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Abstract

A novel process-reaction curve method for tuning PID controllers for (possible) higher order processes/-
models is presented. The proposed method is similar to the Ziegler-Nichols process reaction curve method,
viz. only the maximum slope and lag need to be identified from an open loop step response. The relative
time delay error (relative delay margin), δ is the tuning parameter. The proposed method is verified
through extensive numerical simulations and is found close to optimal in many of the motivated process
examples. In order to handle the wide set of process models, two model reduction modes are presented.

Keywords: PID control, model approximation, relative time delay error, robustness, performance, opti-
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1. Introduction

The main focus of this paper and previous work in
Dalen and Di Ruscio (2017, 2018) is to approximate
step responses from (possible) higher order model-
s/systems with Double Integrating Plus Time Delay
(DIPTD) models

Hp(s) = K
e−τs

s2
, (1)

such that the (ideal/parallel) PID controllers,

Hc(s) = Kp(1 +
1

Tis
+ Tds), (2)

may be tuned to archive some kind of optimality, e.g.
minimising the Integrated Absolute Error (IAE) index.
In Eq. (1) K is the gain acceleration and τ is the time
delay. In Eq. (2) Kp is the proportional gain, Ti is the
integral time constant and Td is the derivative time
constant.

Two of the first and most used PID controller tuning
methods are presented in the work of Ziegler (1941);

Ziegler and Nichols (1942, 1943), viz. the Ziegler-
Nichols (ZN) Process-Reaction Curve (PRC) method
which is based on an open loop response, and an ulti-
mate gain method which is based on a closed loop re-
sponse. We note the ZN PRC PID controller settings
as follows: Kp = 1.2

R1L
, Ti = 2L and Td = L

2 , where,
R1 is the unit reaction rate (maximum slope) and L
is known in this paper as Ziegler’s lag (see Sec. 4 and
Figure 2 for details). Note the statement that iden-
tifying process dynamics with only two parameters is
insufficient; see Åström and Hägglund (2004). Note, in
general, that the ZN PID controllers demonstrate poor
robustness, see e.g. Åström and Hägglund (2004). One
advantage with this PRC method is that the user does
not need to wait for the process to reach steady state,
as is usually needed for methods based on e.g. first
order plus time delay model approximations.

It may be argued that the contributions of new two-
parameter(R1, L)-PRC methods converged in short
time after the ZN method was published. However, a
new PRC method was recently published in Dalen and
Di Ruscio (2018), denoted δ-PRC, which may be seen
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as an extension of the recent δ-PID controller tuning
method in Di Ruscio and Dalen (2017), i.e. a possi-
ble model reduction step was added such that only an
open loop step response (reaction curve) of the mod-
el/system was needed. Note that in contrast to ZN,
the δ-PRC method offers a tuning parameter for ro-
bustness, i.e. the user may prescribe a relative time
delay error (relative delay margin), δ = dτmax

τ , where,
dτmax > 0, is the maximum time delay error (delay
margin). Note that the prescribed relative time de-
lay errors in the time constant examples of Dalen and
Di Ruscio (2018) were seen to be lower and reasonably
near the exact maximum time delay errors. Further-
more, the δ-PRC method was found to be sufficiently
near the optimal PID controllers for a wide set of mo-
tivated time constant models/systems. By optimal we
mean Pareto-Optimal (PO), i.e. minimising a Pareto
performance objective, originally defined in the paper
of Skogestad and Grimholt (2012), and further used in
their work Grimholt and Skogestad (2013, 2016a).

The presented method (including the ZN method)
may be described as heuristic. By heuristic we mean
(hopefully) minimising an objective based on exten-
sive simulations or practical implementations. Heuris-
tic methods may in some circles cause some disfavour,
as the method is not built on exact science. The value
of the method is determined by the extent to which it
is able to fit actual cases. In this work, the objective
is the Pareto performance.

Note that the proposed model reduction technique
is, in general, much more easy to apply than the half-
rule technique proposed in Skogestad/Simple Internal
Model Control (SIMC) tuning in the work Skogestad
(2001, 2003, 2004), and also the modified half-rule in
the Korea/Kyungpook national university-SIMC (K-
SIMC) tuning rules presented in Lee et al. (2014). In
this paper we will include possible underdamped mod-
els. Note that such models are not compatible with
SIMC. However, attempts have been documented in
the internal report Manum (2005).

The contributions in this paper may be itemised as
follows.

• The δ-PRC method proposed in Dalen and
Di Ruscio (2018) is further developed and proven
on motivated process model examples.

• Model reduction modes are introduced.

• The δ-PRC method is compared to the model-
based tuning methods, SIMC and K-SIMC on mo-
tivated time constant models.

• The δ-PRC method is compared to the heuristic
optimisation tuning method in Dalen and Di Rus-
cio (2018) on motivated process models containing

complex poles. The ZN PRC PID controller tun-
ing method is also included in this comparison.

• A possible ζ-PRC tuning variant is demonstrated.
In this variant the main tuning parameter is
present in the model reduction step, i.e. the gain
acceleration is proportionally varied.

All numerical calculations and plotting facilities are
provided by using the MATLAB software, MATLAB
(2016). The rest of this paper is organised as follows.
In Sec. 2 the preliminary definitions are given. In
Sec. 3 the PO PID controller is presented. The δ-PRC
method including the model reduction modes are pre-
sented in Sec. 4. The numerical results are presented
for a wide range of examples in Sec. 5. Lastly, the
discussion and concluding remarks are given in Sec. 6.

2. Preliminary Definitions

Definition 2.1 (System)
The underlying systems/models are assumed to be de-
scribed by the following transfer function form,

Hp(s) =
k(Tzs+ 1)∏n

j=1(Tjs+ 1)(τ0s2 + 2τ0ξs+ 1)
, (3)

where, n > 1, the gain, k 6= 0, time constant Tz, time
constants, T1 ≥ T2 ≥ . . . ≥ Tj ≥ 0, the “speed” of
response, 0 ≤ τ0, and the relative damping, ξ in the
range, 0 < ξ < 1. In Eq. (3) we assume that Tj and
τ0 are not both zero at the same time. Assuming only
deterministic systems/models.

In the case of a pure single time constant process, we
obtain an on-off controller, which is not a part of the
topic of this paper, hence the reason for setting n > 1
if τ0 = 0.

One motivation for approximating models as in Eq.
(3) with DIPTD models (Eq. (1)) is that for a short
time interval the approximation is fairly good, which is
illustrated in Figure 2. However the main motivation
is that it gives close to PO PID controllers which is
documented in this and previous work in Dalen and
Di Ruscio (2018). In this paper we are only interested
in tuning PID controllers (for models as Eq. (3)) based
on DIPTD models (Di Ruscio and Dalen (2017)).

Note that proper system identification methods are
recommended when including noise, e.g. Ljung (1999),
DSR in Di Ruscio (1996) and DSR e in Di Ruscio
(2008, 2009).

Consider the standard feedback system with distur-
bances as illustrated in Figure 1. In order to compare
the different controllers against each other we will con-
sider indices such as defined in Åström and Hägglund
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(1995), Seborg et al. (1989) and Skogestad (2003). We
define these in the following.

Definition 2.2 (Performance)
For measuring performance in a feedback system, the
IAE is defined as

IAE =

∫ ∞
0

| e(t) | dt, (4)

where, e = r − y, is the control deviation error and r
is the reference.

Furthermore, the following is defined:

• IAEvu evaluates the performance in the case of a
step input disturbance (Hv(s) = Hp(s)), v = 1,
with the reference, r = 0.

• IAEvy evaluates the performance in the case of a
step output disturbance (Hv(s) = 1), v = 1, with
the reference, r = 0.

Hc(s) Hp(s)

Hv(s)

r e u y

v

−
+

+
+

Figure 1: Control feedback system. The plant model
is described by the process model Hp(s) (Eq.
(3)), PID controller, Hc(s), (Eq. (2)) and
disturbance model, Hv(s), where, step dis-
turbance, v, at the input when Hv(s) =
Hp(s) and at the output when Hv(s) = 1.

Robustness (i.e. allowing for inaccuracies in the ac-
celeration gain and time delay in the DIPTD model in
Eq. (1)) may be quantified in various ways, and in this
work we define it according to Garpinger and Hägglund
(2008).

Definition 2.3 (Robustness)
Robustness is defined by the sensitivity peak,

Ms = max
0≤ω<∞

|S(jω)| = ||S(jω)||∞, (5)

where, S(jω) = 1
1+Hp(jω)Hc(jω) , and, || · ||∞, is the

H∞-norm.

For robust controllers we consider the interval 1.4 ≤
Ms ≤ 2.0 (Åström and Hägglund (2006)).

To evaluate the amount of input usage we include
the following measure.

Definition 2.4 (Input Usage)
Input usage is defined as Total input Value (TV)

TV =

∫ ∞
0

|∆uk | dt, (6)

where, ∆uk = uk − uk−1, is the control rate of change.

3. Pareto-Optimal PID Controller

For quantifying multiple performances, i.e. indices
IAEvu, and, IAEvy, we define the following Pareto
performance objective,

J(p) = sr
IAEvy(p)

IAEovy
+ (1− sr)

IAEvu(p)

IAEovu
, (7)

where sr is the servo-regulator parameter chosen in
the range 0 ≤ sr ≤ 1 (originally introduced in Di Rus-
cio (2012)) for trade-off weighting between the output
disturbance (servo) weighting sr = 1 and input dis-
turbance (regulator) weighting sr = 0. In this work,
and as in earlier papers, we will set sr = 0.5 (Sko-
gestad and Grimholt (2012)). The controller argu-
ments are structured as p = [Kp, Ti, Td]

T . IAEovy =
minp IAEvy(p,Ms) and IAEovu = minp IAEvu(p,Ms),
are the optimal output and input disturbance indices,
i.o, where Ms = 1.59. See Table 1 for details of
the reference controllers for Example 1 (E1). Note
that for robust reference PID controllers we generally
want Ms = 1.59 which corresponds to a SIMC tuned
PI controller for the process model Hp(s) = 1

s+1e
−s

(Grimholt and Skogestad (2013)).

Table 1: E1. The table shows the optimal input and
output disturbance controllers for prescribed
robustness, Ms = 1.59. * means that this
value is not important and is not given.

Kp Ti Td IAEvy IAEvu Ms

12.74 1.189 0.202 0.0995 * 1.59
13.37 0.151 0.168 * 0.0229 1.59

The following main performance objective is defined
in a mean square error sense,

VM (x) =
1

M

M∑
i=1

(Jx(i)− JPO(i))2, (8)

where x is a tuning method and M = length(J).

4. δ-PRC Controller Tuning

The δ-PRC PID controller tuning method is defined as
Algorithm 2.1 in Dalen and Di Ruscio (2018), where
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steps 1-2 are substituted with the following DIPTD
model (Eq. (1)) approximation rules for gain accelera-
tion and time delay,

K = ζ
R1

L
, (9)

τ = ηL, (10)

where R = max /mint
dy
dt (i.e. min if y(tfinal) < 0),

is the reaction rate (maximum slope), R1 = R
∆u , is

the unit reaction rate, ∆u = 1 (default), is the input
step change, L = t1 − y1

R1
, is defined as Ziegler’s lag,

t1 = argR1, and, y1 = y(t1). See Figure 2 for an
illustration of the model reduction technique.
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Figure 2: E1. The figure illustrates the model reduc-
tion technique. Shows the open loop step
response of the higher order process model
given in column 2 in Table 2. Shows the
step response of the DIPTD model, Hp(s) =

K e−τs

s2 , approximation where the gain accel-

eration K = R1

L and time delay τ = L
2π

(Mode 1). R1 is the unit reaction rate and
L is Ziegler’s lag and (t1, y1) is the inflection
point.

Based on extensive simulations in this and previous
work (Dalen and Di Ruscio (2018)), and since we usu-
ally encounter relatively low order models, we recom-
mend choosing ζ in the range 0 < ζ ≤ 10. Further-
more, the main performance objective VM (Eq. (8)) is
observed to be relatively insensitive to small changes
around η = 1

2π (holds at least for pure multiple pole
models), hence we propose to keep this constant as in
Dalen and Di Ruscio (2018). We take a shot at cover-
ing a broad set of possible models/systems and, at the

same time, make the method practical for the user.
We present a couple of model reduction modes in the
following.

{
Mode 1 : ζ = 1, η = 1

2π
Mode 2 : ζ = 6, η = 1

2π

}
(11)

Mode 1 corresponds to the method given in Dalen
and Di Ruscio (2018) where a possible proof was given
therein. Note that mode 1 works well for most pro-
cesses (satisfying Eq. (3)), however, arguably, not for
processes where the time constants are equal or approx-
imately equal with order n > 3. For such processes we
would suggest mode 2. It would be useful to have some
information on the process before assigning a mode,
but this is not necessary. Given that we only have
two modes, the user may perform a trial-and-error ap-
proach. However, one might find the appropriate mode
by fixing the main tuning parameter, δ, (e.g. δ = 2.12)
and observing the closed loop response, input step re-
sponse, or by calculating the Ms (Eq. (5)) directly,
subject to changing between modes.
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Figure 3: E1. The figure illustrates the model reduc-
tion technique. Shows the magnitude re-
sponses for the higher order process model in
column 2 in Table 2 and the DIPTD model,

Hp(s) = K e−τs

s2 , approximation where the

gain acceleration K = ζ R1

L varies, i.e. ζ ∈
{0.1, 1, 10}.

Some comments regarding optimal method product
settings, c̄, and integral-derivative ratio, γ, are given
for step 3 in Algorithm 2.1 (Dalen and Di Ruscio
(2018)), i.e. δ-PID controller tuning. Consider the

276



Christer Dalen, “Novel Process-Reaction Curve PID Tuning’

DIPTD model (Eq. (1)) where the gain acceleration
K = 1 and the time delay τ = 1. In the incoming we
define Alg. 3.1 as Alg. 2.1 and Eq. (27) in Di Ruscio
and Dalen (2017).

The first setting is obtained by solving the following
optimisation problem[

c̄
γ

]
= arg min

c̄,γ
VM (Alg. 3.1o,Alg. 3.1 (c̄, γ))

=

[
2.24
2.24

]
, (12)

where Alg. 3.1 (c̄, γ, δi) and Alg. 3.1o (δi) are pre-
calculated as follows

J iAlg. 3.1 = min
c̄,γ

JAlg. 3.1 (c̄, γ, δi) ∀ 1.1 ≤ δi ≤ 3.4. (13)

Notice that γ = 2.25 was found to be optimal in Kris-
tiansson and Lennartson (2006).

The second setting which is used in this work and
was originally proposed in Dalen and Di Ruscio (2017),
is found by[

c̄
γ

]
= arg min

c̄,γ
VM (PO,Alg. 3.1 (c̄, γ))

=

[
2.12
2.12

]
, (14)

where Alg. 3.1 (c̄, γ, δ (M i
s)) and PO (M i

s) are pre-
calculated as follows

J iPO = min
p
J(p,M i

s) ∀ 1.3 ≤M i
s ≤ 2.0. (15)

Notice that the conventional ratio, γ = 4, is larger
than the couple presented above, see e.g. Ziegler and
Nichols (1942), Astrom and Hagglund (1984), Mantz
and J. Tacconi (1989) and Skogestad (2003).

The algorithm for the δ-PRC method is presented as
follows.

Algorithm 4.1 (δ-PRC PID Controller Tuning)

1. Find Ziegler’s lag, L, and the unit reaction rate,
R1 based on the open loop step response (reaction
curve) of the (possible) higher order model/system.

2. Choose one of the two model reduction modes (pro-
posed in Eq. (11)) based on trial-and-error. Find
the gain acceleration, K, and time delay, τ , in the
DIPTD model, using Eqs. (9) and (10).

3. Obtain the PID controller parameters Kp, Td and
Ti by using δ-PID controller tuning, viz. Alg. 2.1
and Eq. (27) in Di Ruscio and Dalen (2017), i.o.

The above method is implemented in a MATLAB
m-file function shown in App. A.

5. Numerical Results

A set of PO PID controllers is obtained for each process
model example (Es1-12) using the exact gradient opti-
misation method in Grimholt and Skogestad (2016b).

Note that the PID controller tuning methods of
SIMC and K-SIMC are based on second order plus time
delay models. Furthermore the SIMC and K-SIMC
tuned PID controllers are on cascade form, hence they
need to be converted to the ideal/parallel form.

For Es1-6, the δ-PRC tuning method is compared to
SIMC and K-SIMC in terms of trade-off curves shown
in Figure 4, where the corresponding VM measures are
given in Table 3. The corresponding time-domain out-
put and input step responses and input usage, for a
prescribed robustness, Ms = 1.59, are illustrated in
Figures 7 and 8, i.o.

For Es7-12 (i.e. complex pole examples), the δ-PRC
tuning method is compared to the Opt-PRC method
(Dalen and Di Ruscio (2018)) in terms of trade-off
curves shown in Figure 5, where the corresponding
VM measures are given in Table 4. Notice that the
ZN PRC PID controller tuning is included as a point
in the trade-off plots. We present Figure 6 which is
‘zoomed out’ version of Figure 5. The corresponding
time-domain output and input step responses and in-
put usage, for a prescribed robustness, Ms = 1.59, are
illustrated in Figures 9 and 10, i.o. See Table 5 for the
choice of model reduction modes in the δ-PRC method
for Es1-12. The prescribed PID controller parameters,
including the Pareto performances J and the margins,
are shown in App. B in Tables 6 and 7.

Note that other simulation examples demonstrating
the performance of δ-PRC on pure time constant pro-
cesses are documented in Dalen and Di Ruscio (2018).
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Table 2: Shows the test batch, i.e. the motivated pro-
cess model examples (Es1-12) used in the nu-
merical simulations.

E Process model, Hp(s)

1 Eq. (7) in Åström and Hägglund (2000)
(similar to Eq. (13) in Skogestad (2003))

11(2.727s+1)

(20s+1)(s+1)(0.1s+1)2

2 Eq. (2) in Åström and Hägglund (2000) where α = 0.9
1

(s+1)(0.9s+1)(0.81s+1)(0.729s+1)

3 Eq. (2) in Åström and Hägglund (2000) where α = 0.3
1

(s+1)(0.3s+1)(0.09s+1)(0.027s+1)

4 Eq. (4) in Åström and Hägglund (2000)
Skogestad (2003)

1
(s+1)4

5 Daraz et al. (2017)
Superheated Steam Temperature
0.7732

(19s+1)5

6 Eq. (30) in S. J. Sadati and Ghaderi (2012)
Oxygentator (neglecting time delay)

2.963e+5
(66.67s+1)3

7 Åström et al. (1998)
E30 in Shamsuzzoha (2013)

1
(s+1)((0.333s)2+0.667(0.333s)+1)

8 S. Sai Tarun (2014)
Single Area Power System

2.3529
(0.07524s+1)((0.3537s)2+0.9171(0.3537s)+1)

9 Eq. (3) in Salloum et al. (2014)
ElectroMechanical Actuators

1
(0.0071s+1)((0.0084s)2+1.662(0.0084s)+1)

10 Eq. (12) in Wang et al. (2017)
Hydraulic Support Electro-Hydraulic System

2.6649(−0.02784s+1)

(0.9464s)2+1.197(0.9464s)+1

11 Eq. (10) in Farouk et al. (2012) (neglecting time delay)
Marine Diesel Engine

1
(2.403s+1)(0.237s+1)((0.028s)2+1.414(0.028s)+1)

12 Eq. (1) in Abbasi et al. (2017)
Unmanned Free Swimming Submersible Vehicle

−2.6158(2.299s+1)

(0.8131s+1)(0.5s+1)((7.692s)2+1.738(7.692s)+1)
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Figure 4: Es1-6. The figure shows the Pareto perfor-
mance J (Eq. (7)) and Ms (Eq. (5)) trade-
off curves for the methods δ-PRC (δ), SIMC
(Tc), K-SIMC (λ) and PO PID (Ms), where
δ is the prescribed relative time delay er-
ror, Tc and λ are the prescribed set point
response time constants. The circles illus-
trates controllers with prescribed robustness
Ms = 1.59.
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Figure 5: Es7-12. The figure shows the Pareto perfor-
mance J (Eq. (7)) and robustness Ms (Eq.
(5)) trade-off curves for the methods δ-PRC
(δ), Opt-PRC (δ1) and PO PID (Ms), where
δ and δ1 are the prescribed relative time de-
lay errors. The circles illustrates controllers
with prescribed robustness Ms = 1.59.
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Figure 6: Es7-12. The figure shows the Pareto perfor-
mance J (Eq. (7)) and robustness Ms (Eq.
(5)) trade-off curves for the methods δ-PRC
(δ), Opt-PRC (δ1) and PO PID (Ms). This
figure illustrates the ZN PRC PID tuning as
a single point per example. This figure is a
‘zoomed out’ version of Figure 5.
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Figure 7: Es1-6. The figure illustrates the output and
input step time-domain responses for a pre-
scribed robustness, Ms = 1.59, for the fol-
lowing methods: δ-PRC, SIMC, K-SIMC and
PO PID.
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Figure 8: Es1-6. The figure illustrates the input us-
age for a prescribed robustness, Ms = 1.59,
for the following methods: δ-PRC, SIMC, K-
SIMC and PO PID.
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Figure 9: Es7-12. The figure illustrates the output and
input step time-domain responses for a pre-
scribed robustness, Ms = 1.59, for the fol-
lowing methods: δ-PRC, SIMC, K-SIMC and
PO PID.
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Figure 10: Es7-12. The figure illustrates the input us-
age for a prescribed robustness, Ms = 1.59,
for the following methods: δ-PRC, SIMC,
K-SIMC and PO PID.
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Table 3: Es1-6. The table shows the main performance
objective VM (Eq. (8)) measures for the δ-
PRC, K-SIMC and SIMC tuned PID con-
trollers, i.e. corresponding to the trade-off
curves in Figure 4.

E \VM δ-PRC SIMC K-SIMC

1 0.005 0.354 0.449
2 0.012 0.212 0.157
3 0.029 0.048 0.047
4 0.010 0.382 0.237
5 0.123 0.443 0.247
6 0.025 0.566 0.709

Table 4: Es7-12. The table shows the main perfor-
mance objective VM (Eq. (8)) measures for
the δ-PRC and Opt-PRC tuned PID con-
trollers, i.e. corresponding to the trade-off
curves in Figure 5.

E \VM δ-PRC Opt-PRC

7 0.091 0.115
8 0.126 0.134
9 0.086 0.391
10 0.015 0.016
11 0.061 0.004
12 0.012 0.005

6. Discussion and Concluding
Remarks

The discussion and concluding remarks are itemised as
follows.

• The δ-PRC method in Dalen and Di Ruscio (2018)
is further developed and proven. Model reduction
modes have been presented. These are demon-
strated through Es1-12.

• It is seen in Es1-6 that the proposed method has an
edge over the other model-based methods SIMC
and K-SIMC, viz. δ-PRC is seen to be at the
minimum VK-SIMC

Vδ−PRC
= 1.6 times better than the

runner-up method (K-SIMC), and at the maxi-
mum, VSIMC

Vδ−PRC
= 70.1 times better than the runner-

up method (SIMC). See Table 3.

• For Es7-12 the δ-PRC wins 4 out of 6 examples
(wrt. Table 4), however Opt-PRC (Dalen and
Di Ruscio (2018)) is 15 times better on E11.

• These simple heuristic modes give PID controller

Table 5: The table shows the chosen model reduction
modes (Eq. (11)) in the δ-PRC method for
the examples Es1-12.

E Mode

1 1
2 2
3 1
4 2
5 2
6 1
7 2
8 1
9 1
10 1
11 1
12 1

tuning rules which are close to optimal (PO), i.e.
approximately minimising the Pareto performance
objective (Eq. (7)) in many cases.

• Notice that the results in Sec. 5 are based on the
(possible) higher order models in Table 2. The
DIPTD model (Eq. (1)) approximation is only
used for PID controller design.

• The ZN PRC PID controller tuning method is not
robust, as demonstrated in Figure 6. It also illus-
trates the lack of performance. The worst cases
show a Pareto performance J > 60 in E10 and a
robustness Ms > 7 on E7.

• Some surprisingly optimal results were docu-
mented in App. C, where a tuning method based
on varying the gain velocity, K = ζ R1

L , i.e. the
tuning parameter is ζ. Note that the setting δ = c̄
(i.e. an ad hoc choice) equal a constant is advis-
able.

A. δ-PRC method MATLAB m-file

function [Kp, Ti ,Td]= d e l t a p r c p i d t u n . . . .
(T,Y, de l ta , imod , du)
% PURPOSE. Tuning an i d e a l PID c o n t r o l l e r
% hc ( s)=Kp(1+1/( Ti∗ s)+Td∗ s )
% based on input s t e p response data .
% [Kp, Ti , Td]= d e l t a p r c p i d t u n . . .
% (T,Y, d e l t a , imod , du )
%
% On Input
% T, Y − Step response data
% T time v e c t o r
% Y output v e c t o r
%
% d e l t a − Tuning parameter ,

286



Christer Dalen, “Novel Process-Reaction Curve PID Tuning’

% r e l a t i v e time d e l a y e rror
% d e l t a =2.12 ( d e f a u l t )
%
% imod − Model r e d u c t i o n mode
% Choose imod=1 ( d e f a u l t ) ,
% or imod=2
%
% du − Input s t e p change
% Unit du=1 ( d e f a u l t )
%
% On output
% Kp − P r o p o r t i o n a l cons tant
% Ti − I n t e g r a l time cons tant
% Td − D e r i v a t i v e time cons tant

i f nargin == 4 ; du=1; end
i f nargin == 3 ; du=1; imod=1; end
i f nargin == 2 ; du=1; imod=1; d e l t a =2.12;
end

eta =1/(2∗pi ) ;

i f imod==2
zeta =6;

else
zeta =1;

end

h=T(2)−T( 1 ) ; A=d i f f (Y)/h ;

i f Y(end)<0
[R, i ]=min(A) ;

else
[R, i ]=max(A) ;

end

R1=R/du ;
t1=T( i ) ;

y1=Y( i ) ; L=t1−y1/R1 ;

K=zeta ∗R1/L ; tau=eta ∗L ;

cb =2.12; gamm=2.12;
[Kp,Td]= pd tun maxdelay (K, tau , de l ta , cb , 1 ) ;
Ti=gamm∗Td;

% end d e l t a p r c p i d t u n .m

B. Margins
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Table 6: Es1-6. The table contains the PID controller
parameters for fixed robustness Ms = 1.59 for
the methods; δ-PRC, SIMC, K-SIMC and PO
PID. Also include the Pareto performance J
and the input usage TV . The following mar-
gins are included: Gain Margin (GM), Phase
Margin (PM) and Delay Margin (DM).

E Method Kp Ti Td IAEvy IAEvu J TV GM PM DM Ms

1 δ-PRC 12.62 0.31 0.15 0.15 0.03 1.07 1919 ∞ 46.33 0.06 1.59
1 SIMC 10.36 0.51 0.11 0.18 0.05 1.53 1124 ∞ 44.48 0.08 1.59
1 K-SIMC 8.83 0.43 0.10 0.21 0.05 1.64 883 ∞ 42.86 0.09 1.59
1 PO PID 12.68 0.23 0.18 0.15 0.03 1.03 2346 ∞ 47.10 0.05 1.59
2 δ-PRC 1.81 2.02 0.95 1.93 1.36 1.10 1734 4.50 54.53 1.39 1.59
2 SIMC 1.28 2.31 0.57 2.47 1.92 1.48 727 5.04 55.31 1.85 1.59
2 K-SIMC 1.44 2.55 0.61 2.24 1.78 1.35 878 4.85 57.52 1.79 1.59
2 PO PID 1.85 2.25 1.14 1.64 1.40 1.03 2115 4.33 65.46 1.62 1.59
3 δ-PRC 8.59 0.69 0.32 0.24 0.09 1.32 2819 6.01 55.00 0.14 1.59
3 SIMC 9.43 0.99 0.23 0.24 0.11 1.44 2150 6.72 50.44 0.15 1.59
3 K-SIMC 8.88 0.77 0.19 0.30 0.09 1.43 1677 7.66 46.26 0.16 1.59
3 PO PID 9.36 0.58 0.26 0.28 0.07 1.26 2426 6.37 51.40 0.14 1.59
4 δ-PRC 1.78 2.38 1.12 2.25 1.62 1.10 204 4.49 55.34 1.66 1.59
4 SIMC 1.10 2.50 0.60 3.18 2.55 1.64 69.15 5.11 54.77 2.34 1.59
4 K-SIMC 1.32 2.91 0.66 2.77 2.22 1.43 89.96 4.83 57.59 2.21 1.59
4 PO PID 1.82 2.62 1.33 1.94 1.65 1.03 247 4.32 65.49 1.92 1.59
5 δ-PRC 1.45 74.13 34.96 69.18 52.55 1.19 511 3.27 79.98 94.67 1.59
5 SIMC 0.79 47.50 11.40 100.35 70.04 1.66 93 4.06 56.90 81.24 1.59
5 K-SIMC 1.04 58.67 12.85 84.81 59.04 1.40 137 3.77 60.11 76.46 1.59
5 PO PID 1.54 61.36 28.67 59.59 43.95 1.01 444 3.32 64.87 65.01 1.59
6 δ-PRC 0.00 143.69 67.78 50.26 7657619 1.22 2.61 ∞ 47.63 25.58 1.59
6 SIMC 0.00 166.68 40.00 75.93 11629006 1.85 2.58 ∞ 46.63 40.01 1.59
6 K-SIMC 0.00 171.13 39.03 77.48 12279424 1.93 2.58 ∞ 46.81 41.07 1.59
6 PO PID 0.00 90.41 76.08 51.99 6322148 1.13 2.65 ∞ 47.79 24.68 1.59
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Table 7: Es7-12. The table contains the PID controller parameters for fixed robustness Ms = 1.59 for the
methods; δ-PRC, Opt-PRC and PO PID. Also include the Pareto performance J and the input usage
TV . The following margins are included: Gain Margin (GM), Phase Margin (PM) and Delay Margin
(DM).

E Method Kp Ti Td IAEvy IAEvu J TV GM PM DM Ms

7 δ-PRC 1.22 0.79 0.37 0.83 0.71 1.27 456 ∞ 81.19 1.14 1.59
7 Opt-PRC 1.23 0.84 0.39 0.85 0.73 1.30 489 ∞ 84.67 1.22 1.59
7 PO PID 1.27 0.45 0.56 0.69 0.53 0.99 720 ∞ 67.73 0.78 1.59
8 δ-PRC 2.57 0.45 0.21 0.20 0.18 1.48 560 ∞ 42.66 0.08 1.59
8 Opt-PRC 2.74 0.51 0.24 0.17 0.20 1.42 680 ∞ 43.95 0.07 1.59
8 PO PID 2.65 0.28 0.33 0.14 0.17 1.17 906 ∞ 45.40 0.07 1.59
9 δ-PRC 4.50 0.02 0.01 0.01 0.00 1.15 426 ∞ 48.20 0.00 1.59
9 Opt-PRC 4.39 0.02 0.01 0.01 0.01 1.33 502 ∞ 48.22 0.00 1.59
9 PO PID 4.43 0.01 0.01 0.01 0.00 1.00 507 ∞ 48.37 0.00 1.59
10 δ-PRC 36.75 0.26 0.12 0.18 0.01 1.74 4670 2.69 39.60 0.05 1.59
10 Opt-PRC 36.64 0.26 0.12 0.18 0.01 1.74 4669 2.69 39.69 0.05 1.59
10 PO PID 38.54 0.32 0.12 0.16 0.01 1.63 4644 2.70 39.08 0.04 1.59
11 δ-PRC 38.89 0.38 0.18 0.17 0.01 1.12 7166 3.98 56.61 0.08 1.59
11 Opt-PRC 46.54 0.28 0.13 0.20 0.01 1.01 6365 4.12 46.68 0.08 1.59
11 PO PID 47.50 0.38 0.12 0.18 0.01 0.97 5909 4.27 45.53 0.08 1.59
12 δ-PRC -22.02 2.27 1.07 1.16 0.12 1.55 2441 ∞ 44.62 0.42 1.59
12 Opt-PRC -22.20 2.42 1.14 1.10 0.13 1.53 2629 ∞ 45.37 0.40 1.59
12 PO PID -22.11 2.23 1.33 1.05 0.13 1.49 3068 ∞ 46.22 0.37 1.59

C. ζ-PRC PID Controller Tuning

Note that in some examples we may possibly use ζ as
the tuning parameter, i.e. for the incoming example
we set δ = c̄ = γ = 2.12.

Consider the following process model studied in Se-
borg et al. (2004) and Åström et al. (1998),

Hp(s) =
1

(s+ 1)(0.2s+ 1)(0.04s+ 1)(0.008s+ 1)
. (16)

The main performance objective is VM = 4.2250e-
4. Interestingly, in this case, the ζ-tuning is 17 times
better than mode 1 and 148 times better than SIMC
in Dalen and Di Ruscio (2018). The trade-off curves
are illustrated in Figure 11.
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Figure 11: The figure illustrates the ζ-PRC tuning.
Pareto performance J (Eq. (7)) vs. robust-
ness Ms trade-off curves.
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