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Abstract: A novel toxicity-warning sensor for water quality monitoring in recirculating aquaculture
systems (RAS) is presented. The design of the sensor system mainly comprises a whole-cell biosensor.
Aliivibrio fischeri, a luminescent bacterium widely used in toxicity analysis, was tested for a mixture
of known fish-health stressors, namely nitrite, un-ionized ammonia, copper, aluminum and zinc.
Two toxicity predictive models were constructed. Correlation, root mean squared error, relative error
and toxic behavior were analyzed. The linear concentration addition (LCA) model was found suitable
to ally with a machine learning algorithm for prediction of toxic events, thanks to additive behavior
near the limit concentrations for these stressors, with a root-mean-squared error (RMSE) of 0.0623,
and a mean absolute error of 4%. The model was proved to have a smaller relative deviation than
other methods described in the literature. Moreover, the design of a novel microfluidic chip for
toxicity testing is also proposed, which is to be integrated in a fluidic system that functions as a
bypass of the RAS tank to enable near-real time monitoring. This chip was tested with simulated
samples of RAS water spiked with zinc, with an EC50 of 6,46E-7 M. Future work will be extended to
the analysis of other stressors with the novel chip.

Keywords: Aliivibrio fischeri; water quality monitoring; whole-cell biosensor; linear concentration
addition; linear independent action; aquaculture

1. Introduction

‘Toxicity’ stands for the grade of a substance or a mixture to cause a harmful effect to an organism.
The maximum exponent of that effect is the death of the organism. On the other hand, at lower
exposure doses, effects such as stress can be observed. Substances that induce stress are called stressors.
In fish, stress can have consequences such as inhibited growth, weaker immune system, and behavioral
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changes [1,2]. The first two effects are very undesirable in the context of aquaculture, where optimal
growth and low mortality rates are demanded to maximize profit.

Recirculating aquaculture systems (RAS) present an environmentally-friendly approach to
aquaculture, as less water is wasted through recirculation, and nitrogen rich waste can be used
as a fertilizer for aquaponics and copeponics [3]. Mortality rate related to pathogenic diseases are
decreased by culturing the fish inland in tanks, using quality-controlled water systems. Trace metals
such as zinc and copper can be supplied by feed [2], or instead by erosion of materials present in the
RAS system and the water source itself, such as aluminum [4,5]. Other sources of stressors are excretion
products by fish and uneaten feed as the case of un-ionized-ammonia or byproducts of its nitrification,
as in the case of nitrite, can cause death by hypoxia via binding with the heme group of fish hemoglobin
and modify it, thus preventing it to link to oxygen [6] Un-ionized ammonia, on the other hand, interacts
with the fish nervous system [2]. Heavy metals are toxic to fish, interfering in osmoregulation and even
leading to the accumulation of other toxic substances such as ammonia. Thus, it is of great importance
to monitor the water quality parameters in RAS, particularly these stressors.

Nowadays, electrochemical analysis is often used to monitor RAS water quality.
Typical parameters include temperature, salinity, pH, dissolved oxygen, or biological oxygen demand
for oxygen, total dissolved solids or total organic carbon for detecting organic matter, ions and dissolved
carbon, and oxygen reduction potential for alkalinity [4,7,8]. The electrochemical analysis is often
performed by commercial sensors—e.g., Oxygard Pacific (OxyGuard International A/S, Denmark),
Pentair Point Four (Pentair, UK). With these sensors, most of the measurements are not specific,
giving a rough indication of water quality. More specialized tests for chemical identification and
quantification still need to be done by sampling and analysis in the laboratory. Therefore, real-time
monitoring of chemical stressors is still difficult. Moreover, those sensors do not take into account
interactions between stressors, which can promote the toxicity of one another when combined.

In summary, real-time or near real-time monitoring of RAS water for chemical stressors—such as
un-ionized ammonia, nitrite, aluminum, copper, and zinc—and their combined toxicity is required.
Toxicity tests usually involve the use of model animals, algae, or microorganisms. Whole-cell toxicity
biosensors provide a promising solution to miniaturized sensors, as their small size enables the
incorporation into lab-on-a-chip platforms or field deployable sensors. Aliivibrio fischeri, a marine
bacterium, has been used as a toxicity biosensor due to its high broad range sensitivity [9]. Its use
as a water quality monitoring sensor has been proved in the commercially available Microtox CTM
and TOXControl analyzers, as well as on industry effluents studies [10]. Its assay consists in the
measurement of the inhibition of luminescence, produced by a chain of enzymatic reactions, which are
known to be interfered by substances as antibiotics [11] or heavy metals [12]. The luminescence can be
recorded using CCD cameras or photomultiplier tubes, as shown in work conducted in [13,14].

Disposable chips to identify toxic chemicals or general toxicity testing by using immobilized
bioluminescent bacteria have been reported [13,15–17], either by using genetically modified bacteria
or mammalian cells [15], immobilizing Aliivibrio fischeri in chip for heavy metal monitoring on
environmental waters [16] or chemicals, such as naphthalene [18]. Zhao and Dong presented a
microfluidic chip for drinking water quality monitoring [14], mixing both Aliivibrio fischeri and the
water sample and subsequent measurement of the luminescence in a microfluidic chamber 20 min
later. The inhibition was determined by normalization with the luminescence recorded using a
control. This sensor could perform acute toxicity tests, being suitable to determine the toxicity of zinc,
potassium dichromate, and copper.

Predicting highly toxic episodes can be as important as to detect them, enabling the application
of counter-measures to keep a healthy fish culture. Therefore, there is an interest in the construction
of prediction models to prevent highly toxic events. The available models are mostly applied to the
field of drug and chemical discovery. Quantitative structure–activity relationship (QSAR) models
have been used to predict the toxicity of new chemical and drug compounds, by comparing the
similarity among chemicals with known chemical structures [19]. Binary decision models have
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also been developed [19]. Both types of models are easy to implement, but without considering
possible interactions between the different compounds; alerting only to the presence/absence of
such compounds and errors can be induced if the new chemical has a different mode of action.
Dose–response or time–response models present a simple way of characterizing mixtures when the
modes of action of the components in a mixture are unknown [19]. As the name implies, different doses
of sample are used, and the corresponding response or effect is measured. Then a relation is drawn
through different linear fitting models, such as Probit, or non-linear fitting—e.g., the Logit model.
The dose can be expressed as a concentration or logarithm of a concentration that causes a percentage of
an effect, named effect concentration (EC). Zadorozhnaya et al. [20] compared the Microtox® assay with
an array of electrochemical sensors conjugated with a prediction model of single chemical toxicities
as well as freshwater samples based on random forest, principal component analysis, and random
KNN. The sensor array behaved poorly, with relative errors between 20% and 25%. Hence, the use of
Aliivibrio fischeri allied with prediction models may constitute a better alternative to electrochemical
sensors for sample toxicity assessment.

When in mixture, the toxicity of compounds can express different behavior: as stated by Bliss [9],
mixtures can behave additively, synergistically or antagonistically. Most mixtures are considered
to behave additively. Two classical models have been proposed, based on the mode of action of
components of the mixture: concentration addition (CA), where all components have the same mode of
action, and the independent action model (IA), where the different components have dissimilar mode
of action [9]. More recently, new models with enhanced accuracy have been reported in the literature,
such as the generalized concentration model proposed by Tada [21], as well as linear regression models
including linear concentration addition and linear independent action (LIA) models presented by
Qin et al. [22].

This work presents a novel concept of sensor for water quality monitoring in RAS by
demonstrating a whole-cell biosensor conjugated with toxicity prediction models. Furthermore,
the design of an integrated microfluidic chip to test water toxicity in RAS is also presented and its
usability was studied in simulated conditions.

The following sections describe and analyze the work done. Section 2 starts by describing the
material and methods employed in the design of the experiments for the prediction models and the
predicates for the design of the microfluidic chip. In Section 3, the results are presented and discussed
using the same structure as Section 2. Lastly, the main conclusions are drawn in Section 4.

2. Material and Methods

Here we started from uniform design ray which is a method of planification of toxicity studies
that reduces the amount of experiments needed to characterize a mixture of toxicants. It is followed by
the material and methods employed for the study, such as reagents, equipment, and protocols used for
the study of the mixture and previous information related to the study of the stressors when single in
solution. The prediction models are explained in the data processing part, along with the statistical
methods and software employed for this goal. Finally, it is introduced the assumptions for the design
of a lab-on-a-chip system for toxicity testing.

2.1. Uniform Ray Design Method

The experiment was designed by following the uniform design ray (UD) presented by
Liu et al. [23]. This method combines the logic of the fixed ratio ray design with the uniform design,
reducing the number of experiments required to characterize the toxicity response of an organism to a
mixture of toxicants. It consists of the creation of a uniform distribution of effect concentrations per
experiment. This uniform distribution is achieved based on the number of concentrations and the
number of components of the mixture and the number of factors s, which regulates the maximum
number of experiments needed. Each experiment forms a ray, by creating a dilution series from the
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selected concentrations. Thus, having a mixture with five components, a uniform table U7 (76) was
designed (Table S1 of the Supplementary Material).

2.2. Reagents and Equipment

The Lumoplate Ultimate Matrix kit (EBPI, Mississauga, ON, Canada), based on freeze-dried
A. fischeri as a test organism for toxicity, was used in our study. Stock solutions of ammonium
chloride (Sigma-Aldrich, Oslo, Norway), zinc sulfate heptahydrate (Sigma-Aldrich, Oslo, Norway),
aluminum chloride (Sigma-Aldrich, Oslo, Norway), and copper sulfate (Sigma-Aldrich, Oslo, Norway)
were prepared in deionized water. Concentrations of ammonia and zinc were confirmed using the
salicylate method and the zinc test method (photometric 0.05–2.50 mg/L Zn spectroquant from Merck
Milipore). The nitrite ion standard solution 1 g/L (Merck Milipore, Beijing, China) was used to
prepare the nitrite stock solution. The luminescence was recorded with the Synergy 2 microplate
reader (BioTek, Winooski, VT, USA) in a 96 well microplate. A thermo-block was employed to keep the
temperature of the microplate constant at 15 ◦C and the samples were kept at constant temperature at
15 ◦C in a Lauda CP6 thermo-bath.

2.3. Single Stressors Study

In order to analyze the behavior of toxicants in a mixture, the toxicity of individual toxicants
to A. fischeri needed to be studied. Hence, toxicity tests for all the toxicants were in advance
conducted based on their typical concentration in Atlantic salmon RAS and their safe limits to this fish.
Tables S2–S4 of the Supplementary Material present the concentrations used for copper, aluminum,
and zinc.

2.4. Mixture Study: Preparation and Test

For the evaluation of the mixture of nitrite, un-ionized ammonia, copper, aluminum, and zinc,
each effect concentration of each component in the mixture was calculated according to their respective
dose–response curves. Table 1 shows the concentrations of each ray.

Table 1. Maximum concentration, in mM, of each component in the mixture and total concentration of
stressors in the mixture.

Ray Nitrite
(mM)

Un-Ionized
Ammonia (mM)

Copper
(mM)

Aluminum
(mM)

Zinc
(mM)

Total
Concentration (mM)

1 8.99 × 10−7 2.32 × 10−2 5.25 × 10−3 3.60 × 10−4 1.22 × 10−3 3.00 × 10−2

2 1.93 × 10−5 3.01 × 10−2 6.13 × 10−3 1.48 × 10−4 9.11 × 10−4 3.73 × 10−2

3 1.48 × 10−4 3.74 × 10−2 4.91 × 10−3 4.41 × 10−4 5.70 × 10−4 4.35 × 10−2

4 7.90 × 10−4 1.86 × 10−2 5.83 × 10−3 2.21 × 10−4 1.41 × 10−3 2.69 × 10−2

5 3.66 × 10−3 2.67 × 10−2 4.44 × 10−3 5.39 × 10−4 1.06 × 10−3 3.64 × 10−2

6 1.70 × 10−2 3.35 × 10−2 5.55 × 10−3 2.89 × 10−4 7.55 × 10−4 5.71 × 10−2

7 9.04 × 10−2 4.21 × 10−2 6.48 × 10−3 6.72 × 10−4 1.64 × 10−3 1.41 × 10−1

For both tests, based on the manufacturer’s protocol, freeze-dried bacteria were reactivated by
quickly pouring a vial of a saline solution (reagent diluent) in a freeze-dried bacteria vial and stored in
the freezer at 4 ◦C for 30 min.

The mixtures and controls were prepared and pipetted into 1.5 mL centrifugal tubes. To mimic
typical Norwegian RAS water, soft EPA artificial water was employed as an initial matrix.
Then, to stabilize the reading since a marine species is being used, this water was mixed with
10% volume of osmotic adjustment solution (OAS), a saline solution provided in the Lumoplate
Ultimate Matrix kit, to a final salinity of 2%.

For both experiments, 400 µL of sample, 300 µL of zinc control and 1.5 mL of sample diluent,
another saline solution similar to reagent diluent, were used.
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The mixture samples were prepared by pipetting the correct volume of each stressor into the
corresponding tube to achieve the specific concentration described in Table I already complemented
with the mixture of EPA water and OAS solution to a total of 400 µL.

A dilution series of 2, 4, 8, 16, 32, and 64 was created for each mixture ray directly in the microplate
for the mixture tests. As for the single tests, each concentration was prepared and pipetted in each
tube. The tubes and the bacterial vial were put into to the thermo-bath and maintained at 15 ◦C.
Also, the microplate was maintained at 15 ◦C in the thermo-block prior to the test. After 30 min,
100 µL of bacterial solution were pipetted in each well of the microplate followed by 100 µL of mixture
solution and sample diluent in their respective wells, for the single stressors test. For both tests,
sample diluent was used as a negative control. As for the mixture tests, 100 µL of sample diluent was
pipetted in all wells, except for the most concentrated solution of zinc and samples row, followed by
200 µL of the zinc solution and sample was pipetted in a micro-well with only the bacteria solution.
The luminescence was recorded two times, first at the moment of addition of the sample and then
5 min after contact, being the microplate maintained at a constant temperature of 15 ◦C by incubation
in the thermo-block.

2.5. Data Processing

Microsoft Excel 2016 was used to calculate the observed inhibition, the total concentration of
the mix according to concentration addition model and the expected inhibition according to the
independent action model. The observed inhibition is calculated based on normalized decrease of
bioluminescence, taking into account the initial luminescence, in percentage. The dose–response
curves for the experimental data were fitted using a four parameter inverse logistic function following
Equation (1) [24]

y = AL +
(AH − AL)

1 + 10log(xc−x)×p
(1)

where y stands for inhibition and x, xc are the effect and central concentrations, respectively. The central
concentration can be defined as the concentration of the half response. AH is the upper inhibition
limit and AL the lower limit and p is the slope. Concentrations x are computed as the logarithm of
the concentration.

Each effect concentration can be calculated according to Equation (2) [24]

Log(ECx) = log(xc) +
log( x

100−x )

p
(2)

2.5.1. Toxicity Linear Models for the Single Stressors Study

The linear independent action and linear concentration models were first described by
Qin et al. [22]. They rely on an initial prediction of toxicity using the CA and IA models, which
are then linearized using simple linear regression to predict the effective concentrations of the mixture
or their inhibition. Therefore, first each mixture concentration was predicted according to the CA
model using Equation (3)

ECxmix =

(
n

∑
i=1

pi
ECxi

)−1

(3)

in which pi is the proportion of the ith component in the mixture, ECxmix is the predicted inhibition
effect of the mixture, and ECxi is the expected concentration of the ith component i causing such
inhibition. The expected inhibition caused by a certain concentration in the IA model was calculated
according to Equation (4)

E% = 1 −
n

∏
i=1

(1 − Fi(pi × (ECxmix))) (4)
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where E% is the inhibition, in percentage and Fi is the dose–response curve equation of the ith
component that explains its toxicity, when in single. The predicted concentrations for CA were
converted to a logarithmic scale and simple linear regression was applied to estimate parameters b0

and b1, according to Equation (5). For the LIA model, the individual concentrations of each component
were estimated using their dose–response curve models and the predicted total concentration was
calculated by the same principal using simple linear regression, according to Equation (6).

pECxLCA = b0 + b1 × pECxCA (5)

pECxLIA = b0 + b1 × pECxIA (6)

where pECxLCA and pECxLIA are the mixture effect concentrations, observed, and pECxCA and pECxIA
are the predicted effect concentrations by the CA and IA models, in logarithm scale.

OriginPro 8 (Originlab Corporation, Northampton, MA, USA) was used to create the models
using simple regression and plot it against the observed inhibition to create a dose–response curve,
as well as to calculate the predicted EC50 through the model.

2.5.2. Model Fitting and Statistical Evaluation

The observed data and the IA results were fitted by use of a four-parameter logit curve
following the non-linear fit model in OriginPro8 (Originlab Corporation, Northampton, MA, USA),
with inhibition of luminescence as a function of the logarithm of the total concentration of the mixture,
in mM. Also, a 95% confidence interval of the fit was drawn. All the results were then plotted
for comparison.

The model deviation ratio (MDR) [25] was calculated for LCA and IA models by the quotient of
the expected EC50 of each ray and the observed EC50. Also, the relative deviations of EC50 predicted
by each model were calculated.

2.6. Lab-On-A-Chip Study

In order to apply the assay in the field, a miniaturization of the assay and automation of the
process would be necessary. One way to achieve this, is to design a microfluidic device to enable
A. fischeri assays in lab-on-a-chip formats.

As our goal was to create a field deployable system with low maintenance, and thus minimal
human interference, disposable chip is not a solution. Our strategy was to design the reusable chip
which may deploy and mix all the necessary reagents and samples.

Since the assay needs a high number of controls and reagents to be conducted in the microplate,
an adaptation of the protocol had to be made. This was done to, on the one hand, maximize the ratio
between the number of inlets and number of on-chip mixers, and on the other minimize the chip
maintenance complexity. Hence, it was found suitable to have three inlets and two mixers: one for
mixing the OAS solution and the RAS water sample and other to mix the resulting solution with the
bacteria solution.

The chip is comprised of one measuring chamber where the bacteria would gather to maximize the
bioluminescence. The bioluminescence is to be read by a photodetector such as a photomultiplier tube.
Another chamber was used to evaluate the bacteria fitness for the test and normalize the luminescence
recorded during the test after mixing the sample and the bacteria, or it could simply be used a two-time
measurement, in which the luminescence of a negative control would be read prior to the test of the
RAS water.

The chip design was realized using Solidworks 2016 edition (Dassault Systems).
The chip was fabricated in a 3D printer (Objet30 Pro, Stratasys, Eden Prairie, MN, USA), by use

of VeroWhitePlus, a patented white opaque material, which enables fast prototyping of microfluidic
device. Besides, the material was chosen to minimize crosstalk luminescence between different
structures of the chip, minimizing the noise in the measuring chamber.
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Finally, the chip was tested with a dilution series of zinc, using three syringe pumps
(Micro Syringe 1, Chemyx, Stafford, TX, USA) with a flow rate of 24, 21.6, and 2.4 µL/min for bacteria
solution, sample, and OAS solution, respectively. The luminescence was recorded by a photosensor
module H10722-110 (Hamamatsu, Japan) controlled by an Arduino Uno. The data were reduced as
described in Section 2.5.

3. Results and Discussion

The results are presented and discussed in this section. Section 3.1 starts by presenting the results
with single stressors. Section 3.2 follows by comparing the prediction ability of the two models and
their suitability for use with a water quality sensor for RAS. Finally, Section 3.3 describes the results
with the microfluidic chip and presenting a discussion.

3.1. Single Stressors Analysis

The resulting EC50 and curve parameters for the single stressors study can be seen in Table 2.

Table 2. Determined EC50 concentrations of each stressors and respective Logit curve parameters.

Chemical Specie EC50 (M) p logXc AL AH

Nitrite (NO2
−) 3.66 × 10−6 0.26432 −0.77343 0 100

Ammonia (NH3-N) 3.35 × 10−5 3.741 −0.24315 0 100
Zinc 5.83 × 10−6 2.88562 −1.09769 0 100

Aluminum 4.41 × 10−7 2.00837 −1.92469 0 100
Copper 1.22 × 10−6 8.05861 −0.431 0 100

3.2. Comparison of LIA and LCA Models

Antagonistic relations are characterized by a decrease of the expected toxicity, as different
stressors can exhibit different affinities to the same receptor, or complex in a less toxic chemical
specie. Graphically, it can be identified by lower inhibition, as well as greater EC50 [26]. Conversely,
synergetic relations cause a rise of toxicity, exhibiting higher inhibition at smaller concentrations.

As can be seen in Figure 1, in overall, the mixture presented non-additive behavior, according to
the LIA model. Antagonism behavior was observed for Rays 1,2, 3, and 7 and synergism in the rest,
which points to an inability to accurately predict the toxicity of this mixture.

As for the results with the LCA model, shown in Figure 2, it was observed additive behavior in
Rays 1 and 2; antagonism for Ray 3 and 4; and partial synergism in Rays 3, 5, and 7. Nonetheless,
it seems to have performed better than the LIA model. Observing the graphs for Ray 1 and 2, it seems
as the model and the observed data curves almost superimpose.
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Figure 1. Dose–response curves for each ray, presenting inhibition in function of the logarithm of
the total mixture molar concentration. The effect concentrations for each inhibition point were built
according to the LIA model are presented in a black solid line. Observed inhibition points are displayed
in black and were fitted in a four-parameter Logit function (red). 95% confidence limits of this fit are
presented as the dashed lines.

Figure 2. Dose–response curves for each ray, presenting inhibition in function of the logarithm of the
total mixture molar concentration. Effect concentrations for each inhibition point were built according
to the LCA model are presented in a black solid line. Observed inhibition points are displayed in black
and were fitted in a four-parameter Logit function (red). 95% confidence limits of this fit are presented
as the dashed lines.

Table 3 presents the constructed linear models, and their respective Pearson correlation coefficients.
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Table 3. Simple linear regression parameter for each model (b0 and b1). A model was created for each
mixture ray. Pearson correlation is also shown.

Model LIA LCA

Ray b0 b1 Pearson Correlation b0 b1 Pearson Correlation

1 1.26497 0.35818 0.98758 −20.32265 11.06486 0.98916
2 1.059 0.397 0.943 −21.28508 12.37994 0.94804
3 0.66542 0.51735 0.85178 −18.64007 11.05947 0.84929
4 2.58719 0.28146 0.79365 −13.15791 8.14889 0.79927
5 2.41787 0.39283 0.83234 −14.15261 9.11089 0.84284
6 1.80923 0.3959% 0.75313 −14.57845 10.50199 0.76132
7 −0.33947 0.60823 0.8255 −1.00294 1.15952 0.86081

It indicates that a better linear relationship between predicted values and mixture concentrations
was achieved for LCA than LIA. We can see by the Pearson correlation coefficient that that Rays 4 and
6 were the hardest to model.

Table 4 presents the estimated 50% effect concentrations predicted by the two models and observed
in the test, as well as the mean deviation error and the relative deviation of the models.

Table 4. Estimated EC50 concentrations for the concentration addition and independent action models
and the experimental values, relative deviation, and MDR for each ray

LCA LIA Real

Ray EC50 (M) Deviation (%) MDR EC50 (M) Deviation (%) MDR EC50 (M)

1 3.79 × 10−3 2.81% 1.03 5.43 × 10−2 193.31% 13.93 3.90 × 10−3

2 4.32 × 10−3 3.22% 0.97 8.73 × 10−2 1983.46% 20.83 4.19 × 10−3

3 3.82 × 10−4 99.34% 150.92 2.16 × 10−1 275.11% 3.75 5.76 × 10−2

4 1.01 × 10−4 99.42% 173.73 2.59 × 10−3 85.30% 0.15 1.76 × 10−2

5 6.84 × 10−7 100.00% 33,900.65 3.82 × 10−3 83.53% 0.16 2.32 × 10−2

6 1.31 × 10−8 100.00% 3,718,766.94 3.82 × 10−3 92.15% 0.08 4.87 × 10−2

7 2.00 × 10−4 99.86% 721.33 2.08 1342.41% 14.42 1.44 × 10−1

The MDR is an indicator of the behavior of a mixture. MDR values greater than the unity alert to
antagonism, while values below 1 indicate synergism. The unity represents additive behavior [25].
This metric was chosen by its non-relation to one model, as well as its ease of use. According to the
MDR values in Table 4, we may confirm the previous graphical analysis for the LIA. On the other side,
for the LCA model, the graphical interpretation is harder, as we see partial antagonism and partial
synergism in the same ray. This is disclaimed by the analysis of the MDR, which indicates antagonism
behavior for Rays 3 to 7 for the LCA model.

Both presented high relative errors, being the LCA accurate for mixture Rays 1 and 2. This can be
explained by the fact that both models rely on the principle of non-interaction between the components
of a mixture [22]. Nevertheless, LCA seems to have a higher predictive value, with a mean absolute
deviation of 4% and a root-mean-squared deviation error (RMSE) of 0.0623 against 31% and 0.735 for
IA. Also, both CA and LCA are simpler to model, as CA relies on the known concentrations of the
components of the mixture, while IA relies on point determinations based on the observed inhibition,
implying a pre-fit, which induces higher error. Therefore, several experimental data points are needed
to build an accurate model.

Compared with the work of Zadorozhnaya et al. [20], both algorithms in combination with the
whole-cell biosensor outperforms on the relative deviation.

Due to the sensitivity to stressors and for being the most farmed fish in Norway, Atlantic salmon
was chosen as our fish model. The recommended water quality limit values of the stressors being
analyzed for Atlantic salmon are listed in Table 5.
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Table 5. Recommended limit values for fish farming of Atlantic salmon in RAS systems, both in mass
and molar concentration.

Stressor Concentration (mg/L) Concentration (mM)

Nitrite 0.1 [4] 2.17 × 10−3

Un-ionized ammonia 0.030–0.146 [7] 1.76 × 10−3–8.57 × 10−3

Copper 0.0006–0.030 [2] 9.44 × 10−6–4.72 × 10−4

Aluminum 0.015–0.020 [7] 5.56 × 10−4–7.41 × 10−4

Zinc 0.053 [27] 8.11 × 10−4

Comparing these values with Table 1, we see that the concentrations used in this assay for all
rays were above the limits in a RAS system for Atlantic salmon. Likewise, we can observe that the
total concentration in each ray increases. Therefore, the LCA model is a valid model for predicting
high toxicity events for Atlantic salmon’s RAS systems, with a relatively low relative deviation.
Also, it describes additive behavior for lower concentrations, indicating that non-additive behavior
may only occur when testing very high concentrations. This model, in conjunction with least-square
regression could be used in a software to predict the evolution of toxicity in near real-time.

3.3. Microfluidic Chip for RAS

3.3.1. Chip Design

As described in the Material and Methods section, three inlets, two micromixers, one measuring
chamber, and one outlet were designed. The final design is presented in Figure 3.

Figure 3. Lab-on-a-chip design. The chip was designed for water quality monitoring of Atlantic salmon
RAS. The chip consists of three inlets, one inlet port, one measuring chamber, two micromixers, and an
enhanced contact zone to improve interaction of the bacteria with the sample two serpentine channels
to synchronize fluid mix.

A measuring chamber with a final volume of 200 µL was designed in order to hold most of the
bacteria in the final solution. All corners were filleted to facilitate post-test wash, promoting less dead
volume and cell adhesion.
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Another chamber could be used to evaluate the bacteria fitness for the test and normalize
the luminescence recorded during the test after mixing the sample and the bacteria, for example.
This hypothesis was discarded as it implied a higher residual volume, which would increase
unnecessarily the cost of the test.

A y-type passive micromixer was used, as it presents as an efficient way of mixing two fluids.
A 120◦ angle between the two inlet channels was chosen to enhance the mixing performance,
as demonstrated by Shi et al. [28].

As for the second micromixer, it was designed due to the difference in flow rates between the OAS
and sample solution injections, as the OAS should be 10% of the total volume of sample. This could
create backflow of the OAS solution, hindering its mix with the sample, with a rise of sample toxicity
and false positives as consequences. The original design was first presented by Mele [29] and consists
on a branched channel design that enables a gradient mix by decreasing the pressure by half in
each bifurcation.

Two serpentine channels were then constructed ahead of the y-type micromixer to enable a
synchronized arrival of sample and bacteria enabling a 1:1 ration mixture. The outlet of the micromixer
had the minimum length, as it has been demonstrated that the maximum mixture occurs in the
micromixer, independently of the length. Finally, an additional serpentine channel was used to reduce
the flow velocity, enhancing the contact time. A residual volume of 40 µL was considered sufficient.

The proposed design is comparable in complexity to other microfluidic test platforms such as
the one proposed by Bhalla et al. [30]. Their work demonstrated a two-step validation method for
Adiponectin detection using ELISA. It presented a method of introducing multiple reagents that
passively mix in y-type mixers and are pumped by multiple syringe pumps to a reaction chamber
with a high aspect-ratio to increase interaction and consequent reading. However, in our case it needs
not to introduce the reagents sequentially, the serpentine channels were used before mixing with the
biosensor rather than introducing reagents by spaced y-type single branches.

The fabricated chip is shown in Figure 4.

Figure 4. Fabricated chip in VeroWhitePlus. On the side are presented the serpentine channels and the
gradient micromixers (photographs taken from an optical microscope at an 100× ampliation).

3.3.2. Assay Protocol

The assay protocol is hereby presented and discussed. The whole process is to be controlled by a
microfluidic control system through use of valves and pumps. The total time of the assay is 30 min,
while reagents are loaded, the outlet is open, only getting close for the change of content in the syringe
between the stages necessary to load and release of reagents and wash the chips. To compensate for
the lack of one chamber, the assay is conducted in two steps. In the first step, a calibration for the
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background is made, with a negative control saline solution, introduced by the two reagent solutions
in a total flow rate equal to the flow rate of the bacteria. After 5 min, when the measuring chamber is
expected to be filled, bioluminescence is recorded with a photomultiplier tube. The fluids are released,
and a wash step is done to remove used bacteria. Biofilm and stressors still present by flushing a
saline solution through all inlets for enough time. Biofilm is formed by the release of inducers of
bioluminescence. in a process named quorum sensing, Alternatively, a weak acid could be used [29],
but would require an additional pump and add more complexity to the microfluidic control system.

The signal would be sent to a microcontroller controlling the PMT and sent to a computer for
further processing. A software to analyze the signals and calculate the inhibition, as well as to
implement the prediction model and alert the fish farmer in case of present or future events. A visual
schematic of the protocol is presented in Figure 5.

Figure 5. Visual schematic of the protocol. The test is conduct in two major steps: an initial calibration
and posterior contact with the sample. A wash step is added between the two to wash used bacteria
and toxic sample present that could interfere with the next measurement.

3.3.3. Tests on Chip

The previous protocol was used to test the chip. Instead of using the described software, the stored
results were post-processed and analyzed using Microsoft Excel and Origin Pro 8. The obtained dose
response curve is presented in Figure 6. An EC50 of 6.46 × 10−7 M was obtained, based on the
equation of the fit of the data by a logit curve, which represents a high gain of sensitivity comparing to
conventional laboratorial tests. However, this result can be due to low oxygenation of the chip, so tests
with different sealing films with higher air diffusivity are needed or, instead, a different approach on
the material selection of the chip and respective interfaces with the opto-fluidic system.
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Figure 6. Inhibition of luminescence as a function of the logarithm of concentrations, in mg/L.
Preliminary study on the sensitivity of the chip. The fitted dose–response curve is in red, and the
95% confidence intervals are displayed in black dashed lines. The experimental points are displayed in
black round points.

3.3.4. Comparison with Current Solutions and Possible Integration

This work studied the feasibility of a new water quality sensor for RAS, based on the record
and prediction of toxicity by us of linear statistical models and a whole-cell biosensor. Over the
years, the industry and academia have been focused on the use of wireless sensor nodes employing
electronic and electrochemical sensors [31–33]. These systems focus not only in monitoring the water
quality of the RAS system, but also provide control of the system during normal operation through
environmental sensors and feed and also provide an alarm, if needed. Perry et al. [34] proposed
a low-cost system to monitor several parameters of the fish farm facility, measuring water quality
parameters such as the presence of oil, temperature, conductivity, and turbidity. Marian Barbu,
Emil Ceangă, and Sergiu Caraman [35] proposed a model for monitoring and control of water quality
in RAS tanks by measuring temperature, dissolved oxygen concentration, total dissolved solids,
and water level in aquaculture tanks and nitrite, ammonia, water level, and nitrate in the collection
tank near the biofilter. Other wireless sensor node systems also monitor salinity and water level such
as the system proposed by Parra et al. [34]. They present a highly sensitive system that can monitor
and control the fish farming process and can be cheaper than both our proposed solution and the
solution presented by [35].

Nevertheless, the aforementioned systems do not give a biological response that takes in
consideration the interaction between different mixture components, rather relying on threshold
models which are less accurate [19]. The sensor system presented hereby is not intended to substitute
environmental sensors such as temperature, pH, or dissolved oxygen, but to complement their
information by collecting samples directly from the aquaculture tank, ideally from a bypassed pipe,
and substitute the need for electro-chemical sensors. In future, the proposed systems will be able
to alert the farmer of toxic concentrations of stressors before a problem arises. Also, it can be of
assistance in control of activities such as the introduction of feed and water recirculation that can raise
stressors’ concentration.
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4. Conclusions

This work presents a new design for water quality monitoring of recirculating aquaculture systems.
To the best of our knowledge, this study is the first to evaluate the interactive toxic behavior of a
mixture of nitrite, un-ionized ammonia, copper, aluminum, and zinc in light of the linear concentration
addition, and linear independent action models to Aliivibrio fischeri.

Besides, this is the first study to propose the use of a toxicology model allied with a machine
learning algorithm and a whole-cell biosensor to be as sensor for RAS water quality.

A future study has to be conducted to confirm the additive behavior of a mixture of these stressors
at salmon RAS limit concentrations. The study of sensitivity and accuracy of the combination of least
squares regression and the LCA model to predict toxic events is to be performed as well.

Further steps including fabrication and test of the design, protocol, and associated software in
laboratory and in situ are to be taken to demonstrate the use of this sensor in the RAS industry.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/9/2848/
s1, Tables S1–S4.
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