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Summary:

In oil drilling operation, the estimation of returning flow is vital for safe operation. The
return flow gives an early warning of kick-loss phenomenon. Detecting kick-loss is
important to prevent uncontrolled well-blowout. The estimated slow of the returning fluid
is a primary indicator of a kick or a loss. The existing methods for flow estimation angle-
based paddle sensor or Coriolis flow meter. These methods are either unreliable or too
expensive.

The aim of this thesis work is to investigate other reliable flow estimation methods.
Therefore, dynamic model-based flow estimation technique is proposed here. Using
dynamic model, suitable estimators such as Luenberger observer and Kalman filters can
be designed. Such technique reduces the operational and maintenance costs of using
expensive flow measuring mechanical devices such as Coriolis flow meters.

A model of top-side open venturi channel is developed as a set of St. Venant equations for
one spatial dimension which are a class of quasi-linear hyperbolic partial differential
equations (PDEs). These PDEs are reduced to a set of nonlinear first order ordinary
differential equation (ODEs) using orthogonal collocation methods and Lagrange
interpolating polynomials. The nonlinear ODEs are linearized around a suitable operating
point. Based on the linear ODEs, linear Luenberger full order state observer as well as
linear Kalman filter (LKF) is designed. For designing nonlinear Kalman filters such as
extended Kalman filter (EKF) and unscented Kalman filter (UKF), nonlinear ODEs are
used.

Different types of state estimators are applied to model and real system. UKF outperforms
all other estimators investigated during this thesis work. UKF converges faster and is more
robust. It is able to filter out the noise. The error between the estimated flow rates and the
measured flow rates is minimized. However, a proper tuning of process and measurement
noise covariance matrices is necessary for UKF to provide optimal state estimation.

For increased accuracy in flow estimation, an improved version of the ODEs are
recommended. PDE-observers are recommended for further improvement in the flow
estimation. Based on the results of this thesis work, the future of model based flow
estimation technique in oil industry looks promising.

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.
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Abbreviations

Here is the list of abbreviations that are used throughout the report unless specified in the
specific sections.

Abbreviations Full form

1D Unidirectional or 1 directional

ANN Artificial Neural Network

ARE Algebraic Riccati Equation

BOP Blowout Preventer

C-DARE Continuous Differential Algebraic Riccati Equation

DARE Discrete Algebraic Riccati Equation

EiSj Experiment “1”, setup “j” for data acquisition at the venturi
rig. E1S1, E1S2, E2S1, E2S2, E3S1, E3S2, E4S1 and E4S2

EKF Extended Kalman Filter

FT14A Coriolis flow meter for measuring mass flow rate

GUI Graphical user interface

HOT Higher Order Terms

hM MODEL Model based on level (h) and mass flow rate (M)

LHS Left Hand Side

LKF Linear Kalman Filter

LPF Lowpass Filter

LT18 Ultrasogic 1ev§1 transmitter for measuring fluid level at
collocation point 1

LT19 Radar lgvel trqnsmitter for measuring fluid level at
collocation point 1

LTI Linear Time Invariant

MEDF }Y[edian ﬁltir. Built-in filter available in MATLAB.

medfltl.m
MPC Model Predictive Controller
ODE Ordinary Differential Equations
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P&ID
PDE
PI
RHS
RK4
SISO
SS
SSPE
SVE
UKF
USN
WMAF

AQ MODEL

Abbreviations
Piping and Instrumentation Diagram
Partial Differential Equations
Proportional Integral
Right Hand Side
Runge-Kutta 4 order
Single Input Single Output
State Space
Sum Squared Prediction Error
Saint Venant Equations
Unscented Kalman Filter
University of South-Eastern Norway
Weighted Moving Average Filter

Model based on wetted cross-sectional area, (4) and
volumetric flow rate, (Q)
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Here is the list of abbreviations that are used throughout the report unless specified in the
specific sections.

Nomenclature

SYMBOLS DESCRIPTION UNIT
5 Estimated mass flow rate at the collocation point 1. First [m]
2 estimated state given by estimator, § = X, m
. Estimated mass flow rate at the collocation point 1. Second kg
M, ; : . N *g9

estimated state given by estimator, X, [ S ]
— Estimated mass flow rate at the collocation point 1. Third kg
M, . : . " -~
estimated state given by estimator, X5 [ s
Level measured at the collocation point 1. Input of the venturi
h model, u [m]
h Level measured mass flow rate at the collocation point 2. First [m]
2 state and the output of the venturi model, y = x;
I Static hydrostatic pressure due to change in fluid cross- [m?]
1 sectional area (A) at a given point along the channel
Static hydrostatic pressure due to width variation at a given 3
I : [m?]
point along the channel
Predicted mass flow rate at the collocation point 1. Second kg
M, ! -~
state of the venturi model, x, [ s
Predicted mass flow rate at the collocation point 2. Third state kg
M, . -
of the venturi model, x3 [ s ]
Sy Channel bed slope. Depends on ¢ [unitless]
S¢ Friction slope at a given point along the channel [unitless]
S, =S, Side wall slope. Depends on « [unitless]
Tr Lowpass filter time constant [s]
T Sampling time. (data logging time for experiment) [s]
3
) . m
V=0 Volumetric flow rate [Tl
c Collocation point 1. Position of the input level measurement [m]
1

sensor (LT19 — radar)
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Collocation point 2. Position of the output level measurement
sensor (LT18 — ultrasonic)

Strickler friction coefficient, depends on n,,

Mass flow rate

Manning’s roughness coefficient

Number of inputs to the system (model)
Number of states of the system (model)
Number of outputs from the system (model)

Estimated states. In case of dynamic venturi model, X, is a
column vector of model states. £ = [%; X, X3]7 =

[h, M, M,]"

Variance (squared standard deviation)

“Equivalent to” or “the same as”

Fluid depth (level) at a given point along the channel

Wetted cross-sectional area at a given point along the channel

Rate of change of area w.r.t. level. Also, the scaling factor for
rate of change of level w.r.t. time and rate of change of area
w.r.t. time

Channel length between collocation point 1, ¢; and
collocation point 2, ¢,

Wetted perimeter at a given point along the channel
Hydraulic radius at a given point along the channel

Base width of the channel at a given point along the channel
Acceleration due to gravity

Input to the dynamic model of the venturi system as well as to
the state estimators. u = hy

Mean velocity of the liquid

Nomenclatu
[m]
Ym

5
[k_g
S

[

[unitless]

[unitless]

[unitless]

[ kg kg
m’_l_

s S

re
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Angle made by the side wall of the channel (rotating around
x-axis) with the horizontal plane (xy-plane). Upward rotation [degrees]
of the side wall is the positive direction, increasing a.

Momentum correction factor (Boussinesq’s coefficient) [unitless]

Angle made by the diverging wall of the channel (rotating
around z-axis) with the vertical plane (xz-plane). Outward

rotation of the diverging wall is the positive direction, [degrees]
increasing 6.
Mean
. . k
Density of the fluid [_g]
m3

Standard deviation

Angle made by the channel base (rotating around y-axis) with
the horizontal plane (xy plane). Upward rotation of the [degrees]
channel base is the positive direction, increasing ¢.
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Introduction

1 Introduction

This chapter discusses the introductory part of the thesis. This is a transitional chapter towards
the main objective of the project at hand which is analyzed in the subsequent chapters. It defines
the scope of the document and the background of the problem that is to be tackled. It
encompasses the big picture of the project for quick understanding of what the main goal is
and the methodology used.

1.1 Scope

In this report, the focus is on developing and implementing the state observer and an optimal
estimator to estimate the flow through an open channel. A mathematical model is used to design
suitable observers and estimators. It is also important to analyze the stability of the model
before proceeding with estimating techniques. Development and implementation of simulator
is also discussed in detail. The report is divided into three main sections. Each section is
subdivided into chapters that are closely related.

e Section 1: Structure of the venturi flume (open channel) and a mathematical model to
describe the flow dynamics through it.

e Section 2: Flow estimation using the state observer and optimal estimator (Kalman
filter) and implementation on the real process.

e Section 3: Discussions, future work and conclusion

The structure of the report follows a specific pattern. First part of a chapter focuses on the
theory behind the topic of discussion. The second part elaborates and analyses the theory by
implementing the idea on mathematical model. Implementation on the real system is discussed
in the last contextual chapter about experimentation and result.

1.2 Background

Efficiency. One word that is a major goal of a company. The context in which efficiency is
defined varies from industry to industry. Oil industry, for years, has been focusing on
minimizing the operational cost and maximizing the oil production to meet the energy demand
of the general population. Due to the imposed safety regulations, safety of the worker is
extremely important. To meet these demands, oil industry is constantly seeking new ways to
optimize the sales profit while abiding by the laws. Oil industry is playing a catch-up with the
fast pace of the modern technology since they are still using the old sensor-based measuring
techniques. There have been suggested different approaches on how to optimize the sales profit.
For instance, by automating the flow and pressure measurements thus eliminating the manual
manpower which allows them to cut the manual labor cost and increase the safety of the rig. In
this thesis, the methodology proposed is based on a mathematical (physical) model with an aim
to replace the expensive mechanical devices. There have been some works in this field
previously to estimate the flow on the top side using mathematical approaches. As suggested
in a paper, the flow can be estimated using the idea of minimum specific energy and Froude
number at the critical depth [1]. Good old Bernoulli’s principle is at the heart of the methods
that uses energy models. Model predictive technique such as artificial neural network is also in
the works which produces complex mathematical model. However, there has been no effort, as
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of today to my knowledge, on estimating flow in an open channel using an observer or an
estimator such as Kalman filter. In this case, the mathematical model is based on the dynamic
model of the venturi flume that gives rise to the Saint Venant Equations (SVEs).

1.3 Overview

This section covers the overview, the big picture, of the task at hand. Mass flow rate through
open channel (M) is estimated using observers and estimators such as Kalman filters. This
approach, however, requires the level measurements over the top side of the open channel at
two points along the channel ¢; and c,. In this case, the input to the system is the level measured
at a point ¢; along the venturi channel. The output of the system is the level measured at a point
c, along the throat (constriction) of the channel as shown in Figure 1.1. The mass flow rate is
estimated at both points where the level sensors (LT19) and (LT18) are installed as (M) and
(M) respectively. At the steady state, both flow rates should be same. At the point ¢;, LT19
measures the input level h,. Similarly, At the point c,, LT18 measures the input level h,. It is
important to note that the position for the input level measurement, c; must be at the subcritical
region of the flow regime. In other words, level measured at the position 1, h; must be higher
than the level measured at the position 2, h, as given by (10.10). LT18 and LT19 are the level
transmitters used at the lab at USN. Selecting the position 2 at the throat of the venturi channel
satisfies this condition given that the position 1 is in subcritical region.

h, > h, (1.1)

h2 {y, output Observer/

h1 (u, input) Estimator

c2
e
— [ ;

Figure 1.1: Overview of the flow estimation through open venturi channel (top view).

1.4 Objectives

The main objective of this thesis is to use mathematical model and design a suitable state
observer or estimator for estimating the mud-flow through the open venturi channel. The aim
of estimation of return flow is to detect an early warning of kick-loss that might occur during
drilling operation. The early warning of kick-loss can prevent hazardous situations such as
uncontrolled blowout. Such detection can also help mud engineer to determine the mud type
required for efficient drilling operation. Importance of kick-loss detection is discussed in detail
in later chapters. Therefore, flow estimation of the returning fluid is vital for safe operation.
For reliable flow estimation, expensive Coriolis flow meters are used today. The benefit of
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using mechanistic model is that it helps to replace expensive flow measuring devices (sensors
or flow meters) such as Coriolis flow meters. That will significantly reduce the installation,
maintenance and operational cost. To achieve this objective, the task is divided into smaller
subtasks as listed below:

Linearize the nonlinear ODEs around a suitable operating point
Develop and implement a linear and a nonlinear simulator and compare the outcome
Perform the model parameter sensitivity analysis
Determine the stability and the observability of the model
Design a stable linear observer and compare with both linear and nonlinear simulator
e Design an optimal estimator in the form of Kalman filter and compare it with the linear
observer, linear model and nonlinear model
e Perform experiments at the lab and log the appropriate data
e Test the linear observer and Kalman filter with the data from the real process
o Investigate the effect of noise in the observer
o Implement different filters for the input signal and discuss their performance
and effect on the estimates
e If necessary, optimize the model parameters to reflect the behavior of the real system
in the model
e Design and implement nonlinear estimator (Extended and Unscented Kalman filter)
e Implement and compare the nonlinear estimator with the model and the real data

These goals are also defined under the task description in Appendix 12.

1.5 Requirements

Designing an observer mathematically is a portion of the full extent of the task. For a full-
fledged working observer, programming, testing and deployment is necessary. To achieve this,
some software modules are used. For this thesis work, the software modules used are listed
below:

e LabVIEW from National Instruments

o With control design and simulation toolkit
e MATLAB from MathWorks

o With Simulink module
e Visio — diagram drawing tool from Microsoft

1.6 Navigating through the report

A digital version such as “.docx” and “.pdf” of the report contains many references and cross-
references to avoid the cluttering with same information repeating over again. References to
chapters, sections, figures, equations, tables and other relevant contents are hyperlinked (cross-
referred). Clicking on a link will take to the linked section. Going back to the previously viewed
page in Adobe Reader DC (version 2018.011.20038 or newer) is done from the menu bar as:
View>Page Navigation>Previous View or simply by using keyboard shortcut “left Alt + left
arrow”. The keyboard shortcut also works in case of the Microsoft Word 2016 or later.
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2 Oil well drilling operation

This chapter casts some light on the modern oil well drilling operation offshore. Standardized
drill operation consists of specific sequence of operations. In this chapter, the focus is on
offshore drilling method.

2.1 Drilling operation

A thick walled large diameter hollow tube called conductor tube is embedded into the sea-
floor. A jet bit is inserted through the conductor to drill the rocks and sediments on the sea
floor. The rock cuttings are removed by forcing high pressure sea water through the nozzles of
the jet bit. The jet bit is removed after drilling a few hundred meters into the sea bed depending
on type of the sea bed and the bed rock. A second conductor tube, with smaller diameter than
the previous conductor, is inserted and is fixed in place by injecting concrete that forms the
protective layer between the conductor tube and the well bored as shown in Figure 2.1. The
concrete is injected to prevents the water from the surroundings to enter the well bore. A
smaller diameter drill bit is then used to dig the well further. After a certain depth, a steel tubing
called casing is inserted and is fixed in place by injecting concrete again. A riser, a tube through
which a special kind of drilling fluid called drilling mud is returned, is lowered and locked in
place along with the blow-out preventer valve (a set of advance high-pressure safety valves)
[2]. This is the preliminary setup of the drilling operation offshore. From this stage onwards,
the procedure is similar to the onshore drilling procedure.

= Riser
EBOPvalve
RO pe
ond O o=
aa— . - - -
0 o=
Proa O g
O o=
O pe 4
D A O . DA O .

Figure 2.1: Oil well drilling overview (inside view)
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The drilling continuous by inserting a smaller drill bit as a new rock types is encountered.
During this stage, a clear drilling mud is injected into the well using a pump to take out the
cuttings and chippings [3]. The mud is circulated continuously. Rock cuttings carried out by
the mud is analyzed for the chemical composition of the mixture. It helps to determine the type
of drilling mud required to tackle the pressure difference and prevent the blow out. The cuttings
are removed from the mud using cutting removal equipment. The cleaned mud is put into the
active mud pit for reuse. The closed loop system is illustrated in Figure 2.2. The process
continuous until the oil reservoir is reached. Final casing is then inserted and cemented on
place. The last part is then to insert the perforated production pipe. When the drilling is finished,
the production begins.

Sometimes, it is difficult to pinpoint accurately the position of the reservoir. In such cases,
directional drilling is preferred. It is also useful if the wells are distributed in a given area.
Figure 2.1 shows the overview of the drill procedure with some of the rock layers found inside
the earth crust and components used during drilling.

P
<

Cuttings

Return
removal

Coriolis flow

Cuttings+mud loss

Active Mud Pit

v

Pump

Figure 2.2: Closed loop drilling system with current flow measurement technique

2.2 Drilling mud and its importance

In the previous section, discussion about why the special fluid called drilling mud restricted to
one function, remove the rock chipping formed during drilling. However, it is not only the
reason for using the mud. The other benefit of the drilling mud is to cool the drill bit while also
keeping the drill bit lubricated.

As shown in Figure 2.1, there are multiple layers of rock that need to be drilled through. The
chemical composition of various types of rock varies. Returning mud shows the different
composition of rocks being drilled. Some of these rock components may contaminate the
drilling mud and prevent it from functioning properly. Therefore, checking viscosity and
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density constantly (in real time) is vital to operate safely and properly. If the layer of salt is
present, the mud would cease to do its job and collapses the well which prevents the drilling.
To combat the mud contamination, different types of mud needs to be circulated. Sometimes,
a high-pressure gas encountered during drilling flows into the well and force out the mud which
increases the return flow rate thus causing the blow out. The solution is to use the mud with
higher density that counteracts the pressure exerted by the gas or other fluid in the well. Broadly
speaking, higher density fluid maintains the pressure in the well as the mud exerts a hydrostatic
pressure against the well wall.

To lift out the cuttings, mud must be highly viscous when it returns. The drawback of highly
viscous fluid is that it is difficult to pump them into the well. Mud engineers wondered if only
there exists a fluid whose viscosity changes. The inflowing fluid is required to be lightly
viscous at high velocity making it easier to pump in and the returning fluid is highly viscous at
low velocity making it able to take out the cuttings. Luckily, such fluid exists and are discussed
in section 2.3.

2.3 Fluid types

Fluids can be classified into two main categories, Newtonian and non-Newtonian fluids. For
incompressible fluids, the density, the heaviness of the fluid, remains constant. However, the
density is not enough to uniquely characterize the behavior of the fluid. As the fluid start to
flow, its behavior changes [4, p. 14]. To describe this behavioral change, the other important
rheological property of the fluid can be used, namely viscosity. In simple words, viscosity is
the resistance of a fluid to flow. On a technical term, viscosity can be defined using the Newtons
law of viscosity as given by equations (2.1) and (2.2).

T = py @.1)
T
p= 2.2)

Where, 7 is the shearing stress, u is the apparent viscosity of the fluid and y is the rate of
shearing strain (or simply, shear rate).

In one hand, if the shearing stress is linearly related to the rate of shearing strain, then the fluid
is Newtonian. The apparent viscosity is constant for the Newtonian fluid. Most of the fluids
found in the nature are Newtonian fluids. Water, air and crude oil are some examples of such
fluid. For the equation (2.1) and (2.2) to be valid for Newtonian fluid, the apparent viscosity
must be constant. For Newtonian fluid, increase in shear rate implies that the shearing stress
must have been increased to keep the apparent viscosity constant [4, p. 16]. On the other hand,
if the shearing stress is nonlinearly related to the shear rate, then the fluid is non-Newtonian.
This suggests that the apparent viscosity of the non-Newtonian fluid varies with varying shear
rate. A mixture of corn-starch and water is an example of non-Newtonian fluid.

Not all non-Newtonian fluids have same characteristics. Some act as solid with applied stress
while other act more fluid. Thus, non-Newtonian fluids are further grouped into two classes;
shear thinning, and shear thickening fluids based on the nonlinearity of the apparent viscosity.
If the apparent viscosity increases with increasing shear rate, the fluid is shear thickening type
as shown in Figure 2.3. On the contrary, if the apparent viscosity decreases with increasing
shear rate, the fluid is shear thinning type. An ideal fluid for the drilling is the latter type.
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Bingham plastic

Shear thinning —,

Newtonian

Shearing stress, r

~— Shear thickening

. . du
Rate of shearing strain, dy

Figure 2.3: Property of the apparent viscosity shown as a relation between shearing stress and
rate of shearing strain for different types of fluid. (Copied figure 1.7 from [4, p. 16]).

It is also important to discuss the relation between the fluid velocity, shear rate and shear stress.
shows how these quantities profile develops at different radial section of the pipe (not along
the pipe but at a given cross-section). In terms of the velocity and shear rate, shear thinning
fluid is a type of fluid whose shear rate decreases with increasing fluid velocity. Such fluid is
a good solution the mud engineers have been looking for.

In this thesis work, a shear thinning non-Newtonian fluid is used. The fluid is marked fluid1 at
the lab at USN. It is a solution of potation carbonate (K,C05) mixed with water. The solution

has a density of 1340 k—gg.
m

Liiizizzzzzzzziz

YA/ Z
VELOCITY SHEAR RATE SHEAR STRESS

Figure 2.4: Velocity, rate of shearing strain (shear rate) and shear stress profile for a fluid
flowing through a pipe [5].
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2.4 Kick — loss detection

One of the most challenging part in an oil well drilling operation is maintaining the bottom
hole pressure to prevent a blow-out. Accurate measurement of the returning flow is, thus, vital
for a safe operation and for maintaining the bottom hole pressure. If the returning flow rate is
greater than the injected flow rate, then probably some fluid (oil or gas or other substance) from
the reservoir or surroundings has entered the well. This phenomenon is referred to as kick.
Conversely, if the returning flow rate is less than the injected flow rate, then probably some
mud has leaked into the reservoir. This phenomenon is referred to as a loss. In both cases, it
can be an early warning of imbalance pressure in the bottom hole. One particularly disturbing
problem with loss is that the mud might react with the fluid in the reservoir. This could block
the well bore by forming a protective bung. This decreases the productivity of the well
significantly or maybe altogether. Hence, it is important to detect kick-loss phenomenon as
early as possible and deal with the situation. For this purpose, continuous flow measurement
holds a significant importance for proper drilling operation. In the case of kick-warning, the
heavier mud (with high density) should be pumped in to the well to counteract the pressure
from the surrounding fluid.
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3 Flow measuring technique

An introduction existing flow measuring technique as well as the model-based estimation
technique is discussed here. Detailed analysis on design and the structure of the open channel
is presented here. As discussed in section 1.3, it is vital to meet a condition defined by equation
(10.10). To comply with that requirement, understanding the flow regime along the different
section of the channel is also important. This is discussed in this chapter as well.

3.1 Current technique

In conventional drilling operation, paddle flow meter is used. Such flow meter measures the
angle of the paddle introduced by the flowing fluid. Based on the measured angle, the
volumetric flow rate is estimated. Such technique is unreliable since the flow is not uniform
and thus the angle measurement is noisy. Therefore, the accuracy of the estimated return flow
is severely undermined. A static flow measuring technique such as level measurement using a
trip-tank is also used today. The level measurements are then used to determine the volumetric
flow rate. This method is slow and unreliable.

A reliable flow measuring technique is to use Coriolis flow meter as shown in Figure 2.2. In
managed drilling process, Coriolis is used. The returning mud is sent through the Coriolis flow
meter, which estimates the flow of the returning fluid. The problem of such technique is that
these flow meters are expensive to purchase, install and operate. In addition to that, these are
mechanical devices that requires constant maintenance which is time consuming and
expensive. Since the returning fluid is filled with rock cuttings and likely corrosive chemicals,
these devices are prone to corrosion and internal damage. In worst case, the Coriolis flow meter
may fail to estimate the flow or give unreliable estimates due to blockage internally. The
blockage can be caused by the rock cuttings that stuck in the Coriolis pipes. This means that
they may not last as long as their lifespan. Replacing them requires manual manpower and
extended downtime for drilling. Time and again, they need to be recalibrated for proper
functioning. To fulfill these tasks, more budget is required. Another shortcoming of Coriolis
flow meter is that it fails to give reliable flow estimate in the presence of gas. Coriolis effect is
best suitable for fluid flow and not for gas flow measurement. In oil well, gas pockets are likely
to exist in and around the oil well. The gas trapped in these pockets is released when drilled
through. The gas in return flow makes the Coriolis flow meter unreliable. Therefore, it makes
sense to find a cheaper and effective solution. This thesis work hopes to pave a way to the
future of oil drilling operation with a cheaper and effective solution then the existing one.

3.2 Proposed technique

The returning drilling mud is sent through an open venturi channel instead of the Coriolis flow
meter. The levels are measured using either ultrasonic level sensor or radar level transmitter at
two specific positions ¢; and c, as discussed briefly in section 1.3. Using the level
measurements at these positions, the flow rate is estimated. The complete system loop with
proposed flow measuring technique is shown in Figure 3.1. Coriolis flow meter in Figure 2.2
is replaced with an open venturi channel in Figure 3.1. The proposed technique is based on the
mathematical model of the top flow in open venturi channel. Due to the dynamic nature of the
model, the technique is dynamic as well. More importantly, this technique is not restricted to

27



Flow measuring technique

estimating the returning mud flow rate. Anyplace where the flow rate is measured using
Coriolis meter or other flow measuring mechanical devices, this method is handy. Other
important aspect of this technique is that the model can be used to design a suitable model

predictive controller, MPC.
h2 (y) > Ob§erver/ O
3 h1 (u) Estimator
c2 -
Open Venturi
- | channel

Cuttings+mud loss

Inflow
Active Mud Pit > !

Pump

Cuttings
removal Return

flow

Well

Figure 3.1: Closed loop drilling system with proposed flow measurement technique

3.3 Structure of the venturi flume

A venturi flume present at the lab at USN is a bisymmetrical trapezoidal flume pivot at the
centroid of the throat section is shown in Figure 3.2. This apparatus is a nonprismatic channel,
which means that the flow through it is non-uniform due to the change in the fluid velocity at
different cross-sections of the channel. The change in the velocity is caused by the change in
the cross-sectional area that is perpendicular to the direction of flow. There are five designated
sections along the channel. Table 3.1 shows the classification of the different sections of the
channel. Section 2 — section 4 is bisymmetric. p, is the reference point for length measurement
and starts at 0 cm. The apparatus is a three-dimensional object. It is trapezoidal vertically at
each point along the length of the channel as shown in Figure 3.3 (left). Figure 3.2 shows the
top view (view on the x-y plane) of the entire channel. However, this view only reflects the
schematic of the base width along the channel. Top width is determined by the fluid level and
hence is not included in the top-view. Figure 3.3 (left) shows the cross-sectional view (viewed
on the y-z plane) of the flume. Figure 3.3 (right) shows the longitudinal view (viewed on the
x-z plane) of the flume. ¢; and c, are the point along the channel where the fluid level is
measured using suitable level sensors. At these points, the mass flow rate is estimated.
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Table 3.1: Different sections of the venturi flume with a corresponding shape.

Flow measuring technique

Section# | 1(po—p1) | 2(Pr—p2) | 3(2—Pp3) | 4(P3—Ps) |3 (ps —end)
Type Upstream Converging Throat Diverging | Downstream
Shape Rectangular | Trapezoidal | Rectangular | Trapezoidal | Rectangular

Range (cm) 0-132 132 — 147 147 - 167 167 — 182 182+

J TOP VIEW | p4

c2

|
)

20cm 15cm

Section 1 | Section 2 Section 3 Section 4 Section 5

0cm 132 cm 167 cm 182 cm

Figure 3.2: Top view of the bisymmetrical trapezoidal open venturi channel

SIDE VIEW (Longitudinal) >

& CROSS SECTIONAL VIEW

\
___I.__l

w

Figure 3.3: Cross-sectional and side (longitudinal) view of the venturi flume

3.3.1 Flow regime

A fluid flowing through open venturi channel has different velocity at different cross-section
along the channel. Depending on the average velocity of the flow profile, flows can be
classified into three types, critical, subcritical and supercritical flows. Flow through any
arbitrary point is given by the Cross-sectional (wetted) area and the velocity of the fluid at the
point as described by equation (3.1). Cross-sectional area is dependent on the fluid level.
Assuming a steady flow condition, the velocity of the flow is inversely proportional to the
wetted area as given by equation (3.2). Critical velocity occurs at the critical depth, which is a
point along the channel where the specific energy of the fluid is minimum [6, pp. 530-532]. If
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the wetted are is larger than the critical wetted area, then the flow velocity is less than the
critical velocity. Such flow is subcritical. Similarly, if the wetted are is smaller than the critical
wetted area, the flow velocity is greater than the critical velocity. Such flow is supercritical.
These conditions are presented in Table 3.2.

0=4A-v G.1)
_Q _Q _
V= v, = 2 A=f(h) (3.2)
m
_av_4p _1dm_m (3.3)

=Gt~ a pdlT p
Where, Q is the volumetric flow rate, A is cross-sectional area, v is the flow velocity at a given
point. v, and A, are critical velocity and critical area at the critical point of the channel
respectively. V is the volume of the fluid, m is the mass of the fluid and M is the mass flow
rate. Equation (3.3) shows the relation between mass flow rate and volume flow rate.

Table 3.2: Different types of flow regime as classified by the flow velocity in an open channel

Flow condition Subcritical Critical Supercritical
Wetted area A> A, A=A, A <A,
Flow velocity v < v, V=1 V>,

In an open venturi channel setup as that at the lab at USN, as shown in Figure 3.2, critical flow
usually occurs at the throat section (section 3) and the subcritical flow occurs at section 1 and
section 2. Super-critical flow occurs at the section 4. This is true when the bed slope (angle
made by the channel bed with the horizontal x-axis) is 0 and the mass flow rate of the fluid is

less than 10 Tg. This information is vital in choosing the position for level measurements as

discussed in section 1.3; to satisfy the condition given by (10.10). Figure 3.4 illustrates the
different flow conditions. Velocity and area line is used to illustrate how velocity and wetted
cross-sectional area changes along the channel. Thickness of the line quantifies the velocity,
while the slant quantifies the wetted area.

A>A, A=A A<A,

C
Section 1 Iy

Velocity line Section 2 Section 3 Section 4 (R {
Area line

Section 5

V<V, V=V, V>VC

Figure 3.4: Development of the fluid velocity and wetted area across the open venturi channel
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3.4 Experimental setup at the lab

Non-Newtonian fluid made by mixing potassium carbonate and water is stored in a primary
tank just like the mud pit shown in Figure 3.1. The fluid passes through a buffer tank and enters
the venturi channel. Ultrasonic and radar level transmitters are mounted over the channel.
These sensors can be moved freely in the horizontal direction to measure the flow at a chosen
position. The discharged fluid then returns to a secondary tank that is connected to the primary
tank by a valve. There are different sensors mounted along the flow line to measure different
process variables such as temperature, pressure, level and flow rate. There is also a Coriolis
flow meter mounted along the inflow line. This device can measure mass flow rate and density.
The Measurement by this device is, however, only used for the comparison purpose. Figure 3.5
shows the P&ID of the setup. The important sensors for this thesis work are level transmitters
and Coriolis flow meter. Therefore, to simplify the diagram, only these sensors along with
actuators such as pump are shown. A pump is controlled using a PI controller. A list of
instruments, their symbol and the type devices used at the lab at USN are presented in Table
3.3. The list corresponds to the P&ID shown in Figure 3.5.

4 A N
NLI-18 Nu-17/ 1-15/ LI-19

& ® ® ®

&)
B8

V-3

Figure 3.5: P&ID of the experimental setup at USN lab

Table 3.3: List of sensors, controllers, actuators and other equipment present at the USN lab.

Instrument Symbol Type
Radar level transmitter LT19 Sensor
Ultrasonic level transmitters LT15 Sensor
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LT17
LTI18

Coriolis transmitter (old)

FT14A — for mass flow rate

FT14B — for density

Sensor

Flow controller FC14 Controller, PI
Main pump P-1 Actuator, pump
Fluid replacement pump P-2 Actuator, pump
Buffer storage tank B-1 Tank
Intermediate buffer tank B-2 Tank
Primary storage tank T-1 Tank
Secondary storage tank T-2 Tank
Main valve V-1 Actuator, Valve
Discharge valve V-2 Actuator, Valve
Connection valve V-3 Actuator, Valve
Fluid replacement valve V-4 Actuator, Valve
Level indicator for LIS
ultrasonic sensors present in LI17 Indicator
the front panel LIS
Level indicator for the radar
sensor, mounted on the LI19 Indicator

instrument
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4 Modeling of flow through an open venturi
channel

By this stage, all the recipe for developing a mathematical model of the flow through open
channel is in place. This chapter discusses the mathematical modeling of the flow through an
open venturi channel. Development of the model as a partial differential equation (PDEs) and
converting them into ordinary differential equations (ODEs) is discussed here briefly. In
addition to that, the linearization of the nonlinear ODEs is explained in detail in this chapter.

4.1 Saint Venant Equation

During transient (change in flow rate), the flow through nonprismatic open channel becomes
unsteady. This means that the fluid properties such as pressure, velocity, wetted area changes
with spatial variable and time. Such dynamics can be explained by so called shallow water
equations. These equations of continuity and motion are derived by using an idea of mass and
momentum balance. Shallow water equations in one dimension are called Saint-Venant
Equations (SVEs). SVEs in for one spatial dimension are a class of quasi-linear hyperbolic
PDE. For the classification of PDEs, please refer [7, pp. 5-7].

4.1.1 Model for nonprismatic, 1D unsteady, open channel flow

Since the open channel in this case has one entry and one exit for the volumetric discharge, the
lateral flow rate and the fluid loss is none. The fluid is incompressible and flows in one
direction. Considering these facts and the pressure distribution is hydrostatic, following set of
PDEs, as given by (4.1) and (4.2), are obtained. These equations are deduced at USN by fellow
PHD students. The derivation of these equations is discussed in detail here [8]. Equation (4.1)
is the continuity equation in conservation form. This statement simply means that the volume
of fluid flowing through the channel is conserved (neither loss or gain). Equation (4.2) and
(4.3) are the momentum equations.

0A 0Q

o= (4.1)
0 0 2
a—f + P (ﬁ % + gl cos(gb)) = gA(sin(¢) - Sf) + gl, 4.2)

For small bed slope angle ¢, cos(¢p) = 1. Replace sin(¢) with S}, and rewrite the equation
(4.2) as:

0Q d [ Q7
= — 4.3
5t T ox <ﬁ ) +911) gA(Sp — S¢) + gl (4.3)
Expressions for some variables present in equations (4.1) — (4.3) are given below.
w S
—p2 (L s 4.4
h=h (2 th 3) (+4)
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1dW hdS
N _s 4.5
L=h (2 dx+3dx) (4.5)

The side wall of the open channel, in this case, has a uniform side slope i.e., % = 0.

Substituting this in equation (4.5), the result becomes equation (4.6).

_ h*dw

- 4.6
L I (4.6)
S, = cot(a) 4.7)
A= (Ssh+ W)h (4.8)
D=2Sh+W (4.9)
P=W + 2hy1+ 2 (4.10)
A
R = — 4.11
P 4.11)
= ! 4.12
nm - ks ( . )
QlQIn3 P 0loln2
TLM 3 TlM
Sp=—F— S = - (4.13)
A3 A2R3
— 2
. W+,/2v|; + 4AS, @.14)
S

4.2 Nonlinear ordinary differential equations

Equations (4.1) and (4.3) are a set of PDEs. However, the state estimator and observer that is
being designed during this thesis work is based on the ordinary differential equations. Hence,
the PDEs must be represented by a set of ODEs before proceeding. A method used to
accomplish this is called the orthogonal collocation method.

4.2.1 Orthogonal collocation method

States are the variables that describe the dynamics of the system. Simply stated, states are the
variables that are differentiated with respect to time. Here the states are wetted cross-sectional
area (A) that is perpendicular to the discharge direction (x-direction) and the volumetric flow
rate (Q) as given by equations (4.1) and (4.3). It is possible to approximate these states at
chosen collocation points in spatial domain by using interpolation technique. Lagrange
interpolating technique is used for this purpose [9, pp. 809-812]. Collocation points are the
roots of the interpolating polynomial in spatial domain. Hence, it is safe to say that these points
describe the degree of the polynomial that interpolates the original function. Degree of
polynomial defines the accuracy of the approximation. It is also required that the level at
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collocation point 1 (h;) must be higher than the level at collocation point 2 (h,) as given by
(1.1). For this purpose, the first collocation point, c; is chosen at the upstream section (sub-
critical flow region) and the second point, ¢, is chosen to be at the throat (critical-flow region)
as shown in Figure 3.2. The number of collocation points used here is two (quadratic
polynomial with two roots). A fellow PHD student at USN has produced a set of ODEs for
nonprismatic channel for two collocation points [ 10]. Since there are two states, approximating
them at two points yields four ODEs. The set of ODE:s is given by equations (4.15) to (4.18).

. 1
A = _Z(_Ql + Q) (4.15)
. 1
A; = _Z(_Q1 +Q2) (4.16)
Q __5 ——12+—§ —g(—l +1 )+g—h%(—w +Wy) + gAy (S, —S;,)  (4.17)
1 L\ 4, "4, A B oL 1 2) + 9A1\5p — O .

. B( Qf QF\ g gh3
Q=—=(-—+-= ——(—111+112)+i(—W1+W2)+gA2(Sb—Sf2) (4.18)

Where subscript 1 corresponds to the collocation point 1. Similarly, subscript 2 corresponds to
the collocation point 2. ODEs (4.15) - (4.18) describes the AQ model.

4.2.2 Change of variable

The set of ODEs represented by equations (4.15) to (4.18) can be simplified further by a simple
change of variable. The new variables are chosen based on the actual measurands of the real
process at the lab at USN. These variables are the level (h) measured using ultrasonic and radar
sensor and mass flow rate (M) measured using Coriolis flow meter. This simplification makes
it easier to linearize the model as well as implement them in a programming language such as
MATLAB and LabVIEW. Another benefit, from the programming point of view, is that there
is less number of unit conversions to perform. This increases the performance of the simulator,
observer or estimator. Otherwise, the level measurements must be converted to cross-sectional
area and back. This overhead is reduced by variable change. One discovery made is that the
model represented using the new set of variables, h and M, is more robust during the initial
run. Since the operating points for the system with A and Q as states, depend on the model
parameters, their uncertainty affects the proper estimates of A and Q mathematically as they
are not measured directly. Default parameter values are presented in Table 4.1. However, some
of parameter values need to be adapted and optimize for the different operating conditions.
More about this is discussed in later section.

Table 4.1: Default parameter values for model with changed variables, h and M

P Vm k
@ | @ldeal| BII ks [Tm] Lim] | ¢ ldeg] | p [ 5] | walm] | W [m]
Values 70 0.66 56 1.39 0 1340 0.2 0.1
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The procedure on how to change the state variable and express the ODEs in terms of new
variables is presented in detail in Appendix 1. The new ODEs are given by equations (4.19) to
(4.22) in terms of h and M as shown in Part 1 A. The model based on these ODEs is referred to

as hM model.
M,— M
h, = (;L—DZ) (4.19)
1
M,—M
= ;LD 2) (4.20)
2
B (M} M3\ pg pghi
M1 _p_L A——A— T(Ill 112) oL (WI_WZ) +pngA1
1 2
4
AR *2D
7
p A
B (M MZ\ pg pgh3
MZ _p_L A—l—A—Z +T(111 112) 2L2(W1_W2)+pngA2
1 2
4
g My M 3P (*22)
7
p A3

Equations (4.4) to (4.14) are generic functions for different intermediate variables, meaning
that these equations define the dynamics of the model at any given point. For two collocation

points, these equations can be extended to form specific expressions as shown in Table 4.2.

Table 4.2: Equations for different parameters at two different collocation points

Collocation point 1, ¢; (upstream section)

Collocation point 2, ¢, (throat section)

__W1+

W2 + 44, S,
h, =

28,

P1=W1+2h1ﬂ1+53

Ay = (Sshy + Why

4
_ Q1|Q1|n12v1P13
S, = 10
3
4
Wi S
hy= k(54 g)

Wy +

W2 + 44,S,
h, =

25,

P2=W2+2h2\/1+552

Ay = (Sshy + Wy)h,

4
_ Q2|Q2|n1%/1P23
5, = 10
3
4,
w, S
hy =1 (F +hag)
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Dl = ZSShl + W1 Dz == ZSShz + Wz

4.3 Linearization of the venturi model

So far, the equation of continuity and motion as a set of hyperbolic PDEs have been derived.
Using orthogonal collocation method, the PDEs have been reduced to a set of nonlinear ODEs.
Nonlinear ODEs are used for nonlinear estimator, but a linear model is needed for designing
linear observers and estimators. To find a linear model, it is important to define the inputs,
states and the outputs of the system. There are four ODEs given by equations (4.19) — (4.22).
Three of them are used to describe the system dynamics and one of the them is used as an input.
Table 4.3 show the assignment of function names to the ODEs and define their type as input,
states or output of the system. For model linearization, Tylor series expansion around a suitable
linearization (operating) point is used. A general method of linearization of a multivariate
nonlinear model is given in Appendix 2.

Table 4.3: Assigning function name for the ODEs derived by change of variable.

Equation # (4.19) (4.20) (4.21) (4.22)
Function fi=h f2 = hy fz =M fo =M, g=hy
Type Input State 1 State 2 State 3 Output

Based on Table 4.3, the venturi model is a deterministic system with one input (u), three states
(x) and one output (y). The system is written in following a compact and standard form:

u = hy, Uop = N1y,
hz hz hZOP hZOP
X = [Mll, x =M, Xop = Mlop ’ Xop MlOP
5( = f(xl u; 9; t) (4'23)

y = hy, yopzhzop
n,=1 n=3 n,=1

Where 0 is the model parameter vector, n,, represents the number of inputs, n, represents the
number of states, n, represents the number of outputs. The simplest approach to find the
operating point is to simulate the model until the steady state is reached rather than using a
mathematical equation for operating point that is complicated to solve analytically. Note the
steady state values as the values for operating point. However, even better way is to use the
real measurement data. Operating points for some flow rates based on the real measurements
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logged at the lab are given in Table 4.4 and shown graphically in Figure 4.1. Figure 4.1 also
shows the filtered operating point filtered using a median filter (more on filters in section 9.2).
Operating point for area and volumetric flow are calculated using (4.8) and (al9) respectively.

Table 4.4: Operating value for input, states and output at different flow rates for a fluid with a
density of p = 1340 %. Default operating value for the mass flow rate is 350 %

o [EL] | oy [2] | iy ] | i 002 | o ] | )
min S
275 3.4e-3 59.9 1.3 e-2 44.1 55e3
350 (default) 4.4 e-3 69.1 1.6 e-2 49.4 6.3 e-3
425 5.3e-3 78.4 1.8 e-2 57.0 7.4 e-3
Level - operating point for different flow rates Area - operating point for different flow rates
gQ |—h1(LT19,u) 0.018 H-**-J-MW
——h2(LT18,y) 0.016 b ardl
80 h1-medf (LT19, u) T - _ : etk AR b
T h2-medf (LT18, y) Ty |k e 0.014 b,y & — |
- | laadadotl b bt sasison S R —_—A1
D o Mooty ] a A1-medf (u)
60 fredem Sl LAt o ptnab =
8 Py < Az-medt (y)
50 povglsnlira, el 0.008 Y rem——
e ) ,,.,...,,,..,,.-"'"‘"I‘l"ll"" y . EPR—
i 0.006 Fonotnp b o,
40 . . | |. ‘ . m-,r',w‘ mndllhlv Illl. . I'r "Illl I
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Time [s] Time [s]
Mass flow rate - operating point «10 Volumetric flow rate - operating point
i ) l----r-——-—--q
——M (FT14A) ' —Q
= 400 M-sp b E 5 Q-sp
£ 3
£ E
X, g 4.5
g 350 e —— petemtermonsees 2 e e
= 1]
y § 4
a =
= 300 2
35|
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Time [s] Time [s]

Figure 4.1: Operating point for h, A, M and Q for a fluid with a density of p = 1340 %

4.3.1 Linear state space model

There is not direct feedthrough term in the measurement equation y = h,. This simply means
that the output equation is not directly influenced by the input. The deterministic linear state
space model is, thus, given by equations (4.24) and (4.25). Refer Appendix 2 for the complete
derivation of the state space model including the declaration of the system matrices. The
deviation variables are presented in (a2).
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6x = A.6x + B.6u (4.24)
8y = C.6x (4.25)

Where A., B, and C, are system matrices derived from linearizing the nonlinear model. The
states and outputs in full form are computed using (4.26) and (10.10) respectively.

x =06x + xqp (4.26)

Yy =06y + Yop (4.27)

4.3.2 System matrices

According to the Table 4.3, the system is a single-input-single-output (SISO) system with three
states. Number of states defines the order of the system. Hence, the system order (n,) is 3 for
venturi model. Figure 4.2 visualizes the dimension of system (Jacobian) matrices. These
matrices are time invariant (independent of time).

Table 4.5: The size of the system matrices

AC BC CC
[n, x n,] = [3 x 3] [n, x n,] = [3 x1] [n, xn,] =[1x%3]
n, n, N
n,a\ u
Ny A, B,
n,g x
ny Cc Dc I’)y y

Figure 4.2: Dimension of the system matrices and input, states and output matrices or vectors

Where, N is the number of samples of inputs, states and outputs. The size of the system matrices
applicable for this venturi model is given in Table 4.5. The system matrices, also known as the
Jacobian matrices, are represented in following form:

0 0 0
A—_f B—_f C—_‘g

c c c
0x Xopilop ou Xopitlop dx Xopitlop

The derivation of these matrices is shown in detail in Appendix 2 (a3). For venturi model, f is
a vector function given by (4.28) and g is a scalar function given by (4.29).
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IANILE
f=\fs|=[Mm]|=x (4.28)
fol M,
g=h (4.29)
0f, 0f;  0f3] %
oh, oM, OM, dh,
Ofs Ofs Ofs g =% c —[99 99 99
oh, oM, OM,| ¢ loh | ¢ loh, oM, oM,
fs 0fy 0fy 0fa
0h, OM, OM,] [0h, ]

0f, _ —25:(My — My)

= A.(1,1
dh, pLD? (LD
d D,M? A
f3 :,3 2 22 _pgAaz A.21)
0fa _ BDZMZZ _PgAz _Pghz(W1 - W) 4 paS.D
oh,  pLAZ L L P32
1 A.(3,1)
M,|M,|n,P3 7P,D o
4 2| 2|7m2(8 1452 I:z)
3pA3 ?
afs 1
- A.(1,2
oM, pLD, «(1,.2)
4
d 28M, 2gM?n? P3
f3 _ B 1 29" m71 A,(2,2)
oM, pLA; 3
pIMllAl
fs  2BM;
i A.(3,2
oM, pLA; «(3.2)
d -1
i= A.(1,3)
oM, pLD,
fs —2BM,
= A.(2,3
oM,  pLA, e(23)
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4
0f, —2BM, 2gM3inZ P}
oM,  pLA, 7
P|M2|A§
92 _
doh,
0f3 —.3D1M12 pgA,  pghy(Wy —Ws)
= - S,D
oh,  plAZ T L L T Pg2pbh
1
M, |M,|n2,P3 7P,D
g 1 1|7m1 (8 1+52— /; 1)
3pA3 !
0fa _ —ﬁD1M12 +P9A1
ohy  pLA? L
0
99 _4
dh,
0
99 _ 0
oM,
0
99 _,
oM,

Some of the axioms and rules of differentiation used during linearization of the nonlinear ODEs

A.(3,3)

B.(1,1)

B.(2,1)

B.(3,1)

C.(1,1)

C.(1,2)

C.(1,3)

are given under Appendix 5. Alternative forms of the system matrices for venturi ODEs for

different variables are given under Appendix 3.
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5 Model analysis and simulation

Now that the nonlinear model and linear model are developed, the next step is, naturally, to
simulate the model. This chapter deals with simulator development in detail. It is also important
to analyze the stability of the model and parameter sensitivity. The model is finally
implemented in MATLAB and LabVIEW.

5.1 Model analysis

A model needs to be analyzed for its stability, controllability and observability before designing
any control system or observers. All these aspects are important in control engineering which
are discussed briefly in this section.

5.1.1 Analytical solution

A system can be deterministic or stochastic system. On one hand, a deterministic system does
not account for any randomness. A deterministic system always produces a specific final state
from a specific initial state for a given input signal. On the other hand, a stochastic system
accounts for randomness, be it with process noise or measurement noise or both. A general
form of a stochastic state space model with direct feedthrough term in the output is given by
equations (5.1) and (5.2).

6x = A:.6x + B.6u + Ew (5.1
6y = C.0x + D .6u + Fv (5.2)

Where, w is the process noise and v is the measurement noise. If matrices E and F are zeros-
matrices, the system become deterministic. Analytical solution to the state equation (5.1) is
given by equation (5.3) and the solution to the output equation (5.2) is given by (5.4). These
solutions are for special case of t, = 0 as derived in Part 6A of Appendix 6.

t t

®(t — t)B.ou(r)dr + f d(t — t)Ew(r)dt (5.3)
0

5x(t) = ©(t)8x(0) + f

0

t t

oy(t) = C,P(t)dx(0) + Ccf ®(t — t)B.ou(r)dr + Ccf d(t — t)Ew(r)dt
0

. (5.4)
+ D.6u + Fv

Where @(t) is a time invariant transition matrix for LTI systems and is given by (al2). For a
deterministic system, the solution (5.3) takes a special form given by (5.5). The output of the
system without the direct feedthrough term is given by (5.6).

5x(t) = d(£)6x(0) + f tCD(t — 7)B,Su(t)dr (5.5)
0
§y(t) = C,d()6x(0) + C, f tCD(t — 7)B.Su(t)dr (5.6)
0
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Analytical solution for state equation given by (5.5) is complicated to solve since it contains a
convolution integral. Hence, for solving the state equation (4.24), a numerical method, fourth
order Runge-Kutta (RK4), is used in this project. See Appendix 4 for RK4 algorithm.

5.1.2 Stability

Stability of a model is an important concept in mathematical modeling. A stable system is
defined as a system with a specific bounded response to a specific bounded input [11, p. 387].
To design a controller, the closed-loop system must be stable. An unstable system is of little
use. There are many approaches to analyze the stability of a dynamic system. Methods such as
eigenvalues and pole-zero analysis, Routh-Hurwitz stability criterion, frequency response
method such as bode stability criterion and Nyquist stability criterion and so on. The discussion
in this section focuses on the eigenvalues and pole-zero analysis.

Poles of a controllable and observable system are the eigenvalues of the transition matrix A..
A system can be asymptotically stable, marginally stable or unstable. Asymptotic stability
means that a system comes back to equilibrium point even after an introduction of large
disturbance or input. A marginally stable system neither converges to nor diverges from but
oscillates around the equilibrium point. An unstable system, on the other hand, goes to infinity
even for a small finite input change. In terms of eigenvalues, an asymptotically stable system
has all its eigenvalues in the left side of complex plane. For marginally stable system, the
eigenvalues lie on the imaginary plane. For unstable system, eigenvalues lie on the right side
of the complex plane. Figure 5.1 show the different conditions of stability using poles plotted
on the complex plane. Illustration is based on a system with three states.

flxt) fix,t) Equilibrium fot) Equilibrium

Equilibrium point point
point /\ /
) EAY

VAVAVE e

t t t
0 0 0
Asymptotically stable Marginally stable Unstable
NZ N NZ
Im Im Im
A2 A2
X A2 X X
A1 Re A Re A1 Re
x "x ¥
A3 A3
X VED ¢ X

Figure 5.1: System stability in terms of poles (eigenvalues) of the system
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For a system, following condition defines its stability:

e If all the eigenvalues of the system matrix A, lie in the left side of the complex plane,
the system is stable. In other words, for stable system, the real part of all the eigenvalues
is negative as shown in Figure 5.1 (left).

real(eig(Ac)) < 0 - stable system

e If the eigenvalues of the system matrix A, lie on the imaginary axis of the complex
plane, the system is marginally stable. In other words, for marginally stable system, the
real part of the eigenvalues must be zero as shown in Figure 5.1 (center).

real(eig(Ac)) = 0 » marginally stable system

o If the eigenvalues of the system matrix A, lie in the left side of the complex plane, the
system is unstable. In other words, for unstable system, the real part of the eigenvalues
is positive as shown in Figure 5.1 (right).

real(eig(Ac)) > 0 — unstable system

5.1.3 Controllability

It is important to identify if a system is controllable before designing a control system.
Controllability aids in answering this question. Controllability is defined as an ability of system
to transit from a specific initial state to a desired final state for an appropriate input signal. A
system is controllable if the rank of the controllability matrix is the same as the number of
states in the system. In other words, if the system has n-states, the controllability matrix must
have n-independent column that spans the entire vector space. Simply stated, if the determinant
of the controllability matrix is non-zero, then it is a full ranked matrix and the system is
controllable. The controllability matrix is given by (5.7). Controllability of a continuous system
is given by (5.8).

Ac:[Bc AcB; Ach A?_ch] (5.7)
rank(A.) =n (5.8)

Where, n is the order of system.

5.1.4 Observability

The idea of this thesis is to design a suitable observer or an estimator. This can only be done if
the system is observable. Determination of system observability is a reverse process. If the
initial states can be predicted from the knowledge of past inputs and outputs, then the system
is said to be observable. This, as with the controllability, can be determined using the rank of
the observability matrix. If the rank of observability matrix is the same as the number of states
in the system. In other words, if the system has n states, the observability matrix must have n-
independent column that spans the entire vector space. If the observability matrix has a non-
zero determinant, then it is a full ranked matrix and the system is observable. The observability
matrix is given by (5.9). Observability of a continuous system is given by (5.10).

Ocz[Cz (CCAC)T (CCAE)T (CcAg_l)T]T (5.9
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rank(®.) =n (5.10)

Where, n is the order of system.

5.1.5 Stability, controllability and observability of venturi system

System stability for the venturi model is determined using the “eig.m” function in MATLAB.
Controllability matrix of the venturi model is determined using ‘“ctrb.m” function. The
observability of the model is determined using “obsv.m” function. The rank is determined using
“rank.m” function. The outcome is that both controllability and observability matrices are full
ranked i.e., rank is equal to the system order. In this case, the system order is three. For the
default parameter values as shown in Table 4.1, following system matrices are generated:

0 0.0038 —0.0038 0
A.=03372 0.1438 -0.7327], B, =1101.2385], C.=[1 0 0]
16.1390 0.2255 -1.3128 164.0757

Eigenvalues (1) of A, of the venturi model is given by:

/11 = —11299 + 0 l complex conjugate
A, = —00195 + 0.2686 i, A, > A3
A3 = =0.0195 — 0.2686 i

real(/lj) < 0 — stable system, j=12,..,n

The controllability and observability matrices are given by:

0 —0.2380 0.3291 1 0 0
A.=(101.2385 -—105.6634 25.8213 |, 0. = 0 0.0038 —0.0038
164.0757 —192.5647 220.0777 —0.1402 -0.00031 -—0.0022

rank(A.) = rank(0.) = 3 = number of states = system order

This shows that the system is both controllable and observable. The system is also stable as
confirmed by Figure 5.2. This result is in par with the illustration of Figure 5.1

- System poles (eigenvalues of Ac, A)
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Figure 5.2: System poles (eigenvalues) for venturi model plotted on the complex plane
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5.2 Parameter sensitivity analysis

The venturi model has several input parameters, as shown in Table 4.1, which defines the model
output. Some of them are more influential than other. By influential, it means that the change
in the input causes the change in the output. The change in the output is highly significant for
some parameters than the others. Determination of which parameter is more influential and
which parameter is less, is known as sensitivity analysis of the parameter. Sensitivity analysis
is important to determine which parameter contributes most to the model uncertainty as the
parameter uncertainty are propagated into the model. Such analysis is also a test to determine
insignificant parameters that can be removed from the model [12]. To perform sensitivity
analysis, it is important to define a probability density for each input factors. The probability
density function for the uniform distribution is shown in Figure 5.3. Nominal values and
uniform distribution and range for each input parameter is given in Table 5.1. The parameters
are uniformly distributed around +10 % of their nominal values. For an input parameter ¢, the
nominal value is 0. Therefore, the distribution is specified randomly.

(] e
ooenennee booeonones >
1-10 % 0i% +10 %)
E : i 6
e|b enom eub

<« ---Uniform distr. (0} ==

Figure 5.3: Uniform distribution around the nominal value for each parameter

Table 5.1: Nominal value, uniform distribution and range for each input parameter

Input Nominalahic Distribution range (+10 %)
Unit
Parameters (6) (6,,) Lower bound Upper bound
a 70 63 77 [deg]
B 0.66 0.594 0.726 []
hy 0.079 0.0711 0.0869 [m]
3
ks 66 59.4 72.6 Iﬁl
S
L 1.39 1.251 1.529 [m]
¢ 0 -0.036 0.036 [deg]
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o 1340 1206 1474 [k_‘i]
m

w, 0.2 0.18 0.22 [m]

W, 0.1 0.9 0.11 [m]

5.2.1 Differential sensitivity

Differential sensitivity determination technique is the most common and elegant way of
defining the sensitivity of a parameter to the model output. The point here is to quantify how
sensitive each parameter is to the model output, in this case, model states. The idea is to
determine the sensitivity coefficient for each parameter and analyze them. The sensitivity
coefficient is the ratio of the change in the output to the change in the input [12]. This
coefficient is a measure of the percent change in the output to the percent change in the input
as given by (5.11).

iM% i=12,..,r
Ej_AQ% j=12,..,n

i i

XJ —XO

— X 100%
i %o
j i _pi

i — b
s

gi — x} B x(i) 9(1)
’ xy ) \6f — 6§
o (xE—xb\ /6t
el = < / 9) <—°> (5.12)
6! —08) \x

Where, ¢ is the sensitivity coefficient and 8 is an input parameter and x is the state. 8¢ is the
nominal parameter value and x} is the nominal output. () is the number of input factors and
(n) is the number of samples from distribution. Equation (5.12) gives the rate of change of
output with respect to the parameter. €, 6 and x can be a scalar or a vector. For multivariable
functions, (5.12) can be approximated by partial derivative of the output (states) with respect
to the parameters as given by (5.13).

L
] 00¢ x(l)
The neat thing about the equation (5.13) is that the value of the coefficient is normalized by the

ratio of nominal parameter and the nominal output value. This removes the effect of the
parameter unit and the unit of output. Using the sensitivity coefficient for each parameter based

(5.11)

X 100%

(5.13)
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on (n) samples and compute the mean (u) and standard deviation (o). The result is then plotted
in a uo space for analysis. Steps taken for such analysis are listed below:

e Define an input parameter space by distributing each parameter around its nominal
value and generate (n) samples.

o As discussed earlier, uniform distribution is chosen here.
e Select a parameter, perform the following:

o For a chosen parameter, keep other parameters to their nominal value
Select a sample from the distribution pool for the chosen parameter
Simulate the model for long enough time so that the steady state is reached
Note the steady state value for each output or state
Using (5.12), determine a sensitivity coefficient for the sample and store it
Repeat these steps for all the samples

o From (n) coefficients, determine the mean and standard deviation and store it
e Repeat above steps for all parameters.
e By this stage there are (r) mean and standard deviation values for each output/state.
e Plot these in a uo space

© O O O O

One important thing to note about determining the sensitivity of an input parameter by
differential sensitivity method, is that it only quantifies the local sensitivity. In other words,
this method does not account for any potential interaction effect of the chosen parameter with
the other input parameters. Simply stated, the effect is independent.

5.2.2 Sensitivity index

Another way to quantify the sensitivity of a parameter is by determining the sensitivity index.
It is a measure of the ratio of the steady state model output space to the range of parameter
space. For a parameter, (n) samples are generated using a probability distribution function.
The model is then simulated until the steady state is achieved. The final steady state values are
used to define the states space, i.e., the maximum variation in the states (x). This is shown
graphically in Figure 5.4. The range is defined by the maximum and the minimum value
reached by the output. Mathematically, the sensitivity index is given by equation (5.14).

Steady state

X L cccccccccccna B function value
max
curve

nom

min

] ]
] ]
] ]
] ]
............ oo '
] 0
] ]
] ]
[l [ ]

b nom ub

<----0 distr. range==-=-»

Figure 5.4: Sensitivity index as a ratio between output range to the input range
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X — Xmi
g = max ~min (5.14)

xm ax

5.2.3 Analysis of the venturi model parameters

In venturi model, there are eight model parameters and one input whose sensitivity on the
model states (h,, M1, M,) is to be determined. Table 5.1 shows these parameters and their
nominal value along with the distribution range. Total 99 points are uniformly distributed
around the nominal value of a parameter. Thus, the nonlinear venturi model is simulated 99
times. Equations (5.13) and (5.14) are used to compute sensitivity coefficients and sensitivity
indices respectively. The results are discussed below. Figure 5.4 shows the mean and standard
deviation plot of the sensitivity coefficient. The interpretation of uo plot gives rise to the
following four conditions based on the magnitude, absolute value, of y, o:

1) Small y and small o
» The parameter is less influential and is unimportant | 13].
2) Large y and small o
» The parameter is important, and the model output depends on it mostly linearly.
Zero o means that the parameter and the model output is fully linear [ 13].
3) Large u and large o
» The parameter is important, and the model output depends on it highly
nonlinearly. The parameter might also interact with the other parameters.
4) Small u and large o
» The parameter is important, and the model output depends on it highly
nonlinearly [ 14].

The bottom line is that if the u is large, the parameter is highly important. If the o is large, the
parameter may be interacting with other parameters nonlinearly. Since there are three states,
the interpretation is done individually. Figure 5.5, Figure 5.7 and Figure 5.6 are interpreted
together. Figure 5.5 shows the effect of the parameter based on u and o of sensitivity
coefficient. Figure 5.7 shows the sensitivity index for each parameter for all the states. Figure
5.6 shows the percent change in the outputs (states) influenced by the percent change in the
parameter value.

e Level at the throat (collocation point 2) as state 1, (h,)

From the Figure 5.5 (left subplot), the channel width at the collocation point 1, W; has the
largest absolute value for y and o. Hence, W; is the most influential parameter for h,. It may
also be interacting with other model parameters. The effect of W, on h, is nonlinear. This
interpretation is supported by Figure 5.6. Since all the parameters are distributed by the same
amount (£10%) around their nominal values, the percent change in W; influences h, the most.
The sensitivity index plot of Figure 5.7 cements this observation further as W; has the highest
value. Similarly, he next influential parameter for h, is Strickler friction coefficient, ks with
relatively large p and . The effect is nonlinear as displayed in Figure 5.6. Fluid level at the
throat, W,, on the other hand has large 4 and average o. This means that W, mildly nonlinear
as seen in Figure 5.6. Fluid density, p is the least important factor for h, since it has the least
value of ¢ and ¢ and least value for sensitivity index. It is also seen in Figure 5.6 that h, has
no change for any value of p. Thus, p is the least influential parameter for h,.
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e Mass flow rate through the venturi channel as state 2 (M;) and state 3 (M)

Similarly, M, is the most influential parameters for both M; and M,. It has the highest value
for u, relatively large o and largest sensitivity index. A particularly interesting parameter for
flow rates is, hy. It has second largest u but extremely small o (Figure 5.5). This means that h4
an important parameter with large sensitivity index (Figure 5.7). However, due to small o, the
effect is fully linear. The linearity is clearly seen in Figure 5.6. The length between the
collocation points (L) has less influence on (M;) and (M,) with comparatively small u, ¢ and
sensitivity index value. However, the least important parameter for the flow rates is channel
bed angle, ¢ with least u and o values.

/it Vvs o on h2 p© vs o on M1 1 vs o on M2
- - -
O alpha 5t O alpha| 5t O alpha |
30 beta | beta beta
Q h1 Q h1 | QO n |
25 O ks 4 O ks |7 4 O ks |
L o L o L
5 20[0 phi °.10 phi .10 phi
P O rho B 3 QO rho B 3 Q rho
© 15 w1 © w1 © wi1
(7] w2 N, w2 ", w2
10 1
5 1 1
O
e oy oy o O) o e O)
S L =
=200 -100 0 100 -100 0 100 -100 0 100
mean, u mean, u mean, u

Figure 5.5: Mean and standard deviation of the sensitivity coefficient for the venturi model
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Figure 5.6: Percent change in the parameter vs the percent change in the output for all
parameters for all states of the venturi model
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04 Sensitivity Index of input variables to output variables
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Figure 5.7: Sensitivity index for venturi model parameters to all states

In conclusion, W; is the most influential and p is the least influential parameter for h,. W, is
the most influential and ¢ is the least influential parameter for both M; and M,. The complete
summary of the analysis is presented in detail in Appendix 7 (Part 7A and Part 7B) for each
state with additional relevant information.

5.2.4 Correlation

Derivative based sensitivity analysis is a great tool to analyze influential parameter in a model.
However, it does not account the complete picture of the relation of the parameters with the
model output. Correlation between the parameter and the states is, therefore, a great tool to
view such relation in detail. Correlation is how two variables change with respect to each other.
It shows the direction of change in output variables (positive or negative) with respect to the
change in the model parameter. Correlation, however, does not specify by how much other
variable change if one variable changes. Correlation value varies from -1 to 1. Interpretation of
correlation is as follow:

e Correlation of -1:

o Highly correlated

o Negatively (—ve) directed

= As one variable increases, the other variable decreases by same rate

e Correlation of 0:

o No correlation. Two variables are independent of each other
e (Correlation of +1:

o Highly correlated

o Positively (+ve) directed
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= As one variable increases, the other variable increases as well, by the
same rate

For venturi model, the correlation between each state and each parameter is determined based
on the steady state values. Table 5.2 show the magnitude of correlation and the direction.

Table 5.2: Correlation between parameters and states

x,0 a B hy kg L ) p w; w,
-0.998 | -0.999 | 0.999 | -0.997 1 0.998 | 0.152 | -0.993 | 0.999
" (—ve) | (—ve) | (+ve) | (—ve) | (+ve) | (+ve) | (0) | (—ve) | (+ve)
-0.999 | -0.999 1 -0.999 | 0.999 1 1 -0.999 1
th (—ve) | (—ve) | (+ve) | (—ve) | (+ve) | (+ve) | (+ve) | (—ve) | (+ve)
-0.999 | -0.999 1 -0.999 | 0.999 1 1 -0.999 1
= (—ve) | (—ve) | (+ve) | (—ve) | (+ve) | (+ve) | (+ve) | (—ve) | (+ve)

The result is consistent with the sensitivity analysis. To see the correlation between states and
the parameters, refer Figure 5.6. The table shows large correlation between most of the
parameters. This is because the model is not influenced with the noise. These values will alter,
not drastically though, when working with the real measurements.

5.2.5 Parameter optimization

A mathematical model can only predict the output as accurately as the best measured or
estimated parameters value. The model to depicts the real system accurately, determining the
parameter values is important. An approach to determining the parameter values is by using hit
and trial method. This can be done by simulating the model along with the real process in
parallel and adjust the parameter values manually until satisfactory result is gained. Such
methods are mind-numbingly tedious and time consuming. The better way is to minimize the
error between the predicted and the real measurement. To do this, a cost function, also known
as objective function is designed. The objective is to minimize the error between the predicted
and real measurements. This can be done using sum-squared-prediction-error (SSPE) method.
SSPE is given by (5.15).

N
S=ZeiTei (5.15)

N
minj = ZeiTei (5.16)
i1
e =x;—% [e] =[nyx1] (5.17)
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Where, ¢ represents the SSPE that is being minimized. N is the number of measurements
(samples) and e; is the prediction error vector. x; is the real measurement vector with one
samples of each state at a given time i. X; is the model predicted vector with one sample for
each state. Since there are three states in the dynamic model of the venturi flume, e;, x;, X; are
column vectors with the same dimension of [3 X 1].

Predicted state vector x; is the solution of the state equation (4.28) for the given time step (i).
The state equation is discretized and solved by using RK4 (Appendix 4). The built-in
optimization function, “fmincon.m”, of MATALRB is then used to optimize the parameter. The
result is given in Table 5.3. Using the optimal parameter values, the model is simulated to see
how good the prediction becomes. Figure 5.8 shows the predicted vs actual measurement.
SSPE for the new predicted states is 14.73, which is acceptable.

Table 5.3: Optimal parameter values determined by minimizing SSPE

0 - a B ks L (0] p Wy W,

Bopt 70.7 0.65 52.7 1.4 -0.07 | 1353.4 | 0.199 0.119
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T [ I I

|
——h1-meas (u-meas)
——h2-hat (y-hat)
h2-meas (y-meas)

=]
[=]

P it S )

Level [mm]
[=2]
o

P an TR Ler— L L A P TR YR
40 »_WW#QJ-MM‘M'M,MT--W |
20 | | | | |
0 1000 2000 3000 4000 5000 6000
Time [s]
= 500 Mass flow rate, measured vs predicted. sspe =14.73
— T T
= —M1- hat (x2-hat)
1 ——M2-hat (x3-hat)
‘o 400 - M-meas (x2:3-meas)|]
ko T T N A PR | N
= e ol L L e
3 300 [ 1
[T
(73]
0
g 200 ! | ! ! !
0 1000 2000 3000 4000 5000 6000
Time [s]

Figure 5.8: Predicted states using optimal parameter vs real measurement

5.3 Simulator development

The linear and nonlinear version of the venturi model is implemented in MATLAB. The
simulation is open loop and the input (h,) is controlled manually. The linear model is linearized
around suitable operating point. The operating point is chosen based on the information from
the real system. An operating point for input and each state in local and SI unit is given in Table
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5.4. These values are determined based on Figure 4.1. Local units are used only for plotting
purposes. During simulation, input, states, output and model parameters are converted to their
SI units. For plotting purpose, the values are converted back to the local units.

Table 5.4: Operating point for input and each state for the Venturi flume based on the
information from the real system

Type of unit Mi,, = M,,, hi,p h2op
Local 350 [%] 80 [mm] 45 [mm)]
SI 5.883 ["Tg] 0.08 [m] 0.045 [m]

5.3.1 Comparison of hM model and AQ model

Model based on level and mass flow rate-based is referred to as hM model represented by
(4.19) - (4.22) and the model based on area and volumetric flow rate is called the AQ model
represented by (4.14) - (4.18). The value of the model parameters for both nonlinear simulators
is the same. The simulators are run in parallel in LabVIEW. Both simulators are excited by the
same input (h;) with added synthetic noise. The result is shown in Figure 5.9. In both cases,
the outcome is exactly the same. However, implementing hM model is simpler and easier than
implementing AQ model. Hence, the hM model is preferred for the rest of this thesis work.
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Figure 5.9: Simulation result of a model based on level (h) and the mass flow rate (M) along
with a model based on area (A) and the volumetric flow rate (Q).
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5.3.2 Nonlinear and linear model comparison

Linear and nonlinear models are simulated in parallel to compare how they fare alongside each
other. The input is changed manually from the operating point and the system dynamics is
observed. The result is displayed in Figure 5.10. First part of the simulation (0s <t <
1200 s) does not account for any noise in the input. The second part (12000 s < t < 2000 s),
the h; and h, are excited with noise signals w and v respectively. Since the input to the real
system is level measurement, which are noisy, a synthetic noise is added to the simulator input
to simulate the effect of noise on the model. The synthetic noise has the same variance, g2, as
the measured input level measurements (h,) taken from the venturi rig at the lab. The variance
of the white noise processes used is 107°.
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Figure 5.10: Linear vs nonlinear venturi model comparison.

As the simulation starts, noise-free input signal is away from the operating point (subplot 4).
This introduces a deviation in the output (subplot 1). During linearization, the model is
approximated by a series of polynomials around the operating point. The higher terms are
neglected keeping only the linear first order terms. These higher order terms do carry some
information of the model output. The removal of higher order term accounts for the deviation
in the output. As the input is changed gradually towards the operating point, h; = 80 mm, the
deviation starts to disappear. When the noise is applied to the model, oscillation increases, and
the amplitude of oscillation is also amplified. The noise affects all the states, including flow
rates. The settling time for the states also increases due to the noise introduction. However, the
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mass flow rate deviates very little away from the linearization point. This could be because the
model is developed using Lagrange interpolating polynomial at two points which produces
linear ODE’s. This means the model is a linear approximation of the PDE. Bottom line is that
both models, linear and nonlinear, produce similar result around the operating point as the
linear model is just an approximation of the nonlinear model around the linearization point.
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SECTION — 11

FLOW ESTIMATION
STATE ESTIMATION USING OBSERVERS AND KALMAN FILTERS
IMPLEMENTATION OF OBSERVER AND ESTIMATOR ON THE REAL PROCESS
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6 Highway to state estimation

A basic idea of state estimation is discussed in this chapter briefly as a bridge between model
simulation and state estimation. The aim is to cast light on why state estimation is required.
The focus is set on importance of state estimation based on the oil well drilling operation.

6.1 Purpose of state estimation

State information of a process is useful in many ways. They can be used for designing a control
system, analyzing the process for safety and productivity and predict the future behavior of the
system. For this, all states must be measured. However, not all process variables are measured
on a real process. This could be due to lack of available sensors or simply due to the cost of the
sensors being too expensive to implement in the system. To tackle this constraint, techniques
to predict the system states are required. Such techniques are the state estimation techniques.
The idea is to estimate the system states mathematically using the available sensors. Figure 6.1
show the setup of a technique for estimating unmeasured states.

u |

A 4

X y

Figure 6.1: Overview of a measurement system with embedded state estimation system for a
plant (real process)

6.1.1 Importance of state estimation in oil well drilling operation

In oil well drilling operation, it is important to detect kick or loss to prevent hazardous situation
as discussed in section 2.4. This can be done by estimating the return mud flow. Since the
return flow measurement requires expensive flow measuring techniques for a reliable flow
estimation, other cheaper techniques are preferable. The aim is to remove the expensive flow
measuring devices. This means that the flow must be estimated using suitable and reliable
estimation technique.

6.2 An introduction to state estimation

An observer or an estimator is a system that deduce some information based on the available
process measurements. The idea is to use the knowledge of past available measurements and
extract some information about the unmeasured states. It is important to know the system
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dynamics before this idea can be applicable. A mathematical model of some form is required
to describe the system dynamic. Unmeasured states can be estimated if the inputs of the system
are known, the system dynamics is known and some of the states are measured. This is not
enough, however, to estimate the states. States must be observable. This information is acquired
by the observability analysis as discussed in section 5.1.4. A state estimation technique is only
as good as the best mathematical model. In other words, a bad model gives a bad estimate
which leads to a bad control system. This can happen when ODE’s are used to describe a
multivariable system rather than PDE’s. A linearized model is used instead of a nonlinear
model, see section 5.3.2 for comparison of linear and nonlinear model. Model parameter
uncertainties also contribute to a bad model as discussed in section 5.2. There are always
disturbances and stochastic noise processes influencing the real process as shown in Figure 6.1.
Hence, the measurements will always have uncertainties. Therefore, the quality of
measurements, type of mathematical model (ODE’s or PDE’s, linear or nonlinear) and the
sensor accuracies impact the optimum estimation. In simple terms, a proper knowledge of the
system is required for best estimation. More knowledge of the system there is, the better is the
approximation of system dynamics. Take away from this is that state observer is a reverse
process. It is about determining the initial states and the state dynamics based on the past
knowledge.

6.2.1 Process of state estimation

An observer or an estimator runs in parallel with the real process. The input excites both the
estimator and the real process. Initially, the estimated states are the same as the initial guess for
the real process states since the measurement from the real process is not available. From the
next available measurement, the states are estimated based on the error between the predicted
output and the measured output. Simply stated, using the error information, state estimates are
updated. In many cases, the measurements are too noisy that gives noisy estimates. To avoid
that, the noises are filtered out by a suitable filter before feeding the measurements to the
observer system (Figure 6.1). Hence, such system is of feedback type. The process continuous
until process termination.

6.2.2 State estimation approach

There are different approaches for state estimation. Deterministic and stochastic approaches
such as Luenberger observer design and Kalman filter respectively are the two of the most used
approaches. Both approaches are presented in subsequent chapters. Linear as well as nonlinear
versions of these approaches are available. This thesis work concentrates on linear and semi-
nonlinear observer and linear and nonlinear Kalman filter for the ODEs representing the flow
through the top side of the venturi flume.
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7 State Observer

In this chapter, the design and stability of a linear state observer is discussed in detail. This
chapter focuses on the idea behind the linear observer and the algorithm. Implementation of
observers on the mathematical model at the end is also presented here.

7.1 Full order state observer

A full order state observer is a system that estimates all the states of a system, both measured
and unmeasured states. It simply means that the order of an observer is equal to the order of
the model. In this section, a linear full order state observer is derived. A linear state observer
is designed based on the deterministic linear state space model given by (4.24) and (4.25). The
real system is stochastic in nature. The better approximation of the real system (Figure 6.1)
would be described by (7.1) and (7.2). The analytical solution for a such system is given by
(7.3) and (7.4).

6x, = A, 0x, + B.6u + Ew (7.1)
6y, = C.6x, + Fv (7.2)

t
®,.(t — 7)B-6u(r)dr + f d,.(t —1)Ew(r)dt (7.3)
0

t

52, (t) = B, (£)6%,(0) + f

0
t
6y, (t) = C,.D,.(t)6x,(0) + Crf ®,.(t — 1)B-6u(r)dr
t 0 (7.4)
+ C, j ®,.(t — t)Ew(t)dt + Fv(t)
0

Where, matrices and variables with subscript (r) represent the real system. &, is the state
transition matrix for real process and is defined as:

P, (t) = efrt

Assume that the real system can be represented by a linear model of the form (7.1) and (7.2).
There 1s some deviation between the real states (7.3) and the model states (5.5). The deviation
is the error between the model states and the real states. Similarly, there is some deviation in
the real output (7.4) and the model output (5.6). The error exists due to the presence of uncertain
model parameters, stochastic noise processes (w, v) in the real system and initialization error
x,-(0) # x(0). Assume the stable system dynamics in both cases given by following condition:

tlim d,.(t) > 0= tlim edrt -0

L!im d(t) > 0= tlim edt >0
Even with stable system dynamics, the error between the real states given by (7.3) and the
model states given by (5.5), at steady state is still not eliminated due to the aforementioned

reasons. Similarly, the error between the actual output (7.4) and the model output (5.6) exists
as well.

6x, —O6x + 0
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Sy, —0y#0

There is no mechanism in the mathematical model to suppress the error. This is where an
observer comes in. The observer utilizes the available measurements of the system to reduce
the error between the true state and the model states. Hence, the observer equation has the same
basic structure as the linear state space model with added error correction term, L.(5y — 69),
as given by equation (7.5) and (7.6). The correction term is injected to update the states at each
time instance when the measurement is available. Thus, the observer states resemble the real
states.

8% = A6% + B.Su+ L8y — 69)  [Lc] = [ny x ny ] (7:5)
59 = C,6% (7.6)

Where, L. is the observer gain matrix which is chosen by the designer to minimize the
observation error, 8y — &Y. Observation error is often called innovation process. The
prediction term, A.0X + B.6u, present to the LHS of (7.5) is called the apriori state estimate.
The linear observer (7.5) defines a deterministic system with no stochastic noise processes.
Using the injected sensor measurements into the observer system and the input signal, the states
are estimated. Figure 7.1 illustrates this principle. State observer equation with injected
measurement is given by (7.5) and (7.6).

u y

\4

v

— Observer —

A

y

> X
Figure 7.1: State observer overview with injected measurements

Further simplifying equation (7.5) gives:
8% = (A, — L.C.)6% + B.Su + L6y
(Ac —LcCo) = A [A] = [ny X ny] (7.7)
5% = AS® + B.6u + L8y (7.8)

A is the system matrix for the observer. (7.8) is known as the continuous time linear full-order
Luenberger state observer in deviation form. Analytical solution to the state observer equations
(7.8) and (7.6) 1s given by (7.9) and (7.10). Derivation of the analytical solution is shown in
detail in Appendix 6 Part 6B.
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t t
Q(t — t)B.6u(t)dt + f Q(t —1)L.6y(T)dt (7.9)

0

§2(t) = Q(6)82(0) + f

0
t

t
Q(t — 1)B.6u(t)dr + Ccf Q(t —1)L.6y(t)dt  (7.10)

0

59() = C.Q(6)5%(0) + C, f

0

Where Q(t) is the state transition matrix for the observer and is given as:
Q(t) = et

Q(t — 1) = et

Solutions (7.9) and (7.10) have incorporated the current measurements as the feedback term in
the observer. This helps to suppress the error between the estimates and the real process.

7.1.1 Observer error dynamic

The observed states are likely to differ from the actual states of the real process due to model
parameter uncertainties and process noise as discussed earlier. In such case, the dynamics of
the real system may not be explained properly. Hence, the model states must be recalibrated.
This can be done by utilizing the available real process measurements. We can express the
system dynamics in terms of the error between the model states and the observer states. By
defining the stable error dynamics, the estimated states approach the real states as given by

(7.11).

¥ 6x — 0%

tli_)rglos—>0 lgi_r)%&?—>6x (7.11)
£ 5% — 6% (7.12)
Simplifying (7.12) further yields:
€ =A.0x + B.du — A 6% — B.6u — L (6y — 6Y)
E=A.6x—A 0% —L.C.6x +L.C.H6%
£ =A.(6x —6X) — L.Cc(6x — 8%)
&= (A, —L.C.)(0x — 8%) (7.13)

Define a transition matrix using (7.7) and simplify the above equation using definition for error
dynamics (7.11). The state error dynamics is formulated as (7.14).

é=Ae (7.14)

7.2 Observer design by pole placement

It is vital to show that the error converges to zero to prove stability of the error dynamic. This
can be done by analyzing the poles (eigenvalues) of the analytical solution for the equation
(7.14). The stability analysis of a system using poles and eigenvalues is discussed in detail in
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section 5.1.2. The analytical solution for (7.14) is given by (7.15). The detailed process for
finding the analytical solution is shown in Appendix 6 Part 6C.

e(t) = eMe(0)
e(t) = Q(t)e(0)

(7.15) shows that the error dynamic is defined by the initial estimation error and the matrix A,
which is constant. Hence, it is important to prove that for any initialization error, the error
dynamic is stable. This is done by analyzing the matrix A.

(7.15)

7.2.1 Stability of a system using pole placement

Since A, and C, are constant matrices for an LTI state space model or the error dynamic, the
initial error estimate is non-zero i.e., £(0) # 0. Only L, is unknown in (10.10), which can be
adjusted to make error dynamic converge to zero as t — oo. In other words, chose L. such that
the error dynamic system matrix A is asymptotically stable, and the error dynamic is also stable.
Stable A forces error to decay to zero for any initial value of error. Initialization error will,
therefore, decay asymptotically to zero as t — oo.

limeM - 054 <0

t—>o0
tlime(t) - Olf—{A< 0

Above statement means that the system is stable if and only if A is Hurwitz. In other words, A
must have negative eigenvalues for above condition to hold. Poles of a controllable and
observable system are the eigenvalues of the system transition matrix. For error dynamics, the
transition matrix is given by A. To make the error dynamic system stable, it is possible to force
A to have negative eigenvalues if error dynamic is controllable. In other words, poles of the
transition matrix A can be placed at any arbitrary location in the left half of the complex plane
for a controllable error dynamic. It can be proven that the eigenvalues of A is the same as the
eigenvalues of AT.

eig(A) = eig(A")
A=A, —L.C. = AT=AT —CTIT
For (7.14) to be controllable, AT must have full rank i.e., rank(AT) = n,. This can be
determined using the controllability matrix (5.7) for the error dynamics as given below:

A= [Cér A'ECCT (A?_I)TCCT]T = [CCT (CCAC)T (CCA?_I)T]T = 0, (7.16)

If rank(A,) = n,, then the error dynamic is controllable. One important observation to make
here is that the controllability matrix of the error dynamic given above is the same as the
observability matrix of the linear model given by (5.9) [15]. Thus, for an observable linear
model, the error dynamic is always controllable. The venturi model is already proven to be
both controllable and observable (section 5.1.5). Since the matrix pair (A%, CI) is controllable,
i.e., the pair (4., C,) is observable for a particular choice of L,.

L. can be chosen such that A is Hurwitz. MATLAB has a built-in function “place.m” that
returns the value of L, for an arbitrary pole position. LabVIEW also has a built-in sub-vi called
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“CD Pole Place.vi”. The location of poles determines how fast the system responds. The rule
of thumb is to place the poles of the A more towards the left of the system A, poles. By doing
so, the system becomes more responsive and converges faster. In theory, observer poles can be
placed anywhere in the left half of the complex plane. A rule of thumb is to place them more
to the left of the system poles.

real(1,) < real(/lsys)
real(eig(A)) < real(eig(A.))

Since all poles of the venturi system lie in the left side of the complex plane (Figure 7.2), the
system is stable. Based on the stable system poles, three different observers are designed. The
poles of these observers are plotted together with the venturi system poles as shown in Figure
7.2. Table 7.1 shows how the poles for all the observers are positioned. All the observers are
designed by placing the poles more towards the left of the system poles. Poles of the observer
system matrix are the same as the poles of the error dynamic system matrix. Revisit equations
(7.8) and (7.14).

System and observer poles (eigenvalues of Ac, )\)
I T I I

1.5 I — | o
Asys-1 /\Ac
1 A )\L2=1.1*/\Ac n
x|
> 05F X A =36, ]
E ) . (o] )\u=6.6*)ch N n b
D - *x -
g &
=05 B
x|
qk =
'1.5 | | | | | | | | o
9 8 -7 6 5 -4 -3 -2 -1 0 1

Real
Figure 7.2: System and observer poles in complex plane

Table 7.1: Venturi model and state observer poles determined using pole placement method

Model Multiplier (1) Designator Poles (1)

A, = —1.246 + 0.000i

Venturi model 1 Ays =1X Ay | A, = —0.024+0.212i
A3 = —0.024 —0.212i

A, = —1.371+0.000i

Observer (L2) A, 11 Aa=11x2, |2, = —0.026+0233i
A3 = —=0.026 —0.233i

A, = —4.485+ 0.000i

Observer (L3) As 3.6 A3 =36X4,, |4, = —0.085+0.762i
A3 = —=0.085-0.762i
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Ay = —8.223 4+ 0.000i
Observer (L4) A, 6.6 Aa=66X%X4, |4, = —0.155+1397i
A3 = —=0.155-1.397i

7.3 Semi-nonlinear observer

A tweaked version of the linear observer has been designed during this work to see if the
estimation can be improved. The observer is named semi-nonlinear observer. This is because,
L. is determined using linear model matrices A, and C.. To determine L., the same pole
placement technique is used for semi-nonlinear observer as for the linear observer. However,
the nonlinear state equation is used instead of linear state equation for apriori state estimation.
Linearization of nonlinear model removed the HOT in Tylor series approximation of the
nonlinear model. This induced a deviation in the linear model away from the operating point.
By introducing the nonlinear deterministic state equation x = f(x, u), the hope is to reduce the
estimation error induced by the removal of HOT.

2=f@u+L(gx) — g®) (7.17)

Where, f(X,u) and g(X) are nonlinear state and output equations respectively. In case of
venturi model, g(x) is a linear output equation given by (4.29). Therefore, g(X) is h,. Based
on the venturi model, the semi observer equation takes the form:

2=f@wW+Ly -9 (7.18)
y=g(x)=Cx (7.19)
y=g&) =Cx (7.20)

For semi-nonlinear observer, the error dynamic based on nonlinear model is given by (7.21).
E=%—%
é=fxw) — fRu) —L(g(x) — g(®))
E=f(x—xu)—L.(C,x—C.X)
E=f(x—%xu)—LC.(x—X)

&= f(gu)—L.C.e (7.21)

Equation (7.21) defines the nonlinear error dynamic based on the semi-nonlinear observer and
nonlinear model of the system.

7.4 Linear observer comparison based on simulation

The linear and semi-nonlinear observer are compared here. Linear observer is implemented in
Simulink and MATLAB and the semi-nonlinear observer is implemented in LabVIEW. The
implementation is based on the mathematical model (ODEs) of the venturi flume.
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7.4.1 Comparison of linear observers with different pole position

First part of the comparison is based on the noise-free input signal. The second part is based
on the noisy input signal. The noise variance is determined based on the real level
measurements at the collocation point 1.
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Figure 7.3: Comparison of linear observers with different pole position for h, (venturi model)
excited with noise-free input signal h4
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Figure 7.4: Comparison of linear observers with different pole position for M; and M,
(venturi model) excited with noise-free input signal h;
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Figure 7.3 and Figure 7.4 shows the estimates from different observers for h, and M;, M,
respectively. All observers are excited by the same noise-free input signal. Observer
designation and their corresponding poles are shown in Table 7.1. The observer (L4) with the
left-most pole (Figure 7.2) responds faster than the observer with right-most pole (L2). The
amplitude of the oscillation for L4 is smaller than the oscillation amplitude for (L2). The
consequence is that there is less overshoot and undershoot in case of L4. L4 is more robust and
faster than L2 for all states. All the observers are asymptotically stable, however, L4 converges
faster. This means that if the poles are placed more towards left, the observer responds and
converges faster. Since poles of L2 are close to the poles of nonlinear model, state estimates
from L2 are overlapped with nonlinear states. As usual, the linear observers show some
deviation away from the operating point.

There is a flaw in analyzing linear observers that are excited with noise-free inputs. There is
no information about how noise would affect the observers. In real process, the sensor
measurements are noisy. For noisy inputs and measurements, it is important to analyze
carefully the effect of noise in the observer. Therefore, the synthetic noise is added to the input
and output of the venturi model. Figure 7.5 and Figure 7.6 visualizes this circumstance.
Nonlinear model and all linear observers are excited with same noisy input signals. Since L4
reacts to input changes faster than L2, the noise is amplified. From sensitivity analysis (Figure
5.7 from section 5.2.3), it is determined that h; has a small effect on h, whereas, the effect on
M; and M, is large. This is seen in estimates as well. Flow rate estimates are noisier then level
estimate. In the presence of noisy input, L2 estimates are less noisy than L4 estimates. Hence,
it is a tradeoff between fast response, small over- undershoot and noisy estimates; and slow
response, larger over- or undershoot and filtered estimates. One way to suppress the noise is to
use a signal filter such as lowpass time constant filter, median filter or weighted moving
average filter. These three filters are compared with each other using the real measurement data
when implementing the observers on the real system.

55 I I I h2 (y) non linear model
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Figure 7.5: Comparison of linear observers with different pole position for h, (venturi model)
with added synthetic noise in the input h; and the output h,
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Figure 7.6: Comparison of linear observers with different pole position for M; and M,
(venturi model) with added synthetic noise in the input h; and the output h,

Conclusion here is that if the observer poles are too close to the system poles gives slow
response and takes longer to converge. If the observer poles are placed too far to the left, the
noise is amplified due to faster response. The period of oscillation also decreases with faster
poles. Shorter oscillation period means faster convergence. Hence, during observer design,
both points must be considered. In case of venturi model, an observer with a pole placed 1.6
times towards the left of the system pole position is deemed to be an optimal choice.

7.4.2 Comparison of Linear observer and semi-nonlinear observer

Linear observer gives good estimates of the states. However, the deviation that occurs away
from the operating point is not eliminated entirely. Since linear model is only the first two terms
of the infinite Tylor series approximation of the nonlinear model, the removal of HOT makes
linear model imprecise as compared to the nonlinear model. Thus, the deviation occurs away
from the linearization point. This is the reason for designing a semi-nonlinear observer. The
observer gain matrix L., in both linear and semi-nonlinear cases, is chosen using the pole
placement method and the poles of the observers are placed 1.6 times to the left of the system
poles. Both observers are applied on the simulator. Hence, the states for the reference point in
comparison are the simulated (nonlinear model) states. Both observers are implemented in
LabVIEW.

Figure 7.7 shows the result of linear and semi-nonlinear observer applied on simulator for level
(h,) estimation. Similarly, Figure 7.8 shows the result of both observers for estimation of mass
flow rates (M, M,) at two collocation points ¢; and ¢,. In both cases, the synthetic noise is
added to the simulated input (h;) and the simulated output (h,) to represent the real process.
The synthetic noise in the input and the output has the same variance as that noise in actual
level measurements. The linear observer is able to filter out the noise in the estimated states of
the system. However, there is a deviation at the steady state in linear observer case. The semi-
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nonlinear observer is able to reduce the deviation as well as filter out the noise. Level estimates
has higher amplitude of oscillation (greater over- undershoot) in linear observer case than in
the case of semi-nonlinear observer. This suggests that the semi-nonlinear observer gives more
accurate estimates than the linear observer. Semi-nonlinear observer is also more robust than
the linear observer.
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Figure 7.7: Observer comparison based on the simulated output of the nonlinear model
(y = x; = h,) for noisy input signal (h;)
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Figure 7.8: Observer comparison based on the simulated states of the nonlinear model
(x4, x3) = (M4, M,) for noisy input signal (h;)

A better way of analyzing observers is using the error dynamics. Observer with the minimum
error between the estimates and the actual states performs better. Figure 7.9 shows the error
dynamics for both observers. The magnitude of semi-nonlinear observer error dynamic is much
less compared to the magnitude of linear observer error dynamic. At the steady state, the state
estimation error is negligibly small for semi-nonlinear observer since the deviation due to
linearization is eliminated. In both cases, the level estimation error is small. The main
difference is in the mass flow rate estimation. It is evident that the mass flow rate estimation
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error converges for both observer. However, for semi-nonlinear observer the error decays faster
as t = oo. This concludes that the semi-nonlinear observer performs better than the linear
observer. This is also evident in case of noise-free input in a pure simulator. Figure 7.10 and
Figure 7.11 show the result of linear and semi-linear estimator for estimating the model states.
As with the noisy system, the noise free system also proves that the semi-linear observer is
more robust and faster with minimum estimation error than the linear observer. The deviation
between the nonlinear model states (reference states) and the observer states are seen clearly
in the figures.

de_dt = dux_dt - dx_hat_dt (1) /| error h2 (y-y_est) [m] /| error (M-M1_est) [kg/s] |+ [/] error (M-M2_est) [kg/s] [+
0,4-
0,2-
F
= . _ =, —_— N PR - il - _
o
0,2~
B e T T e T B e e o o e B B B 1 o e T T B B B o e B B o i B B e B B e o e e e e o e B B e
6000 6050 6100 6150 6200 6}‘50 6300 6350 6400 6450 6500 6550 6600 6650 G?UU 6?50 6800 6850 6900 &950 ?UUU
Time [s]
de_dt = dx_dt - dx_hat_dt (2) | error h2 (y-y_est) [m] V| error (M-M1_est) [kg/s] |™ [¥] error (M-M2_est) [kg/s] [+~
04-
0,2-
2 p\\
——~ N
o
A T e e
ZUUU 2050 ZLUU }‘_150 }‘_200 Zl‘iﬂ BUU BSU 2400 2450 }‘500 BSU 2600 2650 2?00 2?50 2800 2850 1900 1950 3000
Time [s]

Figure 7.9: Comparison of estimation error dynamics using linear observer (bottom) and
semi-nonlinear observer (top).
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Figure 7.10: Comparison of linear observer and semi-nonlinear for estimating the level as the
output (y = x; = hy,) in parallel with the simulator excited by noise-free input (h;)
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Figure 7.11: Comparison of linear observer and semi-nonlinear for estimating the flow rates
as states (x,, x3 = My, M;) in parallel with the simulator excited by noise-free input (h,)
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8 Kalman filter

So far, linear observer and semi-nonlinear observer have been investigated. Both of those
techniques are based on the deterministic approach. In real world, the systems are most likely
to be stochastic in nature. Most process are constantly influenced by disturbances, uncertainties
in sensor measurements and process noise. In this chapter, both linear and nonlinear version of
Kalman filters are described. Kalman filter is stochastic approach as oppose to Luenberger
observer of deterministic approach. In principle, Kalman filter is an optimal state estimator. In
Kalman filter case, the main process is excited by stochastic processes, also known as random
process noise, v and w as oppose to the deterministic process in observer case. An overview
of Kalman filter for state estimation is shown in Figure 8.1 (compare with Figure 7.1 for
observer overview).
/"]

y

A

X

Figure 8.1: State estimation overview with injected measurements and stochastic process

The idea with Kalman filter is that the covariance and the mean of the real states is the same as
the covariance and mean of the state estimates. Kalman filter assumes the gaussian distribution
for the states. After linear transformation using the linear process model and measurement
model, the distribution maintains its gaussian properties. This means that the mean and
covariance of the true states and the estimated states are the same after undergoing the linear
transformation using the linear model. For a system with gaussian distributed white noise
process and measurement noise, the Kalman filter is an optimal linear filter [16, p. 124].
Kalman filter is optimal in a sense that the covariance of state estimation error is minimized.
Kalman filter is able to estimate the covariance of the state estimation error influenced by the
stochastic processes w, and v (Figure 8.1).

Mean and covariance for an arbitrary vector z, is mathematically represented using the mean
and covariance operator as (8.1) and (10.10).

N
_ .1
z—E{z}—Alll_r)rc}oNsz (8.1)
k=1
N
1
Z = E{zz"} = Jim NZ(Z,( — )z —2)T (8.2)
k=1
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Where, N is the number of samples. The noise and state estimation error covariance matrices
based on (8.1) and (10.10) is given by:

X=E{ec™}=P W=E{wwT}=Q V=E{vv'}=R (8.3)

Where, ¢ = x —X. Sometimes, X, W and V are used interchangeably as P, Q and R
respectively. Q and R are known constant matrices. Dimension of these matrices are given in
Table 8.1. Q and R should be properly tuned for Kalman filter to work properly.

Table 8.1: Size of the covariance matrices used in Kalman filter algorithm for general system
(LHS) and for the model venturi flume (RHS).

P=X Q=W R=V

[n, x n,] = [3 x 3] [n, x n,] = [3 x 3] [n, xn,| =[1x1]

8.1 Linear Kalman filter

A continuous-time linear stochastic system with no direct feedthrough term in the output
(D, = 0), is described by (8.4) and (8.5).

6x = A.6x + B.ou +w (8.4)
6y =C.0x +v (8.5)

Where, w is the process noise and v is the measurement noise. w and v are uncorrelated, zero-
mean, Gaussian distributed, white stochastic noise processes [17]. For gaussian distributed
random processes, w and v, the sample mean, based on (8.1), is zero and is given as:

w=E{w}=0 v=E{}=0

With zero sample mean for random white noise processes, the mean of the true states is
unaffected for large number of samples. Therefore, the estimated states will have the same
mean as the true states after the linear transformation. A form of continuous-time linear Kalman
filter (LKF) resembles the form of linear Luenberger observer (7.8). The only difference is that
the observer gain, L. is replaced by Kalman gain K, as shown in (8.6) — (8.8).

8% = A6X + B.6u + K8y (8.6)
59 = C.6% (8.7)
A A —K,.C. (8.8)

Observer gain, L., is determined using pole placement method which requires a computation
of system eigenvalues. However, no information about the noise processes influencing the
system is required. To determine Kalman gain, K., a different approach is required. It is often
difficult to deduce the noise and disturbance information acting on the system. This makes it
difficult to tune noise covariance matrices (Q and R) to find proper gain. Next section discusses
the structure of K.
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8.1.1 Time varying Kalman gain

For a continuous-time system, Kalman gain is computed continuously using, so called,
continuous differential algebraic Riccati equation (C-DARE). C-DARE is given by (8.9). The
Kalman gain is given by (10.10). Such gain K, is sometimes, called an online Kalman gain.

P=A.P+PAT +Q —PCIR™'C,P (8.9)
K.=PCIR™ [K.]=[n,xny] (8.10)

Where, P,Q,R are covariance matrices given by (8.3). C-DARE is a matrix differential
equation which needs to be solved to determine K. For the case of venturi system, RK4 is used
as a solver. To solve a differential equation, a boundary condition is required. Often the initial
state estimation error covariance matrix is unknown due to the lack of knowledge of the system
states. In such cases, it is a good idea to define the initial state estimation error covariance
matrix as a diagonal matrix with a large impulsive parameter, §.

P(t0)=P0=6Inx, 6>>O

There is a built-in function in LabVIEW to solve C-DARE:s called “CD Continuous Algebraic
Riccati Equations.vi”.

8.1.2 Steady state Kalman gain

As the estimation system reaches steady state, the covariance matrix converges to a constant
value. This means that, at steady state P = 0.
. implies —
tll_)n; P=0——P->P
By setting P = 0 in equation (8.9), C-DARE becomes an algebraic Riccati equation (ARE).
Assuming that the P is constant at the steady state and matrices 4,C,Q and R are known
constant matrices, K. becomes a constant matrix too. Thus, it is a good idea to compute the
steady state Kalman gain offline. Such gain K_, is sometimes referred to as an offline Kalman
gain. Determining the Kalman gain offline reduces the number of steps to execute when
implementing the Kalman filter. There is no need to solve CARE to compute K,.. To compute
steady state Kalman gain in MATLAB, a function called “kalman.m” can be used. In
LabVIEW, a function that fulfills the purpose is “CD Kalman Gain.vi”. To determine the
Kalman gain, matrices Q and R must be tuned properly. For venturi flume, the values of Q and
R is determined using the data measured in the LAB. Using equations (8.2) and (8.3) and real
measurements, the knowledge of Q and R can be deduced. Q and R are time invariant constant
covariance matrices. So, the proper tuning of these matrices is vital for proper state estimation.

8.1.3 Stability of linear Kalman filter

After determining the Kalman gain, the poles of the transition matrix (8.8) for Kalman filter is
determined. Figure 8.2 shows the poles of the Kalman filter plotted together with the system
poles and observer poles. Kalman poles are extremely close to the actual system poles. Since
all the poles of the linear Kalman filter lie in the left plane of the complex plane and slightly
towards the left of the system poles, the estimator is stable.
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For controllability, it is sufficient to check the rank of the transition matrix (8.8) for Kalman
filter. If the rank is a full rank, then the Kalman filter is controllable i.e., rank (A, — K.C,) =
n,. Using MATLAB, the rank was determined to be full rank. Hence, the Kalman filter is
controllable. The controllability matrix of Kalman filter is the same as that of the linear
observer (10.10), provided that L, is replaced with K.

System, Kalman and observer poles (eigenvalues of Ac, )\)
T I I

1.5 T T T
p— o
Asys-ll AAc
1k & AL ]
X A ,=36%A, x|
> 051 O A ,T6.6%, .
g 0 Q + Akalrnan x # ?
g M
T 051 .
x|
AF -
_15 | 1 | | 1 | | 1 o
9 8 -7 6 5 -4 -3 -2 -1 0 1

Real

Figure 8.2: Poles of the Kalman filter and venturi model plotted in complex plane

8.2 Nonlinear Kalman filter

Linear model works fine for nonlinear models that can be approximated by a linearized model
around an operating point. For highly nonlinear model, the linearization tends to give improper
model approximation; specially, when operated away from the operating point. Thus, for highly
nonlinear models, linear Kalman filter (LKF) estimates are not optimal. Not optimal in a sense
that the covariance of the estimation error is large. For a linear model, the mean and covariance
of the state estimate after linear transformation remains the same as that of the true states due
to an assumed gaussian distribution. For nonlinear model however, the distribution after the
state transformation may not be gaussian. In such case, nonlinear state estimator is required.
Two of the nonlinear state estimator are extended Kalman filter (EKF) and unscented Kalman
filter (UKF). The algorithm for EKF and UKF for this thesis work is based on the discrete
system given by (8.11) and (10.10). The discrete nonlinear model is stochastic in nature with
additive process noise (w;) and measurement noise (v;). The dimension of each vector for a
given time instance is also presented below. For a given time instance, only one sample is
considered.

X1 = f (ko U, 6, t) + wy .11)
k1] = [xx] = [wi] = [n, x 1]
Vi = 9O, g, 0, ) + vy
(8.12)
[vi]l = [vi] = [ny x 1]

Where, 6 is a vector of the model parameters as listed in Table 5.3. The covariance matrices of
the white noise process are given by (8.3).
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8.2.1 Extended Kalman filter

In LKF, the model Jacobians A, and C, are computed once and are time invariant (constant).
In EKF, the model matrices change since the linearization is performed around the mean of the
current state estimates. This gives better approximation of the true states when linearized
around the current state estimates. Thus, A, and C, are time variant. The probability distribution
around the state estimates is, thus, gaussian. After the transformation, gaussian properties is
upheld by the estimated states [18]. Note that the transformation is still linear, but the linear
model is the best approximation of the nonlinear model around the mean of the current state
estimates. This idea is presented below as the step by step discrete EKF algorithm. The
algorithm is based on the discrete time nonlinear system (8.11) and (10.10). The algorithm can
be directly implemented in any programming language. LabVIEW is used for this thesis.

Some notations used in the EKF algorithm:

Apriori state estimate: X,

Aposteriori state estimate: X;°

Apriori state covariance matrix: Py,

Aposteriori state covariance matrix: P

Size of a matrix or a vector is given inside square braces. [A] = [r X c]. Where, A is an
arbitrary variable. r and ¢ represent the number of rows ann columns respectively.

Step by step EKF algorithm:

Step 0. Initialization step (runs only once)
0.1. Define process noise covariance matrix W and measurement noise covariance
matrix V given by (8.3). The dimensions of these matrices are:

W =E{ww™} [W]=[n, xn,]
V=Eww™ [V]=][n,xn,]
0.2. Initialize apriori state estimate based on (8.1)
Xo = E(xo) [%o]=1[n,x1]
X = EQq)  [X] = [ny x 1]

0.2.1. It is a good idea to set the initial apriori state estimate to be equal to the
initial value for the state based on the knowledge of the system

X, =Xy =X
0.3. Define and initialize state covariance matrix
Py = E{(xo — 20)(xo —25)"} [Po] = [, X my]
Pe = E{Ca — %) (o — )"} [Pe] = [ny Xy

0.3.1. If the initial state covariance is not known, use large scalar § to multiply
an identity matrix of proper size (given below)

Pi =Py =61y,

Step 1. Predict the output using the apriori state estimate and the measurement equation
(10.10)
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Ve =9(Xe,u,, 0,t,) [Vl = [ny X nx]

Step 2. Compute the matrix Cp,
2.1. For nonlinear measurement equation (10.10), the matrix C;, must be determined
by linearizing the equation around the mean of the apriori state estimate.

— ag (xk' U, 91 tk)

C
k oxt

[Ck] = [ny X nx]
(% uk)
2.2. For linear measurement equation, C;, can be constant based. If so, linearization
is not necessary, and the step is skipped by using the constant Cj,
Step 3. Compute the Kalman gain

Ky, = PeCL(CPeCE+ V)™ [Ky, | = [ne x ]
Step 4. Aposteriori state estimate using the Kalman gain
& =20+ K G 90 8] = [nex 1]

Step 5. Apriori state update
5.1. Using the nonlinear process model (8.11) and aposteriori state estimate, predict
the apriori state

5C\l;+1 = f(fl-c{-; U, 9; tk) [55]:4.1] = [nx X 1]

Step 6. Determine the time varying system matrix Ay
6.1. Linearize the nonlinear process model (8.11) around the aposteriori state
estimate

_ af(xk,uk, 9, tk)

A
i dxt

[Ak] = [nx X nx]
(% ux)
Step 7. Update covariance matrix
7.1. Predict the aposteriori state estimation covariance matrix

_ T
P¢ = (In, = Ky, C)Pi (In, — Kp, Cc) + Kp VK], [PE] = [ne Xy ]
7.2. Predict the aposteriori state estimation covariance matrix
Pir1 = AxPg Al + Wi [Pyl = [ny X ny]

Step 8. Slide one step forward
8.1. Update apriori state estimates

8.2. Update the apriori state estimation covariance matrix
Py = Piyq

8.3. Update the time instance k (slide 1 step forward)
k+1=k

Repeat the step 1 to 8 as long as required. EKF is explained in detail in [16, p. 400] and [17].
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8.2.2 Unscented Kalman filter

Linearization may not be a good approximation around the point of high nonlinearity. For
complex nonlinear model, the partial derivatives may not exist and computing Jacobians maybe
computationally demanding. These are some of the shortcomings of EKF. Instead of linearizing
the nonlinear model, as an EKF does, UKF approximates the probability distribution function
around the mean of the estimates. UKF generates a set of sample points that capture the mean
and covariance of the state estimates. These points are called the sigma points. Sigma points
are symmetrically distributed around the mean of the state estimation. These individual signa
points are easier to transform using the nonlinear model. Thus, the nonlinear transformation of
the signa points are performed. Such nonlinear transformation of signa points is known as the
unscented transformation. After the unscented transformation, the mean and covariance of the
transformed sigma points is calculated. The sample mean and the covariance of the transformed
signa points are the best estimate of the true mean and covariance. The signa points are
generated for both state equation and measurement equation. UKF uses the nonlinear models
which eliminates the error of linearization. The idea is presented below as a step by step
algorithm that can be used to implement directly in a programming language. LabVIEW is
used for implementing UKF.

Some important notations used in the UKF algorithms:

e Apriori is denoted by superscript -
o State estimate: X}
o Apriori state covariance: Py,
o A small perturbation to generate sigma points based on apriori state estimates
and aposteriori state covariance matrix: X;
e Aposteriori is denoted by superscript +
o Aposteriori state estimate: X
o Aposteriori state covariance: Py
o A small perturbation to generate sigma points based on aposteriori state
estimates and aposteriori state covariance matrix: ¥;'
e Sigma points: X7
o Transformed sigma points using state equation: J?E
o Transformed sigma points using measurement equation: )7,?

The UKF algorithm, step by step:

Step 0. Initialization (runs only once)
0.1. Define process noise covariance matrix W and measurement noise covariance
matrix V given by (8.3) with proper dimensions

W =E{ww'} [W]=[n, xn,]
V=Eww™ [V]=][n,xn,]

0.2. Define an initial expected value of the aposteriori state estimate at time k.
Expected value is the mean of the state estimate based on (8.1)

2y =E(x) [%5]=[n,x1]

Xy =ECq) (%] = [ny x 1]
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=
0.3. Define an initial expected covariance matrix of the aposteriori state covariance
matrix at time k
Py = E{(xo — %5)(xo —%5)"} [Po'] = [y X 1]
Pi = E{Co — ) 0o = 2D} [P{] = [y X 1y]
0.4. If the initial state covariance is not known, use large scalar § to multiply an
identity matrix of proper size (given below)
P¢ =Py =61,

Step 1. Generate sigma points
1.1. Number of signa points (1) to generate is related to the number of states (n,.)
in the system. To distribute symmetrically around the mean, twice the number
of states is enough to capture the mean and covariance of the state estimate
ng =2-ny,

1.2. Define matrix square root of the aposteriori covariance matrix

Sq:l_P = /nxplj [sq:l_P] = [nx X nx]

1.3. Take a column from the matrix square root to symmetrically distribute the
sigma points

SCI;:P]- =5sqnp(j,1) j=12,..1m, [SCI;:PJ-] = [1 X n,]
1.4. Define small perturbation from the mean of the current state estimate.

7+ j=1i a=1 1<i<n,

+
=a-sqip. 3. . .
L anJ{IZl—nx a=-1 n,<i<ng

i=12,..ng

[saini] = e x 11 [7F1= [0, x 1] [£7] = [0, x ]

1.5. Add the perturbation to the aposteriori state mean to generate a set of sigma
points

2O =xt+2r [#O]=ex1] (5] = [ xng)

Step 2. Perform unscented transformation to the sigma points using the nonlinear state
equation. The outcome is the set of transformed sigma points for estimated states

= @ (i . = @ "
2 = (AP web,t) =12, (28 | =[x 1] [28] = [ x 0]

Step 3. Determine the apriori mean and covariance of the transformed sigma points
which is the good estimation of the true mean and true covariance of the states
3.1. Apriori mean of the transformed signa points (using (8.1))
1
o oz @
Rer = R Bl = [ x 1]
$i=1
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3.2. Apriori state covariance matrix of the transformed sigma points (using (8.2)).
The process noise covariance is added to take care of the process noise.

ng
_ 1 s @ N(z © N _ _
Pry1 = _z (xlg+1 - xk+1) (xlg+1 - xk+1) +W i=12,..ng [Pl =[nyxn,]
s A
The matrix multiplication takes care of the X sign above. The proof is given in Appendix 8.
Working in matrix form, especially in MATLAB, the above algorithm can be written as:

1, - -
Py = n (fl(cfﬂ - J?Eﬂ)(??z?ﬂ - J?E+1)T + W
S

Step 4. Generate a new set of sigma points using the apriori covariance matrix
4.1. Determine the matrix square root of apriori covariance matrix

Sqnp = MuPiy1 [Sqnpl = [ne X 0y ]
4.2. Take a column from the matrix square root to symmetrically distribute the
sigma points

SQnp; = SqupU,:) J=12,..1ny [SqT_le] = [1 X n,]
4.3. Define small perturbation from the mean of the current state estimate.

Tszi a=1 1<i<n,

X, =a- squp; ) .
L ne j =i—n, ga=-1 n,<i<ng

[sarpT] = e x 1] (%71 = [, x 1] [7] = [, x 1]
4.4. Add the perturbation to the apriori state mean to generate a new set of sigma
points

@

~ ~— e o D) ~
200 =5+ 25, [3aC] = ex 1] [#4] = e x ]

Step 5. Perform unscented transformation to the sigma points using the nonlinear
measurement equation. The outcome is the set of transformed sigma points for
estimated output

3D @)

e =9 (551?+1(i):uk: 0, tk) i=12..n [yk ] = [ny x 1] [3751 = [ny xny]

Step 6. Determine the mean and covariance of the transformed sigma points which is
the good estimation of the true mean and true covariance of the output
6.1. Mean of the transformed signa points (using (8.1))

" IO 0
Ve = — E i il = ["y x 1]
Ng i=1

6.2. Measurement covariance matrix of the transformed sigma points (using (8.2)).
The measurement noise covariance is added to take care of the noise

IO™ 0 \(ag® N
P, = n—szizl (32" =9) (98" - 9) +v [B]=[nyxny]
6.3. Determine the cross covariance between the states and the outputs
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1O - O N T
Py = n_s 1 (xlg+1 - xk+1) (y;cT - Yk) [ny] = [Tlx e ny]

The matrix multiplication takes care of the Z sign above. The proof is given in Appendix 8.
Working in matrix form, especially in MATLAB, the above algorithm can be written as:

1, - 5 T
P, = n—s(f/f? =9I = 9) +V

LG o \ed o\
ny = n_(xl(cf+1 - xk+1)(yl(cr - YR)
S
Step 7. Determine the Kalman gain

Kf\, = PPy [ka] = [ xny]

Step 8. Predict the aposteriori state estimate and state covariance matrix
8.1. Aposteriori state estimate using the measurement

Rpp1 = Xpq + Kr, vk — 9i) [Rh1] = [ny x 1]
8.2. Aposteriori state covariance matrix
Plyy = Pryq — kaPnyTk [Peial = [y X ny]
Step 9. Slide one step forward

9.1. Update apriori state estimates
XK =

9.2. Update the apriori state estimation covariance matrix
P =Pl

9.3. Update the time instance k (slide 1 step forward)
k+1:=k

Repeat the step 1 to 9 as long as required. UKF is explained in detail in [16, p. 433] and [17].

8.3 Comparison between Kalman filters and observers
based on simulation

Kalman filters (both nonlinear and linear) and observers (both semi-nonlinear and linear) are
implemented in LabVIEW. The comparison of these estimators is presented in this section.

8.3.1 Comparison of online and offline Kalman gain for LKF

Figure 8.3 and Figure 8.4 shows the output of the Kalman filter for online and offline gain
respectively. An input with additive gaussian distributed white noise excites the both system.
The output is also influenced by an additive white noise. Kalman filter is able to filter out the
noise in both cases. There is not significant difference between both applications. This shows
that the Kalman gain calculated offline is just as good as the online gain. However, in case of
linear Kalman filter with online Kalman gain, more equations are involved that needs to be
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solved such as CARE and Kalman gain itself repeatedly since state estimation is performed in
loop. By removing these overheads, the implementation comes down to a two-equation
algorithm given by equations (8.6) and (8.7). Thus, the need for continuous calculation of the
gain is avoided and the efficiency of the system increases.
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Figure 8.3: State estimation applied on the venturi model using Kalman gain estimated online
with added synthetic noise in the input and the output
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Figure 8.4: State estimation applied on the venturi model using Kalman gain calculated
offline with added synthetic noise in the input and output

Comparison of online and offline Kalman gain on noise-free simulator is presented in
Appendix 9 Part 9A.
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When using LKF, EKF and UKF, covariance matrix for process noise @ and measurement
noise R must be tunes properly. For venturi model, since the synthetic noise resembles real
noise in level measurement at collocation point 1, it makes sense to define covariance matrices
is Q and R based on the real measurements. The values are presented in Table 8.2.

Table 8.2: Covariance matrices and noise variances used in Kalman filters

Kalman filter a?(w) a?(v) Q R

LKF, EKF, UKF 106 10~* | diag(1,0E-5,1,0E-2, 1,0E-2) 6,0E-7

8.3.2 Comparison of LKF, EKF and UKF

The result of state estimation using LKF, EKF and UKF based on the dynamic simulator of the
venturi flume is shown in Figure 8.5 and Figure 8.6. The reference states for comparison are
the nonlinear model states. Figure 8.5 shows the level estimates and level predicted by the
model whereas Figure 8.6 shows the mass flow rate estimates and the mass flow rate predicted
by the model. All Kalman filters are able converge to a steady state while also reducing the
noise in system. In case of level estimation, the noise negligible. Noise level in mass flow rate
is also minimal. However, LKF has a deviation since it is operating away from the linearization
point. In EKF and UKF, the deviation is non-existence. Based on Figure 8.5 and Figure 8.6, it
is clear that, the UKF performs better than other two version of the Kalman filter for all states.
UKEF is better in a sense that it responds faster and converges faster than LKF and EKF. LKF
has the largest overshoot and undershoot which can lead to unreliable initial estimates during
transient if the change in input is large. At steady state, UKF is noisier than LKF or EKF. This
is due to the fact that UKF responds faster to the input change. Since, the input is noisy, UKF
responds to it and the estimates are noisier than LKF or EKF.
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Figure 8.5: Comparison of Kalman filters based on level estimation (}7 =X = flz).
Simulator is excited by synthetic noise in the input (u = h;) and the output (y = h,)
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Figure 8.6: Comparison of Kalman filters based on estimation of mass flow rate
(%, = My, 23 = M,). Simulator is excited by synthetic noise in the input (u = h;) and the
output (y = hy)

In above case, the comparison is based on the noisy input and noisy output. For comparison of
Kalman filters on a system excited by noise-free input is given in Appendix 9 Part 9B. In all
cases, the EKF is better than LKF. UKF is better than EKF and LKF. Figure 8.7 shows the
complete picture of performance for all the Kalman filters based on mass flow rate estimation.
Input is changed multiple times. All Kalman filters perform ok but the performance of the UKF
stands out as it is robust, fast and stable than other version of Kalman filters.
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Figure 8.7: Flow estimation using LKF, EKF and UKF when input changes multiple times

8.3.3 Comparison of LKF and linear observer

So far, different types of observers are compared with each other. So is done with the different
types of Kalman filters as well. In this section, linear estimators, linear observer and the linear
Kalman filter, are compared. The result of comparison is shown in Figure 8.8 and Figure 8.9
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based on level estimation and mass flow rate estimation respectively. Both observers are run
in parallel with the nonlinear venturi model (simulator). Synthetic noise is added in input and
the output of the simulator.
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Figure 8.8: Comparison of linear estimators based on level estimation (37 =X = flz).
Simulator is excited by synthetic noise in the input (u = h;) and the output (y = h;,)
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Figure 8.9: Comparison of linear estimators based on estimation of mass flow rate
(552 =M, %; = MZ). Simulator is excited by synthetic noise in the input (u = h;) and the
output (y = h;)

Both types of estimators are able to converge to a steady state value for both level and mass
flow rate. The linear observer is placed 1.6 times to the left of the system poles. The LKF has
its pole close to the system poles as discussed in section 8.1.3 (Figure 8.2). Thus, the amplitude
of oscillation for linear observer is larger. Both estimators are able to filter out the noise
significantly. The noise in level estimates are almost non-existence whereas the noise in the
estimated mass flow rate is minimal. At steady state, both estimators show some deviation
given that they are operating away from the linearization point. In terms of noise handling,
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LKEF is slightly better than the linear observer; which is again, due to the faster poles in linear
observer that amplifies the noise. Although LKF performs better in terms of noise handling,
the design and implementation of linear observer is easier. Since, LKF needs properly tuned
covariance matrices Q and R. The process of tuning these matrices is cumbersome. The price
to pay here is the ease of design and implementation to the less noisy estimates. Since the noise
level in linear observer is negligible, although worse than LKF, the process of tuning Q and R
is avoided. Hence, linear observer is preferable than LKF. For additional comparison of linear
estimators excited by noise free input, see Appendix 9 Part 9C.

8.3.4 Comparison of EKF, UKF and semi-nonlinear observer

From previous comparison and discussion, it is shown that nonlinear estimator outperforms
their linear counterpart. Comparison of linear version of estimators showed that the estimation
is relatively similar. Due to ease of designing linear observer, it is preferred. This section
compares the semi-nonlinear observer to the nonlinear version of Kalman filters. Figure 8.10
is the level estimation and Figure 8.11 is the mass flow rate estimation. In both cases, all the
nonlinear version of estimators is able to filter out the noise just like their linear counterpart.
All estimators are able to converge to a steady state with no deviation which was seen in their
linear counterpart. Among nonlinear estimators, UKF performs better. One important
observation, though, is that the EKF and semi-nonlinear observer perform exactly same. Even
though, the observer is semi-nonlinear, it is as good as non-linear EKF. Based on these facts,
the conundrum is to choose between UKF or semi-nonlinear observer. In case of a system with
large number of states, semi-nonlinear observer can be easier to implement. In case of highly,
nonlinear system, UKF takes the upper ground since it can handle any nonlinear models.
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Figure 8.10: Comparison of nonlinear estimators based on level estimation ()7 =X = ﬁz).
Simulator is excited by synthetic noise in the input (v = h;) and the output (y = h,)
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9 Experimentation and results

So far, the state estimator and observer are implemented on the mathematical model and the
result is promising. However, the goal is to implement the observer and estimator on the real
system. This chapter casts light on how experiments are performed at the lab. A thorough
analysis of the performance of the state estimator on the experimental data is discussed here.
Some discussions about the different types of filters to filter out the highly noisy measurements
is presented as well.

9.1 Experiment

The experimental setup at the lab is shown in a P&ID in Figure 3.5. The non-Newtonian fluid
used for the experiment has a density of 1340 % as measured by the Coriolis meter. This fluid
gives a lot of bubbles at higher flow rates. To remove these bubbles, a mechanical filter is used.
Due to the constraint of the pump, the minimum flow rate the data can be acquired is 275 %

and the maximum flow rate possible is 450 %. Total of four experiments are performed. Each

experiment has two setups; up measurements and down measurements. For each setup, the mud
is sent through the venturi channel from a minimum flow rate to the maximum flow rate

: : K : .
incremented by either 50 or 75m—fn based on the experiment and then from maximum to

. kg .
minimum decremented by the same amount. Increment of 50 or 75 m—‘; is chosen so that the

change in level can be noticed during analysis as well as to stay within the range of allowed
mass flow rate. Table 9.1 shows the procedure used for up-down measurements for experiments
3 and 4.

Table 9.1: Experimental setup for up-down measurements at the lab

Exp, # Up mass Log time # of Down mass | Log time # of
Xp.
= flow rate (min) samples flow rate (min) samples
300 9 540 400 9 540
E3S1 350 9 540 350 9 540
400 9 540 300 9 540
275 9 540 425 9 540
E3S2 350 9 540 350 9 540
425 9 540 275 9 540
300 20 1200 400 10 600
E4S1 350 30 1800 350 30 1800
400 10 600 300 - -
275 30 1800 425 10 600
E4S2 350 20 1200 350 30 1800
425 10 600 275 - -
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9.1.1 Data acquisition

The data is logged 1 sample per second using a data logging application which is designed to
log only one sample for a sensor per second. For all of the experiments, levels at the two
positions are measured and the mass flow rate is measured. The position of LT19 and LT18
are c; = 21 cmand ¢, = 160 cm respectively. The length of between the two sensor positions
is L = ¢, — ¢; = 1.39 m. These positions are shown in Figure 3.2. Sensors used to acquire the
data are listed below:

e LT19 —radar level sensor
o Fluid level at the subcritical region.
o This is referred to as collocation point 1.
o The level measured here are the input (h;) to the system.
e LTI8 — ultrasonic level sensor
o Fluid level at the throat section (usually critical region).
o This is referred to as collocation point 2.
o The measured levels are the output (h,) of the system.
e FTI14A — Coriolis flow meter
o Mass flow rate (M) through the discharge pipe that connects that pump and the
channel.
o The measurements are only used for the comparison purpose. The
measurements are not used in the observer or model at all.

The setup of the venturi rig and the placement of these sensors at the lab at USN is shown in a
P&ID diagram (Figure 3.5).
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Figure 9.1: Visualization of raw measurements for level at two collocation points (top
subplot) and mass flow rate measurement (bottom subplot)
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Level and mass flow measurements using up-down technique is displayed in Figure 9.1. The
figure shows the unprocessed raw data from the experiment performed at the lab. Based on the
raw data plot, the radar sensor is less immune to noise than the ultrasonic sensors. The noisy
level measurement by the ultrasonic sensor is partly due to the fact that the point of
measurement (collocation point 2) lies in the throat section where the velocity of the fluid starts
to increase rapidly which causes some turbulence in the region.

9.2 Filters

Measurements are noisy as seen in Figure 9.1. Noisy measurements give noisy estimates. It is,
therefore, a good idea to filter out the noise prior to sending the data through to the estimator,
Kalman filter or Luenberger observer, as shown in Figure 6.1. In this thesis work, three of the
filters are investigated closely. The filters used are:

e Weighted moving average filter (WMAF)
e Lowpass filter (LPF)
e Median filter

Median filter is used directly from the built-in function in MATLAB called “medfiltl.m”.
WMAF and LPF are designed from the ground up.

9.2.1 Weighted moving average filter

For WMAF, weights have been assigned, wy, Wy, ..., w,,. The sum of these weights is equal to
1 (or 100%) as given by (10.10). The purpose of these weights is to weight the measurements.
The current measurements are the most important ones. The oldest measurements are the least
important ones. Hence, the current measurements are weighted more than the past
measurements. Formulation of WMAF is given by (9.1) — (10.10).

Nw
Zwi =1=100% ©.1)
i=1
nw
N = Z n; (9.2)
j=1
x¥=x(k:N+k) k=123,.., 0 (9.3)
Nw nj
%, = 2#2 xk (9-4)

Where, N is the number of samples to consider. n,, is the number of measurement sets N
samples are divided into. n; is the number of data samples for a given set and w; is the weight
for the set. Number of data samples for a given set can be different. X}, is the weighted average
of the N samples for a given time instance k. For venturi rig N is chosen to be 48 samples, n,,
is chosen to be 3. n is chosen to be 8 samples, n, is chosen to be 16 samples and n; is chosen
to be 24 samples as shown in Table 9.2. The largest subscript number corresponds to the most
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recent measurements. w; = 0.2 = 20%, w, = 0.3 = 30% and w; = 0.5 = 50% is given as
weights for each set. k is shifted by 1 for when a new measurement is available, k = k + 1.

Table 9.2: Distribution of data samples for weighted moving average filter

N = 48 divided into n,, = 3 w =1 (100%) divided into n,, = 3

nq n, ns W1 Wy W3
8 16 24 0.2=20% | 03=30% | 0.5=50%
9.2.2 Time constant lowpass filter
Transfer function for a first order time constant lowpass filter is given by (10.10).
s 1
AONS 9.5)
y(s) Trs+1

Where, yy is the filtered output, y raw signal as an input to the filter and T is the filter time
constant. Equation (10.10) can be written as an ODE using inverse Laplace transformation as:

Yr($)Ts + yr(s) = y(s)
Tfll_l(yf(s)s) + L1 (yf(s)) = L‘l(y(s))
Trye(t) + yp(£) = y(2)
yy = =) = ) (9.6)
f

Equation (10.10) is the first order ODE for continuous time - time constant lowpass filter. Using
backward Euler differentiation method, a discrete form of the LPF is determined. The reason
for using backward Euler differentiation method is because of the fact that only the previous
measurements are available.

Yie = Vi1

Yy = T (9.7

Vi ™ Vi _ e = Yie)

T T¢
After simple algebraic simplification, the final version of discrete LPF is given as:
Ve, = aye+ (L=a)yp, | 9.8)
T Tr
= 1—a-= 9.9
‘ <Tf + Ts> ‘ <Tf + Ts) &2
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A simple rule of thumb for choosing T is:

T,
T, <2 (9.10)

9.2.3 Filter comparison based on real measurements

Lowpass filter (LPF) and weighted moving average filter (WMAF) is implemented in
MATLAB. LPF and WMAP are applied to the raw level measurements only since the mass
flow rates measured by the Coriolis are only used for comparison purpose. A built-in median
filter from MATLAB, “medfiltl.m” is also compared here. The order of median filter is 66
which means that the median from 66 samples are calculated. The number of samples
corresponds to the one minute of measurements with 6 extra samples to handle the
measurement delays. Since the sampling time (data logging time) for the experiments is 1
second, the LPF time constant should be at greater than 5 seconds according to equation
(10.10). In this case, 16 second is used. The parameters for WMAF is given in Table 9.2. After
assigning necessary parameters for each filter, they are applied to the real measurements. The
result of the filter application on raw data is shown in Figure 9.2. Median filter is aggressive.
WMAF is slower than LPF and MEDF. All of these filters are good enough to use in this project
as all of them remove high frequency noise. MEDF is to aggressive which makes it difficult to
analyze the filtering ability of the estimators. WMAF is slow. Thus, LPF is chosen for the rest
of the thesis work. Therefore, LPF is also implemented in LabVIEW. The introduction of filter
removes the noise; however, it comes at a cost. The cost to bear when using a filter is that it
introduces a delay in the system and hence the state estimates are delayed.

Filtered vs Raw level measurements
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Figure 9.2: Deployment of different filters on the raw level measurements (real data)
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9.3 Comparison between the nonlinear model and the
real system

Until this stage, the mechanistic model of flow through venturi flume is formulated to represent
the real system. State estimators are designed based on the dynamic model. Even though the
model is stable, controllable and observable, it is important to compare it with the real system
to determine its validity. Thus, it is natural to perform open loop simulation and verify the
dynamic model of the system. The measured data represents the real system. In an open loop
simulation, the simulator based on dynamic model is run in parallel with the real system. The
simulator is excited by the real input level measurement. The states of the simulator are
compared directly with the states of the real system. States of the real system are the level
measured at the collocation point two (also the output of the system) and the Coriolis mass
flow measurements as shown in Figure 9.1. The result of the open loop simulation is shown in
Figure 9.3 and Figure 9.4 for raw input level measurements and filtered input level
measurement to excite the simulator respectively. The upper subplot on both figures shows the
level measurements at two collocation points, one (h,) for representing the input to the system
and the other (h,) to represent the output of the system. The lower subplot represents the mass
flow measurements at the aforementioned points. There is only one Coriolis flow meter used
for flow measurements. From these figures, it is clear that the predicted mass flow rate is a
good representation of the real mass flow rate. However, the level prediction is way off. This
is due to imprecise and uncertain model parameters. It is also important to realize that the
dynamic model is determined using two-point collocation method as discussed in section 4.2.1.
The model precision can be increased by using higher order interpolating polynomials i.e.,
using multiple orthogonal collocation points or PDE itself. Thus, open loop simulation is
inadequate. This is the reason why estimators are designed.
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Figure 9.3: Open loop simulation of real system and the model in parallel with unfiltered
(raw) input and output level measurements
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9.4 State estimator comparison on real system

The main goal of this thesis is to see if mathematical model of the flow through venturi flume
gives satisfactory flow estimation thus replacing expensive mechanical flow measuring
devices. The estimated flow can be used as a signal for kick-loss detection and much more.
This section discusses the implications of the flow estimation using linear and nonlinear
estimators. In earlier chapters, estimators are used on the dynamic model (simulator). The result
is promising. This is usually the case that the estimators work fine with simulator but with the
real system, the story is different. The model does not represent the real system with absolute
perfection due to uncertain model parameters and disturbances, as elaborated in previous
section. As with the simulator, linear and nonlinear estimators are applied to the real system.
The result is discussed in subsequent sub-sections below.

9.4.1 Comparison between LKF and Linear observer

LKF and linear observer are applied on the real system. The level measured by LT18 is used
as the feedback to the estimators. The level measured by LT19 is used as the input to the system.
The result of estimation is shown in Figure 9.5 and Figure 9.6 for raw input and the filtered
input signal respectively. Both estimators are able to minimize the error between model
predicted states and the real states. In terms of level estimation, both estimator produces good
result given how imprecise the model is according to the open simulation of Figure 9.3. In
terms of mass flow rate estimation, LKF performs better. The linear observer has faster poles
which amplifies the noise in the system. LKF is able to filter out the noise in the estimates due
to finely tuned noise covariance matrices Q and R. When the LPF is applied to the input and
output measurements, the noise amplification by the observer is reduced. However, there is a
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deviation in all cases when operated away from the operating point. Therefore, investigating
nonlinear estimators is important to see if the deviation due to linearization can be eliminated.
It is also important to note that the filtered input signal using LPF gives more robust and reliable
estimates (Figure 9.6). Thus, by filtering the high frequency noise in the input and the output
using LPF prior to feeding them to the estimator, the performance of estimators can be
improved. Although, the introduction of LPF introduces a small delay in the state estimates.
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Figure 9.5: Comparison of linear estimators based on real raw (unfiltered) measurements
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Experimentation and results

9.4.2 Comparison between EKF and UKF

The EKF and UKF are excited by raw input level measurements (h;) measured at the
collocation point 1, ¢;. The feedback data provided to the Kalman filters is the raw output level
measurements (h,) measured at the collocation point 2, (¢, ). The estimation result of EKF and
UKEF on raw (unfiltered) real system is shown Figure 12.2 and Figure 12.3 respectively.

T

Figure 9.7: State estimation using EKF with feedback from the real raw measurements

LR

Figure 9.8: State estimation using UKF with feedback from the real raw measurements
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Analysis of Figure 9.7 and Figure 9.8 gives an idea on the performance of nonlinear Kalman
filters. The error between the mass flow rate estimated by UKF and the Coriolis measurements
is smaller than the error between mass flow rate estimated by EKF and the Coriolis
measurements. In case of EKF, there seems to be some deviation in the mass flow estimates
for each flow rate measured by Coriolis flow meter. The deviation in UKF is negligible
whereas, the deviation in EKF is significant. Estimates given by UKF oscillate around the
actual measurements. At higher flow rate, due to near-turbulent flow occurring in venturi flume
during experiments, the level measurements at both points are noisy. This is partly due to the
bubbles that are produced when using the non-Newtonian fluid. This is reflected in the flow
estimation as well.
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Figure 9.9: Result of adjusted @ and R to minimize the noise in level estimates using UKF

When it comes to level estimates, both EKF and UKF give similar results. Notice that the level
estimates are too noisy. This is because the level predicted by the dynamic model is way off
the actual level measured at ¢, (see Figure 9.4). To minimize the noise in the estimates, noise
covariance matrices must be adjusted. When doing so, the noise is minimized but the deviation
of the estimated states and the real states increases. Trying to minimize the deviation between
the estimated states and the real states, the noise reappears. Adjustment to Q and R reduces
noise in the level estimates but the deviation is increased (see Figure 9.9). Further adjustment
gives almost no noise in the level estimates but the deviation between the estimated states and
the real state is maximized. This is true for both EKF and UKF. The solution is to use the LPF
to remove high frequency noises in the input and the output. This technique undermines the
very concept of the Kalman filter, which is to estimate the states as well as filter out the noise.
When the model is so much deviated, filtering out the output is a very small price to pay. It is
not possible to keep the filtering properties of Kalman filters and give precise estimates for a
deviated model. In addition to that, the goal of this thesis work is to estimate the mass flow
rate. So, filtering out the input and output measurements is reasonable if the flow estimates can
be improved. Thus, LPF is applied to both input and output level measurements. The filtered
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signals are then used in the estimators. The result of applying filtered input and output to
nonlinear Kalman filters is shown in Figure 9.11 and Figure 9.12. In both cases, the noise is
reduced and deviation between level estimates and the real level measurements is minimized.
The estimated mass flow rate, in any case, is undeterred. Even with the introduction of slight
delay in the state estimates due to the use of LPF, UKF converges faster than EKF.

]

S =N E

Figure 9.10: State estimation using UKF with filtered input and output measurement data

SEENENE

]
]

Figure 9.11: State estimation using EKF with filtered input and output measurement data
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9.4.3 Comparison between linear and nonlinear Kalman filters

UKF and EKF are compared in previous section. The verdict is that UKF gives better, reliable
and robust estimates than EKF. As with EKF and UKF, an LPF is applied to the input and
output before feeding the signals to the LKF. The result of filter on LKF is shown in Figure
9.12. Comparing Figure 9.12 with Figure 9.10 and Figure 9.11, it is simple to conclude that
LKF gives reliable estimates around the operating point. As the operation moves away from
the operating point, the accuracy of estimates reduces. Based on faster response, less deviation
between estimated states and real system and robustness of the estimator, UKF is superior to
LKF or EKF. Hence, UKF is preferable.
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Figure 9.12: State estimation using LKF with filtered input and output measurement data
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10 Discussion

This section discusses the limitations and possibilities of the methods used in this report. Some
insight to the future work on flow estimation is also suggested in this chapter. An alternative
methods of flow estimation using artificial neural network (ANN) is also proposed here.

10.1 Limitation of the proposed flow measuring
technique

Although, Coriolis is expensive, it not only measures the flow rate (both mass and volumetric),
it also measures the density of the fluid and, in some cases, viscosity. The proposed
mathematical model is restricted to estimating the flow rates (both mass and volumetric). Some
modern flow meters come equipped with temperature sensor as well. This information can be
harnessed to analyze the condition in the bottom hole. It is also important to remember that the
physical model presented here assumes that the density of the returning fluid is constant. This
is unlikely to be the case in the real-world scenario. Two-point collocation method can be
improved by using higher order Lagrange interpolating polynomials to represent the PDEs.
Two-point ODEs are the simplest form of the nonlinear model. Thus, there is a room for
improvement. In case of level estimation, the model does not depict the real system. This must
be re-calibrated if the two-point ODEs are to be used in further studies.

10.2 Use of state estimation in control system

In oil-industry, flow estimation is important to detect kick-loss phenomenon for safe operation.
The linear and nonlinear estimators can do the job. However, this is not the only use of
estimators such as Kalman filters or Luenberger observer. The estimated state can be used
further in designing a control signal for mud-pump. An estimator can also help in designing a
predictive controller such as MPC or aid in designing an optimal feedback controller such as
PID. This section discusses the use of state estimator in a control system.

Let’s start with a brief introduction to a controller. A simple controller is a machine that
generates a control signal, digital or analog, based on the feedback data from available sensor
measurements, again analog or digital. An optimal control signal, therefore, depends on the
measured states as given by a relation (10.1). The control signal is used to excite the system
(10.2) with the help of an actuator to bring the system from an initial state to a desired final
state. Due to lack of sensors to measure some of the states, a state estimator is used. Estimated
states are then fed back to the controller. Using the available measurements and the control
signal for a given time instance, states are estimated. The estimated states can then be used to
design a suitable controller such as MPC or PID. The controller generates a control signal based
on a relation (10.10). A block diagram of a closed loop feedback control system with state
estimator is given by Figure 10.1.

u=-—G6Gx (10.1)
x=f(x,u,6,t) (10.2)
u=—Gx (10.3)

101



Discussion

Where, G is a state feedback gain matrix (time invariant constant matrix) and G is the new state
feedback gain matrix based on the estimated states

[ Plant lW |
u
B Controller IR Actuator B s
A |
L Xerd y
Emm— Observer W<—
i A

y

Figure 10.1: State feedback control system with estimated states

10.3 Reduced order observer

In most of the system, only some of the states are measured. For such system, it makes sense
to estimate only the states that are unmeasured. This means that the full-state vector is
decomposed into measured and unmeasured states. The observer is designed only for the
unmeasured states. Thus, the name reduced order observer. The reason for doing this is that
computation time for estimation is reduced if the system order (number of states), n, is large.
For computational efficiency, reduced order observer is preferable. The derivation of a reduced
order observer is given in Appendix 10. A brief summary of the reduced order observer is
presented here. Consider a state vector x with n, states. It is composed of measured states, x,,

and unmeasured states x,. Thus, x can be decomposed as shown in (10.10).
. xp] _[*»
%= [xq X = [xq] (10.4)

A linear state space model and linear state observer in decomposed form looks like:

Xp = AppXp + Apgxq + Byu X, = AppR, + ApgRq + Byu + Ly — L9 (10.5)
Xg = AgpXp + AggXq + Bu  %q = AgpRp + AggRq + Bau+ Lgy — Ly (10.6)
y=Cpxp+ Coxqg Y =0CpXp+ ChXy (10.7)

Where, Xp is a vector of measured states and X4 is a vector of unmeasured states, n, is the
number of total states (system order), n, = n,, is the number of measured states and n,
is the number of unmeasured states.

ne =Ny, +ng

After performing some algebraic manipulation, following observer state equations in
reduced order form is determined.

2= (Agq = LgApq)2 + (Bg — LqBp)u + (Agqlq — LaApqLq + Agp — LgApp)x,  (10.8)
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Where,
z% x,—Loxy, 28Ry —Lgx,,  Z2E R —LgXy, R, ¥ 2+ Lgx,
Thus, the unmeasured states are given by:
Xg=2+Lgxy, (10.9)
The error dynamic for reduced order observer is given by (10.10).
g = (Agq — LyApq) &g (10.10)
Where,
gq = Xq — X
If the error dynamic is asymptotically stable, then the observer is stable. For the error
dynamic to be asymptotically stable, matrix (Aqq — Lquq) must be Hurwitz.

The reduced order observer is ready to be implemented in a programming language of
choice. For venturi system, the level at ¢, is measurable state. Hence the number of
measured states is 1. The number of unmeasured states is two, mass flow rates at two
collocation points. Therefore, the reduced order observer state takes the form of:

Xp = [hz] Xq = [Mj Xq = IIVI1
2

10.4 Artificial Neural Network

The world is moving faster than ever when it comes to new technologies. The talking point in
today’s tech-world, everyone’s lips is ANN. In this section, a simple back propagation-based
ANN algorithm is used. Rather than going into the math behind ANN, a built-in MATLAB
tool is used.

Synapse with

( associated weights

-

Output
Neuron

Neurons

Hidden
layer

Figure 10.2: A simple sketch of artificial neural network

The main overview of ANN consists of input neurons, synapse with associated weights, hidden
layer and output neurons. An ANN with two input neurons, three hidden neurons and one
output neuron is shown in Figure 10.2. The value of each input neuron is weighted with
(multiplied by) an associated weight. Each neuron in hidden layer sums the weighted values
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from the input neuron and sends the sum through a sigmoid function to scale the value between
0 and 1. The same procedure follows to the output neuron. The sum of the weighted values
from previous layer is passed through the sigmoid function again. The result is the predicted
output. In backpropagation algorithm, the predicted output is subtracted from the actual output
and the error is then propagated backward in the network to adjust the weights. This is similar
to an optimization (error minimization) problem as discussed in section 5.2.5.

For venturi model, two input neurons, two hidden neurons and one output neurons are selected.
ANN tool of MATLAB initializes the weights randomly Input neurons are represented by the
level measured at c; and ¢, as h; and h, respectively. The output is the predicted mass flow
rate. After training the network using Bayesian Regularization algorithm, an ANN prediction
model is produced. Using the model, the flow rate is estimated. To avoid over fitting, the
training is done using data set from experiment 4, “E4S2”. The prediction is based on the data
measured using experiment 2, “E2S1”. The result is shown in Figure 10.3. The mass flow rate
predicted by ANN with two hidden layers is better than Kalman filters or observers. However,
this model maybe overfitting and more dynamic data needs to be recorded to rely on the
prediction. Dynamic data means that the data for different fluid types with different viscosity
and density as well as level measurements at different flow rates.
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Figure 10.3: Mass flow rate predicted by ANN with two hidden layers. LT19 as input neuron
1, LT18 as input neuron 2.

10.5 Future work recommendations

Analysis of ODEs for two collocation points shows that the model describes the venturi system
dynamics in an acceptable way. However, the model improvements are necessary. Specially,
for predicting the level at collocation point 2. This can be done by using ODEs for 3-point
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collocation method currently in the work at USN by a fellow PHD student. Some of the
recommended works are listed below:

Implement the reduced order observer for estimating the mass flow rates for venturi
channel since the level are already measured
Design and implement adaptive observer
o Since the model parameters are uncertain, they can be adapted so that the
estimation error is minimized
o There are some parameters in the venturi model that can be adjusted for different
flow condition and fluid types as well as the type of the channel. For instance,
p and kg can be adjusted for different flow rates. Thus, observer that adapts
these parameters is a good way to move forward
Design and implement nonlinear observers
Design and implement PDE observers
o The best possible model for the venturi channel is the PDE model. An observer
based on PDE model could give better estimation
Prediction error methods (PEMs) can help in system identification (identification of
state space model)
Incorporate ANN with deep-learning
Incorporate mechanism to handle the computational time delay and filter time delay by
augmenting them with output delay model
If case of failed measurements, the apriori state estimates can still be used for
approximate knowledge of the system. Reading storing apriori state estimates, is thus,
a good idea. This is helpful specially during drill-bit changing process

10.6 Codes and programs

All of the programs and codes used throughout this thesis work are given in Appendix 11. The
primary programming language is LabVIEW and MATLAB with Simulink. GUIs are
developed for user interactions.
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11 Literature review on design of
observer based on PDE

Some versions of the linear and nonlinear estimators have been investigated during this thesis
work. It is well known by now that the nonlinear model can be improved, and the estimation
can also be improved. The best form of estimator out of the investigated methods is the
nonlinear estimator, specially UKF. However, UKF was unable to filter out the level estimates
due to deviated dynamic model. Deviated in a sense that the level predicted by the mathematical
model is way off when simulated in open loop with the real system. To make the deviation
minimum, ODEs derived using higher order Lagrange interpolating polynomials such as 3-pt
ODEs are required. Even better would be to use PDEs itself given by SVEs of (4.1) and (4.3).
Therefore, observer based on PDEs should be an optimal way of flow estimation.

There have been some works on designing PDE observers for quasi-linear hyperbolic PDEs.
These observers are suitable for venturi system since the PDEs for describing the top-flow for
venturi channel is of type quasi-linear hyperbolic PDEs as discussed in section 4.1. Here is the
list of previous work that can be beneficial for future work on observer design for PDEs:

1. PDE observer design for counter — current heat flows in a heat-exchanger. [19]

a. This work focuses on estimating the temperature profile along the pipes of a
plate heat-exchanger. The PDEs used to describe this system is first order and
hyperbolic in nature.

2. Adaptive observer design for parabolic PDEs. [20]

a. This work discusses the observer design for 1D parabolic PDEs based on
backstepping methodology to handle the model parameter uncertainties. This
idea can be useful since some of the model parameters such as 8 and k; can be
adapted.

b. The approach used in this work suggests recasting PDEs as convex optimization
problem

3. Backstepping observers for a class of parabolic PDEs. [21]

a. This paper focuses on designing exponentially convergent observers for
parabolic partial integro-differential equations (PIDEs). It has some connection
with hyperbolic PDE which is the case in venturi models.

b. Useful with process with boundary conditions

4. Boundary observers for linear and quasi-linear hyperbolic systems with application to
flow control. [22]

a. Considers the boundary observer design for 1D strictly hyperbolic systems

b. A technique based on Lyapunov functions

c. Considers both static and dynamic boundary controls for the observer design

5. An Efficient Implementation of Backstepping Observers for Time-Varying Parabolic
PDEs. [23]

a. A computationally efficient implementation of backstepping-based state
observer for 1D PDEs

b. It produces a set of first order ODEs which are solved using Euler backward
differentiation method for computational efficiency

c. Evaluation of impact of this method is described using numerical simulations
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6. Backstepping-based extended Luenberger observer design for a Burgers-type PDE for
multi-agent deployment. [24]

a.

b.

A form of an extended Luenberger observer for a burgers-type PDE

It considers the boundary condition for solving PDEs which is suitable for
venturi systems as well

It uses backstepping technique to stabilize the parameter observer error
dynamics

The concept is based on feedback control strategy
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12 Conclusion

Final concluding remarks are summarized in this chapter. This thesis work covers vast array of
information from system stability to observer design. The idea of this work is to design suitable
observer that can aid in estimating mass flow rate so that the expensive Coriolis flow meters
can be removed from the system. To investigate different estimators that can be used in oil
industry, a background of the problem is necessary. All of this information is divided into
chapters sequentially above. Each chapter acts as a link between the two adjacent chapters.
Thus, chapter-wise conclusions are presented below to conclude the results and findings of this

report.

e Oil well drilling operation

©)

In oil well drilling operation, non-Newtonian fluid is used to lift out the rock
cuttings as well as maintain the well pressure in order to prevent the well-blow
out. The other important purpose of drill mud is to cool the drill bit.
Knowledge of the returning flow is vital for safe operation as it helps to detect
kick-loss phenomenon. Information about kick-loss event can aid in
determining the mud type to be used so that the bottom hole pressure is
maintained, and potential hazardous situation is avoided

e Flow measuring technique

(@]

(@]

Current flow measuring technique used in oil industry such as angle-based
paddle meter or Coriolis flow meter are either unreliable or expensive
A model-based estimation technique is cheaper and reliable since they do not
have mechanical parts that need repair or maintenance
= A dynamic model of the venturi flume is a good candidate for flow
estimation
Proposed flow measuring technique is based on open channel venturi flume
which is trapezoidal in shape
= The returning mud from the well is sent through the venturi flume where
the levels are measured. Using the measured levels, flow can be
estimated
= Levels are measured at specific points called collocation points. These
points are chosen to satisfy a condition (1.1). One point must be at a sub-
critical region of the flow and the other point must be around critical
region such that the condition (1.1) is satisfied.
Venturi rig is built at the lab at USN. The data logged from the rig are
represented as the real system for this thesis work
= LTI18 is ultrasonic level transmitter that measures the level at a point and
acts as output to the system
= LT19 is radar level sensor that measures the level at the other point and
acts as input to the system
=  FTI14A is the Coriolis flow meter that measures the mass flow rate which
is only used as a reference during analysis

e Modeling of flow through an open venturi channel

©)

A dynamic model for 1D unsteady flow through nonprismatic open venturi
channel is developed
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The model is described SVEs. SVEs for one spatial dimension are a class of
quasi-linear hyperbolic of PDEs.

Using orthogonal collocation method, PDEs are reduced to a set of ODEs that
are used to design suitable nonlinear and semi-nonlinear estimators such as
semi-nonlinear Luenberger observer, EKF, UKF

The ODEs are linearized using Tylor series expansion. The linearized ODEs are
used for designing suitable linear estimators such as linear Luenberger observer
and linear Kalman filter

e Model analysis and simulation

©)
@)

o

Linear ODE:s are analyzed for stability, controllability and observability
Stability analysis is performed based on the analysis of the system poles
(eigenvalues). The ODEs for venturi channel are found out to be stable
Linear model is both controllable and observable since the rank of
controllability and observability matrix is full rank
Venturi model consists of multiple model parameters. Their sensitivity is
analyzed using differential sensitivity technique, sensitivity index, and
correlation
= Parameter W, is the most influential and p is the least influential for h,
= Parameter W, is the most influential and ¢ is the least influential
parameter for both M; and M,
Linear model works better around the operating point. As the operation moves
away from the operating point, the linear model prediction becomes less
accurate. Thus, it is important to choose a proper linearization (operation) point
during linearization

e Highway to state estimation

o

o

o

Not all states are measurable. However, all states are important to describe a
dynamic system. Thus, it is important to estimate the states

Estimated flow rate can be used to detect early warning of kick-loss event in oil
well drilling operation

Out of many state estimation technique, this thesis focuses on designing
Luenberger observer and Kalman filter

e State Observer

o

o

o

A state observer is a system that estimates the states of a system. A full state
observer estimates all the states, both measurable and unmeasurable states
The purpose of state observer is to estimate states and minimize the error
between the true states and the estimated states. This can be done by defining
estimation error dynamic and forcing it to go to zero as t —
Luenberger linear state observer is designed using pole placement technique
= Luenberger observer are based on deterministic system
= (QObserver poles are placed at any arbitrary location in the left half of the
complex plane such that the error dynamic is asymptotically stable
= (QObserver gain is determined by placing the poles of the observer at the
left half of the complex plane.
e Further to the left the poles are placed, the faster the observer
responds. However, this amplifies the noise in the system.
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= For stability of error dynamic, the poles (eigenvalues) of the error
dynamic system matrix is determined. Since, the real part of the
eigenvalues is negative, error dynamic is stable
= Observer must be observable as well.
e Controllability matrix of an observer state space model is the
same as the observability matrix of a linear state space model
e Since, the linear model is observable, the observer is controllable
as well i.e., rank of observer controllability matrix is full rank.
A semi-nonlinear observer uses the observer gain determined based on the linear
model matrices but uses nonlinear model to predict the apriori state estimates.
Both linear observer and semi-nonlinear observer produced satisfactory
estimates based on simulator. However, semi-nonlinear observer worked better
when operating away from the linearization point.
Linear and semi-nonlinear observer are able to reduce the noise in the system.
However, if the poles are placed far to the left, the noise is amplified.
Error dynamic in terms of linear observer showed deviation when operated
away from the linearization point, as expected. The error dynamic in terms of
semi-nonlinear observer is asymptotically stable at any point of operation.
= Thus, semi-nonlinear observer is a better choice than linear observer
when working with the mathematical model

Kalman filter

o

o

Kalman filter are based on stochastic system meaning that it incorporates the
information of the process and measurement noise in the system
Linear Kalman filter resembles the linear Luenberger observer. Both estimators
are designed based on linear ODEs
Kalman gain is determined either offline (steady-state) or online (time-varying)
* In case of time-varying Kalman gain, a C-DARE must be solved. In this
thesis work, RK4 is used to solve C-DARE to compute Kalman gain
= Jtis found out that time-varying Kalman gain very quickly converges to
a steady state value. Thus, it can be calculated offline to simplify the
linear Kalman filter algorithm
Nonlinear Kalman filters such as EKF and UKF are designed using nonlinear-
ODEs
= EKEF linearizes the ODE around apriori state estimates. Therefore, the
model matrices are time-varying in contrast to the time-invariant model
matrices for LKF.
= UKF uses unscented transformation technique. It generates a set of
sample points that capture the means and covariance of the state
estimates and transforms them using the nonlinear ODEs. The mean of
the transformed points gives a better approximation of the true states.
UKEF is faster than EKF and LKF in case of model. All Kalman filters are able
to reduce the noise in the system. There is minimal deviation between the true
state estimates and the real states when UKF or EKF is used. The deviation is
evident when LKF is used. Thus, EKF is better than LKF in a sense that EKF
reduces deviation. UKF is better than EKF in a sense that it converges faster,
and the estimates are more robust
EKF and semi-nonlinear observer perform exactly for the simulator
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LKF and linear observer performed similarly but noise is amplified by faster
observer poles. LKF is able to reduce the noise more than observer because
noise covariance matrices for LKF are tuned properly
= Linear observer is easier to implement as it does not rely on tuning noise
covariance matrices which can be cumbersome

e Experimentation and results

@)
©)

Data is logged 1 sample per second from LT18, LT19 and FT14A
Since measurements are noisy, three types of filters, MEDF, WMAF and LPF
are compared

= LPF proved to perform better
Comparison of nonlinear model and real system shows that the level predicted
by model are way off. This is potentially due to improper model parameters
LKF and linear observer performed relatively well around the operating point
UKF converges faster than EKF even with the delay introduced by the use of
LPF. Thus, UKF is better than EKF. Although, EKF is easier to implement and
computationally less heavy than UKF
The price to pay when choosing UKF is that it is computationally heavy. It has
more algorithms to execute than EKF or LKF. Even though the computers are
extremely powerful today, for a system with multiple states, the execution time
has a huge impact on the system performance. Although, for a venturi system
described by two-point collocation method, UKF is preferable

e EKF is suitable for mildly nonlinear systems. It may fail for highly nonlinear systems.
UKEF does not rely on linearization. Thus, it is an optimal choice unless computation
time is of concern.

A final statement based on the result and observation is that the flow estimates by 2-pt models
are promising. A better version of the dynamic model such as 3-pt models can improve the
estimates. Therefore, it is safe to say that for a proper dynamic model, the proposed flow
estimation technique can replace expensive Coriolis flow meter. The potential of UKF is huge.
For better estimation, observer based on PDEs are recommended.
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Appendix 1 ODEs in terms of changed variables

Part 1A ODE:s in terms of h and M

Changing wetted cross-sectional area (A) and volumetric flow rate (Q)as states with level (h)
and mass flow rate (M).

- h A > h
5> MTQ - M

A
Q

Procedure to change the states:

From equation (4.8), area is a function of level
A=Sh*> +Wh
Take the time derivative on both sides

dA dh? W dh
dt S dt dt
dA dh? dh dh

2 Sanae T Va

dA dh dh
E = ZSShE + W E
dA dh
dA dh : )
i D It = A =Dh
o From equation (4.9), scaling variable D is defined as:
D =2Sh+W
Express the level as state
dh 1dA . A

—_—,—,—,— h - —

dt Ddt D

Expressing volumetric flow rate as mass flow rate
o Volume and mass relation

m
V=—
p
o Take the time derivative on both sides
av B 1dm
dt p dt
St av B dm _
et dt Q, dt
1
Q=-M (al)
p

Take the time derivative on both sides again
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aQ 1 dM
— =
dt p dt p

e Express mass flow rate as the new state

dM dQ W )
—_— _— = =
at  Pdt PQ
Table 12.1: States defined at different collocation points (1, 2) using the new state variables
. . . . . 1. . 1.
A1 = Dlhl AZ = Dzhz Ql = _Ml Qz = —M2
p p
A A o o
h1=D_1 h2=D_2 My =pQy M, = pQ,

e Express the ODEs given by (4.15) to (4.18) with new states by substituting equations
from Table 12.1 the new ODEs are derived below.

o Changing 4, to hy

1
A = —Z(—Q1 + Q2)

1/, M, M,
b =7 (-5 +7)
(Ml - MZ)
h=—"%
pLL,

o Changing 4, to h,

1
A; = _Z(_Q1 + Qz)

D = 1( M, M2>
2Y2 L p p
. (My — M)
’ pLD,
o Changing Q1 to M1
. B Q% Q3
h=-7 Al + AZ ( I, +11,) +22 ( Wi+ W) + gAi(Sp = 57,
1 2
. B0} 03 ghz
Q1= L A_i_Az tT (111 112)_Z_L:L(Wl_WZ)-I_ngAl_gAlel
4
. ,B 2 Q th QllQlln P}
Q1= Z A_l_A_z +Z(111 112) _Z_Ll(Wl - Wz) + g9S,A; —gAle
1

3
A
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M 1 /M2 1 h?
1 ﬁ<_(_1) AZ > (111 112) g 1 W W2)+ngA1
4
3

AT Inm

A

=Wl
I—P

gM1|M1|nm P}

1=

B (M M3\  pg pghi
— (I, —1;,) ———— (W, — W- SpA
pL A1 Az (11 12) oL A 2) + pgSpAs — P .,

SYREN

o Changing Q, to M,
: B Qi Q3 gh3
0 =-7 —A—1+A2 ( Ly +I,) + 55 (W + Wa) + Ao (S, = 57,)

YA gh3
Q= I -2 +_(111 112) 2(W1—W2)+ngA2_gA25f2

Ap 4
4
) B (Q? 2 g gh? Q2|Q2|nm P}
0= (=L —22) 4+ L1 — 1) - L2 Wy — W) + 9§y, — gA, 22
2=7\a, 4, L(11 12) o 1 2) T §orsiz = 42 A%
M, B(1Mp* 1 Mz ghs
LB L) () )+ L - n) - SR on - W + g,
4
M, M 2 p3
plpl ™2
z
A

NS

g MalMs

. _ B (MP M3\ pg pgh3
M, L2 )+ (I, — Iy,) — o2 (Wy — Wh) + pgSpAy — =
L 2L p A

N W[

Part 1B ODEs in terms of h and Q

1
A = _Z(_Q1 + Qz)

. 1
hy(25shy + W;) = A (—Q; +Q2)

(=01 +Q2)

AN

’:llz_
_ 1
Ay == (=01 +0)
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- (FQ+ Q)
h, = — =/
L(2Ssh, + W)
: B Qf Q3\ g ghi
Ql = —Z _A_1+ AZ _Z(_Ill + 112) +T(_W1 + Wz) +gA1(Sb _Sfl) = f3
: B Qf Q3 g( Ss w, S
—_P(_ h —B2 2240 )
Q=TT rwn TS rwon,) L 3t thes
h?
+ &( W, + W,) + gS,(S.h2 + Wlhl)
QllollnM(Wl +2hyy/1+ 52)3 _f
3
6h+mmp
- B{ Qf 0Q3\ g ghs
Q:=-7 T a —z(—lll+112)+Z(—W1+W2)+g,42(5b—5f2)=f4
: B Qf Q5 g( W Ss Ss
- _P_ — (22— R34 p2—= 4 p3 )
Q2 L\ S.h? +W1h1+55h§+W2h2 L\ T 22 23
h2
+g—2( W, + W,) + S, (S.h2 + thz)
QZlQZlnM(WZ + 2h2\/ 1+ 52)3

= fa
6h+%@ﬁ
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Appendix 2 Tylor series expansion and Jacobian matrices

The nonlinear state and the measurement equations for a deterministic system are given by:
x = f(x,u)
y =g u)

e u could be a vector with n,, elements or a scalar with one element

e x could be a vector with n, elements or a scalar with one element

e y could be a vector with n,, elements or a scalar with one element

e f could be a vector function with n,, member functions or a scalar with one function
e g could be a vector function with n,, member functions or a scalar with one function
e f and g depends on the number of states and the number of outputs in the system

Function values around the linearization (operating) point Xy, Ugp, Yop:
Yop = f (Xops top)

Yop = g(xop' uop)

Linearizing the state and measurement equations (RHS) around the operating point X,, Uy,
Yop using Tylor series approximation:

Of (xop, u of (Xop, U
flx,u) = f(xop,uop) + % (x — xop) + % (u — uop)
Xop,Uop Xop:Uop
+ HOT
ag(xop, u dg(x,p,u
g0, u) = g(xop uop) + % (x — xop) + % (u—upp)
Xop Uop Xop,Uop
+ HOT

flu) — f(xop' uop)
_ af(xop'uop)
B 0x

of (Xop» Uop)
O T

Xop Uop

(u—uop) + HOT

Xop Uop

g(x: u) - g(xop' uop)
_ ag(xop'uc)p)
- 0x

6g(x0p, uozo)

(x — xop) + 0 (u—upp) + HOT

Xop:Uop Xop,Uop
Substitute the following and remove the higher order terms (HOT):
f(x,u) = x, f(xop»uop) = J'Cop
g(x: u) =y, g(xop'uop) = Yop
The new refined equation becomes:
: af of
X —Xop =75 X—Xop) +7— u—u
P T Gy *optiop ( op) Ml ( op)
ag ag
Y = Yop = a ropsiop (x xop) + % — (u uop)
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Define deviation variables:

X — Xop = 0%, X — Xop = OX, U= Uy, = OU, Y= Yop = 6y (a2)
Where,
(0h Oh  Oh) (0h Oh &
dx; 0x, 0xy, Ju; OJu, Uy,
of 0L 9 = Of of 9f 0f O
- =|0x dx dx, |, = =|0du; OJu Jdu
0x Xop:Uop : ' : : .. :nx ou XopUop : ' : ’ . :Tlu
0fn, O, Ofa, Ofn, O, O,
| 0x;  0x, 0xp, | | du;  Ou, ouy,, |
(09, 091 O61] (091 091 961]
dx, 0x, 0xp, du; Jdu, oup,
dg 992 992 9921 4 992 092 99
— =|0x; 0xy 0xn, |/ — =10u; OJdu, oup,
0x XopUop : : .. : ou XopUop : : .. :
99n, 09n, 99n, 99n, 09n, 99n,
| Ox;  Oxy 0xy_ | | du; Ouy duy, |

Define Jacobian matrices (system matrices):

af of ag ag
Ae=5x Pe = u ‘e =9x =9 @3)
XopUop XopUop XopUop XopUop
e The dimension of these matrices is:
[Ac] = [nx X nx] [Bc] = [nx X nu] [Cc] = [ny X nx] [Dc] = [ny X nu]
State and measurement equations in deviation form for deterministic system
6x = A.6x + B.Su
6y = C.06x + D .0u (ad)
Full form of state and measurement equations for deterministic system
X = Xop + Ac(x — xop) + Bc(u - uop) (a5)

Y = Yop + Cc(x — xop) + Dc(u — uop)
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Appendix 3 Linear model matrices, alternative form
Part 3A System matrices in terms of A and Q
0f, 0f; 0fz] %
0A, 00Q, 00, 044
_|9fs dfs 0fs _10f3 _[091 0g1 0g1
Ac - ’ Bc 131 I’ Cc -
04, 0Q; 00, 04, 04, 0Q; 00,
of, 0fi Of; of,
04, 0Q; 0Q] [0A,
Where;
f> = equation (4.16) f; = equation (4.17) f, = equation (4.18) g = A4,
dhy| 1
dAl op \/VVlZ + 4AlopSs
dhy| 1
dAZ op \/M/ZZ + 4A20pSs
dp 2,1+ 82 dh,
Al = — =21+ SEg
op \/le + 44, S !
dP 2,1+ 82 dh,
aa,), — =21+ s
2lop \/WZZ +442,,Ss 2
0fs
Ag,, = 94, =0
A _ afg ﬁ QZOP gAzop dhz
21 94, LA2 L dA,l,,

d Q3 dh,
f;} _E 20p_g(A20p+h20pW1 hZOpWZ)

A =212 =
“1 04, LA3 L dAl,,

+ gSp

(4 dp, 7p20 >9Q20p onp ’onp
dA, op Azop 3A;
20p
af, 1
AC12 =30 71
90, L
4
0 2pQ 2907 ,,niyP}
C22 an LAlop 7
|Q10P lop
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A - 0fs 25Q1op
“2 =30, LAy,
L -1
C13 — aQZ - L
A af3 _ZBQZOP

23 — 30, = LAZop

4
_ f, _ —Zﬁonp B Zgngpnﬁ,sz;p

ACs3 - -
00, LA z
» |Q20p Agop
af;
BCll = a_Al = 0
_fs _ B +g(A10p = hy o, Wi + hy ) W) ' s
=T 0A, L A7, L da,l,, " P
23
<4 dp, 7P10p>gQ10p Q1op Ny ’P1op
dA,l,, A, 3A§
op
g _Of _ B Qop | 9A14p dhy
04, L AT L dAl,,
ag
11 = 0—142 =1
dg
CC12 = 6_(21 =0
dg
Cc13 = (')_QZ =0
Part 3B System matrices in terms of h and Q
3f, 0fy 9] 3,
dh, 00Q, 0Q; ohy
|0 0f 0|, _|os] . _[%9 99 9
© |0k 0Q1 0Q:| © o] © loh, 0Q; 0Q,
of, ofi Ofy of
[0h, 0Q; 0Q,] [0h,
Where;

f2, f3 and f, are given by ODEs in Part 1B. g = h,

of,  25s(=0u,p + 02p)

2 ) Qlop = QZOp

Ohy | (28,hz,, + W2)
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2 h
ofs EQZOP (25 20p T WZ) _ %(WZhZOp + Sshﬁop)

ahz Bl L A%Op
2
fs B onp (25 hzop + WZ) g ghzop
ahz B Z A%op Z(thzop +S hZOP) (_Wl " WZ)
m(Pw E
+ ng (ZSShzop + WZ) 3gQ20p onp 2
3
Zop
4
7 (Wz + 2h20pm) (ZS hzop + WZ)
T 39020, [Q2gp| M 5
2 3
(S hzop + Wthop)
ofy _ !
an L (ZSShZOp + WZ)
4
3
6f3 _ 2ﬁQlop —2g leopnl%/l (W1 + Zhlop\/rssz)
0Q, 2 Z
1L (S.S‘h'lop + W1h1op) |Q10p (Sshfop + W1h1op)3
aﬁl B ZﬁQlop h +0
aQ — " ) 1017
1L (55h1op + Wlhlop)
ofy _ 1
aQZ L (ZSShZOp + WZ)
ofs B _Zﬁonp h #0
aQ — " ) 2029
2 L (Sshzop + thzop)
4
3
0fs — _Zﬁonp —2g QZZOpnIZVI (Wz + ZhZOP\/TSSZ)
a0 2 :
2 L (Sshzop + thzop) |Q20p (S h'Zop + thzop)3
9h _
dh,
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of,  BQZ,,(2Shi,, + W)

9fs _ + gh1op
dh, 2

L

g 2
T (hagy Wi+ 12,,S5) + (=W, + W)

L (Sshfop + Wlhlop)

+ 9y (2Ssha, + W1)
1

JT+5Z(Wy +2hy [T+ 57)°

8 2
_§gQ1op Q1op Ny 7
3
(Sshfop + Wlhlop)
4
3
- , (Wy + 2Ry T+ S2)° (285ha,, + W1)
+§9Q10p Q1op Ny 10

(sshfop + Wlhlop) 3

of, —BQE,, (25, + W) g ,
ah - 2 +Z(W1h10p +SSh10p)
1 (sshfop n Wlhlop)

09, _ 4

oh,

99 _

00,

99 _

00Q,
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Appendix 4 Runge-Kutta 4" order (RK4)

The detailed algorithm on RK4 is discussed here. To explain properly, a visual description of
the RK4-idea is also given by Figure 12.1. Runge-Kutta fourth order algorithm uses the
standard Euler forward differentiation scheme four times to approximate a function value at
the point of interest. However, the name RK4 is not given based on 4 times Euler
approximations. An important scheme must be understood before going through the RK4 steps.
Assume a first order system described by a multivariable function with x as an independent
variable and y as a dependent variable. A general first order ODE for such system is given by:

dy Ay
Ix =flxy) = hmoﬂ
f(x,y) = rate of change of y at (x,y) = slope at (x,y)

Euler forward scheme can be represented by different step sizes. Two of them are used by RK4
scheme:

e For a full step, Euler forward approximation, as shown in Figure 12.1, is:

A dy
Yier =Yit Ay =yt Ax-=yith =y +hflxy)
h=xi,1—x; =Ax
e For a half step, Euler forward approximation is:
Ay h dy h
yi+%=yi +Ay=yi+Ax-E=yi+E-E=yi+§-f(x,y)
szi%—xi = Ax
y y
k2 Ka
RK4 . x’/ : __?O“—» Euler Fwd ‘,v”’
el | S PPt [ S

- o=
----------
_______

[}
'
1}
]
'
.
/
=~
N
ccccaqess
.
)
.
.
t
[
]
.
=~
1]
'
.
\
)
)
)
>
x

a D g a s
tmeeeeex = frommnneees S SSLLIITERSRRERRRS > ig=nnnne AX = heeseees >

; iooonooe h/2:-===oe-- > X ; poX
Xi Xiv1/2 Xir1 Xi Xis1

Figure 12.1: Visualization of Runge-Kutta fourth order (RK4) (left) and Euler forward (right)
numerical method

RK4 algorithm for a multivariable ODE explained in steps
1. Compute the slope of the function at the point (x;, y;)

dy
ki = f(xi,v:), k= Tx at (x;,y;)

2. Using the slope ky, predict the next value of y at the half-way (mid-way) y,_ 1. This
2

step 1s simply Euler forward approximation
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h h
yi+%=yi+§'f(xi’}’i) =}’i+§-k1

3. Compute the slope k, at this predicted value of y at the point (xl. LY )
2 2

dy
k2:f<xi+1)yi+l)) kzzaat (xi+l’y'+;>

2 2
note that:, X, 1= X + =

4. Using the slope ky, predict the new value of at the mid-way (half-way) y, 1 as above
2

step. This step is once again Euler forward approximation. Note that the slope is
calculated at the mid-way point, but it is used to predict a new value at the mid-way
point from the original point.

l

h h
Yig = +§'f<xi+%,yi+%) =yitsk
5. Compute the slope k3 using the new predicted value of y, again at the mid-way
(xi+%’ y i+%)

dy
ks = f(x 1,y.+%), ky; = TIx at (xi+1,yi+l)

l+§ l 2 7

h
note that: x. 1 = x; + =
l+§ 2
6. Using the slope k3, predict the new value of y;,; at a full step. This step is once again
Euler forward approximation. Note again that the slope is calculated mid-way point,
but it is used to predict a new value at the full step from the original point

yir =i+ hef (2,07,1) = vt hoks

~

Compute the slope k, at the new predicted value of y (again) at the full-step (x;41, Vi4+1)

dy
ke = f(xi41,Yi01), ko = I (Xi4+1,¥i41),  motethat:x;y; =x;+h
8. Compute the average slope k using all the slopes found above. Since k, and k5 are
computed at the half-way, weight them twice
kit ko tky+hs+hs+ky) 1

G =g U+ 2k; +2ks + ky),  average of 6 slopes

9. Finally, using the averaged slope k, predict the actual value of y;,, at a full step. This
step is, as usual, Euler forward approximation

k

YVisr =Yith f(Xiy1,Yis1) =yi th-k
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Appendix 5 Differentiation axioms including absolute valued
function

Some important axioms in calculus:

e Chain rule

d du dp
7 (@) =7 (a6)
o Example
d 1 d(ax+b)td(ax +b
a _dax+b)""d(ax +b) _ Ca(axtb)ytm—
dx (ax + b) d(ax + b) dx (ax + b)?
e Quotient rule
du dp dv dq
d (u(p(x))) Viapdx ~ Ydqdx (a7)
dx v(q(x)) v2
o Example
d(ax + b)? d(ax + b) , dvcx d(cx)
d (ax +b)? _ Vex d(ax+b) dx ~ (ax +b) d(cx) dx
dx Jcx B cx
c(ax + b)?
B 2a(ax + b)Vex — 2Jex _ 2a(ax+b) c(ax +b)?
cx Vex 2,/(cx)3
e Product rule
d dv du
et N T 8
dt(uv) ut v = uv + uv (a8)

o Example

%(at + b)(ct)? = (at + b)%(ct)z + (ct)2 4 (at + b)
d(ct)? d(ct)
d(ct) Tdt

e Proof of differentiation of absolute valued function

2 (e 1) =i(ﬁ-ﬁ) = & (%) = 2

= (at + b) + (¢ t)2 (at + b) = 2c*t(at + b) + a(ct)?

_d (4)1dx __( 4)__1 ¢ 2x*  2x*  2x® 2x?
~ G 27 (x4);‘m‘m-m‘x-|x|‘|x|
2
& ety = o (@)

All the axioms above are used during linearization of the nonlinear ODEs.
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Appendix 6 Derivation of analytical solution to linear LTI system

LTI system means linear time invariant system. Time invariant means that the model matrices
(A, B, E, C, D, F) are constant for all time instances. In other words, LTI system has known
model matrices that are independent of the time.

e For a non-singular matrix A, following expression holds true
eMA = Neht (al0)

e Differentiation of matrix exponential

d .
(—A)e ™At = — =Mt = (g—At) (all)
dt
Part 6A Analytical solution to linear state space model

For a combined deterministic and stochastic LTI system, state equation the form:
x =Ax + Bu+ Ew
y=Cx+Du+Fv

Steps to find the analytical solution:

1. Rewrite the above equation in the form:
x —Ax = Bu+ Ew
2. Multiply both sides with e ~A¢
e Atx — e A Ax = e"Bu + e 4Ew
3. Use the axiom (al0) rewrite the above equation as:
e Aty + (—A)e x = e 'Bu + e 4'Ew
4. Use the axiom (all) rewrite the above equation as:
e‘Atd—x + (ie“‘“) x = e 'Bu+ e YEw
dt dt
5. Using the axiom (a8), rewrite the above equation as:

(e (0) = M Bu(o) + e Ew()

6. Integrate both sides with respect to time. To avoid ambiguity, lets integrate both sides
with an arbitrary time 7.
t

ft:%(e—f”x(r))dr = fte‘ATBu(r)dr —|—f e AEw(1)dt

to to
, t t
(e‘ATx(T))|t0 =f e‘ATBu(T)dT+J e ATEw(t)dt

t t

e‘ATBu(T)dT+f e ATEw(t)dt

to

e~ Atx(t) — e Mox(t,) = f

to
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t t

e‘ATBu(T)dT+f e Ew(t)dt

e Atx(t) = e Atox(ty) + f
to

to

t t

e A"Bu(t)dr + eAtf e AEw(1)dt

x(t) = edte 4box(t,) + eAtf
to

to

t t
x(t) = eAt-tdyx(t,) +f eAt-DBy(7)dr +f eAt-DEw(1)dr

to to

7. Define transition matrix, ®(t)

O(t — t) = e4lt=to)

d(t) = et
®) Ot — 1) = 4D

(al2)

t t
x(t) = O(t — ty)x(ty) + J ®(t — t)Bu(r)dt + j d(t — t)Ew(r)dt
to tO
8. The solution to the LTI system from above can be directly used to compute the output

t t

®(t — t)Bu(t)dt + Cf ®(t — t1)Ew(t)dt + Du(t)

to

Y (£) = CD(t — to)x(ty) + C j

to
+ Fv(t)

9. To simplify the solution, it is a good idea to set t, = 0 and see at some special cases.

t t

®(t — t)Bu(r)dt + J ®d(t — 1)Ew(t)dr
0

x(t) = &(t)x(0) +j

0

t t

d(t — t)Bu(r)dr + Cf d(t — t)Ew(t)dt + Du(t) + Fv(t)
0

y(t) = COt)x(0) + C f

0

e (ase 1: Deterministic system i.e., E = F = 0 matrix
t

x(t) = &(t)x(0) + f ®(t — t)Bu(r)dt
0

o la: With direct feedthrough term in the output equation i.e., D # 0
t

y(t) = CO(t)x(0) + Cf @(t — t)Bu(t)dt + Du(t)
0

o 1b: Without direct feedthrough term in the output i.e., D = 0 matrix

t

y(t) = CP(t)x(0) + Cj ®(t — 7)Bu(r)dr
0

Part 6B Analytical solution to linear state observer using duality principle
X =A%+ Bu+ Ly —7)
y=Cx
X =A%+ Bu+ Ly — L(C®)

x=(A—-LC)X+Bu+Ly
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(al3)

X =A%+ Bu+Ly

X —A%=Bu+Ly

¢ Solution to the state observer can be found by using duality principle as shown in Table
12.2. Duality principle states that; if the solution to the state space model is known, then
it is possible to directly write the solution to the state observer model.

Table 12.2: Duality with between linear stochastic state space equation and observer equation

Combined deterministic and stochastic

system

Observer state equation

x —Ax = Bu+ Ew

X—AX=Bu+Ly

y=Cx y=CX
X x
A A
x X
E L
w y
y y

D(t — tp) & eAltt)

O(t — 1) & AT

Q(t — t,) & M=t

Ot — 1) & eAE-D @l4)

x(t) = Pt — to)x(to)

+ ftcb(t — 7)Bu(r)dr
t

0

+ ftcb(t —1)Ew(t)dt
t

0

x(t) = Qt — )% (to)

t
+f Q(t — t)Bu(t)dr

0

t
+f Q(t —7)Ly(r)dr

0

y(t) = CP(t — to)x(to)

+C jt¢>(t — 7)Bu(t)dt

0

+C jt¢>(t —17)Ew(t)dt

0

y(t) = CQt — to)X(to)

t
+ Cf Q(t — t)Bu(r)dt
t

0

t
+ Cf Q(t —1)Ly(t)dt
t

0
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Part 6C Analytical solution to the estimation error dynamics
Steps:
1. Define error dynamics

def o s def . S

E=X—X &E€=X—X

e x—%X tli_)rglo£—>0 ‘lsi_r)réa?—>x
2. Determine expression for the error dynamics
§=Ax+Bu—AXx—Bu—L({y—9)
§=Ax — AX — LCx + LCX
E=Ax—%)—LC(x—X)
E=A-LC)(x—-2%)
3. Using axiom (al3), rewrite above equation incorporating the error transition matrix A
&= Ae
4. Multiply both sides with e A% and move everything to the left side
e Alg = g7 MAg = e Alg — eAMAe =0
5. Using axiom (al0) and (all), express error dynamics as:
e M+ (=N)eMe=0
eMé 4 (e~M)e =0
6. Write the compact form of error dynamics using (a8)

d
—_ —At =
T (e™™e) =0

7. Integrate both sides w.r.t. time

ft%(e‘me(r)) dr =0
to

(e‘ATe(r)) ‘

=0
to
e Me(t) —eMog(ty) =0
e Me(t) = e Abog(t,)
e(t) = eMte Mog(ty)
e(t) = eAt-tdg(t,)

8. Using axiom (al4), rewrite above equation in compact form. The result is the solution
of error dynamic

e(t) = Q(t — to)e(ty)

e Casel:whenty, =0

e(t) = Q(t)e(0)

131



Appendix 7

Appendices

Sensitivity analysis of all the parameters on all the

states

Colum representation for subsequent tables:

Parameters = 6;

Mean of states based on the nominal values, x = p,

Standard deviation of states based on the nominal values, x = g,
Mean of sensitivity coefficient, € = u,

e Standard deviation of sensitivity coefficient, € = o,
e Sensitivity index = SI
e Correlation =1
e Percent change in the state (Ax%) induced by —10% change in parameter value based
on nominal value = A%~ = Ax%
e Percent change in the state (Ax%) induced by —10% change in parameter value based
on nominal value = A%t - Ax%
Part 7A Parameter sensitivity analysis on h,
Ue O Iy Oy AO%™ | AO%T
0; SI r
x 1072 | x 1072 | [mm] | [mm] - Ax% | > Ax%

a -46.3 3.1 34.8 0.9 8.9 -0.998 5.2 -4.2

B -111.6 6.8 34.8 2.3 20 -0.998 12.4 -10.1
hy 18.8 0.9 34.7 0.4 3.7 0.999 -2.1 1.7

kg -223.4 20.4 35.1 4.6 35.7 -0.996 25.9 -19.1

L 111.2 0.3 34.7 2.3 20 1 -11.1 11.1

¢ 0 0 34.8 2.5 21.5 0.998

p 0 0 34.7 0 0 0.152 0 0
w, -245.7 34.4 354 5.1 38.6 -0.993 31.1 -19.4
W, 175.2 11 34.9 3.6 29.5 0.998 -15.7 19.5
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Parameter values for both flow rates at the steady state is same. Hence, one table is enough.

Part 7B Parameter sensitivity analysis on M, and M,

U 0, Hx Ox AO%™ | AO%T

& x 1072 | x 1072 k_g k_g ! i - Ax% | - Ax%
min min

a -76.6 3.8 370.8 16.7 14.2 -0.999 8.4 -7.1
B -95.5 3.7 370.8 20.7 17.3 -0.999 10.2 -8.9
hy 131.7 0.1 370 28.6 23.3 1 -13.2 13.2
kg -89.2 3.3 369.4 19 15.8 -0.999 8 -9.1
L 45.5 2.5 369.5 9.9 8.7 0.998 -5 4.1
¢ 0 0 370.5 17.1 14.6 0.999
p 100 0 370 21.7 18.2 1 -10 10
Wi -111.9 5.4 371.1 24 19.5 -0.999 11.6 -10.1
W, 170.3 4.3 370.9 36.9 28.8 0.999 -16.2 17.6
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Appendix 8 Matrix product and summation

This appendix proves that the sum of a vector square is the same as the matrix multiplication.
The vector is extracted from a matrix. The matrix multiplication takes care of the summation
sign of sigma notation. In other words, the sum of the product of each column of a matrix with
its transpose can be written in sigma notation or as a matrix product.

e Take an example of a rectangular matrix E given as:
ey T Cam
E — . . ]

€ma1) ° €mn)

e Take a column vector from the matrix E as.

¢%))
e, =E.p= [ : ]

€(m,i)
e; = column vector extracted from E

e Sum of the squared vector (multiplied itself by its transpose) is written as:

e The proof:
o Expand the vector product inside of the signa notation

V=e el +-+e,- el
V=Eq Ecp ++Eem Een

o Rewrite the expanded sum in compact form

n e(l,i)
V= [ : ][e(u) o em)]
i=1 Le(m,i)
€1,1) [€(1,n)
V= ][9(1,1) o em] 4+ : ][e(m) o emm)]
€(m,1) [€(m,n)
e,y T €rném) [€am€an) 7 ean)€mn)
V= : . : 4ot : . :
emner1) 7 em1eim1) [emn)€n) 7 €mn)€(mn)
eqnean tteamean 0 €anémn 1t en)€imm)
V= s - :
emner) Tt emmean - €mnemy Tt emmn)€mn)
€1y " eam][é@n T €m)
v=| i o~ ” i~ i | =EET Q.E.D
€my " emmliléan) T €mn)
n
V= z Ecoy-Eeo = EET al5)
i=1

134



Appendices

Appendix 9 Estimator applied on simulator excited by noise-free
input signal

Some of the figures to supplement the analysis performed in the previous chapters are given
here.

Part 9A Comparison of Online and Offline Kalman filter gain

Comparison of Figure 12.2 and Figure 12.3 proves that the difference in the estimated states is
negligible when using online or offline Kalman gain in LKF. However, offline Kalman gain is
efficient when running the system continuously (in loop), which is always the case. It is
efficient because, Kalman gain need not be calculated for each iteration in contrast to online
Kalman gain which is calculated during each iteration.
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Figure 12.2: Estimated states using LKF with offline calculated Kalman gain
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Figure 12.3: Estimated states using LKF with online calculated Kalman gain
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Part 9B Comparison of LKF, EKF and UKF

As with the noisy input and output case (discussed in 8.3.2), EKF is faster than LKF. There is
no deviation in case of EKF and UKF. UKEF is superior to both EKF and LKF in terms of
convergence rate. Since no noise is added in the input signal, the filtering property of these
filters is not evident. One important observation based on Figure 12.4 and Figure 12.5 is that
EKF estimates are exactly the same as the nonlinear model prediction.

51- -9%
. 95 J] h2 UKF (y-est) [\
o -04 7] h2EKF (y-est) [
-93
8- -92
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E 47~ -01 -
— 46— —gg =
3 :'i < hl (u, input) 'K
a -89 =
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Figure 12.4: Comparison of Kalman filters based on level estimation ()7 =3 = hz)
Simulator is excited by the noise-free input (u = h,)
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Figure 12.5: Comparison of Kalman filters based on estimation of mass flow rate
(%, = My, 2; = M,). Simulator is excited the noise-free input (u = h;)
Part 9C Comparison of linear estimators (LKF and linear observer)

Figure 12.6 and Figure 12.7 show the result of state estimation based on noise-free system
input. These figures complement the result of comparison for system excited with noisy system
as discussed in section 8.3.3. Both LKF and linear observer perform relatively similarly and
both estimators show the deviation away from the linearization point.
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Figure 12.6: Comparison of linear estimators based on level estimation (37 =X = hz).
Simulator is excited by the noise-free input (u = h,)
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Figure 12.7: Comparison of linear estimators based on estimation of mass flow rate
(%, = My, %; = M,). Simulator is excited the noise-free input (u = h;)
Part 9D Comparison of nonlinear estimators (EKF, UKF and semi-nonlinear

observer)

Appendices

Nonlinear estimators for noisy system are compared in detail in section 8.3.4. In case of noise-
free system, EKF and semi-nonlinear observers performed exactly the same. Their signal in
the Figure 12.8 and Figure 12.9 are super imposed with the predicted states by the nonlinear
venturi model. Even in noise-free system, UKF outperforms EKF and semi-nonlinear observer.

All nonlinear estimators show no deviation from the model states.
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SENE SN SN SN

]

Figure 12.8: Comparison of nonlinear estimators based on level estimation (37 =X = ﬁz).
Simulator is excited by the noise-free input (u = h,)
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]
]
]
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Figure 12.9: Comparison of nonlinear estimators based on estimation of mass flow rate
(%, = My, %5 = M,). Simulator is excited the noise-free input (u = hy)

138



Appendices

Appendix 10 Reduced order observer derivation
Consider a linear state space model given below:
X = Ax + Bu
y=Cx

Decomposing the state equation into measured and unmeasured states.
[xp] _ [App Apq [xp] n [Bp] [u]
Xq Agp  AgqlXa B,
X
M1=10C Colly]

Ny =Ny +ng

Where, x,, is a vector of measured states and x, is a vector of unmeasured states, n, is the
number of total states (system order), n, = n, is the number of measured states and n,
is the number of unmeasured states.

Expanding the linear model equations, we get:

Xp = AppXxp + Apgxq + Bpu

Xq = AgpXp + Agqxq + Bgu

y = Cpxp + Cyxy
Since only some of the states are directly measured, in this case x,,, the output equation
can be simplified by setting C, = zeros(n,, n;).
y = Cpxp

Output could be the combination of multiple measured states (soft-sensing). In case of a
single measured state and single output system, C,, = Zeros(l,np). For generality, lets

proceed with the equations above. C, could be scalar, vector or a matrix. When C, is a
vector or a rectangular matrix, the pseudo-inverse is required to represent x,, in terms of

y.
(Cgcp)_lcgy =Xp
Xp = Dpy, D, = (Cng)_ng

In case of the linear observer equations, the expansion can be done in the similar way as
the model equation.

X =A%+ Bu+L(y—79)
9 =Cx

(il [ RN

| —— |

~

Expanding the observer equations, we get:
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fp = Appa?p + qup?q + Bpu + pr - Lp37
Xy = AgpRp + AgqRq + Bgu+ Lgy — Lgd
P =Co%p + Cy%,

The purpose of the reduced order observer is to estimate only the states that are not
measured. Hence, X,, can be removed from the observer output equation as well as it can
be replaced with x,. It also makes sense to use the model equation instead of the first

state estimation equation which does not need to be estimated.
Xp = AppXxy + Apgxq + Bpu

J?q = AgpXxp t Aqqa’c‘q + Byu+Lyy — qu

Y = CoXq
Keeping everything known in LHS, above equations can be simplified further.
Define, Y =X, — AppXp — Bpu = Apgxg = Cx
Yy =X, — AppXp — Bpu, C =4y X = Xgq
Y = ApgXq

Xy = AggRq + Agpxp + Bgu + Lgy — L9
Y = CoXq
Y = ApeXq Cq=C=A4y
Comparing these equations with the linear reduced order state-observer equation with
the similar form to that of the full order observer, we get:

Xx+Bu+L(y—7%)

X =

y=Cx
X =2,
A=Ay
zg’c‘q

Substituting above equality equations in the reduced order observer, we get:
Xy = AggRq + Agpxp + Byu + Lk, — LyAypxy — LaByu — LaAp, %,
Xq = Lty = (Agq — LqApq)%q + (Bg — LgBp)u + (Agp — LaApp)%p

Define new state variable such that the derivative term to the measured state variable is
eliminated from the model:
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z=x,—Lgx,,  2=2R5—Lgxy, Z=R%;—Lgx,  Rg=2+Lgx,
2= (Aqq — LqApq) (2 + Lyxp) + (By — LyBy)u + (Agp — LgApp)Xp
2= (Agq — LgApq)2 + (Agq — LgApg)Lgxp + (By — LBy )u + (Agp — LgApp) %y
2=(Agq — LgApq)2 + (By — LgBy)u + (Agqlyq — LgApgLyg + Agpy — LgApp )%, (al6)

Solution to the Z gives out 2, from which the missing states can be extracted simply by
using the equation:

Ry =2+ Lgx, (al7)
Define the error dynamics:
£ Xy — Ry £ Xy — %y (al8)
Xq— % = Agpxp + AgqXq + Bgu — (Agq®y + Agpxp + Bu+ Lgy — Ly9)
g = Xq = AqpXp + AqqXq + Bqu — (AqqRq + Agpxp + Bgu + LApgXq — LaApgRq)
Xq = Xq = Agq%q — AqqRq — LgApgXq + LaApeXq
%q = Xq = (Agq — LaApq) (xq — Z4)

€q = (Aqq - Lquq)gq (al9)

If the error dynamic is asymptotically stable, then the observer is stable. For the error
dynamic to be asymptotically stable, matrix (Aqq — Lquq) must be Hurwitz.
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Appendix 11  Codes and programs

All of the codes and programs, including graphical user interfaces used in this work is zipped
and presented to the supervisor for archive.
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Appendix 12  Master’s thesis task description, 2018

See next pages
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University College
of Southeast Norway

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Model based estimation of fluid flow through a venturi channel:
Kalman filters and observers

HSN supervisor: Assoc. Prof. Roshan Sharma

External partner: Statoil, Kelda drilling controls ASA

Task background:
This master thesis is a part of the on-going “Semi-Kidd” project at USN (which involves 4 PhD
students working with the project) financed by Statoil and Norwegian Research Council.

During drilling, clean drill fluid is injected into the well being drilled using mud pump as
shown in Figure 1. This drill fluid will carry away the drill cuttings from the bottom of the well
and transport them back to the top through the return flow line.

Pump
{ \o
Clean drill fluid: in U
Drill Active
Cuttin
i LlEn — Remofal EflltUd
»| Channel v
Drill fluid with
cuttings: out
I

||
Well Return Flow Line I—D

Losses

Figure 1: Schematic of fluid flow in drilling

On the top side, the drill fluid is cleaned with drill cutting removal equipment and re-injected
into the well. Accurate and real time measurement of the flow of drill fluid in the return line
is vital for a safe operation. In practice, Coriolis flow meters are placed on the return flow
line to measure the flow rate of the return fluid. However, they are very expensive and
unreliable in the presence of gases. So, in this thesis, we focus on answering the following
questions:

e (Can we instead use a suitable mathematical model of the fluid flow to estimate the
mud flow in the return line?
e Can we replace the expensive sensor with model based measurement/estimation?

The knowledge of how much drill fluid is flowing in the return line can provide an early
warning about a kick or a loss. If the flow in the return line is more than what is injected into
the well, probably some fluid from the reservoir have entered into the well i.e. a kick might
have occurred. Conversely, if the flow in the return line is less than what is injected into the
well, probably some of the fluid from the well have leaked into the reservoir zone i.e. a loss
might have occurred. Thus, flow rate of the fluid in the return line is a primary indicator of a
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kick or a loss. An uncontrolled kicked is known as “well blow out” and is disastrous and
highly unwanted situation.

The proposal at the University College of Southeast Norway is that, a venturi channel (which
is an open channel) can be placed in the return flow line to measure the flow rate of the
fluid. If this is successful, then the Coriolis meters can be replaced by a simpler and a cost-
effective solution. At USN, a venturi rig has been constructed to measure the flow rate of the
return drill fluid.

The main work for this thesis is to use the state estimation principles to design suitable
model based estimators and/or observers for estimating the flow rate through the channel.
The available measurements are the level of the fluid in the channel. By using an appropriate
model, observers/estimators should be designed.

The student will be provided with the necessary mathematical model of the process.

Task description:
Design and development of model based estimators/observers is the main task.

1. Give an overview of the drilling process and explain the importance of early kick/loss
detection.

2. Understand and explain the Saint Venant equations for open channel flow. The
student will be provided with the equations but understanding the equations is vital.

3. Understand and explain the reduced order model for open channel flow (orthogonal
collocation). The model will be provided to the student as full set of ODEs (Ordinary
Differential equations), but understanding the equations is vital.

4. Llinearize the nonlinear ODE model and simulate it together with the nonlinear
model. Discuss thoroughly your observations and results. Perform sensitivity analysis
if necessary.

5. Design suitable estimators (Kalman filter or observer) using the linear model. Perform
observability analysis.

6. Perform experiments at the venturi rig at USN and test the linear estimator with the
rig data.

7. Design suitable nonlinear estimators (non linear versions of the Kalman filter or non
linear observers) using the nonlinear ODE model of the flow through a venturi
channel.

8. Perform experiments at the venturi rig at USN and test the non linear estimator with
the rig data.

9. If time permits, perform a literature survey on observer design for PDE (partial
differential equation) models for fluid flow through open channels.

10. Report the work in the Master’s Thesis. Present the thesis work.

Student category: Open only for students from IIA

Practical arrangements:

Perform experiments in the venturi rig at USN.
Signatures:
Student (date and signature):

Supervisor (date and signature):



