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Abstract: A method for tuning PI controller parameters, a prescribed maximum time delay error or
a relative time delay error is presented. The method is based on integrator plus time delay models.
The integral time constant is linear in the relative time delay error, and the proportional constant is
seen inversely proportional to the relative time delay error. The keystone in the method is the method
product parameter, i.e., the product of the PI controller proportional constant, the integral time
constant, and the integrator plus time delay model, velocity gain. The method product parameter
is found to be constant for various PI controller tuning methods. Optimal suggestions are given
for choosing the method product parameter, i.e., optimal such that the integrated absolute error or,
more interestingly, the Pareto performance objective (i.e., integrated absolute error for combined step
changes in output and input disturbances) is minimised. Variants of the presented tuning method
are demonstrated for tuning PI controllers for motivated (possible) higher order process model
examples, i.e., the presented method is combined with the model reduction step (process–reaction
curve) in Ziegler–Nichols.

Keywords: PI control; tuning; integrating system; maximum time delay error; time delay;
performance optimal; process control

1. Introduction

This paper concerns tuning of PI controllers based on Integrator Plus Time Delay (IPTD)
models/systems. Further details and developments regarding the δ-tuning algorithm are presented in
the work [1,2]. IPTD processes and close-to IPTD systems are important/typical processes/systems
found in the industry. Instances of IPTD processes are pulp and paper mills, oil water gas separators,
communication networks, level systems and all lag-dominant processes, which may be approximated
by IPTD models (see, e.g., [3–5]). Reported instances are high-purity distillation columns where
there are relatively large time constants for minor differences in the reference, and where the time
delay comes from an analyser (see, e.g., [6,7]). In Section 6.4 in [8], an example of reboiler control in
connection with a distillation column was presented.

The majority of existing PI controller tuning rules for IPTD processes,

Hp(s) =
k
s

e−τs, (1)

may be written as the following setting

Kp =
α

kτ
, Ti = βτ, (2)
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where Kp is the PI controller proportional gain, Ti is the integral time constant, k is the gain velocity
(slope) and τ ≥ 0 is the time delay. α and β in Equation (2) are dimensionless parameters. For instance,
using the classical Ziegler–Nichols (ZN) PI controller tuning rules, proposed in the works [9–11],
gives α = π

4.4 , β = 4
1.2 (i.e., the ZN closed loop method). Using the Internal Model Control (IMC) PI

controller tuning rules in Table 1 of [7] with closed loop time constant Tc =
√

10τ, as proposed in [6],
gives parameters α = 0.42 and β = 7.32. Using the Simple/Skogestad IMC (SIMC) PI controller tuning
rules, presented in the works of [8,12,13], with closed loop time constant Tc = τ (i.e., is the only tuning
parameter in SIMC) gives α = 0.5 and β = 8.

To find PI controller settings with good robustness properties (i.e., one could have uncertainties in
the gain velocity and time delay) and simultaneously obtain reasonable fast reference and disturbance
properties, for IPTD processes, the size and balanced relation between the parameters α and β are of
importance.

Using the PI controller setting in Equation (2), we may define a Method Product (MP) parameter c̄ as,

c̄ = αβ = KpTi k. (3)

The defined MP parameter c̄ in Equation (3) is constant for numerous PI controller tuning methods.
The SIMC PI controller settings yield an MP parameter c̄ = 4. The original ZN method gives an MP
parameter c̄ = 2.38 (i.e., the ZN closed loop method).

In this paper, we search for optimal MP parameters, i.e., choosing c̄ which ensures the closed
loop system some optimal robustness or performance setting, e.g., minimisation of the Integrated
Absolute Error (IAE) or sensitivity index Ms given a prescribed robustness. Figure 1 shows that Ms is
approximately minimised for c̄ = 2.0. However, it might be argued that the changes in Ms is negligible,
and that Ms is optimal over the MP parameter interval 1.5 ≤ c̄ ≤ 4.0.

Method product parameter 1:5 5 7c 5 4
1.5 2 2.5 3 3.5 4

1.65

1.655

1.66

1.665

1.67

1.675

1.68

1.685

1.69

1.695

1.7
Ms vs. 7c

Figure 1. Consider PI control of the FOPTD process model, Hp(s) = e−s

s . The figure shows the
robustness Ms as a function of the MP parameter c̄, given constant robustness, for the interval
1.5 ≤ ¯c ≤ 4.0.
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Table 1. The table shows the recommended MP parameters c̄ if one wants to minimise the main
performance objective VM (Equation (42)) for different servo-regulator parameters sr in Equation (41).
The optimal c̄ values as indicated are almost constant in the interval δ ∈ [1.1, 3.4] ([2]).

sr 0 0.1 0.25 0.5 0.75 1

c̄ 2.4 2.5 2.6 2.7 3.7 ∞

It has been pointed out that there is usually a high degree of trial-and-error in choosing the closed
loop time constant tuning parameter Tc in SIMC and IMC (e.g., [1] for SIMC and [6] for IMC). Note that
one also may focus on the maximum sensitivity peak Ms of the sensitivity function as described in [14],
where some inequalities relating to the Gain Margin (GM) and the Phase Margin (PM) to the robustness
Ms are proposed on p. 126. Consider that the values of the minimum robustness Ms are in the interval
1.3 ≤ Ms ≤ 2 [14].

The contributions of this work are itemised in the incoming:

• The PI controller tuning method in the work of [1,2] is further developed with more optimal
settings for the MP parameter as well as tuning for some special instance integrating systems.

• In the instance of a small or zero time delay τ = 0, we propose a variant in which the Maximum
Time Delay Error (MTDE) dτmax > 0 is the tuning parameter (see Section 3.2).

• Two optimal settings for the MP parameter are presented in Section 4. These are optimal in
the sense that they minimise a Pareto performance objective (i.e., integrated absolute error for
combined step changes in output and input disturbances) on two different aspects. One additional
MP parameter is deduced from approximating the time delay with a (2, 1) Pade approximation in
Section 3.3.

• Additional MP parameter settings are suggested for minimising a variety of given indices.
• The presented method (including variants of this) is demonstrated and compared to the

Pareto-Optimal (PO) and SIMC (when possible) tuned PI controllers on various motivated
(possible) higher order process model examples in Section 5.

The rest of this paper is organised as follows. The preliminary theory containing the definitions
and some basic theory are given in Section 2. In Section 3, we present analytical results about the MTDE
and present PI controller tuning rules as a function of a prescribed MTDE. Numerical simulation
examples for some (possible) higher order systems/models are presented in Section 5. The conclusion
and discussion remarks are given in Section 7.

2. Preliminary Theory

2.1. Definitions

Given a PI controller

Hc(s) = Kp
Tis + 1

Tis
, (4)

where Kp is the proportional constant and Ti is the integral time constant.
Consider the standard feedback system with disturbances as illustrated in Figure 2. To compare

the different controllers, we consider indices such as defined in [12,14,15]. Performance is measured in
a feedback system by

IAE =
∫ ∞

0
| e |dt. (5)

Furthermore, the following is defined.

• IAEvu evaluates the performance in case of a step input disturbance (Hv(s) = Hp(s)), v = 1
(default), with the reference, r = 0.
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• IAEvy evaluates the performance in case of a step output disturbance (Hv(s) = 1), v = 1 (default),
with the reference, r = 0.

• IAEr evaluates the performance in case of a reference unit step, r = 1, with the disturbance, v = 0.

Similarly, we define the Integrated Time-weighted Absolute Error (ITAE), Integrated Square Error
(ISE) and Integrated Time-weighted Square Error (ITSE) and Total input Value (TV) as the following i.e.,

ITAE =
∫ ∞

0
t| e | dt, (6)

ISE =
∫ ∞

0
e2 dt, (7)

ITSE =
∫ ∞

0
te2 dt, (8)

TV =
∫ ∞

0
|∆uk | dt, (9)

where ∆uk = uk − uk−1.

Hc(s) Hp(s)

Hv(s)

r e u y

v

−
+

+
+

Figure 2. Consider a control feedback system where the plant model is described by the process model,
Hp(s), PI controller, Hc(s) = Kp

1+Tis
Tis , and the disturbance model, Hv(s), where disturbance v at the

input when, Hv(s) = Hp(s), and at the output when, Hv(s) = 1. Input u, output y and reference r.

Robustness is quantified according to the maximum sensitivity peak

Ms = max
0≤ω<∞

|S(jω)| = ||S(jω)||∞, (10)

where, S(jω) = 1
1+Hp(jω) Hc(jω)

, and || · ||∞ is theH∞-norm.

2.2. Lag-Dominant Systems

Given a system approximated with a FOPTD model

Hp(s) =
K

1 + T s
e−τs, (11)

where K is the process gain, τ is the time delay and T is the time constant. The system in Equation (11)
may be defined as lag-dominant when T > τ which is the instance for numerous systems. It is known
that, when T � τ then Equation (11) may be approximated with an IPTD model (see [6,7]).
From Equation (11), we write,

Hp(s) =
K
T

1
s + 1

T
e−τs. (12)
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Hence, when the system is lag-dominant and T “large”, we may approximate Equation (12) as an IPTD
system (Equation (1)) where k = K

T is the gain velocity (slope) and τ the time delay.

2.3. SIMC Tuning Rules

Given the FOPTD process in Equation (11). The standard SIMC PI controller settings [8,12,13] are
as follows,

Kp =
T

K(Tc + τ)
, Ti = min(T, 4(Tc + τ)), (13)

where Tc is the prescribed time constant for the reference response chosen as −τ < Tc < ∞.
Similarly, for an IPTD process as in Equation (1), we have the following PI controller settings,

Kp =
1

k(Tc + τ)
, Ti = 4(Tc + τ). (14)

3. Tuning for Maximum Time Delay Error

To get some understanding of the PM of the closed loop system and the MTDE, dτmax, we work
out some analytic results in the following, which give a PI controller tuning method for IPTD processes.

3.1. Integrator Plus Time Delay Process

Consider an IPTD system where k is the gain velocity and τ is the time delay, and a PI controller.
The loop transfer function, H0(s) = Hc(s)Hp(s), is

H0(s) = Kp
1 + Tis

Tis
k

e−τs

s
. (15)

The frequency response is given by H0(jω) = |H0(jω)|ej 6 H0(jω), where the magnitude is
|H0(jω)| = Kpk

Ti ω2

√
1 + (Ti ω)2 and the phase angle is 6 H0(jω) = −τω− π + arctan(Ti ω). We obtain

the gain crossover frequency ωc analytically as |H0(jω)c| = 1. From this, we obtain analytically that
PM = 6 H0(jωc) + π, and the MTDE dτmax, such that, 0 = PM− dτmax ωc.

A factor f is defined as

f =
1 +

√
1 + 4

(KpTi k)2

2
=

1 +
√

1 + 4
(αβ)2

2
. (16)

The gain crossover frequency is analytically given by

ωc =
√

f Kpk. (17)

See previous paper [1] for proof of Equation (17).
The gain crossover frequency is then given by ωc =

√
f α

τ . We obtain the PM analytically as

PM = −
√

f α + arctan(
√

f αβ), and the MTDE as dτmax = PM
ωc

= δτ, where δ is defined as

δ =
−
√

f α + arctan(
√

f αβ)√
f α

=
arctan(

√
f αβ)√

f α
− 1. (18)

Consider the instance in which the MP parameter c̄ = αβ is constant, then Equation (18) may be
written as, δ = a 1

α − 1, and, δ = a
c̄ β− 1, where
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a =
arctan(

√
f αβ)√

f
, (19)

is a function of c̄ = αβ and constant. Notice that the parameter f is defined by Equation (16).
We have the following Algorithm 1.

Algorithm 1 (Max time delay error tuning).

The MP parameter is defined as

c̄ = αβ. (20)

We express β as a linear function of a prescribed Relative Time Delay Error (RTDE) δ > 0, to ensure
stability of the closed loop system. We have

β =
c̄
a
(δ + 1), (21)

where parameter a is given by Equation (19). Note that α can be expressed by

α =
c̄
β
=

a
δ + 1

. (22)

or with regard to the PI controller parameters

Ti =
c̄
a
(δ + 1) τ, (23)

Kp =
a

kτ(δ + 1)
. (24)

Note that Algorithm 1 is written as a MATLAB m-file function given in Appendix C in a previous
paper [1].

Before advancing, we demonstrate the above algorithm in an instance to enhance the robustness
of the classical closed loop ZN PI controller tuning.

Example 1 (ZN with increased margins).

Given the classical ZN PI controller tuning (closed loop method), in which α = π
4.4 , β = 4

1.2 , where the

RTDE dτmax
τ = δ ≈ 0.56 and the robustness Ms ≈ 2.86.

For the original ZN method, we have the MP parameter c̄ = 2.38. Specifying an RTDE parameter,
δ =

dτmax
τ = 1.6. Using Equations (21) and (22) gives the altered ZN PI controller parameters

α = 0.42, β = 5.55. (25)

The altered ZN PI controller tuning, Kp = α
kτ and Ti = βτ, for an IPTD process has margins GM = 3.35,

robustness Ms = 1.66 and prescribed dτmax
τ = 1.6. The altered ZN PI controller tuning has relatively smooth

closed loop responses with a relative damping slightly less than one. The ZN method parameter c̄ = 2.38 is not
too far from one of the recommended optimal parameters (see below).

Arguably, the most important characteristic of a PI controller setting is the robustness vs. model
uncertainty in connection with a reasonably smooth and fast closed loop reference and disturbance
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responses. An MTDE dτmax = 1.6 τ is reasonable. This is approximately equal to the MTDE for the
SIMC setting, dτmax = 1.59 τ. One idea may be to find theoretical arguments for setting the MP
parameter c̄ such that the closed loop system gets some optimal settings, e.g., minimise the robustness
Ms given prescribed robustness δ. Consider using the PI controller tuning rules deduced in [1] which
gives the MP parameter c̄ = 2.76.

The MP parameter c̄ = α β may be seen as a tuning parameter. SIMC uses a MP parameter
c̄ = 4 and the corresponding GM ≈ 2.96, which is below the recommended margin, but the MTDE is
acceptable, i.e., dτmax = 1.59 τ. Based on the numerical simulations in this and previous works [1,2],
we suggest a relatively broad interval for choosing the MP parameter c̄, i.e., c̄ ∈ [1.5, 4.0].

Furthermore, we propose choosing the RTDE δ > 0 to unsure stability, and choosing δ as
c̄ ∈ [1.1, 3.4] for robustness and to make certain that 1.3 ≤ Ms ≤ 2.0 (p. 125 in [14]) is reasonable.

3.2. Pure Integrating Process

Consider the limiting case of an integrating process, i.e., τ = 0 (no delay), or a time constant
system with a large time constant such that 1

T ≈ 0, i.e., we consider a process model, Hp(s) =
k
s . Using the definition for the RTDE tuning parameter, δ =

dτmax
τ , and the PI controller tuning

Equations (23) and (24), we find the PI controller tuning

Ti =
c̄
a

(
dτmax

τ
+ 1
)

τ =
c̄
a
(dτmax + τ) , (26)

Kp =
a

kτ(
dτmax

τ + 1)
=

a
k(dτmax + τ)

. (27)

Notice that Equations (26) and (27) are tuning variants in which the MTDE dτmax > 0 is the
tuning parameter instead of the RTDE δ.

Consider the limiting case of an integrating process, i.e., τ = 0 (no delay).
From Equations (26) and (27), we find the PI controller tuning

Ti =
c̄
a

dτmax, (28)

Kp =
a

kdτmax
. (29)

Notice that PM = a
√

f in this case.

3.3. Using a (2, 1) Pade Approximation

Consider the disturbance response with PI control,

y
v (s) =

Hp
1+Hc Hp

=
k e−τs

s

1+Kp
1+Tis

Tis k e−τs
s

= kse−τs

s2+
Kpk
Ti

(1+Tis)e−τs
.

(30)

Consider a (2, 1) Pade approximation, ex = 6+4x+x2

6−2x , i.e., with a second order numerator
polynomial and a first order denominator polynomial, i.e., an approximation,

e−τs ≈ 1− b1s + b2s2

1 + a1s
, (31)

where a1 = τ
3 , b1 = 2τ

3 and b2 = τ2

6 .
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Using the same procedure as in Section 5.2 in [1], and with unit relative damping, we find a third
order polynomial for the closed loop response,

y
v
(s) =

Tis
Kp

b2s2 − b1s + 1

( a1Ti
kKp

+ b2Ti)s3 + (b2 − b1Ti +
Ti

kKp
)s2 + (Ti − b1)s + 1

. (32)

We prescribe a third order polynomial

Π(s) = (1− τ0s)(τ2
0 s2 + 2τ0s + 1) = (1 + τ0s)3

= τ3
0 s3 + 3τ2

0 s2 + 3τ0s + 1.
(33)

When comparing Equations (32) and (33), we find that

τ3
0 = Ti(

a1

kKp
+ b2), (34)

3τ2
0 = b2 − Ti(b1 −

1
kKp

), (35)

3τ0 = Ti − b1. (36)

By inserting Equations (34) and (36) into Equation (35), it can be shown that(
τ0

τ

)3

−
(

τ0

τ

)2

− 7
6

(
τ0

τ

)
− 11

54
= 0. (37)

We solve the third order polynomial in Equation (37) with respect to τ0
τ , and find a real positive

solution, τ0
τ ≈ 1.7385.

Furthermore, we find that the PI controller parameters

Ti = 3τ0 + b1, Kp =
a1Ti

k(τ3
0 − b2Ti)

, (38)

where τ0 may be seen as a tuning parameter.
When assuming that the response time constant τ0 = cτ, then we may express the PI controller

parameters Kp = α
kτ and Ti = βτ with

β =
9 c + 2

3
= 3 c +

2
3

, (39)

α =
2(9 c + 2)

18 c3 − 9 c− 2
=

c + 2
9

c3 − 1
2 c− 1

9
, (40)

where the product c̄ = αβ is a nonlinear function of the tuning parameter c. We find that it makes
sense to choose c in the interval, 1.4 ≤ c ≤ 2.5.

From the PI controller setting in Equation (38) with τ0 = 1.7385, we find the MP parameter
c̄ = αβ = KpkTi ≈ 2.6985.

For reducing the complexity of the problem, the (1, 2) Pade approximation was used; e.g., a (2, 2)
Pade would result in a fourth order polynomial. Notice that a (1, 1) Pade approximation was used in
the earlier work of [1] in Section 5.2.
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4. Optimal Performance Settings

Consider the following Pareto performance objective defined as

J(p) = sr
IAEx(p)

IAEo
x

+ (1− sr)
IAEvu(p)

IAEo
vu

, (41)

where sr is the servo-regulator parameter originally introduced in [2], and is chosen in the interval
0 ≤ sr ≤ 1.0 for the weighting between output disturbance (servo) weighting sr = 1.0 and input
disturbance (regulator) weighting sr = 0. In Equation (41), the function argument is p = [Kp, Ti]

T.
In this work, we set sr = 0.5 ([16]). Furthermore, we set x = vy, which was argued in [17]
to be the equivalent of setting x = r, which was used in the original work of [16] and also [2].
The reference/weight values are calculated as following, IAEo

vy = minp IAEvy(p), and, IAEo
vu =

minp IAEvu(p), for a prescribed robustness Mpre
s . We set Mpre

s = 1.59 which is the robustness
value corresponding to a SIMC-tuned PI controller with Tc = τ for a FOPTD process where
K = T = τ = 1 ([16]).

We consider the reference example where we are given an IPTD process with k = τ = 1. We find
the same reference values as in [18], viz. IAEo

vy = 2.17 where Kp = 0.5 and Ti = ∞, and IAEo
vu = 15.10

where Ti = 5.8 and Kp = 0.4.
The following main performance objective is defined in a mean square error sense,

VM(x, y) =
1
M

M

∑
i=1

(Jx(i)− Jy(i))2, (42)

where x is a tuning method and, y = PO (default) and M = length(Ms).
A couple of optimal suggestions for the choice of the MP parameter are worked out in the

following. The first MP parameter setting may be found by solving the following optimization problem,

c̄ = arg min
c̄

VM(Alg. 1 (c̄), Alg. 1o) = 2.7, (43)

where Alg. 1 (c̄, δi) and Alg. 1o (δi) is pre-calculated as follows

JAlg. 1i
= min

c̄
JAlg. 1(c̄, δi) ∀ 1.1 ≤ δi ≤ 3.4. (44)

Interestingly, the MP parameter setting in Equation (43) is approximately equal to the setting
which is deduced in Section 3.3. Additional MP parameter settings are given in Table 1 based on
solving Equation (43) for different servo-regulator parameters 0 ≤ sr ≤ 1.0 in the Pareto performance
objective J (Equation (41)).

The second MP parameter is found by

c̄ = arg min
c̄

VM(Alg. 1 (c̄), PO) = 2.5, (45)

where Alg. 1 (c̄, δ(Mi
s)) and PO (Mi

s) are pre-calculated as follows

JPOi = min
p

J(p, Mi
s) ∀ 1.1 ≤ Mi

s ≤ 3.4. (46)

Notice that c̄ = 2.5 is equal to the recommended MP parameter in [2]. However, the MP parameter
in this paper results from an optimization problem, while the one proposed in [2] originated from an
ad hoc approach.

Figure 3 illustrates the two MP parameters described above. In terms of the main performance
objective VM (Equation (42)), Table 2 shows that c̄ = 2.5 is Vc̄=4

Vc̄=2.5
= 3e + 4 times better than SIMC

(arguably c̄ = 4), and Vc̄=2.7
Vc̄=2.5

= 78 times better than c̄ = 2.7.
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Robustness, Ms

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
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,
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1.4
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2.6

2.8
/ = 3:54

/ = 1:05

/ = 1:79

Tc = 1:24 =

Tc = 0:63 =

Reference Example (Example 2)

Alg. 3.1 (7c = 2:7)

SIMC

Alg. 3.1 (7c = 2:5)

PO PI

Figure 3. Reference example (Example 2). Consider PI control of the IPTD model, Hp(s) = e−s

s .
The figure illustrates the trade-off between the Pareto performance objective J (Equation (41)) and
robustness Ms (Equation (10)). It illustrates the MP parameters c̄ = 2.5 and c̄ = 2.7 for Algorithm 1
proposed in Section 4. SIMC is added for comparison.

Based on numerical simulations, we present the recommended settings for choosing the MP
parameter c̄ as proposed in Table 3.

Table 2. Reference example (Example 2), i.e., an IPTD model, Hp(s) = e−s

s . Comparing the different
settings for the MP parameters for Algorithm 1 and SIMC using the main performance objective VM

(Equation (42)).

Method c̄ = 2.5 c̄ = 2.7 SIMC

VM/e-4 0.02 1.56 592.75

Table 3. Summary: The table shows the recommended settings for the MP parameter c̄ for minimizing
the objectives in the first row.

Ms IAEvu ITAEvu ITAEr IAEr VM(δO) VM(t)

c̄ 2.0 2.4 2.4 2.6 4.0 2.7 2.5

Consider PI controller settings for an IPTD system, Hp(s) = k e−τs

s , with varying gain velocity,
k, and time delay τ ≥ 0. Tables 4 and 5 illustrate the c̄min = arg minc̄ Ms, i.e., the minimum of Ms,
IAEvu, ITAE, ITAEvu and IAEr, TV, ISE, ITSE, ITAEr, respectively, as a function of c̄.

Consider PI controller settings for an IPTD system, Hp(s) = k e−τs

s , where k = 1 and time delay
τ = 1. Figure 4 shows the indices Ms, ITAEvu, IAEr, ITAEr, IAEr, TV, ISE, ITAEvu and IAE as a function
of varying the MP parameter c̄ ∈ [1.5, 4.0] and with prescribed RTDE δ = 1.6.
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1.5 2 2.5 3 3.5 4
1.65

1.7
Ms

1.5 2 2.5 3 3.5 4
10

15

20
IAEvu

1.5 2 2.5 3 3.5 4
0

20

40
ITAEr

1.5 2 2.5 3 3.5 4
2

4

6
IAEr

1.5 2 2.5 3 3.5 4
2

2.5

3
TV

1.5 2 2.5 3 3.5 4
20

25

30
ISE

1:5 5 7c 5 4
1.5 2 2.5 3 3.5 4

15

20

25
IAE

1:5 5 7c 5 4
1.5 2 2.5 3 3.5 4

600

700

800
ITAEvu

Figure 4. Consider PI control of an IPTD process, Hp(s) = k e−τs

s with process parameters k = 1 and
τ = 1. PI controller Hc(s) = Kp

1+Tis
Tis with settings as in Algorithm 1. The figure shows the indices

Ms, ITAEvu, IAEr, ITAEr, IAEr, TV, ISE, ITAEvu and IAE as a function of varying the MP parameter
c̄ ∈ [1.5, 4.0] and with prescribed RTDE δ = 1.6.

Table 4. Consider PI controller settings for an IPTD system, Hp(s) = k e−τs

s , with varying gain velocity,
k, and time delay τ ≥ 0. The table illustrates the c̄min = arg minc̄ Ms, i.e., the minimum of the Ms,
IAEvu, ITAE and ITAEvu indices as a function of c̄, with PI controller settings from Algorithm 1.

k τ Ms IAEvu ITAE ITAEvu

1 0.1 2.0 2.45 2.45 2.45
1 0.3 2.0 2.4 2.45 2.4
1 0.5 2.0 2.4 2.45 2.4
1 1 2.0 2.4 2.4 2.4
1 2 2.0 2.4 2.4 2.4
1 4 2.0 2.4 2.4 2.4

0.1 1 2.0 2.4 2.5 2.4
0.1 2 2.0 2.4 2.45 2.4
0.1 4 2.0 2.4 2.45 2.4
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Table 5. Consider PI controller settings for an IPTD system, Hp(s) = k e−τs

s , with varying gain velocity,
k, and time delay τ ≥ 0. The table illustrates c̄min = arg minc̄ Ms, i.e., the minimum of IAEr, TV, ISE,
ITAEr and ITSE indices as a function of c̄, with PI controller settings from Algorithm 1.

k τ ITAEr ITSE ISE TV IAEr

1.0 0.1 2.7 3.4 4.0 4.0 4.0
1.0 0.3 2.7 3.2 4.0 4.0 4.0
1.0 0.5 2.7 3.1 3.5 4.0 4.0
1.0 1.0 2.6 3.1 3.2 4.0 4.0
1.0 2.0 2.6 3.0 3.1 4.0 4.0
1.0 4.0 2.6 3.0 3.1 4.0 4.0
0.1 1.0 2.6 3.9 4.0 4.0 4.0
0.1 2.0 2.6 3.2 4.0 4.0 4.0
0.1 4.0 2.6 3.1 3.6 4.0 4.0

5. Simulation Examples

In the following simulations (if possible), we compare Algorithm 1, with the recommended MP
parameter settings, vs. the SIMC tuning rule [12].

We continue with studying the reference example considered in Section 4. See also [1] for
additional details on this example.

Example 2 (Reference Example).

The same IPTD example as in [1] is used, i.e., a process model, Hp(s) = k e−τs

s , with gain velocity k = 1
and time delay τ = 1 is considered.

The time-domain responses given a prescribed robustness, Ms = 1.59, are illustrated in Figure 5.
The corresponding PI controller parameters, indices and margins are given in Table 6. The margins for
the controllers are all acceptable, i.e., GM > 2 and PM > 30 as in [14].
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1.5

2

Output step, v = 1
t = 0

Reference Example (Example 2)

Alg. 3.1 (7c = 2:49, / = 1:79)

SIMC (Tc = 1:24 =)

PO PI (Ms = 1:59)

Reference, r = 0

Time, t
0 20 40 60 80 100

In
p
u
t,
u

-0.5

0

0.5

1 Input step, v = 1
t = 50

Figure 5. Example 2 (Reference example). Consider PI control of an IPTD process model, Hp(s) = e−s

s .
The figure illustrates the time-domain responses, given a prescribed robustness Ms = 1.59, of the
following methods: the PO PI, SIMC with prescribed closed loop time constant Tc = 1.24 τ and
Algorithm 1 where the MP parameter c̄ = 2.5 (proposed in Section 4) and RTDE δ = 1.79. An output
disturbance unit step is presented at time t = 0 and an input disturbance unit step at time t = 50.
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Table 6. Example 2. Consider PI control of the IPTD process model, Hp(s) = e−s

s . The table shows
the controller parameter, indices and margins are given for prescribed robustness Ms = 1.59 for the
following methods: Alg. 1 (c̄ = 2.5, δ = 1.79), SIMC (Tc = 1.24 τ) and PO PI (Ms = 1.59).

Alg. 1 SIMC PO PI

Kp 0.41 0.45 0.41
Ti 6.14 8.96 6.28

IAEvy 4.39 4.24 4.37
IAEvu 15.26 20.06 15.39

J 1.52 1.64 1.52
TV 3.33 3.12 3.31
GM 3.56 3.34 3.54
PM 44.57 50.02 44.94
DM 1.79 1.90 1.80
Ms 1.59 1.59 1.59

Example 3 (Lag-dominant system).
An air-heater was studied in [19] and it was found that a FOPTD model with process gain K = 5.7, time delay
τ = 4 and time constant T = 60, gives a sufficient model approximation. We approximate the FOPTD model as
an IPTD process where the gain velocity (slope) k = K

T = 0.095 and time delay, τ = 4.
The Pareto performance objective J vs. Ms trade-off curves are shown in Figure 6. In terms of the main

performance objective VM it can be seen in Table 7 that c̄ = 2.5 is Vc̄=2.7
Vc̄=2.5

= 1.9 times better than c̄ = 2.7 and
VSIMC
Vc̄=2.5

= 12.2 times better than SIMC.
The time-domain responses, given a prescribed robustness, Ms = 1.59, are illustrated in Figure 7.

The corresponding PI controller parameters, indices and margins are given in Table 8. The margins for the
controllers are all acceptable, i.e., GM > 2 and PM > 30 as in [14]. Notice, that the prescribed MTDE,
dτmax = δτ = 7.16 is almost equal the exact DM = 7.51.

Table 7. Example 3. The table shows the comparison of the settings for Algorithm 1 and SIMC using
the main performance objective VM (Equation (42)).

Method c̄ = 2.5 c̄ = 2.7 SIMC

VM/e-2 0.57 1.08 6.96

Table 8. Example 3. The table shows the PI controller parameter, indices and margins are given for
prescribed robustness Ms = 1.59.

Alg. 1 SIMC PO PI

Kp 1.17 1.25 1.12
Ti 22.55 33.60 19.47

IAEvy 15.13 13.53 15.70
IAEvu 17.73 25.16 15.89

J 1.39 1.52 1.37
TV 3.94 3.70 4.05
GM 3.36 3.22 3.46
PM 50.49 56.21 47.83
DM 7.51 8.08 7.26
Ms 1.59 1.59 1.59
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Robustness, Ms
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Alg. 3.1 (7c = 2:7)

SIMC
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Figure 6. Example 3. Consider PI control of the FOPTD process model, Hp(s) = K e−τs

Ts+1 , where K = 5.7,
τ = 4 and T = 60. The figure shows the trade-off curves with the Pareto performance objective J
(Equation (41)) and robustness Ms (Equation (10)). It illustrates the MP parameters c̄ = 2.5 and c̄ = 2.7
for Algorithm 1 (proposed in Section 4). SIMC with set-point time constant Tc is added for comparison.
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Figure 7. Example 3. Consider PI control of the FOPTD process model, Hp(s) = K e−τs

Ts+1 , where K = 5.7,
τ = 4 and T = 60. The figure illustrates the time-domain responses, given a prescribed robustness
Ms = 1.59, of the following methods: the PO PI, SIMC with prescribed closed loop time constant
Tc = 1.10 τ, and Algorithm 1 where the MP parameter c̄ = 2.5 (proposed in Section 4) and RTDE
δ = 1.56. An output disturbance unit step is presented at time t = 0 and an input disturbance unit step
at time t = 140.
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Some results regarding a couple of motivated higher order processes are presented in the following
examples. Notice that SIMC offers the half-rule model reduction technique. However, for our case,
we approximate the higher order systems by identifying two parameters, the unit reaction rate R1 and
the lag L from a step response, i.e., the Process–Reaction Curve (PRC) as presented in the work of
ZN [9–11]. We denote the variant as follows: PRC + Algorithm 1.

Example 4 (Higher order process).

A distillation column studied in [20] (p. 591) is partly described by the following process model,

Hp(s) =
34

(54s + 1)(0.5s + 1)2 . (47)

By identifying the lag L and the maximum slope (unit reaction rate) R1 from the PRC method we
may approximate the process model as an IPTD model with gain velocity k = R1 = 0.597 and time delay
τ = L = 0.923.

Using the half-rule technique in SIMC, we approximate a FOPTD model where the gain K = 34, time
constant T = 54 + 0.5

2 = 54.25, and time delay τ = 0.5 + 0.5
2 = 0.75.

The Pareto Performance objective J vs. robustness Ms trade-off curves are illustrated in Figure 8. Notice,
that c̄ = 2.7 is the closest to optimal on the most robust part of the Ms-interval. SIMC is crossing c̄ = 2.7
around Ms = 1.64 and is the closest to optimal on the less robust part. In terms of the main performance
objective VM, we show in Table 9 that c̄ = 2.7 is Vc̄=2.5

Vc̄=2.7
= 2.3 times better than c̄ = 2.5, and VSIMC

Vc̄=2.7
= 20.7 times

better than SIMC.
The time-domain responses, for a prescribed robustness Ms = 1.59, are illustrated in Figure 9.

The corresponding PI controller parameters, indices and margins are given in Table 10. The margins for
the controllers are all acceptable, i.e., GM > 2 and PM > 30, as in [14]. Notice, that the prescribed MTDE,
dτmax = δτ = 1.50 is almost equal to the exact DM = 1.54.

Table 9. Example 4. The table shows the comparison of the different settings for Algorithm 1 and SIMC
using the main performance VM (Equation (42)).

Method c̄ = 2.5 c̄ = 2.7 SIMC

VM/e-3 0.7 0.3 6.2

Table 10. Example 4. The table shows the PI controller parameters, indices and margins are given for
prescribed robustness Ms = 1.59.

Alg. 1 SIMC PO PI

Kp 0.78 0.91 0.85
Ti 5.35 7.04 6.06

IAEvy 3.62 3.35 3.48
IAEvu 6.83 7.74 7.14

J 1.41 1.41 1.39
TV 3.77 3.77 3.77
GM 6.74 6.13 6.39
PM 43.63 46.74 45.19
DM 1.54 1.49 1.51
Ms 1.59 1.59 1.59
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Figure 8. Example 4. Consider PI control of the higher order process model (Equation (47)). The figure
illustrates the trade-off curves with the Pareto performance objective J (Equation (41)) and robustness
Ms (Equation (10)). It shows the MP parameter settings c̄ = 2.5 and c̄ = 2.7 for Algorithm 1 proposed
in Section 4. SIMC is added for comparison.
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Figure 9. Example 4. Consider PI control of the higher order process model (Equation (47)). The figure
illustrates the time-domain responses, given a prescribed robustness Ms = 1.59, of the following
methods: the PO PI controller vs. SIMC with closed loop time constant Tc = 1.33 τ, and PRC +
Algorithm 1 where the MP parameter setting c̄ = 2.7 (proposed in Section 4) and RTDE δ = 1.63. An
output disturbance unit step is presented at time t = 0 and an input disturbance unit step at time
t = 35.
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Note that the half-rule technique in SIMC is not compatible with process models containing
complex poles/underdamped dynamics, hence, in such cases, we consider arguably the same algorithm
as SIMC, i.e., Algorithm 1, where the MP parameter, c̄ = 4. An example of this is given in the following.

Example 5 (Underdamped system).

An unmanned submersible vehicle studied in [21] is described partly by

Hp(s) =
−2.6158(2.299s + 1)

(0.8131s + 1)(0.5s + 1)((7.692s)2 + 1.738(7.692s) + 1)
, (48)

i.e., from commanded elevator deflection u to the pitch angle of the vehicle y. We approximate Equation (48) by
an IPTD model with gain velocity k = R1 = −0.145 and time delay τ = L = 1.729.

The Pareto performance objective J vs. Ms trade-off curves are illustrated in Figure 10. In terms of the
main performance objective VM, we show in Table 11 that c̄ = 2.5 is Vc̄=4

Vc̄=2.5
= 7.3 times better than c̄ = 4 and

Vc̄=2.7
Vc̄=2.5

= 1.3 times better than c̄ = 2.7. Notice that c̄ = 2.5 is closest to optimal on the most robust part of the
Ms-interval. Furthermore, c̄ = 4 is seen crossing both c̄ = 2.5 and c̄ = 2.7 around Ms = 1.55 and is closest to
optimal on the less robust part.

The time-domain responses, given a prescribed robustness Ms = 1.59, are illustrated in Figure 11.
The corresponding PI controller parameters, indices and margins are given in Table 12. The margins for the
controllers are all acceptable, i.e., GM > 2 and PM > 30 as in [14].
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Load Cylinder Example

c = 2.7
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Figure 10. Example 5. Consider PI control of the higher order underdamped process model
(Equation (48)). The figure shows the trade-off curves with the Pareto performance objective J
(Equation (41)) and robustness Ms (Equation (10)). It illustrates the PO PI controllers and PRC +
Algorithm 1 variants with MP parameter settings c̄ = 4.0, c̄ = 2.5 and c̄ = 2.7.
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Figure 11. Example 5. Consider PI control of the higher order underdamped process model
(Equation (48)). The figure illustrates the time-domain responses, given a prescribed robustness
Ms = 1.59, of following methods: the PO PI and the PRC + Algorithm 1 where the MP parameter
setting c̄ = 2.5 (proposed in Section 4) and RTDE δ = 2.20. An output disturbance unit step is presented
at time t = 0 and an input disturbance unit step at time t = 80.

Table 11. Example 5. The table shows the different MP parameter settings for the PRC + Algorithm 1
variant with corresponding main performance VM (Equation (42)).

c̄ 2.5 2.7 4

VM/e-2 0.84 1.05 6.13

Table 12. Example 5. The corresponding controller parameter, indices and margins are given for
prescribed robustness Ms = 1.59.

PRC + Alg. 1 PO PI

Kp −1.42 −1.70
Ti 12.18 14.90

IAEvy 6.41 5.88
IAEvu 8.59 8.72

J 1.04 1.00
TV 4.62 5.06
GM 13.80 11.84
PM 43.90 44.20
DM 3.03 2.74
Ms 1.59 1.59
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Last, we propose a tuning variant based on the PRC and Algorithm 1, as above. However, now,
the gain velocity in the IPTD model is, instead, varying proportionally, i.e., k = R1 ζ, where ζ is
considered as a tuning parameter. TO simplify the tuning, we propose to set the RTDE δ = c̄ equal
constant (i.e., an ad hoc suggestion). This means that the only tuning parameter is ζ. We denote this
variant as follows: ζ-PRC + Algorithm 1.

Example 6 (ζ-PRC variant).

Consider the same process model as studied in Example 5. The model is approximated by an IPTD model,
where the gain velocity is varied, k = R1 ζ = −0.145 ζ, and time delay, τ = L = 1.729. In this example, we set
the RTDE δ = c̄ = 2.7.

It can be seen in Figure 12 that the PO PI curve and the ζ-PRC curve are indistinguishable. This is
quite a surprising result. In terms of the main performance objective VM, we show in Table 13 that ζ-PRC is
V

ζ−PRC
VPRC

= 4e + 3 times better than PRC variant.

The time-domain responses, for a prescribed robustness Ms = 1.59, are illustrated in Figure 13.
As a consequence of the above, these responses are also indistinguishable. The corresponding PI controller
parameters, indices and margins are given in Table 14.
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Figure 12. Example 6. PI control of the higher order underdamped process model (Equation (48)).
The figure illustrates the trade-off curves with the Pareto performance objective J (Equation (41)) and
robustness Ms (Equation (10)). It shows the PO PI controllers with robustness Ms and the ζ-PRC +
Algorithm 1 variant where the RTDE δ = c̄ = 2.7 is fixed and the main tuning parameter is ζ.
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Table 13. Example 6. Comparing the following variants, ζ-PRC + Algorithm 1 with MP parameter
and MTDE settings c̄ = δ = 2.7 and ζ = 0.74, and the PRC + Algorithm 1 with MP parameter setting
c̄ = 2.5, using the main performance VM defined in Equation (42).

Variant PRC ζ-PRC

VM/e-4 83.6 0.02
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Figure 13. Example 6. PI control of the higher order underdamped process model (Equation (48)).
The figure illustrates the time-domain responses, given a prescribed robustness Ms = 1.59, for the
following methods: the PO PI and the ζ-PRC + Algorithm 1 variant with MP parameter and MTDE
settings c̄ = δ = 2.7, and tuning parameter ζ = 0.74. An output disturbance unit step is presented at
time t = 0 and an input disturbance unit step at time t = 80.
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Table 14. Example 6. The corresponding controller parameter, indices and margins are given for
prescribed robustness Ms = 1.59. ζ-PRC + Algorithm 1.

ζ-Alg. 1 PO PI

Kp −1.70 −1.70
Ti 14.82 14.90

IAEvy 5.88 5.88
IAEvu 8.69 8.72

J 1.00 1.00
TV 5.06 5.06
GM 11.85 11.84
PM 44.15 44.20
DM 2.74 2.74
Ms 1.59 1.59

6. Discussion

Remarks to Section 3

It can be shown that the PM can be given as follows

PM = δ
√

f α, (49)

for the PM in radians (see also [1,2]).

7. Concluding Remarks

The discussion and concluding remarks are itemised as follows.

• The method in [1,2] is further developed with more optimal MP tuning parameters as well as
tuning for some special case integrating systems.

• Two optimal settings for the MP parameter are presented in Section 4. These are optimal in the
sense that they minimise the main performance objective VM on two different aspects. Interestingly,
one of the MP parameters may (arguably) be deduced from approximating the time delay with
a (2, 1) Pade approximation in Section 3.3.

• In the case of a small or zero time delay τ = 0, we propose a variant in which the MTDE dτmax is
the tuning parameter.

• Note that for an IPTD model, the SIMC tuned PI controllers are seen far from optimal,
i.e., PO (or (almost) equivalently, Algorithm 1 with the MP parameter setting as c̄ = 2.5).
See Section 4.

• The presented method (and variants of this) is successfully demonstrated and compared to the
SIMC and PO PI controllers on numerous motivated process model examples in Section 5.

• Note that, for the higher order process models in Examples 4 and 5, we use the PRC model
reduction technique, which is generally easier to apply than the half-rule technique proposed in
[12]. The half-rule technique is not compatible with handling complex poles.

• Some surprisingly optimal results are documented for Example 6, where a tuning method based
on varying the gain velocity, k = ζR1, (R1, is the ZN unit reaction rate), i.e., the tuning parameter
is ζ. Note that setting the RTDE δ = c̄ (i.e., an ad hoc choice) equal a constant is advisable.

• Note that the results in Section 5 are based on the original (possible) higher order models.
The approximated IPTD models are only used for the PI controller design.
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Abbreviations
PI Proportional Integrating
IPTD Integrator Plus Time Delay
FOPTD First Order Plus Time Delay
ZN Ziegler–Nichols
IAE Integrated Absolute Error
ITAE Integrated Time-weighted Absolute Error
ISE Integrated Square Error
ITSE Integrated Time-weighted Square Error
TV Total input Value
MP Method Product
IMC Internal Model Control
SIMC Simple/Skogestad Internal Model Control
GM Gain Margin
PM Phase Margin
DM Delay Margin
MTDE Maximum Time Delay Error
PO Pareto-Optimal
RTDE Relative Time Delay Error
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