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Trial functions for reduced-order models of piezoelectrically
actuated MEMS tunable lenses

Mahmoud A. Farghalya, Ulrik Hankea, Muhammad N. Akrama, Einar Halvorsena,*

aDepartment of Microsystems, University of Southeast Norway, Raveien 215, 3184, Borre, Norway

Abstract. Piezoelectrically actuated MEMS lens structures can be composed of a clamped square elastic diaphragm
partially covered with a thin piezoelectric film leaving a circular transparent region to form a lens pupil. To model
these lenses’ linear static optoelectromechanical performance, the displacement can be approximated by a linear com-
bination of basis functions, e.g., weighted Gegenbauer polynomials that satisfy clamped boundary conditions along
the diaphragm edges. However, such a model needs as much as 120 degrees of freedom (DOFs) to provide a good
approximation of the lens optical performance. To improve on this, we here consider approximating the deflection by
an expansion using piecewise smooth functions that have different forms in the pupil and the actuator regions. We use
exact solutions for the elastic plate differential equation over circular and annular subdomains, and weighted Gegen-
bauer polynomials in the remaining region. The latter enforces the boundary conditions. We have found that the larger
the diaphragm area with exact plate solutions is, the lower is the number of DOFs needed to predict mechanical and
optical quantities accurately. For example, a model with 10 DOFs achieves accuracies of 5.1% and 2.1% respectively
for RMS wavefront error and reciprocal F-number for all pupil openings of interest.

Keywords: Microelectromechanical systems, Adaptive optics, Lenses, Focus, Piezoelectric effect, Actuators, Imaging
systems.
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1 Introduction

Tunable focus in cameras enables capture of sharp images over a wide range of camera-object

distances and is considered an essential feature in modern cameras. Voice coil motors1 and ul-

trasonic motors2 are widely commercialized macro-scale technologies for tuning focus in devices

such as mobile cameras. However, microelectromechanical systems (MEMS) lenses3–8 promise

low-power, small footprint mechanisms utilized for the same purpose.

In this paper, we consider piezoelectrically actuated MEMS tunable lenses.3 Such a lens has

a diaphragm consisting of a square glass plate covered by a thin piezoelectric film with a circular

opening in the film leaving the central part transparent. When the piezoelectric film is biased, the

diaphragm bends and a plano-convex lens is formed by a high-refractive index polymer sandwiched

between the diaphragm and a second transparent plate.
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Mathematical models are necessary for design and optimization of such MEMS devices and

involve solving coupled multiphysics problems. A possible solution to this challenge is to use

numerical calculations based on the finite element methods (FEM). This approach results in a large

number of degrees of freedom (DOFs) due to the discretization of the device geometry in finite

element models, which has a significant drawback of long computational time. This is particularly

pressing for modeling the transient behavior, but is also important when a large number of static

cases are needed for optimization. For system-level designers to have computationally efficient

models, it is necessary to develop reduced-order models that can be implemented by e.g. using

MATLAB or a circuit simulator yet faithfully representing the device physics.

System-level models can be made few DOFs through model-order-reduction (MOR) tech-

niques.9 These techniques aim for an efficient projection to eliminate several DOFs and maintain

the ones sufficient to capture the system behavior. However, such an approach hinges on first solv-

ing a model with many DOFs, then reducing. The MOR approach solves the problem of obtaining

a low order system-level model, but still requires a significant computational effort to obtain it.

Therefore, it is of interest to have methods that, unlike the MOR techniques, give a low order

model directly without relying on projection.

Low order models can in principle be obtained by analytical or semi-analytical (series expan-

sion) solutions. For similar mechanical problems of a rectangular plate with a circular hole, which

is a common substructure in naval and aircraft architectures, this can be done.10, 11 However, these

solutions are not applicable to the lens because the problems are different. In particular, the lens

has additional physics due to the piezoelectric film and does not have a hole, but a circular purely

elastic region instead.

To evaluate the linear static performance of piezoelectrically actuated lenses, we previously es-
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tablished a modeling framework12 composed of two parts. The first part is a variational formulation

that models the lens’ deformation due to piezoelectric actuation while the second part evaluates the

lens’ optical parameters such as the F -number (F#) and RMS-wavefront-error (RMSWFE). We

represented the diaphragm deflection by an expansion in a weighted Gegenbauer basis12 using a

formulation similar to,13 but including piezoelectricity and the elasticity of the circular part. In

this case, each basis function is extended continuously over the entire diaphragm and 120 DOFs

were necessary to reach a satisfactory representation of the lens optical performance. While this

is a major improvement in computational effort compared to FEM, it is still a quite large number

of DOFs for lumped-model system simulations and too large to be tractable by purely analytical

means.

One weakness in the previous formulation was that the basis functions did not account for the

discontinuity of the layered structure at the lens opening. There are good reasons to expect that

an improvement in convergence could be achieved by taking this discontinuity into account. For

example, the deflection of purely elastic circular plates due to asymmetric bending14, 15 was pre-

viously modeled using circular and annular FEM elements with analytical solutions of the bihar-

monic equation as interpolation functions instead of general ones such as hexahedral or tetrahedral

elements. It improved convergence, reduced the requirements on mesh refinement and represented

the curved boundary well.

Motivated by the previous solutions to the purely mechanical problem,11, 13–15 this paper presents

an approach that signifcantly improves model accuracy for the piezoelectrically actuated lens by

using basis functions that account for the discontinuity in the layered structure at the lens opening,

uses the exact solution of the biharmonic equation in the circular regions and fulfills the boundary

conditons at the diaphragm edges.
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We have chosen analytical ansätze that have Gegenbauer-polynomial-based subfunctions with

rectangular symmetry satisfying the plate’s boundary conditions and yet can be expanded on the

form of Fourier series along the circular discontinuity to be matched term-by-term with the exact

solutions of the plate’s differential equation. Thus, the presented models can be generally used for

any similar structures after reformulating the variational formulation to include the actuating forces

due to e.g. pressure, piezoelectricity or thermoelasticity. For our lens application, the approach

succeeds in reducing the model down to 10 DOFs as opposed to 120 for the same accuracy in the

previous approach.

2 Principle of Operation

The piezoelectrically actuated MEMS lens is composed of a refractive polymer sandwiched be-

tween two transparent glass layers and with a piezoelectric stack on top (see Fig. 1). The upper

glass layer is bent upwards due to the piezoelectric coupling whenever a DC voltage Vp is applied

across the piezoelectric stack. As a result, the soft polymer follows the plate deformation and

forms a plano-convex lens focusing light rays. In this manner, the lens’s focal length can be tuned

using the voltage Vp in order to focus on objects at varying distances. This type of tunable lenses

can be combined with a fixed-focal-length lens to tune the overall system focal length.

3 Normalized coordinates

The diaphragm of the considered lens is square with a side length a and is clamped along its four

sides. Figure 2 shows planar views of the lens marked with definitions used by different models.

Models 0 and 1 break the lens domain Ω into two subdomains Ω1 and Ω2 while model 2 breaks

it into 3 subdomains ΩI, ΩII and ΩIII (we have assigned new labels for subdomains in model 2 to
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Fig 1 (a) Schematic view showing the tunable lens’s principle of operation; both at rest position when Vp = 0 and at
focus when Vp is nonzero. (b) Cross-sectional view of the tunable lens showing dimensions. (Adapted with permission
from Ref. 12, OSA).

simplify the mathematical representation of variables later on). The lens diaphragm extends over a

square with cartesian coordinates x, y ∈ [−a/2, a/2] and it is convenient to introduce normalized

coordinates X = 2x/a and Y = 2y/a. Thus, the locus of the lens pupil boundary (ΓΩ1 in Fig. 2a

or ΓΩI
in Fig. 2b) and the fictitious boundary ΓΩII

in these normalized cartesian coordinates are

given by
√
X2 + Y 2 = γ1 and

√
X2 + Y 2 = γ2 where γ1 and γ2 respectively are the ratio of the

lens pupil and the fictitious circle diameters to the diaphragm side length a.

The lens’ circular and annular subdomains Ω1, ΩI and ΩII can be further normalized to a radial

coordinate, as shown in Fig. 3. For these subdomains, we use the normalized radial coordinate

r =
√
X2 + Y 2/γ0 with γ0 = γ1 for models 0 and 1 and to γ0 = γ2 for model 2. As shown in Fig.

3, the lens pupil boundary for the different models is either of the circles r = 1 or r = α where

α = γ1/γ2.

4 Variational formulation and its integrals

We use the variational formulation formerly presented in Ref. 12. It is based on classical laminated

plate theory, linear piezoelectricity, quasi-electrostatic conditions and thin film approximation. The

lens thickness is much smaller than its lateral dimension which justifies applying the classical
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Fig 2 Planar views of the piezoelectrically actuated MEMS tunable lens showing decomposing its structure into
subdomains. (a) Models 0 and 1 break the lens into two subdomains: Ω1 and Ω2. (b) Model 2 breaks it into three
subdomains: ΩI, ΩII and ΩIII. Subdomains ΩII and ΩIII are separated by a fictitious circular boundary ΓΩII
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Fig 3 Planar views showing the normalized radial coordinates in the circular and annular subdomains for (a) models 0
and 1, and (b) model 2.
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laminated plate theory.16 Thus, the model assumes that the deflection in z-direction w0 is due to

bending and shear strains are neglected. The middle-plane stretching and the corresponding axial

in-plane displacements are also neglected.

For a piezoelectric medium,17 the principle of virtual work can be stated as

δH − δW = 0 (1)

where δH is the virtual variation of the electrical enthalpy H = H({Sij}, {Ek}) and δW is the

virtual variation of potential energy due to external applied forces. Sij and Ek are components of

strain and the electric field. The displacements in strain expressions are usually approximated by

ansatz (discussed thoroughly in section 5) that is a linear combination of basis functions whose

weights are to be determined. Equation (1), after substituting a displacement ansatz, is can be

expressed as ∑
q

RΩq −
∑
q

FΩq = 0 (2)

where RΩq and FΩq are the spring and force variational energy integrals for the subdomain Ωq .

We will write these integrals on general forms to simplify the later presentation of the variational

formulation of the three models in section 5. These general forms have arguments representing

geometry, material parameters and displacement ansatz for each subdomain. Thus, the spring

variational integrals over square (subscript �) and annular (or circular, subscript ◦) subdomains

can be written as

7



R�(w0, δw0;D∗) =
1

(a/2)2

∫ 1

−1

∫ 1

−1

UTD∗δUdXdY, (3)

R◦(w0, δw0;D∗, γ0, αH , αL) =

1

γ2
0(a/2)2

∫ αH

αL

∫ 2π

0

VTD∗δVrdrdθ (4)

where

U =


w0,XX

w0,Y Y

2w0,XY

 ,V =


w0,rr(

1
r
w0,r + 1

r2w0,θθ

)
2
(

1
r
w0,rθ − 1

r2w0,θ

)

 . (5)

αL, αH ∈ [0, 1] represent the lower and upper limits for the integral over the normalized coor-

dinate r for an annular (or circular) subdomain. The modified membrane flexural rigidity matrix is

defined as

D∗ =


D∗11 D∗12 0

D∗12 D∗22 0

0 0 D∗66

 . (6)

The modified flexural rigidities for each subdomain varies due to the difference in layer struc-
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tures. For the tunable lens under study we have

Models 0 & 1: D∗ij,Ω1
= Dgl

ij ,

D∗ij,Ω2
= Dgl

ij +Dp
ij,

Model 2: D∗ij,ΩI
= Dgl

ij ,

D∗ij,ΩII
= D∗ij,ΩIII

= Dgl
ij +Dp

ij

where Dgl
ij and Dp

ij are respectively the flexural rigidities for the glass layer only and the piezoelec-

tric layer only.

The force variational energy integrals over square and annular subdomains can be written as

F�(δw0) =Vpzpe31

∫ 1

−1

∫ 1

−1

∇2δw0dXdY

=Vpzpe31

∮
ΓΩ

∇δw0 · dn̂ = 0, (7)

F◦(δw0;αH , αL) =Vpzpe31

∫ αH

αL

∫ 2π

0

∇2δw0rdrdθ (8)

where zp = (h3 + h2)/2 (see Fig. 1b) and e31 is the effective longitudinal e-form piezoelectric

coupling coefficient.12 The 2-D Laplace operator ∇2 can be expressed in normalized cartesian or

polar coordinates according to the shape of the domain. dn̂ is the differential length vector normal

to the lens outer boundary ΓΩ. Using Green’s theorem, we have written the surface integral in Eq.

(7) as a line integral over the closed boundary ΓΩ. The displacement anstaz inside that integral

must satisfy the lens clamping conditions of zero slope along the four membrane sides, which
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mandates Eq. (7) to be always equal to 0.

5 Models

This section describes mathematically the basis functions in the lens subdomains and the linear

system of equations that arises from the variational formulation for three models. In order to have

a good representation in each subdomain, different functional forms can be used in each domain.

For each subdomain, the displacement is specified as a subfunction that is a linear combination

of basis functions that are specific to the domain. The subfunctions in neighboring subdomains

are required to satisfy continuity of displacement, slope and, if needed, higher derivatives of dis-

placement. Hence, the coefficients of the different subfunctions are not independent degrees of

freedom. Instead, the coefficents of the inner domain(s) can be expressed uniquely in terms of the

coefficients of the outer domain.

Ideally, the number of basis functions (or number of DOFs) should be infinite to span any

displacement. However, the variational models use a finite number of these functions, which form

a finite subspace of this infinitely-sized space.18 The dimension of this finite subspace is increased

to improve accuracy of the predicted mechanical and optical quantities.

In the following analysis due to lens mirror symmetries, we will only consider 4-fold sym-

metric trial functions from Gegenbauer polynomials and the homogeneous solution of the plate

differential equations to be displacement ansatz.

5.1 Model 0

This model from12 uses weighted Gegenbauer polynomials as basis functions over all the lens

planar subdomains. These polynomials do not satisfy the plate differential equations, but they sat-
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isfy the clamped boundary conditions of zero displacement and slope along the square diaphragm

edges. Moreover, they are orthogonal polynomials and are easily mapped to Zernike polynomials12

which are suitable for optical wavefornt representation. With these basis functions, 120 indepen-

dent DOFs were needed to obtain a satisfying representation of the lens’s optical performance from

this variational model when compared to FEM simulations.12, 19

5.1.1 Weighted Gegenbauer Polynomials

These basis functions are orthogonal functions in the normalized variables X and Y . They are

products of a weight factor (X2 − 1)2(Y 2 − 1)2 and two Gegenbauer polynomials; one is a func-

tion of X and the other a function of Y . The weight factor enforces zero displacement and slope

along the square membrane edges. A function in the basis is conveniently denoted φlj where

the first index denotes the X-dependent Gegenbauer polynomial and the second one denotes the

Y -dependent polynomial. Due to the 90◦ rotational symmetry of the lens structure, not all combi-

nations of basis functions are possible. We can reduce the basis to a single-index set of functions

Φk given by

Φk(X, Y ) =
1

2
[φlj(X, Y ) + φjl(X, Y )] (9)

where only even indices l, j = 0, 2, · · ·N − 1 occur; N is an odd number representing the number

of Gegenbauer polynomials for either of the variables X or Y . The index k = 1, 2, · · · , NG =

1
8
(N + 1)(N + 3) enumerates the single-index basis functions. The label k is obtained from the

indices l, j by counting along the zigzag trajectory shown in Fig. 4. This simplification reduces

the number of basis functions from 1
4
(N + 1)2 to NG which is nearly a factor 2 for large N values.
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Fig 4 Zig-zag trajectory to obtain single-index Gegenbauer polynomials from the ones with double-index.

The first three Φk are

Φ1(X, Y ) = φ00 = (X2 − 1)2(Y 2 − 1)2, (10)

Φ2(X, Y ) =
1

2
(φ02 + φ20)

=
9

4
φ00(11X2 + 11Y 2 − 2), (11)

Φ3(X, Y ) = φ22

=
81

4
φ00(11X2 − 1)(11Y 2 − 1). (12)

For the lens’ subdomains with circular symmetry, it is sometimes more convenient to use

polar coordinates r and θ such that (X, Y ) = (γ0r cos θ, γ0r sin θ) and the basis functions are
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Φ̃k(r, θ, γ0) = Φk(γ0r cos θ, γ0r sin θ). Using MATLAB symbolic toolbox,20 the first three Φ̃k are

Φ̃1 =
3

128
γ8

0r
8 − 1

4
γ6

0r
6 +

5

4
γ4

0r
4 − 2γ2

0r
2 + 1

− 1

32
γ4

0r
4(γ4

0r
4 − 8γ2

0r
2 + 8) cos(4θ)

+
1

128
γ8

0r
8 cos(8θ), (13)

Φ̃2 =
9

512
(11γ2

0r
2 − 2)

[
(3γ8

0r
8 − 32γ6

0r
6 + 160γ4

0r
4

− 256γ2
0r

2 + 128)

− 2γ4
0r

4(γ4
0r

4 − 8γ2
0r

2 + 8) cos(4θ)

+ γ8
0r

8 cos(8θ)
]
, (14)

Φ̃3 =
49005

4096
γ12

0 r
12 − 61479

512
γ10

0 r
10 +

244377

512
γ8

0r
8

− 14337

16
γ6

0r
6 +

24867

32
γ4

0r
4 − 1053

4
γ2

0r
2 +

81

4

− 81

8192
γ4

0r
4
(

1815γ8
0r

8 − 16192γ6
0r

6

+ 52160γ4
0r

4 − 68096γ2
0r

2 + 31488
)

cos(4θ)

+
81

4096
γ8

0r
8
(

363γ4
0r

4 − 2024γ2
0r

2

+ 1944
)

cos(8θ)− 9801

8192
γ12

0 r
12 cos(12θ). (15)

From Eqs. (13-15), each basis function has the form of a Fourier cosine series that can be
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expressed as

Φk(X, Y ) =Φ̃k(r, θ, γ0) = fk,0(r, γ0)

+

Ns,k∑
n=2,4,6···

fk,n(r, γ0) cos(nθ) (16)

where n is the Fourier series index. fk,n(r, γ0) is the nth Fourier coefficient for the function Φ̃k

and is dependent on the normalized radial coordinate r and the ratio γ0. Due to the lens’ 4-fold

symmetry, the coefficients fk,n(r, γ0) with n = 2, 6, 10, · · · are zero. Ns,k is the number of Fourier

terms used to expand the function Φ̃k.

To represent any basis function φlj by a Fourier series, the Fourier terms need to be up to

Ns,lj = l + j + 8. Thus, the highest order in Fourier terms for a function set of NG single-index

Gegenbauer polynomials is NF = max(Ns,lj) = 2(N − 1) + 8. Table 1 shows examples of the

corresponding number NF and index k values for a certain number of Gegenbauer polynomials N .

In that manner, a function set of NG single-index basis functions form a finite Gegenbauer space

RNG that can be mapped to a Fourier space RNF /2+1 using Eq. (16).

Table 1 Examples on Gegenbauer polynomials order N with its correspondent values for the single index k and the
number of sufficient Fourier terms NF .

N 1 3 5 7 9
k = 1→ NG 1 1→3 1→6 1→10 1→15

NF = max(Ns,lj) 8 12 16 20 24

Model 0 approximates the lens displacement with a finite linear combination of basis functions
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Φk(X, Y )

w0(X, Y ) = w̃0(r, θ, γ0) =

NG∑
k=1

CkΦk(X, Y )

=

NG∑
k=1

CkΦ̃k(r, θ, γ0) (17)

where Ck are the coefficients to be determined.

5.1.2 Variational formulation

After substituting with the displacement ansatz from Eq. (17) in the variational formulation of Eq.

(2), it becomes

RΩ1 +RΩ2 = FΩ1 + FΩ2 . (18)

such that

RΩ1 = R◦(w0, δw0;D∗Ω1
, γ1, 1, 0) = δCTRΩ1

k1k2
C, (19)

RΩ2 = R�(w0, δw0;D∗Ω2
)

−R◦(w0, δw0;D∗Ω1
, γ1, 1, 0) = δCTRΩ2

k1k2
C, (20)

FΩ1 = 0, (21)

FΩ2 = F�(δw0)− F◦(δw0, 1, 0) = δCTFk2 , (22)

where C is a column vector of the DOFs Ck. Expressions of the elements in the matrices R
Ωq
k1k2

(q = 1, 2) and Fk2 are listed in Appx. A. The planar subdomain Ω2 is prismatic and can be

imagined to result from subtracting a domain with a circular base face from another one with a

15



square base face (see Fig. 2a). From that aspect, integrals over that subdomain are easily calculated

as a difference between two integrals as in Eqs. (20) and (22); the first is over a square area and

the second is over a circular area.

By combining the variational terms from Eqs. (19-22) and substitute in Eq. (18), model-0’s

variational formulation turns to be

δCT
(
RΩ1
k1k2

+ RΩ2
k1k2

)
C = δCTFk2 . (23)

The above variational formulation is solved if the coefficient vector C is a non-trivial solution to

the linear system of equations

(
RΩ1
k1k2

+ RΩ2
k1k2

)
C = Fk2 . (24)

Each term inside the parentheses on the left-hand side (LHS) represents the equivalent stiffness

matrix of each lens subdomain. The right-hand side (RHS) represents the equivalent force due to

the piezoelectric actuation.

5.2 Model 1

Model-1 deals with the lens as a 2-subdomains problem similar to model 0, but it uses a piecewise

expansion of two different basis functions for the displacement approximation in the pupil and
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actuator regions. Its displacement ansatz in the lens subdomains is

Ω1: w
(1)
0 = AI

0 +BI
0r

2

+

NF∑
n=2,4,6···

(
AI
nr

n +BI
nr

n+2
)

cos(nθ), (25)

Ω2: w
(2)
0 =

NG∑
k=1

CkΦk(X, Y ) (26)

where w(1)
0 is the subfunction of the displacement ansatz in the subdomain Ω1. It has NL = NF +2

coefficients AI
i and BI

i for i = 0, 2, · · ·NF to be determined. Due to the lens symmetry, w(1)
0

has only even terms of the general homogeneous solution for the plate differential equation.21

To have a bounded solution at the origin r = 0, we have eliminated logarithmic and negative-

power terms from the homogeneous solution. Moreover, we have limited the upper value of the

summation index in Eq. (25) toNF in order to have the same trigonometric terms as in the weighted

Gegenbauer basis from Eq. (26). This limitation follows from the continuity requirement on

the displacement and the slope at the boundary ΓΩ1 separating the lens’ subdomains (thoroughly

discussed in section 5.2.1). The ansatz part w(1)
0 is equivalent to having a circular FEM element

with interpolation functions formed as a product of two polynomials: one is an even polynomial in

r for the radial direction and the other a cosine function for the circumferential direction.15

For the subdomain Ω2, the subfunction w(2)
0 is the same single-index Gegenbauer basis used in

model 0 to enforce the clamped boundary conditions.

5.2.1 Relationships between coefficients at the pupil boundary ΓΩ1

Both subfunctions of the ansatz in model 1 have the form of a Fourier series; sum of products

of a radial factor and a trigonometric function. The radial factor multiplying each trigonometric

17



function ofw(1)
0 has two coefficients while those ofw(2)

0 have only one coefficient. To find a relation

between these two sets of coefficients at ΓΩ1 , two boundary conditions are required: continuity of

the displacement and of the slope. Hence, we equate the radial factor of trigonometric terms (term

by term) of the pair (w(1)
0 , w(1)

0,r ) to their counterpart radial factor of the trigonometric terms of (w(2)
0 ,

w
(2)
0,r ) at the boundary ΓΩ1 where γ0 = γ1 and r = 1. In matrix form, the relation is compactly

expressed as

LI|r=1AI = NIC

=

[
N1,I N2,I · · · NNG,I

]


C1

C2

...

CNG


. (27)

where

LI =



L0,I 0 0 · · · 0

0 L2,I 0 · · · 0

... . . . 0

0 0 0 · · · LNF ,I


, (28)
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AI =



A0,I

A2,I

...

ANF ,I


, Ai,I =

 AI
i

BI
i

 (29)

Nk,I =



NI
k,0

NI
k,2

...

NI
k,Ns,k

0


. (30)

In Eq. (27), the column vector Nk,I of length NL represents the radial factors and their deriva-

tives of each basis function Φk. The index of Fourier terms for each function Φk ranges from 0 to

Ns,k. Thus, the last NL −Ns,k − 2 elements of the Nk,I column are zeros while the first Ns,k + 2

ones can be calculated from Eq. (16). The submatrices of Li,I and Nk,I are given by

Li,I =

 ri ri+2

iri−1 (i+ 2)ri+1

 ,

NI
k,i =

 fk,i(r = 1, γ0 = γ1)

f ′k,i(r = 1, γ0 = γ1)

 (31)

where the prime in f ′k,i denotes differentiation with respect to the variable r. Rows of the product

Li,IAi,I and
∑NG

k=1 N
I
k,iCk respectively correspond to ith-radial factor of the trigonometric terms of
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the pairs (w(1)
0 , w(1)

0,r ) in Eq. (25) and (w(2)
0 , w(2)

0,r ) in Eqs. (16) and (26).

Since LI is a square invertible matrix, Eq. (27) can be rewritten as

AI = L−1
I |r=1NIC = T1C, T1 ∈ RNL×NG (32)

where T1 is model 1’s transformation matrix relating coefficientss AI and C in the adjacent sub-

domains. Appendix B lists an example of the matrices T1 and NI using the first basis function Φ1.

To numerically calculate L−1
I , we use the analytic expression of the inverse of submatrices L−1

i,I

from Eq. (72) in Appx. B. The determinant of the matrix LI, given by,

detLI =

NL∏
i=0,···even

detLi,I =

NL∏
i=0,···even

ri+1 (33)

strongly depends on the value of r at the pupil boundary. The determinant will not form a numer-

ically ill-conditioned problem for model 1 since r = 1 at the boundary. However, this is not the

case for model 2 that also uses Eq. (32) but with r = α, α < 1 (see section 5.3.1).

5.2.2 Variational formulation

Model 1 has the same variational terms as model 0, after replacing w0 with w(2)
0 , except for the

term in Eq. (19). This term is modified to

RΩ1 = R◦(w
(1)
0 , δw

(1)
0 ;D∗Ω1

, γ1, 1, 0)

= δAT
I H

Ω1AI (34)
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where HΩ1 is obtained from HΩq defined in appx. C after extracting only the upper left quadrants

from its submatrices HIm
i and setting r = 1.

Using Eqs. (20-22), (32) and (34), the linear system of equations to is modified to be

(
TT

1 H
Ω1T1 + RΩ2

k1k2

)
C = Fk2 (35)

where the first term inside the parentheses in the LHS represents the stiffness of subdomain Ω1

using the new subfunction w(1)
0 .

5.3 Model 2

Model 2 deals with the lens as a 3-subdomains problem (refer to Fig. 2b). To further improve the

model accuracy over model 1 at low DOFs, this model enlarges the membrane area over which

the homogeneous solution of the plate equation is used beyond the pupil area. Therefore, it adds

a fictitious boundary ΓΩII
that amounts to having a new annular subdomain ΩIII. Its displacement

ansatz in the lens subdomains becomes

ΩI: w
(I)
0 = AI

0 +BI
0r

2

+

NF∑
n=2,4,6,···

(
AI
nr

n +BI
nr

n+2
)

cos(nθ), (36)

ΩII: w
(II)
0 = AII

0 +BII
0 r

2 + CII
0 ln(r) +DII

0 r
2 ln(r)

+

NF∑
n=2,4,6,···

(
AII
n r

n +BII
n r

n+2

+ CII
n r
−n +DII

n r
−n+2

)
cos(nθ), (37)

ΩIII: w
(III)
0 =

NG∑
k=1

CkΦk(X, Y ) (38)
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where w(II)
0 is the subfunction of the displacement ansatz over the new annular subdomain ΩII

and has 2NL coefficients to be determined. Its coefficients are AII
i , BII

i , CII
i and DII

i where i =

0, 2, · · ·NF . w(II)
0 uses even terms of the full homogeneous solution to the plate equation including

logarithmic and negative-power terms because the subdomain ΩII does not enclose the origin. To

maximize the membrane area over which w(II)
0 is used, we have chosen the fictitious circle’s ratio

γ2 = 1 in the model-2’s computation in section 5. This choice means that the homogeneous

solution is used over the area of the inscribed circle of the square diaphragm. The subfunction

w
(II)
0 is equivalent to having an annular FEM element similar to.15

The subfunction w(I)
0 is used for the pupil subdomain as in model 1 while w(III)

0 is used over the

subdomain ΩIII to enforce the clamped conditions, as discussed earlier.

5.3.1 Relationships between coefficients at the boundaries ΓΩI
and ΓΩII

Model 2 has two internal boundaries ΓΩI
and ΓΩII

at which we will formulate two relationships

between coefficients of the subfunctions in adjacent subdomains in a similar way to the procedure

followed for model 1.

The first relationship relates coefficients of w(III)
0 and w(II)

0 . The radial factor of each trigono-

metric term of w(II)
0 has four coefficients while those of w(III)

0 have only one coefficient. Thus,

to have a one-to-one relation between these two set of coefficients, we will need four boundary

conditions at ΓΩII
. Two of them are the continuities of displacement and slope. The other two are

the continuities of radial moment Mrr and the vertical shear force Qr. Since the boundary ΓΩII
is

fictitious and there is no difference in layer structures, we have found that these later continuity

conditions are essentially the same as having the 2nd and the 3rd derivatives of the displacement

continuous (proven in Appx. D). Thus, the relationship can lastly be formulated by setting radial
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factors of the trigonometric terms (term by term) of the mechanical quartet (w(III)
0 , w(III)

0,r , w(III)
0,rr ,

w
(III)
0,rrr) equal to their counterpart radial factors of (w(II)

0 , w(II)
0,r , w(II)

0,rr, w
(II)
0,rrr). This procedure is

carried out for the fictitious boundary ΓΩII
where γ0 = γ2 and r = 1. In matrix form, the first

relationship between coefficients is compactly expressed as

LII|r=1AII = NIIC

=

[
N1,II N2,II · · · NNG,II

]


C1

C2

...

CNG


(39)

where

LII =



L0,II 0 0 · · · 0

0 L2,II 0 · · · 0

... . . . 0

0 0 0 · · · LNF ,II


, (40)

AII =



A0,II

A2,II

...

ANF ,II


, Ai,II =



AII
i

BII
i

CII
i

DII
i


(41)
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Nk,II =



NII
k,0

NII
k,2

...

NII
k,NL

0


. (42)

In Eq. (39), the column vector Nk,II of length 2NL represents the radial factors and their

derivatives for the basis function Φk. The last 2NL − 2Ns,k − 4 elements of the Nk,II column are

zeros while the first 2Ns,k + 4 ones can be calculated from Eq. (16). The submatrices L0,II, Ln,II

and NII
k,n are given by

L0,II =



1 r2 ln(r) r2 ln(r)

0 2r 1/r r(2 ln(r) + 1)

0 2 −1/r2 (2 ln(r) + 3)

0 0 2/r3 2/r


, (43)
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Ln,II =



rn rn+2

n1rn−1 (n+ 2)1rn+1

n2rn−2 (n+ 2)2rn

n3rn−3 (n+ 2)3rn−1

r−n r2−n

(−n)1r−n−1 (2− n)1r1−n

(−n)2r−n−2 (2− n)2r−n

(−n)3r−n−3 (2− n)3r−n−1


, (44)

NII
k,n =



fk,n(r = 1, γ0 = γ2)

f ′k,n(r = 1, γ0 = γ2)

f ′′k,n(r = 1, γ0 = γ2)

f ′′′k,n(r = 1, γ0 = γ2)


, (45)

where nm = n(n− 1) · · · (n−m+ 1).

It is evident that rows of the product Li,IIAi,II and
∑NG

k=1 N
II
k,iCk respectively correspond to the

ith-radial factor of the trigonometric terms of the quartets (w(II)
0 , w(II)

0,r , w(II)
0,rr, w

(II)
0,rrr) from Eq. (37)

and (w(III)
0 , w(III)

0,r , w(III)
0,rr , w(III)

0,rrr) from Eqs. (16) and (38).

The second relationship relates coefficients of w(I)
0 and w(II)

0 . Each trigonometric term of w(II)
0

has four coefficients while those of w(II)
0 have only two coefficients. Thus, to have a one-to-one

relation between these two set of coefficients, two conditions are sufficient. The relationship is

determined from the continuity of displacement and slope at the boundary ΓΩI
where r = α =
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γ1/γ2. It can be expressed as

LI|r=αAI = L∗II|r=αAII (46)

where LI and AI are defined in Eqs. (28) and (29). L∗II is obtained from LII by extracting only

the upper left quadrant of the submatrices Li,II since the continuity of displacement and slope are

enough to determine the relation between coefficients of w(I)
0 and w(II)

0 . Using Eqs. (39) and (46),

it is more convenient to express AII and AI in terms of the vector C as in

AII = L−1
II |r=1NIIC = TIIC, TII ∈ R2NL×NG , (47)

AI = L−1
I |r=αL

∗
II|r=αL−1

II |r=1NIIC

= TIC, TI ∈ RNL×2NL (48)

where TII and TI are model 2’s transformation matrices. Appendix E lists an example of the

matrices NII, TII and TI using the first polynomial Φ1. We calculate the transformation matrices

using the analytic expression for the inverses. L−1
II is calculated from Eqs. (85) and (86) in Appx.

E while L−1
I is calculated in the same procedure as discussed for model 1. The determinant of

matrices LII given by

detLII = detL0,II ×
NF∏

n=2,··· ,even

detLn,II

=
(
−16r−2

) NF∏
n=2,··· ,even

64(n4 − n2)r−2 (49)

strongly depends on the variables n and r. The higher the values of n, the more likely that we face
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numerically ill-conditioned matrices when solving for the C vector. However, this can be dodged

by scaling the equivalent stiffness matrix and the vector C with a diagonal matrix (see section 6.1).

5.3.2 Variational formulation

With three subdomains, the variational formulation of Eq. (2) becomes

RΩI
+RΩII

+RΩIII
= FΩI

+ FΩII
+ FΩIII

(50)

where

RΩI
= R◦(w

(I)
0 , δw

(I)
0 ;D∗ΩI

, γ2, α, 0)

= δAT
I H

ΩIAI = δCTTT
I H

ΩITIC, (51)

RΩII
= R◦(w

(II)
0 , δw

(II)
0 ;D∗ΩII

, γ2, 1, α)

= δAT
IIH

ΩIIAII = δCTTT
IIH

ΩIITIIC, (52)

RΩIII
= R�(w

(III)
0 , δw

(III)
0 ;D∗ΩIII

)

−R◦(w(III)
0 , δw

(III)
0 ;D∗ΩIII

, γ2, 1, 0)

= δCTRΩIII
k1k2

C, (53)

FΩI
= 0, (54)

FΩII
= F◦(δw

(II)
0 , 1, α) = δAT

IIFII = δCTTT
IIFII, (55)

FΩIII
= F�(δw

(III)
0 )− F◦(δw(III)

0 , 1, 0) = δCTFk2 . (56)

Expressions for the matrices RΩIII
k1k2

, Fk2 and FII can be found in Appx. A and C. HΩI is obtained

from HΩq defined in Appx. C by extracting the upper left quadrants of its submatrices HΩI
i and
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setting r = α. HΩII is related to the matrix HΩq by

HΩII = HΩq |r=1 −HΩq |r=α. (57)

After collecting the variational terms, we acquire the following linear system of equations

(
TT

I H
ΩITI + TT

IIH
ΩIITII+RΩIII

k1k2

)
C

= TT
IIFII + Fk2 . (58)

Each term inside the parentheses in the LHS of the above equation represents the equivalent stiff-

ness matrix for a subdomain using the specific ansatz for that subdomain. In the same manner, the

RHS represents the equivalent forces resulting from each subdomain. However, only two subdo-

mains contribute as they are covered with a piezoelectric film.

6 Comparison between variational models

In this section, we compare the three variational models taking FEM simulations as a reference.

We have also carried out a convergence analysis of these models over the displacement and the

optical parameters (F# and RMSWFE).

6.1 Variational solutions versus FEM simulations

In the analyzed lenses, we use material parameters and structural dimensions for the membrane

and the piezoelectric stack as specified in.12 We have neglected the effect of platinum and ad-

hesion layers of the piezoelectric stack on the membrane displacement. Moreover, we have only
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considered actuation voltage ranges over which the resulting deformation is dominated by bending

as opposed to stretching and the equation of the deflection is linear.

The variational solutions of the three models are obtained by solving the three linear systems of

equations in Eqs. (24), (35) and (58) for the vector C. Enhancing the accuracy of these solutions

requires increasing the number of basis functions N . However, the higher the N value, the more

prone these systems of equations are to become numerically ill-conditioned. That situation can

be avoided by multiplying the equivalent stiffness matrix from left and right by diagonal matrices.

This diagonal scaling minimizes the euclidean condition number;22 defined as the ratio of the

largest to the smallest singular value of the equivalent stiffness matrix. Thus, we propose a diagonal

matrix whose elements are powers of the normalization factor of the Gegenbauer polynomials

when their domain extends over the normalized interval [−1, 1].23 The normalization factor for

any function φlj(X, Y ) is

blj =
[Γ(β)]2

π21−2β

[ l!j!(l + β)(j + β)

Γ(l + 2β)Γ(j + 2β)

]1/2

(59)

where l, j = 0, 2, 4, · · · are indices of the weighted Gegenbauer polynomials. β = 9/2 and Γ(·) is

the Gamma function. For pupil opening ratios of interest, we have found that the fourth power is

the minimum to dodge numerically ill-conditioning in these linear systems of equations.

Figure 5 shows displacement profiles from variational solutions and FEM simulations for var-

ious pupil opening ratios. Models 0 and 1 show similar behavior when pupil opening ratios are

small and the Gegenbauer basis is used for most of the membrane area in model 1. Thus, for these

ratios, the contribution of the Gegenbauer-basis terms to the electrical enthalpy of model 1 domi-

nates other contributions and the curves resemble those of model 0 which uses this basis only. This
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is evident for displacement profiles with γ1 < 0.6, as shown in Fig. 5. The larger the value of γ1 is,

the more dissimilar are the displacement curves of the two models and the better is the agreement

between model 1 and FEM.

Model 2 with N = 3 has the worst displacement approximation of all models for most pupil

openings, but this improves with increasing N value. Model 2 with N = 7 provides better dis-

placement approximations than the other models for all pupil openings of interest. In Fig. 5, this

becomes particularly clear for the displacement curves of model 2 with γ1 ≤ 0.3 when compared

to models 0 and 1.

To compare the variational solution for wNG
of the different models to the FEM result wFEM,

we monitor the l2 relative error norm given by

ζw =
[∑(wFEM − wNG

)2∑
w2

FEM

]1/2

. (60)

The sums in the above equation are over a set of discrete points of the cross-sectional displacement

profiles shown in Fig. 5. ζw curves for different models and various γ1 values are shown in Fig.

6. It is evident that model 0 shows decreasing, in most cases, nonmonotonic trends for increasing

N . However, model 1 shows smoothly decreasing trends and even reaches the highest accuracy at

certain N values for γ1 ratios ≥ 0.4 .

Model 2’s approximations appear to be worse with lower order N , but they improve with

increasing N . After N = 7, the error flatten for all pupil opening ratios of interest and model 2

reaches the highest accuracy. Thus, model 2 can outperform the other models with only 10 DOFs

according to Tab. 1.

It is notable that the ζw curves do not converge to zero for any model. This is to be expected
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Fig 5 Displacement profiles in xz−plane from FEM and different models at N = 3 and N = 7 for different values
of ratio γ1 with piezoelectric material at Vp = −10V .
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because of the neglect of the inplane displacements. However, this elimination of DOFs that could

have been assigned for inplane displacements has simplified the variational formulation signifi-

cantly.
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Fig 6 l2 relative error norm for the displacement versus number of polynomials N for different models.

6.2 Optical Simulations

To evaluate the lens optical performance, we import the lens displacement from both variational

solutions and FEM simulations on a 512 × 512 grid. We use ray tracing in an optical-design pro-

gram (Zemax)24 to evaluate the lens’ optical parameters such as F -number (F#) and RMSWFE.

F# is defined as f/(γ1a), where f is the focal length defined as the distance in between the lens’
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flat surface to the minimum on-axis spot. The on-axis wavefront error (WFE) is the optical path

difference between the constant phase surface of the wave coming out of the lens and a reference

sphere having its center at the image plane and its radius equal to the seperating distance between

lens exit pupil and the image plane.24

Figure 7 shows the optical parameters from different models with various N compared to

those from FEM simulations. Model 0’s approximations show oscillatory behavior for the optical

parameters with increasing N similar to the ζw curves. Model 1’s approximations approach the

optical parameters from FEM in a more uniform way. For γ1 ≤ 0.3, approximations from models

0 and 1 become similar for the same reason mentioned earlier for their displacements.

For model 2 with N = 1, ζw is greater than 0.8 for most γ1 values of interest. Thus, we have

omitted optical parameters at that particular value of N . The optical parameters from Model 2

rapidly approach those of FEM and increasing the value of N above 7 does not add any further

improvements.

To asses the ability of the variational models in approximating the optical parameters over

various pupil openings, we monitor the l2 relative error norms of 1/F# and RMSWFE expressed

as

ζ1/F# =
[∑

γ1
(1/F#FEM − 1/F#Model)

2∑
γ1

(1/F#FEM)2

]1/2

, (61)

ζRMSWFE =
[∑

γ1
(RMSWFEFEM − RMSWFEModel)

2∑
γ1

(RMSWFEFEM)2

]1/2

. (62)

The sums in the above equations are over a set of lenses with γ1 values ranging from 0.1 to 0.9

in steps of 0.02. In this aspect, the parameters ζ1/F# and ζRMSWFE will indicate the effectiveness

of each variational model to approximate the lens’ optical performance over a wide range of pupil
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Fig 7 Reciprocal F# and RMSWFE versus the ratio γ1, all with Vp = −10V and λ = 550nm for the three models.
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openings. Figure 8 shows these norms versus N for the three models. Model 0 and 1 show similar

behaviors for 1/F# curves, but model 1 shows an improved performance for RMSWFE curves.

Model-1’s ζRMSWFE curve is lower than the one for model 0 by nearly 50% at all N values. Model

2 starts on the wrong foot, but it becomes more accurate as N is increased. When N reaches 7, it

becomes the most accurate among the other models. For N ≥ 7, model 2 achieves accuracies of

respectively 5.1% and 2.1% for RMSWFE and 1/F#.
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Fig 8 l2 relative error norm of (a) reciprocal F# and (b) RMSWFE versus order N for three models.

7 Discussion

For a certain polynomial order, the three models have the same NG DOFs but their accuracy varies

depending on the type of basis functions. Model 2 has reduced these DOFs to only 10 as it uses the

homogeneous solution of the plate differential equation over most of the membrane area. With the

same DOFs, model 0 predicts RMSWFE and 1/F# with the respective accuracies of 11.4% and

66.2%, as shown in Fig. 8. It has needed as much as 120 DOFs to bring the accuracies down to

those of model 2 in order to provide an acceptable representation of the lens’ optical performance.12

Models 1 and 2 represent an alternative route to low order models than generic methods such

as the MOR methods mentioned in the introduction. Instead of using a a projection approach to
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reduce a high-order problem, we have crafted problem-specific trial functions to yield accurate

solution starting with a low-order ansatz.

Models 1 and 2 are powerful tools for optical wavefront representations because they can ana-

lytically yield the Zernike coefficients to represent the lens surface. Since the displacement ansatz

inside the pupil region has the form of Fourier cosine series, it can be easily mapped to Zernike

polynomials Zm′

n′ .25 The squared value of Zernike coefficients is calculated through projection

from

Model 1:

a2
n′m′ =

∫ 1

0

∫ 2π

0

w
(1)
0 (r)Zm′

n′ (r, θ)rdrdθ, (63)

Model 2:

a2
n′m′ =

∫ 1

0

∫ 2π

0

w
(I)
0 (αr)Zm′

n′ (r, θ)rdrdθ (64)

where

Zm′

n′ = Rm′

n′ (r) cos(m′θ)

=

n′−m′
2∑

k=0

ηn′m′kr
n′−2k cos(m′θ), (65)

ηn′m′k = (−1)k
(
n′ − k
k

)(
n′ − 2k
n′−m′

2
− k

)
(66)

and n′ and m′ are nonnegative even integers due to the lens symmetry. Their respective maximum

values are NF + 2 and NF from the w(1)
0 (or w(I)

0 ) expression and according to the definition of

Zernike polynomials. In Eq. (64), the radial variable is scaled by the factor α since Zernike
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polynomials are defined on a reference unit circle that is usually taken as the lens pupil.

From Eqs. (65) and (66), and substituting of w(1)
0 into Eqs. (63) and (64), it equals

a2
n′,m′ = ζm′π

n′−m′
2∑

k=0

ηn′m′k

( AI
m′τAm′

n′ − 2k +m′ + 2

+
BI
m′τBm′

n′ − 2k +m′ + 4

)
(67)

where AI
i and BI

i are the coefficients of the displacement ansatz’ subfunction in the pupil area.

ζm′ is the Neumann factor that equals 2 if m′ = 0 and 1 otherwise. Due to scaling of the radial

variable, the correction factors τ are defined as

Model 1: τA0 = τB0 = τAm′ = τBm′ = 1, (68)

Model 2: τA0 = 1, τB0 = α2, τAm′ = αm
′
,

τBm′ = αm
′+2. (69)

In that manner, the reduced models can substitute the FEM mechanical simulations of the lens and

directly provide the Zernike coefficients representing the lens sag. To be used in optimization, a

MATLAB code with a Dynamic Data Exchange (DDE) extension can export the coefficients an′,m′

to optical programs such as Zemax to directly represent the lens sag24 and calculate the required

optical performance metrics.

The reduced linear models are necessary foundations for building few-DOFs nonlinear models.

Such models will include residual stresses26, 27 and geometric nonlinearities28 due to biasing, and

involve solving a system of cubic equations of motion.28, 29 This system of equations is difficult to

be solved semi-analytically with many DOFs because of the tremendous number of integrals to be
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calculated for the quadratic and cubic stiffnesses.

8 Conclusions

We have introduced two reduced-order variational models to predict the linear optoelectromechan-

ical performance of piezoelectrically actuated MEMS tunable lenses. The reduction in model order

is due to using a piecewise expansion of trial functions that have different forms in the lens’ pupil

and the actuator areas. In particular, we used the exact solution for the elastic plate differential

equation in the central lens area. The larger this area is, the lower is the number of DOFs needed

to reach high accuracy in terms of mechanical and optical parameters. For example, model 2 needs

only 10 DOFs to achieve accuracies of respectively 5.1% and 2.1% for RMSWFE and 1/F#.

The ansatz subfunction in the pupil region of the presented models can be easily mapped to

Zernike polynomials to represent the lens surface. The Zernike coefficients are obtained on closed

form in terms of model DOFs. This enables fast computations of lens optical performance which

is useful when optimizing lens designs by extensive exploration of dimensions and material pa-

rameters.
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Appendix A: Variational energy integrals for model 0

The elements in the matrices RΩq
k1k2

(q = 1, 2) and Fk2 are

R
Ωq
k1k2

=
1

(a/2)2

∫
Ωq

{
D∗11,ΩqΦk1,XXΦk2,XX

+D∗12,ΩqΦk1,Y Y Φk2,XX

+D∗12,ΩqΦk1,XXΦk2,Y Y

+D∗22,ΩqΦk1,Y Y Φk2,Y Y

+ 4D∗66,ΩqΦk1,XY Φk2,XY

}
dXdY, (70)

Fk2 = −Vpzpe31

∫ 1

0

∫ 2π

0

∇2Φ̃k2rdrdθ. (71)

A simple way to numerically calculate the above matrix elements is through using a series

expansion of Gegenbauer polynomials and integration masks described in details in Refs. 12, 19.

Appendix B: Model 1

The analytic expression of the inverse of sub-matrices inverses Li,I can be expressed as

L−1
i,I =

 (i+ 2)r−i/2 −r1−i/2

−ir−i−2/2 r−1−i/2

 . (72)

42



The matrices N1,I and T1,1 using the first basis function Φ1 are given by

N1,I =



3γ8
1/128− γ6

1/4 + 5γ4
1/4− 2γ2

1 + 1

γ2
1(3γ6

1 − 24γ4
1 + 80γ2

1 − 64)/16

0

0

−γ4
1(γ4

1 − 8γ2
1 + 8)/32

−γ4
1(γ4

1 − 6γ2
1 + 4)/4

0

0

γ8
1/128

γ8
1/16



, (73)

T1,1 =

[
t1,1 t2,1 · · · t10,1

]T
(74)
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where

t1,1 =
5

4
γ4

1 − 2γ2
1 −

1

32
γ2

1(3γ6
1 − 24γ4

1 + 80γ2
1 − 64)

− 1

4
γ6

1 +
3

128
γ8

1 + 1,

t2,1 =
1

32
γ2

1(3γ6
1 − 24γ4

1 + 80γ2
1 − 64),

t5,1 =
1

8
γ4

1(γ4
1 − 6γ2

1 + 4)− 3

32
γ4

1(γ4
1 − 8γ2

1 + 8),

t6,1 =
1

16
γ4

1(γ4
1 − 8γ2

1 + 8)− 1

8
γ4

1(γ4
1 − 6γ2

1 + 4),

t8,1 =
1

128
γ8

1 ,

t3,1 = t4,1 = t7,1 = t8,1 = t10,1 = 0.

Appendix C: Variational energy integrals for models 1 and 2

The spring and force variational terms over circular and ring subdomains are given as

R◦(w0, δw0;D∗Ωq , γ0, αH , αL) = δATHΩqA, (75)

F◦(δw0;αH , αL) = Vpzpe31δA
TF (76)

where

HΩq =
1

γ2
0(a/2)2

(
D∗11,ΩqH

I1 +D∗12,Ωq

(
HI2 + HI3

)
+D∗22,ΩqH

I4 + 4D∗66,ΩqH
I5
)
,

(77)

44



HIm =



HIm
0 0 0 · · · 0

0 HIm
2 0 · · · 0

... . . . 0

0 0 0 · · · HIm
NF


,

A =



A0

A2

...

ANF


, Ai =



Ai

Bi

Ci

Di


, (78)

F =



F0

F2

...

FNF


. (79)

The submatrix 0 is 4× 4 zero matrix. In Eq. (75), each term HIm where m = 1, 2, · · · 5 repre-

sents one of the five integral terms of Eq. (4). The matrices HI2 and HI3 are equal. Expressions for

the submatrices HIm
i are listed below. To simplify introducing these submatrices, we define two

vector-valued functions

~Ψ0 =



1

r2

ln(r)

r2 ln(r)


, ~Ψn =



rn

rn+2

r−n
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The dashed lines are to ease visualizing the upper left quadrant of the matrices HIi
n which is

used in models 1 and 2. The matrix F and its submatrics are given by

F=
∫ r

0

∫ 2π

0

(
~Ψn,rr + 1

r
~Ψn,r + 1

r2
~Ψn,θθ

)
rdrdθ

F0 =


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4πr2
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2πr2(1 + 2 ln(r))
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0

0
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.

Appendix D: Moment and shear force continuity conditions

Here we investigate the continuity conditions for the radial moments and shear forces assuming

that the continuity conditions over displacement and slope are satisfied. Since there is no difference

in layer structures in model 2 at the fictitious boundary, there is no change in the flexural stiffnesses

D∗ij . The radial moment and vertical shear force are given by16

Mrr =−D∗11w0,rr +
D∗12

r
(w0,r + w0,θθ) , (81)

Qr =−D∗11(
w0,rr

r
+ w0,rrr)

− (D∗12 + 2D∗66)
w0,θθr

r2

+ (D∗12 + 2D∗66 +D∗22)
w0,θθ

r3
+D∗22

w0,r

r2
. (82)
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Using Eq. (16), w0,θθ becomes

w0,θθ = −
Ns,k∑

n=2,···even

n2fk,n(r, γ0) cos(nθ). (83)

Due to the orthogonality property of the trigonometric functions, the Fourier coefficients (for n ≥

2) of w0,θθ are related to those of w0 by

f
w0,θθ

k,n = −n2fw0
k,n. (84)

Thus, at the fictitious bonudary w0,θθ is continuous as long as w0 is continuous. From Eq. (81),

the only term left to satisfy moment continuity is to enforce a continuity condition on the second

derivative of the displacement. In a similar manner, the continuity of the third derivative of the

displacement corresponds to the continuity for vertical radial shear force Qr.
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Appendix E: Model 2

The analytic expression of the inverse of the submatrices L0,II and Ln,II can be expressed as

L−1
0,II =
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− ln(r)/4 −r(ln(r) + 1)/4
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, (85)
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. (86)
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The matrices N1,II, T1,II and T1,I using the first base function Φ1, are given by

N1,II =
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, (87)
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T1,II =
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

, (88)

T1,I =

[
t1,1 t2,1 · · · t10,1

]T
(89)
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where

t1,1 =
15

4
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2

64α8
(5γ4
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2
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1

128
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2 ,

t3,1 = t4,1 = t7,1 = t8,1 = t10,1 = 0.

Appendix F: Nomenclature

Nomenclature

e31 The effective longitudinal e-form piezoelectric coupling factor.

α The ratio γ1/γ2.

αH The upper limit of the normalized radius r.

αL The lower limit of the normalized radius r.

δH The virtual variation of the electrical enthalpy.
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δW The virtual variation of the potential energy due to external applied forces.

δw0 The virtual variation in the displacement w0.

Γ(·) The Gamma function.

γ0 The ratio of the reference circle diameter to the square plate side a.

γ1 The ratio of the pupil opening diameter to the square plate side a.

γ2 The ratio of the fictitious circle diameter to the square plate width a.

ΓΩi A boundary separate two subdomains.

λ light wavelength.

AII The coefficients vector in domains ΩII and Ω2. Its size is 2NL × 1.

AI The coefficients vector in domains ΩI and Ω1. Its size is NL × 1.

C The Gegenabuer coefficient vector of size NG × 1.

D∗ Modified flexural rigidities matrix.

HIi The ith variational integral written in matrix form.

HIi
n The nth submatrix of the HIi .

T1 Transformation matrix between coefficients in the domains Ω1 and Ω2 in model 1.

TII Transformation matrix between coefficients in the domains ΩII and ΩIII in model 2.

TI Transformation matrix between coefficients in the domains ΩI and ΩII in model 2.
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dn̂ The differential length vector normal to the lens’ outer boundary ΓΩ.

Ω The lens’ planar domain.

Ωi A subdomain of the planar domain Ω.

zp The distance between the center of the piezoelectric layer and the reference plane.

Φk The single-indexed Gegenbauer polynomial in the cartesian form.

φlj The double-indexed weighted Gegenbauer polynomial in the cartesian form.

Φ̃k The single-indexed weighted Gegenbauer polynomial in the polar form.

ζw l2 relative error norm for the displacement.

ζ1/F# l2 relative error norm for the reciprocal of F-number.

ζRMSWFE l2 relative error norm for the RMSWFE.

a The side length of the square diaphragm.

AII
i , B

II
i , C

II
i , D

II
i coefficients of w(II)

0 .

AI
i, B

I
i coefficients of w(1)

0 and w(I)
0 .

blj The normalization factor for polynomial φlj .

D∗ij,Ωi Modified flexural rigidities for the subdomain Ωi.

Dgl
ij Flexural rigidities for the glass layer only.

Dp
ij Flexural rigidities for the piezoelectric layer only.
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f ′k,n(r, γ0) The derivative of the nth Fourier coefficient for the kth Gegenbauer basis function with

respect to the variable r.

F# F-number.

fk,n(r, γ0) The nth Fourier coefficient for the kth Gegenbauer basis function.

N The number Gegenbauer polynomials in X or Y directions.

n Fourier index ranging from 2 to NF .

NL The number of coefficients for the subfunctions w(1)
0 .

NF The maximum order of Fourier series terms to fully expand set ofNG weighted Gegenbauer

polynomials.

NG The number of DOFs for the variational models.

Ns,k The sufficient order of Fourier series terms to fully expand the basis function Φk.

Ns,lj The sufficient order of Fourier series terms to fully expand a doubled-indexed Gegenbauer

polynomial φij .

r, θ Normalized polar coordinates.

RMSWFE RMS-wavefront-error.

Vp The actuation voltage applied across the piezoelectric stack.

w0 Displacement in the z-direction.

wFEM FEM simulation for the displacement in the z-direction.
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wNG The variational solution for the displacement in the z-direction with NG basis functions.

x, y Cartesian coordinates.

X, Y Normalized Cartesian coordinates.

Ck The Gegenabuer coefficient for the polynomial Φk.

F◦ The force variational integral over an annular (or circular) subdomain.

FΩi The force variational integral over a subdomain Ωi.

F� The force variational integral over a square cartesian subdomain.

R◦ The spring variational integral over an annular (or circular) subdomain.

RΩi The spring variational integral over a subdomain Ωi.

R� The spring variational integral part over a square subdomain.
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