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Summary:  

Predicting the weather is important for a lot of fields including agriculture, construction and 

hydro-power and flood management. Currently mechanistic meteorology predictions are 

generated using heavy computing based 3D Navier-Stokes models. Therefore, it is of interest to 

develop models that can predict weather conditions faster than traditional meteorological 

models. The field of machine learning has received much interest from the scientific community. 

Due to its applicability in a variety of fields, it is of interest to study if the use of artificial neural 

networks can be a good candidate for prediction of weather conditions. Machine learning 

methods benefit from large datasets. A python interface was developed to make it easier to 

obtain weather data from free sources, the python interface works well, but is more user-friendly 

when used with Met supplier compared with Netatmo supplier. Four separate models where 

trained to predict the temperature 1, 3, 6 and 12 hours ahead. In the first experiment, only 

temperature was used as input to the networks. This constitutes an auto-regressive neural 

network(ARNN). In the second experiment, precipitation data was introduced into the network, 

forming an autoregressive neural network with exogenous inputs (ARX-NN). The results show 

that the inclusion of precipitation had a negligible effect on accuracy for temperature prediction. 

Out of the four model types, 1-hour prediction has the best prediction results for both the AR-

NN and the ARX-NN. 
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Nomenclature 
ANN – Artificial neural network 

API – Application programming interface 

IoT – Internet of things, a term used for gadgets connected to the internet 

ML – Machine Learning 

MLP – Multilayer perceptron 

 

 



  Introduction 

6 

1 Introduction 
Machine Learning (ML) and use of IoT (Internet of Things) and Big Data is receiving increased 

interest from the industry. To experiment with Machine Learning, it is necessary to have access 

to “Big Data”; access to such data is not always easy to get from the industry. To this end, it is 

of interest to develop access to “Big Data”, and build up competence in Machine Learning – 

with application to an interesting topic. 

1.1 Background 

Predicting the weather is important for a lot of fields including agriculture, construction and 

hydro-power and flood management. Currently mechanistic meteorology predictions are 

generated using heavy computing based 3D Navier-Stokes models and can easily take 12 

hours on fast computers[1]. In Norway weather data is publicly available for free from 

weather stations around in Norway, installed and maintained by meteorological institute of 

Norway(Met) [2], along with Met there is Netatmo [3], another data supplier that gives out 

their weather data for free. The difference between the two is that Met uses meteorological 

standard for placement of sensors, while Netatmo is an internet of things(IoT) device 

purchased at your local hardware store that is connected to the internet, installed and 

maintained by you. Both suppliers give an HTTP Get/Request(REST) [4] Application 

Programming Interface(API) that gives access to their data. Met supplies both historical data 

and real-time, while Netatmo supplies real-time only. With the access to large quantities of 

data an interesting approach would be to use novel Machine Learning(ML) algorithms such 

as an artificial neural network(ANN) to predict the weather conditions for a given 

geographical location, and with such large quantities compensate for the lack of complex 

meteorological models. 

1.2 Task description and Objectives 

The tasks and objectives are listed below, and the original task description is given in 

Appendix A – Task description. 

Overall objectives: 

- Research different suppliers for weather data and their APIs e.g. Netatmo 

- Develop an API for accessing these data from Python, Julia or MATLAB  

- Choose a reduced set of data points, and set up logging of the data with storage in a 

file if historical data is not available. 

- Based on available data, set up a system for machine learning. If y(t) is measurements 

at time t, then use machine learning to find a mapping F for y(t) = F(y(t-1), y(t-2), …, 

y(t-T)) for various values of total horizon T and various time steps dT. 

- Validate the model, and compare your results to those from a meteorological model. 

The model should preferably give a distribution of predictions. 

After all it boils down to two main objectives, the first is developing and document the data 

interface used to obtain data from more than one supplier. Then it is the building and 

prediction of machine learning model, the two are explained in more detail below. 
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1.2.1 Data Interface 

The data interface should help give access weather supplier APIs, it should be well 

documented and developed in python. The data retrieved should be from all stations within a 

given rectangle or for a specified station or latitude and longitude coordinates. The interface 

should have the same commands for all suppliers and supply the data neatly formatted. 

Handling of the different suppliers should be hidden from the user, it should also be possible 

to add more suppliers if needed. The user should only need to specify what type of data is 

needed, from where and from when and should also have the option to save the data to csv 

file. 

1.2.2 Building and prediction of machine learning model 

For the ML model an artificial neural network should be built. Using python as programming 

language, there are several machine learning libraries available, like Scikit-learn [5], 

Tensorflow [6], Theano [7], Keras [8]. For building the model, Keras with Tensorflow 

backend has been chosen as it is an easy solution to build different network structures and 

tune different hyperparameters. The data used to train, tune and test should be separated, 

where training data consists of 60% of the total data, while the remaining 40% is split equally 

among tuning and testing. The tuning data is only to be used for tuning the hyperparameters, 

and when satisfied with the tuning the test data is only be used once in the model to give a 

true measure of the tuned model. The ML model should predict weather parameters for 48 

consecutive hours from 1 to 12 hours ahead. 

1.3 Previous Work 

Hayatiet.al [9],studied multilayer perceptron (MLP) neural networks trained and tested on ten 

years of metrological data (1996-2006). A training goal of 10-4 was used. The network 

structure consisted of three layers with a logistic sigmoid activation function in hidden layer 

and linear function in the output layer. Seven weather variables were used in the study; dry 

temperature, wet temperature, wind speed, humidity, pressure, sunshine and radiation. The 

inputs were normalized and used to predict dry air temperature in intervals of 3 hours for a 

total of 8 predictions per day. The error was calculated using mean absolute error (MAE). 

Smith et.al [10] focused on developing artificial neural network models to forecast air 

temperature at hourly intervals from one to 12 hours ahead. 30 models were calibrated for 

each interval, to study the effect of randomized initial weights on test set prediction accuracy. 

The network structure consisted of three fully connected hidden layers that used Gaussian-, 

Gaussian complement and hyperbolic tangent activation functions. The input data was 

linearly transformed to the range 0.1 to 0.9 and consisted of five weather variables: 

temperature, relative humidity, wind speed, solar radiation and rainfall. Later seasonal 

parameters were introduced as input which improved model accuracy. 
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1.4 Report structure 

Chapter 1: Introduction describes the problem description, objectives and previous work 

Chapter 2: Python interface is all about the design and goal of the interface and how to use it. 

Chapter 3: Machine learning model contains the information about what an artificial neural 

network is, what type of network used, how it was tuned and about the dataset used in the 

experiments described. 

Chapter 4: Results and discussion contains the results of the experiments along with a 

discussion of them 

Chapter 5: Conclusion. 
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2 Python Interface 
As big data is more available to everybody online and cheap sensors with access to internet is 

more accessible and user friendly the need for better ways to obtain similar data increases. Here 

it is proposed and designed a way to make that possible with weather data from publicly 

available weather data. 

2.1 Overview 

The main goal of the interface is to provide the user with a way to obtain data from several 

weather data APIs that is hidden under the same structure. Different APIs have different 

commands and need different inputs for the same service they provide, this interface will act 

as a translator and transform your request into the right format, ask the specified data 

supplier, obtain the data and deliver it to the user. Figure 2-1 shows a general overview of the 

interface and information flow from user to interface, interface to supplier and then back. 

 

 

Figure 2-1: Shows the general big picture of the Python interface. The white arrow is the 

request and the green arrow shows a successful request and then is returning the data. 

2.1.1 Design 

The interface is built in Python and is a library that contains several classes in an object-

oriented structure. Figure 2-2 shows the class layout of the interface and their interaction with 

each other. The user uses the class. The Client class holds the information about the client, 

like authentication token, which data supplier it is for, the Geometry class makes the 

specified square around the given coordinates. In the Weather class, the data to be retrieved 

can be specified. In the Usefuls class it is some functions that is useful to splitting dates into 

separate items or compact them again for usage in the Service class, this class is responsible 

for giving the right commands to the right supplier classes (Met and Netatmo). 
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Figure 2-2: Shows the class structure of the interface. The usage of the interface is 

described under 3.2 Usage and in Appendix B - Python Interface Documentation 

 

Data returned should be formatted into the same way for all the different weather variables. It 

will be combined in a Pandas[11] data frame which has the possibility to be saved to a csv 

file. Table 2-1 Shows how the returned data frame can look like for Met data frame, Data 

value is the measurement at the given station whose number is saved in Station number, 

timestamp is when it starts to when it ends, notice it ends at End date-1, this is because the 

date constraint goes from start date up to end date, not including. 

  



  Python Interface 

11 

Table 2-1: Shows how the returned data frame can look like for Met data frame 

Station number Timestamp Data value 

##### Start date 0.3 

##### Start date +1 0.1 

##### Start date +2 None 

… … … 

##### End date-3 0.2  

##### End date-2 0 

##### End date-1 None 

 

2.2 Usage 

Netatmo and Met are different, Netatmo supplies only live data so there is no need for a date 

constraint, while Met supplies historical data so a date is needed. See appendix B for more 

information about documentation and usage. 
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3 Machine Learning model 
Artificial neural networks(ANN) have existed in various forms since the 1940s [12], but have 

received interest in recent years, largely due to the success of Deep Learning algorithms[13]. 

An artificial neural network is a layered collection of several densely connected units called 

artificial neurons, each connection has a numerical weight. A single artificial neuron produces 

a linear output that is simply a weighted sum of inputs, plus a bias, the output is then passed 

through a function called an activation function. The activation function decides if the output 

is transmitted to the connected units. A single artificial neuron is shown in Figure 3-1, where 

X1 to Xn are the inputs, b is the bias, u is the output from the neuron and y output from the 

activation function, g. 

 

Figure 3-1: Single neuron 

 

Being layered and densely connected means that each unit is connected to all the units in the 

next layer. Each layer in an artificial neural network can be large with an even larger number 

of coefficients, this allows the network to fit complex non-linear systems. This descriptive 

power that comes from this complexity is the reason ANN models can adapt to a large variety 

of systems. Figure 3-2 shows an illustration of a layered and densely connected artificial 

neural network with one input layer with five inputs, one hidden layer with three hidden units 

and one output layer with one output node. 
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Figure 3-2: Layered and densely connected artificial neural network. Input layer, hidden layer 

and output layer is illustrated as rectangles. 

The activation function takes the decision whether to let the signal pass or not, if it does it 

transforms the signal linearly or non-linearly, depending on the choice of function. The 

activation functions also squish the output, since the output of a unit can be large it is useful 

to restrict the output. Figure 3-3 shows some common activation functions and what their 

squish range is. 

 

Figure 3-3: Common activation functions. Binary-step (top left) either 0 or 1, Logistic 

Sigmoid (top right) range 0.0 – 1.0, Hyperbolic Tangent (Bottom left) range -1.0 to 1.0, 

Rectified Linear Unit(ReLu) (bottom right) either 0 or x. 
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When training an artificial neural network, the goal is to usually minimize the loss function 

over the training set. This is essentially parameter optimization, but usually due to the high 

number of parameters to optimize it is unlikely to find a global solution, therefore a solution 

that is “good enough” is usually preferred. Training or optimizing means to make something 

a maximum or minimum this is an iterative process where each iteration is called an epoch 

[13]. To validate the network each epoch the difference (y - y*) from desired output (y) 

called a label, and network output (y*) is converted into a metric, known as the loss function, 

a common metric is the mean squared error(MSE) eq.1. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

∗)2
𝑛

𝑖=1

 

 

(eq.1) 

A popular optimization method is gradient decent. The slope of the loss function at any point 

in the training process is the partial derivative with respect to the weights. When minimizing, 

each iteration takes the partial derivative at a point, move a small step called the learning rate 

in the opposite direction of the gradient and repeat until all epochs are done or local minima 

found. The learning rate and number of epochs is called hyperparameters and should be tuned 

for each different network case[13]. 

3.1 Dataset 

A total of 32 000 hourly weather data was gathered from [14] using the python interface, at 

Station SN30255 in Porsgrunn, Norway with coordinates latitude: 59.091 and longitude: 

9.66. The weather variables (called features) used in the models, were air-temperature and 

precipitation. ANNs don not handle missing data very well. A challenge was to obtain data 

from the same period and same hours. It would be possible to take different hours or data 

from 2016 and 2017, but the network would then need all future data to be structured in the 

same way before used for a prediction. Two periods were used together, the first in 2016 was 

from 01.02.2016 up to and including 31.12.2016, and 2017 was from 02.01.2017 up to and 

including 31.12.2017. The period was originally from 2016 and 2017, but in 2017 the first 

month of data was not available at the station. So, for consistency the first month of 2016 was 

also removed. The data is a series each 1 hour apart. Preparing the data to be easily usable for 

different predictions ahead in time while still maintaining correct labels was done using a 

shift to the “right” method illustrated in Table 3-1. 

Table 3-1: Illustration of a right shift to make each hour previously used as input data to 

match with current labels 

Label (y) 1-Hour Shift (X1) 2-Hour Shift (X2) 3-Hour Shift (X3) … n-hour shift (Xn) 

D1 D2 @Label D3 @Label D4 @Label … Dm @Label 

D2 D3 @Label D4 @Label D5 @Label … Dm-1 @Label 

D3 D4 @Label D5 @Label D6 @Label … Dm-2 @Label 

… D5 @Label D6 @Label D7 @Label … Dm-3 @Label 

Dm Dm-1 @Label Dm-2 @Label Dm-3 @Label … Dm-n @Label 
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When extending the hourly predictions, the lowest data disappears for the other columns, so 

the larger the horizon gets the more rows must be deleted to maintain a constant width and 

height. Table 3-2 shows an example of what happens with the bottom data when right shifting. 

Column y is the label and original data, column X1 is a 1-hour shift, the total number of usable 

data drops by 1 (from 7 to 6 and so on.). The number of usable data (Nu) is the difference 

between total number of data(NT) and number of hours back (NB), Nu = NT – NB, when the data 

is hourly split and right shifted. 

Table 3-2: Illustration of what happens to bottom data when right shifting. 

y X1 X2 X3 X4 X5 X6 

7 6 5 4 3 2 1 

6 5 4 3 2 1 X 

5 4 3 2 1 X X 

4 3 2 1 X X X 

3 2 1 X X X X 

2 1 X X X X X 

1 X X X X X X 

In Figure 3-4 a plot of the temperature data acquired from 01.02.2017 to 31.12.2017 is 

plotted. This plot shows how the data is varying over the year, as expected the temperature is 

highest in the middle and lowest on the start and end of the year. In all the experiments the 

dataset was split into three parts, 60% used for training, 20% For hyperparameter tuning and 

20% for testing, the testing set is completely independent of the training and tuning. 

 

Figure 3-4: Plot of hourly temperature data for the period 01.02.2017 – 31.12.2017 
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3.2 Experiments 

In all experiments the goal was to predict 1-, 3-, 6- and 12-hours ahead, compare them with 

each other. In all cases the activation functions for hidden layers was rectified linear unit and 

linear for the output layer, ReLU has been shown to enable better training in 2011 compared 

to the more widely used Sigmoid function [15]. Separate models were created, one for each 

1-, 3-, 6- and 12-hour predictions in all cases the input data was normalized, then the output 

was denormalized to achieve desired results in readable units. To test the different models, 48 

consecutive hours is set to be predicted by the different models. 

3.2.1 Experiment 1: Temperature AR-ANN 

The first experiment was set up to predict air-temperature by using historical temperature 

data only. Figure 3-5 shows an illustration of AR-ANN to predict 1 step ahead. 

 

Figure 3-5: AR-ANN to predict 1 step ahead. 

3.2.2 Experiment 2: Temperature ARX-ANN 

In the second experiment, air-temperature and precipitation were used as input to predict the 

air-temperature. Figure 3-6 shows an illustration of ARX-ANN to predict 1 step ahead, using 

two input features. 
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Figure 3-6: ARX-ANN 
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4 Results and discussion 
During the thesis work several other thigs that cannot be documented very well has taken 

place this includes learning about machine learning, how to use different machine learning 

frameworks like Tensorflow, Keras and scikit-learn. Building a database and learning SQL 

for storing and retrieving weather data and started developing the interface in Julia as well, 

this was discarded in the final design for the interface, but nonetheless consumed a lot of 

time. 

4.1 Python interface 

The interface is easy to use, delivers data with simple lines of code as specified, however Met 

is the supplier that is most suited for delivering data with a Pandas frame that has access to 

saving methods. This is because Met delivers the specified data in a single nested list. While 

Netatmo delivers all the data, it does not care if you specify the wanted data according to 

their API, and the delivered data is in several listed dictionaries and lists, and because of this, 

sorting for the correct weather data is painfully difficult and have not been done in such a 

way that the returned data is formatted like in Mets case. The data sorted and delivered with 

the interface from Netatmo is somewhat sorted in a nested list with timestamp, station id and 

the different weather variables. To fix this problem a solution might be to do a hard search for 

specific names like temperature or pressure, one problem with this is might be that the 

variable values might get mixed due to the way Netatmo delivers data. For instance if 

searching for Temperature, a dictionary with two elements (one dictionary and one list) is 

returned, in the dictionary element there is another list with two values. These values 

correspond to the other list delivered which is strings of weather variables temperature and 

humidity, already there it is 5 nests for obtaining one value. But when doing this for 10 

stations and running 5 nested loops for each variable Netatmo delivers one may easily run 

into some problems with computing power or time. For obtaining data it is recommended to 

use Met instead of Netatmo. Met is easier to use, delivers data fast and with great quality. The 

handling of errors when making a request could have been optimized better, with checks on 

the parameter inputs, URL lengths generated and such, if your square gets too big and tries to 

get over 50 stations met can’t deliver it, the URL would be too long. This could be fixed if a 

batch system was introduced to make sure the length was in order. 

4.2 Experiment 1: AR-ANN 

The first experiment used historical temperature data to predict the temperature ahead 1, 3, 6 

and 12 hours. The predictions of the 48 consecutive hours to be predicted is shown in Figure 

4-1. It is worth noting the sudden change in measured value from time 36 to 42, perhaps the 

sun had been dazzling that day and some clouds got in the way. The shorter models (1 - and 3 

hour) almost starts oscillating as a response to this rapid change because they want to keep 

the error down even when they are way off, but they are still closer to measured data than the 

longer models, even when they seem to make more sense. At time 8 to 20, the 12-hour model 

is a lot lower than the 1 -,3 - and 6-hour models a reason for this might be that the models 

respond to data given and the 12-hour model uses data that is 12 hours prior to the 

measurement. So, at time 7 it started increasing then at time 15 it flattens out, probably 

because it used the data at time 3 and it saw that it started to turn so it better slow down. All 

the models seem to have a problem with the turning points, a reason for this might be that the 

models have not generalized well enough, maybe more data and better tuning can help. 
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Figure 4-1: Shows the measured and the 4 different models. 

 

Table 4-1 shows the hyperparameters with test error summarized. The test error is calculated 

when the test data is normalized, so the error is normalized as well. The number of layers in 

12-hour prediction is twice as many as in the other models, the horizon is 169 hours (7 days) 

compared to 6-hours with 48 hours, the learning rate is also significantly lower, the reason for 

this is because it gave a better error than one, two or three layers, the low epochs and low 

learning rate is because in instantiating and training different models, it quickly became 

overfit and as a result this is an example of slowing down the training.  

Table 4-1: Hyperparameters for each model 

Model Test error Epochs Layer structure Regression horizon Learning rate 

1 Hour 0.0101 810 17, 12 24 0.01 

3 Hour 0.0318 150 30,20 48 0.01 

6 Hour 0.0608 1000 38,24 48 0.001 

12 Hour 0.0894 500 112,75,50,34 169 0.0001 
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Figure 4-2shows a better description of the error in degree Celsius for the 48 hours predicted. 

It is calculated as the difference between measured value and predicted value, this means that 

the error that is negative is overshooting and error that is positive is undershooting. In Figure 

4-2 some things to note, as mentioned earlier, due to the rapid change in measured data at 36 

to 42 the spikes and dip in the 1 – hour model and the huge dip for the 6- and 12- hour 

models make sense. The models undershoot more than they overshoot and the reason can be 

poor generalization or poor tuning for the models. 

 

 

Figure 4-2: This figure shows how many degrees Celsius each point for each AR model was 

off for the 48 hours predicted. It is calculated as the difference between measured value and 

predicted value, this means that the error that is negative is overshooting and error that is 

positive is undershooting. 

Table 4-2 shows some notable selections in hyperparameter searching methodology for 1-

hour prediction. First a 3-hour horizon was used because as a human you would not need 

more than three hours of data to make a good enough prediction for 1 hour ahead in time and 

since a computer can handle a lot more data at a time, a 24-hour horizon is tested against the 

same structure and it has a better training loss and tuning loss. Picking the number of hidden 

layers is crucial based on what type of result you are searching for, one hidden layer can 

approximate any continuous function, while two hidden layers can approximate any arbitrary 

function. One layer should be sufficient, but two layers will speed up the learning process. 

One up to three hidden layers were tested and as shown in table 2 three layers gives around 

the same loss as in two layers therefore a two-layer model is picked. The number of units in 

each layer is based on some rule of thumb and there is generally no real correct way of 

determining them, here the three rules have been followed: 
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1) The number of hidden units in each layer should be between the number of inputs and 

number of outputs 

2) The number of hidden units in each layer should be (2/3)*(number of inputs + number 

of outputs) 

3) The total number of hidden neurons in all layers should be less than 2*(number of 

inputs) [16]. 

 

Table 4-2: 1-hour prediction, selected hyperparameter search 

Exp. No. Epochs Regression 

horizon 

Layer structure Learning rate Training 

set loss 

Tuning set 

loss 

1 1000 3 3 0.001 0.0144 0.0109 

2 1000 24 3 0.001 0.0125 0.0105 

3 1000 24 17 0.01 0.0116 0.0101 

4 1000 24 17,12 0.01 0.0113 0.0100 

5 1000 24 17,12,9 0.01 0.0113 0.0101 

6 810 24 17,12 0.01 0.0113 0.0100 
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4.3 Experiment 2: ARX-ANN 

In Figure 4-3 the predictions for each model in ARX-ANN is shown. Looking at area around 

the sudden change in measured value, at time 36 to 42. The shorter models (1 - and 3 hour) 

seems damped with the extra data, the 1-hour model predicts and reacts nicely to turns, 

however the 3-hour model also has some problems following along, but it is expected that the 

most accurate model would be the 1-hour model then the models would gradually get less 

accurate than the previous one. At time 25 the 3-hour model reaches its all-time low and is 

the lowest point, it the model reacts too strong to small changes in the data. At time 8 to 20 is 

a great example of how the models decrease in accuracy when the prediction horizon 

increases, on top is 1-hour model, then its 3-hour, then 6-hour and last 12-hour model.  The 

error around turning points look better, which can be expected with a lower accuracy, the 

model does not react faster but, it reacts stronger. 

 

 

Figure 4-3: Shows the measured and the 4 different ARX models.  
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Table 4-3 shows the hyperparameters with test error summarized. The test error on the ARX 

models are higher than on the AR models, this is unexpected and the reason is most likely 

poor tuning of the models. The number of layers in all models has been set to 2-layer models, 

this is because any arbitrary function can be modeled using two hidden layers. [16] The 

hidden structures are based on the horizon so the reason they are similar, except for 6-hour 

model, which got better tuning with hidden structure as (17,12) instead of (33,12). 

Table 4-3: Hyperparameters for each ARX model 

Model Test error Epochs Layer structure Regression horizon Learning rate 

1 Hour 0.0133 500 17, 12 24 0.01 

3 Hour 0.0653 500 33, 23 48 0.001 

6 Hour 0.0946 500 17, 12 48 0.01 

12 Hour 0.0991 300 17, 12 24 0.001 

 

The error on each 48-hour predicted for each model is shown in Figure 4-4 Some things to 

note, as mentioned earlier, due to the rapid change in measured data at 36 to 42, the spikes 

and dips in the 1 – hour model is gone, or damped. However, the 3-hour model has 

accompanied the 6-hour and 12hour model and the reason for this can be that the model seem 

to react strongly to small changes in the data. All the models also undershoot more than they 

overshoot, and the reason can be poor generalization or poor tuning for the models. 
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Figure 4-4: This figure shows how many degrees Celsius each point for each ARX model 

was off for the 48 hours predicted. It is calculated as the difference between measured value 

and predicted value, this means that the error that is negative is overshooting and error that is 

positive is undershooting. 
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5 Conclusion 
In this work, python interface was developed to make it easier to obtain weather data from 

free sources, the python interface works well, but is more user-friendly when used with Met 

compared with Netatmo. Netatmo delivers their weather data in a messy structure which 

makes it difficult to extract useful information, sorting of the weather variables has been done 

as clean as possible with the information needed (station id, variable name, variable value). 

Met however delivers their data in a structure that is easy to dissect and extract information 

from, as a result using the met supplier the weather data is delivered in a sleek Pandas data 

frame that is easy to save and navigate. The artificial neural networks was used to predict the 

temperature. Four separate models where trained to predict the temperature 1, 3, 6 and 12 

hours ahead. In the first experiment, only temperature was used as input to the networks. This 

constitutes an auto-regressive neural network(ARNN). In the second experiment, 

precipitation data was introduced into the network, forming an autoregressive neural network 

with exogenous inputs (ARX-NN). After extensive tuning of hyper parameters for all eight 

models, the prediction results of the models were compared. The results show that the 

inclusion of precipitation had a negligible effect on accuracy for temperature prediction. Out 

of the four model types, 1-hour prediction has the best prediction results for both the AR-NN 

and the ARX-NN. 

 

5.1 Future Work 

The python interface has great potential, trying to extend the interface to include more 

suppliers and perfecting the data formatting for Netatmo may increase data gathering for use 

in weather prediction. Since introducing precipitation as an input in the ARX model was 

shown to slightly improve the performance for temperature prediction, it may be interesting 

to extend the model with other inputs, or to switch what is being predicted from temperature 

to precipitation. Mainly, it is interesting to study if introduction of data from other 

geographical location can improve the prediction results. 



  Refrences 

26 

Refrences 
[1] J. Thibault and I. Senocak, “CUDA Implementation of a Navier-Stokes Solver on Multi-

GPU Desktop Platforms for Incompressible Flows,” Inanc Senocak, Jan. 2009. 

[2] “Meteorologisk institutt.” [Online]. Available: https://www.met.no/. [Accessed: 03-May-

2018]. 

[3] “Netatmo Official Site: Welcome to your Smart Home.” [Online]. Available: 

https://www.netatmo.com//. [Accessed: 03-May-2018]. 

[4] C. Severance, “Roy T. Fielding: Understanding the REST Style,” Computer, vol. 48, no. 

6, pp. 7–9, Jun. 2015. 

[5] “scikit-learn: machine learning in Python — scikit-learn 0.19.1 documentation.” 

[Online]. Available: http://scikit-learn.org/stable/. [Accessed: 03-May-2018]. 

[6] “TensorFlow,” TensorFlow. [Online]. Available: https://www.tensorflow.org/. 

[Accessed: 03-May-2018]. 

[7] “Welcome — Theano 1.0.0 documentation.” [Online]. Available: 

http://www.deeplearning.net/software/theano/index.html. [Accessed: 03-May-2018]. 

[8] “Keras Documentation.” [Online]. Available: https://keras.io/. [Accessed: 03-May-2018]. 

[9] M. Hayati and Z. Mohebi, “Application of Artificial Neural Networks for Temperature 

Forecasting,” World Acad. Sci. Eng. Technol., vol. 28, p. 5, 2007. 

[10] B. A. Smith, R. W. McClendon, and G. Hoogenboom, “Improving Air Temperature 

Prediction with Artificial Neural Networks,” vol. 3, no. 3, p. 8. 

[11] “Python Data Analysis Library — pandas: Python Data Analysis Library.” [Online]. 

Available: https://pandas.pydata.org/. [Accessed: 08-May-2018]. 

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous 

activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943. 

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. 

[14] “Frost.” [Online]. Available: https://frost.met.no/index.html. [Accessed: 03-May-

2018]. 

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” p. 9. 

[16] “The Number of Hidden Layers,” Heaton Research. [Online]. Available: 

http://www.heatonresearch.com/2017/06/01/hidden-layers.html. [Accessed: 03-May-

2018]. 

 

  



  Appendices 

27 

Appendices 
Appendix A - Task description 

Appendix B - Python Interface Documentation 

Appendix C - Python Interface files 



 
 

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn 

 

Address: Kjølnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47. 

FMH606 Master's Thesis 
 
Title: Machine learning with application to weather forecast, etc. 
 
HSN supervisor:  Bernt Lie, prof., University College of Southeast Norway (USN) 
   Liubomyr Vytvytskyi, Ph.D. student, USN 
   Ole Magnus Brastein, Ph.D. student, USN 
 
External partner: Skagerak Kraft (dr. Beathe Furenes)  
 
Task background:   
Machine Learning (ML) and use of IoT (Internet of Things) and Big Data is receiving 
increased interest from the industry. To experiment with Machine Learning, it is necessary 
to have access to “Big Data”; access to such data is not always easy to get from the industry. 
To this end, it is of interest to develop access to “Big Data”, and build up competence in 
Machine Learning – with application to an interesting topic.  
 
Prediction of precipitation (rain) is important in agriculture, but today it is also important for 
hydropower operation and flood management. Mechanistic meteorology prediction based 
on 3D CFD/Navier Stokes equations is extremely demanding wrt computing power: 
generating a 14 day weather forecast can easily take 12 hours on super computers. 
 
Today, plentiful of weather stations are connected to the internet, and are thus available as 
cheap, distributed sensors (e.g., https://weathermap.netatmo.com/; other sources may be 
available). For Netatmo weather stations, APIs are available (C, PHP, etc.) for reading public 
data such as temperature, pressure, humidity, etc. Thus, one could envision developing 
functions/methods for reading all available data within a certain rectangle of geographic 
coordinates (or: reading data within the radius of a given coordinate). Because the number 
of data within each rectangle may vary with time (new installations, dead batteries), a 
possible solution to handle this is to use the mean value within a rectangle as a scalar 
measurement, possibly with some statistics of the variation. To this end, one could log 
weather data for a large number of locations surrounding the location of interest. Example: 
if we want to predict the weather in Porsgrunn, we could log data in Porsgrunn, Rauland, 
Oslo, Kragerø, Drangedal, Kristiansand, Evje, Valle, Aalborg, Stavanger, Bergen, Iceland, the 
Faroe Island, Scotland, England, etc. – location around the current spot of interest, in the 
direction of weather movement.  
 
A set-up as indicated above will constitute a collection of IoT and will give access to a large 
number of sensors/data. It is necessary to store the data in some sort of database; storage 
of data in a text file in the form of CSV data may be adequate initially. Then based on these 
data, it is possible to train a neural network or similar using ML.  
 
A recent dynamic language, Julia, is well suited for interfacing with C code, and also has 
good access to machine learning algorithms. Other possibilities are MATLAB or Python. 
Thus, it is of interest to develop and document a package for interacting with Netatmo 
weather stations. Next, these data should form the foundation for training and validating an 
empirical model for weather forecast, and the model should be compared to what can be 

https://weathermap.netatmo.com/


achieved using a traditional mechanistic model such as data purchased by Skagerak Kraft. 
The comparison should be done based on accuracy, required computation time, etc. 
 
Task description:   
Based on the task background, the following tasks are relevant: 

1. Give an overview of API for accessing Netatmo weather stations in existing languages 
(C, PHP, etc.), and develop an API for accessing these data from Julia (or MATLAB or 
Python). 

2. Based on studies of wind/weather directions, test out possible locations for weather 
data around a chosen location of interest for Skagerak Kraft, e.g., the Kragerø water 
ways catchment. Check to see if there is some correlation between the local data 
(e.g., Kragerø water ways) and the data surrounding this location – the correlation 
should occur on quarterly hour basis, hourly basis, 3 hour basis, 6 hour basis, 12 hour 
basis, 24 hour basis, etc. – as long back as possible – to enable as long prediction 
horizon as possible. 

3. After an initial investigation, choose a reduced set of data points, and set up logging 
of the data with storage in a file.  

4. Based on available data, set up a system for machine learning. If y(t) is 
measurements at time t, then use machine learning to find a mapping F for y(t) = 
F(y(t-1), y(t-2), …, y(t-T)) for various values of total horizon T and various time steps 
dT. Validate the model, and compare your results to those from a meteorological 
model. The model should preferably give a distribution of predictions. 

5. Report the work in the Master’s Thesis, and possibly in a suitable conference/journal 
paper. 

 
Student category: IIA, EPE, PT, EET students with a reasonable background and 
understanding of programming languages and C/C++/C#. 
 
Practical arrangements: 
The workplace is Campus Kjølnes of University College of Southeast Norway. There will be 
weekly meetings with the supervisor from January until mid April, either face-to-face or via 
Skype, with hand-in of partial reports every 3 weeks.  
 
The thesis work will start January 2, 2018, and the deadline for thesis hand-in is May 15 
2018 at 14:00. An oral presentation with examination and grading will take place no later 
than June 22, 2018. 
 
Signatures:  
 
Student (date and signature):  
 
Supervisor (date and signature):  
 
 



PYTHON INTERFACE DOCUMENTATION 
Rev 01 

Erik Boye Abrahamsen 

  



CONTENTS 
Quick Start ..................................................................................................................................................................... 3 

Getting access to Netatmo ........................................................................................................................................ 3 

getting access token and refresh token ................................................................................................................. 3 

Getting access to Met ................................................................................................................................................ 4 

Class documentation ..................................................................................................................................................... 5 

Client .......................................................................................................................................................................... 6 

Constructor: ........................................................................................................................................................... 6 

Methods: ............................................................................................................................................................... 6 

Geometry ................................................................................................................................................................... 7 

Constructor: ........................................................................................................................................................... 7 

Methods: ............................................................................................................................................................... 7 

Weather ..................................................................................................................................................................... 7 

Constructor: ........................................................................................................................................................... 7 

Methods: ............................................................................................................................................................... 7 

Service ....................................................................................................................................................................... 8 

Constructor: ........................................................................................................................................................... 8 

Methods: ............................................................................................................................................................... 8 

Met ............................................................................................................................................................................ 9 

Constructor: ........................................................................................................................................................... 9 

Methods: ............................................................................................................................................................... 9 

Netatmo ..................................................................................................................................................................... 9 

Constructor: ........................................................................................................................................................... 9 

Methods: ............................................................................................................................................................... 9 

Usefuls ..................................................................................................................................................................... 10 

Constructor: ......................................................................................................................................................... 10 

Methods: ............................................................................................................................................................. 10 

 

  



QUICK START 
1. Create a client object. Note this depends on what type of client you want Met or Netatmo. 

2. Create a geometry object. This object stores the coordinates for your square 

3. Create a weather object and pass inn your client and geometry objects. 

4. Use your weather object for getting data by accessing the method getObservation() in the weather class 

5. Saving the observation from met can be done by calling observation.to_csv(filename) more information at 

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html 

NOTE: Currently pandas csv saving is only supported for met. This is because of the huge difference in Netatmo 

and Met data retrieving. Netatmo needs additional manipulation to be handled in such a way because the data 

is stored in several layers of nested dicts. 

Please see Figure 1 for an illustration of using Netatmo. In the case of using Met, you would not need : email, 

password, access_token, refresh_token or need to refresh (line 29) 

 

FIGURE 1: QUICK START, SHOWS HOW TO USE EITEHR MET OR NETATMO 

GETTING ACCESS TO NETATMO 
All information about Netatmo api is located at: https://dev.netatmo.com/resources/technical 

 
To get access to Netatmo, you need to create a user and an app at their website. This can be done at 
https://dev.netatmo.com/myaccount/createanapp 
 
When you have obtained your user account, client id and client secret you can obtain an access token and refresh 
token. (NOTE: If you request access token several times instead of using refresh token you might be banned from 
Netatmo.) 
 

GETTING ACCESS TOKEN AND REFRESH TOKEN 
1. Open the python file netatmo.py in your python IDE 

https://dev.netatmo.com/resources/technical
https://dev.netatmo.com/myaccount/createanapp


2. In the bottom of the file there is already prepared a snippet for asking for access token and refresh token 
3. Just fill in YOUR email, password, client id and client secret (See Figure 2 for how it should look) 
4. After filling in your info run the script. This will produce two print statements in the console. 
5. Copy the tokens and save them somewhere, or add them directly to your clientFile.py (This is a 

helper/skeleton file that can be used to obtain data) 
 

 
FIGURE 2: SHOWS CODE SNIPPET TO OBTAIN ACCESS AND REFRESH TOKEN FOR NETATMO 

 
 

GETTING ACCESS TO MET 
All information about Met api is located at: https://frost.met.no/index.html 

 

Met needs your email to give you a client id and client secret. You can register your email at 

https://frost.met.no/auth/requestCredentials.html 

 

When you have obtained your client id and client secret please do as illustrated in Quick Start. 

  

https://frost.met.no/index.html
https://frost.met.no/auth/requestCredentials.html


CLASS DOCUMENTATION 
This section covers the class documentation. The available methods, arguments and returns. In the Figure 3, below a 

diagram of the class structure is shown. 

 

FIGURE 3: CLASS STRUCTURE FOR INTERFACE 

  



CLIENT 
File: client.py Dependencies: requests 

The client class is the class that handles the client. 

CONSTRUCTOR: 

Arguments Description 

client_name This is the name of your selected service, either Met or Netatmo) 
client_id This is your client id from the selected service 
client_secret This is your client secret from the selected service 
email Your email if needed in your selected service 
password Your password if needed in your selected 
access_token This is the access token you have acquired from your selected service 
refresh_token This is the refresh token you have acquired from your selected service 

 

METHODS: 
def refreshAccesstoken_netatmo(): 
It refreshes your access token, it will print to console the new token, please change it with your old one. One token 
lasts approximately 15 minutes. 
Returns: Nothing  
  



GEOMETRY 
File: geometry.py Dependencies: math 

Class representing a coordinate on a sphere, most likely Earth.This class is based from the code smaple in this paper. 
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinatesThe owner of that website, Jan Philip Matuschek, is 
the full owner of his intellectual property. This class is simply a Python port of his veryuseful Java code. All code 
written by Jan Philip Matuschek and ported by me (which is all this class) is owned by Jan Philip Matuschek. 
IMPORTED USEFUL CODEBLOCKS FROM GITHUB: https://github.com/jfein/PyGeoTools 
http://www.hamstermap.com/quickmap.php can be used to visualize points on a map 

CONSTRUCTOR: 

Arguments Description 

latDeg The latitude center point of your square 
lonDeg The longitude center point of your square 
distance This is the size of the square in kilometers 

 

METHODS: 
def getLocation(): 
Used to get the lat and lon values used to produce the square 
Returns: list with center position of square [lat,lon] 
     
def getSquare(): 
Use to get the square list to be used in services like Met or Netatmo 
Returns: coordinates for the squares coordinates 
     
def getLatList(): 
Returns list of all the lat points, in order nw,sw,se,ne 
Returns: list of all the lat points, in order nw,sw,se,ne 
 
def getLonList(): 
Returns list of all the lon points, in order nw,sw,se,ne 
Returns: Returns list of all the lon points, in order nw,sw,se,ne 
 
 

WEATHER 
File: weather.py Dependencies: service.py 

The weather class is the class that asks the service class for data and is the one to be used for obtaining data 

CONSTRUCTOR: 

Arguments Description 

client This is the client object made for your service 
geometry This is the geometry object made 

 

METHODS: 
def getObservation(data, date = None): 
Used to get the wanted observations within the geometry 
data is the weather variable wanted 
date is a string on the format 2016-01-01/2018-01-01 
Returns: The requested data. 
 

https://github.com/jfein/PyGeoTools


SERVICE 
File: service.py Dependencies: met.py, netatmo.py 

The service class holds the service providers and asks them for their information. Currently SERVS = ['met','netatmo'], 

is supported if future suppliers are to be added they must be specified here. 

CONSTRUCTOR: 

Arguments Description 

client This is the client object created at the start 

 

METHODS: 

def getData(,data,date,geometry): 
Used for asking the service providers for the data, either data at point or data inside square geometry 
Returns: data from the different services, based on if its point or geometry. 
 
  



MET 
File: met.py Dependencies: usefuls.py, pandas 

The met class holds everything that should do with met. It transforms to correct formats and asks the right URLs. 
Currently supported weather elements are: 
('temperature':'air_temperature', 
'hourlytemperature',’dailytemperature',’temperatur','timestemperatur','dagligtemperatur','rain','dailyrain','regn','
dagligregn','wind','winddirection','vind','vindretning','humidity','fuktighet','pressure' 
,'airpressure','trykk','lufttrykk') 

CONSTRUCTOR: 

Arguments Description 

client Client object 

 

METHODS: 
def getPointData(data,date,geometry): 
Gets the station nearest to the point specified. 
Data is the specified data 
Date is the specified date 
And geometry is the geometry object 
Returns: Requested data 
     
     
def getGeometryData(data,date,geometry): 
Returns specified data from all the stations within the given geometry object to the given date.  
Note: if error occur like 404. this may mean that your rectangle is too small or that the station found don't have that 
type of data you're looking for 
Returns: Requested data 
 
 

NETATMO 
File: netatmo.py Dependencies: time, pandas, requests 

The Netatmo class holds everything that should do with Netatmo. It transforms to correct formats and asks the right 
URLs. 
Currently supported weather elements are: 
('temperature','tempratur','temp','rain','regn','wind','vind','humidity','fuktighet') 

CONSTRUCTOR: 

Arguments Description 

client This is the client object 

 

METHODS: 
def getGeometryData(data,geometry): 
Returns specified data from all the stations within the given geometry object at the current time.  
Note: if error occur like 404. this may mean that your rectangle is too small or that the station found don't have that 
type of data you're looking for 
Returns: Requested data 
  



USEFULS 
File: usefuls.py Dependencies: datetime, requests 

The Usefuls class contains some useful methods when dealing with dates and lists 

CONSTRUCTOR: 

Arguments Description 

  

 

METHODS: 

def getDatesList(date): 
Splits a date string on the format year-month-day/year2-month2-day2, into separate dates and  
returns a list where each member is a list with corresponding year, month, day at the indexes 
ex: date = "2017-01-01/2017-01-04” returns a list dates = [ [ 2017, 01, 01], [ 2017 , 01 , 02 ] , [ 2017 , 01 , 03 ] ] 
Returns: a list where each member is a list with corresponding year, month, day at the indexes 
 
def datesListToStringList(datesList): 
Takes in a list of dates then combines them 
Returns a list where each member is the combined date eg, datelist = [ [ 2017, 01, 01], [ 2017, 01 , 02 ]] 
the return of this datelist is stringList = [ [ '2017-01-01’], [ '2017-01-02’]] 
Returns: a list where each member is the combined date 
 
def backToDateString(datesList): 
Takes in a date list and makes it into a string again 
Returns a string that goes from a dateslist = [ [ 2017, 01, 01] , [ 2017 , 01 , 02 ] , [ 2017 , 01 , 03 ] ] to a string combined 
= "2017-01-01/2017-01-04" 
Returns: a string that goes from a dateslist to a stringdate 
 
def requestData(url,client): 
takes in a url and a client object to make a request to specified url 
Used for requesting data from url 
Returns: response object from request 
 
def chunkIt(seq, num): 
Used to divide a list into approx equal parts 
Takes in a list(seq) and separates it into (num) equal parts 
Returns: a divided list 



import requests

class Client(object):
    
    def __init__(self,client_name,client_id,client_secret,email = None,
                 password = None,access_token = None,refresh_token = None):
        self.client_name = client_name.lower()
        self.client_id = client_id
        self.client_secret = client_secret
        self.email = email
        self.password = password
        self.access_token = access_token
        self.refresh_token = refresh_token
    
    def _setNewAccessToken(self,newAccess_token):
        self.access_token = newAccess_token
        
    def refreshAccesstoken_netatmo(self):
        """
        Used for refreshing access token. This is the way Netatmo wants 
        their API to be used. requesting new tokens may result in a ban.
        """
        payload = {
                'grant_type': 'refresh_token',
                'refresh_token': self.refresh_token,
                'client_id': self.client_id,
                'client_secret': self.client_secret
                }
        headers = {'Content-Type': 
            'application/x-www-form-urlencoded; charset=UTF-8'}
        r = requests.post('https://api.netatmo.com/oauth2/token', 
                          data=payload, headers=headers)
        newTok = r.json()["access_token"]
        self._setNewAccessToken(newTok)
        print("AccesToken Refreshed --- New is: ",newTok)
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import math

class Geometry(object):
    
    '''
    Class representing a coordinate on a sphere, most likely Earth.
    
    This class is based from the code smaple in this paper:
        http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
        
    The owner of that website, Jan Philip Matuschek, is the full owner of 
    his intellectual property. This class is simply a Python port of his very
    useful Java code. All code written by Jan Philip Matuschek and ported by me 
    (which is all of this class) is owned by Jan Philip Matuschek.
    
    IMPORTED USEFUL CODEBLOCKS FROM GITHUB: https://github.com/jfein/PyGeoTools
    
    http://www.hamstermap.com/quickmap.php can be used to visualize points on a map
    '''
    
    MIN_LAT = math.radians(-90);
    MAX_LAT = math.radians(90);
    MIN_LON = math.radians(-180);
    MAX_LON = math.radians(180);
    
    EARTH_RADIUS = 6378.1  # kilometers

# =============================================================================
#       Constructor  
# =============================================================================
    def __init__(self,latDeg,lonDeg,distance):
        
        self.latDeg = float(latDeg)
        self.lonDeg = float(lonDeg)
        self.latRad = float(math.radians(latDeg))
        self.lonRad = float(math.radians(lonDeg))
        self.distance = distance
        self._check_bounds()
        
        if(self.distance > 0):
            self.square = self._setupBox(self.distance)
            self.point = False
        else:
            self.square = [self.latDeg,self.lonDeg]
            self.point = True

# =============================================================================
#       Private methods       
# =============================================================================
        
    def _check_bounds(self):
        """
        This method is used to check if the lat and lon is withing the macimum 
        and minimums of the earth
        """
        if (self.latRad < Geometry.MIN_LAT 
                or self.latRad > Geometry.MAX_LAT 
                or self.lonRad < Geometry.MIN_LON 
                or self.lonRad > Geometry.MAX_LON):
            raise Exception("Illegal arguments")
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    def _setupBox(self,distance,radius=EARTH_RADIUS):
        
        """
        Used to set up a box that is X distance in km from the center point 
        given(latDeg,lonDeg) it will return the lat, lon for all 
        four corners of the box.
        
        Returns a list with cordinates in degrees for each corener in 
        bounding box [NW,SW,SE,NE] where each item is a 
        list with two points: [lat,lon]
        
        """
        
        if radius < 0 or distance < 0:
            raise Exception("Illegal arguments")
            
        # angular distance in radians on a great circle
        rad_dist = distance / radius
        
        min_lat = self.latRad - rad_dist
        max_lat = self.latRad + rad_dist
        
        if min_lat > Geometry.MIN_LAT and max_lat < Geometry.MAX_LAT:
            delta_lon = math.asin(math.sin(rad_dist) / math.cos(self.latRad))
            
            min_lon = self.lonRad - delta_lon
            if min_lon < Geometry.MIN_LON:
                min_lon += 2 * math.pi
                
            max_lon = self.lonRad + delta_lon
            if max_lon > Geometry.MAX_LON:
                max_lon -= 2 * math.pi
        # a pole is within the distance
        else:
            min_lat = max(min_lat, Geometry.MIN_LAT)
            max_lat = min(max_lat, Geometry.MAX_LAT)
            min_lon = Geometry.MIN_LON
            max_lon = Geometry.MAX_LON
        
        SW = [math.degrees(min_lat),math.degrees(min_lon)]
        NE = [math.degrees(max_lat),math.degrees(max_lon)]
        NW = [SW[0],NE[1]]
        SE = [NE[0],SW[1]]
        return [NW,SW,SE,NE]
    
# =============================================================================
#       Public Methods
# =============================================================================
    
    def getLocation(self):
        """
        Used to get the lat and lon values used to produce the square
        """
        return [self.latDeg,self.lonDeg]
    
    def getSquare(self):
        """
        Use to get the square list to be used in services like Met or Netatmo
        """
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        return self.square
    
    def getLatList(self):
         """
         Returns list of all the lat points, in order nw,sw,se,ne
         """
         return [self.square[0][0],self.square[1][0],self.square[2][0],self.square[3][0]]
    
    def getLonList(self):
        """
        Returns list of all the lon points, in order nw,sw,se,ne
        """
        return [self.square[0][1],self.square[1][1],self.square[2][1],self.square[3][1]]

         

if __name__ == '__main__':
    
    g = Geometry(latDeg = 26.062951, lonDeg = -80.238853,distance = 5)
    g2 = Geometry(latDeg = 59.152676, lonDeg = 9.652863,distance = 10)

    
    sq =  g2.getSquare()
    lat1 = g.getLatList()
    lat2 = g2.getLatList()
    lon1 = g.getLonList()
    lon2 = g.getLonList()
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import service

class Weather(object):
    
# =============================================================================
# Constructor
# =============================================================================

    def __init__(self,client,geometry):

        self.client = client
        self.geometry = geometry
        self.service= self._authenticate(self.client)
        
        
# =============================================================================
# Private methods
# =============================================================================
        
    def _authenticate(self,client):
        """
        Used for checking that the service exists and creates a service object
        """
        s =service.Service(client)
        return s
    
    
# =============================================================================
#       Public methods
# =============================================================================

    def getObservation(self, data, date = None):
        """
        Used to get the wanted observations within the geometry
        data is the weather variable wanted
        date is a string on the format 2016-01-01/2018-01-01
        """
        data = data.lower()
        
        if(self.geometry == None):
                raise Exception("GEOMETRY NOT INSTANTIATED," 
                                +"please use setGeometry(latDeg, lonDeg, distance)")
                
        return self.service.getData(data,date,self.geometry)
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import met,netatmo

class Service(object):
    
    SERVS = ['met','netatmo']
    
    def __init__(self,client):
        self.source = self._pickSource(client)
       
    def _pickSource(self,client):
        """
        Used for picking the right source of the data, this is handeled 
        automatically aslong as the source is listed
        """
        serviceName = client.client_name
        if(serviceName not in self.SERVS):
            raise Exception("ERROR! "+serviceName+" is not a supported
                            service. Supported services are: ",self.SERVS)
        else:
            if(serviceName == 'met'):
                return met.Met(client)
            elif(serviceName == 'netatmo'):
                return netatmo.Netatmo(client)
    
    def getData(self,data,date,geometry):
        """
        Used for getting the data
        """
        #self._datesList(date)
        
        if (geometry.point):
            return self.source.getPointData(data,date,geometry)
        else:
            return self.source.getGeometryData(data,date,geometry)
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import usefuls
import pandas as pd

class Met(object):
    
# =============================================================================
# Constructor
# =============================================================================
    def __init__(self,client):
        self.geometryPoint = False
        self.client = client
        self.elements = {'temperature':'air_temperature',
                         'hourlytemperature':'air_temperature',
                         'dailytemperature':'air_temperature',
                         'temperatur':'air_temperature',
                         'timestemperatur':'air_temperature',
                         'dagligtemperatur':'air_temperature',
                         'rain':'sum(precipitation_amount PT1H)',
                         'dailyrain':'sum(precipitation_amount PT1H)',
                         'regn':'sum(precipitation_amount PT1H)',
                         'dagligregn':'sum(precipitation_amount PT1H)',
                         'wind':'mean(wind_speed PT1H)',
                         'winddirection':'wind_from_direction',
                         'vind':'mean(wind_speed PT1H)',
                         'vindretning':'wind_from_direction',
                         'humidity':'mean(relative_humidity PT1H)',
                         'fuktighet':'mean(relative_humidity PT1H)',
                         'pressure':'air_pressure_at_sea_level',
                         'airpressure':'air_pressure_at_sea_level',
                         'trykk':'air_pressure_at_sea_level',
                         'lufttrykk':'air_pressure_at_sea_level',
                         '':''}
    
# =============================================================================
# Private Methods
# =============================================================================
    def _getNearestStation(self,location):
        """
        Gets the station nearest the specified point
        """
        url = ('https://frost.met.no/sources/v0.jsonld?types='
        +'SensorSystem&geometry=nearest(POINT({0} {1}))'.format(location[1],
                                       location[0]))
        stationID = usefuls.Usefuls().requestData(url,self.client)
        stationID = stationID['data'][0]['id']
        return stationID
    
    
    
    
    def _getStationIDsInGeometry(self,geometry):
        """
        The geometry is a polygon so the first and last point must be the same 
        to close the geometry
        """
        NW = geometry[0]
        SW = geometry[1]
        SE = geometry[2]
        NE = geometry[3]
        url = ('https://frost.met.no/sources'
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        +'/v0.jsonld?types=SensorSystem&geometry='
        +'POLYGON (({0} {1}, {2} {3}, {4} {5}, {6} {7}, {8}'
        +' {9}))'.format(NW[1],NW[0],SW[1],SW[0],SE[1],SE[0],NE[1],NE[0],NW[1],NW[0]))
        stations = usefuls.Usefuls().requestData(url,self.client)
        le = len(stations['data'])
        stationIDs = [0]*le
        for i in range(0,le):
            stationIDs[i] = stations['data'][i]['id']
        return stationIDs
    
    
    
    def _getCorrectURL(self,data,datesList,stationIDs):
        date = usefuls.Usefuls().backToDateString(datesList)
        s = ''
        
        if(self.geometryPoint):
            if(data == ''):
                url = ('https://frost.met.no/observations'
                       +'/availableTimeSeries/v0.jsonld?referencetime='
                       +date+'&sources='+str(stationIDs))
            else:
                url = ('https://frost.met.no/observations'
                +'/v0.jsonld?referencetime='+date+'&elements='
                +self.elements[data]+'&sources='+str(stationIDs))
        else:
            for i in range(len(stationIDs)):
                s += str(stationIDs[i])+','
            s = s[:-1]
            if(data == ''):
                url = ('https://frost.met.no/observations/'+
                       'availableTimeSeries/v0.jsonld?referencetime='
                       +date+'&sources='+s)
            else:
                url = ('https://frost.met.no/observations'+
                '/v0.jsonld?referencetime='+date+'&elements='
                +self.elements[data]+'&sources='+s)
        return url
    
    
    
    def _preProcessDATA(self,stationIDs,datesList):
        """
        Preprocesses the DATA such that all memory for all excpected 
        values are created. will be used as a checking guide to find
        the correct data to place or to place none
        """
        #Makes the first item in each station in the DATA the station id
        DATA = []
        station = []
        for st in stationIDs:
            station.append(st)
            DATA.append(station)
            station = []
        #Makes a list of expected times to be in the json object
        times = []
        dataa = []
        for da in datesList:
            for t in range(24):
                if t >= 10:
                    times.append([da+'T{0}:00:00.000Z'.format(t),None])
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                else:
                    times.append([da+'T{0}{1}:00:00.000Z'.format(0,t),None])
            
            dataa.append(times)
            times = []
 
        #adds expected times to the DATA list
        for s in DATA:
            s.append(dataa)
        return DATA
    
    def _postProcessDATA(self,realDATA,expectedDATA):
        stations = []
        for f in range(len(realDATA)):
            for i in range(len(expectedDATA)):
                
                if expectedDATA[i][0] in realDATA[f][0]:
                    stations.append([expectedDATA[i][0],
                                     [realDATA[f][1],realDATA[f][2]]])
                else:
                    stations.append([expectedDATA[i][0],[None,None]])
        return stations
    
    def _getSpecifiedData(self,data,datesList,url,stationIDs):
        """
        Picks the data from json, if daily is requested an average will be 
        returned, else its hourly for the days specified
        """
        datesList = usefuls.Usefuls().datesListToStringList(datesList)
        DATA = self._preProcessDATA(stationIDs,datesList)
        
        dta = []
        
        data = usefuls.Usefuls().requestData(url,self.client)
        data = data['data']
        
        #adds the real data to a list [[station id, timestamp, value],[..]..]
        for d in range(len(data)):
            dta.append([data[d]['sourceId'],
                        data[d]['referenceTime'],
                        data[d]['observations'][0]['value']])
            
        #postData = self._postProcessDATA(dta,DATA)
        
        y = []
        for it in DATA:
            
            if(it[0] in dta[0]):
                y.append(1)
            else:
                y.append(0)
                                
        
        
        #specifiedData = [datesList,DATA,dta]
        specifiedData = dta
        return self._sortToPandas(specifiedData)
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    def _sortToPandas(self,data):
        df = pd.DataFrame()
        df = df.append(data)
        df.rename(columns={0: 'Station Id', 
                           1: 'Timestamp',2:'Value'}, inplace=True)
        return df
        
# =============================================================================
# Public Methods
# =============================================================================

    def getPointData(self,data,date,geometry):
        """
        Gets the station nearest to the point specified.
        """
        datesList = usefuls.Usefuls().getDatesList(date)
        self.geometryPoint = True
        square = geometry.getSquare()
        nearestStation = self._getNearestStation(square)
        url = self._getCorrectURL(data,datesList,nearestStation)
        data = self._getSpecifiedData(data,datesList,url,nearestStation)
        return data
    
    
    def getGeometryData(self,data,date,geometry):
        """
        Returns data from all the stations withing the given geometry. 
        Note: if error occour like 404. this may mean that your rectangle is 
        too small or that the station found don't have that 
        type of data you're looking for
        """
        datesList = usefuls.Usefuls().getDatesList(date)
        self.geometryPoint = False
        square = geometry.getSquare()
        stationIDs = self._getStationIDsInGeometry(square)
        url = self._getCorrectURL(data,datesList,stationIDs)
        data = self._getSpecifiedData(data,datesList,url,stationIDs)
        return data
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import time
import pandas as pd
import requests

class Netatmo(object):
    
    NETATMO_OAUTH_URL = 'https://api.netatmo.com/oauth2/token';
    NETATMO_STATION_DATA = 'https://api.netatmo.com/api/getstationsdata';
    NETATMO_PUBLIC_DATA = "https://api.netatmo.com/api/getpublicdata";
    
# =============================================================================
# Constructor
# =============================================================================
    def __init__(self,client):
        self.client = client
        if(self.client.password == None or self.client.email == None or 
           self.client.access_token == None or self.client.refresh_token == None):
            raise Exception("Error! Netatmo needs email, password,"+ 
                            "access token and refresh token aswell."
                            +" If you haven't got a access and refresh token. "
                            +"got into netatmo.py and "
                            +"run the code in __name__ == '__main__' part to obtain it.")
        
        self.elements = {'temperature':'temperature',
                         'tempratur':'temperature',
                         'temp':'temperature',
                         'rain':'rain',
                         'regn':'rain',
                         'wind':'wind',
                         'vind':'wind',
                         'humidity':'humidity',
                         'fuktighet':'humidity',
                         '':''}
    

# =============================================================================
# Public Methods
# =============================================================================

    def _sortData(self,dat):
        """
        Takes the data, sorts it so it got its correct id and timestamp. 
        This sorting is not comleted yet it's missing weather variable sorting
        returns a list [timestamp,id,DATA]
        """
        t = time.ctime(dat['time_server'])
        f = pd.DataFrame()
        d = []
        dd = []
        iid = None
        for f in dat['body']:
            iid = f['_id']
            for k in f['measures']:
                d.append(t)
                d.append(iid)
                d.append(f['measures'][k])
                dd.append(d)
                d = []
            iid = None
        return dd
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    def _getPublicData(self,access_token,lat_ne,lon_ne,
                       lat_sw,lon_sw,required_data = '',fltr = "false"):
        """
        **access_token** *(required)*\n 
        Obtained from https://api.netatmo.com/oauth2/token \n
        **lat_ne** *(required)*\n Latitude of the north east corner of the 
        requested area. -85 <= lat_ne <= 85 and lat_ne>lat_sw.
        \n \n example value: 15  \n
        **lon_ne** *(required)*\n Longitude of the north east corner of the 
        requested area.-180 <= lon_ne <= 180 and lon_ne>lon_sw
        \n \n example value: 20 \n
        **lat_sw** *(required)*\n Latitude of the south west corner of the 
        requested area. -85 <= lat_sw <= 85 \n \n example value: -15  \n
        **lon_sw** *(required)*\n Longitude of the south west corner of the 
        requested area. -180 <= lon_sw <= 180 \n \n example value: -20  \n
        **required_data = "rain"** *(optional)* \n To filter stations based 
        on relevant measurements you want (e.g. rain will only return stations
        with rain gauges). Default is no filter. You can find all measurements
        available on the Thermostat page. 
        \n \n example value: "rain", "humidity"
        **fltr = False** *(optional)*\n True to exclude station with abnormal 
        temperature measures. Default is false. PS: this must be a string\n
        \n \n for more: 
        https://dev.netatmo.com/resources/technical/reference/weatherapi/getpublicdata
        """
        params = {'access_token':access_token,'lat_ne':lat_ne
                  ,'lon_ne':lon_ne
                  ,'lat_sw':lat_sw
                  ,'lon_sw':lon_sw
                  ,'required_data': required_data
                  ,'filter':fltr}
        req = requests.post(self.NETATMO_PUBLIC_DATA,params)
        req.raise_for_status()
        dat = req.json()
        return dat
    
    def getPointData(self,data,date,geometry):
        """
        point geometry is not supported by Netatmo
        """
        raise Exception("ERROR: Point geometry is not supported by Netatmo.")
        
        
    def getGeometryData(self,data,date,geometry):
        """
        returns a list with the data obtained from the search withing the rectangle
        """
        square = geometry.getSquare()
        dat = self._getPublicData(access_token=self.client.access_token,
                                  lat_ne=square[3][0],lon_ne = square[3][1],
                                  lat_sw = square[1][0],lon_sw = square[1][1],
                                  required_data = self.elements[data])
        return self._sortData(dat)
        #return dat
    

    
# =============================================================================
#  This is for getting access token and refresh token for the first time   
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# =============================================================================

def getNetAtmoAccessToken(naClientId, naClientSecret, naEmail, naPassword):
        """
        Used to get access token from email,password, client id and client 
        secret. be aware that requesting this more than one time 
        may lead to a ban on your account from netatmo. They really want you
        to use your refresh token when asking for data.
        
        returns a list with access token and refresh token eg.[access_token,refresh_token]
        
        """

        payload = {
                'grant_type': 'password',
                'username': naEmail,
                'password': naPassword,
                'client_id': naClientId,
                'client_secret': naClientSecret
                }
        headers = {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}
        r = requests.post('https://api.netatmo.com/oauth2/token',
                          data=payload, headers=headers)
        access_token=r.json()["access_token"]
        refresh_token=r.json()["refresh_token"]
        #print(access_token)
        #print(refresh_token)
        return [access_token,refresh_token]

if __name__ == '__main__':
    client_id = "your client id"
    client_secret = "your client secret"
    email = "your email address"
    password = "your password for netatmo"

    r = getNetAtmoAccessToken(naClientId=client_id,
                              naClientSecret=client_secret,
                              naEmail=email,naPassword=password)
    print("Access Token: ",r[0])
    print("Refresh Token: ",r[1])
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import datetime,requests

class Usefuls(object):
     
    headers = {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}

    def getDatesList(self,date):
        """
        splits a date string on the format year-month-day/year2-month2-day2, 
        into separeate dates and 
        returns a list where each member is a list with corresponding year, 
        month,day  at the indexes
        ex:
            date = "2017-01-01/2017-01-04"  returns a list 
            dates = [ [ 2017 , 01 , 01 ] , [ 2017 , 01 , 02 ] , [ 2017 , 01 , 03 ] ]
        """
        dates = []
        
        if('/' in date):
            dd = date.split('/')
            dF = dd[0].split('-')
            dF = datetime.date(int(dF[0]),int(dF[1]),int(dF[2]))
            dT = dd[1].split('-')
            dT = datetime.date(int(dT[0]),int(dT[1]),int(dT[2]))
            dt = dT -dF
            
            for i in range(0,dt.days):
                v = dF + datetime.timedelta(days=i)
                dates.append([v.year,v.month,v.day])
        else:
            dF = date.split('-')
            dF = datetime.date(int(dF[0]),int(dF[1]),int(dF[2]))
            dates.append([dF.year,dF.month,dF.day])

        return dates
    
    
    def datesListToStringList(self,datesList):
        """
        Returns a list where each member is the combined date eg,
        datelist = [ [ 2017 , 01 , 01 ] , [ 2017 , 01 , 02 ]]
        the return of this datelist is 
        stringList = [ [ '2017-01-01' ] , [ '2017-01-02' ] ]
        """
        stringList = []
        for i in range(len(datesList)):
            y = str(datesList[i][0])
            m = datesList[i][1]
            d = datesList[i][2]
            
            if m <10:
                m = '0{0}'.format(datesList[i][1])
            else:
                m = str(datesList[i][1])
                
            if d <10:
                d = '0{0}'.format(datesList[i][2])
            else:
                d = str(datesList[i][2])
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            st = y+'-'+m+'-'+d
            stringList.append(st)
        return stringList
    
    
    def backToDateString(self,datesList):
        """
        Returns a string that goes from a 
        dateslist = [ [ 2017 , 01 , 01 ] , [ 2017 , 01 , 02 ] , [ 2017 , 01 , 03 ] ] 
        to a string combined = "2017-01-01/2017-01-04"
        """
        firstD = (str(datesList[0][0])
        +'-'+str(datesList[0][1])+'-'+str(datesList[0][2]))
        lastD = datetime.date(datesList[len(datesList)-1][0]
        ,datesList[len(datesList)-1][1]
        ,datesList[len(datesList)-1][2]) + datetime.timedelta(days=1)
        combined = (firstD+'/'
                    +str(lastD.year)+'-'+str(lastD.month)+'-'+str(lastD.day))
        return combined
        
    def requestData(self,url,client):
        """
        Used for requesting data from url
        """
        print(url)

        if(client.client_name == 'met'):
            r = requests.get(url,auth=(client.client_id, ''),headers=self.headers)
            if r.status_code == 200:
                return r.json()
            else:
                raise Exception("Error: JSON status: {0}".format(r.status_code))
        

    
    def chunkIt(self,seq, num):
        """
        Used to divide a list into approx equal parts
        """
        avg = len(seq) / float(num)
        out = []
        last = 0.0
    
        while last < len(seq):
            out.append(seq[int(last):int(last + avg)])
            last += avg
    
        return out
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import client
import geometry as geo
import weather

client_id = "your client id"
client_secret = "your client secret"
email = "your email address"
password = "your password for netatmo if netatmo is chosen"
access_token = "your access token"
refresh_token = "your refresh token"

#1 Create client
c = client.Client(client_name="Netatmo",client_id = client_id,
                  client_secret=client_secret,
                  email = email,password = password,
                  access_token = access_token,refresh_token = refresh_token)

c_met = client.Client(client_name="met",
                      client_id = client_id,
                      client_secret=client_secret) #Met client

#1.5 Refresh your access token if you use netatmo
c.refreshAccesstoken_netatmo()  #Refreshing only for netatmo

#2 Create Geometry
g = geo.Geometry(latDeg=59.091,lonDeg=9.66,distance=10) 
#10 km square with center at 59.091, 9.66

#3 Create Weather
w = weather.Weather(c,g)

#4 Get data
#Met
observation = w.getObservation(data='temperature',date='2017-01-01/2017-01-05')
observation = w.getObservation(data='temperature') #Netatmo
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