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Ŵ Introducࢢon

Multivariable processes with cross coupling can generally be challenging to control with
single loop controllers like the conventional PID since they only receive information about
one process variable. The quadruple tank process was introduced by Karl Henrik Johans-
son in a paper from 1998 due to an increased industrial interest in multivariable control
techniques. It is a multivariable laboratory process with interconnected tanks which can
induce interesting multivariable characteristics. The linearized model of the process has
an adjustable multivariable zero which can be located both in the right and left hand
side of the complex plane. The location of the zero can introduce dynamics that make
controlling the process with single loop controllers challenging.[1]

Model based controllers are important tools for controlling multivariable processes and are
often used in combination with state estimators. Many publications have been made on
the topic of multivariable control and state estimation, however most of the publications
presents results obtained from simulations and very few present experimental data. Sim-
ulations results of the quadruple tank process have been presented in [2]. Experimental
results of the quadruple tank process have been published by e.q David Di Ruscio who
presented a Model Predictive Control algorithm with integral action with experimental
results obtained from the quadruple tank process in [3]. A linear discrete time state space
realization of the Kalman filter used on the quadruple tank process was presented in [4].
System identification and model predictive control of the quadruple tank process model
was covered in [5] and system identification has also been covered in [6].

Common for the results obtained from experimental data presented for the quadruple
tank process is that measurements are only provided for the outputs and the internal
states are only estimated. The actual performance of the estimation of hidden states
is not documented. The lack of experimental results restricts the will for implementing
multivariable control into the industry since the general perception is that there is a
significant gap between theory and practice. It is therefore of interest to experimentally
evaluate the performance of MIMO state estimators and model based controllers using the
pilot sized quadruple tank process at USN to get presentable data on multivariable control
and state estimation performance. The experimental setup at USN is equipped with level
sensors for all 4 tanks which makes it possible to quantify the performance of estimation of
hidden states which are usually not measured. It is of interest to investigate the robustness
of model based controllers and the estimation performance of MIMO state estimators. The
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1 Introduction

state estimators and model based controllers should be evaluated using carefully developed
process models, ensuring reliable results representing a best case scenario.

Ŵ.Ŵ Objecࢢve

The main objective of this project is to experimentally evaluate the performance of state
estimators and model based controllers for multiple input multiple output (MIMO) sys-
tems. The quadruple tank process with 4 states, 2 outputs and 2 inputs is considered.
To get reliable results from evaluation of the MIMO state estimators and model based
controllers, process models should be developed and calibrated so that they represents
the physical process with reasonable accuracy. The state estimators and model based
controllers should be tested on the simulation model to establish confidence that the they
have been correctly implemented.

Ŵ.ŵ Report Structure

Chapter ŵ: System Overview

The system description chapter covers general information about the quadruple tank
process, the hardware which is located at USN and the software used for the control
system.

Chapter Ŷ: Process Model

The process model chapter covers development of a non-linear dynamic model obtained
from physical principles, a linear state space model obtained from the non-linear model
and linear state space models obtained from subspace system identification. Calibration,
validation and analysis of the models is also presented in this chapter.

Chapter ŷ: Kalman Filters

The Kalman filters chapter covers the development of a linear Kalman filter and 2 versions
of the Extended Kalman filter. The 2 versions of the Extended Kalman filter use steady
state Kalman gain and time varying Kalman gain.

20



1.2 Report Structure

Chapter Ÿ: Model Based Controllers

The model based controllers chapter covers development of a linear model predictive
controller (MPC) with integral action, a non-linear model predictive controller and a
linear quadratic (LQ) optimal controller with integral action.

Chapter Ź: Results and Discussion

The results and discussion chapter presents the results from chapter 3, 4 and 5. Obser-
vations made from the results are discussed in this chapter.

Chapter ź: Conclusion and Future Work

The conclusion chapter draws conclusions based on the work and results obtained though
the project and presents recommendations for future work.
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ŵ System Overview

This chapter gives an overview of the process which is studied though this project, the
software used for the control system and the hardware for the quadruple tank process
which is located at USN Porsgrunn. The process is to be controlled by various model
based controllers. In order to use model based controllers the system states need to be
estimated. This is done using a Kalman filter. The complete control system consists
of the physical process, state estimator and model based controller. Figure 2.1 shown a
rough system overview of how the quadruple tank process, model based controllers and
Kalman filter are connected. Kalman filters and model based controllers are covered in
later chapters.

Figure 2.1: System overview
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2 System Overview

ŵ.Ŵ Quadruple Tank Process

The quadruple tank process is a multivariable process consisting of 4 tanks which are
cross coupled. The process is controlled by 2 pumps which each pump water from the
reservoir to 1 upper tank and 1 lower tank which are located diagonally on the process.
The proportion of the water going to the upper tank is determined by the position of a
tree-way split valve which is located on the outlet of each pump. Each tank is equipped
with a discharge valve which allows water to flow out of the tanks. The water flowing out
of the upper tanks flows into the lower tanks and the water from the lower tanks flows to
the reservoir. This can be seen in figure 2.2 which shows the quadruple tank process.

Figure 2.2: Quadrouple tank process

where ci is the discharge coefficient of discharge valve i, Kpi is the pump gain for pump
i and γi is the flow proportion of three-way valve i, where γ = 1 means that all the flow
is going to the lower tank and γ = 0 means that all the flow is going to the upper tank.
The value of γ for each valve is given by (2.1).

γ1 =
q1

q1 +q4
, γ2 =

q2

q2 +q3
(2.1)
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2.2 Hardware

where qi is the flow from the pump to tank number i. The proportion of the flow going
to the upper tank is therefor 0 ≤ γ ≤ 1 and the proportion of the flow going to the lower
tank is (1− γ).

The process outputs are typically considered to be the lower tanks, thus it is the lower
tanks that are subject to control and the upper tanks act as internal states. Pump 1
pumps water into tank 1 and tank 4 and pump 2 pumps water into tank 2 and tank 3.
This means that the levels in the output tanks are affected by both pumps, thus there is
cross coupling in the process.

ŵ.ŵ Hardware

The quadruple tank process at USN is a well equipped system with 4 level sensors, 6 flow
sensors, 2 pumps and 2 three-way valves. The water level in each tank is measured using
ultra sonic sensors that represents the level with a voltage signal from 0V to 10V. Flow
is represented by a frequency from 0Hz to 60Hz which is translated to a voltage signal
between 0V and 5V using an Arduino. The pumps are controlled with an input signal
from 0 to 10V and a boolean signal is required to turn the pumps on an off. When turned
on, the pumps have an idle speed which is equivalent to having an input signal of 2V.
The three-way valves can take an input signal from 0V to 5V to set the valve position
and they give position feedback with a signal from 0V to 5V. Reading sensor signals and
writing signals to the pumps and valves is done using 2 USB-6001 DAQ devices from
National Instruments. Each tank has a discharge valve which can be manually operated.
The valve must be adjusted so that the process can be controlled without the tanks going
empty or overfill.

The process window is defined to be tank levels ranging from 10cm to 20cm. The level
sensors are calibrated using linear scaling between 0.1m and 0.2m to obtain measurements
in the SI unit. Since the pumps have an idle pump speed the process window of the pumps
is defined to be in the range of 2V to 10V. The three-way valves are operating with γ
values in the range of 0.3 to 0.7.

Figure 2.3 is a piping and instrumentation diagram of the physical process which shows
the sensors, actuators and their locations on the rig. Table 2.1 contains information which
explains the P&ID.
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2 System Overview

Figure 2.3: P&ID of the quadruple tank process at USN

Table 2.1: P&ID symbol list
Tag Description Comment
LT1 Level transmitter 1 Measures level in tank 1
LT2 Level transmitter 2 Measures level in tank 2
LT3 Level transmitter 3 Measures level in tank 3
LT4 Level transmitter 4 Measures level in tank 4
FT1 Flow transmitter 1 Measures flow to tank 1
FT2 Flow transmitter 2 Measures flow to tank 2
FT3 Flow transmitter 3 Measures flow to tank 3
FT4 Flow transmitter 4 Measures flow to tank 4
FT5 Flow transmitter 5 Measures flow from pump 1
FT6 Flow transmitter 6 Measures flow from pump 2
γ1 Three-way valve 1 Splits flow from pump 1
γ2 Three way valve 2 Splits flow from pump 2
P1 Pump 1 Pumps water to tank 1 and 4
P2 Pump 2 Pumps water to tank 2 and 3
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2.3 Software

ŵ.Ŷ So[ware

National Instruments LabVIEW was chosen as the software of preference for the control
system. A major benefit of LabVIEW is that it is easy to make a user friendly HMI
and monitor the process in real time. It also supports MATLAB Script Node which
allows for running MATLAB functions in LabVIEW. This is a big advantage when solving
optimization problems since MATLAB supports a number of good solvers. It also allows
for implementing the controllers and Kalman filters as MATLAB functions. The control
system software is developed using the state machine technique where the status of the
levels and inputs are stored in a shift register [7]. Figure 2.4 shows a flow chart of the
program structure for the control system implemented in LabVIEW.

Figure 2.4: Diagram of control system
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2 System Overview

The software is structured in such a way that is initializes matrices for the controllers and
Kalman filter on start up, so that they do not need to be constructed more than once.
The program then moves on to read the values of the NI-6001 DAQ device and scale the
values to desired units. If manual control is selected the program moves on to write the
manual control input and the γ values to the shift register and moves on to write the
values from the shift register to the DAQ device. If automatic control is selected, the
program moves on to run the Kalman filter for state estimation. The estimated states are
saved in the shift register so that they are available to the controllers. The program then
checks what controller is selected and obtains a control input from the selected controller
which it saves to the shift register. The control input is then written to the DAQ device.
The reference vectors for the controllers are constant, and the controllers locally shift one
sample in the reference vector each time step.
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Ŷ Process Model

Common for both Kalman Filters and model based controllers is that they all use a
model of the process to predict the process behaviour. A model can be obtained in
different ways and may vary in complexity. Once the physical process has been modeled
it needs to be calibrated, and when the calibration is done it needs to be validated.
This chapter will cover the development, calibration and validation of a model for the
quadruple tank process described in 2.1. obtained from physical principles, also known
as a first principles model, and a model identified from known input and output data
gathered from the physical process, known as subspace system identification.

Ŷ.Ŵ Model Development

This section covers development of the process models, including a non-linear model
obtained from physical principles, a linear approximation of the non-linear model and a
linear state space model obtained from subspace system identification.

Ŷ.Ŵ.Ŵ First Principles Non-linear Model

The first principles model is obtained from the law of conservation of mass. The accu-
mulated mass in each tank is the sum of the mass flow into the tank minus the sum of
the mass flow out of the tank. The density of water is constant so the water level in each
tank is dependent on accumulated mass and the mass balance equation (3.1) is therefore
used to model the tank system.

dm
dt

= ṁin − ṁout (3.1)

Where ṁin is mass flow into the tank and ṁout is the mass flow out of the tank. Differential
equations for the levels are obtained by rearranging the mass balance equation as shown
in (3.2).
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3 Process Model

ρ
dV
dt

=V̇inρ −V̇outρ

A
dh
dt

=V̇in −V̇out

dh
dt

=
V̇in −V̇out

A

(3.2)

where h is the tank water level, V̇in is the volumetric flow rate going into the tank, V̇out
is the volumetric flow rate going out of the tank and A is the area of the tank. The four
tanks of the process at USN all have the same area so that A1 = A2 = A3 = A4 = A.

It is necessary to model the flow into the tanks and the flow out of the tanks. For the
upper tanks the flow in is the ratio of the pump flow directed upwards from the tree-way
valve and the flow out is the flow running through the discharge valve. For the lower
tanks the flow in is the ratio of the pump flow directed downwards by the three-way valve
and the flow flowing through the discharge valve of the tank above. The flow out of the
lower tanks is the flow running through the discharge valve. It is therefore necessary to
model the discharge valves and the pumps including the three-way valves.

Flow running through the discharge valve is modelled using Bernoullis equation (3.3) for
flow through an orifice [8].

V̇ = adcd

√
2
ρ

δ p (3.3)

where V̇ is the volumetric flow rate through the valve, ad is the cross-sectional area of the
valve, cd is the valve coefficient and δ p is pressure drop over the valve. The pressure drop
is equal to the hydro static pressure at the bottom of the tank due to having atmospheric
pressure above the water column and on the valve outlet. This is used to simplify the
valve equation, collecting all the constant terms and resulting in the equation (3.4) where
the flow is only dependent on the level.

V̇ = c
√

h (3.4)

where c = adcd
√

2g and g is the gravity constant.
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3.1 Model Development

When modeling the pumps one must evaluate what level of complexity is needed. The
pumps are not infinitely fast, meaning that they have some dynamics which affect the
flow. Figure 3.1 shows the step response of the pumps and the lower tanks performed on
the physical process. The step is from 5V to 10V.
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Figure 3.1: Pump and tank step response of the physical process

It can be seen that the dynamics of the pumps are much faster than the dynamics of the
tanks. The pumps reach steady state after approximately 3 seconds, while the tanks have
not even begun to settle after 50 seconds. In a paper from 1983, Wlodzimierz Klonowski
showed that states with much faster time constants than the states of interest can be
steady-state approximated [9]. This leads to the decision to neglect the pump dynamics
to reduce model complexity, as taking the pump dynamics into account would introduce
2 extra states in the model.

To see how the flow from the pumps should be modeled, the steady state pump flows
were measured at different pump inputs. Figure 3.2 shows a plot of measured steady-
state pump flows against the pump inputs, and shows that the relationship between input
and output is close to linear. The pump response is therefore modeled with a constant
pump gain.
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Figure 3.2: Steady-state pump response

Each tank is modeled separately and the expressions are combined into a set of differential
equations describing the tank dynamics. The result (3.5) is a continuous time model.

dh1(t)
dt

=
1
A

[
Kp1(1− γ1)u1(t)− c1

√
h1(t)

]
dh2(t)

dt
=

1
A

[
Kp2(1− γ2)u2(t)− c2

√
h2(t)

]
dh3(t)

dt
=

1
A

[
Kp2γ2u2(t)+ c1

√
h1(t)− c3

√
h3(t)

]
dh4(t)

dt
=

1
A

[
Kp1γ1u1(t)+ c2

√
h2(t)− c4

√
h4(t)

]

(3.5)

Since the model is to be implemented in a computer it needs to be represented on dis-
crete form. The continuous time model in (3.5) is discretized using the Forward Euler
approximation (3.6).

dh(t)
dt

=
h(k+1)−h(k)

∆t
(3.6)
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3.1 Model Development

where h(k+1) is the level of the next time step, h(k) is the level of the current time step and
∆t is the step size. Applying (3.6) to all the of the differential equations in (3.5) results
in the discrete time non-linear model seen in (3.7).

h1(k+1) = h1(k)+
∆t
A

[
Kp1(1− γ1)u1(k)− c1

√
h1(k)

]

h2(k+1) = h2(k)+
∆t
A

[
Kp2(1− γ2)u2(k)− c2

√
h2(k)

]

h3(k+1) = h3(k)+
∆t
A

[
Kp2γ2u2(k)+ c1

√
h1(k)− c3

√
h3(k)

]

h4(k+1) = h4(k)+
∆t
A

(
Kp1γ1u1(k)+ c2

√
h2(k)− c4

√
h4(k)

]

(3.7)

Ŷ.Ŵ.ŵ First Principles Linear Model

The model developed in 3.1.1 is non-linear due to the states being under a square root. In
order to develop a linear Kalman Filter and linear MPC it is necessary to obtain a linear
approximation of the non-linear model and formulate it as a discrete time linear state
space model. In this case the model is first linearized and then discretized, however the
procedure could be done in the opposite order. Linearization is done by approximating
the non-linear continuous time differential equations as linear continuous time differential
equations using the first two term of the Taylor series expansion (3.8) [10].

dh(t)
dt

= f (ho,uo)+
∂ f
∂h

∣∣∣
(ho,uo)

(h(t)−ho)+
∂ f
∂u

∣∣∣
(ho,uo)

(u(t)−uo) (3.8)

where h0 and uo are some nominal values of the states h and inputs u. These nominal
values will be referred to as operating points. By defining h(t) = (δh(t)+ho) and u(t) =
(δu(t)+uo), equation (3.8) can be rewritten as shown in (3.9)

dδh(t)
dt

=
∂ f
∂h

∣∣∣
(ho,uo)

δh(t)+
∂ f
∂u

∣∣∣
(ho,uo)

δu(t) (3.9)

The linear model is obtained by approximating each of the differential equations of the
non-linear model using (3.9). The resulting model can be seen in (3.10).
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dδh1(t)
dt

=
1
A

[
Kp1(1− γ1)δu1(t)−

c1

2
√

ho
1

δh1(t)
]

dδh2(t)
dt

=
1
A

[
Kp2(1− γ2)δu2(t)−

c2

2
√

ho
2

δh2(t)
]

dδh3(t
dt

=
1
A

[
Kp2u2γ2δu2(t)+

c1

2
√

ho
1

δh1(t)−
c3

2
√

ho
3

δh3(t)
]

dδh4(t)
dt

=
1
A

[
Kp1γ1δu1(t)+

c2

2
√

ho
2

δh2(t)−
c4

2
√

ho
4

δh4(t)
]

(3.10)

To be represented as a linear state space model, the derivatives, states, inputs and outputs
are combined into vectors and the coefficients are combined into matrices. The resulting
continuous time state space model can be seen in (3.11).

ẋ = Acx+Bcu
y =Ccx

(3.11)

where

ẋ =


dδh1(t)

dt
dδh2(t)

dt
dδh3(t

dt
dδh4(t)

dt

 , x =


δh1(t)
δh2(t)
δh3(t)
δh4(t)

 , u =

[
δu1(t)
δu2(t)

]
, y =

[
δy1(t)
δy2(t)

]
, Cc =

[
0 0 1 0
0 0 0 1

]

Ac =


− c1

2A
√

ho
1

0 0 0

0 − c2
2A
√

ho
2

0 0
c1

2A
√

ho
1

0 − c3
2A
√

ho
3

0

0 c2
2A
√

ho
2

0 − c4
2A
√

ho
4

 , Bc =


Kp1(1−γ1)

A 0
0 Kp2(1−γ2)

A
0 Kp2γ2

A
Kp1γ1

A 0



The state space model is also discretized using the Forward Euler approximation as seen
in (3.12).
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x(k+1) = x(k)+∆t
[
Acx(k)+Bcu(k)

]
y(k) =Ccx(k)

x(k+1) =
(
I +∆tAc

)
x(k)+∆tBcu(k)

y(k) =Ccx(k)

(3.12)

Reformulating the discrete model in (3.12) results in a discrete time state space model on
standard form as seen in (3.13).

x(k+1) = Adx(k)+Bdu(k)
y(k) =Cdx(k)

(3.13)

where Ad =
(
I +∆tAc

)
, Bd = ∆tBc and Cd =Cc.

This linear state space model is on deviation form, which means that the model only
expresses the deviation from the operating points that the model was linearized around.
The operating points are chosen to be some steady state values of the levels and inputs
within the process window. Steady state levels for different combinations of inputs span-
ning from 4V to 10V were found by simulating the non-linear model in MATLAB. Figure
3.3 shows the steady state levels plotted against the corresponding inputs. The plot shows
the steady state values for a set of model parameters, however whenever the parameters
are changed the operating points will also change, so the simulation must be repeated
when changing the parameters.
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Figure 3.3: Steady state levels for different combinations of inputs
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Ŷ.Ŵ.Ŷ Subspace Model

If a process is complex it may be hard to model it mathematically. The modeling may
take a lot of time and it may be hard to capture the necessary complexity of the physical
process to get a model with the required accuracy. In such a scenario it may be beneficial
to use subspace system identification, where the model is obtained from a set of observed
data . It is of interest to look at the performance of models obtained from subspace
system identification, and the DS-R toolbox in MATLAB was chosen for this. [11]

A big advantage of using subspace identification is that there is no need for mathem-
atical modeling, however there are some downsides. A first principles model can easily
be modified by changing the values of parameters and updating the model. A subspace
model needs to be re-identified from a new set of data if the parameters are changed. This
requires running the calibration experiment all over again and may be inconvenient when
working with the quadruple tank process, where it may be of interest to change the para-
meters γ1 and γ2. The resulting discrete state space model from subspace identification
describes a discrete model with a time step ∆t equal to the time step of the logged data.
Therefore the data must be logged with a time step equal to the desired time step of the
application which the model should be used for. Calibration data sets were obtained from
open loop experiments carried out on the physical process. The experiments were carried
out by applying of a number of step inputs with varying lengths to the pumps, while
making sure that the levels of tank 3 and 4 stayed within the process window. Figure
3.4 shows the inputs used in a calibration experiment with time step ∆t = 1s. Figure 3.5
shows the resulting levels in tank 3 and 4.
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Figure 3.4: Pump inputs for experiment for calibrating subspace model
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Figure 3.5: Levels of tank 3 and tank 4 during experiment for calibrating subspace model

The DS-R toolbox contains a number of functions, but dsr.m is designed for data without
feedback and was therefore chosen for the identification.This function returns a linear
discrete state space model (A,B,C,D), the initial states x0 and the Kalman filter gain
matrix K f s. The input arguments may vary depending on preference as some of the
arguments are optional. The function is called as seen in (3.14).

[
As,Bs,Cs,Ds,K f sF,F,x0

]
= dsr(Y,U,L,g,J,M,n) (3.14)

where Y is the logged output data, U is the logged input data, L is the number of block
rows in the extended observability matrix, g is set to 0 to force the matrix D to be 0, J is
set equal to L, M = 1 is default and n is the system order. The Kalman filter gain matrix
is obtained from K f sF by multiplying with the inverse of F . The levels from tank 3 and 4
were logged and sorted into a matrix Y and the inputs were sorted into a matrix U . The
resulting state space model (A,B,C), initial states x0 and Kalman filter gain K f s from the
experiment with ∆t = 1s can be seen in (3.15).
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As =


0.9869 −0.0004 0.5662 −0.3346
0.0006 0.9970 0.2810 0.5932
−0.0009 −0.0018 0.4871 −0.0670
0.0005 −0.0022 −0.0590 0.5298



Bs =


−0.0002649 −0.0002353
−0.0002570 0.0001926
−0.0003083 −0.0000348
−0.0001335 0.0002427



Cs =

[
−0.3690 0.3455 0.2330 −0.7204
−0.3511 −0.3624 0.7203 0.2766

]

x0 =


−0.3201
−0.0337
−0.0032
0.0012



K f s =


−0.5834 −0.4434
0.4074 −0.3711
−0.0405 0.0021
0.0130 0.0101



(3.15)

The DS-R subspace identification return a discrete time state space realization of the
physical process. The states of this realization are not located in the same coordinate
system as the measured states. It can be seen from the resulting matrices in (3.15) that
they do not resemble the state space matrices obtained from first principles modeling.
The output matrix Cs convert the state information into outputs that are in the same
coordinate system as the measured states, however the internal states are not converted.
This means that the model provides information about the levels in the lower tanks
through the output matrix Cs while the information about the levels in upper tanks is not
directly intuitive. [11]
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Ŷ.ŵ Model Parameter Calibraࢢon

Model calibration is the procedure of identifying the model parameters from experimental
data gathered from the physical process. The parameters to be identified are the steady
state pump gains Kp1 and Kp2 and the valve coefficients c1,c2,c3 and c4. This section will
cover parameter calibration of the first principles model. Note that parameter calibration
is not done for the subspace model, since DS-R toolbox returns a discrete time state space
model which is already calibrated. A MATLAB script for calibrating the first principles
model can be found in appendix B.

Ŷ.ŵ.Ŵ Data Reconciliaࢢon

Having flow sensors on the rig gives a great advantage when calibrating the parameters due
to the fact that the flows into the tanks are always known. However, measurements from
physical sensors come with some uncertainty due to noise and limited resolution. The un-
certainty will affect the flow measurements which again affects the parameter calibration
since the flow measurements are used to calibrate the parameters. Data reconciliation
is performed on the flow measurements to reduce the uncertainty of the flow measure-
ments before using them for calibration. The data reconciliation technique is found in a
presentation made by North Carolina State University and University of Ottawa [12].

Due to conservation of mass, the flow into the three-way valve is equal to the sum of
the flows out of the valve, hence satisfying the mass balance q1 = q2 +q3 as illustrated in
figure 3.6.

Figure 3.6: Flow split by tree way valve

Noise and uncertainty in one sensors is uncorrelated with the noise and uncertainty in the
other sensors, and thus the mass balance is not satisfied when looking at the raw sensor
data. By performing data reconciliation on the measured flows it is possible to obtain
estimates of the flows that satisfy the mass balance. Optimal estimates are obtained
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3.2 Model Parameter Calibration

by solving the optimization problem shown in (3.16), constrained by the mass balance
equation shown in (3.17).

min
(q̂1, q̂2, q̂3)

J =
(q1 − q̂1)

2

σ12 +
(q2 − q̂2)

2

σ22 +
(q3 − q̂3)

2

σ32 (3.16)

subject to:

q̂1 − q̂2 − q̂3 = 0 (3.17)

The problem becomes to minimize the objective J using the decision variables which
are the flow estimates q̂1, q̂2 and q̂3. For each sensor number i, the deviation between
the measured value and the estimate is weighted by the variance σ2

i . In this way the
measurements from sensors with a higher variance are considered less reliable than meas-
urements from sensors with a lower variance. Flow estimates of the less accurate sensors
will therefore differ more from the raw data than the estimate from the more accurate
sensors.

To solve the optimization problem, the constraints are eliminated using Lagrangian multi-
plier so that the optimization problem becomes an objective function without constraints
(3.18).

min
(q̂1, q̂2, q̂3, λ )

J =
(q1 − q̂1)

2

σ12 +
(q2 − q̂2)

2

σ22 +
(q3 − q̂3)

2

σ32 +λ (q̂1 − q̂2 − q̂3) (3.18)

The minimum of objective J is found by taking the partial derivatives of J with respect
to each of the decision variables and equating them to 0 as seen in (3.19).

∂J
∂ q̂1

=
2(q1 − q̂1)

σ2
1

+λ = 0

∂J
∂ q̂2

=
2(q2 − q̂1)

σ2
2

+λ = 0

∂J
∂ q̂3

=
2(q3 − q̂1)

σ2
3

+λ = 0

∂J
∂λ

= q̂1 − q̂2 − q̂3 = 0

(3.19)

The problem now consists of 4 equations and 4 unknowns, hence the unknowns can be
found analytically. Arranging the problem into matrices results in the expression for the
estimated flows seen in (3.20).
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q̂ = q−VAT
r
(
ArVAT

r )
−1Arq (3.20)

Where q̂ is a vector containing the flow estimates, q is a vector containing the measured
flows, V is a diagonal matrix containing the variances and Ar is a vector containing
coefficients describing the direction of the flows into the three-way valve. The vectors and
matrices are defined as seen in (3.21).

q̂ =

q̂1
q̂2
q̂3

 , q =

q1
q2
q3

 , Ar =

 1
−1
−1

 , V =

σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 (3.21)

For each time step it is now possible to obtain estimates of the flows which satisfy the
mass balance by using equation (3.20).

Ŷ.ŵ.ŵ Calibraࢢon of Pump Gains

It has been established that the pumps should be modeled with constant gains. This gain
should produce a linear relation between input and output that best fits the measured
steady-state flows obtained from the physical process. This is done by taking the mean
value of the flow measurements for each pump, and dividing it by the mean input signal
to the respective pump. Kp1 and Kp2 is calculated as shown in (3.22).

Kp1 =
q̄5

ū1
, Kp2 =

q̄6

ū2
(3.22)

where q̄5 is the mean value of the flow coming from pump 1, q̄6 is the mean value of the
flow coming from pump 2, ū1 is the mean input signal to pump 1 and ū2 is the mean input
signal to pump 2.

Ŷ.ŵ.Ŷ Calibraࢢon of Valve Coefficients

The valve coefficients are dependent on the flow running through the valve and the level
of water in the tank as seen in (3.23).

c =
q√
h

(3.23)
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3.3 Model Validation

Throughout an experiment the level and inflow of the upper tanks are always known. A
change in level between two samples indicates how much water has been lost or gained
during that time. This information is used to calculate the flow out of a tank at each
time step using equation (3.24).

V̇out(k) = V̇in(k)−
h(k+1)−h(k)

∆t
A (3.24)

The flows out of the upper tanks are now known, which means that the flow into the
lower tanks are also known and can be calculated using equation (3.25).

V̇out(k) = V̇in(k)+ V̇out(k)︸ ︷︷ ︸
Upper Tank

−
h(k+1)−h(k)

∆t
A (3.25)

The flow through each discharge valve is now known for each time step and the discharge
coefficients can be calculated using (3.23) by taking the mean value of the flow through
the valve and dividing it by the mean value of the square root of the level.

Ŷ.Ŷ Model Validaࢢon

After the model is calibrating it needs to be validated to see how well the model represents
the physical system. Calibration and validation is performed using separate data sets
which are both obtained with the same valve configurations on the physical process.
The calibrated model is validated by simulating the model with the same pump inputs
as used in the validation experiment. The simulated values are then compared to the
measured data. The initial values of the validation data set are used as initial values
for the simulation , however for the rest of the simulation the model is relying on the
previous model output, meaning that the previous model outputs are used as initial
values for computing the next model outputs at each time step. This can be seen in
figure 3.7 which shows how the model and the real process are controlled using the same
input, and how the outputs are compared. The reason for validating the model without
feedback from the measured data is that when the model is used for MPC it does not have
feedback during the prediction, and the accuracy of the prediction is therefor relying on
the model performance alone. It therefor makes sense to validate how the model performs
in open loop. The error between the model and experimental data indicates how the
error propagates during the prediction. Results from model validation will be discussed
in chapter 6.
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Figure 3.7: Diagram showing validation procedure

It was discovered that the actual values of γ1 and γ2 are not fixed, but in fact vary
with the pump speed even though the three-way valve positions are fixed. This brings
another level of uncertainty to the model. It is therefore of interest to find out both
how well the parameters are calibrated, and how well the model performs. Since the
flows are measured throughout the experiment, the exact values of γ1 and γ2 can be
calculated for each sample and thus it is possible to eliminate the uncertainty of γ1 and
γ2. Eliminating the uncertainty of the split factors ensures a more reliable validation of
the valve coefficients and pump gains, however the model will have a fixed value of γ1 and
γ2 when used in the Kalman filters and model based controllers. The model was therefore
validated both with the model receiving the actual value of γ1 and γ2, and with γ1 and γ2
fixed.

Ŷ.ŷ Analysis

This section covers analysis of the linear quadruple tank process model which is important
for the design of state estimators and controllers. This includes controllability, observab-
ility, stability. It will also cover analysis of the interaction that occurs due to the cross
coupling of the 4 tanks.

Ŷ.ŷ.Ŵ Observability, Controllability and Stability

When designing state estimators and controllers it is important to know if the system
is observable, controllable and stable. The states that are to be predicted need to be
observable in order for the Kalman filter to work. The system is observable if the rank of
the observability matrix (3.26) is equal to the number of states [13].
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3.4 Analysis

O4 =


C

CA
CA2

CA3

 (3.26)

It is known that the system order is 4 since there are 4 states, so the rank of the ob-
servability matrix needs to be 4 for the system to be observable. MATLAB is used to
find the rank of O4 using the function rank.m. MATLAB returns rank equal to 4 for the
observability matrix (3.26), hence the system is observable.

To control a process it needs to be controllable. If the system is not controllable it means
that the system has states that cannot be controlled by one of the control inputs [14]. A
system is controllable if the rank of the controllability matrix (3.27) is equal to the system
order.

C4 =
[
B AB A2B A3B

]
(3.27)

Again the MATLAB function rank.m is used to compute the rank of C4, which returns
the rank 4 for the controllability matrix, hence the system is controllable.

The poles of a system which is controllable and observable are the eigenvalues of the
system matrix A. For a system to be stable the real part of the poles need to be negative.
The system is therefore stable if the eigenvalues of A are negative. Due to the nature
of the system matrix, the eigenvalues are the values of the diagonal of A. These values
will always be negative since the model parameters are strictly positive. The system is
therefore stable. [15]

Ŷ.ŷ.ŵ Zero Locaࢢon

If a system has fewer control inputs or outputs than the number of states, the system
generally has zeros. This applies for the quadruple tank process since it has 4 states and
2 control inputs and outputs. If all the system zeros are located in the left half of the
complex plane it is a minimum phase system, however if one or more zeros are located in
the right half of the complex plane, the system is a non-minimum phase system.[16]

The system transfer matrix is analyzed in order to determine the location of the zeros.
This matrix is obtained by taking the Laplace transform of the linearized model developed
in 3.1.2 and arranging the individual transfer functions (3.28) into a matrix.
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h1(s) = T1
Kp1(1− γ1)

A(T1s+1)
u1(s)

h2(s) = T2
Kp2(1− γ2)

A(T2s+1)
u2(s)

h3(s) =
K1Kp1(1− γ1)

(T1s+1)(T3s+1)
u1(s)+

K1Kp2γ2

(T3s+1)
u2(s)

h4(s) =
K2Kp2(1− γ2)

(T2s+1)(T4s+1)
u2(s)+

K2Kp1γ2

(T4s+1)
u1(s)

(3.28)

where Ti =
2A
√

ho
i

ci
is the time constant of tank i, K1 =

T3
A and K2 =

T4
A .

Arranging the transfer functions in (3.28) into a matrix gives the transfer matrix H(s)
(3.29).

h3(s)

h4(s)

=


K1Kp1(1−γ1)

(T1s+1)(T3s+1)
K1Kp2γ2
(T3s+1)

K2Kp1γ1
(T4s+1)

K2Kp2(1−γ2)
(T2s+1)(T4s+1)


︸ ︷︷ ︸

H(s)

u1(s)

u2(s)

 (3.29)

Since the transfer matrix H(s) is a 2 by 2 matrix, the zero polynomial is the numerator of
the determinant of H(s) when arranged so that the denominator of H(s) is equal to the
pole polynomial. The pole polynomial ρ(s) is the smallest common denominator of all
the under determinants of H(s) . Since the system is a 2 by 2 matrix, the pole polynomial
is the smallest common denominator of the determinant of H(s) as seen in (3.30) .[16]

ρ(s) = (T1s+1)(T2s+1)(T3s+1)(T4s+1) (3.30)

The determinant of H(s) when arranged so that the denominator is equal to ρ(s) is shown
in (3.31).

|H(s)|= K(1− γ1)(1− γ2)−Kγ1γ2(T1s+1)(T2s+1)
(T1s+1)(T2s+1)(T3s+1)(T4s+1)

(3.31)
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Where K = K1K2Kp1Kp2.

Since the denominator is equal to the pole polynomial, the zero polynomial π(s) is equal
to the numerator of (3.31) as seen in (3.32).

π(s) = K(1− γ1)(1− γ2)−Kγ1γ2(T1s+1)(T2s+1) (3.32)

The zeros are the roots of π(s) = 0. Equation (3.33) shows the zero polynomial equated
to 0.

Kγ1γ2T1T2︸ ︷︷ ︸
a

s2 +Kγ1γ2(T1 +T2)︸ ︷︷ ︸
b

s+K
(
γ1γ2 − (1− γ1)(1− γ2)

)︸ ︷︷ ︸
c

= 0 (3.33)

The terms a and b will always be positive but the constant term c will change sign if
(1−γ1)(1−γ2) is greater than γ1γ2. If the constant term c in (3.33) is negative, one of the
solutions of π(s) = 0 will be positive and thus result in one positive zero, and the system
being non-minimum phase. For this to happen, (1− γ1)(1− γ2) needs to be larger than
γ1γ2. Therefore, the system will be minimum phase if γ1+γ2 > 1 and non-minimum phase
if γ1 + γ2 < 1.

Ŷ.ŷ.Ŷ Relaࢢve Gain Array

The relative gain array (RGA) is studied to get a better understanding of the process
coupling. It provides information about steady-state process interaction using the steady
state gains, given that the process is open loop stable [17]. The RGA is calculated from
the transfer matrix by taking the Hadamard product (element by element multiplication)
of the matrix and it’s inverse transposed with s = 0 as shown in (3.34) [15].

RGA = H(s = 0)◦H(s = 0)−T (3.34)

When putting s= 0 the transfer matrix consists of only the steady-state gains. The steady
state gain matrix can be seen in (3.35).

H(s = 0) =

K1Kp1(1− γ1) K1Kp2γ2

K2Kp1γ1 K2Kp2(1− γ2)

 (3.35)

Matrix (3.35) should be element wise multiplied with the inverse transposed. The matrix
is therefor first inverted, and then transposed. The result can be seen in (3.36).
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H(s = 0)−T =


K2Kp2(1−γ2)

K
(
(1−γ1)(1−γ2)−γ1γ2

) − K2Kp2γ1

K
(
(1−γ1)(1−γ2)−γ1γ2

)
− K1Kp2γ2

K
(
(1−γ1)(1−γ2)−γ1γ2

) K1Kp1(1−γ1)

K
(
(1−γ1)(1−γ2)−γ1γ2

)
 (3.36)

Where K = K1K2Kp1Kp2.

By taking the Hadamard product of (3.35) and (3.36), one has obtained the relative gain
array as seen in (3.37).

RGA =


(1−γ1)(1−γ2)

(1−γ1)(1−γ2)−γ1γ2
− γ1γ2

(1−γ1)(1−γ2)−γ1γ2

− γ1γ2
(1−γ1)(1−γ2)−γ1γ2

(1−γ1)(1−γ2)
(1−γ1)(1−γ2)−γ1γ2

 (3.37)

By analyzing the RGA one can determine how inputs and outputs should be paired if
using single loop controllers. An input should be paired with an output corresponding
to a positive value in the RGA. It can be seen from (3.37) that the sign of any of the
matrix indexes will be determined by the sign of the denominator. The RGA contains
no other parameters than the γ values, hence these parameters determine the signs. If
(1− γ1)(1− γ2)> γ1γ2, the denominator will be positive and the signs in the RGA remain
unchanged. However if (1− γ1)(1− γ2)< γ1γ2, all the matrix positions change sign which
means that the inputs and outputs should be paired the opposite way.

It was shown in section 3.4.2 that if the sum of γ1 and γ2 is less than 1, the system has a
positive zero and is therefore non-minimum phase. By analyzing the RGA, it can be seen
that if the sum of γ1 and γ2 is less than 1, the denominator is positive and the signs of the
terms in the RGA remain unchanged. This means that output 1, which is tank 3, should
be controlled by input 1 and output 2, which is tank 4 should be controlled by input 2.
So in a non-minimum phase configuration the inputs and outputs should be paired in the
opposite way of how the system is modeled, since pump 1 is directly linked to tank 4 and
pump 2 is directly linked to tank 3. In this configuration the water from the upper tanks
contribute more than the water coming directly from the pumps. This gives an intuitive
interpretation of the interaction.

Based on the analysis above, there is a correlation between zero location and interac-
tion. To illustrate the challenges of having positive zeros, the model was simulated and
controlled by 2 PI controller which are single loop controllers. Figure 3.8 is a plot of
controlling the simulator in a minimum phase configuration using 2 PI controllers.

48



3.4 Analysis

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

0

10

20

30
L
e
v
e
l 
[c

m
]

Tank 3

Reference

Output

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

0

10

20

30

L
e
v
e
l 
[c

m
]

Tank 4

Reference

Output

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

2

4

6

8

10

In
p
u
t 
[V

]

Inputs

Input pump 1

Input pump 2

Figure 3.8: Controlling simulated process with PI controller in minimum phase

It can be seen that the controllers have no problem following the references and that the
controller outputs (process inputs) are working within their range. Figure 3.9 shows the
result of controlling the same simulator with the same 2 PI controllers, however now with
a non-minimum phase configuration.
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Figure 3.9: Controlling simulated process with PI controller in non-minimum phase

It is clearly seen that the outputs do not follow the references, but in fact deviate in
opposite directions. The controller outputs are working at the bounds of their range,
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3 Process Model

with the input to pump 1 at maximum trying to raise the level in tank 4 and the input to
pump 2 at minimum trying to lower the level in tank 3. Since the upper tank contribution
is greater than the contribution directly from the pumps, pump 1 is now raising the level
in tank 3 instead of lowering the level in tank 4. Pump 2 is trying to compensate for this
by trying to lower the level in tank 3, but is in fact lowering the level in tank 4. This
clearly shows that the controllers are working against each other.

The non-minimum phase configuration introduces inverse response to the process. Inverse
response means that the output goes in the opposite direction of what is desired before it
tends towards the desired value [2]. To illustrate inverse response, the simulation model
was simulated from steady state levels with a decrease in input to pump 2 and an increase
in input to pump 1. The resulting plot can be seen in figure 3.10.
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Figure 3.10: Simulation showing inverse response in non-minimum phase configuration

From the plot it can be seen that the level in tank 3 first decreases due to the decrease in
input signal to pump 2. However the level stops decreasing when the level in tank 1 has
raised and started to contribute significantly to the level in tank 3.
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ŷ Kalman Filter

Model based controllers need information about all the states in the model, which in this
case is all the tank levels, however only the levels of the lower tanks are typically measured.
Although the process at USN has level sensors on all the tanks, the measurements of the
upper tank levels are only used as a reference for comparisons, and thus the levels of
the upper tanks need to be estimated. A commonly used state estimator is the Kalman
filter. It estimates the states of a system with stochastic disturbances and measurement
noise where at least one process variable is measured [13]. This chapter will cover the
development of a Kalman filter for the linear models, an extended Kalman filter with a
steady state Kalman gain for the non-linear model and an extended Kalman filter with
time varying Kalman gain for the non-linear model.

ŷ.Ŵ Linear Kalman Filter

The Kalman filter is defined for linear systems, thus the linear Kalman filter is just called
the Kalman filter. It predicts the process states using the discrete time linear state space
model developed in 3.1.2. The algorithm consists of 3 steps which can be seen in (4.1).

1. ȳ(k) =Cd x̄(k)
2. x̂(k) = x̄(k)+K f

[
y(k)− ȳ(k)

]
(4.1)

3. x̄(k+1) = Ad x̂(k)+Bdu(k)

The Kalman filter works in parallel with a physical process and estimates the states by
exciting the process model with the same input as the physical process. The model outputs
ŷ(k) are computed from the current input uk and the previous state estimate x̄(k), and are
subtracted from the outputs y(k) of the physical process, resulting in an error e(k) called
the innovation variable. The estimated states are corrected by multiplying the innovation
variable with the Kalman gain matrix K f and adding the result to the estimated states .
The corrected states x̂(k) are used to compute the state estimates for the next time step.
When using a controller it is typically the corrected states x̂(k) that are used . Figure 4.1
shows a block diagram of the Kalman filter in parallell with the physical process. [13]
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4 Kalman Filter

Figure 4.1: Block diagram of Kalman filter [13]

The Kalman filter gain is a time varying matrix, however for the linear Kalman filter with
constant matrices the value of the Kalman filter gain matrix converges to a steady state
value [13]. The steady state Kalman filter gain matrix K f is found from the MATLAB
function kalman.m which takes a state space model and the state and output covariance
matrices as arguments. How the function is called can be seen in (4.2).

sys = ss(A, [B G],C,0)
[∼,K] = kalman(sys,Qk,Rk)

(4.2)

Where Qk is the state covariance matrix, Rk is the output covariance matrix and G is the
process noise gain matrix which is set equal to the identity matrix. The Kalman filter was
implemented as a MATLAB function which takes the state space matrices , previous state
estimate, current input, current process output and Kalman gain matrix as arguments.
The function can be seen in figure 4.2.

f unc t i on x = l inearKa lmanFi l t e r (A,B,C, x , y , u ,K)

y_est = C∗x ; % Computing est imated outputs
x = x + K∗( y − y_est ) ; % Correc t ing s t a t e e s t imate
x = A∗x + B∗u ; % Updating s t a t e e s t imate

end

Figure 4.2: Matlab function for linear Kalman filter
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ŷ.ŵ Extended Kalman Filter

The Kalman filter is only defined for linear state space models, however it may be of
interest to use a Kalman filter with a non-linear model. For this purpose the Kalman
filter has been extended to use non-linear models and is referred to as the Extended
Kalman Filter (EKF) [13]. The EKF can be used with a steady state gain as in the linear
Kalman filter or with a varying gain. Both of these versions of the EKF will be developed
in this section.

ŷ.ŵ.Ŵ Extended Kalman Filter with Steady State Kalman Gain

The Extended Kalman filter with steady state gain uses the non-linear model to predict
the state estimates and the Kalman gain obtained from the linear model to correct the
states. The algorithm has the same structure at the linear version and can be seen in
(4.3).

1. ȳ(k) = g(x̄(k))

2. x̂(k) = x̄(k)+K f
[
(y(k)− ȳ(k)

]
(4.3)

3. x̄(k+1) = f (x̂(k),u(k))

where g
(
x̄(k)

)
is a non-linear output equation with respect to the predicted states x̄(k)

and f
(
x̂(k),u(k)

)
is a non-linear state equation with respect to the corrected states x̂(k)

and the inputs uk. The outputs of the quadruple tank process are level 3 and 4, thus
the output equation is linear and the previously developed Cd matrix can be used. The
only difference between the linear and extended Kalman filter is then the non-linear state
estimation. This EKF with steady state Kalman gain was implemented as a MATLAB
function which takes the model parameters ,the time step and the previous state estimate
as arguments. The function for the Extended Kalman filter with steady state Kalman
gain can be seen in appendix C.

ŷ.ŵ.ŵ Extended Kalman Filter with Time Varying Kalman Gain

Another approach to the Extended Kalman filter is to use a time varying Kalman filter
gain. The states are then predicted using the non-linear model and corrected using a time
varying Kalman gain. The gain is updated at each time step using the state and output
covariance matrices, the system matrix Ad and output matrix Cd of the linear state space
model which are linearized around the most recent state estimate. Computing the gain
is a three step algorithm which can be seen in (4.4). [13]
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1. K f (k) = Pp(k)C
T
d
[
CdPp(k)C

T
d +Rk

]−1

2. Pc(k) =
[
I −K f (k)Cd

]
Pp(k) (4.4)

3. Pp(k+1) = AdPc(k)A
T
d +GkQkGT

k

where Pc(k) is the auto-covariance of the corrected state error, Pp(k+1) is the auto-covariance
of the predicted state error and Gk is the process noise gain matrix. The initial value of
Pp(k) is set equal to the identity matrix. The complete algorithm for the Extended Kalman
filter with time varying gain can be seen in (4.5).

1. Ad = I +∆t
∂ f (x)

∂x

∣∣∣
(x̄(k),u(k))

2. K f (k) = Pp(k)C
T
d
[
CdPp(k)C

T
d +Rk

]−1

3. Pc(k) =
[
I −K f (k)Cd

]
Pp(k) (4.5)

4. Pp(k+1) = AdPc(k)A
T
d +GkQkGT

k

5. ȳ(k) =Cd x̄(k)

6. x̂(k) = x̄(k)+K f (k)
[
y− ȳ(k)

]
7. x̄(k+1) = f (x̂(k),u(k))

where f (x) is the continuous time state equation.

The algorithm in (4.5) was implemented in a MATLAB function which can be found in
appendix D.
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Ÿ Model Based Controllers

Model based controllers use a mathematical model of the process to obtain information
on how the process should be control [13]. This chapter covers the development of model
based controllers in the form of a linear Model Predictive controller (MPC), a non-linear
Model Predictive controller and a linear quadratic optimal controller (LQ).

Ÿ.Ŵ Model Predicࢢve Control

Model predictive control is the strategy of solving an optimal control problem with re-
ceding horizon. An optimal control problem is a dynamic optimization problem with
a specified length of prediction called the prediction horizon. Solving an optimal con-
trol problem results in optimal control inputs for each time step of the whole prediction
horizon, however the dynamic model used in an optimal control problem contains errors
which result in model mismatch between the model and the physical process which should
be controlled. The error will grow during the horizon length, thus the optimal control
inputs computed for the whole prediction horizon may not result in the desired control
behaviour. The solution is to introduce feedback in the form of a receding horizon. This
is done by solving the optimal control problem and using only the first optimal control
inputs on the process. At the next time step the horizon is slided one sample and a
new optimal control problem is solved. The new optimal control inputs are used on the
process and the horizon is again slided one time step. Advantages of model predictive
control are that one can add bounds to the inputs, states and outputs, preventing the
controller from controlling the process out of acceptable ranges. Another advantage is
that future information about the reference allows the controller to start compensation
before a reference change occurs, thus preventing aggressive controller behaviour. [10]

This section covers the development of a linear model predictive controller where the
optimal control problem is solved subject to the linear process model and a non-linear
predictive controller where the optimal control problem is solved subject to the non-linear
process model.
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Ÿ.Ŵ.Ŵ Linear Model Predicࢢve Control

Linear model predictive control uses a linear model to predict the future process behaviour.
The linearized model developed in 3.1.2 is used as linear constraints for a linear optimal
control problem. The objective of the optimal control problem is to minimize the error
between the reference and the output for the whole prediction horizon with respect to
the decision variable u(k) while constrained by the process model. It should also minimize
the rate of change in the control input to prevent an aggressive controller. The objective
function J for the optimal control problem can be seen in (5.1).

min
(u(k))

J =
N

∑
k=1

[
eT
(k)Ee(k)+∆uT

(k)P∆u(k)
]

(5.1)

Where E is the weighting matrix for the errors, P is the weighting matrix for the rate
of change of the inputs and e(k) is the error between the reference r(k) and the output
y(k). The relation between the weighting matrices E and P determines how aggressive
the controller is, hence they are used as tuning matrices. The constraints of the optimal
control problem can be seen in (5.2).

x(k+1) = Adx(k)+Bdu(k)

y(k) =Cdx(k)

∆u(k) = u(k)−u(k−1)

e(k) = r(k)− y(k)

uL ≤ uk ≤ uU

(5.2)

The optimal control input must be withing the accepted range, thus the inputs u(k) are
bounded by an upper limit uU = 10V and lower limit uL = 2V .

Although having introduced receding horizon, model mismatch may cause an offset between
the reference and output due to the propagation of the error throughout the prediction
horizon. Since the linear model is an approximation of the non-linear process, this model
mismatch may be significant when operating the process far away from the operating
points which the linear model was linearized around. An offset may also occur due to the
process being subject to other unknown disturbances. To illustrate how model mismatch
causes and offset, a simulation was performed where the non-linear model was controlled
by a linear MPC. Figure 5.1 shows the result of the simulation.
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Figure 5.1: Linear MPC controlling non-linear simulation model

The offset that can be seen in figure 5.1 is due to model mismatch caused by linearization.
It can be seen that the offset varies with the reference. This happens because the model is
less accurate at levels which are far from the operating points than at levels that are close
to the operating points. It is of interest to eliminate the offset caused by model mismatch
and other unknown disturbances, and integral action was therefor added to the controller.
Offset free MPC is achieved using a technique called the ∆u formulation [10]. The process
is assumed to be affected by constant or slowly varying disturbances. The discrete state
space model is therefor expanded with disturbances v and w as seen in (5.3).

x(k+1) = Adx(k)+Bdu(k)+ v(k)
y(k) =Cdx(k)+w(k)

(5.3)

Since the disturbances are slowly varying, v(k+1) = v(k) = v and w(k+1) = w(k) = v . This
assumption is used to eliminate the disturbances by defining the deviation of states, inputs
and outputs as seen in (5.4).

∆x(k+1) = x(k+1)− x(k)
∆x(k) = x(k)− x(k−1)

∆u(k) = u(k)−u(k−1)

∆y(k) = y(k)− y(k−1)

(5.4)

The definitions in (5.4) are used to reformulate the state space model and eliminate v and
w as seen in (5.5).

∆x(k+1) = Adx(k)+Bdu(k)+ �v−
(
Ax(k−1)+Bdu(k−1)+ �v

)
y(k) = y(k−1)+Cdx(k)+��w −

(
Cdx(k−1)+��w

) (5.5)
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The state equation and output equation are augmented to create an augmented state
space model where the previous outputs y(k−1) are additional states. The new state space
model can be seen in (5.6).

[
∆x(k+1)

y(k)

]
︸ ︷︷ ︸

x̃(k+1)

=

[
A 0
C I

]
︸ ︷︷ ︸

Ã

[
∆x(k)
y(k−1)

]
︸ ︷︷ ︸

x̃k

+

[
B
0

]
︸︷︷︸

B̃

∆u(k)

y(k) =
[
C I

]︸ ︷︷ ︸
C̃

[
∆x(k)
y(k−1)

]
︸ ︷︷ ︸

x̃k

(5.6)

The new augmented state space model will be the linear constraints for the linear MPC
with integral action. The new objective is now to minimize the errors and rate of change
of inputs with respect to the decision variable ∆u(k). This means that the optimal control
inputs that are found from solving the optimal control problem are the deviation from
the previous optimal control inputs, thus the new optimal value are added to the old
optimal value so that uopt(k) = uopt(k−1)+∆uopt(k). The new objective function can be seen
in (5.7).

min
(∆u(k))

J =
N

∑
k=1

[
eT
(k)Ee(k)+∆uT

(k)P∆u(k)
]

(5.7)

The constraints are re-formulated since the formulation of the process model has changed.
It is now no longer necessary to define ∆u(k) since the process model is formulated using
∆u(k), and bounds are now put on the rate of change of control input instead of the input
itself. The new optimal control problem is subject to the linear constraints that can be
seen in (5.8).

x̃(k+1) = Ãx̃(k)+ B̃∆u(k)

y(k) = C̃x̃(k)

e(k) = r(k)− y(k)

uL ≤ ∆u(k) ≤ uU

(5.8)
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Solving an optimal control problem can be computational demanding and as a con-
sequence it may take a lot of time. To reduce computational time the problem is reformu-
lated to quadratic programming form to make use of MATLABs quad prog.m quadratic
programming solver. When formulating the problem in this way the matrices become
sparse, which reduces computational time [10]. The objective function on quadratic pro-
gramming form is shown in (5.9).

min
(Z)

J =
1
2

zT Hz+CT z (5.9)

where z is a vector containing all the unknowns for the whole prediction horizon, H is a
matrix containing the quadratic coefficients of the objective and C is a vector containing
the linear coefficients of the objective. There are no linear terms in the objective function
so the matrix C becomes a matrix of zeros equal to the length of z. The objective function
is subject to the constraints shown in (5.10).

Aez = be

Aiz ≤ bi

zL ≤z ≤ zU

(5.10)

where Ae are the coefficients of the linear equality constraints, be are the constants of
the linear equality constraints, Ai are the coefficients of the linear inequality constraints,
bi are the constants of the linear inequality constraints, ZL are the lower bounds of the
unknowns and ZU are the upper bounds of the unknowns. The unknown vector z can be
seen in (5.11).

z =
[
∆u x̃ e y

]
(5.11)

.

Where ∆u, x̃, e and y contain all the optimal values for the whole prediction horizon. The
solver quad prog.m takes H, c, Ae, be, Ai, bi, ZL and ZU as arguments, however the optimal
control problem does not contain inequality constraints so the arguments for Ai and bi
are empty matrices. How the quad prog.m is called can be seen in (5.12).

u∗ = quad prog(H,C, [ ]︸︷︷︸
Ai

, [ ]︸︷︷︸
bi

,Ae,be,ZL,ZU) (5.12)
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A MATLAB function was made for computing the matrices H, c and Ae. This function
is called on start up and is only called once since the matrices are constant throughout
an experiment. The MATLAB script for this function can be found in appendix E. The
quad prog.m solver function is implemented in a MATLAB function which is called every
time the MPC runs. This function also builds the constant vector be since it changes
every time the MPC runs due to new information about the reference and new initial
states. A MATLAB script for the linear MPC function can be found in appendix F.

Ÿ.Ŵ.ŵ Non-Linear Model Predicࢢve Control

Non-linear MPC uses a non-linear model to predict the future process behaviour. The
objective of the non-linear optimal control problem is the same as for linear MPC as seen
in (5.13).

min
(u(k))

J =
N

∑
k=1

[
eT
(k)Ee(k)+∆uT

(k)P∆u(k)
]

(5.13)

The objective is now subject to the general non-linear constraints as seen in (5.14).

x(k+1) = f (x(k),u(k))

y(k) = g(x(k))

∆u(k) = u(k)−u(k−1)

e(k) = r(k)− y(k)

UL ≤ u(k) ≤Uu

(5.14)

where f (x(k),u(k)) is a non-linear state function and g(x(k),u(k)) is a non-linear output
function. Due to the outputs of the quadruple tank process being the states of the lower
tanks, the output equation is equal to the linear case as seen in (5.15) .

g(x(k)) =Cdx(k) (5.15)
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The optimal control problem is non-linear and the quad prog.m solver can therefor not
be used, thus the f mincon.m solver is used instead. Solving an optimization problem
with f mincon.m allows for more flexibility than with quad prog.m since one is not forced
to satisfy the strict matrix structure of the quadratic programming formulation, however
solving the optimal control problem becomes more time consuming.

A MATLAB function called computeOb jective.m was created for computing the objective
for the whole prediction horizon. It simulates the non-linear model over the horizon length
and sums up the objective J for each iteration. This function can be found in appendix
G. The computeOb jective.m function is called by f mincon.m which tries the function with
different combination of inputs to find the optimal inputs that minimizes the function
output J. The f mincon.m solver was called inside a MATLAB function which is called
every time the MPC should run. At each time step the solver is given the last optimal
control inputs as starting points for the optimization. From one time step to another
it is likely that the new optimal control input is similar to the previous optimal control
input. By using the previous found value as starting point the solver may find the optimal
solution using fewer iterations and the computational time is reduced. The function which
calls the f mincon.m solver can be seen in 5.2.

f unc t i on [ Uopt , i t ] = nonLinearMPC ( u0 , s t a t e s , r e f , ts ,N,E,P, parameters )

% Making the o b j e c t i v e func t i on an anonymous func t i on

obj = @(u) computeObjective (u , s t a t e s , ts , r e f ,N, parameters ,E,P, u0 ( 1 , : ) ’ ) ;

lb = 2∗ ones (N, 2 ) ; % Creat ing lower bounds f o r inputs
ub = 10∗ ones (N, 2 ) ; % Creat ing upper bounds f o r inputs

% Set t i ng opt ions f o r fmincon

ops = opt imset ( ’ Algorithm ’ , ’ sqp ’ , ’ Display ’ , ’ o f f ’ , ’ MaxIter ’ ,200) ;

% Ca l l i ng fmincon

[ u ,~ ,~ , output ] = fmincon ( obj , u0 , [ ] , [ ] , [ ] , [ ] , lb , ub , [ ] , ops ) ;

i t = output . i t e r a t i o n s ; % Number o f i t e r a t i o n s used to s o l v e problem
Uopt = [ u (1 , 1 ) ; u (1 , 2 ) ] ; % Extract ing the f i r s t optimal c o n t r o l inputs

end

Figure 5.2: MATLAB funtion for non-linear MPC
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Ÿ.ŵ Linear Quadraࢢc Opࢢmal Control

A linear Quadratic Optimal Controller is an optimal controller in the sense that is com-
putes an optimal control input based on a model of the process. For this case a controller
with infinite horizon and integral action is considered [16]. The optimal control criteria
is given by (5.16).

Ji =
1
2

∞

∑
k=1

[
(r− y(k))

T E(r− y(k))+∆uT
(k)P∆u(k)

]
(5.16)

where ∆u(k) = u(k)−u(k−1), r is a constant reference and E and P are weighting matrices
for the errors and inputs respectively. The model is a discrete time linear state space
model with eliminated disturbances (5.17) as developed in 5.1.1.

∆x(k+1) = Ad∆x(k)+Bd∆u(k)

∆y(k) =Cd∆x(k)

(5.17)

where ∆x(k+1) = x(k+1) − x(k), ∆x(k) = x(k) − x(k−1), ∆u(k) = u(k) − u(k) and ∆y(k) = y(k) −
y(k−1).

To achieve set point tracking with the constant reference the output equation is modified
to include the reference as seen in (5.18).

r− y(k) = r− y(k−1)−Cd∆x(k) (5.18)

The expression obtained in (5.18) is augmented with the state equation to create an
augmented state space model including the error as a state. The augmented state space
model can be seen in (5.19).

[
∆x(k+1)
r− y(k)

]
︸ ︷︷ ︸

x̃(k+1)

=

[
Ad 0
−Cd I

]
︸ ︷︷ ︸

Ãq

[
∆x(k)

r− y(k−1)

]
︸ ︷︷ ︸

x̃k

+

[
Bd
0

]
︸ ︷︷ ︸

B̃q

∆u(k)

r− y(k)︸ ︷︷ ︸
ỹ(k)

=
[
−Cd I

]︸ ︷︷ ︸
C̃q

[
∆x(k)

r− y(k−1)

]
︸ ︷︷ ︸

x̃q(k)

(5.19)
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5.2 Linear Quadratic Optimal Control

The model to be used in the formulation of the LQ optimal controller is the augmented
state space model (5.20).

x̃(k+1) = Ãqx̃(k)+ B̃qũ(k)

ỹ(k) = C̃qx̃(k)

(5.20)

The optimal control criteria is therefor also reformulated as seen in (5.21).

Ji =
1
2

∞

∑
k=1

[
ỹT
(k)Eỹ(k)+∆uT

(k)P∆u(k)
]

(5.21)

The maximum principle is used to solve the LQ optimal control problem, resulting in a
controller formulation for the optimal control input u∗k as shown in (5.22). [16]

G =−
(
P+ B̃q

T RcB̃q
)−1B̃q

T RcÃq

∆u∗(k) = Gx̃(k)
(5.22)

where Rc is a positive solution to the discrete algebraic Riccati equation (5.23).

Rc = Ẽ + ÃT RcÃ− ÃT RcB̃
(
P+ B̃T RcB̃

)−1B̃T RcÃ (5.23)

where Ẽ = C̃T EC̃. Reformulating the optimal control input is shown in (5.24).

∆u∗(k) =
[
G1 G2

][ ∆x(k)
r− y(k−1)

]

u∗(k) = u∗(k−1)+G1∆x(k)+G2
(
r− y(k−1)

) (5.24)

The controller formulation in (5.24) is similar to a PI controller. An advantage of the
LQ controller is it’s simplicity, however it does not support bounds. The control input is
therefor manually restricted to 2 ≤ u∗(k) ≤ 10 and therefor the optimal control input may
be located outside of the accepted input range. The LQ controller is implemented in a
MATLAB function which computes the gain matrices G1 and G2. It takes the augmented
state space model and input and error weight matrices as arguments. This function is
called on start up and only runs once since the matrices are constant. The function can
be seen in figure 5.3.
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5 Model Based Controllers

f unc t i on G = OptimalControl (A,B,C,P,E)

Et = C’∗E∗C; % E t i l d e ( Error weights )

[R, ~ , ~ ] = dare (A,B, Et ,P) ; % So lv ing d i s c r e t e a l g e b r a i c R i c c a t i
equat ion

G = −(P + B’ ∗R∗B) ^(−1)∗B’∗R∗A; % Computing gain matr i ce s

end

Figure 5.3: MATLAB function for computing gain matrices for LQ controller
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Ź Results and Discussion

This chapter presents and discusses the results of the developed models, Kalman filters
and model based controllers.

Ź.Ŵ Model Development Results

This section covers the results of the model development and focuses on model validation.
The model is re-calibrated (First principles model) or re-identified (Subspace identified
model) whenever the opening of the discharge valves on the physical process are changed,
so the validation presented here is only valid for a specific set of parameters, however
it gives an indication of the performance of the model and calibration procedure. The
parameters, which can be seen in table 6.1, were obtained from calibrating the model
after the discharge valves were manually adjusted so that the process worked well in a
minimum phase configuration.

Table 6.1: Parameters for validation
Parameter Value Unit
c1 7.5844e-05 m2.5/s
c2 8.9773e-05 m2.5/s
c3 3.1148e-04 m2.5/s
c4 2.9812e-04 m2.5/s
Kp1 1.8471e-05 m3/s
Kp2 1.7805e-05 m3/s
A 0.0289 m2

Ź.Ŵ.Ŵ Results for First Principles Non-linear Model

As discussed in section 3.3 the first principles model is validated in two steps. First it is
validated using the actual measured values of γ1 and γ2 to get a more reliable validation
of the model parameter. Then it is validated using fixed values for γ1 and γ2 to validate
the model performance since this is how the model will be used in the Kalman filters and
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model based controllers. Figure 6.1 shows the model validated when using varying values
for γ1 and γ2. The actual values pf γ1 and γ2 can be seen in figure 6.2.
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Figure 6.1: Validation of model with varying values for γ1 and γ2

0 100 200 300 400 500 600 700 800 900

Time [s]

0.5

0.6

0.7

0.8

0.9

V
a

lu
e

Gamma 1

Constant Gamma

Actual Gamma

0 100 200 300 400 500 600 700 800 900

Time [s]

0.5

0.6

0.7

0.8

0.9

V
a

lu
e

Gamma 2

Constant Gamma

Actual Gamma

Figure 6.2: Varying γ1 and γ2

The plots show that the simulated levels on the upper tanks follow the measured levels
very well, both when draining the tanks and when filling them up. This is an indication
that both the valve coefficients and the pump gains are well calibrated. However, the
plot shows that there is some deviation in the lower tanks. The measured levels are
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6.1 Model Development Results

generally higher than the simulated values. The reason for this is the idle pump speed
which contributes with flow to the lower tanks even though the input signal is 0V. It can
be seen from figure 6.2 that the values of γ1 and γ2 have some variation throughout the
validation. Occasionally there are some major deviations. These occur when the pump
speed is too low to provide flow to the upper tanks while they still provide flow to the lower
tanks. To quantify the performance, the root mean square error (RMSE) was calculated
for the validation. Table 6.2 shows the RMSE of validating the non-linear model.

Table 6.2: RMSE of first principles model with varying γ1 and γ2

RMSE
Level 1 0.3441 cm
Level 2 0.6286 cm
Level 3 3.0797 cm
Level 4 3.8945 cm

To validate the performance of the model with a fixed split ratio, the simulation was
carried out with values of γ1 and γ2 as used during the experiment, which was 0.7 for both
γ! and γ2. Figure 6.3 shows the result of validating the non-linear first principles model
with fixed split factors.
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Figure 6.3: Validation of model with γ1 = 0.7 and γ2 = 0.7

The plot shows that there is a large error in the simulation of tank 2 , however the error
is not so large in tank 1. The uncertainty of γ2 is therefore greater than the uncertainty of
γ1. Fixing the split ratio does not affect the simulation of the lower tanks as much as the
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upper tanks. This is due to the fact that the flow in and out of the lower tanks is greater
than the flow in and out of the upper tanks since the flow out of the upper tanks goes
into the lower tanks. An error in flow from the pumps therefore accounts for a smaller
proportion of the total flow into the lower tanks than into the upper tanks.

Ź.Ŵ.ŵ Results for First Principles Linear Model

The linear model was validated since it is used for the linear Kalman filter, linear MPC
and LQ controller. The validation was carried out with γ1 = 0.7 and γ2 = 0.7 and the
resulting plot from the validation can be seen in 6.4. The model used in the validation
was linearized around the operating points which can be seen in 6.3.

Table 6.3: Operating points for linear model validation
Value Unit Comment

ho
1 19.0 cm Operating point level 1

ho
2 12.8 cm Operating point level 2

ho
3 11.9 cm Operating point level 3

ho
4 13.5 cm Operating point level 4

uo
1 6 V Operating point input 1

uo
2 6 V Operating point input 2
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Figure 6.4: Validation of linear first principles model with γ1 = 0.7 and γ2 = 0.7
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From looking at the plot, the performance of the linear model looks to be similar to the
performance of the non-linear model. The root mean square error from validation of the
non-linear and linear model can be seen in table 6.4.

Table 6.4: RMSE of first principle models with γ1 = 0.7 and γ2 = 0.7
Non-linear Model Linear Model

Level 1 0.7381 cm 0.6943 cm
Level 2 3.1717 cm 3.2919 cm
Level 3 2.3749 cm 2.5808 cm
Level 4 2.9538 cm 3.5887 cm

From table 6.4 it can be seen that the performance of the non-linear and the linear model is
similar, although the RMSE is slightly greater for the linear model than for the non-linear
model. This is as expected since the physical process is non-linear and the linear model
is only an approximation around the operating points. Due to the deviation between the
measured and simulated values it is expected that there will be some propagation of error
in the prediction in the model predictive controllers. Advantages of using a linear model
may compensate for the reduced model performance since reduced computational time is
gained.

Ź.Ŵ.Ŷ Results for Subspace Model

Due to the internal states of the subspace models being in a different coordinate system
than the measured levels, only the levels of the lower tanks were validated. Validation
data sets were gathered from the physical process with time steps of ∆t = 0.4s and ∆t = 1s.
The subspace models were simulated against the measured data using the same inputs as
used in the validation experiment. The outputs of the simulation model were compared
to the measured data. The resulting RMSE values from the validations can be seen in
table 6.5 and a plot of the validation of the model with ∆t = 1s can be seen in figure 6.5.

Table 6.5: RMSE of subspace identified model
Model time step RMSE level 3 RMSE level 4
∆t = 0.4s 3.32 cm 1.12 cm
∆t = 1s 3.75 cm 0.79 cm
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Figure 6.5: Validation of subspace identified model with time step ∆t = 1s

It can be seen from the table in 6.5 that increasing the time step from 0.4s to 1s does
not pose any significant difference in performance. The performance of level 4 is actually
decreased by increasing the time step. The quadruple tank process is a relatively slow
process, thus it is expected that the time step can be increased a reasonable amount
without significantly affecting the model performance. The RMSE values of level 3 are
slightly larger for the subspace model than the first principles models, however the sub-
space model has a much lower RMSE in level 4. This combined with the fact that the
performance of the upper tanks is not documented makes it hard to determine what is
the preferred model.
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6.2 Kalman Filter Results

Ź.ŵ Kalman Filter Results

This section covers the results of the Kalman filters developed in chapter 4. The filters
are used to estimate the tank levels, however they could also be used to estimate the flows
through the discharge valves since the flow is only dependent on the level in the tank.
The estimation performance is evaluated by comparing the estimates to the measured
levels. Flow estimation is not considered since there is no flow sensor on the discharge
vales, thus there is no ground for comparison. The filters were first tested with the
simulation model to verify that they were correctly implemented before they were tested
against experimental data gathered from the physical process. Noise was added to the
simulation model for the Kalman filter simulation. The noise was designed to replicate
the noise in the physical sensors by analyzing the standard deviation of the signals from
the level sensors on the physical process and adding random noise to the simulated values
equivalent to the standard deviation.

It was of interest to see how good a well calibrated Kalman filter performs and how the
Kalman filters perform if considerable model mismatch is introduced. Model mismatch
of 10% and 20% was introduced in the parameters c1 and c2 since they in combination
affect all 4 tanks. The calibrated model initially has some model mismatch which may be
canceled out by the additional mismatch, resulting in increased performance instead of
decreased performance. It was therefor ensured that the parameter errors were introduced
in the direction which decreased performance since it is of interest to look at the worst
case scenario. All filters were tested against the same data set so that the performance
could be compared. Both the simulation and experimental testing was performed in
MATLAB. The experimental data was gathered with the physical process configured in
minimum phase. The covariance matrices Qk and Rk were used as tuning matrices, where
the diagonal values of Qk were set equal to 0.01 and the diagonal values of Rk were set
equal to 1 for all experiments. These values were found to give the best results. Table 6.6
shows the model parameters used for the Kalman filters.

Table 6.6: Parameters for validation
Parameter Value Unit
c1 7.5844e-05 m2.5/s
c2 8.9773e-05 m2.5/s
c3 3.1148e-04 m2.5/s
c4 2.9812e-04 m2.5/s
Kp1 1.8471e-05 m3/s
Kp2 1.7805e-05 m3/s
A 0.0289 m2

γ1 0.7
γ2 0.7
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Ź.ŵ.Ŵ Results for Linear Kalman Filter with First Principles Linear Model

When obtaining results for the linear Kalman filter, the model was linearized around the
operating points which can be seen in table 6.7.

Table 6.7: Operating points for linear Kalman filter
Value Unit Comment

ho
1 19.0 cm Operating point level 1

ho
2 12.8 cm Operating point level 2

ho
3 11.9 cm Operating point level 3

ho
4 13.5 cm Operating point level 4

uo
1 6 V Operating point input 1

uo
2 6 V Operating point input 2

The Kalman filter was simulated against the non-linear model to verify that the filter had
been correctly implemented. Figure 6.6 shows a plot obtained from simulating the linear
Kalman filter with the non-linear simulation model using identical model parameters for
the Kalman filter and the simulation model.
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Figure 6.6: Linear Kalman filter on simulation model with the same parameters

It can be seen that the estimated outputs follow the simulator outputs without noticeable
deviation, however the levels of the upper tanks deviate slightly. This is due to the
model mismatch caused by linearization. The levels follow well when they are close to
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6.2 Kalman Filter Results

the operating points and deviate when moving away from the operating points, thus this
is expected behaviour.

It has been established that the actual value of γ1 and γ2 on the physical process varies
with the pump speed. It was therefore of interest to see how an error in the γ values
affects the estimation of the unknown states. A simulation was therefor performed with
a 5% error in the γ values. The γ values and root mean square errors of the simulations
are shown in table 6.8 and a plot from the simulation with errors in the γ values can be
seen in figure 6.7.

Table 6.8: RMSE for Linear Kalman Filter Simulation
γ values RMSE level 1 RMSE level 2 Comment
γ1 = 0.7, γ2 = 0.7 0.61 cm 0.33 cm Correct γ1 and γ2
γ1 = 0.735,γ2 = 0.735 3.26 cm 2.78 cm 5% error in γ1 and γ2
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Figure 6.7: Linear Kalman filter on simulation model with 5% errors in γ1 and γ2

From the plot in 6.7 it can be seen that even in simulations the uncertainty of the γ values
produce noticeable errors in the state estimation. It is therefore expected that the state
estimates on the physical process will deviate due to the γ uncertainty.

The Kalman filter was tested on experimental data after verifying the performance in
simulations. Table 6.9 shows the root mean square errors of testing the Kalman filter
with 0%, 10% and 20% error in c1 and c2. A plot of the linear Kalman filter performance
with 0% model mismatch can be seen in figure 6.8.

73



6 Results and Discussion

Table 6.9: RMSE from experiment with linear Kalman Filter
Parameters RMSE level 1 RMSE level 2 Mismatch
c1 = 7.584e−5 cm2.5 2.95 cm 1.69 cm 0%
c2 = 8.977e−5 cm2.5

c1 = 6.826e−5 cm2.5 2.92 cm 2.43 cm 10%
c2 = 8.079e−5 cm2.5

c1 = 6.068e−5 cm2.5 2.88 cm 3.32 cm 20%
c2 = 7.182e−5 cm2.5
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Figure 6.8: Linear Kalman filter on physical process with 0% model mismatch

The resulting plot from the experiment shows that the Kalman filter has no problem
estimating the output states, however it does not estimate the upper levels accurately.
It can be seen that there is an estimation error of approximately 5cm in level 1 towards
the end of the experiment. This is equivalent to an error of approximately 25% which
would not be acceptable if the unknown states for example were subject to constraints.
For plots from experiments with model mismatch see appendix H.
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Ź.ŵ.ŵ Results for Linear Kalman Filter with Subspace Idenࢢfied Models

The DS-R returns a realization which is not in the same coordinate system as the measured
levels. The Kalman filter was therefor only tested with the lower tank levels. Experiments
were performed with time steps ∆t = 0.4s and ∆t = 1s. The results from using a Kalman
filter obtained from a data set with ∆t = 0.4s can be seen in figure 6.9.
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Figure 6.9: Linear Kalman filter from DS-R with ∆t = 0.4s

The plot shows that the estimated outputs follow the measured data. Figure 6.10 shows
a plot of using a Kalman filter obtained from a data set with ∆t = 1s. The root mean
square error was computed for both cases and is shown in table 6.10

Table 6.10: RMSE for Kalman filter from DS-R
∆t RMSE level 3 RMSE level 4
0.4 s 0.39 cm 0.30 cm
1 s 0.60 cm 0.67 cm

From looking at the plot it can be seen that the estimated levels do not follow the measured
data as well as in the case where ∆t = 0.4s. The RMSE values confirms the observation
made from the plot, showing that the RMSE is approximately twice in the case where
∆t = 1s compared to ∆t = 0.4. The reason why there is a difference between the two
Kalman filters may be because both models are calibrated with approximately 1000s of
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Figure 6.10: Linear Kalman filter from DS-R with ∆t = 1s

data. The model with ∆t = 1s therefor has less than half the number of samples for
calibration. This may result in a less accurate model. Another possible reason is that the
model simply becomes less accurate with a larger time step.

Ź.ŵ.Ŷ Results for Extended Kalman Filter with Steady State Gain

It was not possible to see any deviation between the simulator and the Extended Kalman
filter with steady state gain when there was no model mismatch. This makes sense since
the filter and the simulation model use identical models. To evaluate the filter performance
on the simulator it was simulated with an error in the γ values as done with the linear
Kalman filter. The root mean square errors were computed for the simulation with no
errors in the γ values and for the simulation with 5% error in the γ values. The RMSE
values can be seen in table 6.11 and a plot from the simulation with errors in the γ values
can be seen in 6.11

Table 6.11: RMSE from simulation with Extended Kalman Filter with steady state Kalman Gain
γ values RMSE level 1 RMSE level 2 Comment
γ1 = 0.7, γ2 = 0.7 0.0011 cm 0.00082 cm Correct γ1 and γ2
γ1 = 0.735,γ2 = 0.735 3.52 cm 2.90 cm 5% error in γ1 and γ2
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Figure 6.11: Simulation of Extended Kalman filter with steady state gain and 5% errors in γ1 and γ2

By comparing the results shown in table 6.11 to the results of linear Kalman filter simu-
lation it is apparent that when there is no model mismatch the Extended Kalman filter
performs a lot better than the linear Kalman filter, just as expected. However when errors
are introduced in the γ values, the RMSE of the Extended Kalman filter with steady state
gain exceeds the RMSE of the linear Kalman filter. This shows that the linear Kalman
filter is more robust to model mismatch than the extended Kalman filter. The reason for
this is that modeling errors linearly affect the linear Kalman filter , while they affect the
Extended Kalman filter in a non-linear manner.

Table 6.12 shows the RMSE values of testing the Extended Kalman filter on experimental
data with 0%, 10% and 20% errors in the valve coefficients c1 and c2. Figure 6.12 shows
a plot the experiment when no additional model mismatch is introduced.

Table 6.12: RMSE from experiment with Extended Kalman Filter with steady state Kalman gain
Parameters RMSE level 1 RMSE level 2 Mismatch
c1 = 7.584e−5 cm2.5 3.99 cm 1.25 cm 0%
c2 = 8.977e−5 cm2.5

c1 = 6.826e−5 cm2.5 7.36 cm 4.65 cm 10%
c2 = 8.079e−5 cm2.5

c1 = 6.068e−5 cm2.5 11.56 cm 9.15 cm 20%
c2 = 7.182e−5 cm2.5
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Figure 6.12: EKF with steady state Kalman gain on physical process with no model mismatch

From looking at figure 6.12 it is not clear if the performance of the EKF with steady state
Kalman gain is better or worse than the linear Kalman filter, however the RMSE values
shows that there is a slightly larger error in the EKF case when no additional model
mismatch is introduced. The difference is not big enough to conclude weather of not the
filter is better or worse, since a different experiment may result in an RMSE that favours
the EKF. The drawbacks of using the EKF do become apparent when looking at the
performance when additional model mismatch is introduced. It can be seen from table
6.12 that the RMSE values grows a lot when adding mismatch. The error increases much
more for the EKF than for the the linear Kalman filter, which supports the observations
that the linear Kalman filter is more robust to modeling errors. For plots from experiments
with model mismatch see appendix I.

Ź.ŵ.ŷ Results for Extended Kalman Filter with Time Varying Kalman Gain

The EKF with time varying Kalman gain performed similarly to the steady Kalman gain
case in simulations. It was not possible to detect any deviation between the estimates and
the simulation model from looking at the plot of the simulation when no model mismatch
was introduced. As discussed in 6.2.3 this is expected behaviour since the filter and
simulator uses identical models. A simulation was performed to see the robustness of the
EKF with time varying Kalman gain due to errors in the γ values. Table 6.13 shows the
RMSE values of the simulations. A plot of the simulation where the γ values were subject
to 5% errors can be seen in figure 6.13.

78



6.2 Kalman Filter Results

Table 6.13: RMSE from simulation with Extended Kalman Filter with time varying Kalman Gain
γ values RMSE level 1 RMSE level 2 Comment
γ1 = 0.7, γ2 = 0.7 0.0010 cm 0.00075 cm Correct γ1 and γ2
γ1 = 0.735,γ2 = 0.735 3.50 cm 2.91 cm 5% error in γ1 and γ2
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Figure 6.13: Simulation of Extended Kalman filter with time varying gain and 5% errors in γ1 and γ2

It can be seen that the performance of the EFK with time varying Kalman gain is very
similar to the performance of the EKF with steady state gain when performing simula-
tions. A possible reason for this is that the Kalman gain converges to a steady state gain
matrix if the system matrix Ad is constant. If the system matrix which is linearized at
each time step does not change much, the time varying Kalman gain matrix will resemble
the steady state Kalman gain matrix, thus resulting in 2 filters which are similar.

Table 6.14 shows the root mean square error values of testing the EKF with time varying
Kalman gain on experimental data while introducing 0%, 10% and 20% model mismatch.
A plot from testing the EKF with time varying Kalman gain on experimental data when
no model mismatch is introduced can be seen in figure 6.14.
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Table 6.14: RMSE from experiment with Extended Kalman Filter with time varying Kalman gain
Parameters RMSE level 1 RMSE level 2 Mismatch
c1 = 7.584e−5 cm2.5 3.91 cm 1.01 cm 0%
c2 = 8.977e−5 cm2.5

c1 = 6.826e−5 cm2.5 7.17 cm 4.14 cm 10%
c2 = 8.079e−5 cm2.5

c1 = 6.068e−5 cm2.5 11.16 cm 8.29 cm 20%
c2 = 7.182e−5 cm2.5
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Figure 6.14: EKF with time varying Kalman gain on physical process with no model mismatch

The results are similar to the steady state Kalman gain case. The RMSE due to model
mismatch increases in a similar manner, however the RMSE is consistently lower in the
case where time varying Kalman gain is used. The reason for this is that when the
Kalman gain is frequently updated, it obtains a more correct value according to the
model that is predicting the states. This causes the state estimates to be corrected based
on a linear model approximation which should be quite accurate at the current levels,
instead of correcting the states based on a linear model which is only accurate at a fixes
level. When moving away from the points where the model was linearized the steady
state Kalman gain becomes incorrect. For plots from experiments with model mismatch
see appendix J.
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Ź.Ŷ Model Based Control Results

This section covers the results of the model based controllers developed in chapter 5.
All the controllers were first tested with the simulation model to verify that they were
correctly implemented before they were tested on the physical process. The controllers
were run in combination with the linear Kalman filter both in simulations and on the
physical process. The initial states of the MPC are the corrected state estimates of
the Kalman filter. This gives the Kalman filter a second purpose in addition to state
estimation, where the Kalman filter is used for filtration of the noisy output signals.

An experiment was designed where the references vary within the process window. The
same experiment was performed for all controllers to make it possible to compare the
results. The experiments were all done by starting with empty tanks and maximum
pump inputs for both pumps. When both level 3 and level 4 had reached 10cm the
controller was activated. By starting with empty tanks, all experiments are as similar as
possible. Experiments with the model based controllers were carried out on the physical
process with 0%, 10% and 20% model mismatch. Model mismatch was introduced in the
parameters c1 and c2 since they in combination affect all 4 tanks. The mismatch was
introduced in both the MPC model and the Kalman filter.

The fact that the quadruple tank process at USN is a slow process was exploited by in-
creasing the time step of the controllers, meaning that the sample time of the LabVIEW
program was increased for allowing a higher computational time of the controllers. This
makes it possible to have a longer horizon for the MPCs since an increased horizon res-
ults in more variables to optimize, and thus a longer computational time. The model
parameters used for the experiments can be seen in table 6.15.

Table 6.15: Parameters used for model based control experiments
Parameter Value Unit
c1 7.5844e-05 m2.5/s
c2 8.9773e-05 m2.5/s
c3 3.1148e-04 m2.5/s
c4 2.9812e-04 m2.5/s
Kp1 1.8471e-05 m3/s
Kp2 1.7805e-05 m3/s
A 0.0289 m2

γ1 0.7
γ2 0.7
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Ź.Ŷ.Ŵ Results for Linear MPC with First Principles Linear Model

The linear first principles model used in the linear MPC was linearized around the oper-
ating points shown in table 6.16.

Table 6.16: Operating points for linear MPC
Value Unit Comment

ho
1 19.0 cm Operating point level 1

ho
2 12.8 cm Operating point level 2

ho
3 11.9 cm Operating point level 3

ho
4 13.5 cm Operating point level 4

uo
1 6 V Operating point input 1

uo
2 6 V Operating point input 2

The experiments with the linear MPC were carried out with the same horizon, prediction
time step and program time step for both the simulation and the physical process. The
horizon was chosen so that the MPC could predict a sufficient time ahead to account for a
reasonable step change within the process window. The simulation model was simulated
with different time steps ∆t to find a time step for the prediction horizon which still
resulted in good model performance. The experiments for the linear MPC with the first
principles model was carried out with the parameters shown in table 6.17.

Table 6.17: MPC parameters for linear MPC with first principles linear model
Parameter Value Unit
Experiment length 440 s
Program time step 0.4 s
MPC prediction time step 5 s
MPC prediction horizon 60 s

A plot of simulating the linear MPC with integral action in combination with the linear
Kalman filter can be seen in figure 6.15 and the resulting RMSE between the reference
and outputs can be seen in table 6.18.

Table 6.18: RMSE from simulation with linear MPC with first principles linear model
RMSE level 3 RMSE level 4
0.898 cm 0.922 cm
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Figure 6.15: Controlling simulator with linear MPC in minimum phase

It can be seen that the MPC controls the simulation model without problems. The
response clearly indicates integral action since there is no steady state offset and there
is a tendency of oscillation in the levels before they settle. It can also be seen that the
Kalman filter estimates both the output and the upper levels well. The deviation seen in
the upper levels is due to model mismatch as discussed in 6.2.

Table 6.19 shows the resulting RMSE values between the references and outputs for
experiments done on the physical process where 0%, 10% and 20% mode mismatch was
introduced. A plot from the experiment with 0% additional model mismatch can be seen
in figure 6.16.

Table 6.19: RMSE from experiment with linear MPC with integral action on physical process
Parameters RMSE level 3 RMSE level 4 Mismatch
c1 = 7.584e−5 cm2.5 0.967 cm 0.70 cm 0%
c2 = 8.977e−5 cm2.5

c1 = 8.605e−5 cm2.5 0.764 cm 0.756 cm 10%
c2 = 1.045e−4 cm2.5

c1 = 9.387e−5 cm2.5 0.897 cm 0.706 cm 20%
c2 = 1.140e−4 cm2.5
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Figure 6.16: Controlling real process with linear MPC in minimum phase

From table 6.19 it can be seen that model mismatch randomly affects the MPC per-
formance. When introducing 10% model mismatch the RMSE value in level 3 decreases
slightly, and when introducing 20% model mismatch the RMSE in level 3 is less than when
there is 0% model mismatch, although greater than when there is 10% mismatch. The
variations in RMSE are likely caused by noise, thus being random. This shows that model
mismatch, within a reasonable amount, does not affect the performance of the MPC. The
MPC is therefor robust against modeling errors. This is expected since the MPC has
feedback and therefor starts the prediction with correct levels at each time step.

From figure 6.16 it can be seen that the output estimates closely follow the measured
values, although with less noise. This shows that the Kalman filter works well as a filter
in addition to estimating the states. The estimated outputs looks to have a tendency
of following below the measured levels. This is due to the major noise spikes pointing
downwards and thus lowering the mean value of the signal. The spikes are caused by
troubled water due to the water flowing into the lower tanks from the upper tanks, hence
the measured values of the upper tanks are less noisy. The estimated levels of the upper
levels deviate significantly from the measured levels. This again shows that the MPC is
robust against errors since the initial states of the MPC are the estimated states.
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6.3 Model Based Control Results

Ź.Ŷ.ŵ Results for Linear MPC with Subspace Idenࢢfied Model

Experiments with linear MPC with the subspace identified model were performed with
two models, 1 with a time step of 0.4 seconds and 1 with a time step of 1 second. The
MPC prediction time step is limited to the time step of the realized model. Therefor the
horizon was adjusted so that the solver could solve the optimization problem within the
time step of the model. For a prediction time step of 0.4s the maximum possible horizon
was 20 seconds and for a prediction time step of 1 second the maximum possible horizon
was 60 seconds. The solver generally solves the problem in less than 1 second, however
the maximum observed computational time was close to 1 second.

The MPCs were first tested on the simulation model before they were tested on the
physical process. They were tested in combination with the Kalman filter obtained from
the model identification. The reason for this is that the Kalman filter provides state
estimates which are in the same coordinate system as the states of the MPC model. Since
the estimated values of the upper tanks are in a different coordinate system than the
measured levels, only the lower tanks are presented.

A plot from controlling the simulation model with the linear MPC using the model with a
time step of ∆t = 0.4s can be seen in figure 6.17 and a plot from controlling the simulation
model with the linear MPC using the model with a time step of ∆t = 1s can be seen in
figure 6.18. The resulting RMSE values of the simulations can be seen in table 6.20.
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Figure 6.17: Results from controlling simulation model in minimum phase with linear MPC with subspace
identified model, ∆t = 0.4s
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Figure 6.18: Results from controlling simulation model in minimum phase with linear MPC with subspace
identified model, ∆t = 1s

Table 6.20: RMSE from simulation with linear MPC with subspace identified models
Model time step RMSE level 3 RMSE level 4
∆t = 0.4s 0.882 cm 0.887 cm
∆t = 1s 0.985 cm 0.993 cm

The RMSE values show that the model with ∆t = 1s performs worse than the model with
∆t = 0.4s, similar to the observations made of the Kalman filters. It can be seen from the
plots that the Kalman filter estimation of the outputs deviate more in the case where the
model has a time step of ∆t = 1s than in the case where ∆t = 0.4s. Since the MPC takes
feedback from the estimated states and not the outputs, this explains the higher RMSE
in the ∆t = 1s case.

Since it was not possible to adjust the model parameters to introduce model mismatch,
experiments were performed with both models where discharge valve 1 and 2 were manu-
ally adjusted on the physical setup. A plot from controlling the process with no model
mismatch and a model time step of 0.4 seconds can be seen in figure 6.19 and a plot from
controlling the process with no model mismatch and a model time step of 1 second can
be seen in figure 6.20. The RMSE values for all the physical experiments done with the
linear MPC with subspace identified model can be seen in table 6.21.
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Figure 6.19: Results from controlling real process in minimum phase with linear MPC with subspace
identified model ∆t = 0.4s
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Figure 6.20: Results from controlling real process in minimum phase with linear MPC with subspace
identified model where ∆t = 1s
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Table 6.21: RMSE from experiment with linear MPC with subspace identified model on physical process
Model time step RMSE level 3 RMSE level 4 Comment
∆t = 0.4s 0.997 cm 0.767 cm No model mismatch
∆t = 0.4s 0.978 cm 0.654 cm Model mismatch
∆t = 1s 1.018 cm 0.813 cm No model mismatch
∆t = 1s 1.148 cm 0.740 cm Model mismatch

The RMSE of level 4 decreases when model mismatch is introduced for both the case when
∆t = 0.4s and for the case when ∆t = 1s. This is an indication that the model mismatch
cancels the initial model mismatch in tank 4. In level 3 the model mismatch increases
the RMSE, however not much. This increase in RMSE is so small that it likely is random
and may not be the same for a different experiment. This shows that the MPC is robust
to model mismatch. By comparing the RMSE values of the ∆t = 0.4s and ∆t = 1s one can
argue that an increased sample time does not affect the MPC performance significantly.
The RMSE values are generally higher, however the difference is small. It is expected
that the model with ∆t = 1s performs worse than the model with ∆t = 0.4s, however the
increased time step has also given the benefit of an increased horizon. It is likely that this
is the reason that MPC with the less accurate model performs similar to the MPC with
the more accurate model.

Ź.Ŷ.Ŷ Results for Non-linear MPC

The non-linear MPC was simulated with both a minimum-phase and non-minimum phase
configuration. The challenge of controlling the process in non-minimum phase is that the
controller needs to capture the zero dynamics caused by the positive zero. The stability
of the controller depends on the controller being able to see the whole inverse respons.
Through trial and error it was found that in order to achieve a reasonable set point
tracking on the simulator in non-minimum phase, a horizon of 400s was needed. The
prediction time step was set to be 20 seconds to reduce computational time. Figure 6.21
shows the levels of the non-minimum phase experiment and the inputs of the experiment
can be seen in figure 6.22.

The experiment was carried out for a long time. This was necessary in order to get the
level to settle. It can be seen from the plot that the controller uses the levels of the upper
tanks to control the level in the lower tanks. When there is a step in the reference of tank 3
it is the input to pump 1 which is increased, while the input to pump 2 is decreased. This
is the opposite behaviour of how the controller reacts in a minimum phase configuration.
It shows that the MPC manages to see the inverse response and uses the opposite input
output pairing than in the minimum phase configuration. From the level plot it can be
seen that the level in the tank which is not subject to a reference change is slightly excited
in order to compensate for the reference change in the other tank. It is also possible to
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Figure 6.21: Results from controlling simulator in non-minimum phase with non-linear MPC
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Figure 6.22: Inputs of experiment when controlling simulation model in non-minimum phase with non-
linear MPC

see the inverse response that occurs before a reference change. This observation confirms
that there is high interaction and shows that the MPC theoretically is able to handle
non-minimum phase control. Controlling the physical process in non-minimum phase was
not successful and is therefor not presented.

Experiments performed with the non-linear MPC in minimum phase were carried out
similar to the linear MPC case, using the same horizon and MPC prediction time step.
The RMSE values between the references and outputs when controlling the simulation
model with the non-linear MPC is presented in table 6.22 and a level plot of the experiment
can be seen in figure 6.23.

Table 6.22: RMSE from simulation with non-linear MPC
RMSE level 3 RMSE level 4
0.004 cm 0.039 cm
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Figure 6.23: Controlling the simulation model with non-linear MPC in minimum phase

It can be seen from the plot that the MPC has no problem controlling the simulation
model in minimum phase, and the RMSE values in table 6.22 are lower than for the
linear MPC case. This is expected since the the model of the non-linear MPC and the
simulation model are identical.

Table 6.23 presents the RMSE values of running the non-linear MPC on the physical pro-
cess when 0%, 10% and 20% model mismatch is introduced. A plot from the experiment
when no additional model mismatch was introduced is shown in figure 6.24.

Table 6.23: RMSE from experiment with non-linear MPC on physical process
Parameters RMSE level 3 RMSE level 4 Mismatch
c1 = 7.584e−5 cm2.5 0.950 cm 0.878 cm 0%
c2 = 8.977e−5 cm2.5

c1 = 8.605e−5 cm2.5 0.961 cm 0.846 cm 10%
c2 = 1.045e−4 cm2.5

c1 = 9.387e−5 cm2.5 0.973 cm 0.864 cm 20%
c2 = 1.140e−4 cm2.5

It can be seen from the RMSE values that model mismatch does not decrease the per-
formance of the MPC significantly. What can be seen from the plot of the levels is that
there is a steady state offset which increases with the value of the reference. The offset
looks similar to the offset occurring when using the linear MPC on the non-linear sim-
ulation model. The non-linear MPC does not have integral action and is therefor not
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Figure 6.24: Controlling real process with non-linear MPC in minimum phase

compensating for the offset. Since the offset increases when the reference increases it
is likely that the non-linearity of the physical process and the process model is slightly
different, causing a model mismatch which increases with the level.

The estimated levels of the upper tanks resemble the estimated level of the upper tanks
in the linear MPC case, where the Kalman filter fails to estimate the levels correctly
and produces a significant estimation error. Even with a large estimation error the MPC
obtains a satisfying control.

Ź.Ŷ.ŷ Results for Linear Quadraࢢc Opࢢmal Control

Results from controlling the simulation model and the physical process with the developed
LQ controller are presented below. The experiments were carried out with a program time
step of 0.2 seconds, ensuring that both the Kalman filter estimation and controller would
be able to run within the program time step. Figure 6.25 shows the result of controlling
the simulation model with the LQ controller and the resulting RMSE values between the
references and outputs can be seen in table 6.24.

The plot shows that the outputs follow the references without any problem, however
without predictive control. The controller does not compensate for a reference change
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Figure 6.25: Controlling simulator with LQ controller in minimum phase

Table 6.24: RMSE from simulation with LQ controller
RMSE level 3 RMSE level 4
2.30 cm 3.45 cm

before it has happened. This explains why the resulting RMSE values are much greater
than in the linear MPC case.

Experiments were performed where the LQ controller was used to control the physical
process while introducing 0%, 10% and 20% model mismatch. The resulting levels for the
experiment where no additional model mismatch was introduced are shown in figure 6.26
and the RMSE values of the 3 experiments can be seen in table 6.25.

Table 6.25: RMSE from experiment with LQ controller on physical process
Parameters RMSE level 3 RMSE level 4 Mismatch
c1 = 7.584e−5 cm2.5 1.09 cm 1.12 cm 0%
c2 = 8.977e−5 cm2.5

c1 = 8.605e−5 cm2.5 1.065 cm 1.087 cm 10%
c2 = 1.045e−4 cm2.5

c1 = 9.387e−5 cm2.5 1.083 cm 1.024 cm 20%
c2 = 1.140e−4 cm2.5
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Figure 6.26: Controlling real process with LQ controller in minimum phase

It can be seen from table 6.25 that model mismatch does not have a significant impact
on the RMSE. The RMSE in level 4 decreases with model mismatch as also observed in
previous results. The controller clearly produces offset free control with good set point
tracking, indicating that integral action is working. There is minimal overshoot when
compensating for a reference change, however there is some oscillatory behaviour. This
is due to the noise signal varying randomly so that the Kalman filter produces a slightly
oscillating output estimate. The controller is constantly trying to compensate for the
varying output, thus resulting in small oscillations.
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ź Conclusion and Future Work

This chapter covers conclusions drawn from the results of the project and recommenda-
tions for future work. Conclusions about model development, Kalman filter development
and development of model based controllers is considered.

ź.Ŵ Conclusion

ź.Ŵ.Ŵ Conclusion of Model Development

The models have thoroughly been developed and calibrated to establish confidence in the
model so that the results from the Kalman filters and model based controllers can be
considered to be reasonable. Validation of the models clearly show that there is model
mismatch between the obtained models and measured data, however the model mismatch
is considered to be reasonable and expected.

Validation has shown that the performance of the non-linear model is better than the
linear model and that it is challenging to determine if the subspace identified model is
better or worse than the first principles models. The performance of the linear model is
not significantly worse than the former and is the preferred model for implementation in
Kalman filters and MPCs. Both the first principles modeling and subspace identification
approaches have advantages and weaknesses. The weakness of subspace identification
being the lack of flexibility to change the model once it has bean identified. This can
especially be inconvenient when using model based controllers and Kalman filters since
the time step is restricted to the time step of the calibration data. The benefit of using
a subspace identified model is that with little effort one can obtain a model which works
well. The weakness of first principles modeling is that it is time consuming and may be
difficult if the process is physically complex. The advantage is the flexibility one has since
the parameters easily can be updated without having to obtain a calibration data set from
the physical process. For this particular project the first principles models have been the
preferred models due to flexibility, allowing frequent changes in the γ values.
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ź.Ŵ.ŵ Conclusion of Kalman Filters

Simulations of the Kalman filters has established confidence that the filters have been
correctly implemented before applying them to the physical process. It has been shown
from both simulations and experiments that the linear Kalman filter is the preferred filter.
This is because it is the most convenient filter to implement and is most robust to model
mismatch.

Experiments show that even when the model is well calibrated the estimates of the upper
tanks deviate significantly. Depending on the application, the estimation error may be
considered unacceptable. When using the Kalman filter to obtain state estimates for the
model based controllers the estimation error looks to be insignificant due to the robustness
of the controllers, however if the estimates should be used for other purposes which require
an accurate estimate, the performance of the state estimation may be insufficient. A
typical example of this may be if the Kalman filter is used in combination with an MPC
where there has been put bounds on the states. If the state estimate is incorrect the
actual value of the state may exceed the bounds while the estimate is still within the
accepted range. Another example is if the Kalman filter should be used to keep a process
running while performing maintenance. If a sensor is to be changed on a process and the
Kalman filter can sufficiently estimate the value which the sensor measured, the process
can keep running by using the Kalman filter estimate while the sensor is being replaces.
If it is not possible to rely on the estimate, the Kalman filter cannot be used for this.

ź.Ŵ.Ŷ Conclusion of Model Based Controllers

A linear MPC using the first principles linear model, a linear MPC using the subspace
identified model, a non-linear MPC using the non-linear first principles model and a linear
quadratic controller using the linear first principles model has been developed an evalu-
ated through simulations and experiments. The linear MPCs and the LQ controller was
developed with integral action and the non-linear MPC was developed without integral
action. The results have shown successful control of both the simulation model and the
physical process and it has been shown that all controllers are robust to reasonable model
mismatch because of using feedback.

The model predictive controllers perform better than the linear quadratic controller due to
allowing predictive control, The LQ controller provides good control and has the advantage
of being simpler to both develop and implement. The non-linear MPC has a higher
computational time than the linear controllers. Since all controllers have shown robustness
to modeling error, the non-linear MPC is not a preferred controller for this specific process,
however the preferred choice of controller will be dependent on the context in which the
controller should be used.
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7.2 Future Work

ź.ŵ Future Work

ź.ŵ.Ŵ Modeling of Pumps

From validation of the models it was seen that the idle speed of the pumps caused a flow
to the lower tanks which affected the model performance. It could be interesting to try
to model the idle pump speed and the hydro static pressure difference between the upper
and lower tanks so that the model describes the flow into the tanks more accurately. One
could also include the pump dynamics in the model, however as it was shown in the model
development, the pump dynamics are a lot faster than the tank dynamics so including
the pump dynamics will likely not make the model significantly more accurate.

ź.ŵ.ŵ Controlling the Process in Non-minimum Phase

It was shown through simulations that the MPC theoretically is capable of controlling the
process in a non-minimum phase configuration. However it was not shown experimentally
as no sufficient results were obtained. The challenge is to configure the process so that it is
possible to control it within the process window. Controlling the process in non-minimum
phase requires the control to be done over a long time, thus the MPC needs to have a
long horizon and computational time increases.

ź.ŵ.Ŷ State Esࢢmaࢢon Techniques

One could explore other state estimation techniques like observers or the unscented Kal-
man filter to see if they achieve state estimates with reasonable accuracy.

ź.ŵ.ŷ Non-linear MPC with Integral Acࢢon

It may be of interest to evaluate the performance of a non-linear MPC when introducing
integral action. Through this project is has been shown that the linear MPC is preferred
due to a lower computational time, however data documenting the performance of a non-
linear MPC with integral could be obtained.

97



98



Bibliography

[1] J. L. R. N. Karl Henrik Johansson, ‘A multivariable laboratory process with an
adjustable zero’, 1998.

[2] S. Dormido and F. Esquembre, ‘The quadruple-tank process: An interactive tool for
control education’, 2003.

[3] D. D. Ruscio, ‘Model predictive control with integral action: A simple mpc al-
gorithm’, 2013.

[4] S. N. Mohd. Azam, ‘Linear discrete-time state space realization of a modified quad-
ruple tank system with state estimation using kalman filter’, 2017.

[5] D. D. Gamage, Experimental subspace identification and model predictive control of
a four tanks system, 2012.

[6] B. B. Kharel, Comparing methods for system identification on the quadruple tank
process, 2014.

[7] Whatis, Accessed 14.05.2018. [Online]. Available: https://whatis.techtarget.
com/definition/state-machine.

[8] M. R. Hansen and T. O. Andersen, Hydraulic components and systems, 2012.
[9] W. KLONOWSKI, ‘Simplifying principles for chemical and enzyme reaction kinet-

ics’, 1983.
[10] R. Sharma, ‘Lecture notes for the course iia 4117: Model predictive control’, 2017.
[11] D. D. Ruscio, Subspace system identification theory and applications, 2014.
[12] University of Ottawa and North Carolina State University, Introduction to data

reconciliation, Presentation, 2003.
[13] F. Haugen, Advanced dynamics and control, 2010.
[14] Nptel, Accessed 30.04.2018. [Online]. Available: http://nptel.ac.in/courses/

108103008/29.
[15] D. D. Ruscio, System theory state space analysis and control theory, 2016.
[16] ——, Optimal model based control: System analysis and design, 2016.
[17] Umass, Accessed 01.05.2018. [Online]. Available: http://www.ecs.umass.edu/

che/che446/2014/multiloop_control.pdf.

99

https://whatis.techtarget.com/definition/state-machine
https://whatis.techtarget.com/definition/state-machine
http://nptel.ac.in/courses/108103008/29
http://nptel.ac.in/courses/108103008/29
http://www.ecs.umass.edu/che/che446/2014/multiloop_control.pdf
http://www.ecs.umass.edu/che/che446/2014/multiloop_control.pdf


100



Appendix A

Task Descripࢢon
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Appendix B

MATLAB Script for Calibraࢢng First
Principles Model

% Parameter Ca l i b ra t i on

c l o s e a l l ; c l e a r a l l ; c l c ;
format shor t
data = importdata ( ’ p r o c e s s C a l i b r a t i o n . txt ’ ) ; % Logged data s e t

A = 0 . 0 2 8 9 ; % Area o f tanks
t s = 0 . 1 ; % Sample time o f logged data
N = f l o o r ( ( l ength ( data ) ) ∗ t s ) / t s ; % Length o f data s e t

q1 = data ( : , 5 ) ; % Flow from pump in to tank 1
q2 = data ( : , 6 ) ; % Flow from pump in to tank 2
q3 = data ( : , 7 ) ; % Flow from pump in to tank 3
q4 = data ( : , 8 ) ; % Flow from pump in to tank 4
q5 = data ( 1 :N−1 ,9) ; % Flow from pump 1
q6 = data ( 1 :N−1 ,10) ; % Flow from pump 2

L1 = data ( : , 1 ) ; % Level tank 1
L2 = data ( : , 2 ) ; % Level tank 2
L3 = data ( : , 3 ) ; % Level tank 3
L4 = data ( : , 4 ) ; % Level tank 4

u1 = data ( 1 :N−1 ,11) ; % S igna l to pump 1
u2 = data ( 1 :N−1 ,12) ; % S igna l to pump 2

% Computing f low through each va lve at each t imestep

f o r i = 1 :N−1

qout1 ( i , 1 ) = q1 ( i ) − A∗(L1( i +1)−L1( i ) ) / t s ; % Qout tank 1
qout2 ( i , 1 ) = q2 ( i ) − A∗(L2( i +1)−L2( i ) ) / t s ; % Qout tank 2
qout3 ( i , 1 ) = q3 ( i ) + qout1 ( i ) − A∗(L3( i +1)−L3( i ) ) / t s ; % Qout tank 3
qout4 ( i , 1 ) = q4 ( i ) + qout2 ( i ) − A∗(L4( i +1)−L4( i ) ) / t s ; % Qout tank 4
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end

sL1 = sq r t (L1 ( 1 :N−1 , : ) ) ; % Square root o f l e v e l in tank 1
sL2 = sq r t (L2 ( 1 :N−1 , : ) ) ; % Square root o f l e v e l in tank 2
sL3 = sq r t (L3 ( 1 :N−1 , : ) ) ; % Square root o f l e v e l in tank 3
sL4 = sq r t (L4 ( 1 :N−1 , : ) ) ; % Square root o f l e v e l in tank 4

% So l ing equat ion ” K = Q/ sq r t (h) ” f o r each va lve

c1 = mean( qout1 ) /mean( sL1 ) ; % Valve c o e f f i c i e n t f o r tank va lve 1
c2 = mean( qout2 ) /mean( sL2 ) ; % Valve c o e f f i c i e n t f o r tank va lve 2
c3 = mean( qout3 ) /mean( sL3 ) ; % Valve c o e f f i c i e n t f o r tank va lve 3
c4 = mean( qout4 ) /mean( sL4 ) ; % Valve c o e f f i c i e n t f o r tank va lve 4

% Disp lay ing va lve c o e f f i c i e n t s in t ab l e

C o e f f i c i e n t s = [ c1 c2 c3 c4 ] ’ ;
rownames = { ’ c1 ’ , ’ c2 ’ , ’ c3 ’ , ’ c4 ’ } ;
V a l v e C o e f f i c i e n t s = tab l e ( C o e f f i c i e n t s , ’ rowNames ’ , rownames )

% −−−−−−−−−−− Ca l i b ra t i ng pump ga ins from logged data −−−−−−−−−−−−−−−−−−

% Sort ing data f o r c a l i b r a t i n g pump ga ins

% I n i t i a l i z i n g indexes

pq5 = 1 ; pq6 = 1 ;

f o r i = 1 :N−1

i f u1 ( i ) >= 2

q5logged ( pq5 ) = q5 ( i ) ;
u1logged ( pq5 ) = u1 ( i ) ;

pq5 = pq5 + 1 ;
end
i f u2 ( i ) >= 2

q6logged ( pq6 ) = q6 ( i ) ;
u2logged ( pq6 ) = u2 ( i ) ;

pq6 = pq6 + 1 ;
end

end

Qp1 = mean( q5logged ) ; % Mean f l o w r a t e o f pump 1
Up1 = mean( u1logged ) ; % Mean input s i g n a l to pump 1

Qp2 = mean( q6logged ) ; % Mean f l o w r a t e o f pump 2
Up2 = mean( u2logged ) ; % Mean input s i g n a l to pump 2
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Kp1 = Qp1/Up1 ; % Slope o f f l o w r a t e f o r pump 1 ( Upper tank )
Kp2 = Qp2/Up2 ; % Slope o f f l o w r a t e f o r pump 2 ( Upper tank )

% Disp lay ing pump ga ins in tab l e

Gain = [ Kp1 Kp2 ] ’ ;
rownames = { ’Kp1 ’ , ’Kp2 ’ } ’ ;
PumpGains = tab l e ( Gain , ’ rowNames ’ , rownames )
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Appendix C

MATLAB Funcࢢon for Extended Kalman
Filter with Steady State Gain

f unc t i on x = extKalmanFilterSsG (x , y , u ,K, parameters , t s )

% Parameters

%Valve c o e f f i c i e n t s

c1 = parameters (1 ) ; % Valve c o e f f i c i e n t f o r d i s cha rge va lve 1
c2 = parameters (2 ) ; % Valve c o e f f i c i e n t f o r d i s cha rge va lve 2
c3 = parameters (3 ) ; % Valve c o e f f i c i e n t f o r d i s cha rge va lve 3
c4 = parameters (4 ) ; % Valve c o e f f i c i e n t f o r d i s cha rge va lve 4

% Pump ga ins

Kp1 = parameters (5 ) ; % Pump gain f o r pump 1
Kp2 = parameters (6 ) ; % Pump gain f o r pump 2

% Other parameters

A = parameters (7 ) ; % Tank area
g1 = parameters (8 ) ; % Gamma value f o r three−way valve 1
g2 = parameters (9 ) ; % Gamma value f o r three−way valve 2

%−−−−−−−−−−−−−−− Kalman f i l t e r a lgor i thm −−−−−−−−−−−−−−−−−−−−−−−−

y_est = [ x (3 ) ; x (4 ) ] ; % Gett ing pred i c t ed output

x = x + K∗( y − y_est ) ; % Correc t ing est imated s t a t e s

% Estimating s t a t e s f o r next t imestep

x1 = x (1) + t s /A∗(Kp1∗u (1) ∗(1−g1 ) − c1∗ sq r t ( x (1 ) ) ) ;

x2 = x (2) + t s /A∗(Kp2∗u (2) ∗(1−g2 ) − c2∗ sq r t ( x (2 ) ) ) ;
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Appendix C MATLAB Function for Extended Kalman Filter with Steady State Gain

x3 = x (3) + t s /A∗(Kp2∗u (2) ∗g2 + c1∗ sq r t ( x (1 ) ) − c3∗ sq r t ( x (3 ) ) ) ;

x4 = x (4) + t s /A∗(Kp1∗u (1) ∗g1 + c2∗ sq r t ( x (2 ) ) − c4∗ sq r t ( x (4 ) ) ) ;

% Creat ing s t a t e vec to r

x = [ x1 ; x2 ; x3 ; x4 ] ;

end
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Appendix D

MATLAB Funcࢢon for Extended Kalman
Filter with Time Varying Kalman Gain

f unc t i on [ x , Pp ] = myExtendedKalmanFilter (x , y , u , parameters , ts , Pp ,Q,R)

c1 = parameters (1 ) ; % Discharge c o e f f i c i e n t va lve 1
c2 = parameters (2 ) ; % Discharge c o e f f i c i e n t va lve 2
c3 = parameters (3 ) ; % Discharge c o e f f i c i e n t va lve 3
c4 = parameters (4 ) ; % Discharge c o e f f i c i e n t va lve 4
Kp1 = parameters (5 ) ; % Pump gain pump 1
Kp2 = parameters (6 ) ; % Pump gain pump 2
A = parameters (7 ) ; % Tank area
g1 = parameters (8 ) ; % S p l i t f a c t o r 1
g2 = parameters (9 ) ; % Splot f a c t o r 2

% L i n e a r i z i n g system matrix

Ac = [−c1 /(2∗A∗ sq r t ( x (1 ) ) ) 0 0 0 ;
0 −c2 /(2∗A∗ sq r t ( x (2 ) ) ) 0 0 ;
c1 /(2∗A∗ sq r t ( x (1 ) ) ) 0 −c3 /(2∗A∗ sq r t ( x (3 ) ) ) 0 ;
0 c2 /(2∗A∗ sq r t ( x (2 ) ) ) 0 −c4 /(2∗A∗ sq r t ( x (4 ) ) ) ] ;

I = eye (4 ) ;

Ad = I + t s ∗Ac ; % D i s c r e t i z i n g matrix A

Cd = [ 0 0 1 0 ;
0 0 0 1 ] ;

% Updating Kalman Gain

G = eye (4 ) ;

% Computing cur rent Kalman gain
K = Pp∗Cd’ ∗ (Cd∗Pp∗Cd’ + R) ^−1;

% Computing cur rent auto−covar iance o f c o r r e c t ed s t a t e
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Appendix D MATLAB Function for Extended Kalman Filter with Time Varying
Kalman Gain

Pc = ( I − K∗Cd) ∗Pp ;

% Computing next time step auto−covar iance o f p r ed i c t ed s t a t e
Pp = Ad∗Pc∗Ad’ + G∗Q∗G’ ;

% Updating s t a t e e s t imate

y_est = Cd∗x ;

x = x + K∗( y − y_est ) ;

h1 = x (1) + t s /A∗(Kp1∗u (1 ) ∗(1−g1 ) − c1∗ sq r t ( x (1 ) ) ) ; % Tank 1

h2 = x (2) + t s /A∗(Kp2∗u (2 ) ∗(1−g2 ) − c2∗ sq r t ( x (2 ) ) ) ; % Tank 2

h3 = x (3) + t s /A∗(Kp2∗u (2 ) ∗g2 + c1∗ sq r t ( x (1 ) ) − c3∗ sq r t ( x (3 ) ) ) ; % Tank 3

h4 = x (4) + t s /A∗(Kp1∗u (1 ) ∗g1 + c2∗ sq r t ( x (2 ) ) − c4∗ sq r t ( x (4 ) ) ) ; % Tank 4

x = [ h1 ; h2 ; h3 ; h4 ] ;

end
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Appendix E

MATLAB Script for Formulaࢢon of QP
Problem

f unc t i on [H, Ae , c ] = buildIntegralMPCdu (Q,P,A,B,C,N)

% Def in ing number o f s t a t e s , inputs and outputs
nx = 6 ; ny = 2 ; nu = 2 ;
nz = N∗( nx + nu + 2∗ny ) ; % Total number o f unknowns

% Quadratic c o e f f i c i e n t s

H11 = kron ( eye (N) ,P) ; % C o e f f i c i e n t s f o r du ’P du
H22 = ze ro s (N∗nx ,N∗nx ) ; % C o e f f i c i e n t s f o r x ( non in o b j e c t i v e )
H33 = kron ( eye (N) ,Q) ; % C o e f f i c i e n t s f o r e ’ E e
H44 = ze ro s (N∗ny ,N∗ny ) ; % C o e f f i c i e n t s f o r y ( non in o b j e c t i v e )

H = blkd iag (H11 , H22 , H33 , H44) ;

% Linear c o e f f i c i e n t s

c = ze ro s ( nz , 1 ) ;

% State equat ion dxk+1 = Adx + Bdu

Ae1du = kron(−eye (N) ,B) ;
Ae1x = eye (N∗nx )−kron ( diag ( ones (N−abs (−1) ,1 ) ,−1) ,A) ;
Ae1e = ze ro s (N∗nx ,N∗ny ) ;
Ae1y = ze ro s (N∗nx ,N∗ny ) ;

% e equat ion ek = rk − yk

Ae2du = ze ro s (N∗ny , N∗nu) ;
Ae2x = ze ro s (N∗ny , N∗nx ) ;
Ae2e = eye (N∗ny ) ;
Ae2y = eye (N∗ny ) ;

% y equat ion yk = Cdxk
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Appendix E MATLAB Script for Formulation of QP Problem

Ae3du = ze ro s (N∗ny ,N∗nu) ;
Ae3x = −kron ( eye (N) ,C) ;
Ae3e = ze ro s (N∗ny ,N∗ny ) ;
Ae3y = eye (N∗ny ) ;

Ae = [ Ae1du Ae1x Ae1e Ae1y ;
Ae2du Ae2x Ae2e Ae2y ;
Ae3du Ae3x Ae3e Ae3y ] ;

end
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Appendix F

MATLAB Funcࢢon for Linear MPC with
Integral Acࢢon

f unc t i on du = integralMPCdu (H ,Ae , c , Ubl , Ubu , A, x0 , R, N)

% Def in ing number o f s t a t e s , inputs and outputs
nx = 6 ; ny = 2 ; nu = 2 ;
nz = N∗( nx + nu + 2∗ny ) ; % Total number o f unknowns

% Creat ing bounds ve c t o r s

lowerLims = [ Ubl (1 ) ; % Lower bound o f du1
Ubl (2 ) ; % Lower bound o f du2

− i n f ∗ ones ( nz/N−nu , 1 ) ] ; % Lower bound o f remaining unknowns

ZL = kron ( ones (N, 1 ) , lowerLims ) ; % Expanding to the whole hor i zon

upperLims = [ Ubu(1) ; % Upper bound o f du1
Ubu(2) ; % Upper bound o f du2

I n f ∗ ones ( nz/N−nu , 1 ) ] ; % Upper bound o f remaining unknowns

ZU = kron ( ones (N, 1 ) , upperLims ) ; % Expanding to the whole hor i zon

% Creat ing cons tant s vec to r

be1 = [A∗x0 ; z e r o s ( (N−1)∗nx , 1 ) ] ; % Constants in x = Ax + Bu
be2 = reshape (R,N∗ny , 1 ) ; % Constants in e = r − y
be3 = ze ro s (N∗ny , 1 ) ; % Constants in y = Cx

be = [ be1 ; be2 ; be3 ] ; % Constant vec to r

ops = opt imset ( ’ Display ’ , ’ o f f ’ ) ; % Se t t i ng opt ions f o r quadprog

% So lv ing problem

[ u_opt]= quadprog (H, c , [ ] , [ ] , Ae , be , ZL ,ZU, [ ] , ops ) ;
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Appendix F MATLAB Function for Linear MPC with Integral Action

% Extract ing the f i r s t optimal de l t a u ’ s

du1 = u_opt (1 ) ;
du2 = u_opt (2 ) ;

% Sort ing in to vec to r
du = [ du1 ; du2 ] ;

end
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Appendix G

Matlab Funcࢢon for Compuࢢng Objecࢢve of
Non-linear MPC

f unc t i on J = computeObjective (u , s t a t e s , ts , r e f ,N, parameters ,Q,P, u0 )

% Extract ing model paramteres

c1 = parameters (1 ) ; % Valve c o e f f i c i e n t tank 1
c2 = parameters (2 ) ; % Valve c o e f f i c i e n t tank 2
c3 = parameters (3 ) ; % Valve c o e f f i c i e n t tank 3
c4 = parameters (4 ) ; % Valve c o e f f i c i e n t tank 4
Kp1 = parameters (5 ) ; % Pump gain (pump 1 to tank 1)
Kp2 = parameters (6 ) ; % Pump gain (pump 2 to tank 2)
A = parameters (7 ) ; % Tank area
g1 = parameters (8 ) ; % Gamma value f o r s p l i t va lve 1
g2 = parameters (9 ) ; % Gamma value f o r s p l i t va lve 2

% Extract ing i n i t i a l s t a t e s

h1 = s t a t e s (1 ) ; % I n i t a l l e v e l 1
h2 = s t a t e s (2 ) ; % I n i t a l l e v e l 2
h3 = s t a t e s (3 ) ; % I n i t a l l e v e l 3
h4 = s t a t e s (4 ) ; % I n i t a l l e v e l 4

% I n i t i a l i z i n g v a r i a b l e s and computing cons tant s

J = 0 ; % I n i t i a l i z i n g o b j e c t i v e
uk_last = u0 ; % Gett ing prev ious optimal c o n t r o l input
a = t s ∗1/A; % I n i t i a l i z i n g constant de l t a t / area

%//////////////////////////////////////////////////////////////////
% Simulat ing the proce s s f o r the whole p r e d i c t i o n hor izon
%//////////////////////////////////////////////////////////////////

f o r i = 1 :N−1

uk1 = u( i , 1 ) ; % Extract ing input 1 f o r cur rent time step
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Appendix G Matlab Function for Computing Objective of Non-linear MPC

uk2 = u( i , 2 ) ; % Extract ing input 2 f o r cur rent time step

%−−−−−−−−−−−−−−−− Simulat ing the proce s s −−−−−−−−−−−−−−−−−−−−−−−−−−

h1 = h1 + a ∗(Kp1∗uk1∗(1−g1 ) − c1∗ sq r t ( h1 ) ) ; % Tank 1

h2 = h2 + a ∗(Kp2∗uk2∗(1−g2 ) − c2∗ sq r t ( h2 ) ) ; % Tank 2

h3 = h3 + a ∗(Kp2∗uk2∗g2 + c1∗ sq r t ( h1 ) − c3∗ sq r t ( h3 ) ) ; % Tank 3

h4 = h4 + a ∗(Kp1∗uk1∗g1 + c2∗ sq r t ( h2 ) − c4∗ sq r t ( h4 ) ) ; % Tank 4

%−−−−−−−−−−−−−−−−−−− Computing o b j e c t i v e −−−−−−−−−−−−−−−−−−−−−−−−−−

uk = [ uk1 ; uk2 ] ; % Input vec to r f o r cur rent time step

e = [ ( r e f ( i , 1 ) − h3 ) ; % Errors o f cur rent time step
( r e f ( i , 2 ) − h4 ) ] ;

% Updating o b j e c t i v e

J = J + e ’ ∗Q∗e + ( ( uk−uk_last ) ’/ t s ∗P∗(uk−uk_last ) / t s ) ;

uk_last = uk ; % Saving cur rent input f o r next i t e r a t i o n

end
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Appendix H

Result Plots from Experiment with Linear
Kalman Filter
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Figure H.1: Linear Kalman filter on physical process with 10% model mismatch
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Appendix H Result Plots from Experiment with Linear Kalman Filter
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Figure H.2: Linear Kalman filter on physical process with 20% model mismatch
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Appendix I

Result Plots from Experiment with Extended
Kalman Filter with Steady State Kalman
Gain
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Figure I.1: Extended Kalman filter with steady state Kalman gain on physical process with 10% model
mismatch
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Appendix I Result Plots from Experiment with Extended Kalman Filter with Steady
State Kalman Gain
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Figure I.2: Extended Kalman filter with steady state Kalman gain on physical process with 20% model
mismatch

122



Appendix J

Result Plots from Experiment with Extended
Kalman Filter with Time Varying Kalman
Gain
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Figure J.1: Extended Kalman filter with time varying Kalman gain on physical process with 10% model
mismatch
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Appendix J Result Plots from Experiment with Extended Kalman Filter with Time
Varying Kalman Gain
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Figure J.2: Extended Kalman filter with time varying Kalman gain on physical process with 20% model
mismatch
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