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Abstract 

With the dramatic progress in nanotechnology, TiO2 nanomaterials have shown 

blooming applications in the field of energy and environment since the discovery of 

water photolysis on a TiO2 electrode in 1972. In particular, TiO2 nanotubes (TNT) exhibit 

the superior performance owing to their inherent properties of unique morphologies, 

electronic, physical, and chemical properties. However, several intrinsic drawbacks of 

TNT (such as white color, poor conductivity, and wide bandgap) still limit their visible 

light absorption, charge generation, separation, and transport, and eventually, lead to a 

low photoelectrochemical (PEC) performance in the practical applications.  

This Ph. D thesis focuses on the following challenges: (1) explore the methods for 

enhancing the absorption of TNT in visible light regime; (2) investigate the approaches 

to improve the conductivity of TNT; (3) probe the strategies for suppressing the charge 

recombination of TNT; (4) develop the applications of TNT-based electrodes. The 

achievements towards these challenges are summarized below.  

Article 1 reported the synthesis of PbS QDs/TNT heterogenous electrode by ultrasonic-

assisted dip-coating technique. PbS QDs/TNT shows an enhanced absorption in visible 

regime, and its photocurrent density is increased under the illumination as well. The 

enhanced I-V characteristics are well interpreted by charge generation, separation, and 

transport in the heterojunction band diagrams of PbS QDs/TNT system. 

Article 2 introduced a facile process to synthesize Ti3+/TNT heterojunction electrode by 

electrochemical reduction method. An excellent capacitive performance has been 

observed for the heterojunction electrode due to the formation of Ti3+ sites on the TNT 

surface. Its specific capacitance is further increased by a controllable morphology 

modification through ultrasonic treatment. Also, electrochemical impedance 

spectroscopy (EIS) demonstrates that Ti3+/TNT possesses a higher conductivity and is 

beneficial to charge transport.  

Article 3 presented the preparation of TiN/TNT heterojunction electrode by conformally 

coating TiN layer through ALD technique. Cyclic voltammetry (CV) and electrochemical 
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impedance spectroscopy (EIS) analysis show that TiN/TNT has higher capacitance and 

lower equivalent series resistance (ESR) than that of pristine TNT. The TiN/TNT 

heterojunction electrode exhibits a potential for high-performance electrode material 

of energy storage devices.  

Article 4 investigated the PEC properties of the synthesized “black” Ti3+/TNT 

heterojunction electrode. UV-Vis spectrum indicates that Ti3+/TNT has a strong 

absorption in the visible region. The enhanced photocurrent densities are well explained 

by high efficient charge generation and transport under visible illumination. Besides, 

CdSe QDs are loaded on Ti3+/TNT by a dip-coating technique for further improving 

charge separation. 

Article 5 described the development of MoS2/CdS/TNT heterojunction electrode by 

magnetron sputtering technique. The as-prepared electrode possesses superior 

photochemical activity on CO2 conversion, showing the enhanced yields on the 

generation of H2, CO, and CH4. A possible mechanism for the improved photocatalytic 

activity is attributed to enhancing light absorption, accelerating carrier separation, and 

offering active edge sites. 

Article 6 studied the charge separation and transport properties on PbS 

QDs/Au/Ti3+/TNT heterojunction nanocomposites which are synthesized by magnetron 

sputter and subsequently dip coating approach. The PEC characteristics of PbS 

QDs/Au/Ti3+/TNT reveal that the loadings of Au NPs and PbS QDs on Ti3+/TNT are used 

as separation centers rather than light absorbers for suppressing charge recombination. 

Keywords: solar energy, TiO2 nanotubes, heterojunction engineering, energy 

conversion. 
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1 Introduction 

1.1 Background 

Both population growth (reaching an estimated 9.8 billion by 2050) and increasing 

standards of living for many people will get rise to strong growth in energy demand [1-

2]. At present, more than ~80 percent of world energy consumption is produced using 

fossil fuels (coal, petroleum, and natural gas) [3-5]. The burning of fossil fuels generates 

pollutants (SOx, NOx, PM, CO, VOCs, and CO2, etc.) that cause severe environmental 

problems and air pollution [6-7]. For example, the global warming problem is mainly 

caused by the emission of CO2 and average global surface temperatures in the first six 

months of 2017 are 0.94 ˚C above the 1950-1980 average, according to NASA [8]. 

Besides, the number of deaths attributed to air pollution each year is 6.5 million, much 

higher than the number from HIV/AIDS, tuberculosis and road injuries combined, based 

on the data of World Health Organization (WHO) [9].  

Nowadays, energy and environment issues appear to be an important challenge for our 

society since the first industrial revolution [10]. The world needs another revolution to 

make our resources of energy affordable, accessible and sustainable [11-12]. For this 

regard, developing renewable energy (such as solar [13], wind [14], waves [15], and 

geothermal heat [16], etc.) appear to be the most efficient and effective solutions. Solar 

energy is considered as the most plentiful and ubiquitous source available on the Earth 

because the energy from sunlight stroked on the Earth within 1 hour is more than the 

total world energy consumed by humans in an entire year [17]. However, solar energy 

is an intermittent and variable resource on the Earth which could not supply reliable 

energy for a system run in a long time.  

In a traditional application, solar energy is captured by two engineering models 

(photovoltaics (PV) cells [18] and solar collectors [19]) and convert it into electricity or 

heat energy. However, these forms of energies are in low conversion-efficiency and 

need high cost for storage or transportation. In fact, the natural process of 
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photosynthesis can turn sunlight and water into carbohydrate, achieving solar energy 

capture, conversion and storage, but its efficiency is excruciatingly low. Inspired by this 

natural process, researchers are pursuing the ways to convert solar energy into useful 

forms.  Solar fuels are a game-changer technology to produce chemical fuels by using 

sunlight to drive chemical reactions (such as, artificial photosynthesis [20], 

thermochemical [21], or electrochemical reaction [22] etc.) and then store solar energy 

in the form of chemical bonds (such as H2, CO, CH4, and CH3OH, etc.) for later usage. 

Figure 1-1 shows schematic for solar fuels production [23]. 

 

Figure 1-1 Schematic for solar fuels production. 

Solar fuels show distinct advantages: firstly, the production of solar fuels solves the 

conversion and storage problems simultaneously. Secondly, solar fuels are easy to store 

compared with electricity or heat, and their energy densities (compressed H2: ~40,000 

Wh/Kg, liquefied natural gas: ~15,000 Wh/Kg) are dozens of times than that of the 

electricity storage devices (Li-ion batteries: ~300 Wh/Kg, Supercapacitors: ~10 Wh/Kg). 

Thirdly, solar fuels are liable to transport rather than build a complex distribution 

network. Furthermore, CO2 can be used as one of the feedstocks for synthesizing solar 

fuels, facilitating to reduce the emission of CO2. For the production of the solar fuels, 

materials are the most important challenge for the development of all technologies [24]. 
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Specifically, the ever-increasing growth of research activities in nanoscience and 

nanotechnology continually brings new physical and chemical properties on 

nanomaterials, which may play a significant role in promoting a step-change 

breakthrough to cost-effective solar fuels conversion, storage, and utilization [25].  

1.2 Titanium Dioxides  

Titanium dioxides (TiO2) was first used as a white pigment since its commercial 

production in the 1920s [26]. Until in the early 1970s, the pioneers Fujishima and Honda 

discovered the photocatalytic water splitting phenomenon on a TiO2 single crystal under 

UV light irradiation [27]. TiO2 has been quickly attracted intensive research interests for 

various applications, involving in the fields of photovoltaic [28], hydrogen generation 

[29], photocatalysts [30], lithium-ion batteries [31], supercapacitors [32], fuel cells [33], 

pollutants degradation [34], gas sensors [35], and biomedical devices [36]. These 

applications not only depend on its earth-abundance, nontoxicity, and high stability, but 

also rely on its optical, electronic, structural, morphological, and surface properties as 

well as size, crystallinity, and surface facets [37]. Although TiO2 possessed such 

promising properties, its white color, relatively poor conductivity, and wide bandgap 

(rutile of 3.0 eV, anatase of 3.2 eV, and brookite of 3.4 eV) are main limitations for its 

practical applications [38-40]. The bandgap of rutile is relatively narrow, but the anatase 

is favorable because of its higher reduction potential and slower electron-hole pairs 

recombination rate [41]. Figure 1-2 shows the typical crystal structures of TiO2 materials 

in nature and their bandgaps.  

 

Figure 1-2 Typical crystal structures of TiO2 materials in nature and their bandgaps. 
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To overcome these limitations, researchers have devoted tons of efforts on the studies 

of synthesis, characterization, and theoretical investigations of TiO2 nanomaterials. 

These studies are summarized as two categories: bandgap engineering and morphology 

control engineering [42-44]. Bandgap engineering includes: (i) introducing non-metal 

elements (F, N, C, S, P, B, I, etc.) [45-48] or metal ions (V, Cr, Mn, Fe, Ni ions) [49-52] into 

TiO2 crystalline lattices, (ii) incorporation of metal elements (Pt, Au, Ag, Rh, Ru, etc.) [53-

55] or semiconductors (PbS, Cu2O, CdS, ZnS, MoS2, InP, CdTe, etc.) [56-60] onto TiO2 

surface, and (iii) phase transition or vacancies formation into TiO2 crystal structure [61]. 

In principle, bandgap engineering on TiO2 is a crucial process for narrowing bandgap, 

enhancing solar light harvesting, improving carrier separation, and suppressing carrier 

recombination. 

 

Figure 1-3 TiO2 nanomaterials in different morphologies.  

Morphology control engineering is to synthesize TiO2 materials in a diversity of 

nanostructures, such as nanoparticle [62], nanowire [63], nanorod [64], nanofiber [65], 

nanobelt [66], nanotube [67-70], nanosheet [71], nanoflower [72], etc, as shown in 

Figure 1-3. As the feature size down to the nanometer, TiO2 nanomaterials can offer 

great surface-active sites because of their quite large surface-to-volume ratio. These 
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surface-active sites can act as the redox centers to accelerate the reaction between TiO2 

and the interacting media [73]. Compared with bulk materials, the nanocrystallized TiO2 

materials can improve their chemical activity, phase-transition pressure, solubility, as 

well as melting point [74]. Therefore, the performance of TiO2-based devices or systems 

could be further improved by the development of appropriate nanostructures with well-

engineered composition, geometry, crystallography, and integration. In this thesis, TiO2 

nanotubes has selected as the main functional material due to its several advantages: 

(1) well-aligned nanotubular structure provides a light-trapping well for light harvesting, 

a specific path for charge transporting, a straight channel for electrolyte filling and ions 

transporting, and a capsule-shaped cavity for reactants adsorbing; (2) higher specific 

area offers a larger TiO2/electrolyte interface or TiO2/gas reaction site; (3) excellent 

mechanical strength ensures TiO2-based devices and systems` stability and reliability.  

1.3 Mechanisms of Photo-energy Conversion 

 

Figure 1-4 Illustration of several typical applications in the photo-energy conversion, (a) 

photovoltaics, (b) degradation, (c) photocatalytic water-splitting, and (d) photocatalytic 

CO2 conversion. 
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Although TiO2 nanotubes have been used as the primary functional material in the field 

of solar utilization (such as DSSCs [75], photocatalytic water splitting [76], photocatalytic 

CO2 conversion [77], and photo-degradation [78], etc.), the involved fundamental 

mechanisms for energy conversion are similar. Figure 1-4 illustrates the photo-energy 

conversion processes involved in photovoltaics, degradation, photocatalytic hydrogen 

generation, and CO2 conversion. A typical photo-energy conversion process consists of 

several steps: light absorption, excited charges (electrons and holes) generation, excited 

charges separation, excited charges transport, and excited charges recombination [79]. 

One more step of a redox reaction is involved in photocatalytic water splitting and 

photocatalytic CO2 conversion. These processes affect the final yields of electricity, 

hydrogen, or solar fuels.  

(1) Light absorption 

TiO2 nanomaterials act as the light harvesters to absorb as much light as possible, 

instead of reflecting or scattering of light.  Primarily, the ability to absorb sunlight of 

photocatalysts depends on their natural colors [80]. For example, “white” reflects all 

colors while “black” absorb all colors so that no light is reflected or scattered. TiO2 

nanomaterials almost reflect all colors in visible regime owing to their white color. 

Therefore, blackening treatment of TiO2 nanomaterials is a necessary approach to 

enhance the absorption in visible spectrum [81]. Also, the absorption ability relies on 

the surface morphologies of material, such as “black silicon” with a needle-shaped 

surface shows high absorption in visible light [82]. Similarly, tubular structure of TiO2 

nanotubes also provides light-trapping wells for solar light harvesting. 

(2) Excited charges generation  

After absorbing sunlight, TiO2 nanomaterials should have high efficiency to capture the 

photons with the energy equals to or exceeds its bandgap energy and then generate 

excited charge carriers, as shown in Equation (1). For the anatase phase of 3.2 eV, TiO2 

nanomaterial can only capture the energy of photons with the wavelength less than 

~387 nm [83]. To increase the number of photo-excited charge carriers, narrowing 

bandgap energy of TiO2 nanomaterial is a crucial strategy by bandgap engineering [84]. 
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where, �������  is the photon energy, � is the wavelength of absorbed light, ��  is the 

bandgap energy of TiO2 nanomaterial.  

(3) Excited charges separation

After obtained the photon-energy, the electrons in the valence band are excited to the 

conduction band, while the holes are left in the valence band. Upon excitation, the fate 

of the separated electrons and holes can follow several pathways: transport, bulk 

recombination, or surface recombination [85]. 

(4) Excited charges transport

The separated electrons and holes may need to overcome several energy barriers and 

transport on the surface of TiO2 nanomaterial ready for the subsequent chemical 

reactions. Efficient charges separation and rapid charges transport are significant for the 

final yields. Usually, the design of built-in internal electric field on TiO2 nanomaterials is 

useful for charges separation and transport [86]. These built-in internal electric fields 

are achieved by p-n junction (TiO2 coupled with semiconductors) [87], Schottky junction 

(TiO2 contact with metals, electrons are favourable from TiO2 to metal due to the 

potential difference between the metal and TiO2) [88], phase junction (anatase-rutile 

phase junction) [89-90], and space charge region (doping with metal or non-metal ions) 

[91]. Also, highly conductive materials are also beneficial to charges transport [92]. 

Therefore, heterojunction modification and conductivity improvement on TiO2 

nanomaterials are fundamentally crucial for charges separation and transport.  

(5) Excited charges recombination

During charges transport, the most of separated electrons and holes are recombined in 

the bulk of TiO2 nanomaterials before reaching to the surface owing to their intrinsic 

electronic and structural properties [93], as shown in Equation (3). In fact, time-resolved 
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spectroscopic studies reveal that ~90% of photo-generated electron-hole pairs are 

rapidly recombined by releasing heat or emitting fluorescence after excitation. Only ~10% 

separated electrons and holes could reach the surface of TiO2 nanomaterial and involve 

the subsequent redox reactions [94]. As a result, the photo-energy conversion efficiency 

by TiO2 nanomaterials is usually limited by the fast recombination of photogenerated 

electron-hole pairs. The recombination of electron-hole pairs could occur on the defects 

or dopants of TiO2 nanomaterial due to lack of a driving force to separate and transport 

them. Therefore, efficient charge separation and transport are an effective way to 

suppress electron-hole recombination [95].  

�� + ℎ� → ���� �� �ℎ�����                                           (3) 

(6) Redox reaction 

The electrons and holes migrated on the surface of TiO2 nanomaterials may involve the 

redox reactions with adsorbed reactants (H2O, CO2, or other organic molecules) on 

reduction and oxidation centers. For photocatalytic water-splitting reaction, the 

electrons and holes are acted as reducing agent and oxidizing agent to produce H2 and 

O2, respectively [96]. For CO2 conversion, the holes migrate to oxidation centers 

breaking water into hydrogen ions (H+) and oxygen atoms, while the electrons reduce 

CO2 with H2O into CO, CH4, and CH3OH, etc. on reduction centers. Apparently, the final 

yields of solar fuels (H2, CO, CH4, CH3OH, etc.) are mainly determined by the number of 

electrons and holes involved in redox reactions. Besides, the redox reactions for solar 

fuels yields also depend on the band-edge positions of photocatalysts [97-98]. For 

photocatalytic water-splitting, the match of the bandgap and band-edge positions are 

essential to facilitate the redox reaction of H2O. The bottom position of the conduction 

band should be more negative than the reduction potential of H+/H2 (-0.41 V vs. NHE @ 

pH=7), whereas the top position of the valence band should be more positive than the 

oxidation potential of O2/H2O (+0.82 V vs. NHE @ pH=7) [99]. Similar requirements also 

for photocatalytic CO2 conversion, photocatalysts capable of catalyzing CO2 with H2O 

should possess conduction band edge higher or more negative than the redox potential 

for CO2 reduction, whereas the valence band edge should be lower or more positive 
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than the redox potential for the oxidation of H2O to O2. Table 1 is summarized the 

possible reactions related to photocatalytic water-splitting and CO2 conversion [100], 

and Figure 1-6 shows band-edge positions of typical photocatalysts relative to the 

potential levels of the redox reactions involved in the water-splitting and CO2 conversion 

[101-103]. 

Table 1 Possible reactions related to photocatalytic water-splitting and CO2 conversion. 

Reactions E0 (V) vs. NHE (pH=7) Equation 

CO� + 2H� + 2e�  → HCOOH -0.61 (4) 

CO� + 2H� + 2e�  → CO + H�O -0.53 (5) 

CO� + 4H� + 4e�  → HCHO + H�O -0.48 (6) 

CO� + 6H� + 6e�  → CH�OH + H�O -0.38 (7) 

CO� + 8H� + 8e�  → CH� + 2H�O -0.24 (8) 

2H� + 2e� → H� -0.41 (9) 

H�O + 2h� → 1 2⁄  O� + 2H� +0.82 (10) 
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Figure 1-5 Band-edge positions of typical photocatalysts relative to the potential levels 

of the redox reactions involved in the water-splitting and CO2 conversion.  
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Based on the mechanism analysis of photo-energy conversion, photocatalysts with 

excellent activities should possess enhanced absorption, efficient charge separation, 

fast charge transport without bulk or surface charge recombination, and narrower 

bandgap, as well as appropriate conduction-valence band edge positions.  

1.4 Aims and Tasks 

In this thesis, the primary objective is to use heterojunction engineering to synthesize 

TiO2 nanotubes-based electrodes for the applications of energy conversion and storage. 

The specific tasks are listed below: 

Task 1: To prepare the pristine TiO2 nanotube-based electrodes by anodization method; 

Task 2: Using heterojunction engineering to decorate TiO2 nanotube-based electrodes 

for improving the performances on light absorption, charge separation and transport; 

Task 3: Deploying the applications of TiO2 nanotube-based electrodes in the field of 

environmental and energy. 

1.5 Contributions of the thesis 

All research tasks have been accomplished at Department of Microsystems (USN). The 

candidate has performed the synthesis, characterization, and measurements of TiO2-

based nanocomposites under the guidance of the principal supervisor. The PhD 

candidate carried out all data acquisition and analysis of research tasks.  

The primary scientific contributions of this work are as follows: 

(1) A low-cost and straightforward approach is used to synthesize PbS QDs loaded TiO2

nanotubes heterojunction nanocomposites for improving absorption and photocurrent

enhancement.  Meanwhile, we discovered that the photocurrent enhancement on PbS

QDs/TNT is related to the number of loaded PbS QDs.
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(2) An approach to improve the conductivity TiO2 nanotubes was created by introducing

Ti3+ sites. The improved conductivity is beneficial to the transportation of charge

carriers.

(3) The synthesis of TiN coating layer by ALD technique on TNT shows superior

conductivity as comparing to the electrochemical reduction treatment through

introducing Ti3+ sites.

(4) The synthesized “black” TNT shows the enhanced absorption in the visible regime

and its photocurrent density is also increased under visible illumination compared with

that of pristine TNT. Meanwhile, the discovery of photocurrent densities on CdSe

QDs/Ti3+/TNT is related to the size of loaded CdSe QDs.

(5) The synthesized Mo2S/CdS/TNT heterojunction nanocomposites by magnetron

sputter technique show the enhanced yields on the production of H2, CO, and CH4, which

provide a promising approach for producing solar fuels.

(6) Simultaneously loading Au NPs and PbS QDs on Ti3+/TiO2 nanotubes is a unique

technique to create efficient separation centers for fast charge separation and

photocurrent enhancement.

1.6 Outline of the thesis 

The thesis is organized according to the published and submitted articles. The first 

chapter “Introduction” presents the background and the motivation of the research. The 

second chapter “Summary of articles” gives the brief description and discussion of 

selected articles. These articles are organized systematically to show the progress of the 

research step by step. The third chapter “Conclusions” are summarized the 

contributions of this work to science. 
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2 Summary of Articles 

In this chapter, six articles are collected to highlight the research contributions during 

the Ph. D period. The research is summarized as three categories: (1) investigation of 

single-heterojunction TiO2 nanotube electrode in Article 1, Article 2, and Article 3; (2) 

study of double-heterojunction TiO2 nanotube electrode in Article 4 and Article 5; (3) 

probe of multiple-heterojunction TiO2 nanotube electrode in Article 6. Collected articles 

are briefly described based on the research motivation, experiments, results and 

discussion, and conclusions. The collected articles are organized regarding the research 

category rather than the publication date. The full-length articles are enclosed at the 

end of the thesis.  

2.1 Single-heterojunction TiO2 nanotube electrode 

In this section, three distinct single-heterojunctions are formed on TiO2 nanotube 

electrodes by different materials, such as PbS quantum dots, Ti3+ sites, and TiN. 

2.1.1 PbS Quantum dots/TiO2 heterojunction (Article 1) 

Motivation 

The motivation of this work is based on the illustration of photo-energy conversion in 

Section 1.3. Absorption of sunlight is the prerequisite for TiO2 materials. Also, the 

photocatalysts should have high efficiency in generating excited charges after absorbing 

light. However, TiO2 nanotubes with the bandgap of 3.2 eV only absorb UV irradiation 

(< 387 nm, accounting for 4~5% of solar spectrum) [104]. Loading semiconductors with 

narrower bandgap on TiO2 nanotubes extends their absorption into the visible regime. 

PbS QDs are a nano-sized semiconductor (diameter of 1~10 nm) [105] and considered 

as efficient light harvestors to improve light absorption in the solar spectrum. 

Experiments 

TNT-based electrodes were fabricated by anodization of Ti foil in a fluoride-containing 

electrolyte [106]. Then, the pristine TNT electrodes were annealed at 500 ˚C for 5 hours 
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to form anatase phase. Commercially available lead sulfide (PbS) core-type QDs were 

purchased from Sigma-Aldrich for preparing PbS QDs solutions. PbS QDs were loaded on 

TNT electrodes by the ultrasonic-assisted dip-coating process. PbS QDs/TNT 

heterojunction electrodes were formed after ethanol volatilizing. The schematic process 

flow for fabrication of TNT electrode decorated with PbS QDs is shown in Figure 2-1. 

 

Figure 2-1 Schematic process flow for fabrication of TiO2 nanotubes electrode decorated 

with PbS QDs, (a) cleaning Ti foil, (b) anodization, (c) annealing, (d) dip-coating by PbS 

QDs solution, (e) ethanol volatilization, and (f) PbS QDs/TiO2 nanotubes electrode. 

Results and discussion 

Figure 2-2 shows the top-view SEM images of TNT and TNT loaded with PbS QDs. TNT is 

highly ordered with an average diameter of ~ 150 nm and average tube thickness of ~ 

Ti foil

(a)
Ti foil

(b)

Ti foil
(d) PbS QDs

Ti foil
(c) Annealing

Ti foil
(e)

Ethanol  volatilize

Ti foil
(f)
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20 nm. The mono-dispersed QDs with the size of ~30 nm are formed clusters and 

anchored on the TNT`s opening orifices or the gap between two TNTs. 

 

Figure 2-2 (a) SEM images of TNT, (b) TNT loaded with PbS QDs, (c) magnification image 

of TNT, and (d) PbS QDs. 

Figure 2-3 (a) shows the UV-vis absorption spectra of pristine TNT, TNT/PbS-1, TNT/PbS-

2 and TNT/PbS-3. Pristine TNT presents a weak absorption of visible light at the 

wavelength above ~400 nm. After loading PbS QDs, the nanocomposites TNT/PbS-1, 

TNT/PbS-2, and TNT/PbS-3 show enhancement in visible regime from 400 nm to 800 

nm. Interestingly, TNT loaded with PbS QDs present the weakening in UV light at the 

wavelength lower than ~ 360 nm, even though PbS QDs allow panchromatic utilization 

of solar spectrum from UV to near infrared spectrum (NIR). Figure 2-3 (b) shows I-V 

characteristics of pristine TNT, TNT/PbS-1, TNT/PbS-2 and TNT/PbS-3 under UV 

illumination with the light intensity of 880 mW/cm2. The inset image of Figure 2-3 (b) is 
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the schematic setup for the measurements of TNT/PbS QDs electrodes. Compared with 

pristine TNT, the photocurrents of TNT/PbS-1, TNT/PbS-2, and TNT/PbS-3 are obviously 

enhanced in both forward and reverse bias potential. For example, the photocurrent of 

TNT/PbS-3 is ~65.7 times of pristine TNT at the forward bias potential of +4 V, whereas 

~5 times of that at a reverse bias potential of -4 V.  

 

Figure 2-3 (a) UV-vis absorption spectra of pristine TNT, TNT/PbS-1, TNT/PbS-2 and 

TNT/PbS-3, (b) I-V characteristics of pristine TNT, TNT/PbS-1, TNT/PbS-2 and TNT/PbS-3 

under UV illumination with the intensity of 880 mW/cm2. 

The physical structure of TNT electrode is considered as metal/semiconductor/metal 

double Schottky barrier diodes [107]. The equilibrium state of pristine TNT is shown in 

Figure 2-4 (a). Under UV illumination, photo-generated electrons in the conduction band 

of TiO2 flow into FTO glass to form positive current or flow into Ti foil to create a negative 

current. The barrier height on the Ti foil interface (qΦT) at the forwarding bias is much 

smaller than that on FTO (qΦF) interface at the reverse bias. The number of electrons 

flowing into FTO (positive current) is much more significant than that flowing into Ti foil 

(negative current) under the built-in electric field. In PbS QDs/TNT heterojunction 

electrode, its band diagram is combined with the bandgap of PbS QDs, as the shown in 

Figure 2-4 (b). Under UV illumination, the electrons are transferred from the conduction 

band of PbS QDs to the conduction band of TNT, whereas the holes on valence band of 

PbS QDs are cascaded down to TNT. The extra electron-hole pairs contributed by PbS 

QDs result in the photocurrent enhancement during UV illumination. 
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Figure 2-4 (a) Band diagram of TNT without PbS QDs and (b) PbS QDs/TNT in the 

equilibrium state without UV illumination, in forwarding bias potential and reverse bias 

potential under UV illumination. 

Conclusions  

TNT decorated with nearly-disperse oleic acid (OA) capped PbS QDs/clusters have been 

synthesized by the ultrasonic-assisted dip-coating process. The formed PbS QDs/TNT 

heterojunction electrodes show obvious photocurrent enhancement under UV 

illumination. The enhanced I-V properties are well explained by the contribution of extra 

electron-hole pairs generated on PbS QDs. Although these PbS QDs/TNT heterojunction 

electrodes were systematically investigated under UV irradiation, these electrodes also 

show promising applications in the visible regime, such as solar cells, photodetectors, 

and photocatalysts. 
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2.1.2 Ti3+ sites/TiO2 heterojunction (Article 2) 

Motivation 

TiO2 nanomaterials have been used as photoelectrodes for generating electricity, such 

as dye-sensitized solar cells (DSSC) [108] and perovskite solar cells [109]. The generated 

electricity is direct to use or store in batteries. If TiO2 nanotubes are used as the 

electrode material for supercapacitors or lithium-ion battery, the energy systems 

(electricity generation and storage) will be easy to integrate with the same material. The 

motivation of this work is that the ordered TiO2 tubular structures do offer large specific 

area, which might be used as the electrode material of supercapacitors [110]. However, 

the poor conductivity of TiO2 nanotubes limits their capacitances [111]. To deal with this 

drawback, researchers have developed several approaches for enhancing the 

conductivity of pristine TiO2 nanotubes. Among them, the electrochemical cathodic 

reduction is an effective technique because of simple in equipment, low in cost and easy 

to operate. 

Another motivation of this work is that the anodized TNT are covered by a layer of “nano 

grass” and its formation is described by bamboo-splitting model [112]. Usually, this 

“nano grass” layer should be removed for getting better performance in photoelectric 

devices [113]. However, the appropriate retention of “nano grass” on TNT-based 

electrode might be beneficial to enhance capacitance for supercapacitor electrode. 

Experiments 

TNT electrodes were fabricated by anodization of Ti foil in a fluoride-containing 

electrolyte. After anodization, TNT with the surface debris of “nano grass” were rinsed 

with absolute ethanol in an ultrasonic bath to strip “nano grass” into different surface 

morphologies. Then, as-prepared electrodes were annealed at 500 ˚C for 3 hours to 

obtain anatase phase. Afterward, the electrodes were treated by cathodic reduction 

with the potential of +5 V for 15 seconds. These electrodes were denoted as “B-TNT-N” 

(“B” is black and “N” is the striping time), and corresponding pristine electrodes were 

prepared as the comparison electrodes (“B-TNT-N”, “W” is white for short). Figure 2-5 
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shows the synthesis process for Ti3+ sites/TiO2 heterojunction electrode via anodization 

technique and electrochemical reduction. 

 

Figure 2-5 Synthesis process for Ti3+ sites/TiO2 heterojunction electrode via anodization 

technique and electrochemical reduction, (a) cleaning Ti foil, (b) anodization, (c) 

ultrasonic striping, and (d) electrochemical reduction. 

Results and discussion 

Figure 2-6 shows surface morphologies of the TNT electrodes treated by ultrasonic 

stripping in different minutes. Pristine TNT electrode is entirely covered with “nano 

grass” as shown in Figure 2-6 (a). After ultrasonic treatment for 1~3 minutes in ethanol 

solution, parts of “nano grass” are stripped from the surface to expose the nanotubes 

with the diameter of ~ 140 nm, shown in Figure 2-6 (b). A large area of nanotubes is 

observed after ultrasonic treatment for 4~8 minutes, shown in Figure 2-6 (c). TNT begins 

to peel off from Ti foil after ultrasonic treatment up to ~8 minutes, exposing the “hive-

like” structures on the substrate shown in Figure 2-6 (d). Therefore, the hybrid surface 

morphologies, both “nano grass” and nanotube, are simultaneously existed on the 

electrodes by controlling ultrasonic treatment in 1~7 minutes. 
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Figure 2-6 SEM images for surface morphologies of samples (a) without ultrasonic 

stripping, (b) with ultrasonic stripping for 1~3 mins, (c) 4~7 mins, and (d) above 8 mins. 

Figure 2-7 (a) shows the Raman spectrum of W-TNT and B-TNT. Four distinct Raman 

peaks at 147, 395, 516, and 640 cm-1 from both samples can be attributed to Eg, B1g, A1g, 

and Eg modes of anatase TiO2. Eg, B1g, and A1g are mainly caused by symmetric stretching 

vibration of O-Ti-O, the symmetric bending vibration of O-Ti-O, and anti-symmetric 

bending vibration of O-Ti-O, respectively [114]. Compared to that of W-TNT, Raman 

peaks of the B-TNT shows broadening and shifting toward a lower wavenumber, 

suggesting the Ti3+ or oxygen vacancies are introduced into B-TNT after electrochemical 

reduction treatment [115]. Figure 2-7 (b) shows the Nyquist plots of pristine W-TNT and 

B-TNT to understand the behavior of electrical conductivity and capacitive 

characteristics. Both W-TNT and B-TNT exhibit nearly vertical lines at the high-frequency 
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region. The slope of B-TNT is larger than that of W-TNT, representing B-TNT has the 

higher capacitance than that of W-TNT. The conductivity improvement contributes the 

enhanced-capacitance after introducing Ti3+ sites. Figure 2-7 (c) presents the CV curves 

of B-TNT electrodes with different ultrasonic treatment times at the scanning rate of 

100 mV/s. Based on the enclosed area of CV curves, B-TNT-3 gives the maximum 

capacitance, which contributed to hybrid surface morphologies. Figure 2-7 (d) shows the 

average specific capacitance of B-TNT electrodes as a function of ultrasonic stripping 

times. The capacitances shown in this figure are well in accord with that in Figure 2-7 

(c). 

 

Figure 2-7 (a) Raman spectra in the range of 100-800 cm-1 for W-TNT and B-TNT, (b) 

Nyquist plots for W-TNT and B-TNT, the insets show the high-frequency regions, (c) CV 

curves of B-TNT with varied ultrasonic stripping time at the scanning rate of 100 mV/s, 

(d) Average specific capacitance of B-TNT as a function of ultrasonic stripping times. 
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Figure 2-8 (a) Schematic of TNT with “nano grass” during cleaning and annealing 

processes, (b) Schematic of a cross-section of TNT in varying degrees of surface 

topography during electrochemical reduction and measurement. 

Figure 2-8 (a) shows schematic of TNT with “nano grass” during cleaning and annealing 

processes. The “nano grass” is float on the top of TNT during ethanol rinsing, but they 

are collapsed or bundled after ethanol volatilizing. After annealing, “nano grass” are 

sintered together to form a dense membrane on the surface of TNT. Figure 2-8 (b) shows 

the TNT electrodes with different surface morphologies during electrochemical 

reduction and measurement. Surface morphologies of TNT electrodes are depended on 

ultrasonic stripping times. The more ultrasonic stripping time is performed, the less 

“nanograss” is retained on the surface of TNT electrodes. Overall, the capacitances are 

proportional to the effective surface area of hybrid nanostructures (“nano grass” and 

nanotubes) on electrodes.  

Conclusions 

Ti3+ sites are introduced into TiO2 nanotubes by cathodic reduction treatment. EIS 

analysis indicates the conductivity of Ti3+ sites/TNT electrodes has been improved. 

Compared with pristine TNT, the capacitance of Ti3+ sites/TNT electrodes is increased by 
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14 times after introducing Ti3+ sites. Furthermore, the extra capacitance is contributed 

by appropriate retention of “nano grass” on electrodes. 

2.1.3 TiN/TiO2 heterojunction (Article 3) 

Motivation 

This work has been performed after the study in Article 2. The motivation of this work 

is to use TiO2 nanotubes as high-performance supercapacitor electrodes. Although the 

capacitance of Ti3+ sites/TNT electrode does improve by several tens of times comparing 

to that of pristine TNT. The thin Ti3+ sites layer distributed on the very top surface of TiO2 

nanotubes is limited to enhance their capacitance [116]. Introducing high-conductive 

layer into TiO2 nanotubes is a promising strategy for improving capacitance. Atomic 

layer deposition (ALD) is an Angstrom-level thin film deposition technique and has been 

used for feature size smaller than 100 nm [117]. Titanium Nitride (TiN) is a hard ceramic 

material [118], but it has an excellent electrical conductivity [119]. The capacitance of 

TNT-based electrodes might be significantly enhanced by conformal coated with a TiN 

layer through ALD technique.  

Experiments 

Before anodization, Ti foils were rinsed by acetone, isopropanol and DI water for 15 

mins. TNT electrodes were fabricated by anodization of Ti foil using a fluoride-containing 

electrolyte at room temperature (25 ˚C). Then, pristine TNT electrodes were annealed 

at 500 ˚C for 3 hours to obtain anatase phase. Afterward, two approaches were applied 

for treating annealed electrodes: (1) Ti3+ sites introducing by cathodic reduction 

treatment under the potential of +5 V for 15 seconds; (2) conformal coating TiN layer on 

TNT by ALD technique. Subsequently, Ti3+ sites/TNT and TiN/TNT electrodes are selected 

to assemble as symmetric supercapacitors for the following electrochemical 

measurements. Figure 2-9 shows the schematic flow for fabricating Ti3+ sites/TNT and 

TiN/TNT symmetric supercapacitors.  
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Figure 2-9 Schematic flow for fabricating Ti3+ sites/TNT and TiN/TNT symmetric 

supercapacitors, (a) cleaning Ti foil, (b) anodization, (c) annealing, (d) electrochemical 

reduction for introducing Ti3+ sites, (e) ALD for TiN/TNT electrode, (f) symmetric Ti3+ 

sites/TNT supercapacitors, (g) symmetric TiN/TNT supercapacitors. 

Results and discussion 

Figure 2-10 (a) shows the surface morphologies of Ti3+ sites/TNT electrode. The inset 

image of Figure 2-10 (a) indicates the nanotube diameter of ~140 nm and the tube wall 

thickness of ~12 nm. Figure 2-10 (b) shows SEM image of TiN/TNT electrode and its inset 

image presents that the nanotube diameter decreases to ~120 nm and the tube wall 

thickness increases to ~70 nm. Through the comparison of two parameters, the 

thickness of the TiN layer is estimated to be ~30 nm. Figure 2-10 (c) shows high-

resolution TEM (HRTEM) image of TiN/TNT electrode and Figure 2-10 (d)~(f) shows the 

element of titanium, oxygen, and nitrogen by EDX mapping analysis, respectively. Figure 

2-10 (g) indicates the combination of element oxygen and nitrogen, showing TiN layer is 

conformally coated inside and outside of TNT and the thickness of the TiN layer is ~30 

nm which is in accord with the parameters as shown in Figure 2-10 (b).  
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Figure 2-10 (a) SEM images of Ti3+ sites/TNT electrode, (b) enlarged image of Ti3+ 

sites/TNT, (c) SEM image of TiN/TNT electrode, (d) enlarged image of TiN/TNT, (e) 

HRTEM image of TiN/TNT electrode and scanning TEM (STEM) images, and EDX mapping 

of element (f) Titanium, (g) Oxygen, (h) Nitrogen, (i) Oxygen and Nitrogen. 
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Figure 2-11 (a) Nyquist plots of TNT, Ti3+/TNT and TiN/TNT symmetric electrodes, (b) CV 

curves of as-prepared symmetric supercapacitors at scanning rate of 100 mV/s, (c) CV 

curves of TiN/ TNT supercapacitors at different scanning rates, (d) calculated 

capacitance of as-prepared symmetric supercapacitors as the function of scanning rate, 

(e) CV curves of symmetric Ti3+/TNT supercapacitors, and (f) TiN/TNT supercapacitors at 

the cycle number of 1, 50, 500, 1000, and 2000.  
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Figure 2-11 (a) shows Nyquist plots of TNT, Ti3+/TNT, and TiN/TNT symmetric electrodes. 

Nyquist plots intersection on real axis indicates that the equivalent series resistance 

(ESR) of TiN/TNT, Ti3+/TNT and TNT are 11.33 Ω, 23.95 Ω, and 28.11 Ω, respectively. The 

decreased ESR of TiN/TNT electrode does demonstrate the electrical conductivity of 

TiN/TNT has improved after coating with TiN layer. Figure 2-11 (b) shows CV curves of 

as-prepared symmetric supercapacitors at a scanning rate of 100 mV/s. The larger 

enclosed area of CV curve implies that TiN/TNT supercapacitors have the larger 

capacitance. Figure 2-11 (c) shows CV curves of TiN/TNT symmetric supercapacitors at 

different scanning rates from 1 mV/s to 1 V/s. CV curves retain a series of “quasi-

rectangle” at different scanning rates, indicating excellent capacitive behavior and high 

rate capability. Figure 2-11 (d) shows the calculated capacitance under different 

scanning rate. The capacitance of symmetry TiN/TNT supercapacitors is 11.68 mF/cm2 

at the scanning rate of 1 mV/s, which is 224.6 times (0.052 mF/cm2) and 4.7 times (2.49 

mF/cm2) than that of TNT and Ti3+/TNT. The CV curves of Ti3+/TNT and TiN/TNT 

supercapacitors at the cycle number of 1, 50, 500, 1000, and 2000 are shown in Figures 

2-11 (e) and (f). The enclosed areas of CV curves are obviously decreased for Ti3+/TNT 

but almost overlapped for TiN/ TNT supercapacitors after 2000 cycles. This data is 

further demonstrated that TiN/ TNT supercapacitors have excellent stability. 

 

Figure 2-12 (a) Schematic diagram of TNT, Ti3+/TNT, and TiN/TNT half-electrode during 

test, (b) ladder network equivalent circuits of TNT, Ti3+/TNT and TiN/TNT half electrodes.  
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Figure 2-12 (a) shows a schematic diagram of TNT, Ti3+/TNT and TiN/TNT half electrodes 

during the test. Based on the idea of finite element method, an electric double-layer 

capacitor (EDLC) could be equivalent to ladder network circuits [120], shown in Figure 

2-12 (b). For pristine TNT electrode, the charges are mainly accumulated on the bottom 

of nanotubes due to the intrinsic resistance of TiO2 material are large. Therefore, only a 

relatively small active specific area is involved in TNT supercapacitors. For Ti3+/TNT and 

TiN/TNT electrode, the introduced Ti3+ sites and coated TiN layer have improved the 

conductivity of TNT. However, Ti3+ sites layer (several nanometers) is distributed on the 

very top surface of TNT whereas the thickness of the TiN layer can be reached up to ~30 

nm. Therefore, the activated specific area for TiN/TNT is larger than that of Ti3+/TNT.  

Conclusions 

TiN layer is conformally deposited on TiO2 nanotubes by ALD technique. The TiN/TNT 

electrode presents the capacitance of 11.68 mF/cm2 at a scanning rate of 1 mV/s, which 

is 224.6 times and 4.7 times higher than that of TNT and Ti3+/TNT. Furthermore, the 

TiN/TNT supercapacitors present outstanding cycling stability with 98.5% retention of 

original specific capacitance after 2000 cycles. 

2.2 Double-heterojunction TiO2 nanotube electrode  

2.2.1 Ti3+/CdSe quantum dots/TiO2 heterojunction (Article 4) 

Motivation 

This work is conducted after the study in Article 2. Ti3+ sites introduced TNT electrode 

presents a good conductivity which is useful for carrier transport. Besides, Ti3+/TNT 

electrode shows a black or dark blue color which is beneficial to absorb light in visible 

regime [121]. The motivation of this work is to study the photocurrent properties of 

“black” TNT. From Article 1, the photocurrent of PbS QDs/TNT electrode is enhanced by 

loading with the different amounts of PbS QDs. Another motivation of this work is to 
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investigate the photocurrent enhancement of TNT electrode by loading with different 

size of CdSe QDs. 

Experiments 

TNT-based electrodes were fabricated by anodization method in a fluoride-containing 

electrolyte. Then, the pristine TNT electrodes were annealed at 600 ˚C for 5 hours to 

form anatase phase. Afterward, TNT electrodes were treated by a cathodic reduction in 

0.5 M Na2SO4 solution and denoted as “T-TNT”. Cadmium selenide (CdSe) QDs were 

purchased from Sigma-Aldrich for preparing CdSe QDs solutions. Three different sizes of 

CdSe QDs were loaded on Ti3+/TNT electrodes by the ultrasonic-assisted dip-coating 

process. CdSe QDs/Ti3+/TNT heterojunction electrodes were formed after ethanol 

volatilizing and denoted as “T-TNT-CS-N” (N is the number of CdSe QDs solution). Figure 

2-13 shows the schematic process flow for fabrication of TiO2 nanotubes electrode 

decorated with PbS QDs. 

 

Figure 2-13 Fabrication procedures of Ti3+/CdSe quantum dots/TiO2 heterojunction 

electrodes, (a) cleaning Ti foil, (b) anodization, (c) annealing, (d) electrochemical 

Ti foil

(a) (b) Ti foil

(c) Ti foil(d) Ti foil

(f) Ti foil(e) Ti foil CdSe QDs
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reduction, (e) loaded with CdSe QDs, (f) evaporation ethanol to form heterojunction 

electrodes. 

Results and discussion 

Figure 2-14 (a) shows surface morphologies of the pristine TNT. The average diameter 

and wall thickness of TNT are ~120 nm and ~18 nm. Figure 2-14 (b) shows the SEM 

images of Ti3+/CdSe QDs/TNT electrode after loading of CdSe QDs. CdSe QDs and their 

clusters are naturally observed on the opening of TNT. Besides, AFM was used for 

characterizing the size of CdSe QDs, shown in Figure 2-14 (c) and (d). Both individual and 

cluster CdSe QDs are observed on scanning region. The size of individual CdSe QDs is 

~20 nm which is larger than the size (2~8 nm) in literature since CdSe QDs capped with 

oleic acid (OA) for improving their air stability and decreasing agglomeration.  

 

Figure 2-14 SEM images of (a) TNT, (b) TNT decorated with CdSe QDs, (c) AFM image of 

CdSe QDs solution-1, and (d) solution-2. 
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Figure 2-15 (a) absorption spectra of CdSe QD solutions, (b) UV-vis absorption spectra 

of as-prepared CdSe QDs/Ti3+/TNT heterojunction electrodes, (c) transient photocurrent 

responses of (c) pristine TNT and  (d) Ti3+/TNT loaded with different size CdSe QDs under 

visible illumination at the applied potential of +1 V. 

Figure 2-15 (a) shows absorption spectra of CdSe QD solutions. Three different CdSe QD 

solutions present the distinct peaks at 430 nm, 510 nm, and 630 nm and the intercepts 

at 530.8 nm, 575.8 nm and 704.2 nm for CS-1, CS-2, and CS-3, respectively. The bandgaps 

of CdSe QD in different sizes are calculated as 2.33 eV, 2.15 eV and 1.76 eV by Eg = 1240/λ 

(nm) [122]. The inset image of Figure 2-15 (a) shows the colors of as-prepared CdSe QDs 

solutions under natural light and UV light. Figure 2-15 (b) shows UV-vis absorption 

spectra of as-prepared Ti3+/CdSe QDs/TiO2 heterojunction electrodes Compared with 

pristine TNT electrodes, Ti3+/TNT electrodes display enhanced absorption above ~400 

nm. After decorated with CdSe QDs in a different size, the absorption of pristine TNT 
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and Ti3+/TNT electrodes are enhanced from 400 nm to 680 nm. The inset image of Figure 

2-15 (b) shows as-prepared pristine TNT and Ti3+/TNT electrodes loaded with CdSe QDs.

Figure 2-15 (c) and (d) show the transient photocurrent responses of pristine TNT and

Ti3+/TNT loaded with different size CdSe QDs under visible illumination at the applied

potential of +1 V. Compared with pristine TNT (32.76 µA/cm2), the photocurrent of

Ti3+/TNT (72.53 µA/cm2) is increased by 2.2 times. Furthermore, the maximum

photocurrent on the fifth pulse of CdSe QDs/Ti3+/TNT is 205.17 µA/cm2, which is 2.2

times larger than that of Ti3+/TNT. Therefore, the enhanced photocurrent is contributed

by both Ti3+ sites and CdSe QDs.

Figure 2-16 (a) schematic view of Ti3+/TNT electrodes decorated with CdSe QDs during 

measurement, (b) band diagram of Ti3+/TNT photoelectrode decorated with different 

size CdSe quantum dots. 

Figure 2-16 (a) shows a schematic view of Ti3+/TNT electrodes decorated with CdSe QDs 

during measurement. Under visible illumination, the electron-hole pairs are generated 

on CdSe QDs/Ti3+/TNT electrodes and then separated by the positive bias potential 

applied to Ti and Pt electrodes. The water on the anode is oxidized by holes to generate 

hydrogen ions and oxygen (H2O+2h+→2H++1/2O2); meanwhile, the generated hydrogen 

ions are combined with electrons on the cathode to produce hydrogen (2H++2e-→H2) 

[123]. Figure 2-16 (b) shows the band diagram of CdSe QDs/Ti3+/TNT electrodes. The 

larger size CdSe QDs give the narrower bandgap (wider visible region), which is easier 

for generating more electron-hole pairs under visible illumination. The electrons are 
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jumped onto the conduction band of Ti3+/TNT by the act of applied bias voltage, whereas 

the holes are jumped to the valence band of CdSe QDs. The separated electrons and 

holes are involved in photochemical water splitting reactions.  

Conclusions 

Ti3+ sites are introduced into TNT by cathodic reduction treatment. Different size CdSe 

QDs are loaded on Ti3+/TNT electrodes by the ultrasonic-assisted dip-coating process. 

Photocurrent of CdSe QDs/Ti3+/TNT electrodes is enhanced by several facts: (1) the color 

of Ti3+/TNT turns to black or dark blue which is easy to absorb visible light; (2) Ti3+/TNT 

display an excellent conductivity which is beneficial to carrier transport; (3) the loadings 

of CdSe QDs contribute the extra photogenerated electron-hole pairs and separation 

centres. This work provides an approach to synthesizing high-performance 

photocatalysts for water splitting.  

2.2.2 MoS2/CdS/TiO2 heterojunction (Article 5) 

Motivation  

This work is conducted after the study in Article 1. PbS QDs were loaded on TNT by the 

dip-coating approach. After the discovery and applications of graphene-based 

nanosheets [124], the research on 2D transition metal disulfides has experienced rapid 

growth. MoS2 is a layered material with the narrowed bandgap and can be exfoliated to 

single- or few-layer nanosheets [125]. Also, MoS2 has been manifested as a potential 

catalyst to replace the rare and expensive noble metals (Pt, etc.) for hydrogen evolution 

reaction (HER) [126]. The motivation of this work is depositing metal sulfide (MoS2 and 

CdS nanoparticles) by magnetron sputter technique to modify the anodized TNT 

electrode. Another motivation for this work is using the band-edge positions of MoS2 

and CdS to synthesize heterojunction nanocomposites for photocatalytic CO2 

conversion.  

Experiments 
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TNT electrodes were fabricated by anodization of Ti foils. MoS2 and CdS were deposited 

on TNT by magnetron sputter technique at different setting conditions. The 

photocatalytic CO2 conversion tests were conducted in a gastight reactor (~ 25 mL) with 

a quartz plate at the top, inlet, outlet and sampling port at the bottom. A 500 W Xenon 

lamp was used as the illuminating source. Before photocatalytic experiments, high 

purity CO2 was bubbled through a gas-water mixer which was heat on ~50 ˚C and then 

flowed into the reactor with the velocity rate of 50 sccm for 60 min to remove the 

residual air. The photocatalytic reaction was conducted for 5 hours. 0.5 mL of gases in 

the reactor was pumped out by a syringe in each hour and then injected into Gas 

Chromatography (GC-2010 Plus, Shimadzu) for analysis. Schematic diagram of the setup 

for CO2 conversion measurement is shown in Figure 2-17 (a), and the physical buildup 

of CO2 conversion system is shown in Figure 2-17 (b). 

 

Figure 2-17 (a) schematic diagram of setup for CO2 conversion measurement, (b) the 

physical buildup of CO2 conversion system, (c) GC-2010 plus with BID detector, (d) gas 
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reactor under illumination with the intensity of ~100 mW/cm2, (e) measured samples in 

gas reactor, (f) as-prepared TNT-MoS2-CdS samples for CO2 conversion testing. 

Results and discussion 

 

Figure 2-18 SEM images of (a) pristine TNT electrode, (b) enlarged view of TNT, (c) 

MoS2/TNT heterojunction electrode, (d) enlarged view of MoS2/TNT, (e) CdS/TNT 

heterojunction electrode, (f) enlarged view of MoS2/TNT. 

Figure 2-18 (a) and (b) show the surface morphologies of pristine TNT. The diameter and 

tube wall thickness of TNT are ~129 nm and ~17 nm. After deposited with MoS2, the 

diameter shrinks to ~102 nm and the thickness of tube wall is increased to ~45 nm, 

shown in Figure 2-18 (c) and (d). The thickness of deposited MoS2 layer could be 
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estimated as ~14 nm. Similarly, the deposited CdS layer is approximately ~12 nm, shown 

in Figure 2-18 (e) and (f). 

 

Figure 2-19 (a) Gases yield of pristine TNT, (b) gases yield of MoS2/CdS/TNT as the 

function of illumination time, (c) gas chromatography peaks of MoS2/CdS/TNT at the 

illumination time of 0 h and 5 h. 

The performance of MoS2/CdS/TNT heterojunction photocatalysts was evaluated for 

converting CO2 into CH4. Figure 2-19 (a) shows the different gases yield by pristine TNT 

as a function of illumination time. The amount yield of H2, CO, and CH4 are 1.69 µmol/g, 

0.91 µmol/g, and 2.50 µmol/g after illumination for 5 hours. The calculated yield rates 

are 0.34 µmol/g/h, 0.18 µmol/g/h, and 0.63 µmol/g/h for H2, CO, and CH4. However, 

MoS2/CdS/TNT heterojunction photocatalysts present an enhanced photocatalytic 

activity, shown in Figure 2-19 (b). The gas yield rates are 22.79 µmol/g/h, 0.69 µmol/g/h, 
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and 5.96 µmol/g/h for H2, CO, and CH4. Therefore, the specific photocatalytic activities 

of MoS2/CdS/TNT heterojunction photocatalysts are 67.4 times, 3.8 times, and 11.9 

times larger than that of pristine TNT for the gas yield of H2, CO, and CH4. Figure 2-19 (c) 

shows gas chromatography peaks of MoS2/CdS/TNT heterojunction photocatalysts 

measured at the illumination time of 0 h and 5 h. 

 

Figure 2-20 (a) band-edge positions of TiO2, MoS2, and CdS, and possible reactions 

related to the photocatalytic conversion of CO2 with H2O, (b) illustration of 

MoS2/CdS/TNT heterojunction photocatalysts for promoting the charge separation for 

the photocatalytic conversion of CO2 with H2O. 

Figure 2-20 (a) shows the band-edge positions of TiO2, MoS2, and CdS, and possible 

reactions related to the photocatalytic conversion of CO2 with H2O [127]. In a typical 

photocatalytic reaction, a variety of products (such as CO, HCHO, CH3OH, CH4, or higher 

hydrocarbons) may be formed in the reduction of CO2 with H2O. Apparently, the 

conduction band edge of CdS is higher than the redox potentials of CO2 reduction; 

therefore, various products (H2, CO, CH3OH, CH4, etc.) may produce on the deposited 

CdS layer. However, conduction bands of TiO2 and MoS2 are close to the redox potentials 

of CO2/CH3OH, CO2/CH4, and H2/H2O, CO or HCHO may hard to produce on TiO2 and 

MoS2 materials. Figure 2-20 (b) shows an illustration of MoS2/CdS/TNT heterojunction 

photocatalysts for promoting the charge separation for the photocatalytic conversion of 

CO2 with H2O. Under illumination, electron-hole pairs are generated on MoS2/CdS/TNT 

heterojunction nanocomposites after absorbing the energy from light. The small 

amounts of electron-hole pairs are separated and transported on the surface of catalysts 
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to participate in redox reactions. The stepped conduction bands combination on 

MoS2/CdS/TNT nanocomposites are liable to electrons cascading from CdS to MoS2, 

reducing the recombination of electron-hole. 

Conclusions 

TNT electrodes have been fabricated by electrochemical anodization. Metal sulfide 

nanomaterials, (MoS2 and CdS nanoparticles) are deposited on TNT by magnetron 

sputter technique. The performance of as-synthesized MoS2/CdS/TNT heterojunction 

photocatalysts are evaluated by CO2 conversion, showing the enhanced specific 

photocatalytic activities which are 97 times, 3.8 times, and 15 times larger than that of 

pristine TNT for the yields of H2, CO, and CH4. This work may have the potential to 

provide new insights into the development of visible-light-driven nanocomposites as 

highly efficient photocatalysts for converting CO2 into fuels. 

2.3 Multiple-heterojunction TiO2 nanotube electrode 

2.3.1 PbS quantum dots/Au/Ti3+ sites/TiO2 heterojunction (Article 6) 

Motivation 

This work is performed after the study in Article 1, Article 2, and Article 4. From these 

articles, absorption, generation and transportation have been improved by introducing 

heterojunction materials, such as PbS QDs, CdSe QDs, and Ti3+ sites. However, a larger 

amount of generated electron-hole pairs are recombined in bulk or on the surface of 

TiO2 nanomaterials, shown in Figure 1-4. The motivation of this work is to reduce the 

recombination of electron-hole by heterojunction engineering. 

Experiments 

TNT electrodes were fabricated by electrochemical anodization of Ti foil in a fluoride-

containing electrolyte. The electrodes were annealed at 500˚C (LENTON WHT6) for 3 h 

in air to form anatase TNT. Ti3+/TNT were obtained by electrochemical reduction in 0.5 
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M Na2SO4 electrolyte under the applied potential of 5 V for 15 seconds. Au NPs were 

loaded on Ti3+/TNT by magnetron sputtering deposition under the deposition current of 

15 mA for 70 seconds (denoted as Ti3+/TNT-Au). OA-capped PbS QDs were loaded on the 

Ti3+/TNT-Au by dipping process (denoted as Ti3+/TNT-Au-PbS). PbS QDs/Au/Ti3+/TNT 

heterojunction electrodes were formed after ethanol volatilizing. Schematic diagram of 

Ti3+/TNT-Au-PbS heterojunction electrode fabrication procedures is shown in Figure 2-

21.  

 

Figure 2-21 Schematic diagram of Ti3+/TNT-Au-PbS heterojunction electrode fabrication 

procedures: (a) Ti foil, (b) anodization to form TNT, (c) annealing to form anatase phase, 

(d) electrochemical reduction to obtain black TNT, (e) loading Au NPs by magnetron 

sputter technique, and (f) loading PbS QDs by dip coating approach. 

Results and discussion 

Figure 2-22 shows SEM images of TNT, TNT-Au, TNT-Au-PbS, Ti3+/TNT, Ti3+/TNT-Au, and 

Ti3+/TNT-Au-PbS. In Figure 2-22 (a), TNT presents a porous periodical structure with an 
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average diameter of ~130 nm and a wall thickness of ~15 nm. After loading with 

nanoparticles Au, the inner diameter decreases to ~115 nm and its wall thickness 

increases to ~20 nm, shown in Figure 2-22 (b). Further loading with quantum dots PbS, 

some clusters (~30 nm) are observed in the inset of Figure 2-22 (c), and they randomly 

distribute on the TNT walls. No obvious morphological differences between TNT and 

Ti3+/TNT, as shown in Figure 2-22 (d). Figure 2-22 (e) and Figure 2-22 (f) illustrate the 

similar surface morphologies to those of TNT-Au and TNT-Au-PbS. 

 

Figure 2-22 SEM images of (a) TNT, (b) TNT-Au, (c) TNT-Au-PbS, (d) Ti3+/TNT, (e) Ti3+/TNT-

Au, and (f) Ti3+/TNT-Au-PbS. 

Figure 2-23 (a) shows UV-vis absorption spectra of UV-vis absorption spectra of TNT, 

TNT-Au, TNT-Au-PbS, Ti3+/TNT, Ti3+/TNT-Au and Ti3+/TNT-Au-PbS electrodes. TNT 

electrodes show weak absorption at the visible light above ~400 nm, but Ti3+/TNT 

electrodes display strong absorption in this regime. After loading with Au NPs, Ti3+/TNT-

Au shows further enhancement from 325 nm to 615 nm. However, the absorption of 

Ti3+/TNT-Au-PbS decreases from wavelength 480 nm to 850 nm because of some light 

may scatter by Nafion layer which used as a binder for preparing PbS QDs solution [128]. 

Figure 2-23 (b) shows transient photocurrent responses of as-prepared samples under 

visible illumination at the applied potential of +1 V. The photocurrent density on fifth 

pulse for TNT, TNT-Au, TNT-Au-PbS, Ti3+/TNT, Ti3+/TNT-Au and Ti3+/TNT-Au-PbS are 

0.592 mA/cm2, 0.616 mA/cm2, 0.646 mA/cm2, 0.789 mA/cm2, 0.999 mA/cm2, and 1.149 
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mA/cm2 under visible light. Obviously, the photocurrent densities of TNT-Au and TNT-

Au-PbS are enhanced by 4.05% and 4.87% as compared to that of as-prepared TNT. 

However, the photocurrent of Ti3+/TNT-Au and Ti3+/TNT-Au-PbS are enhanced by 

26.62% and 15.92% of Ti3+/TNT. Interestingly, we found that photocurrent density of 

Ti3+/TNT is 33.28% higher than that of pristine TNT.  The photocurrent enhancements of 

Ti3+/TNT-Au and Ti3+/TNT-Au-PbS are 62.18% and 77.86% higher than that of TNT-Au, 

TNT-Au-PbS. 

 

Figure 2-23 (a) UV-vis absorption spectra of TNT, TNT-Au, TNT-Au-PbS, Ti3+/TNT, 

Ti3+/TNT-Au and Ti3+/TNT-Au-PbS, (b) transient photocurrent responses of as-prepared 

samples under visible illumination at the applied potential of +1 V. 

 

Figure 2-24 (a) schematic setup of electrochemical measurements for Ti3+/TNT-Au-PbS 

heterojunction electrode in 0.5 M Na2SO4 solution, (b) band diagram of Ti3+/TNT-Au-PbS 

heterojunction electrode in the positive bias potential under visible light illumination. 
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Figure 2-24 (a) shows the schematic setup of electrochemical measurements for 

evaluating the Ti3+/TNT-Au-PbS heterojunction electrode in 0.5 M Na2SO4, and Figure 2-

24 (b) shows band diagram of Ti3+/TNT-Au-PbS electrode in the positive bias potential 

under visible light illumination. Under visible illumination, the photogenerated electrons 

on Ti3+/TNT, Au NPs, and PbS QDs are cascade down to Ti foil. Meanwhile, holes are 

pushed to the valence band of PbS QDs under positive bias potential. Also, electrons 

generated on Au NPs usually transfer to Ti3+/TNT by two ways: hot electron injection 

(HEI) and plasmonic resonance energy transfer (PRET) [129-130]. Au NPs could play as 

main carrier trapping centers for further reactions. 

Conclusions 

TiO2 nanotubes (TNT) have been fabricated by electrochemical anodization and then 

subsequently reduced them as black TiO2 nanotubes by an electrochemical method in 

0.5 M Na2SO4 solution. The black TNT show a high light absorption from the wavelength 

400 nm to 850 nm. To retard photo-generated carrier recombination, Au nanoparticles 

(NPs) and PbS quantum dots (QDs) were loaded on as-prepared and black TNT by 

magnetron sputtering technique and dip-coating approach. The photocurrent densities 

of Ti3+/TNT-Au (0.999 mA/cm2) and Ti3+/TNT-Au-PbS (1.149 mA/cm2) are enhanced by 

62.18% and 77.86% as compared with the as-prepared TNT samples. However, the 

photocurrent densities of as-prepared TNT samples are only increased about 4.05% and 

4.87% after loaded with the same amount of Au NPs and PbS QDs. Therefore, the loaded 

Au NPs and PbS QDs on black TNT could consider as separation centers rather than light 

absorbers for accelerating carrier separation. 
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3 Conclusions 

This thesis aims to synthesize high-performance TiO2 nanotubes-based electrode by 

heterojunction engineering for improving solar energy utilization, conversion, and 

storage. From photo-energy conversion mechanism, several types of heterogeneous 

materials are loaded on TiO2 nanotubes to synthesize multiple-heterojunction 

nanocomposites for improving light absorption, photo-induced charge generation, 

separation, and transport. The main conclusions are summarized in the following 

aspects: 

 Ti3+ sites are introduced into pristine TiO2 nanotubes by electrochemical cathodic 

reduction. The introduced Ti3+ sites bring two advantages: (1) the “black” of 

Ti3+/TNT exhibits excellent light absorption in the visible or even infrared regime; 

(2) an improved conductivity of Ti3+/TNT is beneficial to photo-induced charge 

transport. 

 TiN layer is conformally coated on pristine TNT by atomic layer deposition (ALD) 

technique. The TiN/TNT heterojunction electrode has a superior conductivity 

which is also favorable for photo-induced charge transport. 

 Quantum dots (PbS and CdSe) are loaded on pristine TNT and Ti3+/TNT by the 

ultrasonic-assisted dip-coating process. The loaded PbS QDs and CdSe QDs firstly 

play as light absorbers for enhancing absorption in visible regime.  Then, the 

formed heterogeneous band diagrams on PbS QDs/TNT and CdSe QDs/Ti3+/TNT 

are liable to photo-induced charges separation.  

 Au nanoparticles are loaded on Ti3+/TNT by magnetron sputtering technique. Au 

NPs contribute extra photo-induced charges by hot electron injection (HEI) and 

plasmonic resonance energy transfer (PRET). Also, Schottky junction between Au 

NPs and Ti3+/TNT could accelerate the separation of photo-induced charges.  

 Metallic sulfides (MoS2 and CdS) are deposited on pristine TNT by magnetron 

sputtering technique. The narrowed bandgaps of MoS2 and CdS facilitate to 

capture the energy of photons from sunlight and generate more photo-induced 

charges. The match of conduction band-edges of MoS2, CdS, and TiO2 are apt to 
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photo-induced charges separation and transport, and to meet the potentials of 

redox reactions for producing solar fuels.  

Based on the synthesized heterojunction materials, several applications are conducted 

in the field of electricity storage, photoelectric conversion, and solar fuels conversion. 

The applications are described as follows: 

 Ti3+/TNT was used as supercapacitor electrode based on its high specific surface 

and improved conductivity. The capacitance of Ti3+/TNT (14.3 mF/cm2) is 

increased by ~14 times larger than that of pristine TNT (1.02 mF/cm2). 

Furthermore, the extra capacitance (43.4%) is contributed by surface 

morphologies control of “nano grass” on the electrode. TiN/TNT was also used 

as supercapacitor electrode, exhibiting an enhanced capacitance. Importantly, 

TiN/TNT present outstanding cycling stability with 98.5% retention of original 

specific capacitance after 2000 cycles. 

 PbS QDs/TNT, CdSe QDs/Ti3+/TNT, and PbS QDs/Au/Ti3+/TNT were used as 

photoelectrodes for measuring fundamental photoelectric characteristics. The 

enhanced photocurrents are attributed to the improvements in light absorption, 

charges generation, separation, and transport. The systematic investigations on 

these photoelectrodes may show a potential application in photo-detectors, 

photovoltaic, and photo water-splitting. 

 MoS2/CdS/TNT was applied as photocatalyst, and its photocatalytic performance 

was evaluated by converting CO2 with H2O into CH4. The H2, CO, and CH4 yields 

of MoS2/CdS/TNT are 67.4 times, 3.8 times, and 11.9 times larger than that of 

pristine TNT. This work may have the potential to provide new insights into the 

development of visible-light-driven nanocomposites as highly efficient 

photocatalysts for converting CO2 into fuels. 
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