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Summary:  
In oil drilling operation, the estimation of returning flow is vital for safe operation. The 
return flow gives an early warning of kick-loss phenomenon. Detecting kick-loss is 
important to prevent uncontrolled well-blowout. The estimated slow of the returning fluid 
is a primary indicator of a kick or a loss. The existing methods for flow estimation angle-
based paddle sensor or Coriolis flow meter. These methods are either unreliable or too 
expensive. 

The aim of this thesis work is to investigate other reliable flow estimation methods. 
Therefore, dynamic model-based flow estimation technique is proposed here. Using 
dynamic model, suitable estimators such as Luenberger observer and Kalman filters can 
be designed. Such technique reduces the operational and maintenance costs of using 
expensive flow measuring mechanical devices such as Coriolis flow meters. 

A model of top-side open venturi channel is developed as a set of St. Venant equations for 
one spatial dimension which are a class of quasi-linear hyperbolic partial differential 
equations (PDEs). These PDEs are reduced to a set of nonlinear first order ordinary 
differential equation (ODEs) using orthogonal collocation methods and Lagrange 
interpolating polynomials. The nonlinear ODEs are linearized around a suitable operating 
point. Based on the linear ODEs, linear Luenberger full order state observer as well as 
linear Kalman filter (LKF) is designed. For designing nonlinear Kalman filters such as 
extended Kalman filter (EKF) and unscented Kalman filter (UKF), nonlinear ODEs are 
used. 

Different types of state estimators are applied to model and real system. UKF outperforms 
all other estimators investigated during this thesis work. UKF converges faster and is more 
robust. It is able to filter out the noise. The error between the estimated flow rates and the 
measured flow rates is minimized. However, a proper tuning of process and measurement 
noise covariance matrices is necessary for UKF to provide optimal state estimation. 

For increased accuracy in flow estimation, an improved version of the ODEs are 
recommended. PDE-observers are recommended for further improvement in the flow 
estimation. Based on the results of this thesis work, the future of model based flow 
estimation technique in oil industry looks promising. 
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Abbreviations 
Here is the list of abbreviations that are used throughout the report unless specified in the 
specific sections. 
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1D Unidirectional or 1 directional 

ANN Artificial Neural Network 

ARE Algebraic Riccati Equation 

BOP Blowout Preventer 

C-DARE Continuous Differential Algebraic Riccati Equation 

DARE Discrete Algebraic Riccati Equation 

EiSj Experiment “i”, setup “j” for data acquisition at the venturi 
rig. E1S1, E1S2, E2S1, E2S2, E3S1, E3S2, E4S1 and E4S2 

EKF Extended Kalman Filter 

FT14A Coriolis flow meter for measuring mass flow rate 

GUI Graphical user interface 

HOT Higher Order Terms 

ℎ𝑀 MODEL Model based on level (ℎ) and mass flow rate (𝑀) 

LHS Left Hand Side 

LKF Linear Kalman Filter 

LPF Lowpass Filter 

LT18 Ultrasonic level transmitter for measuring fluid level at 
collocation point 1 

LT19 Radar level transmitter for measuring fluid level at 
collocation point 1 

LTI Linear Time Invariant 

MEDF Median filter. Built-in filter available in MATLAB. 
“medflt1.m” 

MPC Model Predictive Controller 

ODE Ordinary Differential Equations 
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P&ID Piping and Instrumentation Diagram 

PDE Partial Differential Equations 

PI Proportional Integral 

RHS Right Hand Side 

RK4 Runge-Kutta 4th order 

SISO Single Input Single Output 

SS State Space 

SSPE Sum Squared Prediction Error 

SVE Saint Venant Equations 

UKF Unscented Kalman Filter 

USN University of South-Eastern Norway 

WMAF Weighted Moving Average Filter 

𝐴𝑄 MODEL Model based on wetted cross-sectional area, (𝐴) and 
volumetric flow rate, (𝑄) 
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Nomenclature 
Here is the list of abbreviations that are used throughout the report unless specified in the 
specific sections. 

 

SYMBOLS DESCRIPTION UNIT 

ℎ̂2 
Estimated mass flow rate at the collocation point 1. First 
estimated state given by estimator, 𝑦̂ = 𝑥̂1 

[𝑚] 

𝑀̂1 
Estimated mass flow rate at the collocation point 1. Second 
estimated state given by estimator, 𝑥̂2 

[
𝑘𝑔
𝑠
] 

𝑀̂2 
Estimated mass flow rate at the collocation point 1. Third 
estimated state given by estimator, 𝑥̂3 

[
𝑘𝑔
𝑠
] 

ℎ1 
Level measured at the collocation point 1. Input of the venturi 
model, 𝑢 [𝑚] 

ℎ2 Level measured mass flow rate at the collocation point 2. First 
state and the output of the venturi model, 𝑦 = 𝑥1 

[𝑚] 

𝐼1 
Static hydrostatic pressure due to change in fluid cross-
sectional area (A) at a given point along the channel [𝑚3] 

𝐼2 
Static hydrostatic pressure due to width variation at a given 
point along the channel [𝑚3] 

𝑀1 
Predicted mass flow rate at the collocation point 1. Second 
state of the venturi model, 𝑥2 

[
𝑘𝑔
𝑠
] 

𝑀2 
Predicted mass flow rate at the collocation point 2. Third state 
of the venturi model, 𝑥3 

[
𝑘𝑔
𝑠
] 

𝑆𝑏 Channel bed slope. Depends on 𝜑 [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝑆𝑓 Friction slope at a given point along the channel [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝑆𝑠 = 𝑆𝐿 Side wall slope. Depends on 𝛼 [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝑇𝑓 Lowpass filter time constant [𝑠] 

𝑇𝑠 Sampling time. (data logging time for experiment) [𝑠] 

𝑉̇ = 𝑄 Volumetric flow rate [
𝑚3

𝑠
] 

𝑐1 
Collocation point 1. Position of the input level measurement 
sensor (LT19 – radar) [𝑚] 
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𝑐2 
Collocation point 2. Position of the output level measurement 
sensor (LT18 – ultrasonic) [𝑚] 

𝑘𝑠 Strickler friction coefficient, depends on 𝑛𝑀 [
√𝑚3

𝑠
] 

𝑚̇ = 𝑀 Mass flow rate [
𝑘𝑔
𝑠
] 

𝑛𝑀 Manning’s roughness coefficient [
𝑠
√𝑚3
] 

𝑛𝑢 Number of inputs to the system (model) [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝑛𝑥 Number of states of the system (model) [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝑛𝑦 Number of outputs from the system (model) [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝑥̂ 
Estimated states. In case of dynamic venturi model, 𝑥̂, is a 
column vector of model states. 𝑥̂ = [𝑥̂1 𝑥̂2 𝑥̂3]𝑇 =
[ℎ̂2 𝑀̂1 𝑀̂2]𝑇 

[𝑚,
𝑘𝑔
𝑠
,
𝑘𝑔
𝑠
] 

𝜎2 Variance (squared standard deviation)  

≡ “Equivalent to” or “the same as”  

ℎ Fluid depth (level) at a given point along the channel [𝑚] 

𝐴 Wetted cross-sectional area at a given point along the channel [𝑚2] 

𝐷 
Rate of change of area w.r.t. level. Also, the scaling factor for 
rate of change of level w.r.t. time and rate of change of area 
w.r.t. time 

[𝑚] 

𝐿 Channel length between collocation point 1, 𝑐1 and 
collocation point 2, 𝑐2 

[𝑚] 

𝑃 Wetted perimeter at a given point along the channel [𝑚] 

𝑅 Hydraulic radius at a given point along the channel [𝑚] 

𝑊 Base width of the channel at a given point along the channel [𝑚] 

𝑔 Acceleration due to gravity [
𝑚
𝑠2
] 

𝑢 Input to the dynamic model of the venturi system as well as to 
the state estimators. 𝑢 = ℎ1 

[𝑚] 

𝑣 Mean velocity of the liquid [
𝑚
𝑠
] 
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𝛼 
Angle made by the side wall of the channel (rotating around 
x-axis) with the horizontal plane (xy-plane). Upward rotation 
of the side wall is the positive direction, increasing 𝛼. 

[𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 

𝛽 Momentum correction factor (Boussinesq’s coefficient) [𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠] 

𝜃 

Angle made by the diverging wall of the channel (rotating 
around z-axis) with the vertical plane (xz-plane). Outward 
rotation of the diverging wall is the positive direction, 
increasing 𝜃. 

[𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 

𝜇 Mean  

𝜌 Density of the fluid [
𝑘𝑔
𝑚3
] 

𝜎 Standard deviation  

𝜑 
Angle made by the channel base (rotating around y-axis) with 
the horizontal plane (xy plane). Upward rotation of the 
channel base is the positive direction, increasing 𝜑. 

[𝑑𝑒𝑔𝑟𝑒𝑒𝑠] 
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1 Introduction 
This chapter discusses the introductory part of the thesis. This is a transitional chapter towards 
the main objective of the project at hand which is analyzed in the subsequent chapters. It defines 
the scope of the document and the background of the problem that is to be tackled. It 
encompasses the big picture of the project for quick understanding of what the main goal is 
and the methodology used. 

1.1 Scope 
In this report, the focus is on developing and implementing the state observer and an optimal 
estimator to estimate the flow through an open channel. A mathematical model is used to design 
suitable observers and estimators. It is also important to analyze the stability of the model 
before proceeding with estimating techniques. Development and implementation of simulator 
is also discussed in detail. The report is divided into three main sections. Each section is 
subdivided into chapters that are closely related. 

x Section 1: Structure of the venturi flume (open channel) and a mathematical model to 
describe the flow dynamics through it. 

x Section 2: Flow estimation using the state observer and optimal estimator (Kalman 
filter) and implementation on the real process. 

x Section 3: Discussions, future work and conclusion 

The structure of the report follows a specific pattern. First part of a chapter focuses on the 
theory behind the topic of discussion. The second part elaborates and analyses the theory by 
implementing the idea on mathematical model. Implementation on the real system is discussed 
in the last contextual chapter about experimentation and result. 

1.2 Background 
Efficiency. One word that is a major goal of a company. The context in which efficiency is 
defined varies from industry to industry. Oil industry, for years, has been focusing on 
minimizing the operational cost and maximizing the oil production to meet the energy demand 
of the general population. Due to the imposed safety regulations, safety of the worker is 
extremely important. To meet these demands, oil industry is constantly seeking new ways to 
optimize the sales profit while abiding by the laws. Oil industry is playing a catch-up with the 
fast pace of the modern technology since they are still using the old sensor-based measuring 
techniques. There have been suggested different approaches on how to optimize the sales profit. 
For instance, by automating the flow and pressure measurements thus eliminating the manual 
manpower which allows them to cut the manual labor cost and increase the safety of the rig. In 
this thesis, the methodology proposed is based on a mathematical (physical) model with an aim 
to replace the expensive mechanical devices. There have been some works in this field 
previously to estimate the flow on the top side using mathematical approaches. As suggested 
in a paper, the flow can be estimated using the idea of minimum specific energy and Froude 
number at the critical depth [1]. Good old Bernoulli’s principle is at the heart of the methods 
that uses energy models. Model predictive technique such as artificial neural network is also in 
the works which produces complex mathematical model. However, there has been no effort, as 
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of today to my knowledge, on estimating flow in an open channel using an observer or an 
estimator such as Kalman filter. In this case, the mathematical model is based on the dynamic 
model of the venturi flume that gives rise to the Saint Venant Equations (SVEs). 

1.3 Overview 
This section covers the overview, the big picture, of the task at hand. Mass flow rate through 
open channel (𝑀) is estimated using observers and estimators such as Kalman filters. This 
approach, however, requires the level measurements over the top side of the open channel at 
two points along the channel 𝑐1 and 𝑐2. In this case, the input to the system is the level measured 
at a point 𝑐1 along the venturi channel. The output of the system is the level measured at a point 
𝑐2 along the throat (constriction) of the channel as shown in Figure 1.1. The mass flow rate is 
estimated at both points where the level sensors (𝐿𝑇19) and (𝐿𝑇18) are installed as (𝑀1) and 
(𝑀2) respectively. At the steady state, both flow rates should be same. At the point 𝑐1, LT19 
measures the input level ℎ1. Similarly, At the point 𝑐2, LT18 measures the input level ℎ2. It is 
important to note that the position for the input level measurement, 𝑐1 must be at the subcritical 
region of the flow regime. In other words, level measured at the position 1, ℎ1 must be higher 
than the level measured at the position 2, ℎ2 as given by (10.10). LT18 and LT19 are the level 
transmitters used at the lab at USN. Selecting the position 2 at the throat of the venturi channel 
satisfies this condition given that the position 1 is in subcritical region. 

ℎ1 > ℎ2 (1.1) 

Open Channel

Observer/
Estimator

h2 (y, output)

h1 (u, input)

LT-
19

LT-
18

MM

M̂

c1c2

 
Figure 1.1: Overview of the flow estimation through open venturi channel (top view). 

1.4 Objectives 
The main objective of this thesis is to use mathematical model and design a suitable state 
observer or estimator for estimating the mud-flow through the open venturi channel. The aim 
of estimation of return flow is to detect an early warning of kick-loss that might occur during 
drilling operation. The early warning of kick-loss can prevent hazardous situations such as 
uncontrolled blowout. Such detection can also help mud engineer to determine the mud type 
required for efficient drilling operation. Importance of kick-loss detection is discussed in detail 
in later chapters. Therefore, flow estimation of the returning fluid is vital for safe operation. 
For reliable flow estimation, expensive Coriolis flow meters are used today. The benefit of 
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using mechanistic model is that it helps to replace expensive flow measuring devices (sensors 
or flow meters) such as Coriolis flow meters. That will significantly reduce the installation, 
maintenance and operational cost. To achieve this objective, the task is divided into smaller 
subtasks as listed below: 

x Linearize the nonlinear ODEs around a suitable operating point 
x Develop and implement a linear and a nonlinear simulator and compare the outcome 
x Perform the model parameter sensitivity analysis 
x Determine the stability and the observability of the model 
x Design a stable linear observer and compare with both linear and nonlinear simulator 
x Design an optimal estimator in the form of Kalman filter and compare it with the linear 

observer, linear model and nonlinear model 
x Perform experiments at the lab and log the appropriate data 
x Test the linear observer and Kalman filter with the data from the real process 

o Investigate the effect of noise in the observer 
o Implement different filters for the input signal and discuss their performance 

and effect on the estimates 
x If necessary, optimize the model parameters to reflect the behavior of the real system 

in the model 
x Design and implement nonlinear estimator (Extended and Unscented Kalman filter) 
x Implement and compare the nonlinear estimator with the model and the real data 

These goals are also defined under the task description in Appendix 12. 

1.5 Requirements 
Designing an observer mathematically is a portion of the full extent of the task. For a full-
fledged working observer, programming, testing and deployment is necessary. To achieve this, 
some software modules are used. For this thesis work, the software modules used are listed 
below: 

x LabVIEW from National Instruments 
o With control design and simulation toolkit 

x MATLAB from MathWorks 
o With Simulink module 

x Visio – diagram drawing tool from Microsoft 

1.6 Navigating through the report 
A digital version such as “.docx” and “.pdf” of the report contains many references and cross-
references to avoid the cluttering with same information repeating over again. References to 
chapters, sections, figures, equations, tables and other relevant contents are hyperlinked (cross-
referred). Clicking on a link will take to the linked section. Going back to the previously viewed 
page in Adobe Reader DC (version 2018.011.20038 or newer) is done from the menu bar as: 
View>Page Navigation>Previous View or simply by using keyboard shortcut “left Alt + left 
arrow”. The keyboard shortcut also works in case of the Microsoft Word 2016 or later. 
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SECTION – I 

DRILLING OPERATION, 

VENTURI FLUME AND ITS MATHEMATICAL MODEL 
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2 Oil well drilling operation 
This chapter casts some light on the modern oil well drilling operation offshore. Standardized 
drill operation consists of specific sequence of operations. In this chapter, the focus is on 
offshore drilling method. 

2.1 Drilling operation 
A thick walled large diameter hollow tube called conductor tube is embedded into the sea-
floor. A jet bit is inserted through the conductor to drill the rocks and sediments on the sea 
floor. The rock cuttings are removed by forcing high pressure sea water through the nozzles of 
the jet bit. The jet bit is removed after drilling a few hundred meters into the sea bed depending 
on type of the sea bed and the bed rock. A second conductor tube, with smaller diameter than 
the previous conductor, is inserted and is fixed in place by injecting concrete that forms the 
protective layer between the conductor tube and the well bored as shown in Figure 2.1. The 
concrete is injected to prevents the water from the surroundings to enter the well bore. A 
smaller diameter drill bit is then used to dig the well further. After a certain depth, a steel tubing 
called casing is inserted and is fixed in place by injecting concrete again. A riser, a tube through 
which a special kind of drilling fluid called drilling mud is returned, is lowered and locked in 
place along with the blow-out preventer valve (a set of advance high-pressure safety valves) 
[2]. This is the preliminary setup of the drilling operation offshore. From this stage onwards, 
the procedure is similar to the onshore drilling procedure. 

Rock type 3

Rock type 4

Rock type 1

Rock type 2

Reservoir 1 Reservoir 
3

Concrete layer

Conductor tube

Casing

BOP valve

Riser

Production Casing

 
Figure 2.1: Oil well drilling overview (inside view) 
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The drilling continuous by inserting a smaller drill bit as a new rock types is encountered. 
During this stage, a clear drilling mud is injected into the well using a pump to take out the 
cuttings and chippings [3]. The mud is circulated continuously. Rock cuttings carried out by 
the mud is analyzed for the chemical composition of the mixture. It helps to determine the type 
of drilling mud required to tackle the pressure difference and prevent the blow out. The cuttings 
are removed from the mud using cutting removal equipment. The cleaned mud is put into the 
active mud pit for reuse. The closed loop system is illustrated in Figure 2.2. The process 
continuous until the oil reservoir is reached. Final casing is then inserted and cemented on 
place. The last part is then to insert the perforated production pipe. When the drilling is finished, 
the production begins. 

Sometimes, it is difficult to pinpoint accurately the position of the reservoir. In such cases, 
directional drilling is preferred. It is also useful if the wells are distributed in a given area. 
Figure 2.1 shows the overview of the drill procedure with some of the rock layers found inside 
the earth crust and components used during drilling. 

Active Mud Pit

Cuttings
removal

Pump

Inflow

Return
flow

Cuttings+mud loss

Well

 
Figure 2.2: Closed loop drilling system with current flow measurement technique 

2.2 Drilling mud and its importance 
In the previous section, discussion about why the special fluid called drilling mud restricted to 
one function, remove the rock chipping formed during drilling. However, it is not only the 
reason for using the mud. The other benefit of the drilling mud is to cool the drill bit while also 
keeping the drill bit lubricated. 
As shown in Figure 2.1, there are multiple layers of rock that need to be drilled through. The 
chemical composition of various types of rock varies. Returning mud shows the different 
composition of rocks being drilled. Some of these rock components may contaminate the 
drilling mud and prevent it from functioning properly. Therefore, checking viscosity and 
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density constantly (in real time) is vital to operate safely and properly. If the layer of salt is 
present, the mud would cease to do its job and collapses the well which prevents the drilling. 
To combat the mud contamination, different types of mud needs to be circulated. Sometimes, 
a high-pressure gas encountered during drilling flows into the well and force out the mud which 
increases the return flow rate thus causing the blow out. The solution is to use the mud with 
higher density that counteracts the pressure exerted by the gas or other fluid in the well. Broadly 
speaking, higher density fluid maintains the pressure in the well as the mud exerts a hydrostatic 
pressure against the well wall. 

To lift out the cuttings, mud must be highly viscous when it returns. The drawback of highly 
viscous fluid is that it is difficult to pump them into the well. Mud engineers wondered if only 
there exists a fluid whose viscosity changes. The inflowing fluid is required to be lightly 
viscous at high velocity making it easier to pump in and the returning fluid is highly viscous at 
low velocity making it able to take out the cuttings. Luckily, such fluid exists and are discussed 
in section 2.3. 

2.3 Fluid types 
Fluids can be classified into two main categories, Newtonian and non-Newtonian fluids. For 
incompressible fluids, the density, the heaviness of the fluid, remains constant. However, the 
density is not enough to uniquely characterize the behavior of the fluid. As the fluid start to 
flow, its behavior changes [4, p. 14]. To describe this behavioral change, the other important 
rheological property of the fluid can be used, namely viscosity. In simple words, viscosity is 
the resistance of a fluid to flow. On a technical term, viscosity can be defined using the Newtons 
law of viscosity as given by equations (2.1) and (2.2). 

𝜏 = 𝜇𝛾̇ (2.1) 

𝜇 =
𝜏
𝛾̇

 (2.2) 

Where, 𝜏 is the shearing stress, 𝜇 is the apparent viscosity of the fluid and 𝛾̇ is the rate of 
shearing strain (or simply, shear rate). 

In one hand, if the shearing stress is linearly related to the rate of shearing strain, then the fluid 
is Newtonian. The apparent viscosity is constant for the Newtonian fluid. Most of the fluids 
found in the nature are Newtonian fluids. Water, air and crude oil are some examples of such 
fluid. For the equation (2.1) and (2.2) to be valid for Newtonian fluid, the apparent viscosity 
must be constant. For Newtonian fluid, increase in shear rate implies that the shearing stress 
must have been increased to keep the apparent viscosity constant [4, p. 16]. On the other hand, 
if the shearing stress is nonlinearly related to the shear rate, then the fluid is non-Newtonian. 
This suggests that the apparent viscosity of the non-Newtonian fluid varies with varying shear 
rate. A mixture of corn-starch and water is an example of non-Newtonian fluid. 

Not all non-Newtonian fluids have same characteristics. Some act as solid with applied stress 
while other act more fluid. Thus, non-Newtonian fluids are further grouped into two classes; 
shear thinning, and shear thickening fluids based on the nonlinearity of the apparent viscosity. 
If the apparent viscosity increases with increasing shear rate, the fluid is shear thickening type 
as shown in Figure 2.3. On the contrary, if the apparent viscosity decreases with increasing 
shear rate, the fluid is shear thinning type. An ideal fluid for the drilling is the latter type. 
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Figure 2.3: Property of the apparent viscosity shown as a relation between shearing stress and 

rate of shearing strain for different types of fluid. (Copied figure 1.7 from [4, p. 16]). 

It is also important to discuss the relation between the fluid velocity, shear rate and shear stress.  
shows how these quantities profile develops at different radial section of the pipe (not along 
the pipe but at a given cross-section). In terms of the velocity and shear rate, shear thinning 
fluid is a type of fluid whose shear rate decreases with increasing fluid velocity. Such fluid is 
a good solution the mud engineers have been looking for. 

In this thesis work, a shear thinning non-Newtonian fluid is used. The fluid is marked fluid1 at 
the lab at USN. It is a solution of potation carbonate (𝐾2𝐶𝑂3) mixed with water. The solution 
has a density of 1340 𝑘𝑔

𝑚3
. 

 
Figure 2.4: Velocity, rate of shearing strain (shear rate) and shear stress profile for a fluid 

flowing through a pipe [5]. 
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2.4 Kick – loss detection 
One of the most challenging part in an oil well drilling operation is maintaining the bottom 
hole pressure to prevent a blow-out. Accurate measurement of the returning flow is, thus, vital 
for a safe operation and for maintaining the bottom hole pressure. If the returning flow rate is 
greater than the injected flow rate, then probably some fluid (oil or gas or other substance) from 
the reservoir or surroundings has entered the well. This phenomenon is referred to as kick. 
Conversely, if the returning flow rate is less than the injected flow rate, then probably some 
mud has leaked into the reservoir. This phenomenon is referred to as a loss. In both cases, it 
can be an early warning of imbalance pressure in the bottom hole. One particularly disturbing 
problem with loss is that the mud might react with the fluid in the reservoir. This could block 
the well bore by forming a protective bung. This decreases the productivity of the well 
significantly or maybe altogether. Hence, it is important to detect kick-loss phenomenon as 
early as possible and deal with the situation. For this purpose, continuous flow measurement 
holds a significant importance for proper drilling operation. In the case of kick-warning, the 
heavier mud (with high density) should be pumped in to the well to counteract the pressure 
from the surrounding fluid. 
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3 Flow measuring technique 
An introduction existing flow measuring technique as well as the model-based estimation 
technique is discussed here. Detailed analysis on design and the structure of the open channel 
is presented here. As discussed in section 1.3, it is vital to meet a condition defined by equation 
(10.10). To comply with that requirement, understanding the flow regime along the different 
section of the channel is also important. This is discussed in this chapter as well. 

3.1 Current technique 
In conventional drilling operation, paddle flow meter is used. Such flow meter measures the 
angle of the paddle introduced by the flowing fluid. Based on the measured angle, the 
volumetric flow rate is estimated. Such technique is unreliable since the flow is not uniform 
and thus the angle measurement is noisy. Therefore, the accuracy of the estimated return flow 
is severely undermined. A static flow measuring technique such as level measurement using a 
trip-tank is also used today. The level measurements are then used to determine the volumetric 
flow rate. This method is slow and unreliable. 

A reliable flow measuring technique is to use Coriolis flow meter as shown in Figure 2.2. In 
managed drilling process, Coriolis is used. The returning mud is sent through the Coriolis flow 
meter, which estimates the flow of the returning fluid. The problem of such technique is that 
these flow meters are expensive to purchase, install and operate. In addition to that, these are 
mechanical devices that requires constant maintenance which is time consuming and 
expensive. Since the returning fluid is filled with rock cuttings and likely corrosive chemicals, 
these devices are prone to corrosion and internal damage. In worst case, the Coriolis flow meter 
may fail to estimate the flow or give unreliable estimates due to blockage internally. The 
blockage can be caused by the rock cuttings that stuck in the Coriolis pipes. This means that 
they may not last as long as their lifespan. Replacing them requires manual manpower and 
extended downtime for drilling. Time and again, they need to be recalibrated for proper 
functioning. To fulfill these tasks, more budget is required. Another shortcoming of Coriolis 
flow meter is that it fails to give reliable flow estimate in the presence of gas. Coriolis effect is 
best suitable for fluid flow and not for gas flow measurement. In oil well, gas pockets are likely 
to exist in and around the oil well. The gas trapped in these pockets is released when drilled 
through. The gas in return flow makes the Coriolis flow meter unreliable. Therefore, it makes 
sense to find a cheaper and effective solution. This thesis work hopes to pave a way to the 
future of oil drilling operation with a cheaper and effective solution then the existing one. 

3.2 Proposed technique 
The returning drilling mud is sent through an open venturi channel instead of the Coriolis flow 
meter. The levels are measured using either ultrasonic level sensor or radar level transmitter at 
two specific positions 𝑐1 and 𝑐2 as discussed briefly in section 1.3. Using the level 
measurements at these positions, the flow rate is estimated. The complete system loop with 
proposed flow measuring technique is shown in Figure 3.1. Coriolis flow meter in Figure 2.2 
is replaced with an open venturi channel in Figure 3.1. The proposed technique is based on the 
mathematical model of the top flow in open venturi channel. Due to the dynamic nature of the 
model, the technique is dynamic as well. More importantly, this technique is not restricted to 
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estimating the returning mud flow rate. Anyplace where the flow rate is measured using 
Coriolis meter or other flow measuring mechanical devices, this method is handy. Other 
important aspect of this technique is that the model can be used to design a suitable model 
predictive controller, MPC. 
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channel
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Figure 3.1: Closed loop drilling system with proposed flow measurement technique 

3.3 Structure of the venturi flume 
A venturi flume present at the lab at USN is a bisymmetrical trapezoidal flume pivot at the 
centroid of the throat section is shown in Figure 3.2. This apparatus is a nonprismatic channel, 
which means that the flow through it is non-uniform due to the change in the fluid velocity at 
different cross-sections of the channel. The change in the velocity is caused by the change in 
the cross-sectional area that is perpendicular to the direction of flow. There are five designated 
sections along the channel. Table 3.1 shows the classification of the different sections of the 
channel. Section 2 – section 4 is bisymmetric. 𝑝0 is the reference point for length measurement 
and starts at 0 cm. The apparatus is a three-dimensional object. It is trapezoidal vertically at 
each point along the length of the channel as shown in Figure 3.3 (left). Figure 3.2 shows the 
top view (view on the x-y plane) of the entire channel. However, this view only reflects the 
schematic of the base width along the channel. Top width is determined by the fluid level and 
hence is not included in the top-view. Figure 3.3 (left) shows the cross-sectional view (viewed 
on the y-z plane) of the flume. Figure 3.3 (right) shows the longitudinal view (viewed on the 
x-z plane) of the flume. 𝑐1 and 𝑐2 are the point along the channel where the fluid level is 
measured using suitable level sensors. At these points, the mass flow rate is estimated. 
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Table 3.1: Different sections of the venturi flume with a corresponding shape. 

Section # 1 (𝑝0 − 𝑝1) 2 (𝑝1 − 𝑝2) 3 (𝑝2 − 𝑝3) 4 (𝑝3 − 𝑝4) 5 (𝑝4 − 𝑒𝑛𝑑) 

Type Upstream Converging Throat Diverging Downstream 

Shape Rectangular Trapezoidal Rectangular Trapezoidal Rectangular 

Range (cm) 0 – 132 132 – 147 147 – 167 167 – 182 182+ 
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Figure 3.2: Top view of the bisymmetrical trapezoidal open venturi channel 
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Figure 3.3: Cross-sectional and side (longitudinal) view of the venturi flume 

3.3.1 Flow regime 
A fluid flowing through open venturi channel has different velocity at different cross-section 
along the channel. Depending on the average velocity of the flow profile, flows can be 
classified into three types, critical, subcritical and supercritical flows. Flow through any 
arbitrary point is given by the Cross-sectional (wetted) area and the velocity of the fluid at the 
point as described by equation (3.1). Cross-sectional area is dependent on the fluid level. 
Assuming a steady flow condition, the velocity of the flow is inversely proportional to the 
wetted area as given by equation (3.2). Critical velocity occurs at the critical depth, which is a 
point along the channel where the specific energy of the fluid is minimum [6, pp. 530-532]. If 
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the wetted are is larger than the critical wetted area, then the flow velocity is less than the 
critical velocity. Such flow is subcritical. Similarly, if the wetted are is smaller than the critical 
wetted area, the flow velocity is greater than the critical velocity. Such flow is supercritical. 
These conditions are presented in Table 3.2. 

𝑄 = 𝐴 ∙ 𝑣 (3.1) 

𝑣 =
𝑄
𝐴
, 𝑣𝑐 =

𝑄
𝐴𝑐
, 𝐴 = 𝑓(ℎ) (3.2) 

𝑄 =
𝑑𝑉
𝑑𝑡
=
𝑑𝑚𝜌
𝑑𝑡
=
1
𝜌
𝑑𝑚
𝑑𝑇
=
𝑀
𝜌

 (3.3) 

Where, 𝑄 is the volumetric flow rate, 𝐴 is cross-sectional area, 𝑣 is the flow velocity at a given 
point. 𝑣𝑐 and 𝐴𝑐 are critical velocity and critical area at the critical point of the channel 
respectively. 𝑉 is the volume of the fluid, 𝑚 is the mass of the fluid and 𝑀 is the mass flow 
rate. Equation (3.3) shows the relation between mass flow rate and volume flow rate. 

Table 3.2: Different types of flow regime as classified by the flow velocity in an open channel 

Flow condition Subcritical Critical Supercritical 

Wetted area 𝐴 > 𝐴𝑐 𝐴 = 𝐴𝑐 𝐴 < 𝐴𝑐 

Flow velocity 𝑣 < 𝑣𝑐 𝑣 = 𝑣𝑐 𝑣 > 𝑣𝑐 

 

In an open venturi channel setup as that at the lab at USN, as shown in Figure 3.2, critical flow 
usually occurs at the throat section (section 3) and the subcritical flow occurs at section 1 and 
section 2. Super-critical flow occurs at the section 4. This is true when the bed slope (angle 
made by the channel bed with the horizontal x-axis) is 0 and the mass flow rate of the fluid is 
less than 10 𝑘𝑔

𝑠
. This information is vital in choosing the position for level measurements as 

discussed in section 1.3; to satisfy the condition given by (10.10). Figure 3.4 illustrates the 
different flow conditions. Velocity and area line is used to illustrate how velocity and wetted 
cross-sectional area changes along the channel. Thickness of the line quantifies the velocity, 
while the slant quantifies the wetted area. 

Section 2 Section 4Section 3
Section 5

Section 1

v < vc

A > A c A < AcA = A c

v = vc v > vc

y xVelocity line
Area line

 
Figure 3.4: Development of the fluid velocity and wetted area across the open venturi channel 
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3.4 Experimental setup at the lab 
Non-Newtonian fluid made by mixing potassium carbonate and water is stored in a primary 
tank just like the mud pit shown in Figure 3.1. The fluid passes through a buffer tank and enters 
the venturi channel. Ultrasonic and radar level transmitters are mounted over the channel. 
These sensors can be moved freely in the horizontal direction to measure the flow at a chosen 
position. The discharged fluid then returns to a secondary tank that is connected to the primary 
tank by a valve. There are different sensors mounted along the flow line to measure different 
process variables such as temperature, pressure, level and flow rate. There is also a Coriolis 
flow meter mounted along the inflow line. This device can measure mass flow rate and density. 
The Measurement by this device is, however, only used for the comparison purpose. Figure 3.5 
shows the P&ID of the setup. The important sensors for this thesis work are level transmitters 
and Coriolis flow meter. Therefore, to simplify the diagram, only these sensors along with 
actuators such as pump are shown. A pump is controlled using a PI controller. A list of 
instruments, their symbol and the type devices used at the lab at USN are presented in Table 
3.3. The list corresponds to the P&ID shown in Figure 3.5. 

B-2

P-2

P-1

V-2

V-1

LT-
17

LT-
15

LT-
18

FT-
14

LI-18 LI-17 LI-15

V-4

LT-
19

LI-19

FC-
14B-1

T-1 T-2

V-3

 
Figure 3.5: P&ID of the experimental setup at USN lab 

Table 3.3: List of sensors, controllers, actuators and other equipment present at the USN lab. 

Instrument Symbol Type 

Radar level transmitter LT19 Sensor 

Ultrasonic level transmitters LT15 Sensor 
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LT17 

LT18 

Coriolis transmitter (old) 
FT14A – for mass flow rate 

FT14B – for density 
Sensor 

Flow controller FC14 Controller, PI 

Main pump P-1 Actuator, pump 

Fluid replacement pump P-2 Actuator, pump 

Buffer storage tank B-1 Tank 

Intermediate buffer tank B-2 Tank 

Primary storage tank T-1 Tank 

Secondary storage tank T-2 Tank 

Main valve V-1 Actuator, Valve 

Discharge valve V-2 Actuator, Valve 

Connection valve V-3 Actuator, Valve 

Fluid replacement valve V-4 Actuator, Valve 

Level indicator for 
ultrasonic sensors present in 

the front panel 

LI15 

LI17 

LI18 

Indicator 

Level indicator for the radar 
sensor, mounted on the 

instrument 
LI19 Indicator 
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4 Modeling of flow through an open venturi 
channel 

By this stage, all the recipe for developing a mathematical model of the flow through open 
channel is in place. This chapter discusses the mathematical modeling of the flow through an 
open venturi channel. Development of the model as a partial differential equation (PDEs) and 
converting them into ordinary differential equations (ODEs) is discussed here briefly. In 
addition to that, the linearization of the nonlinear ODEs is explained in detail in this chapter. 

4.1 Saint Venant Equation 
During transient (change in flow rate), the flow through nonprismatic open channel becomes 
unsteady. This means that the fluid properties such as pressure, velocity, wetted area changes 
with spatial variable and time. Such dynamics can be explained by so called shallow water 
equations. These equations of continuity and motion are derived by using an idea of mass and 
momentum balance. Shallow water equations in one dimension are called Saint-Venant 
Equations (SVEs). SVEs in for one spatial dimension are a class of quasi-linear hyperbolic 
PDE. For the classification of PDEs, please refer [7, pp. 5-7]. 

4.1.1 Model for nonprismatic, 1D unsteady, open channel flow 
Since the open channel in this case has one entry and one exit for the volumetric discharge, the 
lateral flow rate and the fluid loss is none. The fluid is incompressible and flows in one 
direction. Considering these facts and the pressure distribution is hydrostatic, following set of 
PDEs, as given by (4.1) and (4.2), are obtained. These equations are deduced at USN by fellow 
PHD students. The derivation of these equations is discussed in detail here [8]. Equation (4.1) 
is the continuity equation in conservation form. This statement simply means that the volume 
of fluid flowing through the channel is conserved (neither loss or gain). Equation (4.2) and 
(4.3) are the momentum equations. 

𝜕𝐴
𝜕𝑡
+
𝜕𝑄
𝜕𝑥
= 0 (4.1) 

𝜕𝑄
𝜕𝑡
+
𝜕
𝜕𝑥
(𝛽
𝑄2

𝐴
+ 𝑔𝐼1 cos(𝜙)) = 𝑔𝐴(sin(𝜙) − 𝑆𝑓) + 𝑔𝐼2 (4.2) 

For small bed slope angle 𝜙, cos(𝜙) = 1. Replace sin(𝜙) with 𝑆𝑏 and rewrite the equation 
(4.2) as: 

𝜕𝑄
𝜕𝑡
+
𝜕
𝜕𝑥
(𝛽
𝑄2

𝐴
+ 𝑔𝐼1) = 𝑔𝐴(𝑆𝑏 − 𝑆𝑓) + 𝑔𝐼2 (4.3) 

Expressions for some variables present in equations (4.1) – (4.3) are given below. 

𝐼1 = ℎ2 (
𝑊
2
+ ℎ

𝑆𝑠
3
) (4.4) 
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𝐼2 = ℎ2 (
1
2
𝑑𝑊
𝑑𝑥
+
ℎ
3
𝑑𝑆𝑠
𝑑𝑥
) (4.5) 

The side wall of the open channel, in this case, has a uniform side slope i.e., 𝑑𝑆𝑠
𝑑𝑥
= 0. 

Substituting this in equation (4.5), the result becomes equation (4.6). 

𝐼2 =
ℎ2

2
𝑑𝑊
𝑑𝑥

 (4.6) 

𝑆𝑠 = cot(𝛼) (4.7) 

𝐴 = (𝑆𝑠ℎ +𝑊)ℎ (4.8) 

𝐷 = 2𝑆𝑠ℎ +𝑊 (4.9) 

𝑃 = 𝑊 + 2ℎ√1 + 𝑆𝑠2 (4.10) 

𝑅 =
𝐴
𝑃

 (4.11) 

𝑛𝑚 =
1
𝑘𝑠

 (4.12) 

𝑆𝑓 =
𝑄|𝑄|𝑛𝑀2 𝑃

4
3

𝐴
10
3

⟺ 𝑆𝑓 =
𝑄|𝑄|𝑛𝑀2

𝐴2𝑅
4
3

 (4.13) 

ℎ =
−𝑊 +√𝑊2 + 4𝐴𝑆𝑠

2𝑆𝑠
 (4.14) 

4.2 Nonlinear ordinary differential equations 
Equations (4.1) and (4.3) are a set of PDEs. However, the state estimator and observer that is 
being designed during this thesis work is based on the ordinary differential equations. Hence, 
the PDEs must be represented by a set of ODEs before proceeding. A method used to 
accomplish this is called the orthogonal collocation method. 

4.2.1 Orthogonal collocation method 
States are the variables that describe the dynamics of the system. Simply stated, states are the 
variables that are differentiated with respect to time. Here the states are wetted cross-sectional 
area (𝐴) that is perpendicular to the discharge direction (x-direction) and the volumetric flow 
rate (𝑄) as given by equations (4.1) and (4.3). It is possible to approximate these states at 
chosen collocation points in spatial domain by using interpolation technique. Lagrange 
interpolating technique is used for this purpose [9, pp. 809-812]. Collocation points are the 
roots of the interpolating polynomial in spatial domain. Hence, it is safe to say that these points 
describe the degree of the polynomial that interpolates the original function. Degree of 
polynomial defines the accuracy of the approximation. It is also required that the level at 
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collocation point 1 (ℎ1) must be higher than the level at collocation point 2 (ℎ2) as given by 
(1.1). For this purpose, the first collocation point, 𝑐1 is chosen at the upstream section (sub-
critical flow region) and the second point, 𝑐2 is chosen to be at the throat (critical-flow region) 
as shown in Figure 3.2. The number of collocation points used here is two (quadratic 
polynomial with two roots). A fellow PHD student at USN has produced a set of ODEs for 
nonprismatic channel for two collocation points [10]. Since there are two states, approximating 
them at two points yields four ODEs. The set of ODEs is given by equations (4.15) to (4.18). 

𝐴̇1 = −
1
𝐿
(−𝑄1 + 𝑄2) (4.15) 

𝐴̇2 = −
1
𝐿
(−𝑄1 + 𝑄2) (4.16) 

𝑄̇1 = −
𝛽
𝐿
(−
𝑄12

𝐴1
+
𝑄22

𝐴2
) −

𝑔
𝐿
(−𝐼11 + 𝐼12) +

𝑔ℎ12

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝐴1(𝑆𝑏 − 𝑆𝑓1) (4.17) 

𝑄̇2 = −
𝛽
𝐿
(−
𝑄12

𝐴1
+
𝑄22

𝐴2
) −

𝑔
𝐿
(−𝐼11 + 𝐼12) +

𝑔ℎ22

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝐴2(𝑆𝑏 − 𝑆𝑓2) (4.18) 

Where subscript 1 corresponds to the collocation point 1. Similarly, subscript 2 corresponds to 
the collocation point 2. ODEs (4.15) - (4.18) describes the 𝐴𝑄 𝑚𝑜𝑑𝑒𝑙. 

4.2.2 Change of variable 
The set of ODEs represented by equations (4.15) to (4.18) can be simplified further by a simple 
change of variable. The new variables are chosen based on the actual measurands of the real 
process at the lab at USN. These variables are the level (ℎ) measured using ultrasonic and radar 
sensor and mass flow rate (𝑀) measured using Coriolis flow meter. This simplification makes 
it easier to linearize the model as well as implement them in a programming language such as 
MATLAB and LabVIEW. Another benefit, from the programming point of view, is that there 
is less number of unit conversions to perform. This increases the performance of the simulator, 
observer or estimator. Otherwise, the level measurements must be converted to cross-sectional 
area and back. This overhead is reduced by variable change. One discovery made is that the 
model represented using the new set of variables, ℎ and 𝑀, is more robust during the initial 
run. Since the operating points for the system with 𝐴 and 𝑄 as states, depend on the model 
parameters, their uncertainty affects the proper estimates of 𝐴 and 𝑄 mathematically as they 
are not measured directly. Default parameter values are presented in Table 4.1. However, some 
of parameter values need to be adapted and optimize for the different operating conditions. 
More about this is discussed in later section. 

Table 4.1: Default parameter values for model with changed variables, ℎ and 𝑀 

Params 
(𝜃) 

𝛼 [𝑑𝑒𝑔] 𝛽 [ ] 𝑘𝑠 [
√𝑚3

𝑠
] 𝐿 [𝑚] 𝜙 [𝑑𝑒𝑔] 𝜌 [

𝑘𝑔
𝑚3
] 𝑊1 [𝑚] 𝑊2 [𝑚] 

Values 70 0.66 56 1.39 0 1340 0.2 0.1 
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The procedure on how to change the state variable and express the ODEs in terms of new 
variables is presented in detail in Appendix 1. The new ODEs are given by equations (4.19) to 
(4.22) in terms of ℎ and 𝑀 as shown in Part 1A. The model based on these ODEs is referred to 
as ℎ𝑀 𝑚𝑜𝑑𝑒𝑙. 

ℎ̇1 =
(𝑀1 −𝑀2)
𝜌𝐿𝐷1

 (4.19) 

ℎ̇2 =
(𝑀1 −𝑀2)
𝜌𝐿𝐷2

 (4.20) 

𝑀̇1 =
𝛽
𝜌𝐿
(
𝑀12

𝐴1
−
𝑀22

𝐴2
) +

𝜌𝑔
𝐿
(𝐼11 − 𝐼12) −

𝜌𝑔ℎ12

2𝐿
(𝑊1 −𝑊2) + 𝜌𝑔𝑆𝑏𝐴1

−
𝑔
𝜌
𝑀1|𝑀1|𝑛𝑚2 𝑃1

4
3

𝐴1
7
3

 
(4.21) 

𝑀̇2 =
𝛽
𝜌𝐿
(
𝑀12

𝐴1
−
𝑀22

𝐴2
) +

𝜌𝑔
𝐿
(𝐼11 − 𝐼12) −

𝜌𝑔ℎ22

2𝐿
(𝑊1 −𝑊2) + 𝜌𝑔𝑆𝑏𝐴2

−
𝑔
𝜌
𝑀2|𝑀2|𝑛𝑚2 𝑃2

4
3

𝐴2
7
3

 
(4.22) 

Equations (4.4) to (4.14) are generic functions for different intermediate variables, meaning 
that these equations define the dynamics of the model at any given point. For two collocation 
points, these equations can be extended to form specific expressions as shown in Table 4.2. 

Table 4.2: Equations for different parameters at two different collocation points 

Collocation point 1, 𝑐1 (upstream section) Collocation point 2, 𝑐2 (throat section) 

ℎ1 =
−𝑊1 + √𝑊12 + 4𝐴1𝑆𝑠

2𝑆𝑠
 

𝑃1 = 𝑊1 + 2ℎ1√1 + 𝑆𝑠2 

𝐴1 = (𝑆𝑠ℎ1 +𝑊1)ℎ1 

𝑆𝑓1 =
𝑄1|𝑄1|𝑛𝑀2 𝑃1

4
3

𝐴1
10
3

 

𝐼11 = ℎ1
2 (
𝑊1
2
+ ℎ1

𝑆𝑠
3
) 

ℎ2 =
−𝑊2 + √𝑊22 + 4𝐴2𝑆𝑠

2𝑆𝑠
 

𝑃2 = 𝑊2 + 2ℎ2√1 + 𝑆𝑠2 

𝐴2 = (𝑆𝑠ℎ2 +𝑊2)ℎ2 

𝑆𝑓2 =
𝑄2|𝑄2|𝑛𝑀2 𝑃2

4
3

𝐴2
10
3

 

𝐼12 = ℎ2
2 (
𝑊2
2
+ ℎ2

𝑆𝑠
3
) 
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𝐷1 = 2𝑆𝑠ℎ1 +𝑊1 𝐷2 = 2𝑆𝑠ℎ2 +𝑊2 

 

4.3 Linearization of the venturi model 
So far, the equation of continuity and motion as a set of hyperbolic PDEs have been derived. 
Using orthogonal collocation method, the PDEs have been reduced to a set of nonlinear ODEs. 
Nonlinear ODEs are used for nonlinear estimator, but a linear model is needed for designing 
linear observers and estimators. To find a linear model, it is important to define the inputs, 
states and the outputs of the system. There are four ODEs given by equations (4.19) – (4.22). 
Three of them are used to describe the system dynamics and one of the them is used as an input. 
Table 4.3 show the assignment of function names to the ODEs and define their type as input, 
states or output of the system. For model linearization, Tylor series expansion around a suitable 
linearization (operating) point is used. A general method of linearization of a multivariate 
nonlinear model is given in Appendix 2. 

Table 4.3: Assigning function name for the ODEs derived by change of variable. 

Equation # (4.19) (4.20) (4.21) (4.22)  

Function 𝑓1 = ℎ̇1 𝑓2 = ℎ̇2 𝑓3 = 𝑀̇1 𝑓4 = 𝑀̇2 𝑔 = ℎ2 

Type Input State 1 State 2 State 3 Output 

 

Based on Table 4.3, the venturi model is a deterministic system with one input (𝑢), three states 
(𝑥) and one output (𝑦). The system is written in following a compact and standard form: 

𝑢 = ℎ1, 𝑢𝑜𝑝 = ℎ1𝑜𝑝 

𝑥 = [
ℎ2
𝑀1
𝑀2
] , 𝑥̇ = [

ℎ̇2
𝑀̇1
𝑀̇2
] , 𝑥𝑜𝑝 = [

ℎ2𝑜𝑝
𝑀1𝑜𝑝
𝑀2𝑜𝑝

] , 𝑥̇op =

[
 
 
 ℎ̇2𝑜𝑝
𝑀̇1𝑜𝑝
𝑀̇2𝑜𝑝]

 
 
 
 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝜃, 𝑡) (4.23) 

𝑦 = ℎ2, 𝑦𝑜𝑝 = ℎ2𝑜𝑝 

𝑛𝑢 = 1 𝑛𝑥 = 3 𝑛𝑦 = 1 

Where 𝜃 is the model parameter vector, 𝑛𝑢 represents the number of inputs, 𝑛𝑥 represents the 
number of states, 𝑛𝑦 represents the number of outputs. The simplest approach to find the 
operating point is to simulate the model until the steady state is reached rather than using a 
mathematical equation for operating point that is complicated to solve analytically. Note the 
steady state values as the values for operating point. However, even better way is to use the 
real measurement data. Operating points for some flow rates based on the real measurements 
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logged at the lab are given in Table 4.4 and shown graphically in Figure 4.1. Figure 4.1 also 
shows the filtered operating point filtered using a median filter (more on filters in section 9.2). 
Operating point for area and volumetric flow are calculated using (4.8) and (a19) respectively. 

Table 4.4: Operating value for input, states and output at different flow rates for a fluid with a 
density of 𝜌 = 1340 𝑘𝑔

𝑚3
. Default operating value for the mass flow rate is 350 𝑘𝑔

𝑚𝑖𝑛
 

𝑀𝑜𝑝  [
𝑘𝑔
𝑚𝑖𝑛

] 𝑄𝑜𝑝  [
𝑚3

𝑠
] ℎ1𝑜𝑝 [𝑚𝑚] 𝐴1𝑜𝑝 [𝑚

2] ℎ2𝑜𝑝 [𝑚𝑚] 𝐴2𝑜𝑝 [𝑚
2] 

275 3.4 e-3 59.9 1.3 e-2 44.1 5.5 e-3 

350 (default) 4.4 e-3 69.1 1.6 e-2 49.4 6.3 e-3 

425 5.3 e-3 78.4 1.8 e-2 57.0 7.4 e-3 

 

 

Figure 4.1: Operating point for ℎ, 𝐴, 𝑀 and 𝑄 for a fluid with a density of 𝜌 = 1340 𝑘𝑔
𝑚3

 

4.3.1 Linear state space model 
There is not direct feedthrough term in the measurement equation 𝑦 = ℎ2. This simply means 
that the output equation is not directly influenced by the input. The deterministic linear state 
space model is, thus, given by equations (4.24) and (4.25). Refer Appendix 2 for the complete 
derivation of the state space model including the declaration of the system matrices. The 
deviation variables are presented in (a2). 
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𝛿𝑥̇ = 𝐴𝑐𝛿𝑥 + 𝐵𝑐𝛿𝑢 (4.24) 

𝛿𝑦 = 𝐶𝑐𝛿𝑥 (4.25) 

Where 𝐴𝑐, 𝐵𝑐 and 𝐶𝑐 are system matrices derived from linearizing the nonlinear model. The 
states and outputs in full form are computed using (4.26) and (10.10) respectively. 

𝑥 = 𝛿𝑥 + 𝑥𝑜𝑝 (4.26) 

 𝑦 = 𝛿𝑦 + 𝑦𝑜𝑝 (4.27) 

4.3.2 System matrices 
According to the Table 4.3, the system is a single-input-single-output (SISO) system with three 
states. Number of states defines the order of the system. Hence, the system order (𝑛𝑥) is 3 for 
venturi model. Figure 4.2 visualizes the dimension of system (Jacobian) matrices. These 
matrices are time invariant (independent of time). 

Table 4.5: The size of the system matrices 

𝐴𝑐 𝐵𝑐 𝐶𝑐 

[𝑛𝑥 × 𝑛𝑥] = [3 × 3] [𝑛𝑥 × 𝑛𝑢] = [3 × 1] [𝑛𝑦 × 𝑛𝑥] = [1 × 3] 
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Figure 4.2: Dimension of the system matrices and input, states and output matrices or vectors 

Where, 𝑁 is the number of samples of inputs, states and outputs. The size of the system matrices 
applicable for this venturi model is given in Table 4.5. The system matrices, also known as the 
Jacobian matrices, are represented in following form: 

𝐴𝑐 =
𝜕𝑓
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

𝐵𝑐 =
𝜕𝑓
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

𝐶𝑐 =
𝜕𝑔
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

 

The derivation of these matrices is shown in detail in Appendix 2 (a3). For venturi model, 𝑓 is 
a vector function given by (4.28) and 𝑔 is a scalar function given by (4.29). 
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𝑓 = [
𝑓2
𝑓3
𝑓4
] = [

ℎ̇2
𝑀̇1
𝑀̇2
] = 𝑥̇ (4.28) 

𝑔 = ℎ2 (4.29) 

𝐴𝑐 =

[
 
 
 
 
 
 
𝜕𝑓2
𝜕ℎ2

𝜕𝑓2
𝜕𝑀1

𝜕𝑓2
𝜕𝑀2

𝜕𝑓3
𝜕ℎ2

𝜕𝑓3
𝜕𝑀1

𝜕𝑓3
𝜕𝑀2

𝜕𝑓4
𝜕ℎ2

𝜕𝑓4
𝜕𝑀1

𝜕𝑓4
𝜕𝑀2]

 
 
 
 
 
 

, 𝐵𝑐 =

[
 
 
 
 
 
 
𝜕𝑓2
𝜕ℎ1
𝜕𝑓3
𝜕ℎ1
𝜕𝑓4
𝜕ℎ1]
 
 
 
 
 
 

, 𝐶𝑐 = [
𝜕𝑔
𝜕ℎ2

𝜕𝑔
𝜕𝑀1

𝜕𝑔
𝜕𝑀2

] 

Where, 

𝜕𝑓2
𝜕ℎ2

=
−2𝑆𝑠(𝑀1 −𝑀2)

𝜌𝐿𝐷22
 𝐴𝑐(1,1) 

𝜕𝑓3
𝜕ℎ2

=
𝛽𝐷2𝑀22

𝜌𝐿𝐴22
−
𝜌𝑔𝐴2
𝐿

 𝐴𝑐(2,1) 

𝜕𝑓4
𝜕ℎ2

=
𝛽𝐷2𝑀22

𝜌𝐿𝐴22
−
𝜌𝑔𝐴2
𝐿

−
𝜌𝑔ℎ2(𝑊1 −𝑊2)

𝐿
+ 𝜌𝑔𝑆𝑏𝐷2

−
𝑔𝑀2|𝑀2|𝑛𝑚2 𝑃2

1
3

3𝜌𝐴2
7
3

(8√1 + 𝑆𝑠2 −
7𝑃2𝐷2
𝐴2

) 
𝐴𝑐(3,1) 

𝜕𝑓2
𝜕𝑀1

=
1

𝜌𝐿𝐷2
 𝐴𝑐(1,2) 

𝜕𝑓3
𝜕𝑀1

=
2𝛽𝑀1
𝜌𝐿𝐴1

−
2𝑔𝑀12𝑛𝑚2 𝑃1

4
3

𝜌|𝑀1|𝐴1
7
3

 𝐴𝑐(2,2) 

𝜕𝑓4
𝜕𝑀1

=
2𝛽𝑀1
𝜌𝐿𝐴1

 𝐴𝑐(3,2) 

𝜕𝑓2
𝜕𝑀2

=
−1
𝜌𝐿𝐷2

 𝐴𝑐(1,3) 

𝜕𝑓3
𝜕𝑀2

=
−2𝛽𝑀2
𝜌𝐿𝐴2

 𝐴𝑐(2,3) 
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𝜕𝑓4
𝜕𝑀2

=
−2𝛽𝑀2
𝜌𝐿𝐴2

−
2𝑔𝑀22𝑛𝑚2 𝑃2

4
3

𝜌|𝑀2|𝐴2
7
3

 𝐴𝑐(3,3) 

𝜕𝑓2
𝜕ℎ1

= 0 𝐵𝑐(1,1) 

𝜕𝑓3
𝜕ℎ1

=
−𝛽𝐷1𝑀12

𝜌𝐿𝐴12
+
𝜌𝑔𝐴1
𝐿

−
𝜌𝑔ℎ1(𝑊1 −𝑊2)

𝐿
+ 𝜌𝑔𝑆𝑏𝐷1

−
𝑔𝑀1|𝑀1|𝑛𝑚2 𝑃1

1
3

3𝜌𝐴1
7
3

(8√1 + 𝑆𝑠2 −
7𝑃1𝐷1
𝐴1

) 
𝐵𝑐(2,1) 

𝜕𝑓4
𝜕ℎ1

=
−𝛽𝐷1𝑀12

𝜌𝐿𝐴12
+
𝜌𝑔𝐴1
𝐿

 𝐵𝑐(3,1) 

𝜕𝑔
𝜕ℎ2

= 1 𝐶𝑐(1,1) 

𝜕𝑔
𝜕𝑀1

= 0 𝐶𝑐(1,2) 

𝜕𝑔
𝜕𝑀2

= 0 𝐶𝑐(1,3) 

 

Some of the axioms and rules of differentiation used during linearization of the nonlinear ODEs 
are given under Appendix 5. Alternative forms of the system matrices for venturi ODEs for 
different variables are given under Appendix 3. 
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5 Model analysis and simulation 
Now that the nonlinear model and linear model are developed, the next step is, naturally, to 
simulate the model. This chapter deals with simulator development in detail. It is also important 
to analyze the stability of the model and parameter sensitivity. The model is finally 
implemented in MATLAB and LabVIEW. 

5.1 Model analysis 
A model needs to be analyzed for its stability, controllability and observability before designing 
any control system or observers. All these aspects are important in control engineering which 
are discussed briefly in this section. 

5.1.1 Analytical solution 
A system can be deterministic or stochastic system. On one hand, a deterministic system does 
not account for any randomness. A deterministic system always produces a specific final state 
from a specific initial state for a given input signal. On the other hand, a stochastic system 
accounts for randomness, be it with process noise or measurement noise or both. A general 
form of a stochastic state space model with direct feedthrough term in the output is given by 
equations (5.1) and (5.2). 

𝛿𝑥̇ = 𝐴𝑐𝛿𝑥 + 𝐵𝑐𝛿𝑢 + 𝐸𝑤 (5.1) 

𝛿𝑦 = 𝐶𝑐𝛿𝑥 + 𝐷𝑐𝛿𝑢 + 𝐹𝑣 (5.2) 

Where, 𝑤 is the process noise and 𝑣 is the measurement noise. If matrices 𝐸 and 𝐹 are zeros-
matrices, the system become deterministic. Analytical solution to the state equation (5.1) is 
given by equation (5.3) and the solution to the output equation (5.2) is given by (5.4). These 
solutions are for special case of 𝑡0 = 0 as derived in Part 6A of Appendix 6. 

𝛿𝑥(𝑡) = Φ(𝑡)𝛿𝑥(0) + ∫ Φ(𝑡 − 𝜏)𝐵𝑐𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
+ ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

0
 (5.3) 

𝛿𝑦(𝑡) = 𝐶𝑐Φ(𝑡)𝛿𝑥(0) + 𝐶𝑐 ∫ Φ(𝑡 − 𝜏)𝐵𝑐𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
+ 𝐶𝑐 ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

0
+ 𝐷𝑐𝛿𝑢 + 𝐹𝑣 

(5.4) 

Where Φ(𝑡) is a time invariant transition matrix for LTI systems and is given by (a12). For a 
deterministic system, the solution (5.3) takes a special form given by (5.5). The output of the 
system without the direct feedthrough term is given by (5.6). 

𝛿𝑥(𝑡) = Φ(𝑡)𝛿𝑥(0) + ∫ Φ(𝑡 − 𝜏)𝐵𝑐𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
 (5.5) 

𝛿𝑦(𝑡) = 𝐶𝑐Φ(𝑡)𝛿𝑥(0) + 𝐶𝑐 ∫ Φ(𝑡 − 𝜏)𝐵𝑐𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
 (5.6) 
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Analytical solution for state equation given by (5.5) is complicated to solve since it contains a 
convolution integral. Hence, for solving the state equation (4.24), a numerical method, fourth 
order Runge-Kutta (RK4), is used in this project. See Appendix 4 for RK4 algorithm. 

5.1.2 Stability 
Stability of a model is an important concept in mathematical modeling. A stable system is 
defined as a system with a specific bounded response to a specific bounded input [11, p. 387]. 
To design a controller, the closed-loop system must be stable. An unstable system is of little 
use. There are many approaches to analyze the stability of a dynamic system. Methods such as 
eigenvalues and pole-zero analysis, Routh-Hurwitz stability criterion, frequency response 
method such as bode stability criterion and Nyquist stability criterion and so on. The discussion 
in this section focuses on the eigenvalues and pole-zero analysis. 

Poles of a controllable and observable system are the eigenvalues of the transition matrix 𝐴𝑐. 
A system can be asymptotically stable, marginally stable or unstable. Asymptotic stability 
means that a system comes back to equilibrium point even after an introduction of large 
disturbance or input. A marginally stable system neither converges to nor diverges from but 
oscillates around the equilibrium point. An unstable system, on the other hand, goes to infinity 
even for a small finite input change. In terms of eigenvalues, an asymptotically stable system 
has all its eigenvalues in the left side of complex plane. For marginally stable system, the 
eigenvalues lie on the imaginary plane. For unstable system, eigenvalues lie on the right side 
of the complex plane. Figure 5.1 show the different conditions of stability using poles plotted 
on the complex plane. Illustration is based on a system with three states. 

↑
Marginally stable

↓

↑
Asymptotically stable

↓

↑
Unstable

↓
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Re Re
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point

Equilibrium
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Equilibrium
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λ3

λ2

λ1
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Figure 5.1: System stability in terms of poles (eigenvalues) of the system 
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For a system, following condition defines its stability: 

x If all the eigenvalues of the system matrix 𝐴𝑐 lie in the left side of the complex plane, 
the system is stable. In other words, for stable system, the real part of all the eigenvalues 
is negative as shown in Figure 5.1 (left). 

𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴𝑐)) < 0 → 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

x If the eigenvalues of the system matrix 𝐴𝑐 lie on the imaginary axis of the complex 
plane, the system is marginally stable. In other words, for marginally stable system, the 
real part of the eigenvalues must be zero as shown in Figure 5.1 (center). 

𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴𝑐)) = 0 → 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

x If the eigenvalues of the system matrix 𝐴𝑐 lie in the left side of the complex plane, the 
system is unstable. In other words, for unstable system, the real part of the eigenvalues 
is positive as shown in Figure 5.1 (right). 

𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴𝑐)) > 0 → 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

5.1.3 Controllability 
It is important to identify if a system is controllable before designing a control system. 
Controllability aids in answering this question. Controllability is defined as an ability of system 
to transit from a specific initial state to a desired final state for an appropriate input signal. A 
system is controllable if the rank of the controllability matrix is the same as the number of 
states in the system. In other words, if the system has n-states, the controllability matrix must 
have n-independent column that spans the entire vector space. Simply stated, if the determinant 
of the controllability matrix is non-zero, then it is a full ranked matrix and the system is 
controllable. The controllability matrix is given by (5.7). Controllability of a continuous system 
is given by (5.8). 

Δc = [𝐵𝑐 𝐴𝑐𝐵𝑐 𝐴𝑐2𝐵𝑐 ⋯ 𝐴𝑐𝑛−1𝐵𝑐] (5.7) 

𝑟𝑎𝑛𝑘(Δc) = 𝑛 (5.8) 

Where, 𝑛 is the order of system. 

5.1.4 Observability 
The idea of this thesis is to design a suitable observer or an estimator. This can only be done if 
the system is observable. Determination of system observability is a reverse process. If the 
initial states can be predicted from the knowledge of past inputs and outputs, then the system 
is said to be observable. This, as with the controllability, can be determined using the rank of 
the observability matrix. If the rank of observability matrix is the same as the number of states 
in the system. In other words, if the system has 𝑛 states, the observability matrix must have n-
independent column that spans the entire vector space. If the observability matrix has a non-
zero determinant, then it is a full ranked matrix and the system is observable. The observability 
matrix is given by (5.9). Observability of a continuous system is given by (5.10). 

𝑂c = [𝐶𝑐𝑇 (𝐶𝑐𝐴𝑐)𝑇 (𝐶𝑐𝐴𝑐2)𝑇 ⋯ (𝐶𝑐𝐴𝑐𝑛−1)𝑇]𝑇 (5.9) 
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 𝑟𝑎𝑛𝑘(Φc) = 𝑛 (5.10) 

Where, 𝑛 is the order of system. 

5.1.5 Stability, controllability and observability of venturi system 
System stability for the venturi model is determined using the “eig.m” function in MATLAB. 
Controllability matrix of the venturi model is determined using “ctrb.m” function. The 
observability of the model is determined using “obsv.m” function. The rank is determined using 
“rank.m” function. The outcome is that both controllability and observability matrices are full 
ranked i.e., rank is equal to the system order. In this case, the system order is three. For the 
default parameter values as shown in Table 4.1, following system matrices are generated: 

𝐴𝑐 = [
0 0.0038 −0.0038

0.3372 0.1438 −0.7327
16.1390 0.2255 −1.3128

] , 𝐵𝑐 = [
0

101.2385
164.0757

] , 𝐶𝑐 = [1 0 0] 

Eigenvalues (𝜆) of 𝐴𝑐 of the venturi model is given by: 
𝜆1 = −1.1299 + 0 𝑖
𝜆2 = −0.0195 + 0.2686 𝑖
𝜆3 = −0.0195 − 0.2686 𝑖

, 𝜆2
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒
⇔              𝜆3 

𝑟𝑒𝑎𝑙(𝜆𝑗) < 0 → 𝑠𝑡𝑎𝑏𝑙𝑒 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑗 = 1,2, … , 𝑛 

The controllability and observability matrices are given by: 

Δc = [
0 −0.2380 0.3291

101.2385 −105.6634 25.8213
164.0757 −192.5647 220.0777

] , 𝑂c = [
1 0 0
0 0.0038 −0.0038

−0.1402 −0.00031 −0.0022
] 

𝑟𝑎𝑛𝑘(Δc) = 𝑟𝑎𝑛𝑘(𝑂c) = 3 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑟𝑑𝑒𝑟 
This shows that the system is both controllable and observable. The system is also stable as 
confirmed by Figure 5.2. This result is in par with the illustration of Figure 5.1 

 
Figure 5.2: System poles (eigenvalues) for venturi model plotted on the complex plane 
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5.2 Parameter sensitivity analysis 
The venturi model has several input parameters, as shown in Table 4.1, which defines the model 
output. Some of them are more influential than other. By influential, it means that the change 
in the input causes the change in the output. The change in the output is highly significant for 
some parameters than the others. Determination of which parameter is more influential and 
which parameter is less, is known as sensitivity analysis of the parameter. Sensitivity analysis 
is important to determine which parameter contributes most to the model uncertainty as the 
parameter uncertainty are propagated into the model. Such analysis is also a test to determine 
insignificant parameters that can be removed from the model [12]. To perform sensitivity 
analysis, it is important to define a probability density for each input factors. The probability 
density function for the uniform distribution is shown in Figure 5.3. Nominal values and 
uniform distribution and range for each input parameter is given in Table 5.1. The parameters 
are uniformly distributed around ±10 % of their nominal values. For an input parameter 𝜙, the 
nominal value is 0. Therefore, the distribution is specified randomly. 

θθ

Uniform distr. (θ)

θ

ublb nomθ

p(θ)

-10 %                 0 %             +10 %

 
Figure 5.3: Uniform distribution around the nominal value for each parameter 

Table 5.1: Nominal value, uniform distribution and range for each input parameter 

Input 
Parameters (𝜃) 

Nominal value 
(𝜃𝑛) 

Distribution range (±10 %) 
Unit 

Lower bound Upper bound 

𝛼 70 63 77 [𝑑𝑒𝑔] 

𝛽 0.66 0.594 0.726 [−] 

ℎ1 0.079 0.0711 0.0869 [𝑚] 

𝑘𝑠 66 59.4 72.6 [
√𝑚3

𝑠
] 

𝐿 1.39 1.251 1.529 [𝑚] 

𝜙 0 -0.036 0.036 [𝑑𝑒𝑔] 
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𝜌 1340 1206 1474 [
𝑘𝑔
𝑚3
] 

𝑊1 0.2 0.18 0.22 [𝑚] 

𝑊2 0.1 0.9 0.11 [𝑚] 

 

5.2.1 Differential sensitivity 
Differential sensitivity determination technique is the most common and elegant way of 
defining the sensitivity of a parameter to the model output. The point here is to quantify how 
sensitive each parameter is to the model output, in this case, model states. The idea is to 
determine the sensitivity coefficient for each parameter and analyze them. The sensitivity 
coefficient is the ratio of the change in the output to the change in the input [12]. This 
coefficient is a measure of the percent change in the output to the percent change in the input 
as given by (5.11). 

𝜀𝑗𝑖 =
Δ𝑥%
Δ𝜃%

𝑖 = 1,2, … , 𝑟
𝑗 = 1,2, … , 𝑛 (5.11) 

𝜀𝑗𝑖 =

𝑥𝑗𝑖 − 𝑥0𝑖

𝑥0𝑖
× 100%

𝜃𝑗𝑖 − 𝜃0𝑖

𝜃0𝑖
× 100%

 

𝜀𝑗𝑖 = (
𝑥𝑗𝑖 − 𝑥0𝑖

𝑥0𝑖
) (

𝜃0𝑖

𝜃𝑗𝑖 − 𝜃0𝑖
) 

𝜀𝑗𝑖 = (
𝑥𝑗𝑖 − 𝑥0𝑖

𝜃𝑗𝑖 − 𝜃0𝑖
) (
𝜃0𝑖

𝑥0𝑖
) (5.12) 

Where, 𝜀 is the sensitivity coefficient and 𝜃 is an input parameter and 𝑥 is the state. 𝜃0𝑖  is the 
nominal parameter value and 𝑥0𝑖  is the nominal output. (𝑟) is the number of input factors and 
(𝑛) is the number of samples from distribution. Equation (5.12) gives the rate of change of 
output with respect to the parameter. 𝜀, 𝜃 and 𝑥 can be a scalar or a vector. For multivariable 
functions, (5.12) can be approximated by partial derivative of the output (states) with respect 
to the parameters as given by (5.13). 

𝜀𝑗𝑖 =
𝜕𝑥𝑖

𝜕𝜃𝑖
(
𝜃0𝑖

𝑥0𝑖
)|
𝑗
 (5.13) 

The neat thing about the equation (5.13) is that the value of the coefficient is normalized by the 
ratio of nominal parameter and the nominal output value. This removes the effect of the 
parameter unit and the unit of output. Using the sensitivity coefficient for each parameter based 
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on (𝑛) samples and compute the mean (𝜇) and standard deviation (𝜎). The result is then plotted 
in a 𝜇𝜎 space for analysis. Steps taken for such analysis are listed below: 

x Define an input parameter space by distributing each parameter around its nominal 
value and generate (𝑛) samples. 

o As discussed earlier, uniform distribution is chosen here. 
x Select a parameter, perform the following: 

o For a chosen parameter, keep other parameters to their nominal value 
o Select a sample from the distribution pool for the chosen parameter 
o Simulate the model for long enough time so that the steady state is reached 
o Note the steady state value for each output or state 
o Using (5.12), determine a sensitivity coefficient for the sample and store it 
o Repeat these steps for all the samples 
o From (𝑛) coefficients, determine the mean and standard deviation and store it 

x Repeat above steps for all parameters. 
x By this stage there are (𝑟) mean and standard deviation values for each output/state. 
x Plot these in a 𝜇𝜎 space 

One important thing to note about determining the sensitivity of an input parameter by 
differential sensitivity method, is that it only quantifies the local sensitivity. In other words, 
this method does not account for any potential interaction effect of the chosen parameter with 
the other input parameters. Simply stated, the effect is independent. 

5.2.2 Sensitivity index 
Another way to quantify the sensitivity of a parameter is by determining the sensitivity index. 
It is a measure of the ratio of the steady state model output space to the range of parameter 
space. For a parameter, (𝑛) samples are generated using a probability distribution function. 
The model is then simulated until the steady state is achieved. The final steady state values are 
used to define the states space, i.e., the maximum variation in the states (𝑥). This is shown 
graphically in Figure 5.4. The range is defined by the maximum and the minimum value 
reached by the output. Mathematically, the sensitivity index is given by equation (5.14). 

θθ

θ distr. range

θ

x

ublb

maxx

minx

nomx

nomθ

Steady state
function value

curve

 
Figure 5.4: Sensitivity index as a ratio between output range to the input range 



 Model analysis and simulation 

49 

𝑆𝐼 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥

 (5.14) 

5.2.3 Analysis of the venturi model parameters 
In venturi model, there are eight model parameters and one input whose sensitivity on the 
model states (ℎ2,𝑀1,𝑀2) is to be determined. Table 5.1 shows these parameters and their 
nominal value along with the distribution range. Total 99 points are uniformly distributed 
around the nominal value of a parameter. Thus, the nonlinear venturi model is simulated 99 
times. Equations (5.13) and (5.14) are used to compute sensitivity coefficients and sensitivity 
indices respectively. The results are discussed below. Figure 5.4 shows the mean and standard 
deviation plot of the sensitivity coefficient. The interpretation of 𝜇𝜎 plot gives rise to the 
following four conditions based on the magnitude, absolute value, of 𝜇, 𝜎: 

1) Small 𝜇 and small 𝜎 
¾ The parameter is less influential and is unimportant [13]. 

2) Large 𝜇 and small 𝜎 
¾ The parameter is important, and the model output depends on it mostly linearly. 

Zero 𝜎 means that the parameter and the model output is fully linear [13]. 
3) Large 𝜇 and large 𝜎 

¾ The parameter is important, and the model output depends on it highly 
nonlinearly. The parameter might also interact with the other parameters. 

4) Small 𝜇 and large 𝜎 
¾ The parameter is important, and the model output depends on it highly 

nonlinearly [14]. 

The bottom line is that if the 𝜇 is large, the parameter is highly important. If the 𝜎 is large, the 
parameter may be interacting with other parameters nonlinearly. Since there are three states, 
the interpretation is done individually. Figure 5.5, Figure 5.7 and Figure 5.6 are interpreted 
together. Figure 5.5 shows the effect of the parameter based on 𝜇 and 𝜎 of sensitivity 
coefficient. Figure 5.7 shows the sensitivity index for each parameter for all the states. Figure 
5.6 shows the percent change in the outputs (states) influenced by the percent change in the 
parameter value. 

x Level at the throat (collocation point 2) as state 1, (ℎ2) 

From the Figure 5.5 (left subplot), the channel width at the collocation point 1, 𝑊1 has the 
largest absolute value for 𝜇 and 𝜎. Hence, 𝑊1 is the most influential parameter for ℎ2. It may 
also be interacting with other model parameters. The effect of 𝑊1 on ℎ2 is nonlinear. This 
interpretation is supported by Figure 5.6. Since all the parameters are distributed by the same 
amount (±10%) around their nominal values, the percent change in 𝑊1 influences ℎ2 the most. 
The sensitivity index plot of Figure 5.7 cements this observation further as 𝑊1 has the highest 
value. Similarly, he next influential parameter for ℎ2 is Strickler friction coefficient, 𝑘𝑠 with 
relatively large 𝜇 and 𝜎. The effect is nonlinear as displayed in Figure 5.6. Fluid level at the 
throat, 𝑊2, on the other hand has large 𝜇  and average 𝜎. This means that 𝑊2 mildly nonlinear 
as seen in Figure 5.6. Fluid density, 𝜌 is the least important factor for ℎ2 since it has the least 
value of 𝜇 and 𝜎 and least value for sensitivity index. It is also seen in Figure 5.6 that ℎ2 has 
no change for any value of 𝜌. Thus, 𝜌 is the least influential parameter for ℎ2. 
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x Mass flow rate through the venturi channel as state 2 (𝑀1) and state 3 (𝑀2) 

Similarly, 𝑀2 is the most influential parameters for both 𝑀1 and 𝑀2. It has the highest value 
for 𝜇, relatively large 𝜎 and largest sensitivity index. A particularly interesting parameter for 
flow rates is, ℎ1. It has second largest 𝜇 but extremely small 𝜎 (Figure 5.5). This means that ℎ1 
an important parameter with large sensitivity index (Figure 5.7). However, due to small 𝜎, the 
effect is fully linear. The linearity is clearly seen in Figure 5.6. The length between the 
collocation points (𝐿) has less influence on (𝑀1) and (𝑀2) with comparatively small 𝜇, 𝜎 and 
sensitivity index value. However, the least important parameter for the flow rates is channel 
bed angle, 𝜙 with least 𝜇 and 𝜎 values. 

 
Figure 5.5: Mean and standard deviation of the sensitivity coefficient for the venturi model 

 
Figure 5.6: Percent change in the parameter vs the percent change in the output for all 

parameters for all states of the venturi model 
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Figure 5.7: Sensitivity index for venturi model parameters to all states 

In conclusion, 𝑊1 is the most influential and 𝜌 is the least influential parameter for ℎ2. 𝑊2 is 
the most influential and 𝜙 is the least influential parameter for both 𝑀1 and 𝑀2. The complete 
summary of the analysis is presented in detail in Appendix 7 (Part 7A and Part 7B) for each 
state with additional relevant information. 

5.2.4 Correlation 
Derivative based sensitivity analysis is a great tool to analyze influential parameter in a model. 
However, it does not account the complete picture of the relation of the parameters with the 
model output. Correlation between the parameter and the states is, therefore, a great tool to 
view such relation in detail. Correlation is how two variables change with respect to each other. 
It shows the direction of change in output variables (positive or negative) with respect to the 
change in the model parameter. Correlation, however, does not specify by how much other 
variable change if one variable changes. Correlation value varies from -1 to 1. Interpretation of 
correlation is as follow: 

x Correlation of -1: 
o Highly correlated 
o Negatively (−𝑣𝑒) directed 

� As one variable increases, the other variable decreases by same rate 
x Correlation of 0: 

o No correlation. Two variables are independent of each other 
x Correlation of +1: 

o Highly correlated 
o Positively (+𝑣𝑒) directed 
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� As one variable increases, the other variable increases as well, by the 
same rate 

For venturi model, the correlation between each state and each parameter is determined based 
on the steady state values. Table 5.2 show the magnitude of correlation and the direction. 

Table 5.2: Correlation between parameters and states 

𝑥, 𝜃 𝛼 𝛽 ℎ1 𝑘𝑠 𝐿 𝜙 𝜌 𝑊1 𝑊2 

ℎ2 
-0.998 

(−𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

0.999 

(+𝑣𝑒) 

-0.997 

(−𝑣𝑒) 

1 

(+𝑣𝑒) 

0.998 

(+𝑣𝑒) 

0.152 

(0) 

-0.993 

(−𝑣𝑒) 

0.999 

(+𝑣𝑒) 

𝑀1 
-0.999 

(−𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

1 

(+𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

0.999 

(+𝑣𝑒) 

1 

(+𝑣𝑒) 

1 

(+𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

1 

(+𝑣𝑒) 

𝑀2 
-0.999 

(−𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

1 

(+𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

0.999 

(+𝑣𝑒) 

1 

(+𝑣𝑒) 

1 

(+𝑣𝑒) 

-0.999 

(−𝑣𝑒) 

1 

(+𝑣𝑒) 

 

The result is consistent with the sensitivity analysis. To see the correlation between states and 
the parameters, refer Figure 5.6. The table shows large correlation between most of the 
parameters. This is because the model is not influenced with the noise. These values will alter, 
not drastically though, when working with the real measurements. 

5.2.5 Parameter optimization 
A mathematical model can only predict the output as accurately as the best measured or 
estimated parameters value. The model to depicts the real system accurately, determining the 
parameter values is important. An approach to determining the parameter values is by using hit 
and trial method. This can be done by simulating the model along with the real process in 
parallel and adjust the parameter values manually until satisfactory result is gained. Such 
methods are mind-numbingly tedious and time consuming. The better way is to minimize the 
error between the predicted and the real measurement. To do this, a cost function, also known 
as objective function is designed. The objective is to minimize the error between the predicted 
and real measurements. This can be done using sum-squared-prediction-error (SSPE) method. 
SSPE is given by (5.15). 

𝜀 =∑𝑒𝑖𝑇𝑒𝑖

𝑁

𝑖=1

 (5.15) 

min
𝜃
𝐽 =∑𝑒𝑖𝑇𝑒𝑖

𝑁

𝑖=1

 (5.16) 

𝑒𝑖 = 𝑥𝑖 − 𝑥̅𝑖 [𝑒𝑖] = [𝑛𝑥 × 1] (5.17) 
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Where, 𝜀 represents the SSPE that is being minimized. 𝑁 is the number of measurements 
(samples) and 𝑒𝑖 is the prediction error vector. 𝑥𝑖 is the real measurement vector with one 
samples of each state at a given time 𝑖. 𝑥̅𝑖 is the model predicted vector with one sample for 
each state. Since there are three states in the dynamic model of the venturi flume, 𝑒𝑖, 𝑥𝑖, 𝑥̅𝑖 are 
column vectors with the same dimension of [3 × 1]. 

Predicted state vector 𝑥𝑖 is the solution of the state equation (4.28) for the given time step (𝑖). 
The state equation is discretized and solved by using RK4 (Appendix 4). The built-in 
optimization function, “fmincon.m”, of MATALB is then used to optimize the parameter. The 
result is given in Table 5.3. Using the optimal parameter values, the model is simulated to see 
how good the prediction becomes. Figure 5.8 shows the predicted vs actual measurement. 
SSPE for the new predicted states is 14.73, which is acceptable. 

Table 5.3: Optimal parameter values determined by minimizing SSPE 

𝜃 → 𝛼 𝛽 𝑘𝑠 𝐿 𝜙 𝜌 𝑊1 𝑊2 

𝜃𝑜𝑝𝑡 70.7 0.65 52.7 1.4 -0.07 1353.4 0.199 0.119 

 

 
Figure 5.8: Predicted states using optimal parameter vs real measurement 

5.3 Simulator development 
The linear and nonlinear version of the venturi model is implemented in MATLAB. The 
simulation is open loop and the input (ℎ1) is controlled manually. The linear model is linearized 
around suitable operating point. The operating point is chosen based on the information from 
the real system. An operating point for input and each state in local and SI unit is given in Table 
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5.4. These values are determined based on Figure 4.1. Local units are used only for plotting 
purposes. During simulation, input, states, output and model parameters are converted to their 
SI units. For plotting purpose, the values are converted back to the local units. 

Table 5.4: Operating point for input and each state for the Venturi flume based on the 
information from the real system 

Type of unit 𝑀1𝑜𝑝 = 𝑀2𝑜𝑝 ℎ1𝑜𝑝 ℎ2𝑜𝑝 

Local 350 [ 𝑘𝑔
𝑚𝑖𝑛
] 80 [𝑚𝑚] 45 [𝑚𝑚] 

SI 5.883 [𝑘𝑔
𝑠
] 0.08 [𝑚] 0.045 [𝑚] 

 

5.3.1 Comparison of ℎ𝑀 𝑚𝑜𝑑𝑒𝑙 and 𝐴𝑄 𝑚𝑜𝑑𝑒𝑙 
Model based on level and mass flow rate-based is referred to as ℎ𝑀 𝑚𝑜𝑑𝑒𝑙 represented by 
(4.19) - (4.22) and the model based on area and volumetric flow rate is called the 𝐴𝑄 𝑚𝑜𝑑𝑒𝑙 
represented by (4.14) - (4.18). The value of the model parameters for both nonlinear simulators 
is the same. The simulators are run in parallel in LabVIEW. Both simulators are excited by the 
same input (ℎ1) with added synthetic noise. The result is shown in Figure 5.9. In both cases, 
the outcome is exactly the same. However, implementing ℎ𝑀 𝑚𝑜𝑑𝑒𝑙 is simpler and easier than 
implementing 𝐴𝑄 𝑚𝑜𝑑𝑒𝑙. Hence, the ℎ𝑀 𝑚𝑜𝑑𝑒𝑙 is preferred for the rest of this thesis work. 

 
Figure 5.9: Simulation result of a model based on level (ℎ) and the mass flow rate (𝑀) along 

with a model based on area (𝐴) and the volumetric flow rate (𝑄). 
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5.3.2 Nonlinear and linear model comparison 
Linear and nonlinear models are simulated in parallel to compare how they fare alongside each 
other. The input is changed manually from the operating point and the system dynamics is 
observed. The result is displayed in Figure 5.10. First part of the simulation (0 𝑠 ≤ 𝑡 <
1200 𝑠) does not account for any noise in the input. The second part (12000 𝑠 ≤ 𝑡 ≤ 2000 𝑠), 
the ℎ1 and ℎ2 are excited with noise signals 𝑤 and 𝑣 respectively. Since the input to the real 
system is level measurement, which are noisy, a synthetic noise is added to the simulator input 
to simulate the effect of noise on the model. The synthetic noise has the same variance, 𝜎2, as 
the measured input level measurements (ℎ1) taken from the venturi rig at the lab. The variance 
of the white noise processes used is 10−6. 

 
Figure 5.10: Linear vs nonlinear venturi model comparison. 

As the simulation starts, noise-free input signal is away from the operating point (subplot 4). 
This introduces a deviation in the output (subplot 1). During linearization, the model is 
approximated by a series of polynomials around the operating point. The higher terms are 
neglected keeping only the linear first order terms. These higher order terms do carry some 
information of the model output. The removal of higher order term accounts for the deviation 
in the output. As the input is changed gradually towards the operating point, ℎ1 = 80 𝑚𝑚, the 
deviation starts to disappear. When the noise is applied to the model, oscillation increases, and 
the amplitude of oscillation is also amplified. The noise affects all the states, including flow 
rates. The settling time for the states also increases due to the noise introduction. However, the 
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mass flow rate deviates very little away from the linearization point. This could be because the 
model is developed using Lagrange interpolating polynomial at two points which produces 
linear ODE’s. This means the model is a linear approximation of the PDE. Bottom line is that 
both models, linear and nonlinear, produce similar result around the operating point as the 
linear model is just an approximation of the nonlinear model around the linearization point. 
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SECTION – II 

FLOW ESTIMATION 

STATE ESTIMATION USING OBSERVERS AND KALMAN FILTERS 

IMPLEMENTATION OF OBSERVER AND ESTIMATOR ON THE REAL PROCESS 
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6 Highway to state estimation 
A basic idea of state estimation is discussed in this chapter briefly as a bridge between model 
simulation and state estimation. The aim is to cast light on why state estimation is required. 
The focus is set on importance of state estimation based on the oil well drilling operation. 

6.1 Purpose of state estimation 
State information of a process is useful in many ways. They can be used for designing a control 
system, analyzing the process for safety and productivity and predict the future behavior of the 
system. For this, all states must be measured. However, not all process variables are measured 
on a real process. This could be due to lack of available sensors or simply due to the cost of the 
sensors being too expensive to implement in the system. To tackle this constraint, techniques 
to predict the system states are required. Such techniques are the state estimation techniques. 
The idea is to estimate the system states mathematically using the available sensors. Figure 6.1 
show the setup of a technique for estimating unmeasured states. 

Process

Estimator

y

   

u

x

ŷ

Sensor

w

v

Plant

Actuator

Filter

 
Figure 6.1: Overview of a measurement system with embedded state estimation system for a 

plant (real process) 

6.1.1 Importance of state estimation in oil well drilling operation 
In oil well drilling operation, it is important to detect kick or loss to prevent hazardous situation 
as discussed in section 2.4. This can be done by estimating the return mud flow. Since the 
return flow measurement requires expensive flow measuring techniques for a reliable flow 
estimation, other cheaper techniques are preferable. The aim is to remove the expensive flow 
measuring devices. This means that the flow must be estimated using suitable and reliable 
estimation technique. 

6.2 An introduction to state estimation 
An observer or an estimator is a system that deduce some information based on the available 
process measurements. The idea is to use the knowledge of past available measurements and 
extract some information about the unmeasured states. It is important to know the system 



 Highway to state estimation 

59 

dynamics before this idea can be applicable. A mathematical model of some form is required 
to describe the system dynamic. Unmeasured states can be estimated if the inputs of the system 
are known, the system dynamics is known and some of the states are measured. This is not 
enough, however, to estimate the states. States must be observable. This information is acquired 
by the observability analysis as discussed in section 5.1.4. A state estimation technique is only 
as good as the best mathematical model. In other words, a bad model gives a bad estimate 
which leads to a bad control system. This can happen when ODE’s are used to describe a 
multivariable system rather than PDE’s. A linearized model is used instead of a nonlinear 
model, see section 5.3.2 for comparison of linear and nonlinear model. Model parameter 
uncertainties also contribute to a bad model as discussed in section 5.2. There are always 
disturbances and stochastic noise processes influencing the real process as shown in Figure 6.1. 
Hence, the measurements will always have uncertainties. Therefore, the quality of 
measurements, type of mathematical model (ODE’s or PDE’s, linear or nonlinear) and the 
sensor accuracies impact the optimum estimation. In simple terms, a proper knowledge of the 
system is required for best estimation. More knowledge of the system there is, the better is the 
approximation of system dynamics. Take away from this is that state observer is a reverse 
process. It is about determining the initial states and the state dynamics based on the past 
knowledge. 

6.2.1 Process of state estimation 
An observer or an estimator runs in parallel with the real process. The input excites both the 
estimator and the real process. Initially, the estimated states are the same as the initial guess for 
the real process states since the measurement from the real process is not available. From the 
next available measurement, the states are estimated based on the error between the predicted 
output and the measured output. Simply stated, using the error information, state estimates are 
updated. In many cases, the measurements are too noisy that gives noisy estimates. To avoid 
that, the noises are filtered out by a suitable filter before feeding the measurements to the 
observer system (Figure 6.1). Hence, such system is of feedback type. The process continuous 
until process termination. 

6.2.2 State estimation approach 
There are different approaches for state estimation. Deterministic and stochastic approaches 
such as Luenberger observer design and Kalman filter respectively are the two of the most used 
approaches. Both approaches are presented in subsequent chapters. Linear as well as nonlinear 
versions of these approaches are available. This thesis work concentrates on linear and semi-
nonlinear observer and linear and nonlinear Kalman filter for the ODEs representing the flow 
through the top side of the venturi flume. 
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7 State Observer 
In this chapter, the design and stability of a linear state observer is discussed in detail. This 
chapter focuses on the idea behind the linear observer and the algorithm. Implementation of 
observers on the mathematical model at the end is also presented here. 

7.1 Full order state observer 
A full order state observer is a system that estimates all the states of a system, both measured 
and unmeasured states. It simply means that the order of an observer is equal to the order of 
the model. In this section, a linear full order state observer is derived. A linear state observer 
is designed based on the deterministic linear state space model given by (4.24) and (4.25). The 
real system is stochastic in nature. The better approximation of the real system (Figure 6.1) 
would be described by (7.1) and (7.2). The analytical solution for a such system is given by 
(7.3) and (7.4). 

𝛿𝑥̇𝑟 = 𝐴𝑟𝛿𝑥𝑟 + 𝐵𝑟𝛿𝑢 + 𝐸𝑤 (7.1) 

 𝛿𝑦𝑟 = 𝐶𝑟𝛿𝑥𝑟 + 𝐹𝑣 (7.2) 

𝛿𝑥𝑟(𝑡) = Φ𝑟(𝑡)𝛿𝑥𝑟(0) + ∫ Φ𝑟(𝑡 − 𝜏)𝐵𝑟𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
+ ∫ Φ𝑟(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

0
 (7.3) 

𝛿𝑦𝑟(𝑡) = 𝐶𝑟Φ𝑟(𝑡)𝛿𝑥𝑟(0) + 𝐶𝑟 ∫ Φ𝑟(𝑡 − 𝜏)𝐵𝑟𝛿𝑢(𝜏)𝑑𝜏
𝑡

0

+ 𝐶𝑟 ∫ Φ𝑟(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏
𝑡

0
+ 𝐹𝑣(𝑡) 

(7.4) 

Where, matrices and variables with subscript (𝑟) represent the real system. Φ𝑟 is the state 
transition matrix for real process and is defined as: 

Φ𝑟(𝑡) = 𝑒𝐴𝑟𝑡 
Assume that the real system can be represented by a linear model of the form (7.1) and (7.2). 
There is some deviation between the real states (7.3) and the model states (5.5). The deviation 
is the error between the model states and the real states. Similarly, there is some deviation in 
the real output (7.4) and the model output (5.6). The error exists due to the presence of uncertain 
model parameters, stochastic noise processes (𝑤, 𝑣) in the real system and initialization error 
𝑥𝑟(0) ≠ 𝑥(0). Assume the stable system dynamics in both cases given by following condition: 

lim
𝑡→∞

Φ𝑟(t) → 0 ≡ lim𝑡→∞ 𝑒
𝐴𝑟𝑡 → 0 

lim
𝑡→∞

Φ(t) → 0 ≡ lim
𝑡→∞

𝑒𝐴𝑡 → 0 

Even with stable system dynamics, the error between the real states given by (7.3) and the 
model states given by (5.5), at steady state is still not eliminated due to the aforementioned 
reasons. Similarly, the error between the actual output (7.4) and the model output (5.6) exists 
as well. 

𝛿𝑥𝑟 − 𝛿𝑥 ≠ 0 
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𝛿𝑦𝑟 − 𝛿𝑦 ≠ 0 
There is no mechanism in the mathematical model to suppress the error. This is where an 
observer comes in. The observer utilizes the available measurements of the system to reduce 
the error between the true state and the model states. Hence, the observer equation has the same 
basic structure as the linear state space model with added error correction term, 𝐿𝑐(𝛿𝑦 − 𝛿𝑦̂), 
as given by equation (7.5) and (7.6). The correction term is injected to update the states at each 
time instance when the measurement is available. Thus, the observer states resemble the real 
states. 

𝛿𝑥̇̂ = 𝐴𝑐𝛿𝑥̂ + 𝐵𝑐𝛿𝑢 + 𝐿𝑐(𝛿𝑦 − 𝛿𝑦̂) [𝐿𝑐] = [𝑛𝑥 × 𝑛𝑦] (7.5) 

𝛿𝑦̂ = 𝐶𝑐𝛿𝑥̂ (7.6) 

Where, 𝐿𝑐 is the observer gain matrix which is chosen by the designer to minimize the 
observation error, 𝛿𝑦 − 𝛿𝑦̂. Observation error is often called innovation process. The 
prediction term, 𝐴𝑐𝛿𝑥̂ + 𝐵𝑐𝛿𝑢, present to the LHS of (7.5) is called the apriori state estimate. 
The linear observer (7.5) defines a deterministic system with no stochastic noise processes. 
Using the injected sensor measurements into the observer system and the input signal, the states 
are estimated. Figure 7.1 illustrates this principle. State observer equation with injected 
measurement is given by (7.5) and (7.6). 
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Figure 7.1: State observer overview with injected measurements 

Further simplifying equation (7.5) gives: 

𝛿𝑥̇̂ = (𝐴𝑐 − 𝐿𝑐𝐶𝑐)𝛿𝑥̂ + 𝐵𝑐𝛿𝑢 + 𝐿𝑐𝛿𝑦 

(𝐴𝑐 − 𝐿𝑐𝐶𝑐) ≝ Λ [Λ] = [𝑛𝑥 × 𝑛𝑥] (7.7) 

𝛿𝑥̇̂ = Λ𝛿𝑥̂ + 𝐵𝑐𝛿𝑢 + 𝐿𝑐𝛿𝑦 (7.8) 

Λ is the system matrix for the observer. (7.8) is known as the continuous time linear full-order 
Luenberger state observer in deviation form. Analytical solution to the state observer equations 
(7.8) and (7.6) is given by (7.9) and (7.10). Derivation of the analytical solution is shown in 
detail in Appendix 6 Part 6B. 
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𝛿𝑥̂(𝑡) = Ω(𝑡)𝛿𝑥̂(0) + ∫ Ω(𝑡 − 𝜏)𝐵𝑐𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
+ ∫ Ω(𝑡 − 𝜏)𝐿𝑐𝛿𝑦(𝜏)𝑑𝜏

𝑡

0
 (7.9) 

𝛿𝑦̂(𝑡) = 𝐶𝑐Ω(𝑡)𝛿𝑥̂(0) + 𝐶𝑐 ∫ Ω(𝑡 − 𝜏)𝐵𝑐𝛿𝑢(𝜏)𝑑𝜏
𝑡

0
+ 𝐶𝑐 ∫ Ω(𝑡 − 𝜏)𝐿𝑐𝛿𝑦(𝜏)𝑑𝜏

𝑡

0
 (7.10) 

Where Ω(t) is the state transition matrix for the observer and is given as: 

Ω(𝑡) = 𝑒Λ𝑡 

Ω(𝑡 − 𝜏) = 𝑒Λ(𝑡−𝜏) 
Solutions (7.9) and (7.10) have incorporated the current measurements as the feedback term in 
the observer. This helps to suppress the error between the estimates and the real process. 

7.1.1 Observer error dynamic 
The observed states are likely to differ from the actual states of the real process due to model 
parameter uncertainties and process noise as discussed earlier. In such case, the dynamics of 
the real system may not be explained properly. Hence, the model states must be recalibrated. 
This can be done by utilizing the available real process measurements. We can express the 
system dynamics in terms of the error between the model states and the observer states. By 
defining the stable error dynamics, the estimated states approach the real states as given by 
(7.11). 

𝜀 ≝ 𝛿𝑥 − 𝛿𝑥̂ 
lim
𝑡→∞

𝜀 → 0 lim
𝜀→0
𝛿𝑥̂ → 𝛿𝑥 

(7.11) 

𝜀̇ ≝ 𝛿𝑥̇ − 𝛿𝑥̇̂ (7.12) 

Simplifying (7.12) further yields: 

𝜀̇ = 𝐴𝑐𝛿𝑥 + 𝐵𝑐𝛿𝑢 − 𝐴𝑐𝛿𝑥̂ − 𝐵𝑐𝛿𝑢 − 𝐿𝑐(𝛿𝑦 − 𝛿𝑦̂) 

𝜀̇ = 𝐴𝑐𝛿𝑥 − 𝐴𝑐𝛿𝑥̂ − 𝐿𝑐𝐶𝑐𝛿𝑥 + 𝐿𝑐𝐶𝑐𝛿𝑥̂ 

𝜀̇ = 𝐴𝑐(𝛿𝑥 − 𝛿𝑥̂) − 𝐿𝑐𝐶𝐶(𝛿𝑥 − 𝛿𝑥̂) 

𝜀̇ = (𝐴𝑐 − 𝐿𝑐𝐶𝑐)(𝛿𝑥 − 𝛿𝑥̂) (7.13) 

Define a transition matrix using (7.7) and simplify the above equation using definition for error 
dynamics (7.11). The state error dynamics is formulated as (7.14). 

𝜀̇ = Λ𝜀 (7.14) 

7.2 Observer design by pole placement 
It is vital to show that the error converges to zero to prove stability of the error dynamic. This 
can be done by analyzing the poles (eigenvalues) of the analytical solution for the equation 
(7.14). The stability analysis of a system using poles and eigenvalues is discussed in detail in 
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section 5.1.2. The analytical solution for (7.14) is given by (7.15). The detailed process for 
finding the analytical solution is shown in Appendix 6 Part 6C. 

𝜀(𝑡) = 𝑒Λt𝜀(0) 

𝜀(𝑡) = Ω(𝑡)𝜀(0) 
(7.15) 

(7.15) shows that the error dynamic is defined by the initial estimation error and the matrix Λ, 
which is constant. Hence, it is important to prove that for any initialization error, the error 
dynamic is stable. This is done by analyzing the matrix Λ. 

7.2.1 Stability of a system using pole placement 
Since 𝐴𝑐 and 𝐶𝑐 are constant matrices for an LTI state space model or the error dynamic, the 
initial error estimate is non-zero i.e., 𝜀(0) ≠ 0. Only 𝐿𝑐 is unknown in (10.10), which can be 
adjusted to make error dynamic converge to zero as 𝑡 → ∞. In other words, chose 𝐿𝑐 such that 
the error dynamic system matrix Λ is asymptotically stable, and the error dynamic is also stable. 
Stable Λ forces error to decay to zero for any initial value of error. Initialization error will, 
therefore, decay asymptotically to zero as 𝑡 → ∞. 

lim
𝑡→∞

𝑒Λt → 0
𝑖𝑓𝑓
→ Λ < 0 

lim
𝑡→∞

𝜀(𝑡) → 0
𝑖𝑓𝑓
→ Λ < 0 

Above statement means that the system is stable if and only if Λ is Hurwitz. In other words, Λ 
must have negative eigenvalues for above condition to hold. Poles of a controllable and 
observable system are the eigenvalues of the system transition matrix. For error dynamics, the 
transition matrix is given by Λ. To make the error dynamic system stable, it is possible to force 
Λ to have negative eigenvalues if error dynamic is controllable. In other words, poles of the 
transition matrix Λ can be placed at any arbitrary location in the left half of the complex plane 
for a controllable error dynamic. It can be proven that the eigenvalues of Λ is the same as the 
eigenvalues of ΛT. 

𝑒𝑖𝑔(Λ) = 𝑒𝑖𝑔(ΛT) 

Λ = 𝐴𝑐 − 𝐿𝑐𝐶𝑐 ≡ ΛT = 𝐴𝑐𝑇 − 𝐶𝑐𝑇𝐿𝑐𝑇 

For (7.14) to be controllable, ΛT must have full rank i.e., 𝑟𝑎𝑛𝑘(ΛT) = 𝑛𝑥. This can be 
determined using the controllability matrix (5.7) for the error dynamics as given below: 

∆𝑛= [𝐶𝑐𝑇 𝐴𝑐𝑇𝐶𝑐𝑇 ⋯ (𝐴𝑐𝑛−1)𝑇𝐶𝑐𝑇]𝑇 ≡ [𝐶𝑐𝑇 (𝐶𝑐𝐴𝑐)𝑇 ⋯ (𝐶𝑐𝐴𝑐𝑛−1)𝑇]𝑇 = 𝑂𝑛 (7.16) 

If 𝑟𝑎𝑛𝑘(∆𝑛) = 𝑛𝑥, then the error dynamic is controllable. One important observation to make 
here is that the controllability matrix of the error dynamic given above is the same as the 
observability matrix of the linear model given by (5.9) [15]. Thus, for an observable linear 
model, the error dynamic is always controllable. The venturi model is already proven to be 
both controllable and observable (section 5.1.5). Since the matrix pair (𝐴𝑐𝑇, 𝐶𝑐𝑇) is controllable, 
i.e., the pair (𝐴𝑐, 𝐶𝑐) is observable for a particular choice of 𝐿𝑐. 

𝐿𝑐 can be chosen such that Λ is Hurwitz. MATLAB has a built-in function “place.m” that 
returns the value of 𝐿𝑐 for an arbitrary pole position. LabVIEW also has a built-in sub-vi called 
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“CD Pole Place.vi”. The location of poles determines how fast the system responds. The rule 
of thumb is to place the poles of the Λ more towards the left of the system 𝐴𝑐 poles. By doing 
so, the system becomes more responsive and converges faster. In theory, observer poles can be 
placed anywhere in the left half of the complex plane. A rule of thumb is to place them more 
to the left of the system poles. 

𝑟𝑒𝑎𝑙(𝜆𝐿) < 𝑟𝑒𝑎𝑙(𝜆𝑠𝑦𝑠) 

𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(Λ)) < 𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴𝑐)) 

Since all poles of the venturi system lie in the left side of the complex plane (Figure 7.2), the 
system is stable. Based on the stable system poles, three different observers are designed. The 
poles of these observers are plotted together with the venturi system poles as shown in Figure 
7.2. Table 7.1 shows how the poles for all the observers are positioned. All the observers are 
designed by placing the poles more towards the left of the system poles. Poles of the observer 
system matrix are the same as the poles of the error dynamic system matrix. Revisit equations 
(7.8) and (7.14). 

 
Figure 7.2: System and observer poles in complex plane 

Table 7.1: Venturi model and state observer poles determined using pole placement method 

Model Multiplier (𝑙) Designator Poles (𝜆) 

Venturi model 1 𝜆𝑠𝑦𝑠 = 1 × 𝜆𝐴𝑐 
𝜆1 = −1.246 + 0.000𝑖
𝜆2 = −0.024 + 0.212𝑖
𝜆3 = −0.024 − 0.212𝑖

 

Observer (L2) Λ2 1.1 𝜆𝐿2 = 1.1 × 𝜆𝐴𝑐 
𝜆1 = −1.371 + 0.000𝑖
𝜆2 = −0.026 + 0.233𝑖
𝜆3 = −0.026 − 0.233𝑖

 

Observer (L3) Λ3 3.6 𝜆𝐿3 = 3.6 × 𝜆𝐴𝑐 
𝜆1 = −4.485 + 0.000𝑖
𝜆2 = −0.085 + 0.762𝑖
𝜆3 = −0.085 − 0.762𝑖
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Observer (L4) Λ4 6.6 𝜆𝐿4 = 6.6 × 𝜆𝐴𝑐 
𝜆1 = −8.223 + 0.000𝑖
𝜆2 = −0.155 + 1.397𝑖
𝜆3 = −0.155 − 1.397𝑖

 

 

7.3 Semi-nonlinear observer 
A tweaked version of the linear observer has been designed during this work to see if the 
estimation can be improved. The observer is named semi-nonlinear observer. This is because, 
𝐿𝑐 is determined using linear model matrices 𝐴𝑐 and 𝐶𝑐. To determine 𝐿𝑐, the same pole 
placement technique is used for semi-nonlinear observer as for the linear observer. However, 
the nonlinear state equation is used instead of linear state equation for apriori state estimation. 
Linearization of nonlinear model removed the HOT in Tylor series approximation of the 
nonlinear model. This induced a deviation in the linear model away from the operating point. 
By introducing the nonlinear deterministic state equation 𝑥̇ = 𝑓(𝑥, 𝑢), the hope is to reduce the 
estimation error induced by the removal of HOT. 

𝑥̇̂ = 𝑓(𝑥̂, 𝑢) + 𝐿𝑐(𝑔(𝑥) − 𝑔(𝑥̂)) (7.17) 

Where, 𝑓(𝑥̂, 𝑢) and 𝑔(𝑥̂) are nonlinear state and output equations respectively. In case of 
venturi model, 𝑔(𝑥) is a linear output equation given by (4.29). Therefore, 𝑔(𝑥̂) is ℎ̂2. Based 
on the venturi model, the semi observer equation takes the form: 

𝑥̇̂ = 𝑓(𝑥̂, 𝑢) + 𝐿𝑐(𝑦 − 𝑦̂) (7.18) 

𝑦 = 𝑔(𝑥) = 𝐶𝑥 (7.19) 

𝑦̂ = 𝑔(𝑥̂) = 𝐶𝑥̂ (7.20) 

For semi-nonlinear observer, the error dynamic based on nonlinear model is given by (7.21). 

𝜀̇ = 𝑥̇ − 𝑥̇̂ 

𝜀̇ = 𝑓(𝑥, 𝑢) − 𝑓(𝑥̂, 𝑢) − 𝐿𝑐(𝑔(𝑥) − 𝑔(𝑥̂)) 

𝜀̇ = 𝑓(𝑥 − 𝑥̂, 𝑢) − 𝐿𝑐(𝐶𝑐𝑥 − 𝐶𝑐𝑥̂) 

𝜀̇ = 𝑓(𝑥 − 𝑥̂, 𝑢) − 𝐿𝑐𝐶𝑐(𝑥 − 𝑥̂) 

𝜀̇ = 𝑓(𝜀, 𝑢) − 𝐿𝑐𝐶𝑐𝜀 (7.21) 

Equation (7.21) defines the nonlinear error dynamic based on the semi-nonlinear observer and 
nonlinear model of the system. 

7.4 Linear observer comparison based on simulation 
The linear and semi-nonlinear observer are compared here. Linear observer is implemented in 
Simulink and MATLAB and the semi-nonlinear observer is implemented in LabVIEW. The 
implementation is based on the mathematical model (ODEs) of the venturi flume. 
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7.4.1 Comparison of linear observers with different pole position 
First part of the comparison is based on the noise-free input signal. The second part is based 
on the noisy input signal. The noise variance is determined based on the real level 
measurements at the collocation point 1. 

 
Figure 7.3: Comparison of linear observers with different pole position for ℎ2 (venturi model) 

excited with noise-free input signal ℎ1 

 
Figure 7.4: Comparison of linear observers with different pole position for 𝑀1 and 𝑀2 

(venturi model) excited with noise-free input signal ℎ1 
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Figure 7.3 and Figure 7.4 shows the estimates from different observers for ℎ2 and 𝑀1,𝑀2 
respectively. All observers are excited by the same noise-free input signal. Observer 
designation and their corresponding poles are shown in Table 7.1. The observer (L4) with the 
left-most pole (Figure 7.2) responds faster than the observer with right-most pole (L2). The 
amplitude of the oscillation for L4 is smaller than the oscillation amplitude for (L2). The 
consequence is that there is less overshoot and undershoot in case of L4. L4 is more robust and 
faster than L2 for all states. All the observers are asymptotically stable, however, L4 converges 
faster. This means that if the poles are placed more towards left, the observer responds and 
converges faster. Since poles of L2 are close to the poles of nonlinear model, state estimates 
from L2 are overlapped with nonlinear states. As usual, the linear observers show some 
deviation away from the operating point. 

There is a flaw in analyzing linear observers that are excited with noise-free inputs. There is 
no information about how noise would affect the observers. In real process, the sensor 
measurements are noisy. For noisy inputs and measurements, it is important to analyze 
carefully the effect of noise in the observer. Therefore, the synthetic noise is added to the input 
and output of the venturi model. Figure 7.5 and Figure 7.6 visualizes this circumstance. 
Nonlinear model and all linear observers are excited with same noisy input signals. Since L4 
reacts to input changes faster than L2, the noise is amplified. From sensitivity analysis (Figure 
5.7 from section 5.2.3), it is determined that ℎ1 has a small effect on ℎ2 whereas, the effect on 
𝑀1 and 𝑀2 is large. This is seen in estimates as well. Flow rate estimates are noisier then level 
estimate. In the presence of noisy input, L2 estimates are less noisy than L4 estimates. Hence, 
it is a tradeoff between fast response, small over- undershoot and noisy estimates; and slow 
response, larger over- or undershoot and filtered estimates. One way to suppress the noise is to 
use a signal filter such as lowpass time constant filter, median filter or weighted moving 
average filter. These three filters are compared with each other using the real measurement data 
when implementing the observers on the real system. 

 
Figure 7.5: Comparison of linear observers with different pole position for ℎ2 (venturi model) 

with added synthetic noise in the input ℎ1 and the output ℎ2 
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Figure 7.6: Comparison of linear observers with different pole position for 𝑀1 and 𝑀2 

(venturi model) with added synthetic noise in the input ℎ1 and the output ℎ2 

Conclusion here is that if the observer poles are too close to the system poles gives slow 
response and takes longer to converge. If the observer poles are placed too far to the left, the 
noise is amplified due to faster response. The period of oscillation also decreases with faster 
poles. Shorter oscillation period means faster convergence. Hence, during observer design, 
both points must be considered. In case of venturi model, an observer with a pole placed 1.6 
times towards the left of the system pole position is deemed to be an optimal choice. 

7.4.2 Comparison of Linear observer and semi-nonlinear observer 
Linear observer gives good estimates of the states. However, the deviation that occurs away 
from the operating point is not eliminated entirely. Since linear model is only the first two terms 
of the infinite Tylor series approximation of the nonlinear model, the removal of HOT makes 
linear model imprecise as compared to the nonlinear model. Thus, the deviation occurs away 
from the linearization point. This is the reason for designing a semi-nonlinear observer. The 
observer gain matrix 𝐿𝑐, in both linear and semi-nonlinear cases, is chosen using the pole 
placement method and the poles of the observers are placed 1.6 times to the left of the system 
poles. Both observers are applied on the simulator. Hence, the states for the reference point in 
comparison are the simulated (nonlinear model) states. Both observers are implemented in 
LabVIEW. 

Figure 7.7 shows the result of linear and semi-nonlinear observer applied on simulator for level 
(ℎ2) estimation. Similarly, Figure 7.8 shows the result of both observers for estimation of mass 
flow rates (𝑀1,𝑀2) at two collocation points 𝑐1 and 𝑐2. In both cases, the synthetic noise is 
added to the simulated input (ℎ1) and the simulated output (ℎ2) to represent the real process. 
The synthetic noise in the input and the output has the same variance as that noise in actual 
level measurements. The linear observer is able to filter out the noise in the estimated states of 
the system. However, there is a deviation at the steady state in linear observer case. The semi-
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nonlinear observer is able to reduce the deviation as well as filter out the noise. Level estimates 
has higher amplitude of oscillation (greater over- undershoot) in linear observer case than in 
the case of semi-nonlinear observer. This suggests that the semi-nonlinear observer gives more 
accurate estimates than the linear observer. Semi-nonlinear observer is also more robust than 
the linear observer. 

 
Figure 7.7: Observer comparison based on the simulated output of the nonlinear model 

(𝑦 = 𝑥1 = ℎ2) for noisy input signal (ℎ1) 

 
Figure 7.8: Observer comparison based on the simulated states of the nonlinear model 

(𝑥2, 𝑥3) = (𝑀1,𝑀2) for noisy input signal (ℎ1) 
A better way of analyzing observers is using the error dynamics. Observer with the minimum 
error between the estimates and the actual states performs better. Figure 7.9 shows the error 
dynamics for both observers. The magnitude of semi-nonlinear observer error dynamic is much 
less compared to the magnitude of linear observer error dynamic. At the steady state, the state 
estimation error is negligibly small for semi-nonlinear observer since the deviation due to 
linearization is eliminated. In both cases, the level estimation error is small. The main 
difference is in the mass flow rate estimation. It is evident that the mass flow rate estimation 
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error converges for both observer. However, for semi-nonlinear observer the error decays faster 
as 𝑡 → ∞. This concludes that the semi-nonlinear observer performs better than the linear 
observer. This is also evident in case of noise-free input in a pure simulator. Figure 7.10 and 
Figure 7.11 show the result of linear and semi-linear estimator for estimating the model states. 
As with the noisy system, the noise free system also proves that the semi-linear observer is 
more robust and faster with minimum estimation error than the linear observer. The deviation 
between the nonlinear model states (reference states) and the observer states are seen clearly 
in the figures. 

 
Figure 7.9: Comparison of estimation error dynamics using linear observer (bottom) and 

semi-nonlinear observer (top). 

 
Figure 7.10: Comparison of linear observer and semi-nonlinear for estimating the level as the 

output (𝑦 = 𝑥1 = ℎ2) in parallel with the simulator excited by noise-free input (ℎ1) 



 State Observer 

71 

 
Figure 7.11: Comparison of linear observer and semi-nonlinear for estimating the flow rates 

as states (𝑥2, 𝑥3 = 𝑀1,𝑀2) in parallel with the simulator excited by noise-free input (ℎ1) 
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8 Kalman filter 
So far, linear observer and semi-nonlinear observer have been investigated. Both of those 
techniques are based on the deterministic approach. In real world, the systems are most likely 
to be stochastic in nature. Most process are constantly influenced by disturbances, uncertainties 
in sensor measurements and process noise. In this chapter, both linear and nonlinear version of 
Kalman filters are described. Kalman filter is stochastic approach as oppose to Luenberger 
observer of deterministic approach. In principle, Kalman filter is an optimal state estimator. In 
Kalman filter case, the main process is excited by stochastic processes, also known as random 
process noise, 𝑣 and 𝑤 as oppose to the deterministic process in observer case. An overview 
of Kalman filter for state estimation is shown in Figure 8.1 (compare with Figure 7.1 for 
observer overview). 

Process

LKF/UKF/EKF

y

   

u

x

ŷ

w v

 
Figure 8.1: State estimation overview with injected measurements and stochastic process 

The idea with Kalman filter is that the covariance and the mean of the real states is the same as 
the covariance and mean of the state estimates. Kalman filter assumes the gaussian distribution 
for the states. After linear transformation using the linear process model and measurement 
model, the distribution maintains its gaussian properties. This means that the mean and 
covariance of the true states and the estimated states are the same after undergoing the linear 
transformation using the linear model. For a system with gaussian distributed white noise 
process and measurement noise, the Kalman filter is an optimal linear filter [16, p. 124]. 
Kalman filter is optimal in a sense that the covariance of state estimation error is minimized. 
Kalman filter is able to estimate the covariance of the state estimation error influenced by the 
stochastic processes 𝑤, and 𝑣 (Figure 8.1). 

Mean and covariance for an arbitrary vector 𝒛, is mathematically represented using the mean 
and covariance operator as (8.1) and (10.10). 

𝑧̅ = 𝐸{𝒛} = lim
𝑁→∞

1
𝑁
∑𝒛𝑘

𝑁

𝑘=1

 (8.1) 

𝒁 = 𝐸{𝒛𝒛𝑇} = lim
𝑁→∞

1
𝑁
∑(𝒛𝑘 − 𝑧̅)(𝒛𝑘 − 𝑧̅)𝑇
𝑁

𝑘=1

 (8.2) 
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Where, 𝑁 is the number of samples. The noise and state estimation error covariance matrices 
based on (8.1) and (10.10) is given by: 

𝑋 = 𝐸{𝜀𝜀𝑇} = 𝑃 𝑊 = 𝐸{𝑤𝑤𝑇} = 𝑄 𝑉 = 𝐸{𝑣𝑣𝑇} = 𝑅 (8.3) 

Where, 𝜀 = 𝑥 − 𝑥̂. Sometimes, 𝑋, 𝑊 and 𝑉 are used interchangeably as 𝑃, 𝑄 and 𝑅 
respectively. 𝑄 and 𝑅 are known constant matrices. Dimension of these matrices are given in 
Table 8.1. 𝑄 and 𝑅 should be properly tuned for Kalman filter to work properly. 

Table 8.1: Size of the covariance matrices used in Kalman filter algorithm for general system 
(LHS) and for the model venturi flume (RHS). 

𝑃 = 𝑋 𝑄 = 𝑊 𝑅 = 𝑉 

[𝑛𝑥 × 𝑛𝑥] = [3 × 3] [𝑛𝑥 × 𝑛𝑥] = [3 × 3] [𝑛𝑦 × 𝑛𝑦] = [1 × 1] 

 

8.1 Linear Kalman filter 
A continuous-time linear stochastic system with no direct feedthrough term in the output 
(𝐷𝑐 = 𝟎), is described by (8.4) and (8.5). 

𝛿𝑥̇ = 𝐴𝑐𝛿𝑥 + 𝐵𝑐𝛿𝑢 + 𝑤 (8.4) 

 𝛿𝑦 = 𝐶𝑐𝛿𝑥 + 𝑣 (8.5) 

Where, 𝑤 is the process noise and 𝑣 is the measurement noise. 𝑤 and 𝑣 are uncorrelated, zero-
mean, Gaussian distributed, white stochastic noise processes [17]. For gaussian distributed 
random processes, 𝑤 and 𝑣, the sample mean, based on (8.1), is zero and is given as: 

𝑤̅ = 𝐸{𝑤} = 0 𝑣̅ = 𝐸{𝑣} = 0 
With zero sample mean for random white noise processes, the mean of the true states is 
unaffected for large number of samples. Therefore, the estimated states will have the same 
mean as the true states after the linear transformation. A form of continuous-time linear Kalman 
filter (LKF) resembles the form of linear Luenberger observer (7.8). The only difference is that 
the observer gain, 𝐿𝑐 is replaced by Kalman gain 𝐾𝑐 as shown in (8.6) – (8.8). 

𝛿𝑥̇̂ = Λ𝛿𝑥̂ + 𝐵𝑐𝛿𝑢 + 𝐾𝑐𝛿𝑦 (8.6) 

𝛿𝑦̂ = 𝐶𝑐𝛿𝑥̂ (8.7) 

 Λ ≝ Ac − 𝐾𝑐𝐶𝑐 (8.8) 

Observer gain, 𝐿𝑐, is determined using pole placement method which requires a computation 
of system eigenvalues. However, no information about the noise processes influencing the 
system is required. To determine Kalman gain, 𝐾𝑐, a different approach is required. It is often 
difficult to deduce the noise and disturbance information acting on the system. This makes it 
difficult to tune noise covariance matrices (Q and R) to find proper gain. Next section discusses 
the structure of 𝐾𝑐. 
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8.1.1 Time varying Kalman gain 
For a continuous-time system, Kalman gain is computed continuously using, so called, 
continuous differential algebraic Riccati equation (C-DARE). C-DARE is given by (8.9). The 
Kalman gain is given by (10.10). Such gain 𝐾𝑐, is sometimes, called an online Kalman gain. 

𝑃̇ = 𝐴𝑐𝑃 + 𝑃𝐴𝑐𝑇 + 𝑄 − 𝑃𝐶𝑐𝑇𝑅−1𝐶𝑐𝑃 (8.9) 

𝐾𝑐 = 𝑃𝐶𝑐𝑇𝑅−1 [𝐾𝑐] = [𝑛𝑥 × 𝑛𝑦] (8.10) 

Where, 𝑃, 𝑄, 𝑅 are covariance matrices given by (8.3). C-DARE is a matrix differential 
equation which needs to be solved to determine 𝐾𝑐. For the case of venturi system, RK4 is used 
as a solver. To solve a differential equation, a boundary condition is required. Often the initial 
state estimation error covariance matrix is unknown due to the lack of knowledge of the system 
states. In such cases, it is a good idea to define the initial state estimation error covariance 
matrix as a diagonal matrix with a large impulsive parameter, 𝛿. 

𝑃(𝑡0) = 𝑃0 = 𝛿𝐼𝑛𝑥, 𝛿 ≫ 0 

There is a built-in function in LabVIEW to solve C-DAREs called “CD Continuous Algebraic 
Riccati Equations.vi”. 

8.1.2 Steady state Kalman gain 
As the estimation system reaches steady state, the covariance matrix converges to a constant 
value. This means that, at steady state 𝑃̇ = 𝟎. 

lim
𝑡→∞

𝑃̇ = 𝟎
𝑖𝑚𝑝𝑙𝑖𝑒𝑠
→     𝑃 → 𝑃̅ 

By setting 𝑃̇ = 𝟎 in equation (8.9), C-DARE becomes an algebraic Riccati equation (ARE). 
Assuming that the 𝑃 is constant at the steady state and matrices 𝐴, 𝐶, 𝑄 and 𝑅 are known 
constant matrices, 𝐾𝑐 becomes a constant matrix too. Thus, it is a good idea to compute the 
steady state Kalman gain offline. Such gain 𝐾𝑐, is sometimes referred to as an offline Kalman 
gain. Determining the Kalman gain offline reduces the number of steps to execute when 
implementing the Kalman filter. There is no need to solve CARE to compute 𝐾𝑐. To compute 
steady state Kalman gain in MATLAB, a function called “kalman.m” can be used. In 
LabVIEW, a function that fulfills the purpose is “CD Kalman Gain.vi”. To determine the 
Kalman gain, matrices 𝑄 and 𝑅 must be tuned properly. For venturi flume, the values of 𝑄 and 
𝑅 is determined using the data measured in the LAB. Using equations (8.2) and (8.3) and real 
measurements, the knowledge of 𝑄 and 𝑅 can be deduced. 𝑄 and 𝑅 are time invariant constant 
covariance matrices. So, the proper tuning of these matrices is vital for proper state estimation. 

8.1.3 Stability of linear Kalman filter 
After determining the Kalman gain, the poles of the transition matrix (8.8) for Kalman filter is 
determined. Figure 8.2 shows the poles of the Kalman filter plotted together with the system 
poles and observer poles. Kalman poles are extremely close to the actual system poles. Since 
all the poles of the linear Kalman filter lie in the left plane of the complex plane and slightly 
towards the left of the system poles, the estimator is stable. 
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For controllability, it is sufficient to check the rank of the transition matrix (8.8) for Kalman 
filter. If the rank is a full rank, then the Kalman filter is controllable i.e., 𝑟𝑎𝑛𝑘(𝐴𝑐 − 𝐾𝑐𝐶𝑐) =
𝑛𝑥. Using MATLAB, the rank was determined to be full rank. Hence, the Kalman filter is 
controllable. The controllability matrix of Kalman filter is the same as that of the linear 
observer (10.10), provided that 𝐿𝑐 is replaced with 𝐾𝑐. 

 
Figure 8.2: Poles of the Kalman filter and venturi model plotted in complex plane 

8.2 Nonlinear Kalman filter 
Linear model works fine for nonlinear models that can be approximated by a linearized model 
around an operating point. For highly nonlinear model, the linearization tends to give improper 
model approximation; specially, when operated away from the operating point. Thus, for highly 
nonlinear models, linear Kalman filter (LKF) estimates are not optimal. Not optimal in a sense 
that the covariance of the estimation error is large. For a linear model, the mean and covariance 
of the state estimate after linear transformation remains the same as that of the true states due 
to an assumed gaussian distribution. For nonlinear model however, the distribution after the 
state transformation may not be gaussian. In such case, nonlinear state estimator is required. 
Two of the nonlinear state estimator are extended Kalman filter (EKF) and unscented Kalman 
filter (UKF). The algorithm for EKF and UKF for this thesis work is based on the discrete 
system given by (8.11) and (10.10). The discrete nonlinear model is stochastic in nature with 
additive process noise (𝑤𝑘) and measurement noise (𝑣𝑘). The dimension of each vector for a 
given time instance is also presented below. For a given time instance, only one sample is 
considered. 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝜃, 𝑡𝑘) + 𝑤𝑘 
[𝑥𝑘+1] = [𝑥𝑘] = [𝑤𝑘] = [𝑛𝑥 × 1] 

(8.11) 

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘, 𝜃, 𝑡𝑘) + 𝑣𝑘 

[𝑦𝑘] = [𝑣𝑘] = [𝑛𝑦 × 1] 
(8.12) 

Where, 𝜃 is a vector of the model parameters as listed in Table 5.3. The covariance matrices of 
the white noise process are given by (8.3).  
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8.2.1 Extended Kalman filter 
In LKF, the model Jacobians 𝐴𝑐 and 𝐶𝑐 are computed once and are time invariant (constant). 
In EKF, the model matrices change since the linearization is performed around the mean of the 
current state estimates. This gives better approximation of the true states when linearized 
around the current state estimates. Thus, 𝐴𝑐 and 𝐶𝑐 are time variant. The probability distribution 
around the state estimates is, thus, gaussian. After the transformation, gaussian properties is 
upheld by the estimated states [18]. Note that the transformation is still linear, but the linear 
model is the best approximation of the nonlinear model around the mean of the current state 
estimates. This idea is presented below as the step by step discrete EKF algorithm. The 
algorithm is based on the discrete time nonlinear system (8.11) and (10.10). The algorithm can 
be directly implemented in any programming language. LabVIEW is used for this thesis.  

Some notations used in the EKF algorithm: 

x Apriori state estimate: 𝑥̂𝑘− 
x Aposteriori state estimate: 𝑥̂𝑘+ 
x Apriori state covariance matrix: 𝑃𝑘− 
x Aposteriori state covariance matrix: 𝑃𝑘+ 
x Size of a matrix or a vector is given inside square braces. [𝐴] = [𝑟 × 𝑐]. Where, 𝐴 is an 

arbitrary variable. 𝑟 and 𝑐 represent the number of rows ann columns respectively. 

Step by step EKF algorithm: 

Step 0. Initialization step (runs only once) 
0.1. Define process noise covariance matrix 𝑊 and measurement noise covariance 

matrix 𝑉 given by (8.3). The dimensions of these matrices are: 

𝑊 = 𝐸{𝑤𝑤T} [𝑊] = [𝑛𝑥 × 𝑛𝑥] 

𝑉 = 𝐸{𝑤𝑤T} [𝑉] = [𝑛𝑦 × 𝑛𝑦] 

0.2. Initialize apriori state estimate based on (8.1) 

𝑥̂0− = 𝐸(𝑥0) [𝑥̂0−] = [𝑛𝑥 × 1] 
𝑥̂𝑘− = 𝐸(𝑥𝑘) [𝑥̂𝑘−] = [𝑛𝑥 × 1] 

0.2.1. It is a good idea to set the initial apriori state estimate to be equal to the 
initial value for the state based on the knowledge of the system 

𝑥̂𝑘− = 𝑥̂0− = 𝑥0 

0.3. Define and initialize state covariance matrix 

𝑃0− = 𝐸{(𝑥0 − 𝑥̂0−)(𝑥0 − 𝑥̂0−)𝑇} [𝑃0−] = [𝑛𝑥 × 𝑛𝑥] 

𝑃𝑘− = 𝐸{(𝑥𝑘 − 𝑥̂𝑘−)(𝑥𝑘 − 𝑥̂𝑘−)𝑇} [𝑃𝑘−] = [𝑛𝑥 × 𝑛𝑥] 

0.3.1. If the initial state covariance is not known, use large scalar 𝛿 to multiply 
an identity matrix of proper size (given below) 

𝑃𝑘− = 𝑃0− = 𝛿𝐼𝑛𝑥 

Step 1. Predict the output using the apriori state estimate and the measurement equation 
(10.10) 
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𝑦̂𝑘 = 𝑔(𝑥̂𝑘−, 𝑢𝑘, 𝜃, 𝑡𝑘) [𝑦̂𝑘] = [𝑛𝑦 × 𝑛𝑥] 

Step 2. Compute the matrix 𝐶𝑘 
2.1. For nonlinear measurement equation (10.10), the matrix 𝐶𝑘 must be determined 

by linearizing the equation around the mean of the apriori state estimate. 

𝐶𝑘 =
𝜕𝑔(𝑥𝑘, 𝑢𝑘, 𝜃, 𝑡𝑘)

𝜕𝑥𝑘𝑇
|
(𝑥̂𝑘
−,𝑢𝑘)

[𝐶𝑘] = [𝑛𝑦 × 𝑛𝑥] 

2.2. For linear measurement equation, 𝐶𝑘 can be constant based. If so, linearization 
is not necessary, and the step is skipped by using the constant 𝐶𝑘 

Step 3. Compute the Kalman gain 

𝐾𝑓𝑘 = 𝑃𝑘
−𝐶𝑘𝑇(𝐶𝑘𝑃𝑘−𝐶𝑘𝑇 + 𝑉)−1 [𝐾𝑓𝑘] = [𝑛𝑥 × 𝑛𝑦] 

Step 4. Aposteriori state estimate using the Kalman gain 

𝑥̂𝑘+ = 𝑥̂𝑘− + 𝐾𝑓𝑘(𝑦𝑘 − 𝑦̂𝑘) [𝑥̂𝑘+] = [𝑛𝑥 × 1] 

Step 5. Apriori state update 
5.1. Using the nonlinear process model (8.11) and aposteriori state estimate, predict 

the apriori state 

𝑥̂𝑘+1− = 𝑓(𝑥̂𝑘+, 𝑢𝑘, 𝜃, 𝑡𝑘) [𝑥̂𝑘+1− ] = [𝑛𝑥 × 1] 

Step 6. Determine the time varying system matrix 𝐴𝑘 
6.1. Linearize the nonlinear process model (8.11) around the aposteriori state 

estimate 

𝐴𝑘 =
𝜕𝑓(𝑥𝑘, 𝑢𝑘, 𝜃, 𝑡𝑘)

𝜕𝑥𝑘𝑇
|
(𝑥̂𝑘
+,𝑢𝑘)

[𝐴𝑘] = [𝑛𝑥 × 𝑛𝑥] 

Step 7. Update covariance matrix 
7.1. Predict the aposteriori state estimation covariance matrix 

𝑃𝑘+ = (𝐼𝑛𝑥 − 𝐾𝑓𝑘𝐶𝑘)𝑃𝑘
−(𝐼𝑛𝑥 − 𝐾𝑓𝑘𝐶𝑘)

𝑇
+ 𝐾𝑓𝑘𝑉𝑘𝐾𝑓𝑘

𝑇 [𝑃𝑘+] = [𝑛𝑥 × 𝑛𝑥] 

7.2. Predict the aposteriori state estimation covariance matrix 

𝑃𝑘+1− = 𝐴𝑘𝑃𝑘+𝐴𝑘𝑇 +𝑊𝑘 [𝑃𝑘+1− ] = [𝑛𝑥 × 𝑛𝑥] 

Step 8. Slide one step forward 
8.1. Update apriori state estimates 

𝑥̂𝑘− = 𝑥̂𝑘+1−  

8.2. Update the apriori state estimation covariance matrix 

𝑃𝑘− = 𝑃𝑘+1−  

8.3. Update the time instance 𝑘 (slide 1 step forward) 

𝑘 + 1 ≔ 𝑘 
Repeat the step 1 to 8 as long as required. EKF is explained in detail in [16, p. 400] and [17]. 
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8.2.2 Unscented Kalman filter 
Linearization may not be a good approximation around the point of high nonlinearity. For 
complex nonlinear model, the partial derivatives may not exist and computing Jacobians maybe 
computationally demanding. These are some of the shortcomings of EKF. Instead of linearizing 
the nonlinear model, as an EKF does, UKF approximates the probability distribution function 
around the mean of the estimates. UKF generates a set of sample points that capture the mean 
and covariance of the state estimates. These points are called the sigma points. Sigma points 
are symmetrically distributed around the mean of the state estimation. These individual signa 
points are easier to transform using the nonlinear model. Thus, the nonlinear transformation of 
the signa points are performed. Such nonlinear transformation of signa points is known as the 
unscented transformation. After the unscented transformation, the mean and covariance of the 
transformed sigma points is calculated. The sample mean and the covariance of the transformed 
signa points are the best estimate of the true mean and covariance. The signa points are 
generated for both state equation and measurement equation. UKF uses the nonlinear models 
which eliminates the error of linearization. The idea is presented below as a step by step 
algorithm that can be used to implement directly in a programming language. LabVIEW is 
used for implementing UKF. 

Some important notations used in the UKF algorithms: 

x Apriori is denoted by superscript – 
o State estimate: 𝑥̂𝑘− 
o Apriori state covariance: 𝑃𝑘− 
o A small perturbation to generate sigma points based on apriori state estimates 

and aposteriori state covariance matrix: 𝑥̃𝑖− 
x Aposteriori is denoted by superscript + 

o Aposteriori state estimate: 𝑥̂𝑘+ 
o Aposteriori state covariance: 𝑃𝑘+ 
o A small perturbation to generate sigma points based on aposteriori state 

estimates and aposteriori state covariance matrix: 𝑥̃𝑖+ 
x Sigma points: 𝑥̂𝑘𝜎 

o Transformed sigma points using state equation: 𝑥̂𝑘𝜎⃗⃗  
o Transformed sigma points using measurement equation: 𝑦̂𝑘𝜎⃗⃗  

The UKF algorithm, step by step: 

Step 0. Initialization (runs only once) 
0.1. Define process noise covariance matrix 𝑊 and measurement noise covariance 

matrix 𝑉 given by (8.3) with proper dimensions 

𝑊 = 𝐸{𝑤𝑤T} [𝑊] = [𝑛𝑥 × 𝑛𝑥] 

𝑉 = 𝐸{𝑤𝑤T} [𝑉] = [𝑛𝑦 × 𝑛𝑦] 

0.2. Define an initial expected value of the aposteriori state estimate at time 𝑘. 
Expected value is the mean of the state estimate based on (8.1) 

𝑥̂0+ = 𝐸(𝑥0) [𝑥̂0+] = [𝑛𝑥 × 1] 

𝑥̂𝑘+ = 𝐸(𝑥𝑘) [𝑥̂𝑘+] = [𝑛𝑥 × 1] 
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𝑥̂𝑘+ = 𝑥̂0+ 

0.3. Define an initial expected covariance matrix of the aposteriori state covariance 
matrix at time 𝑘 

𝑃0+ = 𝐸{(𝑥0 − 𝑥̂0+)(𝑥0 − 𝑥̂0+)𝑇} [𝑃0+] = [𝑛𝑥 × 𝑛𝑥] 

𝑃𝑘+ = 𝐸{(𝑥𝑘 − 𝑥̂𝑘+)(𝑥𝑘 − 𝑥̂𝑘+)𝑇} [𝑃𝑘+] = [𝑛𝑥 × 𝑛𝑥] 

0.4. If the initial state covariance is not known, use large scalar 𝛿 to multiply an 
identity matrix of proper size (given below) 

𝑃𝑘+ = 𝑃0+ = 𝛿𝐼𝑛𝑥 

Step 1. Generate sigma points 
1.1. Number of signa points (𝑛𝑠) to generate is related to the number of states (𝑛𝑥) 

in the system. To distribute symmetrically around the mean, twice the number 
of states is enough to capture the mean and covariance of the state estimate 

𝑛𝑠 = 2 ∙ 𝑛𝑥 
1.2. Define matrix square root of the aposteriori covariance matrix 

𝑠𝑞𝑛𝑃+ = √𝑛𝑥𝑃𝑘+ [𝑠𝑞𝑛𝑃+ ] = [𝑛𝑥 × 𝑛𝑥] 

1.3. Take a column from the matrix square root to symmetrically distribute the 
sigma points 

𝑠𝑞𝑛𝑃+ 𝑗 = 𝑠𝑞𝑛𝑃
+ (𝑗, : ) 𝑗 = 1,2, …𝑛𝑥 [𝑠𝑞𝑛𝑃+ 𝑗] = [1 × 𝑛𝑥] 

1.4. Define small perturbation from the mean of the current state estimate. 

𝑥̃𝑖+ = 𝑎 ∙ 𝑠𝑞𝑛𝑃+ 𝑗
𝑇 { 𝑗 = 𝑖
𝑗 = 𝑖 − 𝑛𝑥

𝑎 = 1
𝑎 = −1

1 ≤ 𝑖 ≤ 𝑛𝑥
𝑛𝑥 < 𝑖 ≤ 𝑛𝑠

𝑖 = 1,2, … 𝑛𝑠 

[𝑠𝑞𝑛𝑃+ 𝑗
𝑇] = [𝑛𝑥 × 1] [𝑥̃𝑖+] = [𝑛𝑥 × 1] [𝑥̃+] = [𝑛𝑥 × 𝑛𝑠] 

1.5. Add the perturbation to the aposteriori state mean to generate a set of sigma 
points 

𝑥̂𝑘𝜎
(𝑖) = 𝑥̃𝑖+ + 𝑥̂𝑘+ [𝑥̂𝑘𝜎

(𝑖)] = [𝑛𝑥 × 1] [𝑥̂𝑘𝜎] = [𝑛𝑥 × 𝑛𝑠] 

Step 2. Perform unscented transformation to the sigma points using the nonlinear state 
equation. The outcome is the set of transformed sigma points for estimated states 

𝑥̂𝑘+1𝜎⃗⃗ (𝑖)
= 𝑓 (𝑥̂𝑘𝜎

(𝑖), 𝑢𝑘, 𝜃, 𝑡𝑘) 𝑖 = 1,2, … 𝑛𝑠 [𝑥̂𝑘+1𝜎⃗⃗ (𝑖)
] = [𝑛𝑥 × 1] [𝑥̂𝑘+1𝜎⃗⃗ ] = [𝑛𝑥 × 𝑛𝑠] 

Step 3. Determine the apriori mean and covariance of the transformed sigma points 
which is the good estimation of the true mean and true covariance of the states 
3.1. Apriori mean of the transformed signa points (using (8.1)) 

𝑥̂𝑘+1− =
1
𝑛𝑠
∑ 𝑥̂𝑘+1𝜎⃗⃗ (𝑖)
𝑛𝑠

𝑖=1

[𝑥̂𝑘+1− ] = [𝑛𝑥 × 1] 
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3.2. Apriori state covariance matrix of the transformed sigma points (using (8.2)). 
The process noise covariance is added to take care of the process noise. 

𝑃𝑘+1− =
1
𝑛𝑠
∑(𝑥̂𝑘+1𝜎⃗⃗ (𝑖)

− 𝑥̂𝑘+1− ) (𝑥̂𝑘+1𝜎⃗⃗ (𝑖)
− 𝑥̂𝑘+1− )

𝑇
𝑛𝑠

𝑖=1

+𝑊 𝑖 = 1,2, …𝑛𝑠 [𝑃𝑘+1− ] = [𝑛𝑥 × 𝑛𝑥] 

The matrix multiplication takes care of the Σ sign above. The proof is given in Appendix 8. 
Working in matrix form, especially in MATLAB, the above algorithm can be written as: 

𝑃𝑘+1− =
1
𝑛𝑠
(𝑥̂𝑘+1𝜎⃗⃗ − 𝑥̂𝑘+1− )(𝑥̂𝑘+1𝜎⃗⃗ − 𝑥̂𝑘+1− )

𝑇
+𝑊 

Step 4. Generate a new set of sigma points using the apriori covariance matrix 
4.1. Determine the matrix square root of apriori covariance matrix 

𝑠𝑞𝑛𝑃− = √𝑛𝑥𝑃𝑘+1− [𝑠𝑞𝑛𝑃− ] = [𝑛𝑥 × 𝑛𝑥] 

4.2. Take a column from the matrix square root to symmetrically distribute the 
sigma points 

𝑠𝑞𝑛𝑃− 𝑗 = 𝑠𝑞𝑛𝑃
− (𝑗, : ) 𝑗 = 1,2, …𝑛𝑥 [𝑠𝑞𝑛𝑃− 𝑗] = [1 × 𝑛𝑥] 

4.3. Define small perturbation from the mean of the current state estimate. 

𝑥̃𝑖− = 𝑎 ∙ 𝑠𝑞𝑛𝑃− 𝑗
𝑇 { 𝑗 = 𝑖
𝑗 = 𝑖 − 𝑛𝑥

𝑎 = 1
𝑎 = −1

1 ≤ 𝑖 ≤ 𝑛𝑥
𝑛𝑥 < 𝑖 ≤ 𝑛𝑠

𝑖 = 1,2, … 𝑛𝑠 

[𝑠𝑞𝑛𝑃− 𝑗
𝑇] = [𝑛𝑥 × 1] [𝑥̃𝑖−] = [𝑛𝑥 × 1] [𝑥̃−] = [𝑛𝑥 × 𝑛𝑠] 

4.4. Add the perturbation to the apriori state mean to generate a new set of sigma 
points 

𝑥̂𝑘+1𝜎 (𝑖) = 𝑥̃𝑖− + 𝑥̂𝑘+1− [𝑥̂𝑘+1𝜎 (𝑖)] = [𝑛𝑥 × 1] [𝑥̂𝑘+1𝜎 ] = [𝑛𝑥 × 𝑛𝑠] 

Step 5. Perform unscented transformation to the sigma points using the nonlinear 
measurement equation. The outcome is the set of transformed sigma points for 
estimated output 

𝑦̂𝑘𝜎⃗⃗ 
(𝑖)
= 𝑔 (𝑥̂𝑘+1𝜎 (𝑖), 𝑢𝑘, 𝜃, 𝑡𝑘) 𝑖 = 1,2, … 𝑛𝑠 [𝑦̂𝑘𝜎⃗⃗ 

(𝑖)
] = [𝑛𝑦 × 1] [𝑦̂𝑘𝜎⃗⃗ ] = [𝑛𝑦 × 𝑛𝑠] 

Step 6. Determine the mean and covariance of the transformed sigma points which is 
the good estimation of the true mean and true covariance of the output 
6.1. Mean of the transformed signa points (using (8.1)) 

𝑦̂𝑘 =
1
𝑛𝑠
∑ 𝑦̂𝑘𝜎⃗⃗ 

(𝑖)𝑛𝑠

𝑖=1
[𝑦̂𝑘] = [𝑛𝑦 × 1] 

6.2. Measurement covariance matrix of the transformed sigma points (using (8.2)). 
The measurement noise covariance is added to take care of the noise 

𝑃𝑦 =
1
𝑛𝑠
∑ (𝑦̂𝑘𝜎⃗⃗ 

(𝑖)
− 𝑦̂𝑘) (𝑦̂𝑘𝜎⃗⃗ 

(𝑖)
− 𝑦̂𝑘)

𝑇𝑛𝑠

𝑖=1
+ 𝑉 [𝑃𝑦] = [𝑛𝑦 × 𝑛𝑦] 

6.3. Determine the cross covariance between the states and the outputs 



 Kalman filter 

81 

𝑃𝑥𝑦 =
1
𝑛𝑠
∑ (𝑥̂𝑘+1𝜎⃗⃗ (𝑖)

− 𝑥̂𝑘+1− ) (𝑦̂𝑘𝜎⃗⃗ 
(𝑖)
− 𝑦̂𝑘)

𝑇𝑛𝑠

𝑖=1
[𝑃𝑥𝑦] = [𝑛𝑥 × 𝑛𝑦] 

The matrix multiplication takes care of the Σ sign above. The proof is given in Appendix 8. 
Working in matrix form, especially in MATLAB, the above algorithm can be written as: 

𝑃𝑦 =
1
𝑛𝑠
(𝑦̂𝑘𝜎⃗⃗ − 𝑦̂𝑘)(𝑦̂𝑘𝜎⃗⃗ − 𝑦̂𝑘)

𝑇
+ 𝑉 

𝑃𝑥𝑦 =
1
𝑛𝑠
(𝑥̂𝑘+1𝜎⃗⃗ − 𝑥̂𝑘+1− )(𝑦̂𝑘𝜎⃗⃗ − 𝑦̂𝑘)

𝑇
 

Step 7. Determine the Kalman gain 

𝐾𝑓𝑘 = 𝑃𝑥𝑦𝑃𝑦
−1 [𝐾𝑓𝑘] = [𝑛𝑥 × 𝑛𝑦] 

Step 8. Predict the aposteriori state estimate and state covariance matrix 
8.1. Aposteriori state estimate using the measurement 

𝑥̂𝑘+1+ = 𝑥̂𝑘+1− + 𝐾𝑓𝑘(𝑦𝑘 − 𝑦̂𝑘) [𝑥̂𝑘+1+ ] = [𝑛𝑥 × 1] 

8.2. Aposteriori state covariance matrix 

𝑃𝑘+1+ = 𝑃𝑘+1− − 𝐾𝑓𝑘𝑃𝑦𝐾𝑓𝑘
𝑇 [𝑃𝑘+1+ ] = [𝑛𝑥 × 𝑛𝑥] 

Step 9. Slide one step forward 
9.1. Update apriori state estimates 

𝑥̂𝑘+ = 𝑥̂𝑘+1+  

9.2. Update the apriori state estimation covariance matrix 

𝑃𝑘+ = 𝑃𝑘+1+  

9.3. Update the time instance 𝑘 (slide 1 step forward) 

𝑘 + 1 ≔ 𝑘 
Repeat the step 1 to 9 as long as required. UKF is explained in detail in [16, p. 433] and [17]. 

8.3 Comparison between Kalman filters and observers 
based on simulation 

Kalman filters (both nonlinear and linear) and observers (both semi-nonlinear and linear) are 
implemented in LabVIEW. The comparison of these estimators is presented in this section. 

8.3.1 Comparison of online and offline Kalman gain for LKF 
Figure 8.3 and Figure 8.4 shows the output of the Kalman filter for online and offline gain 
respectively. An input with additive gaussian distributed white noise excites the both system. 
The output is also influenced by an additive white noise. Kalman filter is able to filter out the 
noise in both cases. There is not significant difference between both applications. This shows 
that the Kalman gain calculated offline is just as good as the online gain. However, in case of 
linear Kalman filter with online Kalman gain, more equations are involved that needs to be 
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solved such as CARE and Kalman gain itself repeatedly since state estimation is performed in 
loop. By removing these overheads, the implementation comes down to a two-equation 
algorithm given by equations (8.6) and (8.7). Thus, the need for continuous calculation of the 
gain is avoided and the efficiency of the system increases. 

 
Figure 8.3: State estimation applied on the venturi model using Kalman gain estimated online 

with added synthetic noise in the input and the output 

 
Figure 8.4: State estimation applied on the venturi model using Kalman gain calculated 

offline with added synthetic noise in the input and output 

Comparison of online and offline Kalman gain on noise-free simulator is presented in 
Appendix 9 Part 9A. 
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When using LKF, EKF and UKF, covariance matrix for process noise 𝑄 and measurement 
noise R must be tunes properly. For venturi model, since the synthetic noise resembles real 
noise in level measurement at collocation point 1, it makes sense to define covariance matrices 
is 𝑄 and 𝑅 based on the real measurements. The values are presented in Table 8.2. 

Table 8.2: Covariance matrices and noise variances used in Kalman filters 

Kalman filter 𝜎2(𝑤) 𝜎2(𝑣) 𝑄 𝑅 

LKF, EKF, UKF 10−6 10−4 diag(1,0E-5;1,0E-2; 1,0E-2) 6,0E-7 

 

8.3.2 Comparison of LKF, EKF and UKF 
The result of state estimation using LKF, EKF and UKF based on the dynamic simulator of the 
venturi flume is shown in Figure 8.5 and Figure 8.6. The reference states for comparison are 
the nonlinear model states. Figure 8.5 shows the level estimates and level predicted by the 
model whereas Figure 8.6 shows the mass flow rate estimates and the mass flow rate predicted 
by the model. All Kalman filters are able converge to a steady state while also reducing the 
noise in system. In case of level estimation, the noise negligible. Noise level in mass flow rate 
is also minimal. However, LKF has a deviation since it is operating away from the linearization 
point. In EKF and UKF, the deviation is non-existence. Based on Figure 8.5 and Figure 8.6, it 
is clear that, the UKF performs better than other two version of the Kalman filter for all states. 
UKF is better in a sense that it responds faster and converges faster than LKF and EKF. LKF 
has the largest overshoot and undershoot which can lead to unreliable initial estimates during 
transient if the change in input is large. At steady state, UKF is noisier than LKF or EKF. This 
is due to the fact that UKF responds faster to the input change. Since, the input is noisy, UKF 
responds to it and the estimates are noisier than LKF or EKF. 

 
Figure 8.5: Comparison of Kalman filters based on level estimation (𝑦̂ = 𝑥̂1 = ℎ̂2). 

Simulator is excited by synthetic noise in the input (𝑢 = ℎ1) and the output (𝑦 = ℎ2) 
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Figure 8.6: Comparison of Kalman filters based on estimation of mass flow rate 

(𝑥̂2 = 𝑀̂1, 𝑥̂3 = 𝑀̂2). Simulator is excited by synthetic noise in the input (𝑢 = ℎ1) and the 
output (𝑦 = ℎ2) 

In above case, the comparison is based on the noisy input and noisy output. For comparison of 
Kalman filters on a system excited by noise-free input is given in Appendix 9 Part 9B. In all 
cases, the EKF is better than LKF. UKF is better than EKF and LKF. Figure 8.7 shows the 
complete picture of performance for all the Kalman filters based on mass flow rate estimation. 
Input is changed multiple times. All Kalman filters perform ok but the performance of the UKF 
stands out as it is robust, fast and stable than other version of Kalman filters. 

 
Figure 8.7: Flow estimation using LKF, EKF and UKF when input changes multiple times 

8.3.3 Comparison of LKF and linear observer 
So far, different types of observers are compared with each other. So is done with the different 
types of Kalman filters as well. In this section, linear estimators, linear observer and the linear 
Kalman filter, are compared. The result of comparison is shown in Figure 8.8 and Figure 8.9 
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based on level estimation and mass flow rate estimation respectively. Both observers are run 
in parallel with the nonlinear venturi model (simulator). Synthetic noise is added in input and 
the output of the simulator. 

 
Figure 8.8: Comparison of linear estimators based on level estimation (𝑦̂ = 𝑥̂1 = ℎ̂2). 
Simulator is excited by synthetic noise in the input (𝑢 = ℎ1) and the output (𝑦 = ℎ2) 

 
Figure 8.9: Comparison of linear estimators based on estimation of mass flow rate 

(𝑥̂2 = 𝑀̂1, 𝑥̂3 = 𝑀̂2). Simulator is excited by synthetic noise in the input (𝑢 = ℎ1) and the 
output (𝑦 = ℎ2) 

Both types of estimators are able to converge to a steady state value for both level and mass 
flow rate. The linear observer is placed 1.6 times to the left of the system poles. The LKF has 
its pole close to the system poles as discussed in section 8.1.3 (Figure 8.2). Thus, the amplitude 
of oscillation for linear observer is larger. Both estimators are able to filter out the noise 
significantly. The noise in level estimates are almost non-existence whereas the noise in the 
estimated mass flow rate is minimal. At steady state, both estimators show some deviation 
given that they are operating away from the linearization point. In terms of noise handling, 
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LKF is slightly better than the linear observer; which is again, due to the faster poles in linear 
observer that amplifies the noise. Although LKF performs better in terms of noise handling, 
the design and implementation of linear observer is easier. Since, LKF needs properly tuned 
covariance matrices 𝑄 and 𝑅. The process of tuning these matrices is cumbersome. The price 
to pay here is the ease of design and implementation to the less noisy estimates. Since the noise 
level in linear observer is negligible, although worse than LKF, the process of tuning 𝑄 and 𝑅 
is avoided. Hence, linear observer is preferable than LKF. For additional comparison of linear 
estimators excited by noise free input, see Appendix 9 Part 9C. 

8.3.4 Comparison of EKF, UKF and semi-nonlinear observer 
From previous comparison and discussion, it is shown that nonlinear estimator outperforms 
their linear counterpart. Comparison of linear version of estimators showed that the estimation 
is relatively similar. Due to ease of designing linear observer, it is preferred. This section 
compares the semi-nonlinear observer to the nonlinear version of Kalman filters. Figure 8.10 
is the level estimation and Figure 8.11 is the mass flow rate estimation. In both cases, all the 
nonlinear version of estimators is able to filter out the noise just like their linear counterpart. 
All estimators are able to converge to a steady state with no deviation which was seen in their 
linear counterpart. Among nonlinear estimators, UKF performs better. One important 
observation, though, is that the EKF and semi-nonlinear observer perform exactly same. Even 
though, the observer is semi-nonlinear, it is as good as non-linear EKF. Based on these facts, 
the conundrum is to choose between UKF or semi-nonlinear observer. In case of a system with 
large number of states, semi-nonlinear observer can be easier to implement. In case of highly, 
nonlinear system, UKF takes the upper ground since it can handle any nonlinear models. 

 
Figure 8.10: Comparison of nonlinear estimators based on level estimation (𝑦̂ = 𝑥̂1 = ℎ̂2). 

Simulator is excited by synthetic noise in the input (𝑢 = ℎ1) and the output (𝑦 = ℎ2) 
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Figure 8.11: Comparison of linear estimators based on estimation of mass flow rate 

(𝑥̂2 = 𝑀̂1, 𝑥̂3 = 𝑀̂2). Simulator is excited by synthetic noise in the input (𝑢 = ℎ1) and the 
output (𝑦 = ℎ2) 
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9 Experimentation and results 
So far, the state estimator and observer are implemented on the mathematical model and the 
result is promising. However, the goal is to implement the observer and estimator on the real 
system. This chapter casts light on how experiments are performed at the lab. A thorough 
analysis of the performance of the state estimator on the experimental data is discussed here. 
Some discussions about the different types of filters to filter out the highly noisy measurements 
is presented as well. 

9.1 Experiment 
The experimental setup at the lab is shown in a P&ID in Figure 3.5. The non-Newtonian fluid 
used for the experiment has a density of 1340 𝑘𝑔

𝑚3
 as measured by the Coriolis meter. This fluid 

gives a lot of bubbles at higher flow rates. To remove these bubbles, a mechanical filter is used. 
Due to the constraint of the pump, the minimum flow rate the data can be acquired is 275 𝑘𝑔

𝑚𝑖𝑛
 

and the maximum flow rate possible is 450 𝑘𝑔
𝑚𝑖𝑛

. Total of four experiments are performed. Each 
experiment has two setups; up measurements and down measurements. For each setup, the mud 
is sent through the venturi channel from a minimum flow rate to the maximum flow rate 
incremented by either 50 or 75 𝑘𝑔

𝑚𝑖𝑛
 based on the experiment and then from maximum to 

minimum decremented by the same amount. Increment of 50 or 75 𝑘𝑔
𝑚𝑖𝑛

 is chosen so that the 
change in level can be noticed during analysis as well as to stay within the range of allowed 
mass flow rate. Table 9.1 shows the procedure used for up-down measurements for experiments 
3 and 4. 

Table 9.1: Experimental setup for up-down measurements at the lab 

Exp. # 
Up mass 
flow rate 

Log time 
(min) 

# of 
samples 

Down mass 
flow rate 

Log time 
(min) 

# of 
samples 

E3S1 
300
350
400

 
9
9
9

 
540
540
540

 
400
350
300

 
9
9
9

 
540
540
540

 

E3S2 
275
350
425

 
9
9
9

 
540
540
540

 
425
350
275

 
9
9
9

 
540
540
540

 

E4S1 
300
350
400

 
20
30
10

 
1200
1800
600

 
400
350
300

 
10
30
−

 
600
1800
−

 

E4S2 
275
350
425

 
30
20
10

 
1800
1200
600

 
425
350
275

 
10
30
−

 
600
1800
−
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9.1.1 Data acquisition 
The data is logged 1 sample per second using a data logging application which is designed to 
log only one sample for a sensor per second. For all of the experiments, levels at the two 
positions are measured and the mass flow rate is measured. The position of LT19 and LT18 
are 𝑐1 = 21 𝑐𝑚 and 𝑐2 = 160 𝑐𝑚 respectively. The length of between the two sensor positions 
is 𝐿 = 𝑐2 − 𝑐1 = 1.39 𝑚. These positions are shown in Figure 3.2. Sensors used to acquire the 
data are listed below: 

x LT19 – radar level sensor 
o Fluid level at the subcritical region. 
o This is referred to as collocation point 1. 
o The level measured here are the input (ℎ1) to the system. 

x LT18 – ultrasonic level sensor 
o Fluid level at the throat section (usually critical region). 
o This is referred to as collocation point 2. 
o The measured levels are the output (ℎ2) of the system. 

x FT14A – Coriolis flow meter 
o Mass flow rate (𝑀) through the discharge pipe that connects that pump and the 

channel. 
o The measurements are only used for the comparison purpose. The 

measurements are not used in the observer or model at all. 

The setup of the venturi rig and the placement of these sensors at the lab at USN is shown in a 
P&ID diagram (Figure 3.5). 

 
Figure 9.1: Visualization of raw measurements for level at two collocation points (top 

subplot) and mass flow rate measurement (bottom subplot) 
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Level and mass flow measurements using up-down technique is displayed in Figure 9.1. The 
figure shows the unprocessed raw data from the experiment performed at the lab. Based on the 
raw data plot, the radar sensor is less immune to noise than the ultrasonic sensors. The noisy 
level measurement by the ultrasonic sensor is partly due to the fact that the point of 
measurement (collocation point 2) lies in the throat section where the velocity of the fluid starts 
to increase rapidly which causes some turbulence in the region. 

9.2 Filters 
Measurements are noisy as seen in Figure 9.1. Noisy measurements give noisy estimates. It is, 
therefore, a good idea to filter out the noise prior to sending the data through to the estimator, 
Kalman filter or Luenberger observer, as shown in Figure 6.1. In this thesis work, three of the 
filters are investigated closely. The filters used are: 

x Weighted moving average filter (WMAF) 
x Lowpass filter (LPF) 
x Median filter 

Median filter is used directly from the built-in function in MATLAB called “medfilt1.m”. 
WMAF and LPF are designed from the ground up. 

9.2.1 Weighted moving average filter 
For WMAF, weights have been assigned, 𝑤1,𝑤2, … , 𝑤𝑛. The sum of these weights is equal to 
1 (or 100%) as given by (10.10). The purpose of these weights is to weight the measurements. 
The current measurements are the most important ones. The oldest measurements are the least 
important ones. Hence, the current measurements are weighted more than the past 
measurements. Formulation of WMAF is given by (9.1) – (10.10). 

∑𝑤𝑖

𝑛𝑤

𝑖=1

= 1 = 100% (9.1) 

𝑁 =∑𝑛𝑗

𝑛𝑤

𝑗=1

 (9.2) 

𝑥𝑘 = 𝒙(𝑘:𝑁 + 𝑘) 𝑘 = 1,2,3, … ,∞ (9.3) 

𝑥̅𝑘 =∑
𝑤𝑗
𝑛𝑗
∑𝑥𝑖𝑘
𝑛𝑗

𝑖=1

𝑛𝑤

𝑗=1

 (9.4) 

Where, 𝑁 is the number of samples to consider. 𝑛𝑤 is the number of measurement sets 𝑁 
samples are divided into. 𝑛𝑗  is the number of data samples for a given set and 𝑤𝑗 is the weight 
for the set. Number of data samples for a given set can be different. 𝑥̅𝑘 is the weighted average 
of the 𝑁 samples for a given time instance 𝑘. For venturi rig 𝑁 is chosen to be 48 samples, 𝑛𝑤 
is chosen to be 3. 𝑛1 is chosen to be 8 samples, 𝑛2 is chosen to be 16 samples and 𝑛3 is chosen 
to be 24 samples as shown in Table 9.2. The largest subscript number corresponds to the most 
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recent measurements. 𝑤1 = 0.2 = 20%, 𝑤2 = 0.3 = 30% and 𝑤3 = 0.5 = 50% is given as 
weights for each set. 𝑘 is shifted by 1 for when a new measurement is available, 𝑘 ≔ 𝑘 + 1. 

Table 9.2: Distribution of data samples for weighted moving average filter 

𝑁 = 48 divided into 𝑛𝑤 = 3 𝑤 = 1 (100%) divided into 𝑛𝑤 = 3 

𝑛1 𝑛2 𝑛3 𝑤1 𝑤2 𝑤3 

8 16 24 0.2 = 20% 0.3 = 30% 0.5 = 50% 

 

9.2.2 Time constant lowpass filter 
Transfer function for a first order time constant lowpass filter is given by (10.10). 

𝑦𝑓(𝑠)
𝑦(𝑠)

=
1

𝑇𝑓𝑠 + 1
 (9.5) 

Where, 𝑦𝑓 is the filtered output, 𝑦 raw signal as an input to the filter and 𝑇𝑓 is the filter time 
constant. Equation (10.10) can be written as an ODE using inverse Laplace transformation as: 

𝑦𝑓(𝑠)𝑇𝑓𝑠 + 𝑦𝑓(𝑠) = 𝑦(𝑠) 

𝑇𝑓ℒ−1(𝑦𝑓(𝑠)𝑠) + ℒ−1 (𝑦𝑓(𝑠)) = ℒ−1(𝑦(𝑠)) 

𝑇𝑓𝑦̇𝑓(𝑡) + 𝑦𝑓(𝑡) = 𝑦(𝑡) 

𝑦̇𝑓 =
(𝑦 − 𝑦𝑓)
𝑇𝑓

 (9.6) 

Equation (10.10) is the first order ODE for continuous time - time constant lowpass filter. Using 
backward Euler differentiation method, a discrete form of the LPF is determined. The reason 
for using backward Euler differentiation method is because of the fact that only the previous 
measurements are available. 

𝑦̇𝑓𝑘 =
𝑦𝑓𝑘 − 𝑦𝑓𝑘−1

𝑇𝑠
 (9.7) 

𝑦𝑓𝑘 − 𝑦𝑓𝑘−1
𝑇𝑠

=
(𝑦𝑘 − 𝑦𝑘𝑡)

𝑇𝑓
 

After simple algebraic simplification, the final version of discrete LPF is given as: 

𝑦𝑓𝑘 = 𝑎𝑦𝑘 + (1 − 𝑎)𝑦𝑓𝑘−1 (9.8) 

𝑎 = (
𝑇𝑠

𝑇𝑓 + 𝑇𝑠
) 1 − 𝑎 = (

𝑇𝑓
𝑇𝑓 + 𝑇𝑠

) (9.9) 
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A simple rule of thumb for choosing 𝑇𝑓 is: 

𝑇𝑠 ≤
𝑇𝑓
5

 (9.10) 

9.2.3 Filter comparison based on real measurements 
Lowpass filter (LPF) and weighted moving average filter (WMAF) is implemented in 
MATLAB. LPF and WMAP are applied to the raw level measurements only since the mass 
flow rates measured by the Coriolis are only used for comparison purpose. A built-in median 
filter from MATLAB, “medfilt1.m” is also compared here. The order of median filter is 66 
which means that the median from 66 samples are calculated. The number of samples 
corresponds to the one minute of measurements with 6 extra samples to handle the 
measurement delays. Since the sampling time (data logging time) for the experiments is 1 
second, the LPF time constant should be at greater than 5 seconds according to equation 
(10.10). In this case, 16 second is used. The parameters for WMAF is given in Table 9.2. After 
assigning necessary parameters for each filter, they are applied to the real measurements. The 
result of the filter application on raw data is shown in Figure 9.2. Median filter is aggressive. 
WMAF is slower than LPF and MEDF. All of these filters are good enough to use in this project 
as all of them remove high frequency noise. MEDF is to aggressive which makes it difficult to 
analyze the filtering ability of the estimators. WMAF is slow. Thus, LPF is chosen for the rest 
of the thesis work. Therefore, LPF is also implemented in LabVIEW. The introduction of filter 
removes the noise; however, it comes at a cost. The cost to bear when using a filter is that it 
introduces a delay in the system and hence the state estimates are delayed. 

 
Figure 9.2: Deployment of different filters on the raw level measurements (real data) 
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9.3 Comparison between the nonlinear model and the 
real system 

Until this stage, the mechanistic model of flow through venturi flume is formulated to represent 
the real system. State estimators are designed based on the dynamic model. Even though the 
model is stable, controllable and observable, it is important to compare it with the real system 
to determine its validity. Thus, it is natural to perform open loop simulation and verify the 
dynamic model of the system. The measured data represents the real system. In an open loop 
simulation, the simulator based on dynamic model is run in parallel with the real system. The 
simulator is excited by the real input level measurement. The states of the simulator are 
compared directly with the states of the real system. States of the real system are the level 
measured at the collocation point two (also the output of the system) and the Coriolis mass 
flow measurements as shown in Figure 9.1. The result of the open loop simulation is shown in 
Figure 9.3 and Figure 9.4 for raw input level measurements and filtered input level 
measurement to excite the simulator respectively. The upper subplot on both figures shows the 
level measurements at two collocation points, one (ℎ1) for representing the input to the system 
and the other (ℎ2) to represent the output of the system. The lower subplot represents the mass 
flow measurements at the aforementioned points. There is only one Coriolis flow meter used 
for flow measurements. From these figures, it is clear that the predicted mass flow rate is a 
good representation of the real mass flow rate. However, the level prediction is way off. This 
is due to imprecise and uncertain model parameters. It is also important to realize that the 
dynamic model is determined using two-point collocation method as discussed in section 4.2.1. 
The model precision can be increased by using higher order interpolating polynomials i.e., 
using multiple orthogonal collocation points or PDE itself. Thus, open loop simulation is 
inadequate. This is the reason why estimators are designed. 

 
Figure 9.3: Open loop simulation of real system and the model in parallel with unfiltered 

(raw) input and output level measurements 
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Figure 9.4: Open loop simulation of real system and the model in parallel with filtered input 

level and output measurements 

9.4 State estimator comparison on real system 
The main goal of this thesis is to see if mathematical model of the flow through venturi flume 
gives satisfactory flow estimation thus replacing expensive mechanical flow measuring 
devices. The estimated flow can be used as a signal for kick-loss detection and much more. 
This section discusses the implications of the flow estimation using linear and nonlinear 
estimators. In earlier chapters, estimators are used on the dynamic model (simulator). The result 
is promising. This is usually the case that the estimators work fine with simulator but with the 
real system, the story is different. The model does not represent the real system with absolute 
perfection due to uncertain model parameters and disturbances, as elaborated in previous 
section. As with the simulator, linear and nonlinear estimators are applied to the real system. 
The result is discussed in subsequent sub-sections below. 

9.4.1 Comparison between LKF and Linear observer 
LKF and linear observer are applied on the real system. The level measured by LT18 is used 
as the feedback to the estimators. The level measured by LT19 is used as the input to the system. 
The result of estimation is shown in Figure 9.5 and Figure 9.6 for raw input and the filtered 
input signal respectively. Both estimators are able to minimize the error between model 
predicted states and the real states. In terms of level estimation, both estimator produces good 
result given how imprecise the model is according to the open simulation of Figure 9.3. In 
terms of mass flow rate estimation, LKF performs better. The linear observer has faster poles 
which amplifies the noise in the system. LKF is able to filter out the noise in the estimates due 
to finely tuned noise covariance matrices 𝑄 and 𝑅. When the LPF is applied to the input and 
output measurements, the noise amplification by the observer is reduced. However, there is a 
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deviation in all cases when operated away from the operating point. Therefore, investigating 
nonlinear estimators is important to see if the deviation due to linearization can be eliminated. 
It is also important to note that the filtered input signal using LPF gives more robust and reliable 
estimates (Figure 9.6). Thus, by filtering the high frequency noise in the input and the output 
using LPF prior to feeding them to the estimator, the performance of estimators can be 
improved. Although, the introduction of LPF introduces a small delay in the state estimates. 

 
Figure 9.5: Comparison of linear estimators based on real raw (unfiltered) measurements 

 
Figure 9.6: Comparison of linear estimators based on real filtered measurements 
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9.4.2 Comparison between EKF and UKF 
The EKF and UKF are excited by raw input level measurements (ℎ1) measured at the 
collocation point 1, 𝑐1. The feedback data provided to the Kalman filters is the raw output level 
measurements (ℎ2) measured at the collocation point 2, (𝑐2). The estimation result of EKF and 
UKF on raw (unfiltered) real system is shown Figure 12.2 and Figure 12.3 respectively. 

 
Figure 9.7: State estimation using EKF with feedback from the real raw measurements 

 
Figure 9.8: State estimation using UKF with feedback from the real raw measurements 
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Analysis of Figure 9.7 and Figure 9.8 gives an idea on the performance of nonlinear Kalman 
filters. The error between the mass flow rate estimated by UKF and the Coriolis measurements 
is smaller than the error between mass flow rate estimated by EKF and the Coriolis 
measurements. In case of EKF, there seems to be some deviation in the mass flow estimates 
for each flow rate measured by Coriolis flow meter. The deviation in UKF is negligible 
whereas, the deviation in EKF is significant. Estimates given by UKF oscillate around the 
actual measurements. At higher flow rate, due to near-turbulent flow occurring in venturi flume 
during experiments, the level measurements at both points are noisy. This is partly due to the 
bubbles that are produced when using the non-Newtonian fluid. This is reflected in the flow 
estimation as well. 

 
Figure 9.9: Result of adjusted 𝑄 and 𝑅 to minimize the noise in level estimates using UKF 

When it comes to level estimates, both EKF and UKF give similar results. Notice that the level 
estimates are too noisy. This is because the level predicted by the dynamic model is way off 
the actual level measured at 𝑐2 (see Figure 9.4). To minimize the noise in the estimates, noise 
covariance matrices must be adjusted. When doing so, the noise is minimized but the deviation 
of the estimated states and the real states increases. Trying to minimize the deviation between 
the estimated states and the real states, the noise reappears. Adjustment to 𝑄 and 𝑅 reduces 
noise in the level estimates but the deviation is increased (see Figure 9.9). Further adjustment 
gives almost no noise in the level estimates but the deviation between the estimated states and 
the real state is maximized. This is true for both EKF and UKF. The solution is to use the LPF 
to remove high frequency noises in the input and the output. This technique undermines the 
very concept of the Kalman filter, which is to estimate the states as well as filter out the noise. 
When the model is so much deviated, filtering out the output is a very small price to pay. It is 
not possible to keep the filtering properties of Kalman filters and give precise estimates for a 
deviated model. In addition to that, the goal of this thesis work is to estimate the mass flow 
rate. So, filtering out the input and output measurements is reasonable if the flow estimates can 
be improved. Thus, LPF is applied to both input and output level measurements. The filtered 
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signals are then used in the estimators. The result of applying filtered input and output to 
nonlinear Kalman filters is shown in Figure 9.11 and Figure 9.12. In both cases, the noise is 
reduced and deviation between level estimates and the real level measurements is minimized. 
The estimated mass flow rate, in any case, is undeterred. Even with the introduction of slight 
delay in the state estimates due to the use of LPF, UKF converges faster than EKF. 

 
Figure 9.10: State estimation using UKF with filtered input and output measurement data 

 
Figure 9.11: State estimation using EKF with filtered input and output measurement data 
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9.4.3 Comparison between linear and nonlinear Kalman filters 
UKF and EKF are compared in previous section. The verdict is that UKF gives better, reliable 
and robust estimates than EKF. As with EKF and UKF, an LPF is applied to the input and 
output before feeding the signals to the LKF. The result of filter on LKF is shown in Figure 
9.12. Comparing Figure 9.12 with Figure 9.10 and Figure 9.11, it is simple to conclude that 
LKF gives reliable estimates around the operating point. As the operation moves away from 
the operating point, the accuracy of estimates reduces. Based on faster response, less deviation 
between estimated states and real system and robustness of the estimator, UKF is superior to 
LKF or EKF. Hence, UKF is preferable. 

 
Figure 9.12: State estimation using LKF with filtered input and output measurement data 
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SECTION – III 

DISCUSSION, CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 
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10 Discussion 
This section discusses the limitations and possibilities of the methods used in this report. Some 
insight to the future work on flow estimation is also suggested in this chapter. An alternative 
methods of flow estimation using artificial neural network (ANN) is also proposed here. 

10.1 Limitation of the proposed flow measuring 
technique 

Although, Coriolis is expensive, it not only measures the flow rate (both mass and volumetric), 
it also measures the density of the fluid and, in some cases, viscosity. The proposed 
mathematical model is restricted to estimating the flow rates (both mass and volumetric). Some 
modern flow meters come equipped with temperature sensor as well. This information can be 
harnessed to analyze the condition in the bottom hole. It is also important to remember that the 
physical model presented here assumes that the density of the returning fluid is constant. This 
is unlikely to be the case in the real-world scenario. Two-point collocation method can be 
improved by using higher order Lagrange interpolating polynomials to represent the PDEs. 
Two-point ODEs are the simplest form of the nonlinear model. Thus, there is a room for 
improvement. In case of level estimation, the model does not depict the real system. This must 
be re-calibrated if the two-point ODEs are to be used in further studies. 

10.2 Use of state estimation in control system 
In oil-industry, flow estimation is important to detect kick-loss phenomenon for safe operation. 
The linear and nonlinear estimators can do the job. However, this is not the only use of 
estimators such as Kalman filters or Luenberger observer. The estimated state can be used 
further in designing a control signal for mud-pump. An estimator can also help in designing a 
predictive controller such as MPC or aid in designing an optimal feedback controller such as 
PID. This section discusses the use of state estimator in a control system. 

Let’s start with a brief introduction to a controller. A simple controller is a machine that 
generates a control signal, digital or analog, based on the feedback data from available sensor 
measurements, again analog or digital. An optimal control signal, therefore, depends on the 
measured states as given by a relation (10.1). The control signal is used to excite the system 
(10.2) with the help of an actuator to bring the system from an initial state to a desired final 
state. Due to lack of sensors to measure some of the states, a state estimator is used. Estimated 
states are then fed back to the controller. Using the available measurements and the control 
signal for a given time instance, states are estimated. The estimated states can then be used to 
design a suitable controller such as MPC or PID. The controller generates a control signal based 
on a relation (10.10). A block diagram of a closed loop feedback control system with state 
estimator is given by Figure 10.1. 

𝑢 = −𝐺𝑥 (10.1) 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝜃, 𝑡) (10.2) 

𝑢 = −𝐺̂𝑥̂ (10.3) 
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Where, 𝐺 is a state feedback gain matrix (time invariant constant matrix) and 𝐺̂ is the new state 
feedback gain matrix based on the estimated states 
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Figure 10.1: State feedback control system with estimated states 

10.3 Reduced order observer 
In most of the system, only some of the states are measured. For such system, it makes sense 
to estimate only the states that are unmeasured. This means that the full-state vector is 
decomposed into measured and unmeasured states. The observer is designed only for the 
unmeasured states. Thus, the name reduced order observer. The reason for doing this is that 
computation time for estimation is reduced if the system order (number of states), 𝑛𝑥 is large. 
For computational efficiency, reduced order observer is preferable. The derivation of a reduced 
order observer is given in Appendix 10. A brief summary of the reduced order observer is 
presented here. Consider a state vector 𝑥 with 𝑛𝑥 states. It is composed of measured states, 𝑥𝑝 
and unmeasured states 𝑥𝑞. Thus, 𝑥 can be decomposed as shown in (10.10). 

𝑥̇ = [
𝑥̇𝑝
𝑥̇𝑞
] 𝑥 = [

𝑥𝑝
𝑥𝑞] (10.4) 

A linear state space model and linear state observer in decomposed form looks like: 

𝑥̇𝑝 = 𝐴𝑝𝑝𝑥𝑝 + 𝐴𝑝𝑞𝑥𝑞 + 𝐵𝑝𝑢 𝑥̇̂𝑝 = 𝐴𝑝𝑝𝑥̂𝑝 + 𝐴𝑝𝑞𝑥̂𝑞 + 𝐵𝑝𝑢 + 𝐿𝑝𝑦 − 𝐿𝑝𝑦̂ (10.5) 

 𝑥̇𝑞 = 𝐴𝑞𝑝𝑥𝑝 + 𝐴𝑞𝑞𝑥𝑞 + 𝐵𝑞𝑢 𝑥̇̂𝑞 = 𝐴𝑞𝑝𝑥̂𝑝 + 𝐴𝑞𝑞𝑥̂𝑞 + 𝐵𝑞𝑢 + 𝐿𝑞𝑦 − 𝐿𝑞𝑦̂ (10.6) 

𝑦 = 𝐶𝑝𝑥𝑝 + 𝐶𝑞𝑥𝑞 𝑦̂ = 𝐶𝑝𝑥̂𝑝 + 𝐶𝑞𝑥̂𝑞 (10.7) 

Where, 𝑥𝑝 is a vector of measured states and 𝑥𝑞 is a vector of unmeasured states, 𝑛𝑥 is the 
number of total states (system order), 𝑛𝑝 = 𝑛𝑦 is the number of measured states and 𝑛𝑞 
is the number of unmeasured states. 

𝑛𝑥 = 𝑛𝑝 + 𝑛𝑞  

After performing some algebraic manipulation, following observer state equations in 
reduced order form is determined. 

𝑧̇̂ = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝑧̂ + (𝐵𝑞 − 𝐿𝑞𝐵𝑝)𝑢 + (𝐴𝑞𝑞𝐿𝑞 − 𝐿𝑞𝐴𝑝𝑞𝐿𝑞 + 𝐴𝑞𝑝 − 𝐿𝑞𝐴𝑝𝑝)𝑥𝑝 (10.8) 
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Where, 

𝑧 ≝ 𝑥𝑞 − 𝐿𝑞𝑥𝑝, 𝑧̂ ≝ 𝑥̂𝑞 − 𝐿𝑞𝑥𝑝, 𝑧̇̂ ≝ 𝑥̇̂𝑞 − 𝐿𝑞𝑥̇𝑝, 𝑥̂𝑞 ≝ 𝑧̂ + 𝐿𝑞𝑥𝑝 

Thus, the unmeasured states are given by: 

𝑥̂𝑞 = 𝑧̂ + 𝐿𝑞𝑥𝑝 (10.9) 

The error dynamic for reduced order observer is given by (10.10). 

𝜀𝑞̇ = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝜀𝑞 (10.10) 

Where, 
𝜀𝑞 ≝ 𝑥𝑞 − 𝑥̂𝑞 

If the error dynamic is asymptotically stable, then the observer is stable. For the error 
dynamic to be asymptotically stable, matrix (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞) must be Hurwitz. 

The reduced order observer is ready to be implemented in a programming language of 
choice. For venturi system, the level at 𝑐2 is measurable state. Hence the number of 
measured states is 1. The number of unmeasured states is two, mass flow rates at two 
collocation points. Therefore, the reduced order observer state takes the form of: 

𝑥̇𝑝 = [ℎ̇2] 𝑥̇𝑞 = [
𝑀̇1
𝑀̇2
] 𝑥̇̂𝑞 = [

𝑀̇̂1
𝑀̇̂2
] 

10.4 Artificial Neural Network 
The world is moving faster than ever when it comes to new technologies. The talking point in 
today’s tech-world, everyone’s lips is ANN. In this section, a simple back propagation-based 
ANN algorithm is used. Rather than going into the math behind ANN, a built-in MATLAB 
tool is used. 
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Figure 10.2: A simple sketch of artificial neural network 

The main overview of ANN consists of input neurons, synapse with associated weights, hidden 
layer and output neurons. An ANN with two input neurons, three hidden neurons and one 
output neuron is shown in Figure 10.2. The value of each input neuron is weighted with 
(multiplied by) an associated weight. Each neuron in hidden layer sums the weighted values 
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from the input neuron and sends the sum through a sigmoid function to scale the value between 
0 and 1. The same procedure follows to the output neuron. The sum of the weighted values 
from previous layer is passed through the sigmoid function again. The result is the predicted 
output. In backpropagation algorithm, the predicted output is subtracted from the actual output 
and the error is then propagated backward in the network to adjust the weights. This is similar 
to an optimization (error minimization) problem as discussed in section 5.2.5. 

For venturi model, two input neurons, two hidden neurons and one output neurons are selected. 
ANN tool of MATLAB initializes the weights randomly Input neurons are represented by the 
level measured at 𝑐1 and 𝑐2 as ℎ1 and ℎ2 respectively. The output is the predicted mass flow 
rate. After training the network using Bayesian Regularization algorithm, an ANN prediction 
model is produced. Using the model, the flow rate is estimated. To avoid over fitting, the 
training is done using data set from experiment 4, “E4S2”. The prediction is based on the data 
measured using experiment 2, “E2S1”. The result is shown in Figure 10.3. The mass flow rate 
predicted by ANN with two hidden layers is better than Kalman filters or observers. However, 
this model maybe overfitting and more dynamic data needs to be recorded to rely on the 
prediction. Dynamic data means that the data for different fluid types with different viscosity 
and density as well as level measurements at different flow rates. 

 
Figure 10.3: Mass flow rate predicted by ANN with two hidden layers. LT19 as input neuron 

1, LT18 as input neuron 2. 

10.5 Future work recommendations 
Analysis of ODEs for two collocation points shows that the model describes the venturi system 
dynamics in an acceptable way. However, the model improvements are necessary. Specially, 
for predicting the level at collocation point 2. This can be done by using ODEs for 3-point 
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collocation method currently in the work at USN by a fellow PHD student. Some of the 
recommended works are listed below: 

x Implement the reduced order observer for estimating the mass flow rates for venturi 
channel since the level are already measured 

x Design and implement adaptive observer 
o Since the model parameters are uncertain, they can be adapted so that the 

estimation error is minimized 
o There are some parameters in the venturi model that can be adjusted for different 

flow condition and fluid types as well as the type of the channel. For instance, 
𝛽 and 𝑘𝑠 can be adjusted for different flow rates. Thus, observer that adapts 
these parameters is a good way to move forward 

x Design and implement nonlinear observers 
x Design and implement PDE observers 

o The best possible model for the venturi channel is the PDE model. An observer 
based on PDE model could give better estimation 

x Prediction error methods (PEMs) can help in system identification (identification of 
state space model) 

x Incorporate ANN with deep-learning 
x Incorporate mechanism to handle the computational time delay and filter time delay by 

augmenting them with output delay model 
x If case of failed measurements, the apriori state estimates can still be used for 

approximate knowledge of the system. Reading storing apriori state estimates, is thus, 
a good idea. This is helpful specially during drill-bit changing process 

10.6 Codes and programs 
All of the programs and codes used throughout this thesis work are given in Appendix 11. The 
primary programming language is LabVIEW and MATLAB with Simulink. GUIs are 
developed for user interactions. 



 Literature review on design of observer based on PDE 

106 

11 Literature review on design of 
observer based on PDE 

Some versions of the linear and nonlinear estimators have been investigated during this thesis 
work. It is well known by now that the nonlinear model can be improved, and the estimation 
can also be improved. The best form of estimator out of the investigated methods is the 
nonlinear estimator, specially UKF. However, UKF was unable to filter out the level estimates 
due to deviated dynamic model. Deviated in a sense that the level predicted by the mathematical 
model is way off when simulated in open loop with the real system. To make the deviation 
minimum, ODEs derived using higher order Lagrange interpolating polynomials such as 3-pt 
ODEs are required. Even better would be to use PDEs itself given by SVEs of (4.1) and (4.3). 
Therefore, observer based on PDEs should be an optimal way of flow estimation.  

There have been some works on designing PDE observers for quasi-linear hyperbolic PDEs. 
These observers are suitable for venturi system since the PDEs for describing the top-flow for 
venturi channel is of type quasi-linear hyperbolic PDEs as discussed in section 4.1. Here is the 
list of previous work that can be beneficial for future work on observer design for PDEs: 

1. PDE observer design for counter – current heat flows in a heat-exchanger. [19] 
a. This work focuses on estimating the temperature profile along the pipes of a 

plate heat-exchanger. The PDEs used to describe this system is first order and 
hyperbolic in nature. 

2. Adaptive observer design for parabolic PDEs. [20] 
a. This work discusses the observer design for 1D parabolic PDEs based on 

backstepping methodology to handle the model parameter uncertainties. This 
idea can be useful since some of the model parameters such as 𝛽 and 𝑘𝑠 can be 
adapted.  

b. The approach used in this work suggests recasting PDEs as convex optimization 
problem 

3. Backstepping observers for a class of parabolic PDEs. [21] 
a. This paper focuses on designing exponentially convergent observers for 

parabolic partial integro-differential equations (PIDEs). It has some connection 
with hyperbolic PDE which is the case in venturi models. 

b. Useful with process with boundary conditions 
4. Boundary observers for linear and quasi-linear hyperbolic systems with application to 

flow control. [22] 
a. Considers the boundary observer design for 1D strictly hyperbolic systems 
b. A technique based on Lyapunov functions 
c. Considers both static and dynamic boundary controls for the observer design 

5. An Efficient Implementation of Backstepping Observers for Time-Varying Parabolic 
PDEs. [23] 

a. A computationally efficient implementation of backstepping-based state 
observer for 1D PDEs 

b. It produces a set of first order ODEs which are solved using Euler backward 
differentiation method for computational efficiency 

c. Evaluation of impact of this method is described using numerical simulations 
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6. Backstepping-based extended Luenberger observer design for a Burgers-type PDE for 
multi-agent deployment. [24] 

a. A form of an extended Luenberger observer for a burgers-type PDE 
b. It considers the boundary condition for solving PDEs which is suitable for 

venturi systems as well 
c. It uses backstepping technique to stabilize the parameter observer error 

dynamics 
d. The concept is based on feedback control strategy 
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12 Conclusion 
Final concluding remarks are summarized in this chapter. This thesis work covers vast array of 
information from system stability to observer design. The idea of this work is to design suitable 
observer that can aid in estimating mass flow rate so that the expensive Coriolis flow meters 
can be removed from the system. To investigate different estimators that can be used in oil 
industry, a background of the problem is necessary. All of this information is divided into 
chapters sequentially above. Each chapter acts as a link between the two adjacent chapters. 
Thus, chapter-wise conclusions are presented below to conclude the results and findings of this 
report. 

x Oil well drilling operation 
o In oil well drilling operation, non-Newtonian fluid is used to lift out the rock 

cuttings as well as maintain the well pressure in order to prevent the well-blow 
out. The other important purpose of drill mud is to cool the drill bit. 

o Knowledge of the returning flow is vital for safe operation as it helps to detect 
kick-loss phenomenon. Information about kick-loss event can aid in 
determining the mud type to be used so that the bottom hole pressure is 
maintained, and potential hazardous situation is avoided 

x Flow measuring technique 
o Current flow measuring technique used in oil industry such as angle-based 

paddle meter or Coriolis flow meter are either unreliable or expensive 
o A model-based estimation technique is cheaper and reliable since they do not 

have mechanical parts that need repair or maintenance 
� A dynamic model of the venturi flume is a good candidate for flow 

estimation 
o Proposed flow measuring technique is based on open channel venturi flume 

which is trapezoidal in shape 
� The returning mud from the well is sent through the venturi flume where 

the levels are measured. Using the measured levels, flow can be 
estimated 

� Levels are measured at specific points called collocation points. These 
points are chosen to satisfy a condition (1.1). One point must be at a sub-
critical region of the flow and the other point must be around critical 
region such that the condition (1.1) is satisfied. 

o Venturi rig is built at the lab at USN. The data logged from the rig are 
represented as the real system for this thesis work 

� LT18 is ultrasonic level transmitter that measures the level at a point and 
acts as output to the system 

� LT19 is radar level sensor that measures the level at the other point and 
acts as input to the system 

� FT14A is the Coriolis flow meter that measures the mass flow rate which 
is only used as a reference during analysis 

x Modeling of flow through an open venturi channel 
o A dynamic model for 1D unsteady flow through nonprismatic open venturi 

channel is developed 
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o The model is described SVEs. SVEs for one spatial dimension are a class of 
quasi-linear hyperbolic of PDEs. 

o Using orthogonal collocation method, PDEs are reduced to a set of ODEs that 
are used to design suitable nonlinear and semi-nonlinear estimators such as 
semi-nonlinear Luenberger observer, EKF, UKF 

o The ODEs are linearized using Tylor series expansion. The linearized ODEs are 
used for designing suitable linear estimators such as linear Luenberger observer 
and linear Kalman filter 

x Model analysis and simulation 
o Linear ODEs are analyzed for stability, controllability and observability 
o Stability analysis is performed based on the analysis of the system poles 

(eigenvalues). The ODEs for venturi channel are found out to be stable 
o Linear model is both controllable and observable since the rank of 

controllability and observability matrix is full rank 
o Venturi model consists of multiple model parameters. Their sensitivity is 

analyzed using differential sensitivity technique, sensitivity index, and 
correlation 

� Parameter 𝑊1 is the most influential and 𝜌 is the least influential for ℎ2 
� Parameter 𝑊2 is the most influential and 𝜙 is the least influential 

parameter for both 𝑀1 and 𝑀2 
o Linear model works better around the operating point. As the operation moves 

away from the operating point, the linear model prediction becomes less 
accurate. Thus, it is important to choose a proper linearization (operation) point 
during linearization 

x Highway to state estimation 
o Not all states are measurable. However, all states are important to describe a 

dynamic system. Thus, it is important to estimate the states 
o Estimated flow rate can be used to detect early warning of kick-loss event in oil 

well drilling operation 
o Out of many state estimation technique, this thesis focuses on designing 

Luenberger observer and Kalman filter 
x State Observer 

o A state observer is a system that estimates the states of a system. A full state 
observer estimates all the states, both measurable and unmeasurable states 

o The purpose of state observer is to estimate states and minimize the error 
between the true states and the estimated states. This can be done by defining 
estimation error dynamic and forcing it to go to zero as 𝑡 → ∞ 

o Luenberger linear state observer is designed using pole placement technique 
� Luenberger observer are based on deterministic system 
� Observer poles are placed at any arbitrary location in the left half of the 

complex plane such that the error dynamic is asymptotically stable 
� Observer gain is determined by placing the poles of the observer at the 

left half of the complex plane. 
x Further to the left the poles are placed, the faster the observer 

responds. However, this amplifies the noise in the system. 
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� For stability of error dynamic, the poles (eigenvalues) of the error 
dynamic system matrix is determined. Since, the real part of the 
eigenvalues is negative, error dynamic is stable 

� Observer must be observable as well. 
x Controllability matrix of an observer state space model is the 

same as the observability matrix of a linear state space model 
x Since, the linear model is observable, the observer is controllable 

as well i.e., rank of observer controllability matrix is full rank. 
o A semi-nonlinear observer uses the observer gain determined based on the linear 

model matrices but uses nonlinear model to predict the apriori state estimates. 
o Both linear observer and semi-nonlinear observer produced satisfactory 

estimates based on simulator. However, semi-nonlinear observer worked better 
when operating away from the linearization point. 

o Linear and semi-nonlinear observer are able to reduce the noise in the system. 
However, if the poles are placed far to the left, the noise is amplified. 

o Error dynamic in terms of linear observer showed deviation when operated 
away from the linearization point, as expected. The error dynamic in terms of 
semi-nonlinear observer is asymptotically stable at any point of operation. 

� Thus, semi-nonlinear observer is a better choice than linear observer 
when working with the mathematical model 

x Kalman filter 
o Kalman filter are based on stochastic system meaning that it incorporates the 

information of the process and measurement noise in the system 
o Linear Kalman filter resembles the linear Luenberger observer. Both estimators 

are designed based on linear ODEs 
o Kalman gain is determined either offline (steady-state) or online (time-varying) 

� In case of time-varying Kalman gain, a C-DARE must be solved. In this 
thesis work, RK4 is used to solve C-DARE to compute Kalman gain 

� It is found out that time-varying Kalman gain very quickly converges to 
a steady state value. Thus, it can be calculated offline to simplify the 
linear Kalman filter algorithm 

o Nonlinear Kalman filters such as EKF and UKF are designed using nonlinear-
ODEs 

� EKF linearizes the ODE around apriori state estimates. Therefore, the 
model matrices are time-varying in contrast to the time-invariant model 
matrices for LKF. 

� UKF uses unscented transformation technique. It generates a set of 
sample points that capture the means and covariance of the state 
estimates and transforms them using the nonlinear ODEs. The mean of 
the transformed points gives a better approximation of the true states. 

o UKF is faster than EKF and LKF in case of model. All Kalman filters are able 
to reduce the noise in the system. There is minimal deviation between the true 
state estimates and the real states when UKF or EKF is used. The deviation is 
evident when LKF is used. Thus, EKF is better than LKF in a sense that EKF 
reduces deviation. UKF is better than EKF in a sense that it converges faster, 
and the estimates are more robust 

o EKF and semi-nonlinear observer perform exactly for the simulator 
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o LKF and linear observer performed similarly but noise is amplified by faster 
observer poles. LKF is able to reduce the noise more than observer because 
noise covariance matrices for LKF are tuned properly 

� Linear observer is easier to implement as it does not rely on tuning noise 
covariance matrices which can be cumbersome 

x Experimentation and results 
o Data is logged 1 sample per second from LT18, LT19 and FT14A 
o Since measurements are noisy, three types of filters, MEDF, WMAF and LPF 

are compared 
� LPF proved to perform better 

o Comparison of nonlinear model and real system shows that the level predicted 
by model are way off. This is potentially due to improper model parameters 

o LKF and linear observer performed relatively well around the operating point 
o UKF converges faster than EKF even with the delay introduced by the use of 

LPF. Thus, UKF is better than EKF. Although, EKF is easier to implement and 
computationally less heavy than UKF 

o The price to pay when choosing UKF is that it is computationally heavy. It has 
more algorithms to execute than EKF or LKF. Even though the computers are 
extremely powerful today, for a system with multiple states, the execution time 
has a huge impact on the system performance. Although, for a venturi system 
described by two-point collocation method, UKF is preferable 

x EKF is suitable for mildly nonlinear systems. It may fail for highly nonlinear systems. 
UKF does not rely on linearization. Thus, it is an optimal choice unless computation 
time is of concern. 

A final statement based on the result and observation is that the flow estimates by 2-pt models 
are promising. A better version of the dynamic model such as 3-pt models can improve the 
estimates. Therefore, it is safe to say that for a proper dynamic model, the proposed flow 
estimation technique can replace expensive Coriolis flow meter. The potential of UKF is huge. 
For better estimation, observer based on PDEs are recommended. 
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Appendix 1 ODEs in terms of changed variables 

 ODEs in terms of 𝒉 and 𝑴 
Changing wetted cross-sectional area (𝐴) and volumetric flow rate (𝑄)as states with level (ℎ) 
and mass flow rate (𝑀). 

𝐴 → ℎ
𝑄 → 𝑀 ⟹

𝐴̇ → ℎ̇
𝑄̇ → 𝑀̇

 

Procedure to change the states: 

x From equation (4.8), area is a function of level 

𝐴 = 𝑆𝑠ℎ2 +𝑊ℎ 

x Take the time derivative on both sides 

𝑑𝐴
𝑑𝑡
= 𝑆𝑠

𝑑ℎ2

𝑑𝑡
+𝑊

𝑑ℎ
𝑑𝑡

 

𝑑𝐴
𝑑𝑡
= 𝑆𝑠

𝑑ℎ2

𝑑ℎ
𝑑ℎ
𝑑𝑡
+𝑊

𝑑ℎ
𝑑𝑡

 

𝑑𝐴
𝑑𝑡
= 2𝑆𝑠ℎ

𝑑ℎ
𝑑𝑡
+𝑊

𝑑ℎ
𝑑𝑡

 

𝑑𝐴
𝑑𝑡
= (2𝑆𝑠ℎ +𝑊)

𝑑ℎ
𝑑𝑡

 

𝑑𝐴
𝑑𝑡
= 𝐷

𝑑ℎ
𝑑𝑡
⟹ 𝐴̇ = 𝐷ℎ̇ 

o From equation (4.9), scaling variable 𝐷 is defined as: 

𝐷 = 2𝑆𝑠ℎ +𝑊 

x Express the level as state 

𝑑ℎ
𝑑𝑡
=
1
𝐷
𝑑𝐴
𝑑𝑡
⟹ ℎ̇ =

𝐴̇
𝐷

 

x Expressing volumetric flow rate as mass flow rate 
o Volume and mass relation 

𝑉 =
𝑚
𝜌

 

o Take the time derivative on both sides 
𝑑𝑉
𝑑𝑡
=
1
𝜌
𝑑𝑚
𝑑𝑡

 

𝑆𝑒𝑡,
𝑑𝑉
𝑑𝑡
= 𝑄,

𝑑𝑚
𝑑𝑡
= 𝑀 

𝑄 =
1
𝜌
𝑀 (a1) 

x Take the time derivative on both sides again 
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𝑑𝑄
𝑑𝑡
=
1
𝜌
𝑑𝑀
𝑑𝑡
⟹ 𝑄̇ =

1
𝜌
𝑀̇ 

x Express mass flow rate as the new state 
𝑑𝑀
𝑑𝑡
= 𝜌

𝑑𝑄
𝑑𝑡
⟹ 𝑀̇ = 𝜌𝑄̇ 

Table 12.1: States defined at different collocation points (1, 2) using the new state variables 

𝐴̇1 = 𝐷1ℎ̇1 𝐴̇2 = 𝐷2ℎ̇2 𝑄̇1 =
1
𝜌
𝑀̇1 𝑄̇2 =

1
𝜌
𝑀̇2 

ℎ̇1 =
𝐴̇1
𝐷1

 ℎ̇2 =
𝐴̇2
𝐷2

 𝑀̇1 = 𝜌𝑄̇1 𝑀̇2 = 𝜌𝑄̇2 

 

x Express the ODEs given by (4.15) to (4.18) with new states by substituting equations 
from Table 12.1 the new ODEs are derived below. 

o Changing 𝐴̇1 to ℎ̇1 

𝐴̇1 = −
1
𝐿
(−𝑄1 + 𝑄2) 

ℎ̇1𝐷1 = −
1
𝐿
(−
𝑀1
𝜌
+
𝑀2
𝜌
) 

ℎ̇1 =
(𝑀1 −𝑀2)
𝜌𝐿𝐷1

 

o Changing 𝐴̇2 to ℎ̇2 

𝐴̇2 = −
1
𝐿
(−𝑄1 + 𝑄2) 

ℎ̇2𝐷2 = −
1
𝐿
(−
𝑀1
𝜌
+
𝑀2
𝜌
) 

ℎ̇2 =
(𝑀1 −𝑀2)
𝜌𝐿𝐷2

 

o Changing 𝑄̇1 to 𝑀̇1 

𝑄̇1 = −
𝛽
𝐿
(−
𝑄12

𝐴1
+
𝑄22

𝐴2
) −

𝑔
𝐿
(−𝐼11 + 𝐼12) +

𝑔ℎ12

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝐴1(𝑆𝑏 − 𝑆𝑓1) 

𝑄̇1 =
𝛽
𝐿
(
𝑄12

𝐴1
−
𝑄22

𝐴2
) +

𝑔
𝐿
(𝐼11 − 𝐼12) −

𝑔ℎ12

2𝐿
(𝑊1 −𝑊2) + 𝑔𝑆𝑏𝐴1 − 𝑔𝐴1𝑆𝑓1 

𝑄̇1 =
𝛽
𝐿
(
𝑄12

𝐴1
−
𝑄22

𝐴2
) +

𝑔
𝐿
(𝐼11 − 𝐼12) −

𝑔ℎ12

2𝐿
(𝑊1 −𝑊2) + 𝑔𝑆𝑏𝐴1 − 𝑔𝐴1

𝑄1|𝑄1|𝑛𝑚2 𝑃1
4
3

𝐴1
10
3
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𝑀̇1
𝜌
=
𝛽
𝐿
(
1
𝐴1
(
𝑀1
𝜌
)
2

−
1
𝐴2
(
𝑀2
𝜌
)
2

) +
𝑔
𝐿
(𝐼11 − 𝐼12) −

𝑔ℎ12

2𝐿
(𝑊1 −𝑊2) + 𝑔𝑆𝑏𝐴1

− 𝑔

𝑀1
𝜌 |
𝑀1
𝜌 | 𝑛𝑚

2 𝑃1
4
3

𝐴1
7
3

 

𝑀̇1 =
𝛽
𝜌𝐿
(
𝑀12

𝐴1
−
𝑀22

𝐴2
) +

𝜌𝑔
𝐿
(𝐼11 − 𝐼12) −

𝜌𝑔ℎ12

2𝐿
(𝑊1 −𝑊2) + 𝜌𝑔𝑆𝑏𝐴1 −

𝑔
𝜌
𝑀1|𝑀1|𝑛𝑚2 𝑃1

4
3

𝐴1
7
3

 

o Changing 𝑄̇2 to 𝑀̇2 

𝑄̇2 = −
𝛽
𝐿
(−
𝑄12

𝐴1
+
𝑄22

𝐴2
) −

𝑔
𝐿
(−𝐼11 + 𝐼12) +

𝑔ℎ22

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝐴2(𝑆𝑏 − 𝑆𝑓2) 

𝑄̇2 =
𝛽
𝐿
(
𝑄12

𝐴1
−
𝑄22

𝐴2
) +

𝑔
𝐿
(𝐼11 − 𝐼12) −

𝑔ℎ22

2𝐿
(𝑊1 −𝑊2) + 𝑔𝑆𝑏𝐴2 − 𝑔𝐴2𝑆𝑓2 

𝑄̇2 =
𝛽
𝐿
(
𝑄12

𝐴1
−
𝑄22

𝐴2
) +

𝑔
𝐿
(𝐼11 − 𝐼12) −

𝑔ℎ22

2𝐿
(𝑊1 −𝑊2) + 𝑔𝑆𝑏𝐴2 − 𝑔𝐴2

𝑄2|𝑄2|𝑛𝑚2 𝑃2
4
3

𝐴2
10
3

 

𝑀̇2
𝜌
=
𝛽
𝐿
(
1
𝐴1
(
𝑀1
𝜌
)
2

−
1
𝐴2
(
𝑀2
𝜌
)
2

) +
𝑔
𝐿
(𝐼11 − 𝐼12) −

𝑔ℎ22

2𝐿
(𝑊1 −𝑊2) + 𝑔𝑆𝑏𝐴2

− 𝑔

𝑀2
𝜌 |
𝑀2
𝜌 | 𝑛𝑚

2 𝑃2
4
3

𝐴2
7
3

 

𝑀̇2 =
𝛽
𝜌𝐿
(
𝑀12

𝐴1
−
𝑀22

𝐴2
) +

𝜌𝑔
𝐿
(𝐼11 − 𝐼12) −

𝜌𝑔ℎ22

2𝐿
(𝑊1 −𝑊2) + 𝜌𝑔𝑆𝑏𝐴2 −

𝑔
𝜌
𝑀2|𝑀2|𝑛𝑚2 𝑃2

4
3

𝐴2
7
3

 

 

 ODEs in terms of 𝒉 and 𝑸 
 

𝐴̇1 = −
1
𝐿
(−𝑄1 + 𝑄2) 

ℎ̇1(2𝑆𝑠ℎ1 +𝑊1) = −
1
𝐿
(−𝑄1 + 𝑄2) 

ℎ̇1 = −
(−𝑄1 + 𝑄2)
𝐿(2𝑆𝑠ℎ1 +𝑊1)

= 𝑓1 

 

𝐴̇2 = −
1
𝐿
(−𝑄1 + 𝑄2) 



  Appendices 

118 

ℎ̇2 = −
(−𝑄1 + 𝑄2)
𝐿(2𝑆𝑠ℎ2 +𝑊2)

= 𝑓2 

 

𝑄̇1 = −
𝛽
𝐿
(−
𝑄12

𝐴1
+
𝑄22

𝐴2
) −

𝑔
𝐿
(−𝐼11 + 𝐼12) +

𝑔ℎ12

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝐴1(𝑆𝑏 − 𝑆𝑓1) = 𝑓3 

𝑄̇1 = −
𝛽
𝐿
(−

𝑄12

𝑆𝑠ℎ12 +𝑊1ℎ1
+

𝑄22

𝑆𝑠ℎ22 +𝑊2ℎ2
) −

𝑔
𝐿
(−ℎ12

𝑊1
2
− ℎ13

𝑆𝑠
3
+ ℎ22

𝑊2
2
+ ℎ23

𝑆𝑠
3
)

+
𝑔ℎ12

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝑆𝑏(𝑆𝑠ℎ12 +𝑊1ℎ1)

− 𝑔
𝑄1|𝑄1|𝑛𝑀2 (𝑊1 + 2ℎ1√1 + 𝑆𝑠2)

4
3

(𝑆𝑠ℎ12 +𝑊1ℎ1)
7
3

= 𝑓3 

 

𝑄̇2 = −
𝛽
𝐿
(−
𝑄12

𝐴1
+
𝑄22

𝐴2
) −

𝑔
𝐿
(−𝐼11 + 𝐼12) +

𝑔ℎ22

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝐴2(𝑆𝑏 − 𝑆𝑓2) = 𝑓4 

𝑄̇2 = −
𝛽
𝐿
(−

𝑄12

𝑆𝑠ℎ12 +𝑊1ℎ1
+

𝑄22

𝑆𝑠ℎ22 +𝑊2ℎ2
) −

𝑔
𝐿
(−ℎ12

𝑊1
2
− ℎ13

𝑆𝑠
3
+ ℎ22

𝑊2
2
+ ℎ23

𝑆𝑠
3
)

+
𝑔ℎ22

2𝐿
(−𝑊1 +𝑊2) + 𝑔𝑆𝑏(𝑆𝑠ℎ22 +𝑊2ℎ2)

− 𝑔
𝑄2|𝑄2|𝑛𝑀2 (𝑊2 + 2ℎ2√1 + 𝑆𝑠2)

4
3

(𝑆𝑠ℎ22 +𝑊2ℎ2)
7
3

= 𝑓4 
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Appendix 2 Tylor series expansion and Jacobian matrices 
The nonlinear state and the measurement equations for a deterministic system are given by: 

𝑥̇ = 𝑓(𝑥, 𝑢) 

𝑦 = 𝑔(𝑥, 𝑢) 

x 𝑢 could be a vector with 𝑛𝑢 elements or a scalar with one element 
x 𝑥 could be a vector with 𝑛𝑥 elements or a scalar with one element 
x 𝑦 could be a vector with 𝑛𝑦 elements or a scalar with one element 
x 𝑓 could be a vector function with 𝑛𝑥 member functions or a scalar with one function 
x 𝑔 could be a vector function with 𝑛𝑦 member functions or a scalar with one function 
x 𝑓 and 𝑔 depends on the number of states and the number of outputs in the system 

Function values around the linearization (operating) point 𝑥𝑜𝑝, 𝑢𝑜𝑝, 𝑦𝑜𝑝: 

𝑥̇𝑜𝑝 = 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝) 

𝑦𝑜𝑝 = 𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝) 

Linearizing the state and measurement equations (RHS) around the operating point 𝑥𝑜𝑝, 𝑢𝑜𝑝, 
𝑦𝑜𝑝 using Tylor series approximation: 

𝑓(𝑥, 𝑢) = 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝) +
𝜕𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑥 − 𝑥𝑜𝑝) +
𝜕𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑢 − 𝑢𝑜𝑝)

+ 𝐻𝑂𝑇 

𝑔(𝑥, 𝑢) = 𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝) +
𝜕𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑥 − 𝑥𝑜𝑝) +
𝜕𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑢 − 𝑢𝑜𝑝)

+ 𝐻𝑂𝑇 

𝑓(𝑥, 𝑢) − 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝)

=
𝜕𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑥 − 𝑥𝑜𝑝) +
𝜕𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑢 − 𝑢𝑜𝑝) + 𝐻𝑂𝑇 

𝑔(𝑥, 𝑢) − 𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝)

=
𝜕𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑥 − 𝑥𝑜𝑝) +
𝜕𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝)

𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑢 − 𝑢𝑜𝑝) + 𝐻𝑂𝑇 

Substitute the following and remove the higher order terms (HOT): 

𝑓(𝑥, 𝑢) = 𝑥̇, 𝑓(𝑥𝑜𝑝, 𝑢𝑜𝑝) = 𝑥̇𝑜𝑝 

𝑔(𝑥, 𝑢) = 𝑦, 𝑔(𝑥𝑜𝑝, 𝑢𝑜𝑝) = 𝑦𝑜𝑝 

The new refined equation becomes: 

𝑥̇ − 𝑥̇𝑜𝑝 =
𝜕𝑓
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑥 − 𝑥𝑜𝑝) +
𝜕𝑓
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑢 − 𝑢𝑜𝑝) 

𝑦 − 𝑦𝑜𝑝 =
𝜕𝑔
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑥 − 𝑥𝑜𝑝) +
𝜕𝑔
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

(𝑢 − 𝑢𝑜𝑝) 
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Define deviation variables: 

𝑥 − 𝑥𝑜𝑝 = 𝛿𝑥, 𝑥̇ − 𝑥̇𝑜𝑝 = 𝛿𝑥̇, 𝑢 − 𝑢𝑜𝑝 = 𝛿𝑢, 𝑦 − 𝑦𝑜𝑝 = 𝛿𝑦 (a2) 

Where, 

𝜕𝑓
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

=

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯
𝜕𝑓1
𝜕𝑥𝑛𝑥

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯
𝜕𝑓2
𝜕𝑥𝑛𝑥

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛𝑥
𝜕𝑥1

𝜕𝑓𝑛𝑥
𝜕𝑥2

⋯
𝜕𝑓𝑛𝑥
𝜕𝑥𝑛𝑥]

 
 
 
 
 
 
 

,
𝜕𝑓
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

=

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

⋯
𝜕𝑓1
𝜕𝑢𝑛𝑢

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

⋯
𝜕𝑓2
𝜕𝑢𝑛𝑢

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛𝑥
𝜕𝑢1

𝜕𝑓𝑛𝑥
𝜕𝑢2

⋯
𝜕𝑓𝑛𝑥
𝜕𝑢𝑛𝑢]

 
 
 
 
 
 
 

 

𝜕𝑔
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

=

[
 
 
 
 
 
 
 
𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

⋯
𝜕𝑔1
𝜕𝑥𝑛𝑥

𝜕𝑔2
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

⋯
𝜕𝑔2
𝜕𝑥𝑛𝑥

⋮ ⋮ ⋱ ⋮
𝜕𝑔𝑛𝑦
𝜕𝑥1

𝜕𝑔𝑛𝑦
𝜕𝑥2

⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥]

 
 
 
 
 
 
 

,
𝜕𝑔
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

=

[
 
 
 
 
 
 
 
𝜕𝑔1
𝜕𝑢1

𝜕𝑔1
𝜕𝑢2

⋯
𝜕𝑔1
𝜕𝑢𝑛𝑢

𝜕𝑔2
𝜕𝑢1

𝜕𝑔2
𝜕𝑢2

⋯
𝜕𝑔2
𝜕𝑢𝑛𝑢

⋮ ⋮ ⋱ ⋮
𝜕𝑔𝑛𝑦
𝜕𝑢1

𝜕𝑔𝑛𝑦
𝜕𝑢2

⋯
𝜕𝑔𝑛𝑦
𝜕𝑢𝑛𝑢]

 
 
 
 
 
 
 

 

Define Jacobian matrices (system matrices): 

𝐴𝑐 =
𝜕𝑓
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

𝐵𝑐 =
𝜕𝑓
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

𝐶𝑐 =
𝜕𝑔
𝜕𝑥
|
𝑥𝑜𝑝,𝑢𝑜𝑝

𝐷𝑐 =
𝜕𝑔
𝜕𝑢
|
𝑥𝑜𝑝,𝑢𝑜𝑝

 (a3) 

x The dimension of these matrices is: 

[𝐴𝑐] = [𝑛𝑥 × 𝑛𝑥] [𝐵𝑐] = [𝑛𝑥 × 𝑛𝑢] [𝐶𝑐] = [𝑛𝑦 × 𝑛𝑥] [𝐷𝑐] = [𝑛𝑦 × 𝑛𝑢] 

State and measurement equations in deviation form for deterministic system 

𝛿𝑥̇ = 𝐴𝑐𝛿𝑥 + 𝐵𝑐𝛿𝑢
𝛿𝑦 = 𝐶𝑐𝛿𝑥 + 𝐷𝑐𝛿𝑢

 (a4) 

Full form of state and measurement equations for deterministic system 

𝑥̇ = 𝑥̇𝑜𝑝 + 𝐴𝑐(𝑥 − 𝑥𝑜𝑝) + 𝐵𝑐(𝑢 − 𝑢𝑜𝑝)
𝑦 = 𝑦𝑜𝑝 + 𝐶𝑐(𝑥 − 𝑥𝑜𝑝) + 𝐷𝑐(𝑢 − 𝑢𝑜𝑝)

 (a5) 
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Appendix 3 Linear model matrices, alternative form 

 System matrices in terms of 𝑨 and 𝑸 

𝐴𝑐 =

[
 
 
 
 
 
 
𝜕𝑓2
𝜕𝐴2

𝜕𝑓2
𝜕𝑄1

𝜕𝑓2
𝜕𝑄2

𝜕𝑓3
𝜕𝐴2

𝜕𝑓3
𝜕𝑄1

𝜕𝑓3
𝜕𝑄2

𝜕𝑓4
𝜕𝐴2

𝜕𝑓4
𝜕𝑄1

𝜕𝑓4
𝜕𝑄2]

 
 
 
 
 
 

, 𝐵𝑐 =

[
 
 
 
 
 
 
𝜕𝑓2
𝜕𝐴1
𝜕𝑓3
𝜕𝐴1
𝜕𝑓4
𝜕𝐴1]

 
 
 
 
 
 

, 𝐶𝑐 = [
𝜕𝑔1
𝜕𝐴2

𝜕𝑔1
𝜕𝑄1

𝜕𝑔1
𝜕𝑄2

] 

Where; 

𝑓2 = 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.16) 𝑓3 = 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.17) 𝑓4 = 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4.18) 𝑔 = 𝐴2 
𝑑ℎ1
𝑑𝐴1

|
𝑜𝑝
=

1

√𝑊12 + 4𝐴1𝑜𝑝𝑆𝑠
 

𝑑ℎ2
𝑑𝐴2

|
𝑜𝑝
=

1

√𝑊22 + 4𝐴2𝑜𝑝𝑆𝑠
 

𝑑𝑃1
𝑑𝐴1

|
𝑜𝑝
=

2√1 + 𝑆𝑠2

√𝑊12 + 4𝐴1𝑜𝑝𝑆𝑠
= 2√1 + 𝑆𝑠2

𝑑ℎ1
𝑑𝐴1

|
𝑜𝑝

 

𝑑𝑃2
𝑑𝐴2

|
𝑜𝑝
=

2√1 + 𝑆𝑠2

√𝑊22 + 4𝐴2𝑜𝑝𝑆𝑠
= 2√1 + 𝑆𝑠2

𝑑ℎ2
𝑑𝐴2

|
𝑜𝑝

 

𝐴𝑐11 =
𝜕𝑓2
𝜕𝐴2

= 0 

𝐴𝑐21 =
𝜕𝑓3
𝜕𝐴2

=
𝛽
𝐿
𝑄22𝑜𝑝
𝐴22𝑜𝑝

−
𝑔𝐴2𝑜𝑝
𝐿

𝑑ℎ2
𝑑𝐴2

|
𝑜𝑝

 

𝐴𝑐31 =
𝜕𝑓4
𝜕𝐴2

=
𝛽
𝐿
𝑄22𝑜𝑝
𝐴22𝑜𝑝

−
𝑔
𝐿
(𝐴2𝑜𝑝 + ℎ2𝑜𝑝𝑊1 − ℎ2𝑜𝑝𝑊2)

𝑑ℎ2
𝑑𝐴2

|
𝑜𝑝
+ 𝑔𝑆𝑏

− (4
𝑑𝑃2
𝑑𝐴2

|
𝑜𝑝
−
7P2𝑜𝑝
𝐴2𝑜𝑝

)
𝑔𝑄2𝑜𝑝 |𝑄2𝑜𝑝| 𝑛𝑀

2 √P2𝑜𝑝
3

3𝐴2
7
3
𝑜𝑝

 

𝐴𝑐12 =
𝜕𝑓2
𝜕𝑄1

=
1
𝐿

 

𝐴𝑐22 =
𝜕𝑓3
𝜕𝑄1

=
2𝛽𝑄1𝑜𝑝
𝐿𝐴1𝑜𝑝

−
2𝑔𝑄12𝑜𝑝𝑛𝑀

2 P1𝑜𝑝
4
3

|𝑄1𝑜𝑝| 𝐴1
7
3
𝑜𝑝

 



  Appendices 

122 

𝐴𝑐32 =
𝜕𝑓4
𝜕𝑄1

=
2𝛽𝑄1𝑜𝑝
𝐿𝐴1𝑜𝑝

 

𝐴𝑐13 =
𝜕𝑓2
𝜕𝑄2

=
−1
𝐿

 

𝐴𝑐23 =
𝜕𝑓3
𝜕𝑄2

=
−2𝛽𝑄2𝑜𝑝
𝐿𝐴2𝑜𝑝

 

𝐴𝑐33 =
𝜕𝑓4
𝜕𝑄2

=
−2𝛽𝑄2𝑜𝑝
𝐿𝐴2𝑜𝑝

−
2𝑔𝑄22𝑜𝑝𝑛𝑀

2 P2𝑜𝑝
4
3

|𝑄2𝑜𝑝| 𝐴2
7
3
𝑜𝑝

 

𝐵𝑐11 =
𝜕𝑓2
𝜕𝐴1

= 0 

𝐵𝑐21 =
𝜕𝑓3
𝜕𝐴1

=
−𝛽
𝐿
𝑄12𝑜𝑝
𝐴12𝑜𝑝

+
𝑔 (𝐴1𝑜𝑝 − ℎ1𝑜𝑝𝑊1 + ℎ1𝑜𝑝𝑊2)

𝐿
𝑑ℎ1
𝑑𝐴1

|
𝑜𝑝
+ 𝑔𝑆𝑏

− (4
𝑑𝑃1
𝑑𝐴1

|
𝑜𝑝
−
7P1𝑜𝑝
𝐴1𝑜𝑝

)
𝑔𝑄1𝑜𝑝 |𝑄1𝑜𝑝| 𝑛𝑀

2 √P1𝑜𝑝
3

3𝐴1
7
3
𝑜𝑝

 

𝐵𝑐31 =
𝜕𝑓4
𝜕𝐴1

=
−𝛽
𝐿
𝑄12𝑜𝑝
𝐴12𝑜𝑝

+
𝑔𝐴1𝑜𝑝
𝐿

𝑑ℎ1
𝑑𝐴1

|
𝑜𝑝

 

𝐶𝑐11 =
𝜕𝑔
𝜕𝐴2

= 1 

𝐶𝑐12 =
𝜕𝑔
𝜕𝑄1

= 0 

𝐶𝑐13 =
𝜕𝑔
𝜕𝑄2

= 0 

 System matrices in terms of 𝒉 and 𝑸 

𝐴𝑐 =

[
 
 
 
 
 
 
𝜕𝑓2
𝜕ℎ2

𝜕𝑓2
𝜕𝑄1

𝜕𝑓2
𝜕𝑄2

𝜕𝑓3
𝜕ℎ2

𝜕𝑓3
𝜕𝑄1

𝜕𝑓3
𝜕𝑄2

𝜕𝑓4
𝜕ℎ2

𝜕𝑓4
𝜕𝑄1

𝜕𝑓4
𝜕𝑄2]

 
 
 
 
 
 

, 𝐵𝑐 =

[
 
 
 
 
 
 
𝜕𝑓2
𝜕ℎ1
𝜕𝑓3
𝜕ℎ1
𝜕𝑓4
𝜕ℎ1]
 
 
 
 
 
 

, 𝐶𝑐 = [
𝜕𝑔
𝜕ℎ2

𝜕𝑔
𝜕𝑄1

𝜕𝑔
𝜕𝑄2

] 

Where; 

𝑓2, 𝑓3 and 𝑓4 are given by ODEs in Part 1B. 𝑔 = ℎ2 

𝜕𝑓2
𝜕ℎ2

=
2𝑆𝑠 (−𝑄1𝑜𝑝 + 𝑄2𝑜𝑝)

𝐿 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2)
2 , 𝑄1𝑜𝑝 = 𝑄2𝑜𝑝 
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𝜕𝑓3
𝜕ℎ2

=
𝛽
𝐿
𝑄22𝑜𝑝 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2)

𝐴22𝑜𝑝
−
𝑔
𝐿
(𝑊2ℎ2𝑜𝑝 + 𝑆𝑠ℎ2

2
𝑜𝑝) 

𝜕𝑓4
𝜕ℎ2

=
𝛽
𝐿
𝑄22𝑜𝑝 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2)

𝐴22𝑜𝑝
−
𝑔
𝐿
(𝑊2ℎ2𝑜𝑝 + 𝑆𝑠ℎ2

2
𝑜𝑝) +

𝑔ℎ2𝑜𝑝
𝐿

(−𝑊1 +𝑊2)

+ 𝑔𝑆𝑏 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2) −
8
3
𝑔𝑄2𝑜𝑝 |𝑄2𝑜𝑝| 𝑛𝑀

2 √1 + 𝑆𝑠
2(𝑃𝑤2)

1
3

𝐴2
7
3
𝑜𝑝

+
7
3
𝑔𝑄2𝑜𝑝 |𝑄2𝑜𝑝| 𝑛𝑀

2
(𝑊2 + 2ℎ2𝑜𝑝√1 + 𝑆𝑠2)

4
3 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2)

(𝑆𝑠ℎ22𝑜𝑝 +𝑊2ℎ2𝑜𝑝)
10
3

 

𝜕𝑓2
𝜕𝑄1

=
−1

𝐿 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2)
 

𝜕𝑓3
𝜕𝑄1

=
2𝛽𝑄1𝑜𝑝

𝐿 (𝑆𝑠ℎ12𝑜𝑝 +𝑊1ℎ1𝑜𝑝)
− 2𝑔

𝑄12𝑜𝑝𝑛𝑀
2 (𝑊1 + 2ℎ1𝑜𝑝√1 + 𝑆𝑠2)

4
3

|𝑄1𝑜𝑝| (𝑆𝑠ℎ1
2
𝑜𝑝 +𝑊1ℎ1𝑜𝑝)

7
3

 

𝜕𝑓4
𝜕𝑄1

=
2𝛽𝑄1𝑜𝑝

𝐿 (𝑆𝑠ℎ12𝑜𝑝 +𝑊1ℎ1𝑜𝑝)
, ℎ1𝑜𝑝 ≠ 0 

𝜕𝑓2
𝜕𝑄2

=
1

𝐿 (2𝑆𝑠ℎ2𝑜𝑝 +𝑊2)
 

𝜕𝑓3
𝜕𝑄2

=
−2𝛽𝑄2𝑜𝑝

𝐿 (𝑆𝑠ℎ22𝑜𝑝 +𝑊2ℎ2𝑜𝑝)
, ℎ2𝑜𝑝 ≠ 0 

𝜕𝑓4
𝜕𝑄2

=
−2𝛽𝑄2𝑜𝑝

𝐿 (𝑆𝑠ℎ22𝑜𝑝 +𝑊2ℎ2𝑜𝑝)
− 2𝑔

𝑄22𝑜𝑝𝑛𝑀
2 (𝑊2 + 2ℎ2𝑜𝑝√1 + 𝑆𝑠2)

4
3

|𝑄2𝑜𝑝| (𝑆𝑠ℎ2
2
𝑜𝑝 +𝑊2ℎ2𝑜𝑝)

7
3

 

𝜕𝑓2
𝜕ℎ1

= 0 



  Appendices 

124 

𝜕𝑓3
𝜕ℎ1

= −
𝛽𝑄12𝑜𝑝 (2𝑆𝑠ℎ1𝑜𝑝 +𝑊1)

𝐿 (𝑆𝑠ℎ12𝑜𝑝 +𝑊1ℎ1𝑜𝑝)
2 +

𝑔
𝐿
(ℎ1𝑜𝑝𝑊1 + ℎ1

2
𝑜𝑝𝑆𝑠) +

𝑔ℎ1𝑜𝑝
𝐿

(−𝑊1 +𝑊2)

+ 𝑔𝑆𝑏 (2𝑆𝑠ℎ1𝑜𝑝 +𝑊1)

−
8
3
𝑔𝑄1𝑜𝑝 |𝑄1𝑜𝑝| 𝑛𝑀

2
√1 + 𝑆𝑠2 (𝑊1 + 2ℎ1𝑜𝑝√1 + 𝑆𝑠2)

1
3

(𝑆𝑠ℎ12𝑜𝑝 +𝑊1ℎ1𝑜𝑝)
7
3

+
7
3
𝑔𝑄1𝑜𝑝 |𝑄1𝑜𝑝| 𝑛𝑀

2
(𝑊1 + 2ℎ1𝑜𝑝√1 + 𝑆𝑠2)

4
3 (2𝑆𝑠ℎ1𝑜𝑝 +𝑊1)

(𝑆𝑠ℎ12𝑜𝑝 +𝑊1ℎ1𝑜𝑝)
10
3

 

𝜕𝑓4
𝜕ℎ1

=
−𝛽𝑄12𝑜𝑝 (2𝑆𝑠ℎ1𝑜𝑝 +𝑊1)

𝐿 (𝑆𝑠ℎ12𝑜𝑝 +𝑊1ℎ1𝑜𝑝)
2 +

𝑔
𝐿
(𝑊1ℎ1𝑜𝑝 + 𝑆𝑠ℎ1

2
𝑜𝑝) 

𝜕𝑔1
𝜕ℎ2

= 1 

𝜕𝑔1
𝜕𝑄1

= 0 

𝜕𝑔1
𝜕𝑄2

= 0 
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Appendix 4 Runge-Kutta 4th order (RK4) 
The detailed algorithm on RK4 is discussed here. To explain properly, a visual description of 
the RK4-idea is also given by Figure 12.1. Runge-Kutta fourth order algorithm uses the 
standard Euler forward differentiation scheme four times to approximate a function value at 
the point of interest. However, the name RK4 is not given based on 4 times Euler 
approximations. An important scheme must be understood before going through the RK4 steps. 
Assume a first order system described by a multivariable function with 𝑥 as an independent 
variable and 𝑦 as a dependent variable. A general first order ODE for such system is given by: 

𝑑𝑦
𝑑𝑥
= 𝑓(𝑥, 𝑦) = lim

∆𝑥→0

∆𝑦
∆𝑥

 

𝑓(𝑥, 𝑦) = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑦 𝑎𝑡 (𝑥, 𝑦) = 𝑠𝑙𝑜𝑝𝑒 𝑎𝑡 (𝑥, 𝑦) 
Euler forward scheme can be represented by different step sizes. Two of them are used by RK4 
scheme: 

x For a full step, Euler forward approximation, as shown in Figure 12.1, is: 

𝑦𝑖+1 = 𝑦𝑖 + ∆𝑦 = 𝑦𝑖 + ∆𝑥 ∙
∆𝑦
∆𝑥
= 𝑦𝑖 + ℎ ∙

𝑑𝑦
𝑑𝑥
= 𝑦𝑖 + ℎ ∙ 𝑓(𝑥, 𝑦) 

ℎ = 𝑥𝑖+1 − 𝑥𝑖 = ∆𝑥 

x For a half step, Euler forward approximation is: 

𝑦
𝑖+12
= 𝑦𝑖 + ∆𝑦 = 𝑦𝑖 + ∆𝑥 ∙

∆𝑦
∆𝑥
= 𝑦𝑖 +

ℎ
2
∙
𝑑𝑦
𝑑𝑥
= 𝑦𝑖 +

ℎ
2
∙ 𝑓(𝑥, 𝑦) 

ℎ
2
= 𝑥

𝑖+12
− 𝑥𝑖 = ∆𝑥 

Om Prakash Chapagain

k1

k1 k3

k3

k2

k2
k

k4

xi+1x i+1/2xi

Δx = h
h/2 x

y

k

x i+1xi

Δx = h

Δy

Δx

k

x

y

RK4 Euler Fwd

 
Figure 12.1: Visualization of Runge-Kutta fourth order (RK4) (left) and Euler forward (right) 

numerical method 

RK4 algorithm for a multivariable ODE explained in steps 

1. Compute the slope of the function at the point (𝑥𝑖, 𝑦𝑖) 

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖), 𝑘1 =
𝑑𝑦
𝑑𝑥
 𝑎𝑡 (𝑥𝑖, 𝑦𝑖) 

2. Using the slope 𝑘1, predict the next value of 𝑦 at the half-way (mid-way) 𝑦𝑖+12
. This 

step is simply Euler forward approximation 
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𝑦
𝑖+12
= 𝑦𝑖 +

ℎ
2
∙ 𝑓(𝑥𝑖, 𝑦𝑖) = 𝑦𝑖 +

ℎ
2
∙ 𝑘1 

3. Compute the slope 𝑘2 at this predicted value of y at the point (𝑥𝑖+12
, 𝑦𝑖+12

) 

𝑘2 = 𝑓 (𝑥𝑖+12
, 𝑦
𝑖+12
) , 𝑘2 =

𝑑𝑦
𝑑𝑥
 𝑎𝑡 (𝑥

𝑖+12
, 𝑦
𝑖+12
) 

𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡:, 𝑥
𝑖+12
= 𝑥𝑖 +

ℎ
2

 

4. Using the slope 𝑘2, predict the new value of at the mid-way (half-way) 𝑦𝑖+12
 as above 

step. This step is once again Euler forward approximation. Note that the slope is 
calculated at the mid-way point, but it is used to predict a new value at the mid-way 
point from the original point. 

𝑦
𝑖+12
= 𝑦𝑖 +

ℎ
2
∙ 𝑓 (𝑥

𝑖+12
, 𝑦
𝑖+12
) = 𝑦𝑖 +

ℎ
2
∙ 𝑘2 

5. Compute the slope 𝑘3 using the new predicted value of y, again at the mid-way 

(𝑥𝑖+12
, 𝑦𝑖+12

) 

𝑘3 = 𝑓 (𝑥𝑖+12
, 𝑦
𝑖+12
) , 𝑘3 =

𝑑𝑦
𝑑𝑥
 𝑎𝑡 (𝑥

𝑖+12
, 𝑦
𝑖+12
) 

𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡: 𝑥
𝑖+12
= 𝑥𝑖 +

ℎ
2

 

6. Using the slope 𝑘3, predict the new value of 𝑦𝑖+1 at a full step. This step is once again 
Euler forward approximation. Note again that the slope is calculated mid-way point, 
but it is used to predict a new value at the full step from the original point 

𝑦𝑖+1 = 𝑦𝑖 + ℎ ∙ 𝑓 (𝑥𝑖+12
, 𝑦
𝑖+12
) = 𝑦𝑖 + ℎ ∙ 𝑘3 

7. Compute the slope 𝑘4 at the new predicted value of y (again) at the full-step (𝑥𝑖+1, 𝑦𝑖+1) 

𝑘4 = 𝑓(𝑥𝑖+1, 𝑦𝑖+1), 𝑘4 =
𝑑𝑦
𝑑𝑥
 𝑎𝑡 (𝑥𝑖+1, 𝑦𝑖+1), 𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡: 𝑥𝑖+1 = 𝑥𝑖 + ℎ 

8. Compute the average slope 𝑘 using all the slopes found above. Since 𝑘2 and 𝑘3 are 
computed at the half-way, weight them twice 

𝑘 =
(𝑘1 + 𝑘2 + 𝑘2 + 𝑘3 + 𝑘3 + 𝑘4)

6
=
1
6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4), 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 6 𝑠𝑙𝑜𝑝𝑒𝑠 

9. Finally, using the averaged slope 𝑘, predict the actual value of 𝑦𝑖+1 at a full step. This 
step is, as usual, Euler forward approximation 

𝑦𝑖+1 = 𝑦𝑖 + ℎ ∙ 𝑓(𝑥𝑖+1, 𝑦𝑖+1) = 𝑦𝑖 + ℎ ∙ 𝑘 
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Appendix 5 Differentiation axioms including absolute valued 
function 

Some important axioms in calculus: 

x Chain rule 

𝑑
𝑑𝑥
(𝑢(𝑝(𝑥))) =

𝑑𝑢
𝑑𝑝
𝑑𝑝
𝑑𝑥

 (a6) 

o Example 

𝑑
𝑑𝑥

1
(𝑎𝑥 + 𝑏)

=
𝑑(𝑎𝑥 + 𝑏)−1

𝑑(𝑎𝑥 + 𝑏)
𝑑(𝑎𝑥 + 𝑏)
𝑑𝑥

= −𝑎(𝑎𝑥 + 𝑏)−2 = −
𝑎

(𝑎𝑥 + 𝑏)2
 

x Quotient rule 

𝑑
𝑑𝑥
(
𝑢(𝑝(𝑥))
𝑣(𝑞(𝑥)) 

) =
𝑣 𝑑𝑢𝑑𝑝

𝑑𝑝
𝑑𝑥 − 𝑢

𝑑𝑣
𝑑𝑞
𝑑𝑞
𝑑𝑥

𝑣2
 (a7) 

o Example 

𝑑
𝑑𝑥
(𝑎𝑥 + 𝑏)2

√𝑐𝑥
=
√𝑐𝑥 𝑑

(𝑎𝑥 + 𝑏)2
𝑑(𝑎𝑥 + 𝑏)

𝑑(𝑎𝑥 + 𝑏)
𝑑𝑥 − (𝑎𝑥 + 𝑏)2 𝑑√𝑐𝑥𝑑(𝑐𝑥)

𝑑(𝑐𝑥)
𝑑𝑥

𝑐𝑥

=
2𝑎(𝑎𝑥 + 𝑏)√𝑐𝑥 − 𝑐

(𝑎𝑥 + 𝑏)2

2√𝑐𝑥
𝑐𝑥

=
2𝑎(𝑎𝑥 + 𝑏)
√𝑐𝑥

−
𝑐(𝑎𝑥 + 𝑏)2

2√(𝑐𝑥)3
 

x Product rule 

𝑑
𝑑𝑡
(𝑢𝑣) = 𝑢

𝑑𝑣
𝑑𝑡
+
𝑑𝑢
𝑑𝑡
𝑣 = 𝑢𝑣̇ + 𝑢̇𝑣 (a8) 

o Example 
𝑑
𝑑𝑡
(𝑎𝑡 + 𝑏)(𝑐𝑡)2 = (𝑎𝑡 + 𝑏)

𝑑
𝑑𝑡
(𝑐𝑡)2 + (𝑐𝑡)2

𝑑
𝑑𝑡
(𝑎𝑡 + 𝑏)

= (𝑎𝑡 + 𝑏)
𝑑(𝑐𝑡)2

𝑑(𝑐𝑡)
𝑑(𝑐𝑡)
𝑑𝑡

 + (𝑐𝑡)2
𝑑
𝑑𝑡
(𝑎𝑡 + 𝑏) = 2𝑐2𝑡(𝑎𝑡 + 𝑏)  + 𝑎(𝑐𝑡)2 

x Proof of differentiation of absolute valued function 
𝑑
𝑑𝑥
(𝑥 ∙ |𝑥|) =

𝑑
𝑑𝑥
(√𝑥2 ∙ √𝑥2) =

𝑑
𝑑𝑥
(√𝑥4) =

𝑑
𝑑𝑥
(𝑥4)

1
2 

=
𝑑

𝑑(𝑥4)
(𝑥4)

1
2
𝑑𝑥4

𝑑𝑥
=
1
2
(𝑥4)

1
2−14𝑥3 =

2𝑥3

(𝑥4)
1
2
=
2𝑥3

√𝑥4
=

2𝑥3

√𝑥2 ∙ √𝑥2
=
2𝑥3

𝑥 ∙ |𝑥|
=
2𝑥2

|𝑥|
 

𝑑
𝑑𝑥
(𝑥 ∙ |𝑥|) =

2𝑥2

|𝑥|
 (a9) 

 

All the axioms above are used during linearization of the nonlinear ODEs. 
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Appendix 6 Derivation of analytical solution to linear LTI system 
LTI system means linear time invariant system. Time invariant means that the model matrices 
(A, B, E, C, D, F) are constant for all time instances. In other words, LTI system has known 
model matrices that are independent of the time. 

x For a non-singular matrix Λ, following expression holds true 

𝑒Λ𝑡Λ = Λ𝑒Λ𝑡 (a10) 

x Differentiation of matrix exponential 

(−Λ)𝑒−Λ𝑡 =
𝑑
𝑑𝑡
𝑒−Λ𝑡 = (𝑒−Λ𝑡)̇  (a11) 

 

 Analytical solution to linear state space model 
For a combined deterministic and stochastic LTI system, state equation the form: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑤 

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐹𝑣 
Steps to find the analytical solution: 

1. Rewrite the above equation in the form: 

𝑥̇ − 𝐴𝑥 = 𝐵𝑢 + 𝐸𝑤 

2. Multiply both sides with 𝑒−A𝑡 

𝑒−𝐴𝑡𝑥̇ − 𝑒−𝐴𝑡𝐴𝑥 = 𝑒−𝐴𝑡𝐵𝑢 + 𝑒−𝐴𝑡𝐸𝑤 
3. Use the axiom (a10) rewrite the above equation as: 

𝑒−𝐴𝑡𝑥̇ + (−𝐴)𝑒−𝐴𝑡𝑥 = 𝑒−𝐴𝑡𝐵𝑢 + 𝑒−𝐴𝑡𝐸𝑤 
4. Use the axiom (a11) rewrite the above equation as: 

𝑒−𝐴𝑡
𝑑𝑥
𝑑𝑡
 + (

𝑑
𝑑𝑡
𝑒−𝐴𝑡) 𝑥 = 𝑒−𝐴𝑡𝐵𝑢 + 𝑒−𝐴𝑡𝐸𝑤 

5. Using the axiom (a8), rewrite the above equation as: 
𝑑
𝑑𝑡
(𝑒−𝐴τ𝑥(𝑡)) = 𝑒−𝐴𝑡𝐵𝑢(𝑡) + 𝑒−𝐴𝑡𝐸𝑤(𝑡) 

6. Integrate both sides with respect to time. To avoid ambiguity, lets integrate both sides 
with an arbitrary time 𝜏. 

∫
𝑑
𝑑𝜏
(𝑒−𝐴𝜏𝑥(𝜏))𝑑𝜏

𝑡

𝑡0
= ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏

𝑡

𝑡0
+ ∫ 𝑒−𝐴𝜏𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
 

(𝑒−𝐴𝜏𝑥(𝜏))|
𝑡0

𝑡
= ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏

𝑡

𝑡0
+ ∫ 𝑒−𝐴𝜏𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
 

𝑒−𝐴𝑡𝑥(𝑡) − 𝑒−𝐴𝑡0𝑥(𝑡0) = ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
+ ∫ 𝑒−𝐴𝜏𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
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𝑒−𝐴𝑡𝑥(𝑡) = 𝑒−𝐴𝑡0𝑥(𝑡0) + ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
+ ∫ 𝑒−𝐴𝜏𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
 

𝑥(𝑡) = 𝑒𝐴𝑡𝑒−𝐴𝑡0𝑥(𝑡0) + 𝑒𝐴𝑡 ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝑒𝐴𝑡 ∫ 𝑒−𝐴𝜏𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
 

𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) + ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
+ ∫ 𝑒𝐴(𝑡−𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
 

7. Define transition matrix, Φ(𝑡) 

Φ(𝑡) = 𝑒𝐴𝑡, Φ(𝑡 − 𝑡0) = 𝑒𝐴(𝑡−𝑡0)

Φ(𝑡 − 𝜏) = 𝑒𝐴(𝑡−𝜏)
 (a12) 

𝑥(𝑡) = Φ(𝑡 − 𝑡0)𝑥(𝑡0) + ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
+ ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
 

8. The solution to the LTI system from above can be directly used to compute the output 

𝑦(𝑡) = 𝐶Φ(𝑡 − 𝑡0)𝑥(𝑡0) + 𝐶∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝐶 ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

𝑡0
+ 𝐷𝑢(𝑡)

+ 𝐹𝑣(𝑡) 
9. To simplify the solution, it is a good idea to set 𝑡0 = 0 and see at some special cases. 

𝑥(𝑡) = Φ(𝑡)𝑥(0) + ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
+ ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

0
 

𝑦(𝑡) = 𝐶Φ(𝑡)𝑥(0) + 𝐶 ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
+ 𝐶 ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏

𝑡

0
+ 𝐷𝑢(𝑡) + 𝐹𝑣(𝑡) 

x Case 1: Deterministic system i.e., 𝐸 = 𝐹 = 𝟎 matrix 

𝑥(𝑡) = Φ(𝑡)𝑥(0) + ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
 

o 1a: With direct feedthrough term in the output equation i.e., 𝐷 ≠ 𝟎 

𝑦(𝑡) = 𝐶Φ(𝑡)𝑥(0) + 𝐶 ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
+ 𝐷𝑢(𝑡) 

o 1b: Without direct feedthrough term in the output i.e., 𝐷 = 𝟎 matrix 

𝑦(𝑡) = 𝐶Φ(𝑡)𝑥(0) + 𝐶 ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
 

 

 Analytical solution to linear state observer using duality principle 
𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿(𝑦̅ − 𝑦̂) 

𝑦̂ = 𝐶𝑥̂ 

𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿𝑦̅ − 𝐿(𝐶𝑥̂) 

𝑥̇̂ = (𝐴 − 𝐿𝐶)𝑥̂ + 𝐵𝑢 + 𝐿𝑦̅ 
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(𝐴 − 𝐿𝐶) ≝ Λ (a13) 

𝑥̇̂ = Λ𝑥̂ + 𝐵𝑢 + 𝐿𝑦̅ 

𝑥̇̂ − Λ𝑥̂ = 𝐵𝑢 + 𝐿𝑦̅ 

x Solution to the state observer can be found by using duality principle as shown in Table 
12.2. Duality principle states that; if the solution to the state space model is known, then 
it is possible to directly write the solution to the state observer model. 

Table 12.2: Duality with between linear stochastic state space equation and observer equation 

Combined deterministic and stochastic 
system 

Observer state equation 

𝑥̇ − 𝐴𝑥 = 𝐵𝑢 + 𝐸𝑤 𝑥̇̂ − Λ𝑥̂ = 𝐵𝑢 + 𝐿𝑦̅ 

𝑦 = 𝐶𝑥 𝑦̂ = 𝐶𝑥̂ 

𝑥̇ 𝑥̇̂ 

𝐴 Λ 

𝑥 𝑥̂ 

𝐸 𝐿 

𝑤 𝑦̅ 

𝑦 𝑦̂ 

Φ(𝑡 − 𝑡0) ≝ 𝑒𝐴(𝑡−𝑡0) 

Φ(𝑡 − 𝜏) ≝ 𝑒𝐴(𝑡−𝜏) 

Ω(𝑡 − 𝑡0) ≝ 𝑒Λ(𝑡−𝑡0) 

Ω(𝑡 − 𝜏) ≝ 𝑒Λ(𝑡−𝜏) 
(a14) 

 

𝑥(𝑡) = Φ(𝑡 − 𝑡0)𝑥(𝑡0)

+ ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0

+ ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏
𝑡

𝑡0
 

𝑥̂(𝑡) = Ω(𝑡 − 𝑡0)𝑥̂(𝑡0)

+ ∫ Ω(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0

+ ∫ Ω(𝑡 − 𝜏)𝐿𝑦̅(𝜏)𝑑𝜏
𝑡

𝑡0
 

𝑦(𝑡) = 𝐶Φ(𝑡 − 𝑡0)𝑥(𝑡0)

+ 𝐶 ∫ Φ(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0

+ 𝐶 ∫ Φ(𝑡 − 𝜏)𝐸𝑤(𝜏)𝑑𝜏
𝑡

𝑡0
 

𝑦̂(𝑡) = 𝐶Ω(𝑡 − 𝑡0)𝑥̂(𝑡0)

+ 𝐶 ∫ Ω(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0

+ 𝐶 ∫ Ω(𝑡 − 𝜏)𝐿𝑦̅(𝜏)𝑑𝜏
𝑡

𝑡0
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 Analytical solution to the estimation error dynamics 
Steps: 

1. Define error dynamics 

𝜀 ≝ 𝑥 − 𝑥̂ 𝜀̇ ≝ 𝑥̇ − 𝑥̇̂ 
𝜀 ≝ 𝑥 − 𝑥̂ lim

𝑡→∞
𝜀 → 0 lim

𝜀→0
𝑥̂ → 𝑥 

2. Determine expression for the error dynamics 

𝜀̇ = 𝐴𝑥 + 𝐵𝑢 − 𝐴𝑥̂ − 𝐵𝑢 − 𝐿(𝑦 − 𝑦̂) 

𝜀̇ = 𝐴𝑥 − 𝐴𝑥̂ − 𝐿𝐶𝑥 + 𝐿𝐶𝑥̂ 

𝜀̇ = 𝐴(𝑥 − 𝑥̂) − 𝐿𝐶(𝑥 − 𝑥̂) 

𝜀̇ = (𝐴 − 𝐿𝐶)(𝑥 − 𝑥̂) 
3. Using axiom (a13), rewrite above equation incorporating the error transition matrix Λ 

𝜀̇ = Λ𝜀 

4. Multiply both sides with 𝑒−Λ𝑡 and move everything to the left side 

𝑒−Λ𝑡𝜀̇ = 𝑒−Λ𝑡Λ𝜀 ≡ 𝑒−Λ𝑡𝜀̇ − 𝑒−Λ𝑡Λ𝜀 = 0 
5. Using axiom (a10) and (a11), express error dynamics as: 

𝑒−Λ𝑡𝜀̇ + (−Λ)𝑒−Λ𝑡𝜀 = 0 

𝑒−Λ𝑡𝜀̇ + (𝑒−Λ𝑡)̇ 𝜀 = 0 
6. Write the compact form of error dynamics using (a8) 

𝑑
𝑑𝑡
(𝑒−Λ𝑡𝜀) = 0 

7. Integrate both sides w.r.t. time 

∫
𝑑
𝑑𝜏
(𝑒−Λ𝜏𝜀(𝜏)) 𝑑𝜏

𝑡

𝑡0
= 0 

(𝑒−Λ𝜏𝜀(𝜏))|
𝑡0

𝑡
= 0 

𝑒−Λ𝑡𝜀(𝑡) − 𝑒−Λ𝑡0𝜀(𝑡0) = 0 

𝑒−Λ𝑡𝜀(𝑡) = 𝑒−Λ𝑡0𝜀(𝑡0) 

𝜀(𝑡) = 𝑒Λ𝑡𝑒−Λ𝑡0𝜀(𝑡0) 

𝜀(𝑡) = 𝑒Λ(𝑡−𝑡0)𝜀(𝑡0) 
8. Using axiom (a14), rewrite above equation in compact form. The result is the solution 

of error dynamic 

𝜀(𝑡) = Ω(𝑡 − 𝑡0)𝜀(𝑡0) 

x Case 1: when 𝑡0 = 0 

𝜀(𝑡) = Ω(𝑡)𝜀(0) 
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Appendix 7 Sensitivity analysis of all the parameters on all the 
states 

 

Colum representation for subsequent tables: 

x Parameters = 𝜃𝑖 
x Mean of states based on the nominal values, 𝑥 = 𝜇𝑥 
x Standard deviation of states based on the nominal values, 𝑥 = 𝜎𝑥 
x Mean of sensitivity coefficient, 𝜀 = 𝜇𝜀 
x Standard deviation of sensitivity coefficient, 𝜀 = 𝜎𝜀 
x Sensitivity index = SI 
x Correlation = 𝑟 
x Percent change in the state (∆𝑥%) induced by −10% change in parameter value based 

on nominal value = ∆𝜃%− → ∆𝑥% 
x Percent change in the state (∆𝑥%) induced by −10% change in parameter value based 

on nominal value = ∆𝜃%+ → ∆𝑥% 

 

 Parameter sensitivity analysis on 𝒉𝟐 

𝜃𝑖 
𝜇𝜀 

× 10−2 

𝜎𝜀 

× 10−2 

𝜇𝑥 

[𝑚𝑚] 

𝜎𝑥 

[𝑚𝑚] 
SI 𝑟 

∆𝜃%− 

→ ∆𝑥% 

∆𝜃%+ 

→ ∆𝑥% 

𝛼 -46.3 3.1 34.8 0.9 8.9 -0.998 5.2 -4.2 

𝛽 -111.6 6.8 34.8 2.3 20 -0.998 12.4 -10.1 

ℎ1 18.8 0.9 34.7 0.4 3.7 0.999 -2.1 1.7 

𝑘𝑠 -223.4 20.4 35.1 4.6 35.7 -0.996 25.9 -19.1 

𝐿 111.2 0.3 34.7 2.3 20 1 -11.1 11.1 

𝜙 0 0 34.8 2.5 21.5 0.998 : : 

𝜌 0 0 34.7 0 0 0.152 0 0 

𝑊1 -245.7 34.4 35.4 5.1 38.6 -0.993 31.1 -19.4 

𝑊2 175.2 11 34.9 3.6 29.5 0.998 -15.7 19.5 
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Parameter values for both flow rates at the steady state is same. Hence, one table is enough. 

 Parameter sensitivity analysis on 𝑴𝟏 and 𝑴𝟐 

𝜃𝑖 
𝜇𝜀 

× 10−2 

𝜎𝜀 

× 10−2 

𝜇𝑥 

[
𝑘𝑔
𝑚𝑖𝑛

] 

𝜎𝑥 

[
𝑘𝑔
𝑚𝑖𝑛

] 
SI 𝑟 

∆𝜃%− 

→ ∆𝑥% 

∆𝜃%+ 

→ ∆𝑥% 

𝛼 -76.6 3.8 370.8 16.7 14.2 -0.999 8.4 -7.1 

𝛽 -95.5 3.7 370.8 20.7 17.3 -0.999 10.2 -8.9 

ℎ1 131.7 0.1 370 28.6 23.3 1 -13.2 13.2 

𝑘𝑠 -89.2 3.3 369.4 19 15.8 -0.999 8 -9.1 

𝐿 45.5 2.5 369.5 9.9 8.7 0.998 -5 4.1 

𝜙 0 0 370.5 17.1 14.6 0.999 : : 

𝜌 100 0 370 21.7 18.2 1 -10 10 

𝑊1 -111.9 5.4 371.1 24 19.5 -0.999 11.6 -10.1 

𝑊2 170.3 4.3 370.9 36.9 28.8 0.999 -16.2 17.6 
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Appendix 8 Matrix product and summation 
This appendix proves that the sum of a vector square is the same as the matrix multiplication. 
The vector is extracted from a matrix. The matrix multiplication takes care of the summation 
sign of sigma notation. In other words, the sum of the product of each column of a matrix with 
its transpose can be written in sigma notation or as a matrix product. 

x Take an example of a rectangular matrix 𝐸 given as: 

𝐸 = [
𝑒(1,1) ⋯ 𝑒(1,𝑛)
⋮ ⋱ ⋮

𝑒(𝑚,1) ⋯ 𝑒(𝑚,𝑛)
] 

x Take a column vector from the matrix 𝐸 as. 

e𝑖 = 𝐸(:,𝑖) = [
𝑒(1,𝑖)
⋮

𝑒(𝑚,𝑖)
] 

e𝑖 = 𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝐸 

x Sum of the squared vector (multiplied itself by its transpose) is written as: 

𝑉 =∑e𝑖 ∙ e𝑖𝑇
𝑛

𝑖=1

=∑𝐸(:,𝑖) ∙ 𝐸(:,𝑖)𝑇
𝑛

𝑖=1

 

x The proof: 
o Expand the vector product inside of the signa notation 

𝑉 = e1 ∙ e1𝑇 + ⋯+ e𝑛 ∙ e𝑛𝑇 

𝑉 = 𝐸(:,1) ∙ 𝐸(:,1)𝑇 + ⋯+ 𝐸(:,𝑛) ∙ 𝐸(:,𝑛)𝑇 

o Rewrite the expanded sum in compact form 

𝑉 =∑[
𝑒(1,𝑖)
⋮

𝑒(𝑚,𝑖)
] [𝑒(1,𝑖) ⋯ 𝑒(𝑚,𝑖)]

𝑛

𝑖=1

 

𝑉 = [
𝑒(1,1)
⋮

𝑒(𝑚,1)
] [𝑒(1,1) ⋯ 𝑒(𝑚,1)] + ⋯+ [

𝑒(1,𝑛)
⋮

𝑒(𝑚,𝑛)
] [𝑒(1,𝑛) ⋯ 𝑒(𝑚,𝑛)] 

𝑉 = [
𝑒(1,1)𝑒(1,1) ⋯ 𝑒(1,1)𝑒(𝑚,1)

⋮ ⋱ ⋮
𝑒(𝑚,1)𝑒(1,1) ⋯ 𝑒(𝑚,1)𝑒(𝑚,1)

] + ⋯+ [
𝑒(1,𝑛)𝑒(1,𝑛) ⋯ 𝑒(1,𝑛)𝑒(𝑚,𝑛)

⋮ ⋱ ⋮
𝑒(𝑚,𝑛)𝑒(1,𝑛) ⋯ 𝑒(𝑚,𝑛)𝑒(𝑚,𝑛)

] 

𝑉 = [
𝑒(1,1)𝑒(1,1) + ⋯+ 𝑒(1,𝑛)𝑒(1,𝑛) ⋯ 𝑒(1,1)𝑒(𝑚,1) + ⋯+ 𝑒(1,𝑛)𝑒(𝑚,𝑛)

⋮ ⋱ ⋮
𝑒(𝑚,1)𝑒(1,1) + ⋯+ 𝑒(𝑚,𝑛)𝑒(1,𝑛) ⋯ 𝑒(𝑚,1)𝑒(𝑚,1) + ⋯+ 𝑒(𝑚,𝑛)𝑒(𝑚,𝑛)

] 

𝑉 = [
𝑒(1,1) ⋯ 𝑒(1,𝑛)
⋮ ⋱ ⋮

𝑒(𝑚,1) ⋯ 𝑒(𝑚,𝑛)
] [
𝑒(1,1) ⋯ 𝑒(𝑚,1)
⋮ ⋱ ⋮

𝑒(1,𝑛) ⋯ 𝑒(𝑚,𝑛)
] = 𝐸𝐸𝑇 𝑄. 𝐸. 𝐷 

𝑉 =∑𝐸(:,𝑖) ∙ 𝐸(:,𝑖)𝑇
𝑛

𝑖=1

= 𝐸𝐸𝑇 (a15) 
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Appendix 9 Estimator applied on simulator excited by noise-free 
input signal 

Some of the figures to supplement the analysis performed in the previous chapters are given 
here. 

 Comparison of Online and Offline Kalman filter gain 
Comparison of Figure 12.2 and Figure 12.3 proves that the difference in the estimated states is 
negligible when using online or offline Kalman gain in LKF. However, offline Kalman gain is 
efficient when running the system continuously (in loop), which is always the case. It is 
efficient because, Kalman gain need not be calculated for each iteration in contrast to online 
Kalman gain which is calculated during each iteration. 

 
Figure 12.2: Estimated states using LKF with offline calculated Kalman gain 

 
Figure 12.3: Estimated states using LKF with online calculated Kalman gain 
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 Comparison of LKF, EKF and UKF 
As with the noisy input and output case (discussed in 8.3.2), EKF is faster than LKF. There is 
no deviation in case of EKF and UKF. UKF is superior to both EKF and LKF in terms of 
convergence rate. Since no noise is added in the input signal, the filtering property of these 
filters is not evident. One important observation based on Figure 12.4 and Figure 12.5 is that 
EKF estimates are exactly the same as the nonlinear model prediction. 

 
Figure 12.4: Comparison of Kalman filters based on level estimation (𝑦̂ = 𝑥̂1 = ℎ̂2). 

Simulator is excited by the noise-free input (𝑢 = ℎ1) 

 
Figure 12.5: Comparison of Kalman filters based on estimation of mass flow rate 

(𝑥̂2 = 𝑀̂1, 𝑥̂3 = 𝑀̂2). Simulator is excited the noise-free input (𝑢 = ℎ1) 

 Comparison of linear estimators (LKF and linear observer) 
Figure 12.6 and Figure 12.7 show the result of state estimation based on noise-free system 
input. These figures complement the result of comparison for system excited with noisy system 
as discussed in section 8.3.3. Both LKF and linear observer perform relatively similarly and 
both estimators show the deviation away from the linearization point. 



  Appendices 

137 

 
Figure 12.6: Comparison of linear estimators based on level estimation (𝑦̂ = 𝑥̂1 = ℎ̂2). 

Simulator is excited by the noise-free input (𝑢 = ℎ1) 

 
Figure 12.7: Comparison of linear estimators based on estimation of mass flow rate 

(𝑥̂2 = 𝑀̂1, 𝑥̂3 = 𝑀̂2). Simulator is excited the noise-free input (𝑢 = ℎ1) 

 Comparison of nonlinear estimators (EKF, UKF and semi-nonlinear 
observer) 

Nonlinear estimators for noisy system are compared in detail in section 8.3.4. In case of noise-
free system, EKF and semi-nonlinear observers performed exactly the same. Their signal in 
the Figure 12.8 and Figure 12.9 are super imposed with the predicted states by the nonlinear 
venturi model. Even in noise-free system, UKF outperforms EKF and semi-nonlinear observer. 
All nonlinear estimators show no deviation from the model states. 
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Figure 12.8: Comparison of nonlinear estimators based on level estimation (𝑦̂ = 𝑥̂1 = ℎ̂2). 

Simulator is excited by the noise-free input (𝑢 = ℎ1) 

 
Figure 12.9: Comparison of nonlinear estimators based on estimation of mass flow rate 

(𝑥̂2 = 𝑀̂1, 𝑥̂3 = 𝑀̂2). Simulator is excited the noise-free input (𝑢 = ℎ1) 
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Appendix 10 Reduced order observer derivation 
Consider a linear state space model given below: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 
Decomposing the state equation into measured and unmeasured states. 

[
𝑥̇𝑝
𝑥̇𝑞
] = [

𝐴𝑝𝑝 𝐴𝑝𝑞
𝐴𝑞𝑝 𝐴𝑞𝑞

] [
𝑥𝑝
𝑥𝑞] + [

𝐵𝑝
𝐵𝑞
] [𝑢] 

[𝑦] = [𝐶𝑝 𝐶𝑞] [
𝑥𝑝
𝑥𝑞] 

𝑛𝑥 = 𝑛𝑝 + 𝑛𝑞  

Where, 𝑥𝑝 is a vector of measured states and 𝑥𝑞 is a vector of unmeasured states, 𝑛𝑥 is the 
number of total states (system order), 𝑛𝑝 = 𝑛𝑦 is the number of measured states and 𝑛𝑞 
is the number of unmeasured states. 
Expanding the linear model equations, we get: 

𝑥̇𝑝 = 𝐴𝑝𝑝𝑥𝑝 + 𝐴𝑝𝑞𝑥𝑞 + 𝐵𝑝𝑢 

𝑥̇𝑞 = 𝐴𝑞𝑝𝑥𝑝 + 𝐴𝑞𝑞𝑥𝑞 + 𝐵𝑞𝑢 

𝑦 = 𝐶𝑝𝑥𝑝 + 𝐶𝑞𝑥𝑞 

Since only some of the states are directly measured, in this case 𝑥𝑝, the output equation 
can be simplified by setting 𝐶𝑞 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑦, 𝑛𝑞). 

𝑦 = 𝐶𝑝𝑥𝑝 

Output could be the combination of multiple measured states (soft-sensing). In case of a 
single measured state and single output system, 𝐶𝑝 = 𝑧𝑒𝑟𝑜𝑠(1, 𝑛𝑝). For generality, lets 
proceed with the equations above. 𝐶𝑝 could be scalar, vector or a matrix. When 𝐶𝑝 is a 
vector or a rectangular matrix, the pseudo-inverse is required to represent 𝑥𝑝 in terms of 
𝑦. 

(𝐶𝑝𝑇𝐶𝑝)
−1
𝐶𝑝𝑇𝑦 = 𝑥𝑝 

𝑥𝑝 = 𝐷𝑝𝑦, 𝐷𝑝 = (𝐶𝑝𝑇𝐶𝑝)
−1
𝐶𝑝𝑇 

In case of the linear observer equations, the expansion can be done in the similar way as 
the model equation. 

𝑥̇̂ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐿(𝑦 − 𝑦̂) 
𝑦̂ = 𝐶𝑥̂ 

[
𝑥̇̂𝑝
𝑥̇̂𝑞
] = [

𝐴𝑝𝑝 𝐴𝑝𝑞
𝐴𝑞𝑝 𝐴𝑞𝑞

] [
𝑥̂𝑝
𝑥̂𝑞
] + [

𝐵𝑝
𝐵𝑞
] [𝑢] + [

𝐿𝑝
𝐿𝑞
] (𝑦 − 𝑦̂) 

[𝑦] = [𝐶𝑝 𝐶𝑞] [
𝑥̂𝑝
𝑥̂𝑞
] 

Expanding the observer equations, we get: 
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𝑥̇̂𝑝 = 𝐴𝑝𝑝𝑥̂𝑝 + 𝐴𝑝𝑞𝑥̂𝑞 + 𝐵𝑝𝑢 + 𝐿𝑝𝑦 − 𝐿𝑝𝑦̂ 

𝑥̇̂𝑞 = 𝐴𝑞𝑝𝑥̂𝑝 + 𝐴𝑞𝑞𝑥̂𝑞 + 𝐵𝑞𝑢 + 𝐿𝑞𝑦 − 𝐿𝑞𝑦̂ 

𝑦̂ = 𝐶𝑝𝑥̂𝑝 + 𝐶𝑞𝑥̂𝑞 

The purpose of the reduced order observer is to estimate only the states that are not 
measured. Hence, 𝑥̂𝑝 can be removed from the observer output equation as well as it can 
be replaced with 𝑥𝑝. It also makes sense to use the model equation instead of the first 
state estimation equation which does not need to be estimated. 

𝑥̇𝑝 = 𝐴𝑝𝑝𝑥𝑝 + 𝐴𝑝𝑞𝑥𝑞 + 𝐵𝑝𝑢 

𝑥̇̂𝑞 = 𝐴𝑞𝑝𝑥𝑝 + 𝐴𝑞𝑞𝑥̂𝑞 + 𝐵𝑞𝑢 + 𝐿𝑞𝑦 − 𝐿𝑞𝑦̂ 

𝑦̂ = 𝐶𝑞𝑥̂𝑞 

Keeping everything known in LHS, above equations can be simplified further. 
𝐷𝑒𝑓𝑖𝑛𝑒, 𝑦 = 𝑥̇𝑝 − 𝐴𝑝𝑝𝑥𝑝 − 𝐵𝑝𝑢 = 𝐴𝑝𝑞𝑥𝑞 = 𝐶𝑥 

𝑦 = 𝑥̇𝑝 − 𝐴𝑝𝑝𝑥𝑝 − 𝐵𝑝𝑢, 𝐶 = 𝐴𝑝𝑞, 𝑥 = 𝑥𝑞 

𝑦 = 𝐴𝑝𝑞𝑥𝑞 

𝑥̇̂𝑞 = 𝐴𝑞𝑞𝑥̂𝑞 + 𝐴𝑞𝑝𝑥𝑝 + 𝐵𝑞𝑢 + 𝐿𝑞𝑦 − 𝐿𝑞𝑦̂ 

𝑦̂ = 𝐶𝑞𝑥̂𝑞 

𝑦̂ = 𝐴𝑝𝑞𝑥̂𝑞, 𝐶𝑞 = 𝐶 = 𝐴𝑝𝑞 

Comparing these equations with the linear reduced order state-observer equation with 
the similar form to that of the full order observer, we get: 

𝑥̇̅ = 𝐴̅𝑥̅ + 𝐵̅𝑢 + 𝐿̅(𝑦 − 𝑦̅) 

𝑦̅ = 𝐶̅𝑥̅ 

𝑥̇̅ = 𝑥̇̂𝑞 

𝐴̅ = 𝐴𝑞𝑞 

𝑥̅ = 𝑥̂𝑞 

𝐵̅𝑢 = 𝐴𝑞𝑝𝑥𝑝 + 𝐵𝑞𝑢 

𝐿̅ = 𝐿𝑞 

𝑦 = 𝑥̇𝑝 − 𝐴𝑝𝑝𝑥𝑝 − 𝐵𝑝𝑢 

𝑦̅ = 𝑦̂ 

𝐶̅ = 𝐶𝑞 = 𝐴𝑝𝑞  

Substituting above equality equations in the reduced order observer, we get: 

𝑥̇̂𝑞 = 𝐴𝑞𝑞𝑥̂𝑞 + 𝐴𝑞𝑝𝑥𝑝 + 𝐵𝑞𝑢 + 𝐿𝑞𝑥̇𝑝 − 𝐿𝑞𝐴𝑝𝑝𝑥𝑝 − 𝐿𝑞𝐵𝑝𝑢 − 𝐿𝑞𝐴𝑝𝑞𝑥̂𝑞  

𝑥̇̂𝑞 − 𝐿𝑞𝑥̇𝑝 = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝑥̂𝑞 + (𝐵𝑞 − 𝐿𝑞𝐵𝑝)𝑢 + (𝐴𝑞𝑝 − 𝐿𝑞𝐴𝑝𝑝)𝑥𝑝 

Define new state variable such that the derivative term to the measured state variable is 
eliminated from the model: 
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𝑧 = 𝑥𝑞 − 𝐿𝑞𝑥𝑝, 𝑧̂ = 𝑥̂𝑞 − 𝐿𝑞𝑥𝑝, 𝑧̇̂ = 𝑥̇̂𝑞 − 𝐿𝑞𝑥̇𝑝, 𝑥̂𝑞 = 𝑧̂ + 𝐿𝑞𝑥𝑝 

𝑧̇̂ = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)(𝑧̂ + 𝐿𝑞𝑥𝑝) + (𝐵𝑞 − 𝐿𝑞𝐵𝑝)𝑢 + (𝐴𝑞𝑝 − 𝐿𝑞𝐴𝑝𝑝)𝑥𝑝 

𝑧̇̂ = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝑧̂ + (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝐿𝑞𝑥𝑝 + (𝐵𝑞 − 𝐿𝑞𝐵𝑝)𝑢 + (𝐴𝑞𝑝 − 𝐿𝑞𝐴𝑝𝑝)𝑥𝑝 

𝑧̇̂ = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝑧̂ + (𝐵𝑞 − 𝐿𝑞𝐵𝑝)𝑢 + (𝐴𝑞𝑞𝐿𝑞 − 𝐿𝑞𝐴𝑝𝑞𝐿𝑞 + 𝐴𝑞𝑝 − 𝐿𝑞𝐴𝑝𝑝)𝑥𝑝 (a16) 

Solution to the 𝑧̇̂ gives out 𝑧̂, from which the missing states can be extracted simply by 
using the equation: 

𝑥̂𝑞 = 𝑧̂ + 𝐿𝑞𝑥𝑝 (a17) 

Define the error dynamics: 

𝜀𝑞 ≝ 𝑥𝑞 − 𝑥̂𝑞 𝜀𝑞̇ ≝ 𝑥̇𝑞 − 𝑥̇̂𝑞 (a18) 

𝑥̇𝑞 − 𝑥̇̂𝑞 = 𝐴𝑞𝑝𝑥𝑝 + 𝐴𝑞𝑞𝑥𝑞 + 𝐵𝑞𝑢 − (𝐴𝑞𝑞𝑥̂𝑞 + 𝐴𝑞𝑝𝑥𝑝 + 𝐵𝑞𝑢 + 𝐿𝑞𝑦 − 𝐿𝑞𝑦̂) 

𝑥̇𝑞 − 𝑥̇̂𝑞 = 𝐴𝑞𝑝𝑥𝑝 + 𝐴𝑞𝑞𝑥𝑞 + 𝐵𝑞𝑢 − (𝐴𝑞𝑞𝑥̂𝑞 + 𝐴𝑞𝑝𝑥𝑝 + 𝐵𝑞𝑢 + 𝐿𝑞𝐴𝑝𝑞𝑥𝑞 − 𝐿𝑞𝐴𝑝𝑞𝑥̂𝑞) 

𝑥̇𝑞 − 𝑥̇̂𝑞 = 𝐴𝑞𝑞𝑥𝑞 − 𝐴𝑞𝑞𝑥̂𝑞 − 𝐿𝑞𝐴𝑝𝑞𝑥𝑞 + 𝐿𝑞𝐴𝑝𝑞𝑥̂𝑞 

𝑥̇𝑞 − 𝑥̇̂𝑞 = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)(𝑥𝑞 − 𝑥̂𝑞) 

𝜀𝑞̇ = (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞)𝜀𝑞 (a19) 

If the error dynamic is asymptotically stable, then the observer is stable. For the error 
dynamic to be asymptotically stable, matrix (𝐴𝑞𝑞 − 𝐿𝑞𝐴𝑝𝑞) must be Hurwitz. 
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Appendix 11 Codes and programs 
All of the codes and programs, including graphical user interfaces used in this work is zipped 
and presented to the supervisor for archive. 
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Appendix 12 Master’s thesis task description, 2018 
See next pages 
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During drilling, clean drill fluid is injected into the well being drilled using mud pump as 
shown in Figure 1. This drill fluid will carry away the drill cuttings from the bottom of the well 
and transport them back to the top through the return flow line. 

 

Figure 1: Schematic of fluid flow in drilling 

On the top side, the drill fluid is cleaned with drill cutting removal equipment and re-injected 
into the well. Accurate and real time measurement of the flow of drill fluid in the return line 
is vital for a safe operation. In practice, Coriolis flow meters are placed on the return flow 
line to measure the flow rate of the return fluid. However, they are very expensive and 
unreliable in the presence of gases. So, in this thesis, we focus on answering the following 
questions: 
 

x Can we instead use a suitable mathematical model of the fluid flow to estimate the 
mud flow in the return line? 

x Can we replace the expensive sensor with model based measurement/estimation? 
 
The knowledge of how much drill fluid is flowing in the return line can provide an early 
warning about a kick or a loss. If the flow in the return line is more than what is injected into 
the well, probably some fluid from the reservoir have entered into the well i.e. a kick might 
have occurred. Conversely, if the flow in the return line is less than what is injected into the 
well, probably some of the fluid from the well have leaked into the reservoir zone i.e. a loss 
might have occurred. Thus, flow rate of the fluid in the return line is a primary indicator of a 



kick or a loss. An uncontrolled kicked is known as “well blow out” and is disastrous and 
highly unwanted situation. 
 
The proposal at the University College of Southeast Norway is that, a venturi channel (which 
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4. Linearize the nonlinear ODE model and simulate it together with the nonlinear 
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if necessary. 

5. Design suitable estimators (Kalman filter or observer) using the linear model. Perform 
observability analysis. 

6. Perform experiments at the venturi rig at USN and test the linear estimator with the 
rig data. 

7. Design suitable nonlinear estimators (non linear versions of the Kalman filter or non 
linear observers) using the nonlinear ODE model of the flow through a venturi 
channel. 

8. Perform experiments at the venturi rig at USN and test the non linear estimator with 
the rig data. 

9. If time permits, perform a literature survey on observer design for PDE (partial 
differential equation) models for fluid flow through open channels. 
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Student category: Open only for students from IIA  
 
Practical arrangements: 
 
Perform experiments in the venturi rig at USN. 
 
Signatures:  
 
Student (date and signature):  
 
Supervisor (date and signature):  


