferred from rich to lean amine stream, so the predictions during these time 
intervals do not represent actual process stream variations. From time 11.03 to 12.37, the liquid circulation was 
decreased from 114 to 60 kg/h maintaining a gas flow rate at 30 Nm3/h. Titration measurements follow the trend of 
Raman predictions. Heavily fluctuating CO2 concentration in adjacent time intervals is an indication of the 
instability of the process. 

Run 13-21 and 22-30 represent two sets of replicate experiments with similar process conditions of gas and liquid 
flow rates. According to Fig.  5 and 6, they have different initial CO2 concentrations in lean and rich amine streams.  

  
Fig.  5: Comparison of titration and Raman predictions for 
CO2 loading ( run 13-21) 
  

Fig.  6: Comparison of titration and Raman predictions for 
CO2 loading ( run 22-30)  
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A-B, E-F and I-J are rich streams and C-D and G-H are lean streams. Good fit between predictions and titration 
measurements imply that the change in liquid flow rate from 112 to 30 kg/hr with time hasnot affected adversely to 
the predictability of the models. Rich stream shows increasing CO2 loading with time while the lean stream for run 
13-21 has a decreasing CO2 content in lean stream as its initial value is higher than the minimum obtainable value 
for lean stream under this process conditions for the rig. For run 22-30, it shows that the lean stream has almost 
acquired this minimum level of concentration from the beginning and fluctuates around a same mean value with 
time. Time interval between each run on a certain day, was around 10-15 minutes and no investigation was done to 
check whether this allowance was enough to acquire maximum possible absorption/desorption by the unit. 
Therefore, no conclusions were made on the effect of different process variations to CO2 absorption / desorption 
rate 

3.3. Demonstration of liquid concentration profiles  

Results from the four demonstration cases are given in Table 3, are presented in this section to show how the 
models simultaneously predict CO2 loadings in lean and rich amine streams. Trials were performed after plugging 
two Raman channels to both streams and performing random variations in absorber inlet temperature, gas flow rate, 
liquid flow rate, regeneration conditions and CO2 percentage in flue gas.  All cases started with the same CO2 
content in lean and rich streams. Results are outlined in Fig.  7.   
 
 

(a) Case 1 (b) Case 2 

(c) Case 3 (d) Case 4 
Fig.  7: Prediction of CO2 concentration in lean and rich amine streams amidst of different process conditions 
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Fig.  8 : Changes of liquid and gas flow rates, CO2 percentage in flue gas stream and temperature in the absorber with time 
– Case 1 
 

In Fig.  7 - Case 1 demonstrates the CO2 loading – PLS predictions when the rig was running without 
regeneration of the rich stream. Process conditions related to case 1 are presented in Fig. 8. In this trial, the absorber 
inlet temperature was increased gradually from 200C to 300C until 160 minutes. After that it was maintained with an 
average temperature of 400C until the end of the run. The fluctuations of CO2 concentration at some points can be 
correlated to changes in liquid flow rate, gas flow rate, absorber inlet/inside temperature and CO2 percentage in the 
flue gas stream with reference to information in Fig.  8. As an example, in rich stream, the increase in CO2 loading 
from 50 to 75 minutes was due to the changes of liquid to gas ratio (L/G) and between 150-175 minutes and 175-
200 minutes was due to increase in CO2 % in inlet flue as stream.   
Case 2 was aimed to monitor the steady state achievement with time when the flue gas flow rate and liquid flow rate 
were kept constant and absorber inlet was set to a fixed value. In this trial, gas flow rate was 14 Nm3/h, liquid flow 
rate was 150 kg/h while absorber inlet temperature was 400C and CO2 content in the flue gas stream was 10-11%. 
Both lean and rich amine streams started with same CO2 level. Continuous CO2 supply to the absorber and 
favourable reaction temperature (400C) made the rich stream to have a higher absorption rate than the lean amine 
stream. After 97 minutes CO2 mixing to the flue gas was stopped which ended both rich and lean streams to reach 
an equalised in CO2 loading of 0.33 at the end of the run.  

The effect of regeneration and liquid to gas ratio on the CO2 absorbed amine stream, can be visualized in Fig. 7-
case 3. In this trial, CO2 percentage in the flue gas was maintained at 10-11%. There was no steam supply to the 
desorber upto 46 minutes. Since the initial CO2 level in both stream was higher than 0.39 mol CO2/mol MEA, upto 
46 minutes the increase of CO2 level was very small.  At 45 minutes, boiler in the desorber was started  and it 
reached 1200C by 75 minutes. As a result, the CO2 content in lean stream started to decrease. Simultaneously, rich 
stream CO2 content was also decreased as the L/G ratio was decreased from 150/14(kg/Nm3) to 150/30(kg/Nm3). At 
85 minutes, change in L/G as 30/4(kg/Nm3) resulted in a sudden peak in CO2 level in lean amine stream, however it 
ended up of  final CO2 content of 0.227 mol CO2/mol MEA with time. Simultaneously, rich stream achieved a 
steady concentration level. In summary, Fig. 7 – case 3 is an example for the ability of the Raman online monitoring 
tool to observe the effect of regeneration and steady state operation conditions. 

Case 4 describes the effect of CO2 volume fraction in the flue gas stream on the responses of lean and rich amine 
stream concentrations. Initially, both streams showed a loading of 0.29 mol CO2/ mol MEA. L/G ratio was 
150/14(kg/Nm3) but there was no CO2 in the gas flow and the desorber was operated with 1200C boiler temperature. 
As a result of regeneration, CO2 was removed in the circulation liquid and reached a content of 0.178 mol CO2/mol 
MEA by 22 minutes. At 46 minutes, CO2 supply was started with 10% and again at 170 minutes, CO2 supply was 
stopped while L/G ratio was increased to 200/4(kg/Nm3). Both changes resulted to reach a CO2 content around 0.3 
in lean and rich streams loading. Changes of other process conditions during 46 to 170 minutes, are not reported 
here. Based on the observations made during these demonstration cases, Raman signals gave ample opportunities to 
understand and monitor online concentration variations with respect to process dynamics in the system.  

3.4. Prediction of species profiles 

Based on the four test cases described in section 3.3, a complete speciation analysis was performed using 6 PLSR 
models. These species distribution curves with time can be used to understand which equilibrium chemical reactions 



1192   M.H. Wathsala N. Jinadasa et al.  /  Energy Procedia   114  ( 2017 )  1179 – 1194 

were affected most or least by different process conditions. Fig.  9 and 10 gives the plots for case 1 and 2, where it 
shows species distribution curves with respect to the CO2 loading for lean and rich streams. There is also a 
comparison of results with a theromodynamic equilibrium model data for 30% MEA at 400C calculated based on the 
Kent Eisenberg(KE) model [18]. To convert species concentrations in mol/L in KE model into mol/kg H2O at 
different CO2 loadings, densities available in [19] were used. 

 

  
(a) rich stream (b) lean stream 

Fig.  9 : Species concentration against CO2-MEA molar loading – Case 1 

 
According to Fig.  9-a, case 1 trial shows that Raman signals acquired from rich amine stream was sensitive to 

most of the process changes than the lean amine stream(Fig. 9-b). In case 1, there was no steam supply to the 
desorber. Eventhough the absorber inlet liquid temperature was maintained at a constant value, changes in process 
conditions resulted in different temperatures inside the absorber (refer table 2) which affected to the equilibrium 
species concentrations. Kent Eisenberg thermodynamic model represents the species distribution at a constant 
temperature and for a constant total amine concentration. Therefore a good match between the thermodynamic 
model (at 400C) and Raman predictions cannot be expected, specially for rich amine stream which only obtained 
400C after 165 minutes of operation. Further, differences of total amine concentration between lean and rich amine 
streams at any specific time are indications of chemically unsteady state condition of the system. 
 

  
(a) rich stream (b) lean stream 

Fig.  10: Species concentration against CO2-MEA molar loading – Case 2 
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Fig.  10 is related to similar speciation analysis for case 2. According to the description given in section 3.3 for 
case 2, the aim of the trial was to monitor the speciation when process conditions were maintained at constant levels. 
Fig.  10-a implies that at lower CO2 loading values, the rich amine stream was not at steady conditions which was 
previously observed in Fig.  7-b. Fig.  7-b also claims that rich stream reached a reasonably steady state loading of 
0.37 after 35 minutes. Raman predictions after 0.37 loading in Fig. 10-a also shows good fit with the Kent Eisenberg 
thermodynamic equilibrium model. Therefore there is an integrated match between information given by Fig. 7-b 
and 10-a. Lean amine stream (absorber liquid inlet) temperature and other process conditions were maintained at 
fixed values and therefore equilibrium conditions can be expected from the beginning of the trial in case 2-lean 
stream. This is proved based on the results in Fig.  10-b which reasonably match with the thermodynamic data.  

4. Conclusion 

In this study, the suitability of Raman spectroscopy combined with multivariate analysis methods was assessed to 
monitor online speciation of CO2 absorption process. Speciation predictions were based on six PLSR models 
developed for Raman spectroscopy. Total CO2 content predicted by the Raman PLS model was compared with 
offline titration analysis of the samples withdrawn during the measurement campaign. Titration measurements 
claimed a good alignment with predicted values. The ability of the models to cope with changing process conditions 
and the degree of predictability in equilibrium and non-equilibrium conditions were assessed using four 
demonstration cases. Speciation were compared with Kent Eisenberg thermodynamic model data and could logically 
explained. Based on this study, it was proved that Raman analyser is an efficient online process analytical tool to 
monitor liquid phase speciation in CO2 absorption process by MEA and gives fast and robust responses. However, it 
is recommended to perform offline 13C NMR measurements to check the validity of predicted species concentration. 
The benefit of an online measurement tool for CO2 capture process is huge as they can be used to optimize process 
conditions, understand the chemistry in absorption process and abnormal functionalities in the plant as illustrated in 
this feasibility study. Integrating the Raman spectroscopy to the CO2 rig at USN, has now allowed more chance to 
explore the system operation with detailed understanding on absorption process.  
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Abstract
Carbon dioxide absorption by mixtures of propylene

oxide / polypropylene carbonate at 600C was monitored

by Raman spectroscopy at 20, 40 and 60 bar in a 2 L

autoclave reactor. Multivariate preprocessing

techniques were used to process raw Raman spectra and

Principal Component Analysis was performed.

Simulation data from the Peng- Robinson equation of

state were used to model the absorbed CO2 amount and

spectroscopic signals. Results showed that Principal

Component Analysis can be used to explore the

dynamics of the system at different pressure levels and

to track the CO2 absorption. A similar analysis was

carried out to monitor CO2 absorption by four different

amines at room temperature and pressure in a batch

reactors. The CO2 content was determined from titration

and was used to model the spectroscopic data.  Principal

Component Analysis proved to be able to identify CO2

absorption capacity in the amines. This feasibility study

confirms that Raman spectroscopy together with

multivariate analysis can effectively report chemical

information and dynamics in these CO2 absorption

systems and hence can be used for developing

regression models for online monitoring and control.

Keywords: principal component analysis, CO2  ab-
sorption, propylene oxide, amines

1 Introduction

Carbon dioxide (CO2) is known to be the primary

greenhouse gas contributing more than 60% of global

warming.  Capturing CO2 from power plants and

industrial sources and utilization them to produce usable

products is of paramount importance from a standpoint

of “waste to money”. Absorption of CO2 by amines is

one of the most popular technologies for CO2 capture.

Amines are categorized as primary, secondary or tertiary

amine based on their chemical structure. The reaction

between amines and CO2 is complex (McCann et al,

2009). However, when considering the CO2 mass

balance, it can be seen that once absorbed by a primary

amine, CO2 will remain in the form of carbonate,

bicarbonate, carbamate or molecular CO2 as given in 

(1). When it is a tertiary amine, there is no carbamate 

formation (2).  

Synthesis of polypropylene carbonate (PPC) by  

reaction  of CO2 and propylene oxide (PO) in the 

presence of a catalyst has become a fascinating research 

area as a CO2 utilization technique to produce a polymer 

out of a waste greenhouse gas (Jiang et al, 2014). In the 

presence of a catalyst, the chemical reaction of PPC 

synthesis takes place as given in (3).  

 
  CO2 absorption capacity by an amine or by in the 

liquid phase PO is a key performance criteria in 

industrial scale CO2 capture and polymerization 

processes. However, the measurement of CO2 

absorption in these mixtures are challenging and require 

proper understanding of the chemistry behind reaction 

(1), (2) and (3). Several offline analytical instruments 

and chemical methods are available such as titration, 

Nuclear Magnetic Resonance spectroscopy and gas 

chromatography to determine the CO2 absorption in 

both applications above. Most of these methods are time 

consuming. A fast, online method to detect CO2 

absorption is important in process monitoring and 

control. Considering the in-situ performance, Raman 

spectroscopy can be suggested as a competitive 

approach for this purpose. It gives chemical information 

of a sample as a function of Raman wavenumber and 

scattered light intensity. When converting the 

information given by a Raman spectroscopy, 

multivariate calibration is required to transform the 

spectroscopic measurement into informative output. 

Raman spectra contain several wavenumbers or group 

of wavenumbers which are chemically important and 
needed to be included in the multivariate regression 

models. However, it is often misleading to use 

PO +CO2            PPC + cyclic carbonate                           (3) 
 

CO2 + primary amine     

   carbonate + bicarbonate + carbamate + molecular CO2     (1) 

CO2 + tertiary amine  

 carbonate + bicarbonate +molecular CO2                                (2) 
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traditional multilinear methods such as ordinary least 

square for calibration, when a single wavenumber (X 

variable) is not sufficient to predict the useful quantity 

(y variable); when X variables are highly correlated or 

when there is no adequate information to understand 

which X variables are correlated to the y variable. In 

such instances, multivariate analysis gives the 

advantage of overcoming the collinearity problems 

while preserving useful information hidden in collinear 

data. In this study, Principal Component Analysis 

(PCA) which is a fundamental multivariate analysis 

tool, has been used as a data compression and 

exploratory method to investigate the feasibility of 

Raman spectroscopy as a viable analytical technology to 

quantify CO2 absorption by amines and propylene 

oxide. Eight experimental cases have been used in this 

analysis. Four of them are related to CO2 absorption by 

PO and a mixture of PO and PPC. These experiments 

were meant to compare CO2 absorption in the CO2-PO 

system with respect to the CO2-PO-PPC system at some 

selected process conditions. The other 4 experiments 

were used to identify CO2 uptake by four liquid amine 

solvents. These solvents are currently in research 

interest to capture CO2 from flue gas in power plants and 

industries (Leung et al, 2014). 

2 Methods 

Experimental description of 8 test cases are presented in 

Table 1. Six organic chemicals were used in the 

experiments and they are given in Table 2. Case 1-4 

were carried out in a closed 2L steam jacketed autoclave 

reactor equipped with a stirrer while the pressure was 

increased gradually by adding CO2 to the reactor. Case 

1 and 2 were PO-CO2 binary mixtures while Case 3 and 

4 were PO-PPC-CO2 ternary mixtures. A Raman 

immersion probe was connected through the bottom of 

the reactor and signals were acquired continuously with 

time. In case 5-8, CO2 absorption on liquid amines was 

observed under equilibrium condition at room 

temperature and pressure. Raman signals were recorded 

by immersing the Raman probe into sample reactors 

after allowing each sample to reach equilibrium. 
 

 

Table 2. Description of materials. 

Name Abbreviation 
Chemical 

structure 

Chemical 

category 

Propylene oxide PO 

 
epoxide 

Polypropylene 

carbonate 

 

PPC 

 

 

a copolymer of  

CO2 and PO 

 2- Aminoethanol  MEA 

 
Primary amine 

3-Amino-1-

propanol 

3-AP 
 Primary amine 

3-dimethylamino-

1-propanol 

3DMA1P 

 
Tertiary amine 

Methyl 
diethanolamine 

MDEA 

 
tertiary amine 

2.1 CO2 in polymer solutions – from 

thermodynamic models 

In this study, Raman signals (X variables), were 

calibrated with the absorbed CO2 content (y variable). 

Reliable measurement of y variable in Case 1-4 using an 

analytical method is challenging as CO2 quickly desorbs 

if a sample is taken out from the reactor for analysis. 

Therefore, the CO2 content data at required pressure and 

temperature were calculated from the vapour-liquid 

equilibrium (VLE) data of CO2-PO system generated 

using the Peng-Robinson equation of state. The Peng-

Robinson model was fitted using experimental data 

reported in (Chen et al, 1994; Shakhova et al, 1973). 

Figure 1 shows predictions of the CO2 mole fraction in 

PO-CO2 system using Peng-Robinson model simulated 

in Aspen Plus V7.2 software which shows that the 

absorption of CO2 at a constant temperature gives a 

linear behavior with pressure. This linear relationship 

was taken to model the CO2 mole fraction at 600C at 

which the experimental cases of 1-4 were carried out. 

2.2 CO2 in amine solutions – from titrations 

In experiments from case 5-8, each sample contained 30 

% of solvent (solvent weight/total weight of water and 

solvent) but different amounts of CO2 added. They were 

prepared in 10 mL glass reactors and after reaching 

equilibrium a titration method was carried out to 

measure its true CO2 content in units of moles CO2 per 

mole solvent.  

Table 1: Description of test cases. 
Case 

Number 

CO2 loaded solution Description 

1  PO in non-stirred 
condition  Each case has one sample  

in a 2L reactor  at  600C.  
Tested pressure levels :20, 
40 and 60 bar 
Stirrer speed = 400 rpm 

2  PO in stirred condition  

3 PO+PPC in  non-stirred 
condition  

4  PO+ PPC in stirred 
condition   

5 MEA 37 samples  Each sample in 10 mL 
glass reactor. Reaction 
between CO2 and amine 
took place at room 
temperature and pressure 

6 3AP 42 samples 

7 3DMA1P  41 samples 

8 MDEA 41 samples 

 

Figure 1. CO2 mole fraction of PO-CO2 system at 

different pressures and temperatures (Peng-Robinson 

model with binary interaction parameter equal to 0.281). 
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2.3 Raman Spectroscopy 

Raman spectroscopy used in this study was Kaiser 

RXN2 Analyser of 785 nm laser wavelength, 400 mW 

laser power and 100-3425 cm-1 spectral range. An 

immersion optic probe which is connected to the RXN2 

Analyser via a fibre optic cable, carries the laser light to 

the sample and in-elastically scattered Raman light is 

conveyed back to the instrument. The instrument output 

is a plot of intensity of scattered light versus energy 

difference (given by wavenumber in cm-1) which is 

called a Raman spectrum. Peaks and their intensity in a 

Raman spectrum carry information about the chemicals 

and their composition respectively.   

2.4 Data Processing 

For a set of n objects (eg: different samples or signals 

with time), a Raman spectroscopy measurement 

generates a data matrix of n x p where p is 3326 Raman 

wavenumbers. This data matrix contains useful 

information about the chemical fingerprint of objects as 

well as noise. They are also called residuals which can 

be due to the interference of other chemical components, 

laser input variations or instrument noise. Unless any 

data conditioning method is applied to remove this 

unwanted structure from the data matrix, calibration of 

spectroscopic signals will not be reliable and do not 

really generate a model which really represent the 

variation of analyte of interest.  

Three data pre-processing techniques were applied for 

raw Raman data. These were baseline-whittaker filter, 

standard normal variate (SNV) and mean centering. The 

baseline-whittaker filter available in PLS toolbox in 

Matlab is an extended version of (Eilers, 2003) where  a 

weighted least square method is applied to remove 

background noise and baseline variations. A detailed 
description of the algorithm can be found in the original 

work (Eilers, 2003) and (Atzberger et al, 2010). Some 

spectra which should be otherwise identical, become 

different due to baseline and pathlength changes. SNV 

was applied to remove these scatter effects in the spectra 

which were specially observed in case 1-4. The 

algorithm is similar to autoscaling row wise and hence 

corrects each spectrum individually (Barnes et al, 1989). 

By mean centering of data, each column in the data 

matrix is centered by subtracting the mean. It is reported 

that by mean centering, rank of the model is reduced, 

data fitting accuracy is increased and offset is removed 

(Bro et al, 2013). 

2.5 Principal Component Analysis (PCA) 

Principal component analysis is one of the most 

important data analysis methods providing a platform 

for advanced chemometrics methods.  As stated in (S. 

Wold et al, 1987) PCA can have many goals; 

simplification, data reduction, modelling, outlier 

detection, variable selection, classification, prediction 

and unmixing. It can be used to understand general 

characteristics of data set and guide further investigation 

through more refined techniques (Wentzell et al, 2012). 

PCA reduces the dimension of data by calculating 

principal components (PCs) which reflect the structure 

of data corresponding to maximum variance. These PCs 

can then be plotted to visualize the relationship between 

samples and variables through the use of scores and 

loading plots. A tutorial review on PCA can be found in 

(Bro et al, 2014). Decomposing a data matrix X into a 

structure part which consists of a score matrix (T) and a 

 
a) Case 1 

 
(b) Case 3 

Figure 2. Raman signals of CO2 loaded polymer 

samples. 

  
(a) 100-3325 cm-1 (b) 950-1550 cm-1 

Figure 3. Raw spectra of CO2 loaded samples ( Case 

5-8). 

 
Figure 4. Raw spectra of CO2 loaded MEA samples  

( Case 5). 
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loading matrix (P) and noise part or residual matrix (E), 

is shown in (4) and (5).  

  
Case 1 Case 2 

  

Case 3 Case 4 

Figure 5. Loading plots of the first principal 

component for case 1-4 (Region : 1225 – 1450 cm-1). 

 

𝑡𝐴 and 𝑃𝐴 are score vector and loading vector for PCA 

respectively. PC1 is the first principal component which 

relates to the maximum variance of the data, and PC2 is 

the second principal component which corresponds to 

the second largest variance etc. Score values provide 

information about sample variations while loading value 

explains the relationship between variables. Residuals 

provides information as to what spectral variations have 

not been explained. There are different ways to 

decompose a matrix to score and loading vectors. 

NIPALS (Non-linear Iterative Partial Least Squares) 

algorithm (H. Wold, 1966) uses iterative sequence of 

ordinary least square regression to calculate PCs and 

was used in this study. 

2.6 Important variables related to CO2 

absorption 

CO2 absorbed PO, PPC and amine mixtures exhibit 

several sharp overlapping peaks in the region of 300 to 

1500 cm-1 and 2700 to 3250 cm-1. The focal point in 

this study is to investigate CO2 absorption and hence 

only the peaks related to absorbed CO2 are considered 

in the model development. In case 3-4, the monomer PO 

and the polymer PPC were added into the autoclave 

reactor and the CO2 was absorbed into this mixture. 

Therefore, CO2 bands related to dissolved CO2 in the 

PO or PO/PPC mixture were followed in this study. 

Literature reports such Raman wavenumbers of  1264, 

1284, 1369, 1387, 1408 cm-1 (Hanf et al, 2014). In case 

5-8, peaks related to carbonate, bicarbonate, carbamate 

and dissolved CO2 fall in the region of 1000-1500 cm-1 

((Vogt et al, 2011), (Wong et al, 2015)). Therefore, for 

development of PCA models, the region between 1000-
1500 cm-1 and 1225-1450 cm-1 were selected for case 

1-4 and case 5-8 respectively. 

  
Case 1 

 

Case 2 

 
 

Case 3 Case 4 

Figure 6. Development of linear regression model using 

PC1  score values and thermodynamic model data. 

(Y measured = CO2 mole fraction predicted by VLE data; Y predicted 

= CO2 mole fraction predicted by PC1 scores; red line= best fitted line 

based on calibration points; green line=1:1 target line; RMSE (CV/P)= 

root mean square error of (cross validation/prediction) 

 

  
Case 1 Case 2 

  
Case 3 Case 4 

Figure 7.  Score plots – PC1 vs PC2 for case 1-4. 

 

 𝑋 = 𝑇𝑃𝑇 + 𝐸                                                           (4) 

𝑋 = 𝑡1𝑃1
𝑇 + 𝑡2𝑃2

𝑇 + 𝑡3𝑃3
𝑇 +⋯+ 𝑡𝐴𝑃𝐴

𝑇 + 𝐸    (5) 
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Case 5 Case 6 

  
Case 7 Case 8 

Figure 8. Score plots for case 5-8. 

 

3 Results and Discussion 

Figure 2 (a) and (b) show raw spectra for case 1 and 3 

respectively highlighting spectral variation with 

increasing pressure in the region of 1225 to 1450 cm-1. 

CO2 peaks at 1264, 1284, 1369, 1387, 1408 cm-1 can be 
identified in this figure. A similar spectral behavior was 

observed for case 2 and 4 in the same region. Figure 3 

gives raw Raman signals observed for CO2 loaded 4 

different amine solvents. Only two spectra from each 

solvent are shown. Figure 4 shows how the intensity of 

Raman bands varies with the CO2 content for MEA 

samples (Case 5). Both Figure 3and Figure 4 claim that 

spectral evolution in the region between 1000 to 1500 

cm-1, for case 5-8 with respect to case 1-4 is complex 

due to curved baseline, baseline offsets and overlapping 

bands. The reason is that the chemical products when 

CO2 is reacted with the solvent appear with overlapping 

peaks in this region. Therefore, when quantifying the  

total amount of CO2 absorbed in solvent, all these peaks 

are needed. 

 

All the Raman signals under each case were first 

smoothed using baseline-whittaker smoother, then SNV 

and finally mean centered. PCA was performed for 

processed data. First principal component was identified 

as the dimension explaining the  largest variance of data 

in each case. Finally, score values of PC1, were 

compared with the mole fraction of CO2 predicted by 

thermodynamic models for case 1-4 and CO2 amount 

determined from titration for case 5-8. Loading plot, 

score plot and comparison of PC1 score value with CO2 

content under each case were used to explain 

characteristics in each system.   

3.1 Case 1-4 

With reference to Figure 5 loading plots of case 1, 3 and 

4 almost give similar information about important 

variables (Raman shifts) while case 2 is different. This 
is caused by exposing the Raman sensor to both gas and 

liquid phases as a result of high stirrer speed and 

  
Case 5 Case 6 

 
 

Case 7 Case 8 

Figure 9. Loading plots of the first principal 

component for case 5-8. 

  
Case 5 Case 6 

  

Case 7 Case 8 

Figure 10. Development of linear regression model 

using PC1  score values and CO2 content given by 

titration data. 
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development of vortex in case 2. There is also low 

viscosity in the medium at low pressures, which creates 

high turbulence. Score plots of PC1 vs. PC2 as given in  

Figure 7, show clear distinguish of recorded signals 

between the three pressure values of 20, 40 and 60 bar.  

PC2 direction explains only a small variation of data for 

case 1-3. Experiments for 60 bar, were conducted in 

replicates and their overlap in score values could be 

observed in case 1 and 2.  
Figure 6 shows how closely PC1 score values are 

related to VLE data. Plots in this figure were derived by 

linear regression between PC1 score values as X 

variables and predicted CO2 content from VLE data as y 

variables. From VLE data, CO2 mole fractions at 20, 40 

and 40 bar are 0.202, 0.411 and 0.601 respectively. 

These values are represented as ‘Y measured’ in Figure 

6. PC1 score values at 3 pressure conditions follow the 

linear trend given by the mole fraction of CO2 predicted 

by thermodynamic models at case 1 and 2. In the 

presence of PPC (case 3-4), even though pressure and 

temperature were maintained constant, a significant 

time was needed to achieve equilibrium condition of 

CO2 absorption by the solvent especially at higher 

pressure region. For example, at 40 bar and 60 bar, PC1 

score value of the initial spectra is less than the final 

recorded spectra at that condition. Therefore, although 

the reactor is maintained at the required pressure, the 

score plot gives the hint whether the equilibrium 

condition has been achieved or not. The significance of 

the above fact can be clearly understood when 

examining the score plot for case 4 (Figure 7). In this 

trial, we see that only 20 bar condition shows a 

compressed data swarm while at 40 bar, PC1 score 

values increases with time and this variation is more 

significant for 60 bar. This is further assured by Figure 

6 (case 4) where the thermodynamic model satisfies the 

trend of final recorded data for 60 bar condition, but 

highly deviate from the initial recorded data at this 

condition. PC1 score values positively correlate with the 

amount of absorbed CO2 by PO-CO2 and PO-PPC-CO2 

systems. 

3.2 Case 5-8 

Absorption of CO2 by amines (case 5-8), features 

several important variables in the region 1000-1500 cm-

1 as given by loading plots in Figure 9 and this is the 

result of several parallel equilibrium reactions 

happening in each system. Each sample carries different 

information which mean different amount of CO2 

absorption and hence the concentration of chemical 

species produced during these reactions are different. 

Therefore, a data spread in score plot of PC1 vs PC2 can 

be observed in the score plots in each case as presented 

in Figure 8. However, similar to polymer-CO2 system, 

PC1 explains the largest variation of data structure and 
therefore PC1 score values were compared with total 

CO2 absorbed by the system. Results are shown in 

Figure 10. With the increasing amount of CO2, there is

a gradual increase of PC1 score value highlighting that

PC1 score value is an indication of the level of CO2

absorbed by the sample.

4 Conclusions

Monitoring CO2 in liquid phase of PO-CO2 system or

PO-PPC-CO2 system by analytical techniques is

challenging as the CO2 quickly desorbs if the pressure is

lowered in sample taking. Therefore, online analysis

such as spectroscopy is more favorable For CO2-amine

systems, an in situ characterization of CO2 absorption

gives credits to process monitoring and control ability.

Based on this study, combination of Raman

spectroscopy and PCA claims that PC1 score value

explains variation of data structure corresponded to

absorbed CO2 amount. PCA plots give an indication of

CO2 composition, process dynamics and equilibrium

conditions in these two chemical systems and hence can

be used as an efficient tool to analyse collinear process

data. Further investigation of PCA model development

under different process parameters is recommended to

validate the findings from this feasibility study.

Experiments to develop advanced chemometrics tools

such as partial least square regression can now be

recommended for both polymer-CO2 system and amine-

CO2 system.
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Abstract 
Among various kinds of technologies available, carbon 

dioxide (CO2) capture by monoethanolamine (MEA) is 

considered to be the most technically and scientifically 

matured technology which can be tested in industrial 

scale. When CO2 is absorbed by an MEA, a chemical 

reaction takes place which results to form different 

carbon and amine species in the system. In this work, 

Raman spectroscopy has been used to measure those 

concentrations in-situ. Since the instrument does not 

provide direct measurements, multivariate analysis has 

been used to develop models and predictions are made 

using these models for future measurements.  This study 

presents the methodology of acquiring measurements by 

the Raman spectroscopy for MEA-CO2-H2O system, 

transferring the measurement data into Matlab/Labview, 

converting data into concentration values and presenting 

the results in a graphical user interface. This software 

based platform makes the Raman spectroscopy to be 

accessed as a real-time instrument in CO2 capture plants. 

Keywords: CO2 absorption by MEA, real-time 
monitoring, Raman spectroscopy, chemometrics, 

Labview 

1 Introduction 

68% of global anthropogenic greenhouse gas emissions 

comes from energy production and 90% of these 

greenhouse gases are carbon dioxide (IEA, 2017). 

Therefore capturing CO2 emissions from energy 

production is a mandatory task under the climate change 

mitigation actions. As stated in (IEA, 2017) from 1870 

to 2015, CO2 emission by fossil fuels dramatically 

increased from near zero to over 33 Gt CO2 which 

resulted fossil fuel power sector to be the largest source 

of greenhouse gas emissions. Greenhouse gases are 

responsible for increasing the world atmospheric 

temperature causing threatening impacts of climate 

change. While switching towards renewable and non-

fossil fuel sources, the immediate action to reduce 

further CO2 emission to the atmosphere is CO2 capturing 

and storage from current emission sources.  

After several studies on CO2 capturing, the so-called 

‘monoethanolamine technology’ or in other words, 

absorbing CO2 chemically to an MEA solution is 

considered to be the most promising technology which 

can be tested in industrial level. Some examples for 

MEA based commercial plants are Boundary Dam CO2 

capture pant and Cansolv CO2 capture system in 

Canada. When a CO2 molecule bounds to an MEA 

molecule, they are converted chemically into different 

reaction intermediates. Among them carbonate (CO3
2-), 

bicarbonate (HCO3
-), carbamate (MEACOO-) and 

protonated MEA (MEAH+) are prime important. There 

can also be free MEA and dissolved CO2 (unreacted) in 

the system. In an overall perspective, if one wants to get 

an overview about the chemical concentration of an 

MEA-CO2-H2O system, concentrations of above-

mentioned chemical intermediates should be presented. 

Knowing the concentrations of intermediates gives the 

benefit to understand reaction path, impact of process 

parameters to the CO2 absorption, inputs to 

thermodynamic modelling and thus help to design and 

optimize the process.  

Raman spectroscopy is a process analytical 

instrument. Fundamentally, it gives information on 

molecular vibrations and crystal structures in a chemical 

system. This information can be mapped with other 

properties of the system such as concentration of a 

chemical specie. Multivariate regression models can be 

developed to estimate those properties using the 

instrument. In the CO2 capture field, the use of such 

types of instruments are gradually becoming popular 

due to their fast response, ability to locate in-situ and 

facility to integrate with process automatic control 

systems. The Applied Chemometrics and Research 

Group (ACRG) at University of South-Eastern Norway 

(USN) has developed a method using Raman 

spectroscopy to determine concentration profiles in an 

MEA-CO2-H2O system based on multivariate analysis 

(Jinadasa, Jens, Øi, & Halstensen, 2017). The developed 

method can be used for laboratory experiments, R&D 

tasks, pilot plant operations and commercial 

applications of the CO2 absorption process. It features 

over the traditional offline analyses due to the fast 

response. We use two software packages to operate the 

Raman instrument. The iC Raman 4.1 software which 

comes together with Raman analyzer is used to 

configure instrument and acquire measurements while 

Matlab is used to convert these measurements to 

concentration values. So far, these steps are carried out 

manually. Although it takes a couple of minutes to take 

a measurement from the system, file transferring 
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between the two software packages and giving 

commands for data processing and calculations takes 

time. Therefore the current approach is time consuming. 

This paper describes a system development that can 

join the two software packages into one platform and 

enables the Raman spectroscopy as a real time analyzer 

for measuring concentrations of chemical species of the 

MEA-CO2-H2O system. It is also compatible to use by 

plant operators who have no/less knowledge on working 

with the data processing and calculations by Matlab.  

2 Problem Identification 

Several offline analytical instruments and chemical 

methods are available such as titration, nuclear magnetic 

resonance (NMR) spectroscopy and chromatography to 

determine chemical concentration in MEA-CO2-H2O 

system. All these methods are time consuming. Titration 

by BaCl2 is common and a well-established method but 

it needs massive chemical preparation and the analysis 

takes around 2 hours per sample. NMR spectroscopy 

and chromatography are mostly limited to laboratory 

because they do not fit well in plant operations. 

Spectroscopic methods need prior calibration according 

to application and are expensive. Some of the 

spectroscopic instruments cannot be located in an 

industrial environment.  

A fast, online method to monitor CO2 absorption is 

important in process control and optimization. 

Maintaining the chemical concentration of the process 

streams at required levels is important for getting the 

target output from the plant. After several feasibility 

studies, Raman spectroscopy was selected as one of 

preferable solutions to monitor concentrations in this 

process. Several studies have been performed using 

Raman spectroscopy to investigate the concentration 

profiles in CO2 capture process by amines. The method 

developed by USN using Raman spectroscopy was 

tested and validated at a mini-pilot CO2 capture plant in 

Porsgrunn (Jinadasa et al., 2017). In this method, 

multivariate regression models have been calibrated and 

validated using test set validation. The raw Raman 

signals from the instrument was pretreated using 

techniques available in chemometrics and the regression 

models are based on partial least squares regression 

(PLSR) which is a powerful multivariate modelling 

approach.  

However, there is a weak point in this approach as we 

move between two software platforms to transfer data 

and calculate the concentration value for each 

measurement. This operation is carried out manually 

and prevent the analyzer from being an in-situ 

monitoring application eventhough the Raman analyzer 

can take measurements continuously within a few 

seconds.  

2.1 Existing method vs proposed method 

When the Raman instrument is used to measure the 

chemical information in MEA-CO2-H2O system, first 

the Raman probe is fixed into the system. A new file is 

open in iC Raman 4.1 software and suitable number of 

scans and laser exposure time is selected. (Kaiser, 2018) 

A file saving path and a file type (either .spc or .csv) for 

auto export is configured. When the command to 

measure the chemical system is given through the 

software, laser light is sent through the fibre optic cable 

to the Raman probe to go through the sample. After a 

scan is finished, a plot of Raman intensity vs Raman 

wavenumber is shown in the computer connected to the 

Raman instrument. The software simultaneously saves 

the data to a data file. To convert such a Raman 

measurement into a concentration value, the following 

steps are carried out:  

1). Taking measurements from the process by running 

the iC Raman software – the measurements can be batch 

or continuous-wise 

2). Saving the data in iC Raman software 

3). Importing the data file into Matlab 

4). Start PLS toolbox in Matlab (Eigenvector Research, 

2018a) 

5). Preprocessing the Raman data file using 

preprocessing methods in PLS toolbox 

5). Input the data file to a PLS model which has been 

previously calibrated and validated  

6). Run the PLS model to get the predicted concentration 

value 

7). Showing the resulting concentration value  

The disadvantage with this approach is that this 

system does not give the concentration value at the same 

time as the measurement is taken.  It takes time to import 

the data from iC Raman software to Matlab and follow 

the preprocessing step. There should be always an 

operator to carry out the steps from 3 to 6. It requires 

knowledge and experience in operation of the 

mentioned software.  

The proposed system aims at removing the barrier of 

manual file transferring and data processing steps 

between the two software to save time. In the proposed 

system there is no need of importing data from iC 

Raman software to Matlab interface. The user should 

first open the iC Raman software and Labview interface. 

After setting the data saving locations, number of scans 

per measurement and laser exposure time, both software 

can be started. The readings from the Raman instrument 

automatically transfers to the labview from iC Raman 

software. In the Matlab/Labview interface, this data is 

preprocessed and concentrations are predicted based on 

the PLS model automatically. Anyone who is not 

experienced with the software or analysis method can 

operate the instrument and read the required 

concentration profiles with time both as numerically and 
graphically. The predicted concentration data are also 

saved in an excel file. Figure 1 shows how the software 
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and hardware link together to get a concentration value 

using the Raman measurement and the proposed system.  

 

 

Figure 1. Schematic of Raman spectroscopy 

measurement showing hardware and software links 

 

3 System development 

3.1 Instrumentation 

The Raman spectrometer available at USN is the 

Kaiser RXN2 Analyzer with 785 nm laser wavelength, 

400 mW maximum laser power and 100-3425 cm-1 

spectral range. An immersion optic probe is connected 

to the RXN2 Analyzer via a fibre optic cable. When the 

analyzer is switched on to take a measurement, the laser 

light reaches the molecules in the sample, scattered and 

the Raman scattered light is filtered by the analyzer. The 

output display is a plot of Raman intensity (y-axis) 

which is the Raman scattered radiation and Raman 

wavenumber (x-axis) which is the frequency difference 

from the incident radiation (Kaiser, 2018). Peaks and 

their intensity which appear in this plot carry 

information about the chemicals present in the system 

and their composition respectively. 

3.2 Process description 

The process of CO2 capture by amine using an 

absorption column is shown in Figure 2. Flue gas which 

contains CO2 is fed upward  to the absorber. The CO2 

free flue gas goes out from the top plate of the absorber. 

The absorbing agent, which is an amine solvent is fed to 

the top plate of the absorber. This stream is called the 

‘lean amine’ stream. While it flows through the absorber 

it absorbs CO2 in the flue gas. The CO2 rich amine flows 

out from the absorber bottom plate and this stream is 

called the ‘rich amine’ stream. In industry, the 

difference between CO2 concentrations in the lean and 

rich streams is used as an important indicator to know 

how much CO2 is absorbed by the amine. The 

concentration of other species are also important to yield 

the maximum process efficiency. The Raman RXN2 

analyzer comes with four channels with facility to 

connect four Raman immersion probes to one analyzer 

thus providing to measure four streams simultaneously. 

The aim of this study was to optimize the absorption 

process in a CO2 capture process and hence 

configuration was set for two Raman probes to take 

measurements from both lean and rich streams.  

 

Figure 2. Process flow diagram of CO2 capture 

absorption by amine (T. Li & Keener, 2016) 

 

3.3 Data treatment 

The outcome of a measurement series using RXN2 

Analyzer is a data matrix of n x p where n is number of 

objects (eg: it can be different samples or signals with 

time) and p is 3326 Raman wavenumbers. Since this 

data matrix contains noise, preprocessing is needed 

before a model can be calibrated based on the PLSR 

algorithm.  By performing such a data treatment, the 

noise generated due to interference of other chemical 

components, laser input variations or instrument noise 

can be minimized and the model predictability can be 

improved. There are different preprocessing techniques 

available in multivariate data analysis. The choice of 

which pre-processing method depends on many factors 

such as the instrument type, sample, impurities in the 

sample, environmental factors and properties of interest 

to measure. Based on our previous experience in 

developing PLS models for Raman measurements in 

MEA-CO2-H2O systems, three combinations of 

multivariate data processing methods showed lowest 

prediction error. They were scripted as Matlab codes 

which were the baseline-whittaker filter, standard 

normal variate (SNV) and mean centering.  
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3.4 Estimation of concentrations using the 

Partial Least Square Regression (PLSR) 

algorithm 

There are different algorithms to develop a PLS 

model (Andersson, 2009) . PLS is available in many 

commercial software packages, such as The Unscrambler, 

PLS Toolbox, ProSensus and SIMCA-P. To be 

independent from using commercial software packages 

except Matlab/Labview, Matlab codes were used in this 

study. PLS calibration and validation using the so-called 

‘test set’ method and data pretreatment were coded in 

Matlab. Procedures mentioned in pls.m, pretreat.m 

available at libPLS package was used for PLS regression 

and mean centering (H.-D. Li, Xu, & Liang, 2018). 

snv.m file and wlsbaseline.m file available at PLS 

toolbox were referred for SNV and whittaker filter 

coding  (Eigenvector Research, 2018b). The values for 

regression coefficients for each specie was stored in an 

m-file called regcon.m file and after data pretreatment, 

prediction was performed using the equation of 

regression coefficient values.  

Figure 3 shows the flow path when the proposed system 

is in operation. After launching the iC Raman software 

the user selects a location to save Raman files in csv 

format for rich and lean stream. Each measurement is 

saved according to the format of 

“name_date_time_sample name” and hence each file is 

uniquely distinguished. Then the user should move to 

the Labview GUI and enter the input variables. These 

variables are the locations of Labview file, location 

where Raman measurements from lean and rich stream 

are saved by iC Raman software and location where the 

predicted concentrations from matlab/labview system 

for lean and rich stream should be saved as excel files. 

After entering these inputs, both iC Raman software and 

labview are started. As shown in Figure 3, after setting 

the Raman data saving folder path (for lean and rich 

stream) and locating a location to save predicted 

concentrations (excel files), the Labview file start 

searching for a new Raman measurement file. When 

such a file is found, it is fed as an input to the PLS 

model. This is the only input variable to the PLS model. 

Output variable from the PLS model is concentration of 

specie. For each specie, there is a specific PLS model. 

Each PLS model gives the output value at the same time. 

4 Results and Discussion 

4.1 LabVIEW-based software platform 

According to Figure 4, the GUI of the Labview based 

system shows the total CO2 concentration and five 

concentrations of chemical species present in both lean 

and rich amine streams in a CO2 capture process. The 

first graph in Figure 4 shows CO2 concentration in units 

of mol per mol MEA. The second graph shows 

concentration of free (unreacted MEA) and protonated 

MEA in units of mol per kg of H2O. The third graph 

shows concentration of carbonate, bicarbonate and 

carbamate in units of mols per kg H2O. 

 

To show how the online predicted concentration of 

CO2 loading matches with offline titration Table 1 

provides results of a CO2 loaded process stream with 

decreasing CO2 concentration and prediction error. 

During this experiment, the Raman spectroscopy was 

connected to the process stream  

 

Table 1. Validation of the online monitoring system with 

offline measurements 

Time 

CO2 loading (mol CO2 / mols MEA) 

Raman spectroscopy-predictions 

from online system  ± prediction 

error 

Offline titration 
results 

15:15:56 0.491672 ± 0.0150 0.484216 

15:35:41 0.481887 ± 0.0150 0.463091 

15:55:26 0.489647 ± 0.0148 0.462196 

16:16:21 0.44994 ± 0.0145 0.42835 

16.35.08 0.350732 ± 0.0146 0.331385 

16.56.04 0.262569 ± 0.0144 0.28351 

17.15.53 0.196636 ± 0.0150 0.191744 

The concentrations recorded by the Raman system 

closely match with the offline measurements for CO2 

loading. The average prediction error for Raman 

measurement is 0.015 mol CO2 / mol MEA. 

 

Figure 3. System flow sheet 
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Figure 4. Graphical user interface for concentration profiles; plot 1, plot 2 and plot 3 are CO2 loading, MEA/MEAH+ 

concentrations and CO3
2-/HCO3

-/MEACOO- for lean stream ; plot 4, plot 5 and plot 6 are CO2 loading, MEA/MEAH+ 

concentrations and CO3
2-/HCO3

-/MEACOO- for rich stream 

 

 

Figure 5. Example for recording real-time measurement for CO2 loading and MEA/MEAH+ concentration in rich 

stream for two and half hour continuous operation of CO2 desorption process 
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5 Conclusion and future work 

Determining CO2 absorption in liquid phase of MEA-

CO2-H2O system by an analytical technique is useful in 

many aspects. It saves time and gives access to online 

monitoring of the system. The accuracy of laboratory 

methods is based on the skill of the analyst, demand 

time, labour and resource. Offline laboratory methods 

cannot be used for process automation. Eventhough, 

these traditional methods are still used to control the 

process parameters in CO2 plants due to the non-

availability of in-situ analysis methods.  

In this paper, we present the development of 

Labview/Matlab based software platform which is 

connected to iC Raman software in Raman RXN2 

Analyzer. The platform provides concentration profiles 

of different chemical species present in an MEA-CO2-

H2O system. These concentration values are calculated 

indirectly from measurements from Raman analyzer. 

The calculation is based on partial least square 

regression method. PLS and data pretreatment  

algorithms were written as matlab scripts.  

If a calibration and validation data set is available, 

this system can be easily modified to another amine 

based CO2 capture system without extensive effort. For 

instance, there are other amines which have the ability 

to absorb CO2 and Raman instrument can be used to 

determine the total CO2 absorbed and the concentration 

of other chemical species. If the user needs to use this 

GUI for such amines, he can input new calibration and 

validation data set into PLS script and change the 

preprocessing script in Matlab accordingly. The 

developed system can also be used to monitor how the 

reaction between an amine and CO2 evolves with time 

in a batch reaction.  

It is also recommended to take the use of the data to 

perform other chemometric analysis such as principle 

component analysis, outlier detection and multivariate 

curve resolution to better understand the chemical 

system. The plots related to these analysis can be 

implemented in the developed GUI similar to the 

concentration plots. 
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Liquid speciation is important for reliable process design and optimization of gas-liquid absorption process. Liquid-phase
speciation methods are currently available, although they involve tedious and time-consuming laboratory work. Raman
spectroscopy is well suited for in situ monitoring of aqueous chemical reactions. Here, we report on the development of a method
for speciation of the CO2-NH3-H2O equilibrium using Raman spectroscopy and PLS-Rmodeling.The quantificationmethodology
presented here offers a novel approach to provide rapid and reliable predictions of the carbon distribution of the CO2-NH3-H2O
system, which may be used for process control and optimization. Validation of the reported speciation method which is based on
independent, known,NH3-CO2-H2Osolutions shows estimated prediction uncertainties for carbonate, bicarbonate, and carbamate
of 6.45mmol/kg H2O, 34.39mmol/kg H2O, and 100.9mmol/kg H2O, respectively.

1. Introduction

The rapid increase in the level of CO2 in the earth’s atmo-
sphere is recognized as the single most important environ-
mental challenge facing our global society [1]. All climate
change mitigation plans rely on carbon dioxide capture and
storage as a near-term “immediate response” technology [2].
Despite the various global CO2 capture research and devel-
opment initiatives, the well-established gas-liquid absorption
process is expected to be the technology of choice for
early, large-scale deployment [3], with the chilled ammonia
process (CAP) [4] being one of the currently demonstrated
technologies.

Out of several postcombustion techniques available to
capture CO2 from coal power plants, amine solutions have
been commonly tested and used.The disadvantages of amine
technology are that it requires large amount of energy in the
stripping process and has thermal and oxidative degradation
and corrosion problems [5]. Ammonia technology is an alter-
native to overcome these drawbacks. This process requires

less energy for stripping and the heat of reaction is much
lower than amine process.There is lessmaintenance cost than
amine process as there are no degradation or corrosion issues.
CO2 reacted ammonia can be used to produce fertilizer.
The process of CO2 capture by ammonia can be twofold
depending on the temperature of CO2 absorption. If the
absorption is performed under 2–10∘C, which is called the
chilled ammonia process, there can be precipitations of
ammonium carbonate compounds while if the absorption is
increased to 25–40∘C, the precipitation problem is eliminated
[6].

If chemical speciation data could be generated concomi-
tant with the determination of the physical and chemical
solvent properties, the development and accuracy of the
thermodynamic process model would be greatly facilitated.
Improvement and optimization of commercial processes
that target needed cost reductions require access to rig-
orous thermodynamic models that build on liquid-phase
speciation data. Such data are currently acquired through
tedious and time-consuming laboratory work. The standard
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wet chemistry titration to determine liquid phase is the
most popular method. This method takes time and errors
can be propagated during sampling, chemical preparation,
weighing, and titration [7]. Various analytical techniques can
be used to determine the species present in CO2 reacted
ammonia solution. 13C nuclear magnetic resonance (NMR)
spectroscopy has been used [8] to determine ionic species in
a range of ammonia concentration from 0.69 to 8.95mol/L
and CO2 loading (total CO2 moles/initial solvent moles)
concentrations from 0.33 to 0.72. Fourier transform infrared
spectroscopy (FT-IR) and X-ray diffraction (XRD) were
used to qualitatively distinguish ammonium bicarbonate
from ammonium carbonate and ammonium carbamate,
while CHN elemental analysis and near-infrared (NIR) spec-
troscopywere used to quantify ammoniumbicarbonate based
on multivariate regression methods as reported in [9]. Wen
and Brooker [10], Zhao et al. [11], andKim et al. [12] suggested
methods to determine carbon species in CO2-NH3-H2O
system based on factor analysis where they assumed that the
corresponding Raman intensities were directly related to the
concentrations of species.

This work reports on a method that combines Raman
spectroscopy and partial least-squares regression (PLS-R) for
in situ solvent speciation in the chilled ammonia process
and which does not rely on calibration by an independent
analysis method [13], for example, NMR. It describes the
development, validation, and application of the method
for determination of the liquid phase composition of the
NH3-CO2-H2O system, while comparisons of the speciation
results obtained here and those from established CO2-NH3-
H2O thermodynamic equilibrium models are described in a
separate publication [14].

In the thermodynamic modeling of the CO2-NH3-H2O
system, a vapor-liquid equilibrium (VLE) is assumed to exist
for water, ammonia, and CO2. The liquid phase can be
described by reactions (1)–(5). The chemical composition of
aqueous ammonia solution is described by

NH3 +H2O 󴀘󴀯 NH4+ +OH− (1)

The reactions of dissolved CO2 in aqueous ammonia solution
are given by reactions (2)–(5). Within the present system,
CO2 is bound as the anion species of carbonate [CO3

2−],
bicarbonate [HCO3

−], and carbamate [NH2COO−].

CO2(aq) +H2O 󴀘󴀯 H+ +HCO3
− (2)

HCO3
− 󴀘󴀯 H+ + CO32− (3)

CO2(aq) + 2NH3 󴀘󴀯 NH4+ + NH2COO− (4)

NH4
+ +NH2COO− +H2O
󴀘󴀯 NH4+ +HCO3

− +NH3 (5)

During CO2 absorption by the aqueous NH3 solution,
reactions (1)–(5) will equilibrate according to the CO2 con-
centration, pressure, and temperature; the carbon distribu-
tion in the solvent is given by the concentrations of the
anions in reactions (2)–(5). In addition to these reactions

and depending on the reaction conditions, various other
compounds may precipitate, such as ammonium bicarbonate
(NH4HCO3), ammonium carbonate [(NH4)2CO3], ammo-
nium carbamate (NH4NH2CO2), and ammonium sesquicar-
bonate [(NH4)2CO3⋅NH4HCO3]. Even though the precipita-
tion is promoted by low temperature, the high water content
in the solvent reduces much of this possibility.

Spectroscopy, Raman spectroscopy in particular, is well
known for in situ monitoring of the chemical reactions
of aqueous solutions [16, 17]. The water molecule shows
only weak Raman scattering; hence Raman spectroscopy has
potential advantage over IR spectroscopy [18] for aqueous
phase analysis such as required for the aqueous chilled
ammonia CO2 capture solvent. The Raman band envelopes
of aqueous solutions of ammonium carbonate, ammonium
bicarbonate, and ammonium carbamate have been identified
and analyzed [10] and form the basis for the previously
reported speciation studies of the CO2-NH3-H2O system [11,
12]. However, evaluation of the Raman spectra in these pre-
vious studies was based on univariate, single-band analysis.
The use of superior multivariate partial least-squares regres-
sion (PLS-R) [19] methods, which exploit the multivariate
information in the spectra, has, to the best of our knowledge,
not been reported previously. Furthermore, the method
developed in the present study is not limited to laboratory
applications but can also be used to monitor continuously
a reactive process, which presents an opportunity for its
implementation as an on-line process analytical technology
(PAT) [20] in carbon capture plants for optimization and
efficient operation.

2. Materials and Methods

The development of the Raman spectroscopy-based method
for speciation of the CO2-NH3-H2O system is based on PLS-
R analysis of a series of samples of known composition. The
procedure involves

(1) preparation of aqueous solutions that contain
known concentrations of [CO3

2−], [HCO3
−], and

[NH2COO−]: one set of solutions was prepared for
PLS-R model calibration and a second independent
set of solutions was used for validation;

(2) determination of the Raman spectrum of each sample
solution;

(3) preprocessing of the Raman spectra by cropping each
spectrum to cover the range 450–2300 cm−1, with
subsequent elimination of the inconsistently varying
baseline from spectrum-to-spectrum and centering
of each wavelength by subtraction of the mean;

(4) calibration of the PLS-R models for the anionic
species [CO3

2−], [HCO3
−], and [NH2COO−] using

the Raman spectra of the solutions prepared for
model calibration in the previous step (Step (3));

(5) validation of the PLS-R models using the Raman
spectra of the solutions prepared formodel validation
in Step (3).
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Figure 1: 𝑋-𝑌 data and models in the PLS-R modeling approach [15]. The parameters that emanate from PLS-R calibration include 𝑃 (𝑋
loadings);𝑊 (𝑋 loading weights); 𝑇 (𝑋 scores); 𝑈 (𝑌 scores); and 𝑄 (𝑌 loadings). 𝐸 and 𝐹 are the residuals for𝑋 and 𝑌, respectively.

The procedures required to achieve reliable speciation using
the proposed method are described in the following sections.

2.1. Raman Spectroscopy. The Raman phenomenon is based
on quantized vibrational changes that are associated with
electromagnetic radiation absorption. An important advan-
tage of Raman spectroscopy over infrared spectroscopy is
that the water molecule shows very weak Raman scattering,
whereas, in infrared spectroscopy, the water molecule shows
strong absorption across an important part of the infrared
spectrum.

The Raman instrument used in the investigations
reported in the present paper was the RXN2 portable
multichannel Raman spectrometer (Kaiser Optical Systems
Inc.). Four fiber optic probes can be connected and utilized
through an automatic sequential scanning system that is
integrated into the instrument. The specifications of the
RXN2 Raman spectrometer are listed in Table 1.

Raman spectra of aqueous solutions can be acquired
using either a noncontact probe optic, whereby the sample
solutions are not in direct contact with the probe optic, or
an immersion probe optic, whereby the sample solution is in
direct contact with the probe optic. The Raman spectra were
acquired using a short-focus (200𝜇m), sapphire window,
Hastelloy immersion probe (Kaiser Optical Systems Inc.).

2.2. Partial Least-Squares Regression Modeling. PLS-R is an
empirical data-driven modeling approach that requires both
representative input data (𝑋) and output data (𝑌). A detailed
description of PLS-R and validation can be found in literature
[15, 19, 21]. In this study PLS-R is used in combination with
Raman spectroscopy. The 𝑋 matrix contains Raman spectra
that represent different concentrations and the 𝑌 vector
contains known reference concentrations from the sample

Table 1: Specifications of the RXN2 Raman spectrometer.

Name Description
Excitation laser
wavelength (nm) 785

Spectral range (cm−1) 100–3425
Spectral resolution
(cm−1) 4

Operating temperature
range (∘C) 15–30

Number of channels 4
Laser type Invictus� NIR diode laser

Spectrograph f/1.8 Holographic imaging
spectrograph

Grating Holographic transmission grating
Detector TE cooled, 1024 CCD Detector
Multichannel scanning 4-Channel sequential operation
Cal-Check� Automatic analyzer monitor

Auto-Cal� Automated calibration of axis and laser
wavelength

Immersion probe optic 200 𝜇m (short
focus)/Hastelloy/sapphire window

preparation step. All models reported in this article are
validated based on independent test data (test set validation)
[21].

The concentration range spanned by 𝑋 and 𝑌 should
reflect the concentrations to be predicted. The overall aim
of PLS-R is to model simultaneously the multivariate input
data (𝑋) and the output response (𝑌) (Figure 1). PLS-R avoids
many of the problems associated with the traditionalmultiple
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linear regression (MLR) and principal component regression
(PCR) [15] methods. PLS-R is advantageous in cases where
the 𝑋 matrix contains collinear data. Colinearity is in most
cases unavoidable in spectroscopy, as there are significantly
more variables (waveshifts) than samples (observations).
When the number of variables is significantly higher than the
number of samples, colinearity is guaranteed.When collinear
data are used, MLR fails or becomes unstable. Although
PCR can deal with colinearity, it has other issues related
to the way in which the 𝑋-matrix is decomposed without
utilizing information on 𝑌, often leading to models with a
higher number of components than the PLS-R case. Another
advantage of applying PLS-R is that the feature parameters
that emerge from themodel calibration stage, that is,𝑋 scores
(𝑇), 𝑋 loadings (𝑃), 𝑋 loading weights (𝑊), and 𝑌 scores
(𝑈), can be plotted and interpreted to support the calibration
procedure (see Figure 1).

An important aspect of PLS-R modeling is model vali-
dation [21], which is important to determine the complexity
of the model. The correct complexity of a PLS-R model is
defined as the optimal number of PLS components, which can
only be determined by proper validation of the model using
an independent dataset that is acquired and used exclusively
for this purpose. To determine the optimal number of
components in a PLS-R model, a criterion based on the so-
called root mean square error of prediction (RMSEP) [15] is
calculated and minimized. RMSEP is based on predictions of𝑌, for example, concentrations from the validation dataset.
Using several models with different numbers of components,
the predictions are compared to the reference values of 𝑌
in the RMSEP calculation. The model that has the optimal
number of components is defined as the one that ends upwith
the lowest RMSEP value.TheRMSEP values are derived using
(6):

RMSEP = √∑𝐼𝑖=1 (ypredicted − yreference)2𝐼 , (6)

where ypredicted is the predicted value from the PLS-R model,
which is compared to the reference value yreference. The sum
of the squared prediction errors is divided by 𝐼, which is the
number of samples in the validation dataset.

2.3. Preparation of the Calibration and Validation Samples.
The ranges of concentrations, expressed in moles of each
anion per kilogram of H2O (molality), of the calibration and
validation set were predetermined to reflect the concentra-
tions expected in samples that would in the future be sub-
jected to the developed speciation method. The calibration
and validation sets covered the same concentration range.
Analytical grade chemicals and Milli-Q water (18.2MΩ⋅cm)
were used to prepare the samples. The ammonia solu-
tion (25wt%) was supplied by Merck KGaA (Darmstadt,
Germany). Sodium hydrogen bicarbonate (99.7%), sodium
carbonate (99.9%), and ammonium carbamate (98%) were
supplied by Sigma-Aldrich (Steinheim, Germany). All chem-
icals were used as received. All solutions were prepared gravi-
metrically using a Mettler Toledo balance (±0.1mg). Forty

solutions of each of Na2CO3, NaHCO3, and NH4NH2CO2,
spanning the concentration ranges of 0–0.7mol/kg H2O,
0–0.96mol/kg H2O, and 0–2.56mol/kg H2O, respectively,
were prepared for calibration and validation purposes.

The selection of concentration range for calibration and
validation range is important especially when the model
is used for analyzing future samples. Three factors were
considered during this selection which are the solubility of
the chemicals, expected species concentrations, and Raman
instrument performance. As reported in [22], solubility of
Na2CO3 is 0.7 g at 0∘C and 1.25 g at 10∘C per kg H2O.
NaHCO3 solubility in water is 0.69 g at 0∘C and 0.815 g at
10∘C per kg H2O. Ammonium carbamate is freely soluble in
water. Holmes et al. [8] report a comparison of equilibrium
measurements of ionic system in CO2-NH3-H2O systems
for different initial concentrations of CO2 loading. The
comparison is based on his experimental work on 13C NMR
measurements with three thermodynamic models of Pitzer
model [23], NRTL model [24], and TIDES model [25]. This
comparison gives an indication of expected species concen-
tration for a given CO2 loading and NH3 concentration. For
the demonstration of the proposed method in this study,
different samples prepared using 5wt% ammonia in the CO2
loading range from 0 to 0.6mol CO2/mol NH3 were used
and the expected species concentration reasonably falls in the
calibration and validation range based on the reported work
by Holmes et al. [8]. The limitation of the Raman instrument
was also considered when selecting the concentration range.
An overview of the sample solutions used for the calibration
and validation of the PLS-R models, including the respective
concentrations, can be found in Appendix.

2.4. Acquisition of Raman Spectra. The Raman spectra were
measured with the Kaiser RXN2 Raman spectrometer using
a laser power of 400mW and a total exposure time of 60
seconds with six scans of 10 seconds each being applied to
achieve a good signal-to-noise ratio. Tomaintain a consistent
temperature in the spectrometer, the instrument was stabi-
lized for 30 minutes before each measurement series. The
short-focus immersion optic was fitted onto the fiber optic
probe head and cleaned with acetone. The immersion probe
was then positioned vertically using a stand, with the optical
window facing down. A glass container that contained the
sample solution was positioned under the immersion optic,
which was then carefully immersed in the solution. The tip
of the optic was positioned in the center of the solution,
approximately 20mm from the bottom of the glass container.
The sample and probe optic were protected from external
light sources (such as fluorescent light) using aluminum foil.
The Raman spectrum was obtained by initiating a scan in
the instrument software. In the intervals between sample
measurements, the probe was cleaned in acetone to avoid
cross-contamination of sample solutions.

2.5. Preprocessing of Raman Spectra. Figure 2 presents an
example of the preprocessing of the Raman spectra (cal-
ibration and validation samples for bicarbonate). During
preprocessing, all the Raman spectra were cropped so as to
cover the range of 450–2300 cm−1, since wavelengths outside
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Figure 2: Preprocessing steps of the calibration and validation Raman spectra of bicarbonate. (a) Raw spectra for the range of 100–3325 cm−1.
(b) Spectra cropped to cover the range of 450–2300 cm−1. (c) Spectra baseline corrected using theWhittaker filter (lambda = 100; 𝑃 = 0.001).
(d) Mean-centered spectra for PLS-R model calibration.

this range were not useful for the PLS-R analysis. Figures
2(a) and 2(b) show the bicarbonate spectra before and after
cropping, respectively. In this range, the Raman spectra show
an inconsistent baseline, which is particularly evident at the
highest Raman shifts (above 2000 cm−1). Raman spectra with
variable baselines often generate regression models that have
a higher number of components than is necessary, since
the model also needs to model the baseline drift. To ensure
a less complex model, a baseline correction is performed
to decrease or remove the baseline drift in each Raman
spectrum. Several baseline correction methods are available
[26]. Spectroscopic data from a Raman spectrometer can
be decomposed into three parts: (1) the analytical signal;
(2) the baseline; and (3) noise. Noise was not a problem
in the present study, whereas the baseline required some
attention. The goal of all the baseline correction methods is
to estimate the baseline in order to remove it.TheMATLAB�
2012b software (MathWorks Inc.) in combination with PLS
Toolbox 7.31 (Eigenvector Research Inc.) was used to find a
suitable baseline correction in the present case. The lowest
RMSEP was gained using the Whittaker filtering method
[27] included in PLS Toolbox 7.31, which preserves the
original shape of the signal part of the Raman spectrum.The
Whittaker filter was applied with the following parameters:
lambda = 100 and 𝑃 = 0.001. The lambda parameter
defines how much curvature is allowed, while the 𝑃 param-
eter holds information about asymmetry in the spectra.
Figure 2(c) shows the Raman spectra of bicarbonate after

baseline correction using the Whittaker filter. Finally, the
spectra were centered by subtracting the mean from each
variable (waveshift) in the Raman spectra. Centering [19] is
applied prior to PLS-R calibration to avoid the need for an
additional PLS-component to describe the mean of the data,
whichwould entail amore complexmodel. Figure 2(d) shows
the data after mean-centering. To summarize, the spectra
were cropped to lie within the range of 450–2300 cm−1,
the baseline was corrected using the Whittaker filter with
lambda value of 100 and 𝑃 value of 0.001, and the spectra
were centered on the mean prior to calibration of the PLS-
R models of the three species (carbonate, bicarbonate, and
carbamate).

2.6. PLS-R Modeling of Carbonate, Bicarbonate, and Carba-
mate. Individual models for carbonate, bicarbonate, and
carbamate were calibrated based on the obtained Raman
spectra of aqueous solutions that contained known concen-
trations in the ranges of 0–0.7mol/kg, 0–0.96mol/kg, and
0–2.56mol/kg, respectively. Since the aim was to develop
PLS-R models that could be used for speciation of a real
CO2-NH3-H2O system, a selection of variables (waveshifts)
to be included in each model was carried out. The waveshifts
to be included in the model of each respective anion were
chosen based on backward selection, whereby only the
wavelengths related to ammonia and the other two CO2
anion species were omitted. In themodel for the prediction of
carbonate, the Ramanwavelengths associated with ammonia,
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Table 2: Vibrational assignments of (NH4)2CO3, NH4HCO3, andH2NCOONH4 aqueous solutions, and omitted frequencies in the respective
PLS-R models. Adapted from the data of Wen and Brooker [10].

Frequency [cm−1] Assignment Omitted frequencies for the PLS-R anion model
Carbonate Bicarbonate Carbamate

3390 Antisymmetric N-H stretch of NH3 X X X
3310 Symmetric N-H stretch of NH3 X X X
3220 Fermi resonance with N-H symmetry stretch of NH3 X X X
3050 Symmetric N-H stretch of NH4

+ X X X
2850 A combination of fundamentals of NH4

+ X X X
1690 NH2 deformation of NH4

+ X X X
1645 Antisymmetric deformation of NH3 X
1630 C-O antisymmetric stretch of HCO3

− X
1550 Antisymmetric CO2 stretch of H2NCOO− X
1436, 1380 CO antisymmetric stretch of CO3

2− X, X X, X X, X
1430 Antisymmetric NH2 deformation of NH4

+ X X X
1405 Symmetric CO2 stretch of H2NCOO− X X X
1360 CO symmetric stretch of HCO3

− X X
1302 C-OH bend of HCO3

− X X X
1120 CN stretch of H2NCOO− X X X
1065 CO symmetric stretch of CO3

2− X X
1034 NH2 wag of H2NCOO− X X
1017 C-OH stretch of HCO3

− X X X
680 CO2 antisymmetric deformation of CO3

2− X X X
640 (OH)-CO bend of HCO3

− X X X
570 Torsion about CO2 skeleton of H2NCOO− X X X

bicarbonate, and carbamate were omitted. The wavelength
ranges used in the modeling of bicarbonate analysis were
selected based on the same principle, while the carbamate
model was based on a more limited range of wavelengths.
Since PLS-R modeling of carbamate is more challenging
than modeling of the other two species, forward selection
was used to define the wavelength ranges in this model.
Fine-tuning of the wavelength selection was made based on
prediction results, in which the model with a combination of
variables that resulted in the lowest prediction uncertainty
was used. The carbonate, bicarbonate, and carbamate
models were based on the respective frequency ranges of[450–520, 750–950, 1062–1100, 1140–1200, 1520–1650 and
1760–2300] cm−1; [450–520, 750–950, 1140–1200, 1350–1390,
1520–1650 and 1760–2300] cm−1; and [1033–1043] cm−1.
Table 2 lists the frequencies omitted from each PLS-R anion
model.

The PLS-R models for carbonate, bicarbonate, and car-
bamate were all based on 20 calibration spectra, in addition
to the 20 independent spectra that were used exclusively for
the validation. Figure 3 shows the spectra used to calibrate
and validate the carbonate, bicarbonate, and carbamate pre-
diction models.

Dissolution of carbonate in water will lead to the follow-
ing equilibrium state as given in reaction (7).

CO3
2− +H2O 󴀘󴀯 OH− +HCO3

− (7)

However, given the detection limit of the Raman spec-
trometer, only the carbonate band was observed. Therefore,
this reaction was neglected in the carbonate PLS-R model
development. However, in the cases of bicarbonate disso-
lution, reaction (8) and for carbamate dissolution reactions
(7)–(13) were observed.

HCO3
− 󴀘󴀯 H+ + CO32− (8)

CO3
2−
(aq) +NH4+(aq) 󴀘󴀯 HCO3

−
(aq) +NH3(aq) (9)

NH3 +H2O 󴀘󴀯 NH4+ +OH− (10)

NH4
+ 󴀘󴀯 H+ +NH3 (11)

HCO3
−
(aq) +NH3(aq) 󴀘󴀯 H2NCOO−(aq) +H2O (12)

H2NCOO−(aq) +H2O 󴀘󴀯 CO32−(aq) +NH4+(aq) (13)

Thus, the quantitative PLS-R models were developed accord-
ing to the following steps:

(1) Calibrate and validate the carbonate model.
(2) Predict carbonate in the bicarbonate calibration and

validation datasets, and correct the bicarbonate refer-
ences accordingly.

(3) Calibrate and validate the bicarbonate model based
on the corrected dataset obtained in Step (2).
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Figure 3: Raman spectra used in the PLS-R model calibration and validation. (a) Raman spectra of carbonate; (b) Raman spectra of
bicarbonate; (c) Raman spectra of carbamate.

(4) Apply the carbonate model from Step (1) and bicar-
bonate model from Step (3) to predict carbonate
and bicarbonate in the carbamate calibration and
validation datasets.

(5) Correct the carbamate references in the calibration
and validation datasets based on the predictions of
carbonate and bicarbonate made in Step (4).

(6) Calibrate and validate the carbamate model.

All the PLS-R models developed in the present study were
developed using theUnscrambler X ver. 10.3 software. Finally,
the speciation method was demonstrated based on realistic
aqueous solutions that contained 5wt% ammonia loaded
with CO2. Since reference concentrations for carbonate,
bicarbonate, and carbamate are not available for these
datasets, the prediction results were assessed based on the
calculated prediction uncertainties provided by Unscrambler
X ver. 10.3.

3. Results and Discussion

The calibration and validation results for each of the respec-
tive PLS-Rmodels for carbonate, bicarbonate, and carbamate
are presented in the respective subsections below. Outliers
were detected in the validation and calibration sets for
carbonate using the 𝑡1 − 𝑢1 scatter plots (data not shown).
An outlier may result from an air bubble sticking to the
sapphire window in the tip of the probe optic or from the

probe optic being inserted so far down into the solution that
the measurement is influenced by the glass container.

3.1. PLS-R Validation Results for Carbonate, Bicarbonate, and
Carbamate. Figures 4–6 show the validation results for the
PLS-R models of carbonate, bicarbonate, and carbamate,
respectively. The results include plots of the scores (𝑡1 − 𝑡2),
regression coefficients (𝐵), residual validation variances, and
predicted concentrations versus the reference concentrations.
The score plots are used to visualize how the calibration
spectra compare to the validation spectra. The regression
coefficients show the weight that each wavelength is assigned
in the prediction.The residual validation variance plot shows
the size of the residual for models with an increasing number
of components. The predicted versus measured plots show
how the predicted concentrations from the validation dataset
in comparisonwith the references calculated from the sample
preparation stage. Prediction performance is evaluated from
an interpretation of the statistical parameters of merit, which
include 𝑟2, RMSEP, and the slope of the regression line.

For the carbonate series, one outlier, identified according
to the definition provided previously [19], was removed
from the validation dataset. No outliers were detected in the
calibration dataset.The outlier was not considered thereafter.
Figure 4 shows selected plots from the calibration and valida-
tion of the PLS-R model for carbonate. In bicarbonate series
no outliers were detected in the calibration and validation
datasets. Figure 5 shows selected plots from the calibration
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Figure 4: PLS-R model for carbonate. (a) Score plot of PLS components 1 versus 2 showing the calibration samples and validation samples.
(b) Regression coefficients based on a one-component PLS-R model. (c) The residual validation variance shows that one PLS-component
is optimal. (d) Predicted carbonate concentrations based on the one-component PLS-R model versus the reference concentrations obtained
from the solute ion preparation stage.

Table 3: PLS-R modeling of carbonate, bicarbonate, and carbamate.

Model Carbonate model Bicarbonate model Carbamate model

Wavelength ranges
included [cm−1]

450–520, 750–950,
1062–1100, 1140–1200,

1520–1650 and 1760–2300

450–520, 750–950,
1140–1200, 1350–1390,

1520–1650 and 1760–2300
1033–1043

Slope 0.9898 0.9636 1.0246𝑟2 0.9995 0.9932 0.9968
RMSEP [mmol/kg] 4.3 24.1 49.9
Number of
components 1 1 1

Number of outliers 1 (in the validation set) 0 0

and validation of the PLS-R model for bicarbonate. For
carbamate series also no outliers were detected in the cali-
bration or validation datasets. Figure 6 shows selected plots
from the calibration and validation of the PLS-R model for
carbamate.

The wavelength ranges used in the PLS-R models for
the predictions of carbonate, bicarbonate, and carbamate
are presented in Table 3. Some variables (waveshifts) with
regression coefficients close to zero were also included, as

it was found that the prediction uncertainties were slightly
improved when these wavelengths were included. The values
for the slope, 𝑟2, RMSEP, the number of PLS components, and
outliers in all three models are listed in Table 3.

Multivariate analysis has been proven to overcome many
challenges in univariatemethod. Univariatemethod is simple
and samples for calibration can be prepared using one chem-
ical when there are no interferences from other constituents.
There are many instances when the property of interest



Journal of Chemistry 9

−6000 −4000 −2000 0 2000 4000 6000
PLS component number 1

−4000

−2000

0

2000

4000

 P
LS

 co
m

po
ne

nt
 n

um
be

r 2
Score plot (t1 − t2)

Calibration samples
Validation samples

(a)

0 500 1000 1500 2000 2500
−5

0

5

10

15

20

B
 (a

rb
itr

ar
y 

un
it)

Regression coefficients (B)×10−6

Waveshift (cm−1)

(b)

0 1 2 3 4 5 6
PLS component number

0

0.02

0.04

0.06

0.08

Y
-v

ar
ia

nc
e

Residual validation variance

(c)

Reference bicarbonate concentration (mol/kg)

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
te

d 
bi

ca
rb

on
at

e 
co

nc
en

tr
at

io
n 

(m
ol

/k
g)

Predicted versus reference

0 0.2 0.4 0.6 0.8 1

Slope
Offset
Correlation (r)

0.9932
RMSEP
r2

0.9636
0.0191
0.9966

0.0241

(d)

Figure 5: PLS-R model for bicarbonate. (a) Score plot of PLS components 1 versus 2 showing the calibration samples and validation samples.
(b) Regression coefficients based on a one-component PLS-R model. (c) The residual validation variance shows that one PLS-component is
optimal. (d) Predicted bicarbonate concentrations based on the one-component PLS-R model versus the reference concentrations obtained
from the solution preparation stage.

cannot be described by one peak. According to Table 2,
vibrational modes assigned to carbonate, bicarbonate, and
carbamate fall closer to each other in the finger print area
from 1000 to 1420 cm−1. The NH3-CO2-H2O system consists
of several equilibrium reactions and the compositions of
carbonate, bicarbonate, and carbamate are influenced by the
concentrations of each other. It can be seen from the calibra-
tion spectrum that there are completely visible, independent
nicely shaped peak assigned to each other; however this may
be not true when it comes to the real CO2 loaded ammonia
system. Two scenarios of misuse of the multivariate regres-
sion in spectroscopic applications have been explained by
Esbensen et al. [28]. They are assigning individual peaks for
regressionwhich are identified by the preprocessed data or by
regression coefficients.The regression coefficients are used to
calculate the response value from the X-measurements. The
size of the coefficients gives an indication of which variables
have an important impact on the response variables. Assign-
ing wavelengths selected during calibration development for
regression must be done with caution because more than one
wavelengths are associated with the functional group to some
degree [28]. Many factors including scatter effect affect the

wavelength position and only by using a wavelength region
can the robustness of the calibration model be increased.

The score plots shown in Figures 4–6 reveal that the
calibration and validation datasets in all three cases span the
same score space, which indicates similarity of the datasets.
The most important wavelengths are those with regres-
sion coefficients that show the largest deviation from zero.
The regression coefficients listed in Figure 4 (carbonate),
Figure 5 (bicarbonate), and Figure 6 (carbamate) show that
the most important wavelength ranges are 1060–1070 cm−1,
1350–1380 cm−1, and 1033–1043 cm−1, respectively. In all three
models, only a small contribution is gained fromwavelengths
outside these ranges. The residual validation variance plot
shows that one-component PLS-R is sufficient for all three
models. The slope of the regression line is 0.96–1.02 and the𝑟2 is 0.0.993–0.999, which is close to the optimal value of 1.0.
The average prediction errors, that is, RMSEP values, for car-
bonate, bicarbonate, and carbamate, were 4.3mmol/kg H2O,
24.1mmol/kg H2O, and 49.9mmol/kg H2O, respectively.

3.2. Demonstration of the Method. The proposed speciation
method was demonstrated using aqueous solutions of 5 wt%
ammonia loaded with CO2. Since reference concentrations
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Figure 6: PLS-R model for carbamate. (a) Score plot of PLS components 1 versus 2 showing the calibration samples (filled circles) and
validation samples (open circles). (b) Regression coefficients based on a one-component PLS-R model. (c) The residual validation variance
shows that one PLS-component is optimal. (d) Predicted carbamate concentrations based on the one-component PLS-R model versus the
reference concentrations obtained from the solution preparation stage.

of carbonate, bicarbonate, and carbamate were not available,
the prediction performance level of each model was assessed
based on the calculated prediction uncertainties, as defined
previously [29]. The demonstration dataset was based on
14 solutions with different loadings (mole-ratio CO2/NH3)
of CO2, which were measured three times (42 samples in
total). The solvent CO2 loading is one of the primary process
parameters in the operation of systems for the chemical
absorption of CO2.

Figure 7 shows the predicted concentrations of the mea-
sured species. The average prediction uncertainties for car-
bonate, bicarbonate, and carbamate were 6.45mmol/kg H2O,
34.39mmol/kg H2O, and 100.9mmol/kg H2O, respectively.
Overall, the predictions of the sample solutions with corre-
sponding uncertainties give a satisfactory outcome regarding
speciation of all the anions. The last three predictions for
carbamate shown in Figure 7(c) reveal greater uncertainties
than those noted for the other predictions. This is due to
either the precipitation of solids or the presence of a slightly
higher concentration of ammonia in this sample. While a
precipitate was not visible in this sample, the conditions
were close to those for which precipitation is expected. Thus,
the influence of precipitation could not be ruled out. In
the accompanying report [14], the method presented here is

compared to the experimental data of the same samples with
the precipitation-titration method, with good agreement.
In the present study, the difference observed between the
demonstration dataset and the carbamate calibration is that
even though all the same species are present, the CO2 loading
differs (see reactions (12) and (13)). In the demonstration
dataset, the amounts of ammonia and water are roughly
constant, and the amount of CO2 increases continuously with
increasing sample number. In the demonstration dataset, the
CO2 loading is increased from 0 to 0.6. Thus, the present
method can relate the CO2 loading to the liquid carbon
distribution through reactions (2)–(5).

3.3. Comparison of the Model with Literature. Three models
developed in this study have been used in the study of
VLE data of chilled ammonia system [14]. This study shows
the model predictability which has been compared with
two thermodynamic models of Darde et al. [6] and Que
and Chen [24] and experimental work carried out by Wen
and Brooker [10], Holmes et al. [8], Zhao et al. [11], and
Ahn et al. [30]. The composition analysis performed by
Zhao et al. [11] for CO2-NH3-H2O system is based on
univariate analysis of Raman measurements. They record
results for different initial ammonia concentrations in the
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Figure 7: Predicted concentrations [mol/kg] of (a) carbonate; (b) bicarbonate; and (c) carbamate.

range of 0.69mol/L to 2.10mol/L and CO2 concentration
range from 0.18 to 0.67mol/L. The work is related to low
concentrations of ammonia. The proposed method in this
study is independent of ammonia concentration and is based
on three calibration sets each with 20 measurements which
were followed by validation using independent data set
spanning in the calibration range for each species. Zhao’s
method includes calculating molar scattering intensity (J)
of each carbon species by preparation of series of solutions
of sodium carbonate and sodium bicarbonate to calculate
J of carbonate and bicarbonate while J of carbamate was
calculated by carbon conservation balance. Therefore the
molar scattering intensity of carbamate was dependent on
those of other 2 components.

4. Conclusion

A method for speciation of the CO2-NH3-H2O system is
proposed. The proposed method can be applied without the
need for additional analytical calibrationmethods. Speciation
is achieved based on a combination of Raman spectroscopy
and multivariate PLS-R modeling, wherein the so-called full
spectrum calibration method is applied to extract informa-
tion from the entire spectrum.The concentrations of carbon-
ate, bicarbonate, and carbamate were predicted with an aver-
age prediction error (RMSEP) as being 4.3mmol/kg H2O,
24.1mmol/kg H2O, and 49.9mmol/kg H2O, respectively.

For the method demonstration case, which lacked refer-
ence concentrations, the prediction uncertainties for car-
bonate, bicarbonate, and carbamate were 6.45mmol/kg
H2O, 34.39mmol/kg H2O, and 100.9mmol/kg H2O, respec-
tively.

Appendix

Concentrations of the Carbonate, Bicarbonate,
and Carbamate Species in the Solutions Used
for Model Calibration and Validation

See Table 4.
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Table 4: Overview of sample solutions reported as mol/kg H2O.

Sample number Carbonate [mol/kg H2O] Bicarbonate [mol/kg H2O] Carbamate [mol/kg H2O]
Calibration Validation Calibration Validation Calibration Validation(1) 0.00000 0.01974 0.00000 0.03441 0.00000 0.07923(2) 0.03840 0.05585 0.05671 0.05704 0.14939 0.14652(3) 0.07280 0.09137 0.10508 0.10159 0.29518 0.27757(4) 0.11073 0.12401 0.15180 0.15504 0.39826 0.40627(5) 0.14710 0.15777 0.20941 0.20138 0.53542 0.55145(6) 0.18544 0.19187 0.25647 0.25214 0.67098 0.67585(7) 0.22126 0.22658 0.30250 0.30090 0.80054 0.80525(8) 0.25856 0.26310 0.35346 0.35263 0.93483 0.94422(9) 0.29493 0.29814 0.40131 0.40289 1.08200 1.05871(10) 0.33113 0.33291 0.46320 0.45270 1.21012 1.21201(11) 0.36895 0.36560 0.49901 0.49946 1.33941 1.33618(12) 0.39913 0.40255 0.54737 0.54932 1.47757 1.47498(13) 0.44205 0.43683 0.59693 0.60006 1.61910 1.60257(14) 0.47772 0.47227 0.65191 0.65196 1.73472 1.73898(15) 0.51599 0.50607 0.70127 0.70248 1.87207 1.87232(16) 0.55162 0.54010 0.74870 0.75143 2.02088 2.01094(17) 0.59048 0.57554 0.79937 0.79809 2.12369 2.13626(18) 0.62521 0.61002 0.84721 0.84682 2.27083 2.28208(19) 0.66210 0.64656 0.90173 0.89758 2.41909 2.41723(20) 0.69948 0.68035 0.95353 0.94859 2.55658 2.44528
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Table A- 1. Comparison of CO2 loading from titration and Raman 

spectroscopy in rich amine stream during PACT campaign (Uc = 

uncertainty values calculated by the Raman models) 
 

Day#  time CO2 loading (mol/mol MEA) – rich stream 

Titration  Raman predictions 

Time of 

acquiring 

Raman 

spectra 

Value ± Uc 

1 13:15 0.153373 13:10:55 0.141957153 0.0102 

13:12:36 0.1447069 0.0104 

13:21:55 0.151084033 0.0101 

1 13:45 0.37699 13:44:52 0.367931778 0.0091 

13:45:58 0.378113074 0.0088 

13:47:04 0.386933479 0.0088 

1 14:05 0.439896 14:04:38 0.447304464 0.0092 

14:05:44 0.44871423 0.0097 

14:06:50 0.447404157 0.0095 

1 14:25 0.486367 14:24:25 0.480229869 0.0094 

14:25:30 0.475508568 0.0094 

14:26:36 0.481497733 0.0095 

1 14:45 0.475426 14:44:10 0.490212364 0.0093 

14:45:16 0.494240943 0.0094 

14:46:22 0.49839744 0.0095 

1 15:15 0.484216 15:14:55 0.494205368 0.0097 

15:16:01 0.499282562 0.0096 

15:17:07 0.500604884 0.0097 

1 15:35 0.463091 15:34:41 0.482200133 0.0096 

15:35:46 0.484946962 0.0094 

15:36:52 0.486532812 0.0096 

1 15:55 0.462196 15:54:26 0.47736251 0.0095 

15:55:32 0.478879968 0.0094 

15:56:38 0.482785583 0.0093 

1 16:15 0.42835 16:14:12 0.469110204 0.0095 

16:15:18 0.465763094 0.0094 

16:17:40 0.458682739 0.0095 

1 16:35 0.331385 16:34:17 0.388741446 0.0088 

16:35:23 0.380634396 0.0088 

16:36:29 0.380228 0.0088 

1 16:55 0.28351 16:54:06 0.284643762 0.0088 

16:55:12 0.277759863 0.0087 
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16:56:18 0.280339032 0.0088 

1 17:15 0.191744 17:13:55 0.209449384 0.0090 

17:15:02 0.204762528 0.0090 

17:16:08 0.208032136 0.0091 

2 10:25 0.114649 10:24:49 0.125993496 0.0116 

10:25:55 0.122851742 0.0112 

10:27:01 0.123547155 0.0118 

2 11:05 0.267122 11:04:29 0.252611434 0.0088 

11:05:35 0.250383702 0.0089 

11:06:41 0.254343467 0.0088 

2 11:30 0.304644 11:29:50 0.294803578 0.0088 

11:30:56 0.303768031 0.0087 

11:32:03 0.303887257 0.0088 

2 12:00 0.322018 11:59:35 0.332978564 0.0089 

12:00:42 0.34293726 0.0089 

12:01:48 0.33638242 0.0088 

2 12:30 0.302003 12:29:21 0.302485721 0.0088 

12:30:27 0.301098831 0.0089 

12:31:33 0.306824078 0.0088 

2 13:00 0.271299 12:59:07 0.272222532 0.0088 

13:00:13 0.27163003 0.0088 

13:01:19 0.269202593 0.0088 

2 13:30 0.420024 13:29:04 0.411547716 0.0098 

13:30:10 0.418867868 0.0093 

13:31:16 0.417852231 0.0098 

2 13:45 0.430781 13:44:28 0.433254377 0.0093 

13:45:34 0.433927146 0.0094 

13:46:40 0.437507076 0.0090 

2 14:00 0.434504 13:59:52 0.427955286 0.0098 

14:00:58 0.4393602 0.0094 

14:02:04 0.429513089 0.0093 

2 14:15 0.434618 14:14:09 0.430510688 0.0093 

14:15:15 0.433922169 0.0092 

14:16:20 0.435372677 0.0094 

2 14:45 0.338655 14:44:24 0.354791444 0.0089 

14:45:46 0.348097677 0.0088 

14:48:52 0.353694855 0.0091 

2 15:00 0.366251 14:54:52 0.367527565 0.0089 

15:01:05 0.369625796 0.0090 

15:05:14 0.370164045 0.0095 

2 15:15 0.35636 15:13:22 0.370965167 0.0090 

15:16:47 0.378373176 0.0089 

15:17:53 0.37620467 0.0089 
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2 15:30 0.334543 15:28:58 0.37677801 0.0090 

15:30:04 0.36946285 0.0090 

15:31:18 0.350117017 0.0091 

2 15:45 0.334663 15:42:54 0.346655728 0.0090 

15:49:59 0.355378132 0.0089 

15:51:14 0.354349837 0.0090 

2 16:00 0.344137 15:57:10 0.352775152 0.0090 

16:02:28 0.350552832 0.0092 

16:04:13 0.353206889 0.0091 

2 16:15 0.33803 16:14:38 0.359639092 0.0089 

16:16:00 0.354106172 0.0090 

16:17:06 0.349247599 0.0092 

2 16:30 0.320904 16:29:22 0.35663223 0.0090 

16:30:29 0.363648563 0.0092 

16:31:34 0.365390265 0.0089 

2 16:45 0.313799 16:44:46 0.325853667 0.0091 

16:45:52 0.332053055 0.0091 

16:46:58 0.330559537 0.0090 

2 17:00 0.325545 16:59:06 0.343278441 0.0090 

17:00:12 0.344637883 0.0090 

17:01:18 0.340977086 0.0091 

2 17:15 0.335603 17:14:29 0.331061971 0.0089 

17:15:35 0.341110003 0.0091 

17:16:41 0.342035572 0.0090 

2 17:30 0.358162 17:29:53 0.342276761 0.0090 

17:30:59 0.341600561 0.0093 

17:32:05 0.34463627 0.0090 

3 10:00 0.256941 - -  

- -  

-- -  

3 10:30 0.231785 10:29:52 0.214266241 0.0091 

10:30:58 0.207547164 0.0094 

10:32:04 0.213588688 0.0091 

3 11:00 0.389 10:59:36 0.281570228 0.0089 

11:00:42 0.274333882 0.0090 

11:01:48 0.280203489 0.0090 

3 11:30 0.401722 11:29:20 0.400819487 0.0093 

11:30:26 0.403340651 0.0096 

11:31:32 0.400379391 0.0094 

3 12:00 0.374217 11:59:04 0.391524224 0.0096 

12:00:11 0.392784068 0.0094 

12:01:17 0.393253291 0.0095 

3 12:30 0.402764 12:28:53 0.408097382 0.0093 
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12:30:00 0.406810964 0.0093 

12:31:06 0.398636687 0.0095 

3 13:00 0.393799 12:59:45 0.400823292 0.0095 

13:00:52 0.396912156 0.0097 

13:01:58 0.395801834 0.0097 

3 13:30 0.406388 13:29:33 0.397989108 0.0096 

13:30:39 0.391442516 0.0097 

13:31:45 0.387454983 0.0098 

3 14:00 0.395441 13:59:19 0.39162306 0.0097 

14:00:25 0.387641176 0.0100 

14:01:15 0.39536585 0.0099 

3 14:30 0.307216 14:30:06 0.479030787 0.0672 

14:31:12 0.371598659 0.0093 

14:32:19 0.308242633 0.0093 

3 15:00 0.392325 14:59:53 0.406833947 0.0097 

15:00:59 0.409090194 0.0094 

15:02:06 0.400881175 0.0095 

3 15:30 0.381261 15:29:40 0.397011952 0.0096 

15:30:46 0.396438519 0.0096 

15:31:52 0.396391107 0.0095 

3 16:00 0.395945 15:59:26 0.399773716 0.0093 

16:00:32 0.399041368 0.0095 

16:01:38 0.391031302 0.0096 

3 16:30 0.386963 16:29:38 0.387827803 0.0095 

16:30:50 0.387331172 0.0095 

16:32:01 0.379534424 0.0095 
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Table A- 2. Comparison of CO2 loading from titration and Raman 

spectroscopy in lean amine stream during PACT campaign (Uc = 

uncertainty values calculated by the Raman models) 
 

Day#  time CO2 loading (mol/mol MEA) – lean stream 

Titration  Raman predictions 

Time of 

acquiring 

Raman 

spectra 

Value ± Uc 

1 13:15 0.141858 

 

13:14:33 0.15136 0.0096 

13:15:05 0.14908 0.0097 

13:16:17 0.14806 0.0103 

1 13:45 0.219616 

 

13:43:58 0.19482 0.0091 

13:45:04 0.20091 0.0091 

13:46:10 0.20419 0.0091 

1 14:05 0.330098 14:04:50 0.31584 0.0091 

14:05:56 0.32381 0.0092 

14:07:02 0.32723 0.0093 

1 14:25 0.394555 

 

14:24:37 0.40590 0.0093 

14:25:43 0.40962 0.0091 

14:26:48 0.40930 0.0093 

1 14:45 0.428106 

 

14:44:22 0.45216 0.0094 

14:45:28 0.45636 0.0094 

14:46:34 0.45825 0.0094 

1 15:15 0.472425 15:14:01 0.48647 0.0095 

15:15:07 0.48698 0.0094 

15:16:13 0.49063 0.0095 

1 15:35 0.464507 

 

15:34:53 0.49819 0.0101 

15:35:59 0.50100 0.0103 

15:37:04 0.49934 0.0101 

1 15:55 0.455322 

 

15:54:38 0.49207 0.0107 

15:55:44 0.48674 0.0104 

15:56:50 0.48919 0.0105 

1 16:15 0.391166 16:14:24 0.45594 0.0101 

16:15:30 0.44763 0.0098 

16:16:36 0.44372 0.0100 

1 16:35 0.290897 

 

16:34:03 0.34486 0.0097 

16:35:10 0.33739 0.0096 

16:36:16 0.33494 0.0098 

2 16:55 0.238621 

 

16:54:59 0.24760 0.0096 

16:56:05 0.24354 0.0095 
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16:57:11 0.23842 0.0093 

2 10:25 0.119086 

 

10:24:31 0.12563 0.0110 

10:25:37 0.12927 0.0107 

10:26:43 0.13104 0.0106 

2 11:05 0.121516 

 

11:04:11 0.13141 0.0106 

11:05:17 0.13602 0.0104 

11:06:23 0.13963 0.0101 

2 11:30 0.180569 11:29:32 0.17908 0.0094 

11:30:38 0.17988 0.0095 

11:31:44 0.18605 0.0094 

2 12:00 0.163864 

 

11:59:17 0.18578 0.0094 

12:00:24 0.18410 0.0094 

12:01:30 0.17967 0.0094 

2 12:30 0.146731 

 

12:29:03 0.15940 0.0098 

12:30:09 0.16054 0.0097 

12:31:15 0.15540 0.0097 

2 13:00 0.121293 12:59:55 0.14773 0.0099 

13:01:01 0.14614 0.0100 

13:02:07 0.14896 0.0100 

2 13:30 0.123048 

 

13:29:52 0.14417 0.0100 

13:30:58 0.14575 0.0100 

13:32:04 0.14399 0.0100 

2 13:45 0.133961 

 

13:44:10 0.14829 0.0099 

13:45:16 0.14480 0.0102 

13:46:22 0.14953 0.0099 

2 14:00 0.14378 13:59:34 0.14543 0.0100 

14:00:40 0.14569 0.0099 

14:01:46 0.15034 0.0099 

2 14:15 0.130527 

 

14:14:57 0.14506 0.0099 

14:16:03 0.14706 0.0099 

14:17:08 0.14790 0.0100 

2 14:30 0.13583 

 

14:29:14 0.14557 0.0101 

14:30:20 0.14680 0.0099 

14:31:26 0.14642 0.0100 

2 14:45 0.149866 14:40:13 0.16082 0.0096 

14:41:19 0.16307 0.0097 

14:49:42 0.17868 0.0096 

2 15:00 0.166645 

 

14:49:42 0.16307 0.0097 

15:03:52 0.17868 0.0096 

15:06:02 0.18333 0.0094 

2 15:15 0.173953 

 

15:14:12 0.18864 0.0095 

15:16:29 0.18516 0.0095 

15:17:35 0.19110 0.0095 
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2 15:30 0.183956 15:28:40 0.19605 0.0096 

15:29:46 0.19276 0.0094 

15:32:12 0.19745 0.0095 

2 15:45 0.182665 

 

15:29:46 0.19276 0.0094 

15:32:12 0.19745 0.0095 

16:05:03 0.19483 0.0095 

2 16:00 0.181365 

 

16:05:03 0.19483 0.0095 

16:08:09 0.19673 0.0094 

16:09:14 0.19542 0.0095 

2 16:15 0.183677 16:14:19 0.19177 0.0094 

16:16:48 0.19914 0.0095 

16:19:11 0.19793 0.0096 

2 16:30 0.183041 

 

16:29:05 0.20147 0.0095 

16:30:11 0.19946 0.0094 

16:31:17 0.20029 0.0094 

2 16:45 0.183306 

 

16:44:28 0.20149 0.0095 

16:45:34 0.20111 0.0095 

16:46:40 0.20227 0.0095 

2 17:00 0.192209 16:59:54 0.21336 0.0095 

17:01:00 0.20995 0.0095 

17:02:06 0.21265 0.0095 

2 17:15 0.230232 

 

17:14:11 0.21354 0.0096 

17:15:18 0.21778 0.0096 

17:16:23 0.21498 0.0095 

2 17:30 0.205829 

 

17:29:35 0.21927 0.0096 

17:30:41 0.21802 0.0096 

17:31:47 0.21787 0.0097 

3 10:00 0.247776 - - - 

   

   

3 10:30 0.206119 

 

10:29:15 0.20615 0.0091 

10:34:57 0.20411 0.0092 

10:36:03 0.20366 0.0092 

3 11:00 0.183217 

 

10:59:11 0.18459 0.0096 

11:00:17 0.18235 0.0096 

11:01:23 0.18229 0.0096 

3 11:30 0.187808 11:28:54 0.19849 0.0097 

11:30:01 0.19658 0.0096 

11:31:07 0.19567 0.0096 

3 12:00 0.201553 

 

11:59:45 0.20372 0.0097 

12:00:51 0.20589 0.0097 

12:01:57 0.20328 0.0097 

3 12:30 0.191495 12:29:34 0.19989 0.0097 
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 12:30:40 0.20076 0.0097 

12:31:46 0.20254 0.0098 

3 13:00 0.199085 12:59:19 0.20041 0.0097 

13:00:26 0.20094 0.0098 

13:01:32 0.20461 0.0097 

3 13:30 0.197129 

 

13:29:07 0.19943 0.0097 

13:30:13 0.19982 0.0097 

13:31:20 0.20003 0.0098 

3 14:00 0.20011 

 

13:58:54 0.19782 0.0098 

14:00:00 0.20080 0.0098 

14:01:06 0.19886 0.0098 

3 14:30 0.201948 14:29:18 0.21019 0.0095 

14:30:25 0.20743 0.0096 

14:31:36 0.21693 0.0096 

3 15:00 0.16243 14:59:27 0.18507 0.0098 

15:00:33 0.18822 0.0098 

15:01:39 0.18765 0.0097 

3 15:30 0.189119 

 

15:29:14 0.19547 0.0097 

15:30:20 0.20075 0.0097 

15:31:26 0.19918 0.0098 

3 16:00 0.181443 

 

15:59:00 0.19867 0.0098 

16:00:06 0.19880 0.0097 

16:01:12 0.19628 0.0098 

3 16:30 0.18593 16:29:58 0.20130 0.0097 

16:31:09 0.19755 0.0097 

16:34:49 0.19733 0.0097 
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