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A solution method for one-dimensional
shallow water equations using flux limiter
centered scheme for open
Venturi channels

Prasanna Welahettige , Knut Vaagsaether and Bernt Lie

Abstract

The one-dimensional shallow water equations were modified for a Venturi contraction and expansion in a rectangular

open channel to achieve more accurate results than with the conventional one-dimensional shallow water equations.

The wall-reflection pressure–force coming from the contraction and the expansion walls was added as a new term into

the conventional shallow water equations. In the contraction region, the wall-reflection pressure–force acts opposite to

the flow direction; in the expansion region, it acts with the flow direction. The total variation diminishing scheme and the

explicit Runge–Kutta fourth-order method were used for solving the modified shallow water equations. The wall-

reflection pressure–force effect was counted in the pure advection term, and it was considered for the calculations

in each discretized cell face. The conventional shallow water equations produced an artificial flux due to the bottom

width variation in the contraction and expansion regions. The modified shallow water equations can be used for both

prismatic and nonprismatic channels. When applied to a prismatic channel, the equations become the conventional

shallow water equations. The other advantage of the modified shallow water equations is their simplicity. The simulated

results were validated with experimental results and three-dimensional computational fluid dynamics result. The mod-

ified shallow water equations well matched the experimental results in both unsteady and steady state.
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Introduction

The shallow water equations (SWEs) are used in vari-
ous applications, such as river flow, dam break, open
channel flow, etc. Compared to the 3D SWEs, 1D
SWEs have a much lower cost in time-dependent sim-
ulations.1 Kurganov et al.2 introduced a semidiscrete
central-upwind numerical scheme for solving the
Saint-Venant equations, which is suitable for use with
discontinuous bottom topographies.3 This scheme
avoids the breakdown of numerical computation
when the channel is at dry or near dry states.
Another computational difficulty is that small flow
depth leads to enormous velocity values near the dry
states.3 By accurately calculating the wall-reflection
pressure–force it is possible to prevent artificial accel-
eration of the flow.4 Spurious numerical waves

propagate when the time discretization step is too
large.5,6 The total variation diminishing (TVD)
method does not allow to increase total variation in
time.7 According to Toro,7 the centered TVD scheme
consists of a flux limiter blending of the FORCE
scheme and the Richtmyer scheme. High-resolution
schemes and flux limiters are suitable for avoiding
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phase error for monotone solutions.8 Partial differen-
tial equations can be solved by splitting them into a
hyperbolic problem and a source problem.7 In the
operator-splitting approach, the eigenvector projection
and improved approaches are used for source term
treatments.9 An open Venturi channel on the horizontal
plane gives a subcritical flow regime before the Venturi
contraction walls, and the flow regime changes from
critical to supercritical after the Venturi expansion
walls.10 As far as we know, a possibility of use
of the flux limiter centered (FLIC) scheme for solving
the 1D SWE at unsteady and steady states for nonpris-
matic channels is not available in the literature. The
paper addresses this area with some modifications
of SWE.

The underlying assumptions of 1D SWE are sum-
marized as follows: velocity is uniform in the cross-
section, water level in the cross-section is presented
as a horizontal line, vertical acceleration is negligible,
and streamline curvature is small. Therefore, pressure
can be considered to be hydrostatic pressure.11

Based on the conservation of mass and momentum,
the Saint-Venant system of the conventional SWE
can be written as12,13

@A

@t
¼ � @ Auð Þ

@x
(1)

@ðAuÞ
@t

¼ � @ Au2
� �
@x

� @ Ahð Þ
@x

gþ Agsina� AgSf

(2)

Here, A is the cross-sectional area perpendicular to
the x-direction, u is the velocity, h is the flow depth, g is
the acceleration due to gravity, a is the channel incli-
nation angle, and Sf is the friction slope.

Here, modified SWEs are developed for the Venturi
contraction and expansion for a rectangular channel.

The centered TVD scheme is used for solving the mod-

ified SWE. MATLAB R2017a was used for the 1D

simulations. The experiments were carried out in a

trapezoidal open Venturi channel. The developed

model is validated through experimental results with-

out using analytical results. The paper proceeds from

conventional SWE (“Modified 1-D SWEs for open

Venturi channel” section) to the model development

of modified SWE (“Centered TVD method for the

modified 1D SWEs”) and the implementation of the

TVD scheme for the modified SWE. The modified

equations are then compared to the conventional

SWE and validated with experimental results.

Modified 1D SWEs for open

Venturi channel

A rectangular open Venturi channel is used for

model development. The principle sketch is shown

in Figure 1. The channel has a continuous bottom

topography. In the Venturi section, the bottom width

of the channel varies in the x-direction. The walls are

perpendicular to the bottom surface. The inlet of the

channel is defined at x ¼ 0 m. The walls are stationary.

A control volume is shown in the Venturi contrac-

tion region.

Model development

Figure 2 shows a spatial and time discretized grid for

one time step, which is based on the finite volume

method.14 n is the time index, n 2 1; 2; . . . ;Nf g.
At time t ¼ n, x coordinates are discretized. j is the

node index in the spatial grid, j 2 1; 2; . . . ; lf g. We

assume that Dx is a constant for all cells. The aim of

an iteration step is to find the conserved variables at

time t ¼ nþ 1 and x ¼ j from t ¼ n variable values.

Time step is variable and is defined as Dt ¼ tnþ1 � tn.

Control Volume

Inlet

Outlet

Figure 1. Principle sketch of the open Venturi channel with a rectangular cross-section. The selected control volume is in the Venturi
contraction region. The top surface is open to the atmosphere.
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The model emphasizes the impact of contraction

and expansion walls. The control volume is in the

Venturi contraction region to consider a maximum

number of boundaries. Figure 3 shows the forces

acting on the control volume in the x-direction. The

gravitational and the bottom wall-reflection forces act

in the z-direction and are not shown. If there is a chan-

nel downward inclination, a portion of the gravitation-

al support is added in the x-direction. The height of the

control volume is equal to the flow depth, which varies

from the inlet to the outlet of the control volume.

Therefore, the inlet area (Aj) and the outlet area

(Ajþ1) are not equal. Changes in flow depth from the

inlet to the outlet are assumed to be linear at any given

time. R is the reflection pressure–force coming from the

side boundaries. This component is not included in the

conventional 1D SWE (see equation (2)). Sanders and

Iahr4 noticed that the hydrostatic force coming from the

channel walls in nonprismatic channels needs to be

treated with precision, in order to avoid an artificial
acceleration of the flow in the calculation. R acts in
the y-direction only if there are no contraction or expan-
sion regions. Therefore, the 1D conventional SWE can
be applied to prismatic channels without any issue.
Here, we assumed that the 1D conventional SWE does
not consider the pressure–force coming from the side-
walls in @ Ahð Þ

@x g. Easy numerical calculation and accurate
pressure–force calculation are the advantages of having
a separate term for the reflection pressure–force coming
from the sidewalls. The wall-reflection pressure–force is
equal to the hydrostatic pressure acting on the wall. R is
acting perpendicular to the sidewalls. According to the
assumption that the changes in flow depth from the inlet
to the outlet of the control volume are linear, we can
assume that the wall-reflection pressure–forces coming
from each of the two sidewalls of the control volume are
equal. Here, Ff is the resultant friction force from both
sidewalls and the bottom surface. b is the contraction
angle of the control volume

tanb ¼ Db
2Dx

Db ¼ bi�1
2
� biþ1

2

b is the bottom width of the channel. For a contrac-
tion and an expansion region, the sign of the Db value
becomes negative and positive, respectively. The sign of
the Db determines the sign of R. R acts opposite to the
flow direction in a contraction region and in support of
the flow direction in an expansion region.

Fundamental conservation laws are used for model
development; the temperature is assumed to be con-
stant at room temperature, and density is also assumed
to be constant. Two conservation equations are pro-
duced by applying mass and momentum balances to
the control volume. There is no difference in the mass
balance equation compared to the conventional SWE,
which is equal to equation (1). Applying the momen-
tum balance to the control volume
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Figure 2. Semidiscretized grid, spatial discretization presented with j-notations, and time discretization presented with n notations.
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Figure 3. Forces on the control volume in the x-direction,
gravitational force is not shown.
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i
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Here, m is the mass, u is the velocity, and F is the
force. The x-directional forces acting on the control
volume are pressure–force Fp, gravitational force Fg, fric-
tion force Ff, sidewall-reflection pressure–force FR; and
other external forces Fe. Assuming there are no other
external forces working on the control volume, Fe ¼ 0.

The pressure applied to the cross-section is a sum of
atmospheric pressure and hydrostatic pressure.
Atmospheric pressure is balanced from both sides of
the cell faces as well as the top and bottom surfaces.
The resultant hydrostatic pressure–force coming from
the adjacent control volumes is

Fp ¼ kg Ahð Þj�1
2
� Ahð Þjþ1

2

� �
qg

kg is the ratio between the gravity height of the cross-
sectional area to the flow depth. In this study, it is assumed
that the gravity of the flow depth is half of its total height
for a rectangular cross-sectional area. Fp is not included as
all pressure–forces apply on the control volume in the
x-direction. If the channel is a prismatic channel, Fp

includes all pressure–forces that act on the control
volume in the x-direction. Therefore, as explained above,
the wall-reflection pressure–force coming from the side-
walls needs to be considered for nonprismatic channels

FR ¼ �2Rsinb ¼ �2sinb
Z Asw; j

0

pswdA (4)

Here, Asw is the sidewall area of the control volume
(one side). psw is equal to the hydrostatic pressure
acting on the sidewall. According to the assumptions,
flow depth variation is linear from the inlet to the outlet
of the control volume; therefore, average values can be
used for the wall-reflection pressure–force and the area
of the sidewalls, respectively

FR�� 2psw; jAsw;jsinb (5)

The central differencing approach for the flow depth
of a channel with a rectangular cross-section,

hj ¼
h
jþ1

2
þh

j�1
2

2 , leads to

Asw;j ¼ hj
Dx
cosb

psw;j ¼ kghjqg

FR becomes

FR ¼ �2kgDxh
2
j qgtanb (6)

When the channel has an inclined plane, a gravita-
tional force acts with or against the flow direction. a is
the channel inclination angle. When the channel
inclines downward, a has a negative sign and the grav-
itational force acts with the direction of the flow. When
the channel inclines upward, a has a positive sign and
the gravitational force acts against the direction of the
flow. The sign of Fg is decided by a. V is the volume of
the control volume and is a function of b, h, and x at
any given time. The accurate volume calculation of the
control volume is a very important step in identifying
the different flow regimes in open nonprismatic chan-
nels.10 The friction slope Sf gives the boundary friction
force per unit weight of liquid present in the open chan-
nel.12 According to Manning’s formula, the friction
slope of the open channel can be presented as12

Sf ¼ k2M

k2nr
4=3
h; j

u2j

Here, kM is the Manning roughness factor, rh is the
hydraulic radius, and kn ¼ 1:0 m1/3 s�1 is the unit cor-
rector. For a rectangular channel, the hydraulic radius
is bh

bþ2h. By substituting momentum and force terms into
equation (3), the modified momentum balance equa-
tion can be stated as

@ Auð Þ
@t

¼ � @ Au2
� �
@x

� kg
@ Ahð Þ
@x

g

þ kgh
2g

@b

@x
þ Ag sina� Sf

� � (7)

Compared to the conventional shallow water
momentum balance equation, equation (2), the expres-
sion 2kgh

2g @b
@x is added to the new equation. The new

term is related to the wall-reflection pressure–force in
that it becomes zero when there is no contraction or
expansion in the channel (when @b

@x ¼ 0). In general, this
term is only active in contraction or expansion regions.

Free falling at the end of the channel

In the experimental setup, the channel end was open,
and the water was unhindered in flowing out of the
channel. Accordingly, in the simulation, the physics
of the last cells at the channel end needed to be mod-
ified with free falling properties. There is no friction
effect when water does not touch the walls.
Therefore, Sf ¼ 0, and a high gravitational force was
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added to the flow direction at the end of the channel.

This effect is described by angle a, and it reaches

to 70�–90�.

Centered TVD method for the modified

1D SWEs

The conservation equations are based on a rectangular

open Venturi channel. The bottom width bðxÞ is only a

function of x. The velocity, uðx; b; tÞ and the flow depth

hðx; b; tÞ are functions of x, b xð Þ; and time t. The mod-

ified SWE (equations (1) and (3)) can be stated for a

rectangular channel

@ h

@t
¼ � 1

b

@ hubð Þ
@x

(8)

@ huð Þ
@t

¼ � 1

b

@ b
huð Þ2
h

 !

@x
� 1

2b

@ bh2
� �
@x

g

þ 1

2b
h2g

@b

@x
þ hg sina� k2M

k2n

bþ 2h

bh

� �4
3 hu

h

� �2

0
B@

1
CA

(9)

In equation (9), @b
@x is approximately equal to 2tanb,

when Dx is not very small. It reduces the complexity of

hyperbolic equation solving and allows for easy com-

parison with the conventional SWE. The compact form

of the transport equations is

Ut þ 1

b
FðUÞx ¼ 1

bDx
S1 Uð Þ þ S Uð Þ (10)

Here
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h

hu

0
@

1
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0
@
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2

0
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1
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2
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2

2

0
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1
CCA;
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Db
2

0
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1
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0
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2

gu21
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1
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S Uð Þ ¼
0

hg sina� k2M
k2n

bþ 2h
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� �4=3
hu
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 !

0
BB@

1
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¼
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u1g sina� k2M
k2n
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� �4=3 u2
u1
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 !

0
BB@

1
CCA
(11)

Here, U is the column vector of the conserved varia-

bles: u1 and u2. F Uð Þ is the x-directional column vector of

the fluxes. S Uð Þ is the column vector of the source terms.

The new term, which is the wall-reflection pressure–force,

is presented as an extra source term, S1. The sidewall-

reflection pressure–force effect is part of the pure advec-

tion term. However, it is written as a source term for the

sake of easy numerical calculation. The pure advection

term (advection flux and wall-reflection effect) is solved

first with the centered TVD method. The source term is

then solved with an ordinary differential equations

(ODE) solver, the explicit Runge–Kutta fourth-order

method. The initial condition for the ODE solver is the

solution coming from the centered TVD scheme. Here,

we emphasize the solving of the TVD scheme (not the

ODE solving), because it is included in the wall-reflection

pressure–force term. The variation of the bottom width

(b) presents the channel contraction and expansion effects

numerically. The bottom-width variation effect is

highlighted in the TVD solving method used here, com-

pared to the conventional TVD solving method. The pure

advection term is solved as

Unþ1
j ¼ Un

j �
Dt
bjDx

F Uð Þnjþ1
2
� F Uð Þnj�1

2
� S1 Uð Þnj

h i
(12)

The source term is solved as

Unþ1
j ¼ Unþ1

j;TVD þ DtS Unþ1
j;TVD

� �
(13)

Here, Unþ1
j;TVD is the solution coming from the TVD

method. The FLIC scheme is used to calculate the flux

of the cell face7

FðUÞnjþ1
2
¼ FðUÞn;LO

jþ1
2

þ1jþ1
2
FðUÞn;HO

jþ1
2

� FðUÞn;LO
jþ1

2

h i
(14)

Here, HO is the high-order flux, and LO is the low-

order monotone flux. The Richtmyer scheme (RI) is used

Welahettige et al. 5



to calculate the high-order flux, and the FORCE scheme

is used to calculate the low-order flux.1 is the flux limiter

function. The high-order flux can be calculated as8

FðUÞn;HO

jþ1
2

¼ F Un;RI

jþ1
2

� �
(15)

Un;RI

jþ1
2

¼ 1

2
½Un

j þ Un
jþ1� þ

Dt
2bjþ1

2
Dx

F Un
j

� �
� F Un

jþ1

� �h i
(16)

The low-order flux is based on the

FORCE scheme7

FðUÞn;LO
jþ1

2

¼ FðUÞn;FORCE

jþ1
2

¼ 1

2
FðUÞn;LF

jþ1
2

þ F Un;RI

jþ1
2

� �h i
(17)

The Lax–Friedrichs (LF ) scheme can be pre-

sented as7

FðUÞn;LF
jþ1

2

¼ 1

2
F Un

j

� �
þ F Un

jþ1

� �h i
þ
bjþ1

2
Dx

2Dt
½Un

j � Un
jþ1�
(18)

The SUPER-BEE flux limiter (1) is used as the flux

limiter.7,15 The cell face flux depends on the value of

flow parameter r, which is the flux limiter function. The

general idea of r is that it is the ratio of upwind change

to local change. Here, a total energy-based method is

used to calculate these changes. q is defined as the total

energy per unit mass which is the sum of potential and

kinetic energies per unit mass

q ¼ 1

2
hgþ 1

2
u2 ¼ 1

2
u1gþ 1

2

u2
u1

� �2

(19)

Time step is related to wave propagation speed. Smax

is the maximum wave propagation speed. The wave

propagation speed is calculated from the Froude

number. The time step can be calculated as

Sn
max ¼ max abs uj þ

ffiffiffiffiffiffi
hjg

p� �� �
; 8 j (20)

Dt ¼ cmax Dx
Sn

max
(21)

According to the observations, Courant numbers

higher than 0.7 led to high numerical diffusions at

Dx ¼ 0:01m. A constant time step gave very diffusive

and inaccurate results; therefore, a variable time step

was used instead.

Modified versus conventional SWEs

for open Venturi channels

To compare the advantages of the modified SWE over

conventional SWE, measurements and data from the

experimental setup are used to supply the necessary

variables. The results validate the modification. In the

next section, the calculated results will further be

compared to the measured results of the experiment

as well as to the modeled results of 3D computational

fluid dynamics (CFD). A more detailed description of

the experimental setup will be given in section 6; here

we only consider the values necessary for the

calculations.
The total length of the channel is 3.7 m. The Venturi

contraction region is 2:95m < x < 3:1 m, and the

expansion region is 3:3 m < x < 3:45 m. The width

of the channel along the x-axis is given as

0 m � x � 2:95 m : b ¼ 0:2 m;

2:95 m < x < 3:1 m : b ¼ 0:2� x� 2:95

1:5
;

3:1 m � x � 3:3 m : b ¼ 0:1 m;

3:3 m < x < 3:45 m : b ¼ 0:1þ x� 3:3

1:5
;

3:45 m � x � 3:7 m : b ¼ 0:2 m

At initial conditions, the whole channel was filled

with water, and all the node points were measuring

the same flow depth and zero velocity. According to

this condition, there was no flux propagation.

However, in the contraction and expansion regions,

the conventional SWE produced a flux difference,

because of @ Ahð Þ
@x g ¼ h2g @b

@x for constant h. At constant

flow depth and zero velocity, the expression @b
@x can erro-

neously produce a flux gradient in a contraction or an

expansion region. This is because the conventional

SWE do not account for the wall-reflection pressure–

force effect. In the modified SWE, this error is avoided

by considering the wall-reflection pressure–force effect

in the pure advection term.
Figure 4 shows a comparison between conventional

SWE and modified SWE results after 0.01 s. The initial

flow depth was 100 mm in the whole channel with zero

velocity. At the contraction and expansion regions,

flow depths and velocities change considerably in the

conventional SWE. Moreover, these variations expand

with time and extend into the whole channel. This error

produces inaccurate results.

6 The Journal of Computational Multiphase Flows 0(0)



Model validation

The calculated results for the modified SWE are further

validated by experimental and 3D CFD results.

Model validation with experimental results

The open Venturi channel used for the experimental

model validation was located at University College of

Southeast Norway. Level transmitters were located

along the central axis of the channel. The transmitters

were movable along the axis. The accuracy of the

Rosemount ultrasonic 3107 level transmitters was

�2.5 mm for a measured distance of less than 1 m.10

The channel had a trapezoidal shape with a trapezoidal

angle of 70�. In modeling and simulations, a rectangu-

lar channel was used with all the other dimensions

equal to the experimental setup. All of the experimental

values presented in this paper are average values of

sensor readings taken over a period of 5 min at each

measuring point. It is possible to change the channel

inclination angle (a); negative values for a indicate a

downward inclination.
From the inlet, water was added to the channel at

the horizontal plane (a ¼ 0�) until the flow reached

quasi-steady state while the outlet was kept open.

Figures 5 and 6 show the comparison of simulated

and experimental results. The constant flow rate at

the inlet was 6.67 kg/s. Flow depth and velocity at

the inlet were constant values of, respectively, 100mm

and 0.33 m/s, which were approximately equal to the

inlet conditions of the experimental setup. The last five

computation cells had free falling properties to account

for the free falling water at the end of the channel of the

experimental setup. The wall-reflection pressure–force

coming from the Venturi contraction walls could be

clearly observed while the channel was at the horizon-

tal plane. In this condition, the gravitational force is

zero. When water collapsed onto the Venturi

contraction walls, a hydraulic jump was propagated.
The hydraulic jump travelled upstream until it reached
the inlet. With the channel at the horizontal plane, this
hydraulic jump propagation was caused only by the
wall-reflection pressure–force and friction–force
effects.10,16 According to the critical depth calculation
in Welahettige et al.,10 the average critical flow depth
before the contraction region is 48.4 mm. Figure 5
shows a dynamic situation of the flow profile. The con-
traction wall-reflection pressure–force acts opposite to
the flow direction. This is the reason for the hydraulic
jump travelling upstream. The wall-reflection pressure–
force causes the flow regime to change from supercrit-
ical flow to subcritical flow in the hydraulic jump.16

The wall-reflection pressure–force coming from the
contraction walls reduces the speed of the upstream
flow, which causes the change in the flow regime.

Figure 6 shows the quasi-steady state results, follow-
ing Figure 5. The flow depth comparison between the
simulated and the experimental results in Figure 6(a)
indicates the accuracy of the modified SWE. The mod-
ified SWE result is well matched with the experimental
results compared to the conventional SWE. The chan-
nel at the horizontal plane, the Venturi contraction can
cause a significant change in the flow regime.
According to the flux calculation in the contraction
and the expansion regions, the results from the conven-
tional SWE deviated from the experimental results at
quasi-steady state. The wall-reflection pressure–force
coming from the contraction walls changed the flow
regime from supercritical to subcritical, whole channel
section before the contraction region. The velocity
profile in Figure 6(b) can be used to explain the
wall-reflection pressure–force effect in the Venturi
expansion region. At the expansion region
(3:3 < x < 3:45 m), the velocity drastically increased
due to the wall-reflection pressure–force effect.
At the channel expansion, the wall-reflection
pressure–force effect comes in support of the flow

95

100

105

(a) (b)

0 1 2 3 4

ℎ
[m

m
]  

-axis [m]

Conven�onal
Modified

-0.2

0

0.2

0 1 2 3 4

[m
/s

]

-axis [m]

Conven�onal
Modified

Figure 4. Comparison between conventional and modified SWE with zero velocity and constant flow depth in the whole channel at
initial conditions. Results after 0.01 s: (a) flow depth along the x- axis and (b) velocity along the x- axis.
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direction, which results in increased velocity.
Before the contraction region (x < 2:95 m), the
velocity reduced compared to the expansion region.
This indicates the sign of the wall-reflection pressure–
force: at the Venturi contraction region the sign is
negative, and at the Venturi expansion region it
is positive.

Model validation with 3D CFD result

Further, the result of the modified SWE result was
compared to a CFD result.16 Three-dimensional CFD
simulations are based on the volume of fluid method.
Water and air are the materials in the fluid domain. An
artificial compression term is activated at the

0

50

100(a)

(b)

0 1 2 3 4

[m
m

]

-axis [m]

Figure 5. The hydraulic jump is moving upstream due to the wall-reflection pressure–force effect coming from the Venturi con-
traction walls, a dynamic result after 8.9 s. The arrows show the traveling direction of the hydraulic jump. The flow direction is
opposite to the direction of the arrow. (a) The simulated flow depth result along the central axis and (b) the experimental results.
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interface.17–19 Time discretization is based on the
implicit Euler method for a transient calculation.
Pressure–velocity coupling is based on the SIMPLE
scheme with a second-order upwind correction. The
standard k–emodel is used for the turbulence handling.
Wall surface roughness is used to calculate the wall
friction, which is 15 mm. The mesh contains 0.74 mil-
lion elements with a maximum cell size of 10 mm.

ANSYS Fluent 16.2 (commercial code) was used as
the simulation tool.10,16 The 3D CFD study was done
with the same experimental setup for 100 kg/min
flow rate. The quasi-steady state results are shown in
Figure 7. The modified SWE result was well matched
with the CFD result compared to the conventional
SWE. A similar flow profile was achieved by Berg
et al.20 from CFD simulation for an open Venturi
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Figure 6. Quasi-steady state results, flow rate at 400 kg/min; (a) The simulated flow depth results along the central axis, (b) the
simulated velocity results along the central axis, and (c) the experimental result.
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Figure 7. A comparison with 3D CFD result with the modified and the conventional shallow water results, quasi-steady state, the
flow rate at 100 kg/min. The CFD result is from Welahettige et al.16 CFD: computational fluid dynamics.
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channel. The error propagated in the contraction and

expansion regions caused the high deviation when

using the conventional SWE.
Figure 8 shows a flow surface for the full channel

(iso-surface of water volume fraction of 0.5) from the

3D CFD simulations,10 which is related to Figure 6(a).

The flow rate is 400 kg/min, and the channel is at a

horizontal angle. One-dimensional simulation surface

profile is well matched with the 3D CFD surface profile.

Conclusion and future work

The 1D conventional SWEs cannot be applied to a

channel with a contraction and an expansion region

(Venturi channel). Because conventional SWE neglect

the wall-reflection pressure–force effect, they are suit-

able for prismatic channels only. The modified 1D

SWEs are developed by considering the wall-

reflection pressure–force effect. The modified SWEs

can be applied to both prismatic and nonprismatic

channels, especially those with contraction and the

expansion regions.
This study will further extend into drilling fluid flow

measurement in an open Venturi channel. The non-

Newtonian properties of drilling fluid will be consid-

ered. Further, the scenario of a reflection hydraulic

jump hitting the inlet will be considered in the

future study.

Acknowledgment

The authors gratefully acknowledge the resources for experi-

ments and simulations provided by the University College of

Southeast Norway.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: Economic support from The Research Council of

Norway and Statoil ASA through project no. 255348/E30

“Sensors and models for improved kick/loss detection in dril-

ling (Semi-kidd)” is gratefully acknowledged.

ORCID iD

Prasanna Welahettige http://orcid.org/0000-0001-

7913-2724

References

1. Vreugdenhil CB. Numerical methods for shallow-water

flow. Dordrecht: Springer Netherlands, 1994.
2. Kurganov A, Noelle S, Petrova G, et al. Semidiscrete

central-upwind schemes for hyperbolic conservation

laws and Hamilton–Jacobi equations. SIAM J Sci

Comput 2001; 23: 707–740.
3. Kurganov A and Petrova G. A second-order well-bal-

anced positivity preserving central-upwind scheme for

the Saint-Venant system. Commun Math Sci 2007;

5: 133–160.
4. Sanders BF and Iahr M. High-resolution and non-

oscillatory solution of the St. Venant equations in non-

rectangular and non-prismatic channels. J Hydraul Res

2001; 39: 321–330.
5. Bermudez A and Vazquez ME. Upwind methods for

hyperbolic conservation laws with source terms.

Comput Fluids 1994; 23: 1049–1071.
6. Vázquez-Cendón ME. Improved treatment of source

terms in upwind schemes for the shallow water equations

in channels with irregular geometry. J Comput Phys 1999;

148: 497–526.
7. Toro EF. Riemann solvers and numerical methods for fluid

dynamics – a practical introduction. 3rd ed. Heidelberg:

Springer Science & Business Media, 2009.
8. LeVeque RJ. Finite volume methods for hyperbolic problems.

1st ed. Cambridge: Cambridge University Press, 2002.
9. Tseng M-H. Improved treatment of source terms in TVD

scheme for shallow water equations. Adv Water Resour

2004; 27: 617–624.
10. Welahettige P, Lie B and Vaagsaether K. Flow regime

changes at hydraulic jumps in an open Venturi channel

for Newtonian fluid. J Comput Multiphase Flows 2017; 9

(4): 169–179.
11. Aldrighetti E. Computational hydraulic techniques for the

Saint Venant equations in arbitrarily shaped geometry.

University of Trento, 2007. http://eprints.biblio.unitn.it/

1395/1/PhDTS_n.52_.pdf
12. Akan AO. Open channel hydraulics. 1st ed. Burlington:

Elsevier/BH, 2006.
13. Szymkiewicz R. Numerical modeling in open channel

hydraulics. New York: Springer, 2010.
14. Versteeg HK and Malalasekera W. An introduction to

computational fluid dynamics: the finite volume method.

2nd ed. Gosport, Hants: Pearson Education Ltd, 2007.

Figure 8. Water flow rate 400 kg/min and open channel at
horizontal position: Simulated flow surface for the full channel
(iso-surface of water volume fraction of 0.5). The flow direction
is left to right.10

10 The Journal of Computational Multiphase Flows 0(0)

http://eprints.biblio.unitn.it/1395/1/PhDTS_n.52_.pdf
http://eprints.biblio.unitn.it/1395/1/PhDTS_n.52_.pdf


15. Roe PL. Characteristic-based schemes for the Euler equa-
tions. Annu Rev Fluid Mech 1986; 18: 337–365.

16. Welahettige P, Lie B and Vaagsaether K. Computational
fluid dynamics study of flow depth in an open Venturi
channel for Newtonian fluid. In: Proceedings of the 58th

SIMS, pp.29–34. Reykjavik: Link€oping University
Electronic Press.

17. Ubbink O. Numerical prediction of two fluid systems with

sharp interfaces. PhD Thesis, University of London,
UK, 1997.

18. Rusche H. Computational fluid dynamics of dispersed two-

phase flows at high phase fractions. Exhibition Road,
London: Imperial College London (University of
London), 2003.

19. Weller HG, Tabor G, Jasak H, et al. A tensorial
approach to computational continuum mechanics using
object-oriented techniques. Comput Phys 1998;
12: 620–631.

20. Berg C, Malagalage A, Agu CE, et al. Model-based dril-
ling fluid flow rate estimation using Venturi flume. IFAC-
PapersOnLine 2015; 48: 171–176.

Welahettige et al. 11


