

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2018

Energy and Environmental Technology

Predicting weather using ANN with free
open weather data in python

Erik Boye Abrahamsen

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2018

Title: Predicting weather using ANN with free open weather data in python

Number of pages: 27

Keywords: Python interface, Weather prediction, Auto-regressive neural network, ANN,

IoT, Big-Data

Student: Erik Boye Abrahamsen

Supervisor: Bernt Lie, Ole Magnus Brastein

External partner: dr. Beathe Furenes

Availability: Open

Summary:

Predicting the weather is important for a lot of fields including agriculture, construction and

hydro-power and flood management. Currently mechanistic meteorology predictions are

generated using heavy computing based 3D Navier-Stokes models. Therefore, it is of interest to

develop models that can predict weather conditions faster than traditional meteorological

models. The field of machine learning has received much interest from the scientific community.

Due to its applicability in a variety of fields, it is of interest to study if the use of artificial neural

networks can be a good candidate for prediction of weather conditions. Machine learning

methods benefit from large datasets. A python interface was developed to make it easier to

obtain weather data from free sources, the python interface works well, but is more user-friendly

when used with Met supplier compared with Netatmo supplier. Four separate models where

trained to predict the temperature 1, 3, 6 and 12 hours ahead. In the first experiment, only

temperature was used as input to the networks. This constitutes an auto-regressive neural

network(ARNN). In the second experiment, precipitation data was introduced into the network,

forming an autoregressive neural network with exogenous inputs (ARX-NN). The results show

that the inclusion of precipitation had a negligible effect on accuracy for temperature prediction.

Out of the four model types, 1-hour prediction has the best prediction results for both the AR-

NN and the ARX-NN.

 Preface

3

Preface
I would like to thank everybody in the world.

Porsgrunn, 15.05.2018

Erik Boye Abrahamsen

 Contents

4

Contents

1 Introduction ... 6

1.1 Background ... 6
1.2 Task description and Objectives ... 6

1.2.1 Data Interface... 7
1.2.2 Building and prediction of machine learning model ... 7

1.3 Previous Work ... 7
1.4 Report structure .. 8

2 Python Interface .. 9

2.1 Overview .. 9
2.1.1 Design .. 9

2.2 Usage ... 11

3 Machine Learning model .. 12

3.1 Dataset ... 14
3.2 Experiments .. 16

3.2.1 Experiment 1: Temperature AR-ANN .. 16
3.2.2 Experiment 2: Temperature ARX-ANN .. 16

4 Results and discussion .. 18

4.1 Python interface .. 18
4.2 Experiment 1: AR-ANN ... 18
4.3 Experiment 2: ARX-ANN .. 22

5 Conclusion .. 25

5.1 Future Work ... 25

Refrences ... 26

Appendices .. 27

 Nomenclature

5

Nomenclature
ANN – Artificial neural network

API – Application programming interface

IoT – Internet of things, a term used for gadgets connected to the internet

ML – Machine Learning

MLP – Multilayer perceptron

 Introduction

6

1 Introduction
Machine Learning (ML) and use of IoT (Internet of Things) and Big Data is receiving increased

interest from the industry. To experiment with Machine Learning, it is necessary to have access

to “Big Data”; access to such data is not always easy to get from the industry. To this end, it is

of interest to develop access to “Big Data”, and build up competence in Machine Learning –

with application to an interesting topic.

1.1 Background

Predicting the weather is important for a lot of fields including agriculture, construction and

hydro-power and flood management. Currently mechanistic meteorology predictions are

generated using heavy computing based 3D Navier-Stokes models and can easily take 12

hours on fast computers[1]. In Norway weather data is publicly available for free from

weather stations around in Norway, installed and maintained by meteorological institute of

Norway(Met) [2], along with Met there is Netatmo [3], another data supplier that gives out

their weather data for free. The difference between the two is that Met uses meteorological

standard for placement of sensors, while Netatmo is an internet of things(IoT) device

purchased at your local hardware store that is connected to the internet, installed and

maintained by you. Both suppliers give an HTTP Get/Request(REST) [4] Application

Programming Interface(API) that gives access to their data. Met supplies both historical data

and real-time, while Netatmo supplies real-time only. With the access to large quantities of

data an interesting approach would be to use novel Machine Learning(ML) algorithms such

as an artificial neural network(ANN) to predict the weather conditions for a given

geographical location, and with such large quantities compensate for the lack of complex

meteorological models.

1.2 Task description and Objectives

The tasks and objectives are listed below, and the original task description is given in

Appendix A – Task description.

Overall objectives:

- Research different suppliers for weather data and their APIs e.g. Netatmo

- Develop an API for accessing these data from Python, Julia or MATLAB

- Choose a reduced set of data points, and set up logging of the data with storage in a

file if historical data is not available.

- Based on available data, set up a system for machine learning. If y(t) is measurements

at time t, then use machine learning to find a mapping F for y(t) = F(y(t-1), y(t-2), …,

y(t-T)) for various values of total horizon T and various time steps dT.

- Validate the model, and compare your results to those from a meteorological model.

The model should preferably give a distribution of predictions.

After all it boils down to two main objectives, the first is developing and document the data

interface used to obtain data from more than one supplier. Then it is the building and

prediction of machine learning model, the two are explained in more detail below.

 Introduction

7

1.2.1 Data Interface

The data interface should help give access weather supplier APIs, it should be well

documented and developed in python. The data retrieved should be from all stations within a

given rectangle or for a specified station or latitude and longitude coordinates. The interface

should have the same commands for all suppliers and supply the data neatly formatted.

Handling of the different suppliers should be hidden from the user, it should also be possible

to add more suppliers if needed. The user should only need to specify what type of data is

needed, from where and from when and should also have the option to save the data to csv

file.

1.2.2 Building and prediction of machine learning model

For the ML model an artificial neural network should be built. Using python as programming

language, there are several machine learning libraries available, like Scikit-learn [5],

Tensorflow [6], Theano [7], Keras [8]. For building the model, Keras with Tensorflow

backend has been chosen as it is an easy solution to build different network structures and

tune different hyperparameters. The data used to train, tune and test should be separated,

where training data consists of 60% of the total data, while the remaining 40% is split equally

among tuning and testing. The tuning data is only to be used for tuning the hyperparameters,

and when satisfied with the tuning the test data is only be used once in the model to give a

true measure of the tuned model. The ML model should predict weather parameters for 48

consecutive hours from 1 to 12 hours ahead.

1.3 Previous Work

Hayatiet.al [9],studied multilayer perceptron (MLP) neural networks trained and tested on ten

years of metrological data (1996-2006). A training goal of 10-4 was used. The network

structure consisted of three layers with a logistic sigmoid activation function in hidden layer

and linear function in the output layer. Seven weather variables were used in the study; dry

temperature, wet temperature, wind speed, humidity, pressure, sunshine and radiation. The

inputs were normalized and used to predict dry air temperature in intervals of 3 hours for a

total of 8 predictions per day. The error was calculated using mean absolute error (MAE).

Smith et.al [10] focused on developing artificial neural network models to forecast air

temperature at hourly intervals from one to 12 hours ahead. 30 models were calibrated for

each interval, to study the effect of randomized initial weights on test set prediction accuracy.

The network structure consisted of three fully connected hidden layers that used Gaussian-,

Gaussian complement and hyperbolic tangent activation functions. The input data was

linearly transformed to the range 0.1 to 0.9 and consisted of five weather variables:

temperature, relative humidity, wind speed, solar radiation and rainfall. Later seasonal

parameters were introduced as input which improved model accuracy.

 Introduction

8

1.4 Report structure

Chapter 1: Introduction describes the problem description, objectives and previous work

Chapter 2: Python interface is all about the design and goal of the interface and how to use it.

Chapter 3: Machine learning model contains the information about what an artificial neural

network is, what type of network used, how it was tuned and about the dataset used in the

experiments described.

Chapter 4: Results and discussion contains the results of the experiments along with a

discussion of them

Chapter 5: Conclusion.

 Python Interface

9

2 Python Interface
As big data is more available to everybody online and cheap sensors with access to internet is

more accessible and user friendly the need for better ways to obtain similar data increases. Here

it is proposed and designed a way to make that possible with weather data from publicly

available weather data.

2.1 Overview

The main goal of the interface is to provide the user with a way to obtain data from several

weather data APIs that is hidden under the same structure. Different APIs have different

commands and need different inputs for the same service they provide, this interface will act

as a translator and transform your request into the right format, ask the specified data

supplier, obtain the data and deliver it to the user. Figure 2-1 shows a general overview of the

interface and information flow from user to interface, interface to supplier and then back.

Figure 2-1: Shows the general big picture of the Python interface. The white arrow is the

request and the green arrow shows a successful request and then is returning the data.

2.1.1 Design

The interface is built in Python and is a library that contains several classes in an object-

oriented structure. Figure 2-2 shows the class layout of the interface and their interaction with

each other. The user uses the class. The Client class holds the information about the client,

like authentication token, which data supplier it is for, the Geometry class makes the

specified square around the given coordinates. In the Weather class, the data to be retrieved

can be specified. In the Usefuls class it is some functions that is useful to splitting dates into

separate items or compact them again for usage in the Service class, this class is responsible

for giving the right commands to the right supplier classes (Met and Netatmo).

 Python Interface

10

Figure 2-2: Shows the class structure of the interface. The usage of the interface is

described under 3.2 Usage and in Appendix B - Python Interface Documentation

Data returned should be formatted into the same way for all the different weather variables. It

will be combined in a Pandas[11] data frame which has the possibility to be saved to a csv

file. Table 2-1 Shows how the returned data frame can look like for Met data frame, Data

value is the measurement at the given station whose number is saved in Station number,

timestamp is when it starts to when it ends, notice it ends at End date-1, this is because the

date constraint goes from start date up to end date, not including.

 Python Interface

11

Table 2-1: Shows how the returned data frame can look like for Met data frame

Station number Timestamp Data value

Start date 0.3

Start date +1 0.1

Start date +2 None

… … …

End date-3 0.2

End date-2 0

End date-1 None

2.2 Usage

Netatmo and Met are different, Netatmo supplies only live data so there is no need for a date

constraint, while Met supplies historical data so a date is needed. See appendix B for more

information about documentation and usage.

 Machine Learning model

12

3 Machine Learning model
Artificial neural networks(ANN) have existed in various forms since the 1940s [12], but have

received interest in recent years, largely due to the success of Deep Learning algorithms[13].

An artificial neural network is a layered collection of several densely connected units called

artificial neurons, each connection has a numerical weight. A single artificial neuron produces

a linear output that is simply a weighted sum of inputs, plus a bias, the output is then passed

through a function called an activation function. The activation function decides if the output

is transmitted to the connected units. A single artificial neuron is shown in Figure 3-1, where

X1 to Xn are the inputs, b is the bias, u is the output from the neuron and y output from the

activation function, g.

Figure 3-1: Single neuron

Being layered and densely connected means that each unit is connected to all the units in the

next layer. Each layer in an artificial neural network can be large with an even larger number

of coefficients, this allows the network to fit complex non-linear systems. This descriptive

power that comes from this complexity is the reason ANN models can adapt to a large variety

of systems. Figure 3-2 shows an illustration of a layered and densely connected artificial

neural network with one input layer with five inputs, one hidden layer with three hidden units

and one output layer with one output node.

 Machine Learning model

13

Figure 3-2: Layered and densely connected artificial neural network. Input layer, hidden layer

and output layer is illustrated as rectangles.

The activation function takes the decision whether to let the signal pass or not, if it does it

transforms the signal linearly or non-linearly, depending on the choice of function. The

activation functions also squish the output, since the output of a unit can be large it is useful

to restrict the output. Figure 3-3 shows some common activation functions and what their

squish range is.

Figure 3-3: Common activation functions. Binary-step (top left) either 0 or 1, Logistic

Sigmoid (top right) range 0.0 – 1.0, Hyperbolic Tangent (Bottom left) range -1.0 to 1.0,

Rectified Linear Unit(ReLu) (bottom right) either 0 or x.

 Machine Learning model

14

When training an artificial neural network, the goal is to usually minimize the loss function

over the training set. This is essentially parameter optimization, but usually due to the high

number of parameters to optimize it is unlikely to find a global solution, therefore a solution

that is “good enough” is usually preferred. Training or optimizing means to make something

a maximum or minimum this is an iterative process where each iteration is called an epoch

[13]. To validate the network each epoch the difference (y - y*) from desired output (y)

called a label, and network output (y*) is converted into a metric, known as the loss function,

a common metric is the mean squared error(MSE) eq.1.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

∗)2
𝑛

𝑖=1

(eq.1)

A popular optimization method is gradient decent. The slope of the loss function at any point

in the training process is the partial derivative with respect to the weights. When minimizing,

each iteration takes the partial derivative at a point, move a small step called the learning rate

in the opposite direction of the gradient and repeat until all epochs are done or local minima

found. The learning rate and number of epochs is called hyperparameters and should be tuned

for each different network case[13].

3.1 Dataset

A total of 32 000 hourly weather data was gathered from [14] using the python interface, at

Station SN30255 in Porsgrunn, Norway with coordinates latitude: 59.091 and longitude:

9.66. The weather variables (called features) used in the models, were air-temperature and

precipitation. ANNs don not handle missing data very well. A challenge was to obtain data

from the same period and same hours. It would be possible to take different hours or data

from 2016 and 2017, but the network would then need all future data to be structured in the

same way before used for a prediction. Two periods were used together, the first in 2016 was

from 01.02.2016 up to and including 31.12.2016, and 2017 was from 02.01.2017 up to and

including 31.12.2017. The period was originally from 2016 and 2017, but in 2017 the first

month of data was not available at the station. So, for consistency the first month of 2016 was

also removed. The data is a series each 1 hour apart. Preparing the data to be easily usable for

different predictions ahead in time while still maintaining correct labels was done using a

shift to the “right” method illustrated in Table 3-1.

Table 3-1: Illustration of a right shift to make each hour previously used as input data to

match with current labels

Label (y) 1-Hour Shift (X1) 2-Hour Shift (X2) 3-Hour Shift (X3) … n-hour shift (Xn)

D1 D2 @Label D3 @Label D4 @Label … Dm @Label

D2 D3 @Label D4 @Label D5 @Label … Dm-1 @Label

D3 D4 @Label D5 @Label D6 @Label … Dm-2 @Label

… D5 @Label D6 @Label D7 @Label … Dm-3 @Label

Dm Dm-1 @Label Dm-2 @Label Dm-3 @Label … Dm-n @Label

 Machine Learning model

15

When extending the hourly predictions, the lowest data disappears for the other columns, so

the larger the horizon gets the more rows must be deleted to maintain a constant width and

height. Table 3-2 shows an example of what happens with the bottom data when right shifting.

Column y is the label and original data, column X1 is a 1-hour shift, the total number of usable

data drops by 1 (from 7 to 6 and so on.). The number of usable data (Nu) is the difference

between total number of data(NT) and number of hours back (NB), Nu = NT – NB, when the data

is hourly split and right shifted.

Table 3-2: Illustration of what happens to bottom data when right shifting.

y X1 X2 X3 X4 X5 X6

7 6 5 4 3 2 1

6 5 4 3 2 1 X

5 4 3 2 1 X X

4 3 2 1 X X X

3 2 1 X X X X

2 1 X X X X X

1 X X X X X X

In Figure 3-4 a plot of the temperature data acquired from 01.02.2017 to 31.12.2017 is

plotted. This plot shows how the data is varying over the year, as expected the temperature is

highest in the middle and lowest on the start and end of the year. In all the experiments the

dataset was split into three parts, 60% used for training, 20% For hyperparameter tuning and

20% for testing, the testing set is completely independent of the training and tuning.

Figure 3-4: Plot of hourly temperature data for the period 01.02.2017 – 31.12.2017

-15

-10

-5

0

5

10

15

20

25

30 Hourly temperature measurements 01.02.2017 - 31.12.2017

 Machine Learning model

16

3.2 Experiments

In all experiments the goal was to predict 1-, 3-, 6- and 12-hours ahead, compare them with

each other. In all cases the activation functions for hidden layers was rectified linear unit and

linear for the output layer, ReLU has been shown to enable better training in 2011 compared

to the more widely used Sigmoid function [15]. Separate models were created, one for each

1-, 3-, 6- and 12-hour predictions in all cases the input data was normalized, then the output

was denormalized to achieve desired results in readable units. To test the different models, 48

consecutive hours is set to be predicted by the different models.

3.2.1 Experiment 1: Temperature AR-ANN

The first experiment was set up to predict air-temperature by using historical temperature

data only. Figure 3-5 shows an illustration of AR-ANN to predict 1 step ahead.

Figure 3-5: AR-ANN to predict 1 step ahead.

3.2.2 Experiment 2: Temperature ARX-ANN

In the second experiment, air-temperature and precipitation were used as input to predict the

air-temperature. Figure 3-6 shows an illustration of ARX-ANN to predict 1 step ahead, using

two input features.

 Machine Learning model

17

Figure 3-6: ARX-ANN

 Results and discussion

18

4 Results and discussion
During the thesis work several other thigs that cannot be documented very well has taken

place this includes learning about machine learning, how to use different machine learning

frameworks like Tensorflow, Keras and scikit-learn. Building a database and learning SQL

for storing and retrieving weather data and started developing the interface in Julia as well,

this was discarded in the final design for the interface, but nonetheless consumed a lot of

time.

4.1 Python interface

The interface is easy to use, delivers data with simple lines of code as specified, however Met

is the supplier that is most suited for delivering data with a Pandas frame that has access to

saving methods. This is because Met delivers the specified data in a single nested list. While

Netatmo delivers all the data, it does not care if you specify the wanted data according to

their API, and the delivered data is in several listed dictionaries and lists, and because of this,

sorting for the correct weather data is painfully difficult and have not been done in such a

way that the returned data is formatted like in Mets case. The data sorted and delivered with

the interface from Netatmo is somewhat sorted in a nested list with timestamp, station id and

the different weather variables. To fix this problem a solution might be to do a hard search for

specific names like temperature or pressure, one problem with this is might be that the

variable values might get mixed due to the way Netatmo delivers data. For instance if

searching for Temperature, a dictionary with two elements (one dictionary and one list) is

returned, in the dictionary element there is another list with two values. These values

correspond to the other list delivered which is strings of weather variables temperature and

humidity, already there it is 5 nests for obtaining one value. But when doing this for 10

stations and running 5 nested loops for each variable Netatmo delivers one may easily run

into some problems with computing power or time. For obtaining data it is recommended to

use Met instead of Netatmo. Met is easier to use, delivers data fast and with great quality. The

handling of errors when making a request could have been optimized better, with checks on

the parameter inputs, URL lengths generated and such, if your square gets too big and tries to

get over 50 stations met can’t deliver it, the URL would be too long. This could be fixed if a

batch system was introduced to make sure the length was in order.

4.2 Experiment 1: AR-ANN

The first experiment used historical temperature data to predict the temperature ahead 1, 3, 6

and 12 hours. The predictions of the 48 consecutive hours to be predicted is shown in Figure

4-1. It is worth noting the sudden change in measured value from time 36 to 42, perhaps the

sun had been dazzling that day and some clouds got in the way. The shorter models (1 - and 3

hour) almost starts oscillating as a response to this rapid change because they want to keep

the error down even when they are way off, but they are still closer to measured data than the

longer models, even when they seem to make more sense. At time 8 to 20, the 12-hour model

is a lot lower than the 1 -,3 - and 6-hour models a reason for this might be that the models

respond to data given and the 12-hour model uses data that is 12 hours prior to the

measurement. So, at time 7 it started increasing then at time 15 it flattens out, probably

because it used the data at time 3 and it saw that it started to turn so it better slow down. All

the models seem to have a problem with the turning points, a reason for this might be that the

models have not generalized well enough, maybe more data and better tuning can help.

 Results and discussion

19

Figure 4-1: Shows the measured and the 4 different models.

Table 4-1 shows the hyperparameters with test error summarized. The test error is calculated

when the test data is normalized, so the error is normalized as well. The number of layers in

12-hour prediction is twice as many as in the other models, the horizon is 169 hours (7 days)

compared to 6-hours with 48 hours, the learning rate is also significantly lower, the reason for

this is because it gave a better error than one, two or three layers, the low epochs and low

learning rate is because in instantiating and training different models, it quickly became

overfit and as a result this is an example of slowing down the training.

Table 4-1: Hyperparameters for each model

Model Test error Epochs Layer structure Regression horizon Learning rate

1 Hour 0.0101 810 17, 12 24 0.01

3 Hour 0.0318 150 30,20 48 0.01

6 Hour 0.0608 1000 38,24 48 0.001

12 Hour 0.0894 500 112,75,50,34 169 0.0001

 Results and discussion

20

Figure 4-2shows a better description of the error in degree Celsius for the 48 hours predicted.

It is calculated as the difference between measured value and predicted value, this means that

the error that is negative is overshooting and error that is positive is undershooting. In Figure

4-2 some things to note, as mentioned earlier, due to the rapid change in measured data at 36

to 42 the spikes and dip in the 1 – hour model and the huge dip for the 6- and 12- hour

models make sense. The models undershoot more than they overshoot and the reason can be

poor generalization or poor tuning for the models.

Figure 4-2: This figure shows how many degrees Celsius each point for each AR model was

off for the 48 hours predicted. It is calculated as the difference between measured value and

predicted value, this means that the error that is negative is overshooting and error that is

positive is undershooting.

Table 4-2 shows some notable selections in hyperparameter searching methodology for 1-

hour prediction. First a 3-hour horizon was used because as a human you would not need

more than three hours of data to make a good enough prediction for 1 hour ahead in time and

since a computer can handle a lot more data at a time, a 24-hour horizon is tested against the

same structure and it has a better training loss and tuning loss. Picking the number of hidden

layers is crucial based on what type of result you are searching for, one hidden layer can

approximate any continuous function, while two hidden layers can approximate any arbitrary

function. One layer should be sufficient, but two layers will speed up the learning process.

One up to three hidden layers were tested and as shown in table 2 three layers gives around

the same loss as in two layers therefore a two-layer model is picked. The number of units in

each layer is based on some rule of thumb and there is generally no real correct way of

determining them, here the three rules have been followed:

 Results and discussion

21

1) The number of hidden units in each layer should be between the number of inputs and

number of outputs

2) The number of hidden units in each layer should be (2/3)*(number of inputs + number

of outputs)

3) The total number of hidden neurons in all layers should be less than 2*(number of

inputs) [16].

Table 4-2: 1-hour prediction, selected hyperparameter search

Exp. No. Epochs Regression

horizon

Layer structure Learning rate Training

set loss

Tuning set

loss

1 1000 3 3 0.001 0.0144 0.0109

2 1000 24 3 0.001 0.0125 0.0105

3 1000 24 17 0.01 0.0116 0.0101

4 1000 24 17,12 0.01 0.0113 0.0100

5 1000 24 17,12,9 0.01 0.0113 0.0101

6 810 24 17,12 0.01 0.0113 0.0100

 Results and discussion

22

4.3 Experiment 2: ARX-ANN

In Figure 4-3 the predictions for each model in ARX-ANN is shown. Looking at area around

the sudden change in measured value, at time 36 to 42. The shorter models (1 - and 3 hour)

seems damped with the extra data, the 1-hour model predicts and reacts nicely to turns,

however the 3-hour model also has some problems following along, but it is expected that the

most accurate model would be the 1-hour model then the models would gradually get less

accurate than the previous one. At time 25 the 3-hour model reaches its all-time low and is

the lowest point, it the model reacts too strong to small changes in the data. At time 8 to 20 is

a great example of how the models decrease in accuracy when the prediction horizon

increases, on top is 1-hour model, then its 3-hour, then 6-hour and last 12-hour model. The

error around turning points look better, which can be expected with a lower accuracy, the

model does not react faster but, it reacts stronger.

Figure 4-3: Shows the measured and the 4 different ARX models.

 Results and discussion

23

Table 4-3 shows the hyperparameters with test error summarized. The test error on the ARX

models are higher than on the AR models, this is unexpected and the reason is most likely

poor tuning of the models. The number of layers in all models has been set to 2-layer models,

this is because any arbitrary function can be modeled using two hidden layers. [16] The

hidden structures are based on the horizon so the reason they are similar, except for 6-hour

model, which got better tuning with hidden structure as (17,12) instead of (33,12).

Table 4-3: Hyperparameters for each ARX model

Model Test error Epochs Layer structure Regression horizon Learning rate

1 Hour 0.0133 500 17, 12 24 0.01

3 Hour 0.0653 500 33, 23 48 0.001

6 Hour 0.0946 500 17, 12 48 0.01

12 Hour 0.0991 300 17, 12 24 0.001

The error on each 48-hour predicted for each model is shown in Figure 4-4 Some things to

note, as mentioned earlier, due to the rapid change in measured data at 36 to 42, the spikes

and dips in the 1 – hour model is gone, or damped. However, the 3-hour model has

accompanied the 6-hour and 12hour model and the reason for this can be that the model seem

to react strongly to small changes in the data. All the models also undershoot more than they

overshoot, and the reason can be poor generalization or poor tuning for the models.

 Results and discussion

24

Figure 4-4: This figure shows how many degrees Celsius each point for each ARX model

was off for the 48 hours predicted. It is calculated as the difference between measured value

and predicted value, this means that the error that is negative is overshooting and error that is

positive is undershooting.

 Conclusion

25

5 Conclusion
In this work, python interface was developed to make it easier to obtain weather data from

free sources, the python interface works well, but is more user-friendly when used with Met

compared with Netatmo. Netatmo delivers their weather data in a messy structure which

makes it difficult to extract useful information, sorting of the weather variables has been done

as clean as possible with the information needed (station id, variable name, variable value).

Met however delivers their data in a structure that is easy to dissect and extract information

from, as a result using the met supplier the weather data is delivered in a sleek Pandas data

frame that is easy to save and navigate. The artificial neural networks was used to predict the

temperature. Four separate models where trained to predict the temperature 1, 3, 6 and 12

hours ahead. In the first experiment, only temperature was used as input to the networks. This

constitutes an auto-regressive neural network(ARNN). In the second experiment,

precipitation data was introduced into the network, forming an autoregressive neural network

with exogenous inputs (ARX-NN). After extensive tuning of hyper parameters for all eight

models, the prediction results of the models were compared. The results show that the

inclusion of precipitation had a negligible effect on accuracy for temperature prediction. Out

of the four model types, 1-hour prediction has the best prediction results for both the AR-NN

and the ARX-NN.

5.1 Future Work

The python interface has great potential, trying to extend the interface to include more

suppliers and perfecting the data formatting for Netatmo may increase data gathering for use

in weather prediction. Since introducing precipitation as an input in the ARX model was

shown to slightly improve the performance for temperature prediction, it may be interesting

to extend the model with other inputs, or to switch what is being predicted from temperature

to precipitation. Mainly, it is interesting to study if introduction of data from other

geographical location can improve the prediction results.

 Refrences

26

Refrences
[1] J. Thibault and I. Senocak, “CUDA Implementation of a Navier-Stokes Solver on Multi-

GPU Desktop Platforms for Incompressible Flows,” Inanc Senocak, Jan. 2009.

[2] “Meteorologisk institutt.” [Online]. Available: https://www.met.no/. [Accessed: 03-May-

2018].

[3] “Netatmo Official Site: Welcome to your Smart Home.” [Online]. Available:

https://www.netatmo.com//. [Accessed: 03-May-2018].

[4] C. Severance, “Roy T. Fielding: Understanding the REST Style,” Computer, vol. 48, no.

6, pp. 7–9, Jun. 2015.

[5] “scikit-learn: machine learning in Python — scikit-learn 0.19.1 documentation.”

[Online]. Available: http://scikit-learn.org/stable/. [Accessed: 03-May-2018].

[6] “TensorFlow,” TensorFlow. [Online]. Available: https://www.tensorflow.org/.

[Accessed: 03-May-2018].

[7] “Welcome — Theano 1.0.0 documentation.” [Online]. Available:

http://www.deeplearning.net/software/theano/index.html. [Accessed: 03-May-2018].

[8] “Keras Documentation.” [Online]. Available: https://keras.io/. [Accessed: 03-May-2018].

[9] M. Hayati and Z. Mohebi, “Application of Artificial Neural Networks for Temperature

Forecasting,” World Acad. Sci. Eng. Technol., vol. 28, p. 5, 2007.

[10] B. A. Smith, R. W. McClendon, and G. Hoogenboom, “Improving Air Temperature

Prediction with Artificial Neural Networks,” vol. 3, no. 3, p. 8.

[11] “Python Data Analysis Library — pandas: Python Data Analysis Library.” [Online].

Available: https://pandas.pydata.org/. [Accessed: 08-May-2018].

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[14] “Frost.” [Online]. Available: https://frost.met.no/index.html. [Accessed: 03-May-

2018].

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” p. 9.

[16] “The Number of Hidden Layers,” Heaton Research. [Online]. Available:

http://www.heatonresearch.com/2017/06/01/hidden-layers.html. [Accessed: 03-May-

2018].

 Appendices

27

Appendices
Appendix A - Task description

Appendix B - Python Interface Documentation

Appendix C - Python Interface files

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

Address: Kjølnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47.

FMH606 Master's Thesis

Title: Machine learning with application to weather forecast, etc.

HSN supervisor: Bernt Lie, prof., University College of Southeast Norway (USN)
 Liubomyr Vytvytskyi, Ph.D. student, USN
 Ole Magnus Brastein, Ph.D. student, USN

External partner: Skagerak Kraft (dr. Beathe Furenes)

Task background:
Machine Learning (ML) and use of IoT (Internet of Things) and Big Data is receiving
increased interest from the industry. To experiment with Machine Learning, it is necessary
to have access to “Big Data”; access to such data is not always easy to get from the industry.
To this end, it is of interest to develop access to “Big Data”, and build up competence in
Machine Learning – with application to an interesting topic.

Prediction of precipitation (rain) is important in agriculture, but today it is also important for
hydropower operation and flood management. Mechanistic meteorology prediction based
on 3D CFD/Navier Stokes equations is extremely demanding wrt computing power:
generating a 14 day weather forecast can easily take 12 hours on super computers.

Today, plentiful of weather stations are connected to the internet, and are thus available as
cheap, distributed sensors (e.g., https://weathermap.netatmo.com/; other sources may be
available). For Netatmo weather stations, APIs are available (C, PHP, etc.) for reading public
data such as temperature, pressure, humidity, etc. Thus, one could envision developing
functions/methods for reading all available data within a certain rectangle of geographic
coordinates (or: reading data within the radius of a given coordinate). Because the number
of data within each rectangle may vary with time (new installations, dead batteries), a
possible solution to handle this is to use the mean value within a rectangle as a scalar
measurement, possibly with some statistics of the variation. To this end, one could log
weather data for a large number of locations surrounding the location of interest. Example:
if we want to predict the weather in Porsgrunn, we could log data in Porsgrunn, Rauland,
Oslo, Kragerø, Drangedal, Kristiansand, Evje, Valle, Aalborg, Stavanger, Bergen, Iceland, the
Faroe Island, Scotland, England, etc. – location around the current spot of interest, in the
direction of weather movement.

A set-up as indicated above will constitute a collection of IoT and will give access to a large
number of sensors/data. It is necessary to store the data in some sort of database; storage
of data in a text file in the form of CSV data may be adequate initially. Then based on these
data, it is possible to train a neural network or similar using ML.

A recent dynamic language, Julia, is well suited for interfacing with C code, and also has
good access to machine learning algorithms. Other possibilities are MATLAB or Python.
Thus, it is of interest to develop and document a package for interacting with Netatmo
weather stations. Next, these data should form the foundation for training and validating an
empirical model for weather forecast, and the model should be compared to what can be

https://weathermap.netatmo.com/

achieved using a traditional mechanistic model such as data purchased by Skagerak Kraft.
The comparison should be done based on accuracy, required computation time, etc.

Task description:
Based on the task background, the following tasks are relevant:

1. Give an overview of API for accessing Netatmo weather stations in existing languages
(C, PHP, etc.), and develop an API for accessing these data from Julia (or MATLAB or
Python).

2. Based on studies of wind/weather directions, test out possible locations for weather
data around a chosen location of interest for Skagerak Kraft, e.g., the Kragerø water
ways catchment. Check to see if there is some correlation between the local data
(e.g., Kragerø water ways) and the data surrounding this location – the correlation
should occur on quarterly hour basis, hourly basis, 3 hour basis, 6 hour basis, 12 hour
basis, 24 hour basis, etc. – as long back as possible – to enable as long prediction
horizon as possible.

3. After an initial investigation, choose a reduced set of data points, and set up logging
of the data with storage in a file.

4. Based on available data, set up a system for machine learning. If y(t) is
measurements at time t, then use machine learning to find a mapping F for y(t) =
F(y(t-1), y(t-2), …, y(t-T)) for various values of total horizon T and various time steps
dT. Validate the model, and compare your results to those from a meteorological
model. The model should preferably give a distribution of predictions.

5. Report the work in the Master’s Thesis, and possibly in a suitable conference/journal
paper.

Student category: IIA, EPE, PT, EET students with a reasonable background and
understanding of programming languages and C/C++/C#.

Practical arrangements:
The workplace is Campus Kjølnes of University College of Southeast Norway. There will be
weekly meetings with the supervisor from January until mid April, either face-to-face or via
Skype, with hand-in of partial reports every 3 weeks.

The thesis work will start January 2, 2018, and the deadline for thesis hand-in is May 15
2018 at 14:00. An oral presentation with examination and grading will take place no later
than June 22, 2018.

Signatures:

Student (date and signature):

Supervisor (date and signature):

PYTHON INTERFACE DOCUMENTATION
Rev 01

Erik Boye Abrahamsen

CONTENTS
Quick Start ... 3

Getting access to Netatmo .. 3

getting access token and refresh token ... 3

Getting access to Met .. 4

Class documentation ... 5

Client .. 6

Constructor: ... 6

Methods: ... 6

Geometry ... 7

Constructor: ... 7

Methods: ... 7

Weather ... 7

Constructor: ... 7

Methods: ... 7

Service ... 8

Constructor: ... 8

Methods: ... 8

Met .. 9

Constructor: ... 9

Methods: ... 9

Netatmo ... 9

Constructor: ... 9

Methods: ... 9

Usefuls ... 10

Constructor: ... 10

Methods: ... 10

QUICK START
1. Create a client object. Note this depends on what type of client you want Met or Netatmo.

2. Create a geometry object. This object stores the coordinates for your square

3. Create a weather object and pass inn your client and geometry objects.

4. Use your weather object for getting data by accessing the method getObservation() in the weather class

5. Saving the observation from met can be done by calling observation.to_csv(filename) more information at

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

NOTE: Currently pandas csv saving is only supported for met. This is because of the huge difference in Netatmo

and Met data retrieving. Netatmo needs additional manipulation to be handled in such a way because the data

is stored in several layers of nested dicts.

Please see Figure 1 for an illustration of using Netatmo. In the case of using Met, you would not need : email,

password, access_token, refresh_token or need to refresh (line 29)

FIGURE 1: QUICK START, SHOWS HOW TO USE EITEHR MET OR NETATMO

GETTING ACCESS TO NETATMO
All information about Netatmo api is located at: https://dev.netatmo.com/resources/technical

To get access to Netatmo, you need to create a user and an app at their website. This can be done at
https://dev.netatmo.com/myaccount/createanapp

When you have obtained your user account, client id and client secret you can obtain an access token and refresh
token. (NOTE: If you request access token several times instead of using refresh token you might be banned from
Netatmo.)

GETTING ACCESS TOKEN AND REFRESH TOKEN
1. Open the python file netatmo.py in your python IDE

https://dev.netatmo.com/resources/technical
https://dev.netatmo.com/myaccount/createanapp

2. In the bottom of the file there is already prepared a snippet for asking for access token and refresh token
3. Just fill in YOUR email, password, client id and client secret (See Figure 2 for how it should look)
4. After filling in your info run the script. This will produce two print statements in the console.
5. Copy the tokens and save them somewhere, or add them directly to your clientFile.py (This is a

helper/skeleton file that can be used to obtain data)

FIGURE 2: SHOWS CODE SNIPPET TO OBTAIN ACCESS AND REFRESH TOKEN FOR NETATMO

GETTING ACCESS TO MET
All information about Met api is located at: https://frost.met.no/index.html

Met needs your email to give you a client id and client secret. You can register your email at

https://frost.met.no/auth/requestCredentials.html

When you have obtained your client id and client secret please do as illustrated in Quick Start.

https://frost.met.no/index.html
https://frost.met.no/auth/requestCredentials.html

CLASS DOCUMENTATION
This section covers the class documentation. The available methods, arguments and returns. In the Figure 3, below a

diagram of the class structure is shown.

FIGURE 3: CLASS STRUCTURE FOR INTERFACE

CLIENT
File: client.py Dependencies: requests

The client class is the class that handles the client.

CONSTRUCTOR:

Arguments Description

client_name This is the name of your selected service, either Met or Netatmo)
client_id This is your client id from the selected service
client_secret This is your client secret from the selected service
email Your email if needed in your selected service
password Your password if needed in your selected
access_token This is the access token you have acquired from your selected service
refresh_token This is the refresh token you have acquired from your selected service

METHODS:
def refreshAccesstoken_netatmo():
It refreshes your access token, it will print to console the new token, please change it with your old one. One token
lasts approximately 15 minutes.
Returns: Nothing

GEOMETRY
File: geometry.py Dependencies: math

Class representing a coordinate on a sphere, most likely Earth.This class is based from the code smaple in this paper.
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinatesThe owner of that website, Jan Philip Matuschek, is
the full owner of his intellectual property. This class is simply a Python port of his veryuseful Java code. All code
written by Jan Philip Matuschek and ported by me (which is all this class) is owned by Jan Philip Matuschek.
IMPORTED USEFUL CODEBLOCKS FROM GITHUB: https://github.com/jfein/PyGeoTools
http://www.hamstermap.com/quickmap.php can be used to visualize points on a map

CONSTRUCTOR:

Arguments Description

latDeg The latitude center point of your square
lonDeg The longitude center point of your square
distance This is the size of the square in kilometers

METHODS:
def getLocation():
Used to get the lat and lon values used to produce the square
Returns: list with center position of square [lat,lon]

def getSquare():
Use to get the square list to be used in services like Met or Netatmo
Returns: coordinates for the squares coordinates

def getLatList():
Returns list of all the lat points, in order nw,sw,se,ne
Returns: list of all the lat points, in order nw,sw,se,ne

def getLonList():
Returns list of all the lon points, in order nw,sw,se,ne
Returns: Returns list of all the lon points, in order nw,sw,se,ne

WEATHER
File: weather.py Dependencies: service.py

The weather class is the class that asks the service class for data and is the one to be used for obtaining data

CONSTRUCTOR:

Arguments Description

client This is the client object made for your service
geometry This is the geometry object made

METHODS:
def getObservation(data, date = None):
Used to get the wanted observations within the geometry
data is the weather variable wanted
date is a string on the format 2016-01-01/2018-01-01
Returns: The requested data.

https://github.com/jfein/PyGeoTools

SERVICE
File: service.py Dependencies: met.py, netatmo.py

The service class holds the service providers and asks them for their information. Currently SERVS = ['met','netatmo'],

is supported if future suppliers are to be added they must be specified here.

CONSTRUCTOR:

Arguments Description

client This is the client object created at the start

METHODS:

def getData(,data,date,geometry):
Used for asking the service providers for the data, either data at point or data inside square geometry
Returns: data from the different services, based on if its point or geometry.

MET
File: met.py Dependencies: usefuls.py, pandas

The met class holds everything that should do with met. It transforms to correct formats and asks the right URLs.
Currently supported weather elements are:
('temperature':'air_temperature',
'hourlytemperature',’dailytemperature',’temperatur','timestemperatur','dagligtemperatur','rain','dailyrain','regn','
dagligregn','wind','winddirection','vind','vindretning','humidity','fuktighet','pressure'
,'airpressure','trykk','lufttrykk')

CONSTRUCTOR:

Arguments Description

client Client object

METHODS:
def getPointData(data,date,geometry):
Gets the station nearest to the point specified.
Data is the specified data
Date is the specified date
And geometry is the geometry object
Returns: Requested data

def getGeometryData(data,date,geometry):
Returns specified data from all the stations within the given geometry object to the given date.
Note: if error occur like 404. this may mean that your rectangle is too small or that the station found don't have that
type of data you're looking for
Returns: Requested data

NETATMO
File: netatmo.py Dependencies: time, pandas, requests

The Netatmo class holds everything that should do with Netatmo. It transforms to correct formats and asks the right
URLs.
Currently supported weather elements are:
('temperature','tempratur','temp','rain','regn','wind','vind','humidity','fuktighet')

CONSTRUCTOR:

Arguments Description

client This is the client object

METHODS:
def getGeometryData(data,geometry):
Returns specified data from all the stations within the given geometry object at the current time.
Note: if error occur like 404. this may mean that your rectangle is too small or that the station found don't have that
type of data you're looking for
Returns: Requested data

USEFULS
File: usefuls.py Dependencies: datetime, requests

The Usefuls class contains some useful methods when dealing with dates and lists

CONSTRUCTOR:

Arguments Description

METHODS:

def getDatesList(date):
Splits a date string on the format year-month-day/year2-month2-day2, into separate dates and
returns a list where each member is a list with corresponding year, month, day at the indexes
ex: date = "2017-01-01/2017-01-04” returns a list dates = [[2017, 01, 01], [2017 , 01 , 02] , [2017 , 01 , 03]]
Returns: a list where each member is a list with corresponding year, month, day at the indexes

def datesListToStringList(datesList):
Takes in a list of dates then combines them
Returns a list where each member is the combined date eg, datelist = [[2017, 01, 01], [2017, 01 , 02]]
the return of this datelist is stringList = [['2017-01-01’], ['2017-01-02’]]
Returns: a list where each member is the combined date

def backToDateString(datesList):
Takes in a date list and makes it into a string again
Returns a string that goes from a dateslist = [[2017, 01, 01] , [2017 , 01 , 02] , [2017 , 01 , 03]] to a string combined
= "2017-01-01/2017-01-04"
Returns: a string that goes from a dateslist to a stringdate

def requestData(url,client):
takes in a url and a client object to make a request to specified url
Used for requesting data from url
Returns: response object from request

def chunkIt(seq, num):
Used to divide a list into approx equal parts
Takes in a list(seq) and separates it into (num) equal parts
Returns: a divided list

import requests

class Client(object):

 def __init__(self,client_name,client_id,client_secret,email = None,
 password = None,access_token = None,refresh_token = None):
 self.client_name = client_name.lower()
 self.client_id = client_id
 self.client_secret = client_secret
 self.email = email
 self.password = password
 self.access_token = access_token
 self.refresh_token = refresh_token

 def _setNewAccessToken(self,newAccess_token):
 self.access_token = newAccess_token

 def refreshAccesstoken_netatmo(self):
 """
 Used for refreshing access token. This is the way Netatmo wants
 their API to be used. requesting new tokens may result in a ban.
 """
 payload = {
 'grant_type': 'refresh_token',
 'refresh_token': self.refresh_token,
 'client_id': self.client_id,
 'client_secret': self.client_secret
 }
 headers = {'Content-Type':
 'application/x-www-form-urlencoded; charset=UTF-8'}
 r = requests.post('https://api.netatmo.com/oauth2/token',
 data=payload, headers=headers)
 newTok = r.json()["access_token"]
 self._setNewAccessToken(newTok)
 print("AccesToken Refreshed --- New is: ",newTok)

1

import math

class Geometry(object):

 '''
 Class representing a coordinate on a sphere, most likely Earth.

 This class is based from the code smaple in this paper:
 http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

 The owner of that website, Jan Philip Matuschek, is the full owner of
 his intellectual property. This class is simply a Python port of his very
 useful Java code. All code written by Jan Philip Matuschek and ported by me
 (which is all of this class) is owned by Jan Philip Matuschek.

 IMPORTED USEFUL CODEBLOCKS FROM GITHUB: https://github.com/jfein/PyGeoTools

 http://www.hamstermap.com/quickmap.php can be used to visualize points on a map
 '''

 MIN_LAT = math.radians(-90);
 MAX_LAT = math.radians(90);
 MIN_LON = math.radians(-180);
 MAX_LON = math.radians(180);

 EARTH_RADIUS = 6378.1 # kilometers

===
Constructor
===
 def __init__(self,latDeg,lonDeg,distance):

 self.latDeg = float(latDeg)
 self.lonDeg = float(lonDeg)
 self.latRad = float(math.radians(latDeg))
 self.lonRad = float(math.radians(lonDeg))
 self.distance = distance
 self._check_bounds()

 if(self.distance > 0):
 self.square = self._setupBox(self.distance)
 self.point = False
 else:
 self.square = [self.latDeg,self.lonDeg]
 self.point = True

===
Private methods
===

 def _check_bounds(self):
 """
 This method is used to check if the lat and lon is withing the macimum
 and minimums of the earth
 """
 if (self.latRad < Geometry.MIN_LAT
 or self.latRad > Geometry.MAX_LAT
 or self.lonRad < Geometry.MIN_LON
 or self.lonRad > Geometry.MAX_LON):
 raise Exception("Illegal arguments")

1

 def _setupBox(self,distance,radius=EARTH_RADIUS):

 """
 Used to set up a box that is X distance in km from the center point
 given(latDeg,lonDeg) it will return the lat, lon for all
 four corners of the box.

 Returns a list with cordinates in degrees for each corener in
 bounding box [NW,SW,SE,NE] where each item is a
 list with two points: [lat,lon]

 """

 if radius < 0 or distance < 0:
 raise Exception("Illegal arguments")

 # angular distance in radians on a great circle
 rad_dist = distance / radius

 min_lat = self.latRad - rad_dist
 max_lat = self.latRad + rad_dist

 if min_lat > Geometry.MIN_LAT and max_lat < Geometry.MAX_LAT:
 delta_lon = math.asin(math.sin(rad_dist) / math.cos(self.latRad))

 min_lon = self.lonRad - delta_lon
 if min_lon < Geometry.MIN_LON:
 min_lon += 2 * math.pi

 max_lon = self.lonRad + delta_lon
 if max_lon > Geometry.MAX_LON:
 max_lon -= 2 * math.pi
 # a pole is within the distance
 else:
 min_lat = max(min_lat, Geometry.MIN_LAT)
 max_lat = min(max_lat, Geometry.MAX_LAT)
 min_lon = Geometry.MIN_LON
 max_lon = Geometry.MAX_LON

 SW = [math.degrees(min_lat),math.degrees(min_lon)]
 NE = [math.degrees(max_lat),math.degrees(max_lon)]
 NW = [SW[0],NE[1]]
 SE = [NE[0],SW[1]]
 return [NW,SW,SE,NE]

===
Public Methods
===

 def getLocation(self):
 """
 Used to get the lat and lon values used to produce the square
 """
 return [self.latDeg,self.lonDeg]

 def getSquare(self):
 """
 Use to get the square list to be used in services like Met or Netatmo
 """

2

 return self.square

 def getLatList(self):
 """
 Returns list of all the lat points, in order nw,sw,se,ne
 """
 return [self.square[0][0],self.square[1][0],self.square[2][0],self.square[3][0]]

 def getLonList(self):
 """
 Returns list of all the lon points, in order nw,sw,se,ne
 """
 return [self.square[0][1],self.square[1][1],self.square[2][1],self.square[3][1]]

if __name__ == '__main__':

 g = Geometry(latDeg = 26.062951, lonDeg = -80.238853,distance = 5)
 g2 = Geometry(latDeg = 59.152676, lonDeg = 9.652863,distance = 10)

 sq = g2.getSquare()
 lat1 = g.getLatList()
 lat2 = g2.getLatList()
 lon1 = g.getLonList()
 lon2 = g.getLonList()

3

import service

class Weather(object):

===
Constructor
===

 def __init__(self,client,geometry):

 self.client = client
 self.geometry = geometry
 self.service= self._authenticate(self.client)

===
Private methods
===

 def _authenticate(self,client):
 """
 Used for checking that the service exists and creates a service object
 """
 s =service.Service(client)
 return s

===
Public methods
===

 def getObservation(self, data, date = None):
 """
 Used to get the wanted observations within the geometry
 data is the weather variable wanted
 date is a string on the format 2016-01-01/2018-01-01
 """
 data = data.lower()

 if(self.geometry == None):
 raise Exception("GEOMETRY NOT INSTANTIATED,"
 +"please use setGeometry(latDeg, lonDeg, distance)")

 return self.service.getData(data,date,self.geometry)

1

import met,netatmo

class Service(object):

 SERVS = ['met','netatmo']

 def __init__(self,client):
 self.source = self._pickSource(client)

 def _pickSource(self,client):
 """
 Used for picking the right source of the data, this is handeled
 automatically aslong as the source is listed
 """
 serviceName = client.client_name
 if(serviceName not in self.SERVS):
 raise Exception("ERROR! "+serviceName+" is not a supported
 service. Supported services are: ",self.SERVS)
 else:
 if(serviceName == 'met'):
 return met.Met(client)
 elif(serviceName == 'netatmo'):
 return netatmo.Netatmo(client)

 def getData(self,data,date,geometry):
 """
 Used for getting the data
 """
 #self._datesList(date)

 if (geometry.point):
 return self.source.getPointData(data,date,geometry)
 else:
 return self.source.getGeometryData(data,date,geometry)

1

import usefuls
import pandas as pd

class Met(object):

===
Constructor
===
 def __init__(self,client):
 self.geometryPoint = False
 self.client = client
 self.elements = {'temperature':'air_temperature',
 'hourlytemperature':'air_temperature',
 'dailytemperature':'air_temperature',
 'temperatur':'air_temperature',
 'timestemperatur':'air_temperature',
 'dagligtemperatur':'air_temperature',
 'rain':'sum(precipitation_amount PT1H)',
 'dailyrain':'sum(precipitation_amount PT1H)',
 'regn':'sum(precipitation_amount PT1H)',
 'dagligregn':'sum(precipitation_amount PT1H)',
 'wind':'mean(wind_speed PT1H)',
 'winddirection':'wind_from_direction',
 'vind':'mean(wind_speed PT1H)',
 'vindretning':'wind_from_direction',
 'humidity':'mean(relative_humidity PT1H)',
 'fuktighet':'mean(relative_humidity PT1H)',
 'pressure':'air_pressure_at_sea_level',
 'airpressure':'air_pressure_at_sea_level',
 'trykk':'air_pressure_at_sea_level',
 'lufttrykk':'air_pressure_at_sea_level',
 '':''}

===
Private Methods
===
 def _getNearestStation(self,location):
 """
 Gets the station nearest the specified point
 """
 url = ('https://frost.met.no/sources/v0.jsonld?types='
 +'SensorSystem&geometry=nearest(POINT({0} {1}))'.format(location[1],
 location[0]))
 stationID = usefuls.Usefuls().requestData(url,self.client)
 stationID = stationID['data'][0]['id']
 return stationID

 def _getStationIDsInGeometry(self,geometry):
 """
 The geometry is a polygon so the first and last point must be the same
 to close the geometry
 """
 NW = geometry[0]
 SW = geometry[1]
 SE = geometry[2]
 NE = geometry[3]
 url = ('https://frost.met.no/sources'

1

 +'/v0.jsonld?types=SensorSystem&geometry='
 +'POLYGON (({0} {1}, {2} {3}, {4} {5}, {6} {7}, {8}'
 +' {9}))'.format(NW[1],NW[0],SW[1],SW[0],SE[1],SE[0],NE[1],NE[0],NW[1],NW[0]))
 stations = usefuls.Usefuls().requestData(url,self.client)
 le = len(stations['data'])
 stationIDs = [0]*le
 for i in range(0,le):
 stationIDs[i] = stations['data'][i]['id']
 return stationIDs

 def _getCorrectURL(self,data,datesList,stationIDs):
 date = usefuls.Usefuls().backToDateString(datesList)
 s = ''

 if(self.geometryPoint):
 if(data == ''):
 url = ('https://frost.met.no/observations'
 +'/availableTimeSeries/v0.jsonld?referencetime='
 +date+'&sources='+str(stationIDs))
 else:
 url = ('https://frost.met.no/observations'
 +'/v0.jsonld?referencetime='+date+'&elements='
 +self.elements[data]+'&sources='+str(stationIDs))
 else:
 for i in range(len(stationIDs)):
 s += str(stationIDs[i])+','
 s = s[:-1]
 if(data == ''):
 url = ('https://frost.met.no/observations/'+
 'availableTimeSeries/v0.jsonld?referencetime='
 +date+'&sources='+s)
 else:
 url = ('https://frost.met.no/observations'+
 '/v0.jsonld?referencetime='+date+'&elements='
 +self.elements[data]+'&sources='+s)
 return url

 def _preProcessDATA(self,stationIDs,datesList):
 """
 Preprocesses the DATA such that all memory for all excpected
 values are created. will be used as a checking guide to find
 the correct data to place or to place none
 """
 #Makes the first item in each station in the DATA the station id
 DATA = []
 station = []
 for st in stationIDs:
 station.append(st)
 DATA.append(station)
 station = []
 #Makes a list of expected times to be in the json object
 times = []
 dataa = []
 for da in datesList:
 for t in range(24):
 if t >= 10:
 times.append([da+'T{0}:00:00.000Z'.format(t),None])

2

 else:
 times.append([da+'T{0}{1}:00:00.000Z'.format(0,t),None])

 dataa.append(times)
 times = []

 #adds expected times to the DATA list
 for s in DATA:
 s.append(dataa)
 return DATA

 def _postProcessDATA(self,realDATA,expectedDATA):
 stations = []
 for f in range(len(realDATA)):
 for i in range(len(expectedDATA)):

 if expectedDATA[i][0] in realDATA[f][0]:
 stations.append([expectedDATA[i][0],
 [realDATA[f][1],realDATA[f][2]]])
 else:
 stations.append([expectedDATA[i][0],[None,None]])
 return stations

 def _getSpecifiedData(self,data,datesList,url,stationIDs):
 """
 Picks the data from json, if daily is requested an average will be
 returned, else its hourly for the days specified
 """
 datesList = usefuls.Usefuls().datesListToStringList(datesList)
 DATA = self._preProcessDATA(stationIDs,datesList)

 dta = []

 data = usefuls.Usefuls().requestData(url,self.client)
 data = data['data']

 #adds the real data to a list [[station id, timestamp, value],[..]..]
 for d in range(len(data)):
 dta.append([data[d]['sourceId'],
 data[d]['referenceTime'],
 data[d]['observations'][0]['value']])

 #postData = self._postProcessDATA(dta,DATA)

 y = []
 for it in DATA:

 if(it[0] in dta[0]):
 y.append(1)
 else:
 y.append(0)

 #specifiedData = [datesList,DATA,dta]
 specifiedData = dta
 return self._sortToPandas(specifiedData)

3

 def _sortToPandas(self,data):
 df = pd.DataFrame()
 df = df.append(data)
 df.rename(columns={0: 'Station Id',
 1: 'Timestamp',2:'Value'}, inplace=True)
 return df

===
Public Methods
===

 def getPointData(self,data,date,geometry):
 """
 Gets the station nearest to the point specified.
 """
 datesList = usefuls.Usefuls().getDatesList(date)
 self.geometryPoint = True
 square = geometry.getSquare()
 nearestStation = self._getNearestStation(square)
 url = self._getCorrectURL(data,datesList,nearestStation)
 data = self._getSpecifiedData(data,datesList,url,nearestStation)
 return data

 def getGeometryData(self,data,date,geometry):
 """
 Returns data from all the stations withing the given geometry.
 Note: if error occour like 404. this may mean that your rectangle is
 too small or that the station found don't have that
 type of data you're looking for
 """
 datesList = usefuls.Usefuls().getDatesList(date)
 self.geometryPoint = False
 square = geometry.getSquare()
 stationIDs = self._getStationIDsInGeometry(square)
 url = self._getCorrectURL(data,datesList,stationIDs)
 data = self._getSpecifiedData(data,datesList,url,stationIDs)
 return data

4

import time
import pandas as pd
import requests

class Netatmo(object):

 NETATMO_OAUTH_URL = 'https://api.netatmo.com/oauth2/token';
 NETATMO_STATION_DATA = 'https://api.netatmo.com/api/getstationsdata';
 NETATMO_PUBLIC_DATA = "https://api.netatmo.com/api/getpublicdata";

===
Constructor
===
 def __init__(self,client):
 self.client = client
 if(self.client.password == None or self.client.email == None or
 self.client.access_token == None or self.client.refresh_token == None):
 raise Exception("Error! Netatmo needs email, password,"+
 "access token and refresh token aswell."
 +" If you haven't got a access and refresh token. "
 +"got into netatmo.py and "
 +"run the code in __name__ == '__main__' part to obtain it.")

 self.elements = {'temperature':'temperature',
 'tempratur':'temperature',
 'temp':'temperature',
 'rain':'rain',
 'regn':'rain',
 'wind':'wind',
 'vind':'wind',
 'humidity':'humidity',
 'fuktighet':'humidity',
 '':''}

===
Public Methods
===

 def _sortData(self,dat):
 """
 Takes the data, sorts it so it got its correct id and timestamp.
 This sorting is not comleted yet it's missing weather variable sorting
 returns a list [timestamp,id,DATA]
 """
 t = time.ctime(dat['time_server'])
 f = pd.DataFrame()
 d = []
 dd = []
 iid = None
 for f in dat['body']:
 iid = f['_id']
 for k in f['measures']:
 d.append(t)
 d.append(iid)
 d.append(f['measures'][k])
 dd.append(d)
 d = []
 iid = None
 return dd

1

 def _getPublicData(self,access_token,lat_ne,lon_ne,
 lat_sw,lon_sw,required_data = '',fltr = "false"):
 """
 access_token *(required)*\n
 Obtained from https://api.netatmo.com/oauth2/token \n
 lat_ne *(required)*\n Latitude of the north east corner of the
 requested area. -85 <= lat_ne <= 85 and lat_ne>lat_sw.
 \n \n example value: 15 \n
 lon_ne *(required)*\n Longitude of the north east corner of the
 requested area.-180 <= lon_ne <= 180 and lon_ne>lon_sw
 \n \n example value: 20 \n
 lat_sw *(required)*\n Latitude of the south west corner of the
 requested area. -85 <= lat_sw <= 85 \n \n example value: -15 \n
 lon_sw *(required)*\n Longitude of the south west corner of the
 requested area. -180 <= lon_sw <= 180 \n \n example value: -20 \n
 required_data = "rain" *(optional)* \n To filter stations based
 on relevant measurements you want (e.g. rain will only return stations
 with rain gauges). Default is no filter. You can find all measurements
 available on the Thermostat page.
 \n \n example value: "rain", "humidity"
 fltr = False *(optional)*\n True to exclude station with abnormal
 temperature measures. Default is false. PS: this must be a string\n
 \n \n for more:
 https://dev.netatmo.com/resources/technical/reference/weatherapi/getpublicdata
 """
 params = {'access_token':access_token,'lat_ne':lat_ne
 ,'lon_ne':lon_ne
 ,'lat_sw':lat_sw
 ,'lon_sw':lon_sw
 ,'required_data': required_data
 ,'filter':fltr}
 req = requests.post(self.NETATMO_PUBLIC_DATA,params)
 req.raise_for_status()
 dat = req.json()
 return dat

 def getPointData(self,data,date,geometry):
 """
 point geometry is not supported by Netatmo
 """
 raise Exception("ERROR: Point geometry is not supported by Netatmo.")

 def getGeometryData(self,data,date,geometry):
 """
 returns a list with the data obtained from the search withing the rectangle
 """
 square = geometry.getSquare()
 dat = self._getPublicData(access_token=self.client.access_token,
 lat_ne=square[3][0],lon_ne = square[3][1],
 lat_sw = square[1][0],lon_sw = square[1][1],
 required_data = self.elements[data])
 return self._sortData(dat)
 #return dat

===
This is for getting access token and refresh token for the first time

2

===

def getNetAtmoAccessToken(naClientId, naClientSecret, naEmail, naPassword):
 """
 Used to get access token from email,password, client id and client
 secret. be aware that requesting this more than one time
 may lead to a ban on your account from netatmo. They really want you
 to use your refresh token when asking for data.

 returns a list with access token and refresh token eg.[access_token,refresh_token]

 """

 payload = {
 'grant_type': 'password',
 'username': naEmail,
 'password': naPassword,
 'client_id': naClientId,
 'client_secret': naClientSecret
 }
 headers = {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}
 r = requests.post('https://api.netatmo.com/oauth2/token',
 data=payload, headers=headers)
 access_token=r.json()["access_token"]
 refresh_token=r.json()["refresh_token"]
 #print(access_token)
 #print(refresh_token)
 return [access_token,refresh_token]

if __name__ == '__main__':
 client_id = "your client id"
 client_secret = "your client secret"
 email = "your email address"
 password = "your password for netatmo"

 r = getNetAtmoAccessToken(naClientId=client_id,
 naClientSecret=client_secret,
 naEmail=email,naPassword=password)
 print("Access Token: ",r[0])
 print("Refresh Token: ",r[1])

3

import datetime,requests

class Usefuls(object):

 headers = {'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}

 def getDatesList(self,date):
 """
 splits a date string on the format year-month-day/year2-month2-day2,
 into separeate dates and
 returns a list where each member is a list with corresponding year,
 month,day at the indexes
 ex:
 date = "2017-01-01/2017-01-04" returns a list
 dates = [[2017 , 01 , 01] , [2017 , 01 , 02] , [2017 , 01 , 03]]
 """
 dates = []

 if('/' in date):
 dd = date.split('/')
 dF = dd[0].split('-')
 dF = datetime.date(int(dF[0]),int(dF[1]),int(dF[2]))
 dT = dd[1].split('-')
 dT = datetime.date(int(dT[0]),int(dT[1]),int(dT[2]))
 dt = dT -dF

 for i in range(0,dt.days):
 v = dF + datetime.timedelta(days=i)
 dates.append([v.year,v.month,v.day])
 else:
 dF = date.split('-')
 dF = datetime.date(int(dF[0]),int(dF[1]),int(dF[2]))
 dates.append([dF.year,dF.month,dF.day])

 return dates

 def datesListToStringList(self,datesList):
 """
 Returns a list where each member is the combined date eg,
 datelist = [[2017 , 01 , 01] , [2017 , 01 , 02]]
 the return of this datelist is
 stringList = [['2017-01-01'] , ['2017-01-02']]
 """
 stringList = []
 for i in range(len(datesList)):
 y = str(datesList[i][0])
 m = datesList[i][1]
 d = datesList[i][2]

 if m <10:
 m = '0{0}'.format(datesList[i][1])
 else:
 m = str(datesList[i][1])

 if d <10:
 d = '0{0}'.format(datesList[i][2])
 else:
 d = str(datesList[i][2])

1

 st = y+'-'+m+'-'+d
 stringList.append(st)
 return stringList

 def backToDateString(self,datesList):
 """
 Returns a string that goes from a
 dateslist = [[2017 , 01 , 01] , [2017 , 01 , 02] , [2017 , 01 , 03]]
 to a string combined = "2017-01-01/2017-01-04"
 """
 firstD = (str(datesList[0][0])
 +'-'+str(datesList[0][1])+'-'+str(datesList[0][2]))
 lastD = datetime.date(datesList[len(datesList)-1][0]
 ,datesList[len(datesList)-1][1]
 ,datesList[len(datesList)-1][2]) + datetime.timedelta(days=1)
 combined = (firstD+'/'
 +str(lastD.year)+'-'+str(lastD.month)+'-'+str(lastD.day))
 return combined

 def requestData(self,url,client):
 """
 Used for requesting data from url
 """
 print(url)

 if(client.client_name == 'met'):
 r = requests.get(url,auth=(client.client_id, ''),headers=self.headers)
 if r.status_code == 200:
 return r.json()
 else:
 raise Exception("Error: JSON status: {0}".format(r.status_code))

 def chunkIt(self,seq, num):
 """
 Used to divide a list into approx equal parts
 """
 avg = len(seq) / float(num)
 out = []
 last = 0.0

 while last < len(seq):
 out.append(seq[int(last):int(last + avg)])
 last += avg

 return out

2

import client
import geometry as geo
import weather

client_id = "your client id"
client_secret = "your client secret"
email = "your email address"
password = "your password for netatmo if netatmo is chosen"
access_token = "your access token"
refresh_token = "your refresh token"

#1 Create client
c = client.Client(client_name="Netatmo",client_id = client_id,
 client_secret=client_secret,
 email = email,password = password,
 access_token = access_token,refresh_token = refresh_token)

c_met = client.Client(client_name="met",
 client_id = client_id,
 client_secret=client_secret) #Met client

#1.5 Refresh your access token if you use netatmo
c.refreshAccesstoken_netatmo() #Refreshing only for netatmo

#2 Create Geometry
g = geo.Geometry(latDeg=59.091,lonDeg=9.66,distance=10)
#10 km square with center at 59.091, 9.66

#3 Create Weather
w = weather.Weather(c,g)

#4 Get data
#Met
observation = w.getObservation(data='temperature',date='2017-01-01/2017-01-05')
observation = w.getObservation(data='temperature') #Netatmo

1

