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Abstract. This paper presents experiments on how to approach the physical limits on
power from vibration energy harvesting under displacement-constrained operation. A MEMS
electrostatic vibration energy harvester with voltage-control of the system stiffness is used for
this purpose. The power saturation problem, when the proof-mass displacement reaches a
maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by
use of load optimization. In addition we demonstrate the effect of varying the electromechanical
coupling k2. Measurement results show that harvested power can be made to follow the
optimal power of the velocity-damped generator also for a range of accelerations that implies
displacement constraints. Comparing to the saturated power, the power increases 1.5 times with
the optimal load for electromechanical coupling k2=8.7%. The improvement is 2.3 times for a
higher coupling of k2=17.9%. The obtained system effectiveness exceeds 60%. This work shows
a first demonstration of reaching optimal power in the intermediate acceleration-range between
the two extremes of maximum efficiency and maximum power transfer. The experimental results
follow the theoretical results for a device with both load and stiffness tuning surprisingly well
despite only optimizing the load here. We compared a linearized lumped-model of the device
with the same augmented by end-stop nonlinearities. The comparison shows that an effective
stiffness due to end-stop impacts in the latter model closely matches the optimal stiffness for the
former model and therefore can explain why the experimental output power is close to optimal
despite lack of deliberate stiffness tuning.

1. Introduction
Microelectromechanical systems (MEMS) vibration energy harvesting (VEH) is a potential
approach to autonomously supply power to wireless sensors. Potential applications are found
in structural health monitoring [1, 2], automobiles and machinery [3, 4] as well as wearable or
implantable sensors [5, 6]. A typical VEH design is a spring-mass system. The proof mass
motion induced by ambient vibrations leads to energy conversion based on either of three
basic mechanisms: piezoelectric, electromagnetic and electrostatic conversion [7–11]. Most
vibration energy harvesters can be considered two-port harvesters with two coupled generalized
displacements, one mechanical (the proof-mass displacement) and one electrical (an electrode
charge) or magnetic (a flux linkage).

It is sometimes convenient to distinguish two different regimes of energy harvester operation.
In one, the output power is limited by the available space for the proof mass to move in. We will



refer to this as displacement-constrained or displacement-limited operation. The other is when
the optimal proof mass displacement is smaller than the physical constraints of the device so that
the proof mass displacement is limited by the electrical damping due to energy conversion and
parasitic mechanical damping. We will refer to this situation as damping-limited. Optimization
of linear two-port devices for harmonic vibrations corresponds to maximizing power transfer
and results in an efficiency of 1/2. For sufficiently low accelerations, one will always achieve
damping-limited operation. For low-loss resonant harvesters at the micro-scale, displacement-
constrained operation is also easily encountered at realistic accelerations because of the limited
space available on chip and the desire for low mechanical loss.

Several devices using impact mechanisms [12–16] have shown usefulness for widening system
bandwidth and for low-frequency vibrations such as human motion. However, beyond a critical
acceleration sufficient to drive the proof mass displacement to its maximum amplitude, the
output power saturates [12,17] and is left increasingly far below the theoretical power bound for
displacement-limited operation [18]. This bound is conservatively approximated by the optimal
velocity-damped generator (VDRG) whose power increases linearly with acceleration [19].

A pressing question is how to avoid saturation and further improve power for acceleration
amplitudes beyond the critical value? Utilization of transducing end-stops in our previous
impact-device concept [20] somewhat overcomes this problem, but it demands complex
optimization of the device design to further increase power in the impact regime [21]. An
approach using electric control is used to optimize the end-stop transducer performance and
thereby further improve the system effectiveness when the displacement amplitude reaches its
maximum limit [22].

For a linear two-port harvester under displacement-constrained operation it has been shown
that it is ultimately optimal to maximize efficiency [23] which is equivalent to maximizing
electrical damping. Hence, maximum efficiency and maximum power transfer (unconstrained
motion) constitute two extremes, but the intermediate optimization cases have not been well
studied.

In this paper, which is an extension of a previous conference contribution [24], we investigate
an approach to optimize power in both damping-limited regime and displacement-limited regime.
Harvester power is then maximized in the intermediate range. The approach is motivated by
electrical damping being the control parameter in optimization of the VDRG [19]. We here
consider load-resistance optimization and adjustment of the electromechanical coupling. Both
these factors directly affect the electric damping and are used to keep the displacement amplitude
at the limit for the VDRG.

It should be noted that a resistive load such as we use here can emulate a buck-boost
converter that has no input filter capacitor [25]. It is therefore much more than an experimental
convenience and can actually represent a rectifying circuit. The buck-boost circuit has an
effective input resistance that is given by the duty cycle and the switching frequency. Hence,
the resistance can be electrically controlled.

As an alternative circuit one might consider the standard diode bridge. It gives a comparable,
but slightly lower, output power than the resistive load. This is the case both for unconstrained
motion [25] and for displacement-constrained motion [26]. However, adding load tuning to the
bridge circuit would lead back to buck-boost configurations of the type discussed in [25].

For the experiments, we employ a previous large-frequency-tuning-range resonator device
[27] as a MEMS electrostatic vibration energy harvester. The system stiffness and the
electromechanical coupling can be adjusted by an applied voltage. We use this capability to
set two different values of stiffness, and therefore also electromechanical coupling factor. This is
a means to generate two different experimental conditions and is an alternative to making two
different devices. We use an electrically controllable load resistance to explore the optimization
problem.



Figure 1: Key features of the device design, sketch of the electrical setup with the load tuning
control. A close-up view of device fabricated using the SOIMUMPS process with the device
layer thickness of t = 25 µm.
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Figure 2: Characterization of the opto-coupling resistor under driving of the voltage source VC.

2. MEMS device
Figure 1 shows key features of the electrostatic device. The harvesting transducers are two
anti-phase comb-drive capacitor structures with a nominal capacitance C0=0.47 pF. The proof
mass is suspended by four single beams. The restoring force is designed to have a hardening
nonlinearity. The device stiffness can be varied by a bias control VT=VH+VB of an additional
transducer which is a gap-closing capacitor structure. Increasing the bias shifts the harvester
resonance to lower frequencies and simultaneously increases the electromechanical coupling. This
feature is used to make the two cases of coupling referred to in the sections that follow. It is
used as an alternative to designing two devices with different stiffness and coupling.

When the electrodes of the harvesting transducers are short-circuited, the net force on the
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Figure 3: Measured frequency responses for increase of the control voltage VT at a small
acceleration A= 0.21 g and the load RL=20 MΩ.
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where km is the linear stiffness of the restoring force, l=
√

735
512w, w is the beam width, g and CT

are the nominal gap and the nominal capacitance of the additional transducer used for stiffness
control. The generated power is obtained by connection of the fixed electrode of the harvesting
transducers to the variable load RL. To avoid cumbersome resistor changes, the load used in
the experiment is the opto-coupling resistor V0617A with low coupling capacitance. The load
value RL is set by a voltage VC and a series resistance RC. This solution is convenient with
respect to control, more repeatable than soldering resistors, and a more compact solution that
is easier to shield than a switch box with resistors. Figure 1 also displays a close-up view of the
device, which is fabricated using the SOIMUMPS process with a device layer thickness of t=25
µm. The nonlinear spring and a part of all transducers are shown in the optical micrograph.
By design, the maximum amplitude of the proof mass displacement Xmax=5.5 µm is defined by
rigid end-stops. Further details of the device parameters can be found in [27].

3. Measurements
The opto-coupling resistor is characterized under control of the voltage VC and a series resistance
RC=1 MΩ as shown in figure 2. The optical coupling between the diode emitter and the photo-
transistor leads to a variable resistance that is high at low VC and vice-versa. The load can be
adjusted from 500 MΩ down to 100 kΩ when VC varies from 3.7 V to 58.9 V. This characterization
is used in all measurements of the device. The bias voltage for the harvesting transducers is
chosen as VH=45.0 V.

Figure 3 shows the measured frequency responses at small acceleration amplitudes when the
proof mass displacement amplitude is still below the limit Xmax. The hardening effect due to
the nonlinear spring is evident for VT=0.0 V with a center frequency 831.5 Hz. The effective
stiffness of the system reduces with increase of the bias VT, giving higher output voltages and
lower center frequencies. The system response is roughly linear for VT=45.0 V, which gives a
center frequency fc=531.5 Hz. The device exhibits softening effects for VT=47.5 V. The critical
voltage that causes pull-in instability is estimated to Vcr ∼ 50 V. We now use VT = 45.0 V as
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Figure 4: Measured power in damping-limited regime and displacement-limited regime with
corresponding optimal load for VT=45.0 V and the center frequency fc=531.5 Hz.

a case for load optimization in both the damping-limited regime and the displacement-limited
regime.

Figure 4 shows measured powers and corresponding optimal load for each RMS acceleration
amplitude at the center frequency fc. In the damping-limited regime, the optimal load is RL=10
MΩ in this case. Keeping this resistance while varying the acceleration, the power saturates at
Pc=12.4 nW for accelerations larger than a critical value Ac=0.28 g. We interpret this as the
proof mass displacement reaching the maximum Xmax at Ac and that it hits the end-stops for
A > Ac. However, the power can be improved for A > Ac by adjusting the load separately
for every acceleration amplitude. The measured result shows that the power can be improved
for acceleration amplitudes between Ac and 0.36 g where the power looks approximately linear
in A. For A > 0.36 g the power saturates at 19.7 nW. All corresponding optimal loads and
accelerations can be found in figure 4. The optimal load only varies between Ac and 0.36 g and
is again constant for A > 0.36 g. Note that no attempt is made to avoid proof mass impacts
on the end-stops. Therefore the power-acceleration curve here is significantly different from the
theoretical result in [18] for large accelerations. It is reasonable to interpret the optimized value
RL=6.0 MΩ as the resistance value that gives maximum electrical damping.

The optimization of the power generated by a VDRG [19] provides a basis for interpreting our
results. For unconstrained displacement at small acceleration amplitudes, the harvested power
can be maximized by making the electrical damping equal to the mechanical damping. This
is similar to the optimization in [28]. Due to the approximately linear behaviour, the optimal
load is constant under these conditions. If the drive acceleration is large enough to drive the
proof mass displacement to or beyond its maximum Xmax, it is beneficial instead to increase the
electrical damping in order keep the displacement at X = Xmax because the maximum output
power is linearly proportional to the electrical damping at fixed displacement amplitude. As a
consequence of reoptimizing the electrical damping, the output power can be further increased
even though the maximum displacement is reached. The electrical damping is here increased by
decreasing the load resistance. When the acceleration amplitude reaches A ≈ 0.36 g, it is not
possible to further increase the electrical damping by changing the load resistance, resulting in
a saturated output power and a constant optimal load for further increase of the acceleration
amplitude. For a linear device, we would expect a maximal electric damping at a load resistance
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Figure 5: Measured power both with and without load optimization for VT=47.5 V and the
center frequency fc=400.0 Hz.
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Figure 6: Comparison of the maximum power to the optimal velocity-damped generator VDRG
for k2 = 8.7% (VT=45.0 V) and k2 = 17.9% (VT=47.5 V).

1/ωC where C is the transducer capactiance and ω is the angular frequency of the vibration.
Increase of the bias voltage VT leads to a reduced net stiffness and higher electromechanical

coupling k2. This is advantageous with respect to further increase the harvested power under
displacement-constrained operation. Figure 5 shows the measured power for VT=47.5 V when
driven at the center frequency fc=400.0 Hz. The device now reaches a higher critical power of
Pc=13.8 nW at a lower Ac=0.25 g, compared to the previous case of VT=45.0 V. With load
optimization for A > Ac, the power continues to increase to a maximum of 28.6 nW at A=0.38
g. This power is about 1.5 times better than the previous case.

In the linear approximation, the anti-phase comb-drive harvesting transducers are
equivalently converted to a two-port model because of decoupling of the common and differential
modes [29, 30]. For a displacement-limited linear two-port device, one can show that load
optimization can boost the harvested power to a maximum value of

Pmax ≈
1

2
k2QmPc (2)



Table 1: Measured electromechanical coupling factor k2 and figure of merit M = k2Qm at
A=0.03 g.

Bias voltage k2 k2Qm

VT= 45.0 V 8.7% 3.2
VT= 47.5 V 17.9% 4.7

Figure 7: Linear two-port model.

where the mechanical quality factor Qm is estimated from the full bandwidth at half maximum
of the open-circuit frequency response and k2 is the electromechanical coupling of the linear
two-port model, evaluated by

k2 = 1− f2
r

f2
ar

(3)

where fr is the resonant frequency measured with short-circuited output and far is the resonant
frequency measured with open-circuited output. Table 1 shows the measured coupling k2 and a
corresponding figure of merit k2Qm.

The achieved power is compared to the maximum possible power of the optimal velocity-
damped generator under displacement-constrained operation in figure 6. The power and the
acceleration are normalized by the factors Pc and Ac respectively because P/Pc is a universal
function of A/Ac for all VDRGs. The comparison in the damping-limited regime shows that the
power obtained with load optimization closely approaches the optimal VDRG up to a maximum
acceleration beyond Ac. In the displacement-limited regime, the range of accelerations where the
optimum can be followed depends on k2Qm as is seen by comparing the maximum power 1.54Pc

at A = 1.28Ac for k2 = 8.7% to the maximum power 2.07Pc at A = 1.55Ac for k2 = 17.9%. The
corresponding estimates of maximum power from (2) are respectively 1.6Pc and 2.4Pc giving
best correspondence with the lowest-coupling configuration which is also the most linear one.
It is noteworthy that even though the high-coupling configuration exhibited clear softening
nonlinearities, it follows the optimal VDRG curve as closely as the other alternative until its
maximum is reached.

4. Effective stiffness tuning by end-stops
The results in figure 6 that the ouput power closely follows the VDRG characteristic into the
displacement limited regime before it saturates at a constant value of P/Pc is also seen in
simulations of two-port harvesters with linear transducers and rigid end-stops [31]. Both are
strongly reminiscent of a linear two-port harvester whose maximum displacement is limited by
choice of stiffness and load and not by end-stops [32]. In that case the performance can be
characterized by a figure of merit M = Γ2/Cωb ≈ k2Qm, in particular the maximum power is
P/Pc = M/2 which is reached at A/Ac = (1 +M/2)/2. The normalized power and acceleration
for M=3.2, are P/Pc = 1.60 and A/Ac = 1.30 while the corresponding values obtained in
the experiment are 1.54 and 1.28 respectively. These comparisons suggest that the end-stops



Table 2: Model parameters

Parameters Value
Proof mass, m 0.739 mg
Spring stiffness, km 22 N/m
Thin-film air damping, b 2.4e-5 Ns/m
Nominal capacitance, C0 0.47 pF
Parasitic capacitance, Cp 7.50 pF
Load capacitance, CL 8.6 pF
Nominal overlap, x0 10 µm
Contact stiffness, ks 3.4 MN/m

Figure 8: Two-port model including impact force.

contribute a stiffness-tuning with an effective stiffness that corresponds at least approximately
to the optimal stiffness of a displacement-limited harvester without end-stops.

In order to test the hypothesis regarding the effect of end-stops on the vibration energy
harvester performance, we compare a linearized lumped-model as in figure 7 and the same type
of model with an end-stop force Fs added as in figure 8, where m - proof mass, b - damping
constant, F - inertial force, C - capacitance and RL - load resistance. We compare output power,
stiffness parametrized by

δk =
K1 −mω2

ωb
(4)

and load parametrized by
ωτ = ωRLC. (5)

For an anti-phase overlap varying device like ours, parameters of the linear electromechanical
two-port model are given by [33]:

C =
C0 + Cp + CL

2
(6)

Γ =
C0VT

x0
(7)

K1 = km +
2C2

0V
2

T

x2
0

(
C0 + Cp + CL

)
km + 2C2

0V
2

T

(8)

The short circuit stiffness K0 and the open-circuit stiffness K1 are related by K0 = (1− k2)K1,

where the coupling factor is given by k2 = Γ2

K1C
.

The proof mass m, nominal overlap capacitance C0, mechanical spring stiffness km are found
from the design. Damping coefficient b and the parasitic capacitances Cp and CL are estimated
based on fitting to values of figure of merit k2Qm = 4.7 when VT = 47.5 V.

The analysis of different models of vibro-impact systems was considered by Babitsky
and Krupenin [34]. Analytical models approximating purely elastic and inelastic impact



using smooth functions have been reviewed in [35]. The force of interaction has been
phenomenologically modeled by different forms based on power laws with or without damping
[36]. In real structures, each impact is associated with energy loss and thus the damping should
be accounted for in modeling. This damping is in general a nonlinear function of deformation
and velocity. In this work, during the contact period, the impact mechanism is modeled as
Hertzian contact force affiliated with hysteresis damping, which may then be written in terms
of the penetration δ = |x| −Xmax [37] as

Fs = ksδ
3
2
(
1 +

3

4

δ̇

δ̇−

(
1− e2

))
(9)

where ks is the contact stiffness coefficient and δ̇− is the velocity difference of the two colliding
bodies at the beginning of impact. The coefficient of restitution e is chosen as e = 0.7 according
to experiments [38]. The contact stiffness can be obtained from an analytical model for impact
mechanism between semi cylindrical bumps and flat surfaces [39,40]. As a simplification of the
SPICE simulations, we treat the impact velocity δ̇− as a constant parameter that is extracted
from initial simulations at high acceleration values and without end-stop damping.

The lumped-model allows us to investigate performance of the device in impact regime where
the load is optimized at every acceleration amplitude and the driving frequency is kept (fixed)
at open-circuit frequency. Load optimization further increases power when A > Ac as shown by
the simulation results in figure 9.

The proof-mass displacement x(t) and the mechanical force Fm(t) = K1x(t) − Fs(t) are
periodic signals with fundamental period T and can be expanded in a Fourier series

x
(
t
)

=
∞∑

n=−∞
Xne

jnωt, (10)

Fm

(
t
)

=

∞∑
n=−∞

Fne
jnωt (11)

where ω = 2π/T is the fundamental angular frequency. The coefficients are

Xn =
1

T

∫ T

0
x
(
t
)
e−jnωt dt, (12)

Fn =
1

T

∫ T

0
Fm

(
t
)
e−jnωt dt. (13)

A meaningful effective stiffness Keff can be obtained by considering the ratio of the
fundamental harmonic (n = 1) coefficients of the mechanical force and displacement, i.e.

Keff = Re

{
F1

X1

}
= Re


∫ T

0 Fm

(
t
)
e−jωtdt∫ T

0 x
(
t
)
e−jωtdt

 (14)

where x
(
t
)

and Fm

(
t
)

signals are extracted from simulation results. Focusing on the first
harmonic makes sense because, as observed in [41,42], it can be sufficient to model the harvester
accurately. We have checked that at the largest acceleration considered here, the first harmonic
accounts for more than 90% of the mean square velocity for M = 3.2.

Comparisons of optimum powers along with the variation of stiffness and load are given in
figure 9. The results are given on a nondimensional form that is normalized with respect to
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Figure 9: Comparison results between numerically contemporaneous optimization of load and
stiffness for displacement-limited linear two-port model without end-stops (solid-lines) and
optimal load for lumped-model under the effect of end-stops (dash-line), with different values of
figure of merit (a) M=3.2 and (b) M=4.7.

characteristic quantities that can be defined for many harvester architectures. The theoretical
optimum normalized power P/Pc for the linear device is expressed as a function of the transducer
figure of merit M , normalized input acceleration amplitude A/Ac, parametrized stiffness δk and
parametrized load ωτ . The two cases shown are: (I) Fully analytical solution of the optimal two-
port model without end-stops and with displacement constraints enforced be load and stiffness
tuning, adapted from [32]. (II) The load optimized two-port model with end-stops obtained by
simulations. We substitute K1 in (4) by Keff when evaluating δk for case (II).

At low accelerations A < Ac such that the proof mass motion does not reach the limit, the
impact force is absent. Therefore, the effective stiffness is identical to the open-circuit stiffness.



We drove the device at the open-circuit frequency instead of the nearby optimal frequency. The
small difference between the optimal stiffness and the open-circuit stiffness is the reason for
the different load and stiffness in the two cases. Even so, the output powers obtained are still
indistinguishable.

When the drive amplitude is large enough, the proof mass displacement reaches, and is
limited to, the maximum amplitude Xmax. There is a range of acceleration amplitudes in which
the optimum power of case (II) is a bit lower than that of case (I) which, as the experiments,
closely follows the optimal VDRG before leveling out. That difference can be explained by
the imprecision of the vibro-impact force model (9). It was found that the impact damping is
highly nonlinear and primarily depends on the type of collision and the excitation levels [36].
The analysis of the complicated response of contact damper is beyond the scope of the present
work and is not necessary for our purpose. At large amplitudes of the external acceleration, we
observe close agreement between the values of normalized power, ωτ and δk for the two cases.
This confirms that the rigid end-stops contributes an effective stiffness of the harvester that is
close to the optimum value. Hence, stiffness tuning does not need to be made actively as long
as one has end-stops and the load is actively tuned.

5. Conclusion
Electrical damping was controlled through load resistance to maximize power for a vibration
energy harvester under displacement-constrained operation. In addition the electromechanical
coupling was varied. The measured power closely follows the optimal VDRG even between the
two extremes of unconstrained proof mass motion only limited by damping and displacement-
limited operation with saturated power. The load optimization makes a gradual transition
between these two extremes which we can think of respectively as maximum power-transfer and
maximum efficiency. For displacement-limited operation, there are significant improvements in
power from increasing electromechanical coupling even for a high-coupling device. Qualitatively
the results were very similar to an optimal linear two-port which has a displacement limit
implemented by load and stiffness tuning. Numerical simulations confirmed that the observed
behaviour can be interpreted as the end-stops contributing a tuning of the effective stiffness to
a value that is close the optimal stiffness value for the harvester without end-stops. Hence, one
can obtain near optimal power without active stiffness tuning if there are end-stops and the load
is actively tuned.
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