

University College of Southeast Norway Faculty of Technology

> Master's Thesis Process Technology Spring 2016

Nithin Bharadwaj Kummamuru

Measurement and correlation of aqueous amine solution viscosities

University College of Southeast Norway Faculty of Technology Institute of Process, Energy, and Environmental Technology PO Box 235 NO-3603 Kongsberg, Norway

http://www.usn.no

© 2016 Nithin Bharadwaj Kummamuru

This thesis is worth 30 study points

Abstract

The viscosities of amines are important in designing equipment for Carbon dioxide (CO₂) capture as it affects heat transfer coefficient, pressure drop in heat exchangers and piping system respectively. Reliable viscosity data from binary, tertiary, and quaternary systems are necessary for the development of kinetic and equilibrium models. This work discusses viscosity of selected alkanolamine systems with the aim of providing new and complementary experimental data.

Viscosities were measured by using a rheometer with a double gap measuring system, and all the measurements were performed at a constant shear rate at 4 bar throughout different temperatures. The first part of this thesis covers the viscosity for the binary system of Monoethanolamine (MEA) and 3-Amino-1-propanol (3A1P) aqueous solutions at high concentrations and ternary system of 2-Amino-2-methyl-1-propanol (AMP) + Piperazine (PZ) + Water for mass fractions 0.2/0.05, 0.3/0.05, 0.4/0.05 AMP/PZ. All the measurements were performed at temperatures between 298.15 K and 373.15 K. The second part of this thesis covers the viscosities of 50-80 Wt % MEA CO₂ loaded solutions and 30, 50 Wt % 3A1P CO₂ loaded solutions with five different CO₂ loadings from temperatures 298.15 K to 373.15 K.

All the measured viscosities were compared and found to agree with literature data to the extent available. Viscosities of these amine solutions were found to decrease with increase in temperature and increase with increase in CO_2 loadings and respective amine concentrations. In this work, data representation was also investigated by five different models for aqueous MEA, and 3A1P solutions. Two different models were used to correlate viscosity data for ternary system AMP + PZ + water. The experimental viscosities for CO_2 loaded MEA and 3A1P solutions were regressed by using two models. These are discussed in detail in the subsequent chapters. The experimental viscosities showed good agreement with regressed values of viscosities from various models. The uncertainties in measurements are also discussed.

Contents

A	Abstract		
N	omenclature	6	
0	verview of Tables and Figures	7	
P	reface	14	
1	Introduction	15	
	1.1 CO ₂ capture systems	16	
	1.2 Post-combustion capture	18	
	1.2.1 State-of-the-art Amine based technology	19	
	1.2.2 Significance of using Amines	20	
	1.2.2.1 Amines	20	
	1.2.2.2 Reaction between CO ₂ and Amine in aqueous solutions	21	
	1.2.2.3 Improvements for new solvents	22	
	1.3 Technology enhancements	23	
	1.3.1 Membrane separation system	23	
	1.3.2 Ammonia based system	24	
2	Study on past works	25	
	2.1 Monoethanolamine (MEA)	25	
	2.2 2-Amino-2-methyl-1-propanol – Piperazine (AMP-PZ)	36	
	2.3 3-Amino-1-propanol (3A1P)	38	
	2.4 Objective of present work	39	
3	Methods and Experimental Section	41	
	3.1 Chemicals	41	
	3.2 CO ₂ unloaded solution preparation method	41	
	3.2.1 Method for analysing amine concentrations	41	
	3.3 CO ₂ loaded solution preparation method	42	
	3.3.1 CO ₂ loading procedure	43	
	3.3.2 Method for analysing CO ₂ loading values	44	
	3.4 Measuring Instrument and method	45	
	3.4.1 Air check and motor adjustment	46	
	3.4.2 Selection of shear rates	46	
	3.4.3 Rheometer calibration	46	
	3.4.4 Measurement method for rheometer	46	
4	Results and Discussion	49	
	4.1 Calibration results	49	

4.2 Viscosity results for pure MEA	
4.3 Viscosity results for aqueous MEA solutions	
4.4 Viscosity results for CO ₂ loaded MEA solutions	
4.5 Viscosity results for AMP + PZ + Water	
4.6 Viscosity results for pure 3A1P	
4.7 Viscosity results for aqueous 3A1P solutions	
4.8 Viscosity results for CO ₂ loaded 3A1P solutions	
4.9 Correlations for aqueous MEA and 3A1P solutions	
4.9.1 Correlation results for aqueous MEA solutions	
4.9.2 Correlation results for aqueous 3A1P solutions	
4.10 Correlations for AMP + PZ + Water	
4.10.1Correlation results for AMP + PZ + Water	
4.11 Correlation for CO ₂ loaded solutions	
4.11.1 Correlation results for CO ₂ loaded MEA solutions	
4.11.2 Correlation results for CO ₂ loaded 3A1P solutions	
4.12 Uncertainties	110
5 Conclusion	
References	
Appendices	

Nomenclature

AAD Average Absolute Deviation		
AMP	2-amino-2-methyl-1-propanol	
BaCl ₂	Barium chloride	
BaCO ₃	Barium carbonate	
CO_2	Carbon dioxide	
DEA	Diethanolamine	
GHG	Greenhouse Gas	
Gt Giga tones		
H ₂ O	Water	
H_2S	Hydrogen Sulfide	
HCL	Hydrochloric acid	
MEA	Monoethanolamine	
MDEA	N-methyl-diethanolamine	
NaOH	Sodium hydroxide	
PZ Piperazine		
3A1P	3-amino-1-propanol	
K _L	Liquid side mass transfer coefficient value	
η	Dynamic viscosity [mPa.s]	
Κ	Kelvin	
α	CO ₂ loading value [mole CO ₂ /mole amine]	
М	Molar [mole/Liter]	
NL/min	Normal Liter/minute	
ml	Millilitres	
N_2	Nitrogen	
x _i	Mole fraction	
Wi	Mass fraction	
mNm	milliNewton meter	
Wt %	Weight percent	
Κ	Kelvin	

Overview of Tables and Figures

Table 1-1: Advantages and Disadvantages of CO2 capture systems 18
Table 1-2: Reactions of primary amines with CO2(Kohl & Nielsen, 1997)
Table 2-1: Viscosities of pure MEA at different temperatures from different literature
Table 2-2: Viscosities for 30 & 20 mass % MEA solutions from MH. Li and Lie (1994)
Table 2-3: Viscosities for aqueous MEA solutions from Lee and Lin (1995)
Table 2-4: Viscosities for 30 & 15.3 mass % MEA solutions from Song et al. (1996)
Table 2-5: Viscosities for 10 to 40 mass % MEA solutions from Weiland et al. (1998)30
Table 2-6: Viscosities for aqueous MEA solution from Kapadi et al. (2002)
Table 2-7: Viscosities for 30 mass % MEA solution from Mandal et al. (2003)
Table 2-8: Viscosities for aqueous MEA solutions from Maham et al. (2002)
Table 2-9: Viscosities for aqueous MEA from Islam et al. (2004)
Table 2-10: Viscosities for 20 to 90 mass % MEA solutions from Amundsen et al. (2009)32
Table 2-11: Viscosities for 10 to 90 Wt % MEA solutions from Arachchige et al. (2013)32
Table 2-12: Viscosities for 30 mass % MEA solution from Muraleedharan et al. (2012)32
Table 2-13: Viscosities for aqueous MEA solutions from Jiru (2013)
Table 2-14: Viscosities of 6.2 and 30 mass % MEA solutions from Hartono et al. (2014)
Table 2-15: Viscosities for carbonated 10 - 40 mass % MEA solutions from Weiland et al. (1998)33
Table 2-16: Viscosities for carbonated 20 mass % MEA solution from Amundsen et al. (2009)34
Table 2-17: Viscosities for carbonated 30 mass % MEA solution from Amundsen et al. (2009)34
Table 2-18: Viscosities for carbonated 40 mass % MEA solution from Amundsen et al. (2009)34
Table 2-19: Viscosities for carbonated 20 - 40 mass % MEA solutions from Fu et al (2012)35
Table 2-20: Viscosities for CO_2 loaded(α) 30 and 6.5 mass % MEA solutions from Hartono et al.
(2014)
Table 2-21: Viscosities for AMP + PZ + Water from Samanta and Bandyopadhyay (2006)
Table 2-22: Viscosities for AMP + PZ + Water from Paul and Mandal (2006)
Table 2-23: Viscosities for AMP + PZ + Water from Murshid et al. (2011)
Table 2-24: Viscosities for AMP + PZ + Water from Fu et al. (2014)

Table 2-25: Viscosities of pure 3A1P from different literatures.
Table 2-26: Viscosity measurements for MEA in this work.
Table 2-27: Viscosity measurements for AMP + PZ + Water in this work
Table 2-28: Viscosity measurements for 3A1P in this work. 40
Table 3-1: Amines solvents used in this work. 41
Table 3-2: Reaction equations for finding MEA concentration
Table 3-3: Reaction equations for BaCO3 titration method
Table 3-4: Experimental condition setup for temperatures below 303.15 K 47
Table 3-5: Experimental condition setup for temperatures \geq 303.15 K47
Table 4-1: Calibration results for rheometer in this work
Table 4-2: Viscosity of pure MEA from temperatures 298.15 K to 373.15 K from this work50
Table 4-3: Viscosity results for aqueous MEA solutions at 50-95 Wt % MEA from this work52
Table 4-4: AAD between MEA mole fractions from literature data to this work. 55
Table 4-5: Viscosities for 50 Wt % MEA loaded solution with 5 different CO2 loading values attemperatures 298.15 K to 373.15 K form this work
Table 4-6: Viscosities for 60 Wt % MEA loaded solution with 5 different CO2 loading values attemperatures 298.15 K to 373.15 K form this work
Table 4-7: Viscosities for 70 Wt % MEA loaded solution with 5 different CO ₂ loading values at temperatures 298.15 K to 373.15 K form this work
Table 4-8: Viscosities for 80 Wt % MEA loaded solution with 5 different CO2 loading values attemperatures 298.15K to 373.15K form this work
Table 4-9: Viscosities for AMP + PZ + Water from this work. 65
Table 4-10: Viscosity of pure 3A1P from temperatures 298.15 K to 373.15 K from this work66
Table 4-11: Viscosity results for aqueous 3A1P solutions from 30-90 Wt % 3A1P from this work68
Table 4-12: Viscosities for 50 Wt % 3A1P loaded solution with 5 different CO2 loading values attemperatures 298.15 K to 373.15 K form this work
Table 4-13: Viscosities for 30 Wt % 3A1P loaded solution with 5 different CO2 loading values attemperatures 298.15 K to 373.15 K form this work
Table 4-14: Heric-Brewer parameters at different temperatures for MEA(2)+H ₂ O(1)76

Table 4-15: Herraez model parameters at different temperatures for MEA(2)+ $H_2O(1)$ 77
Table 4-16: Second order polynomial version of Redlich-Kister model parameters at differenttemperatures for MEA(2)+H2O(1)79
Table 4-17: Regressed parameters from Jouvban-Acree model for aqueous MEA solution 80
Table 4-17. Regressed parameters from Jodyban-Acree model for aqueous MEA solution
Table 4-18: Regressed parameters for Grunberg-Nissan model for aqueous MEA solution. 81
Table 4-19: Heric-Brewer parameters at different temperatures for 3A1P(2)+H2O(1)82
Table 4-20: Herraez model parameters at different temperatures for 3A1P(2)+H2O(1) 83
Table 4-21: Second order polynomial version of Redlich-Kister model parameters at differenttemperatures for 3A1P(2)+H2O(1)
Table 4-22: Regressed parameters from Jouyban-Acree model for aqueous 3A1P solution86
Table 4-23: Regressed parameters for Grunberg-Nissan model for aqueous 3A1P solution87
Table 4-24: Regressed parameters for Andrade equation and AAD at each concentration for
AMP+PZ+H ₂ O
Table 4-25: Parameters for G_{12} , G_{23} , and G_{31} of equation 8 for AMP + PZ + H2O90
Table 4-26: Regressed parameters for modified setchnow type equation for 50 Wt % MEA loaded solution
Table 4-27: Regressed parameters for modified Hartono model for 50 Wt % MEA loaded solution.
Table 4-28: Regressed parameters for modified setchnow type equation for 60 Wt % MEA loaded solution
Table 4-29: Regressed parameters for modified Hartono model for 60 Wt % MEA loaded solution.
Table 4-30: Regressed parameters for modified setchnow type equation for 70 Wt % MEA loaded solution
Table 4-31: Regressed parameters for modified Hartono model for 70 Wt % MEA loaded solution.
Table 4-32: Regressed parameters for modified setchnow equation for 80 Wt % MEA CO2 loaded solution
Table 4-33: Regressed parameters for modified Hartono model for 80 Wt % MEA loaded solution

Table 4-34: Regressed parameters for modified setchnow equation for 50 Wt % 3A1P CO ₂ loaded
solution104
Table 4-35: Regressed parameters for modified Hartono model for 50 Wt % 3A1P loaded solution. 106
Table 4-36: Regressed parameters for modified setchnow equation for 30 Wt % 3A1P CO2 loaded solution
Table 4-37: Regressed parameters for modified Hartono model for 30 Wt % 3A1P loaded solution

Figure 1-1: Increase in CO ₂ (parts per million)levels in recent years(NASA, 2015)15
Figure 1-2: World electricity generation by fuel(IEA, 2009)
Figure 1-3: Schematic diagram of Pre-combustion capture system("PRE-COMBUSTION CO2
CAPTURE,)
Figure 1-4: Schematic diagram of Oxy-fuel combustion system.(Al-Abbas & Naser, 2013)17
Figure 1-5: Flow sheet of CO ₂ capture from Amine based solvent.(Fang & Zhu, 2012)19
Figure 1-6: Structure of amines.("Introduction, nomenclature and classification of aliphatic
amines,")
Figure 1-7: Examples of Alkanolamines and sterically hindered amine
Figure 3-1: CO ₂ loading equipment
Figure 3-2: Phase difference while loading CO ₂ into aqueous MEA solution
Figure 3-3: Anton Paar rheometer(left), assembly of pressure cell XL(right)(AntonPaar, 2006)45
Figure 3-4: Shear rate selection for different viscosity range.(AntonPaar, 2006; Zul Idris, 2015).46
Figure 4-1: Viscosity for pure MEA as a function of temperature from this work
Figure 4-2: Viscosity results for pure MEA from this work compared to data reported by other
researchers
Figure 4-3: Viscosities for aqueous MEA solutions as a function of temperature from this work. 53
Figure 4-4: Viscosities for aqueous MEA solutions as a function of MEA mole fraction from this
work53
Figure 4-5: Viscosities for aqueous MEA solutions as a function of MEA mole fraction from this
work compared to data produced by other researchers

Figure 4-6: Viscosities for CO ₂ loaded MEA solutions at 50 Wt % MEA as a function of temperature from this work
Figure 4-7: Viscosities for CO ₂ loaded MEA solutions at 50 Wt % MEA as a function of CO ₂ loading from this work
Figure 4-8: Viscosities for CO ₂ loaded MEA solutions at 60 Wt % MEA as a function of temperature from this work
Figure 4-9: Viscosities for CO ₂ loaded MEA solution at 60 Wt% MEA as a function of CO ₂ loading from this work
Figure 4-10: Viscosities for CO ₂ loaded MEA solution at 70 Wt % MEA as a function of temperature from this work
Figure 4-11: Viscosities for CO ₂ loaded MEA solution at 70 Wt % MEA as a function of CO ₂ loading from this work
Figure 4-12: Viscosities for CO ₂ loaded MEA solution at 80 wt % MEA as a function of temperature from this work
Figure 4-13: Viscosities for CO ₂ loaded MEA solution at 80 Wt % MEA as a function of CO ₂ loading from this work
Figure 4-14: Viscosities for AMP + PZ + Water as a function of temperature from this work65
Figure 4-15: Viscosity for pure 3A1P as a function of temperature from this work
Figure 4-16: Viscosity results for pure 3A1P from this work compared to data reported by other researchers
Figure 4-17: Viscosity for aqueous 3A1P solutions as a function of temperature from this work69
Figure 4-18: Viscosities for aqueous 3A1P solutions as a function of 3A1P mole fraction from this work
Figure 4-19: Viscosities for CO ₂ loaded 3A1P solution at 50 Wt % 3A1P as a function of temperature from this work
Figure 4-20: Viscosities for CO ₂ loaded 3A1P solution at 50 Wt % 3A1P as a function of CO ₂ loading from this work
Figure 4-21: Viscosities for CO ₂ loaded 3A1P solution at 30 Wt % 3A1P as a function of temperature from this work
Figure 4-22: Viscosities for CO ₂ loaded 3A1P solution at 30 Wt % 3A1P as a function of CO ₂ loading from this work

Figure 4-23: Predicted viscosities from Heric-Brewer model for MEA(2) +H ₂ O(1)76
Figure 4-24: Predicted viscosities from Herraez model for MEA(2) + $H_2O(1)$
Figure 4-25: Predicted viscosities from Redlich-Kister model for MEA(2) + $H_2O(1)$ 78
Figure 4-26: Predicted viscosities from Jouyban-Acree model for MEA(2) + $H_2O(1)$ 79
Figure 4-27: Predicted viscosities from Grunberg-Nissan model for MEA(2) + $H_2O(1)$ 80
Figure 4-28: Predicted viscosities from Heric-Brewer model for 3A1P(2)+H ₂ O(1)82
Figure 4-29: Predicted viscosities from Herraez model for 3A1P(2)+H2O(1)83
Figure 4-30: Predicted viscosities from Redlich-Kister model for 3A1P(2)+H2O(1)
Figure 4-32: Predicted viscosities from Grunberg-Nissan model for $3A1P(2) + H_2O(1)$ 86
Figure 4-33: Predicted viscosities from Andrade equation for AMP+PZ+H ₂ O88
Figure 4-34: Predicted viscosities from correlation equation 7 for AMP+PZ+H ₂ O
Figure 4-35: Predicted viscosities from modified Setchnow type equation for 50 Wt % MEA loaded olution
Figure 4-36: Predicted viscosities from modified Hartono model for 50 Wt % MEA loaded solution
Figure 4-37: Predicted viscosities from modified Setchnow type equation for 60 Wt % MEA loaded solution
Figure 4-38: Predicted viscosities from modified Hartono model for 60 Wt % MEA loaded solution
Figure 4-39: Predicted viscosities from modified Setchnow type equation for 70 Wt % MEA loaded olution
Figure 4-40: Predicted viscosities from modified Hartono model for 70 Wt % MEA loaded solution
Figure 4-41: Predicted viscosities from modified Setchnow type equation for 80 Wt % MEA loaded olution
Figure 4-42: Predicted viscosities from modified Hartono model for 80 Wt % MEA loaded solution
Figure 4-43: Predicted viscosities from modified Setchnow type equation for 50 Wt % 3A1P loaded olution

gure 4-44: Predicted viscosities from modified Hartono model for 50 Wt % 3A1P loaded solution	n.
	5
gure 4-45: Predicted viscosities from modified Setchnow type equation for 30 Wt % 3A1P loade lution	ed 7
gure 4-46: Predicted viscosities from modified Hartono model for 30 Wt % 3A1P loaded solution	n.
	3

Preface

I would like to express my gratitude towards my supervisor, Professor Dag A. Eimer for his guidance and support throughout the thesis. I have been fortunate to have a supervisor like him who has spent many years in scientific areas.

I would like to extend my gratitude towards my co-supervisor Dr Zulkifli Bin Idris, who has always been there to listen and give advice. I am deeply indebted to him for the support and guidance he gave me in performing laboratory experiments and for long technical discussions that helped me to produce better results in this work.

In particular, I would like to thank Dr Jiru Ying and Associate Professor Lars Erik Øi for the valuable suggestions they made about some of the results in this work.

I am also grateful to University College of Southeast Norway for their various forms of support during my study period.

Finally, I would like to take this opportunity to thank my parents who supported me mentally and financially to accomplish my master degree and I have to give a special mention for M. Thomas for his support.

University College of Southeast Norway, Porsgrunn

03. June. 2016

Nithin Bharadwaj Kummamuru.

1 Introduction

Global climatic change is an important issue to the environment nowadays. The global climate is changing due to greenhouse gas(GHG) emissions. These GHG emissions include carbon dioxide (CO_2), methane (CH_4), NO_x , SO_x , etc. Out of many GHG's, carbon dioxide (CO_2) is considered to be a significant GHG due to its emission quantity. They are emitted continuously into the atmosphere mainly by human activities (burning fossil fuels, deforestation) when compared to natural processes (volcanic eruptions). As per the latest measurement made by NASA, the present level of CO_2 in the atmosphere is about 402.56ppm. Figure 1-1 shows an increase in CO_2 levels in recent years.(NASA, 2015)

Figure 1-1: Increase in CO₂(parts per million)levels in recent years(NASA, 2015)

A large amount of CO_2 is emitted by electricity generation divisions. According to six SRES reports by IPCC, CO_2 emissions globally could range from 29.3 to 44.2 GtCO₂ in 2020 and 22.5 to 83.7 GtCO₂ in 2050.(Metz, 2005). Figure 1-2 shows that coal will be utilised as a primary source for electricity generation in coming years. This clearly says that there is an urgent need to employ new technologies in particular sectors for a cleaner way to use fossil fuels.(IEA, 2009).

Figure 1-2: World electricity generation by fuel(IEA, 2009)

To mitigate CO₂ emissions, researchers developed end pipe technologies known as carbon capture and storage which involves capturing, compression, transport and storage.

1.1 CO₂ capture systems

These capture systems are used to capture CO_2 from flue gas which is generated from combustion of coal/natural gas. Depending on the plant and process, there are three ways of capturing CO_2 .

- Post-combustion capture
- Oxy-fuel combustion
- Pre-combustion capture

A brief discussion of these capture systems is as follows

Post-combustion capture:

In this system, CO_2 is captured from flue gas produced by combustion of biomass and fossil fuels in the presence of air. The flue gas is passed through equipment for separation of CO_2 , instead of discharging them into the atmosphere directly. Later the separated CO_2 is stored and the flue gas is released into the atmosphere. More information on this capture system will be focused later in this chapter.

Pre-combustion capture:

In this system prior to combustion, the carbon content in the fuel is reduced and upon combustion pure CO_2 stream is produced. In pre-combustion decarbonisation, a synthesis gas (CO and H₂) is produced and subjected to water gas shift reaction to obtain hydrogen and carbon dioxide. Further, the CO_2 and H₂ are separated by physical adsorption. Thus obtained CO_2 is sent for storage and H₂ is utilised to produce electricity in a gas turbine combined cycle. Figure 1-3 shows the schematic diagram of the pre-combustion capture system.

Figure 1-3: Schematic diagram of Pre-combustion capture system("PRE-COMBUSTION CO2 CAPTURE,")

Oxy-fuel combustion:

The major drawback in post-combustion capture systems is the dilution of flue gases cause of nitrogen. This can be avoided when combustion is carried out with oxygen instead of air.

When the flue gas is combusted in the presence of pure oxygen (95% to 99%), it leads to the formation of gas consisting mainly of CO_2 .

Particularly in this capture system, the NO_x formation is very low since the oxidant has an imperceptible amount of nitrogen, but any formation of NO_x is due to the nitrogen content present in the fuel. In this system, the concentration of NO_x could be high as it is not diluted by nitrogen in the air. Thus, it is important to remove NO_x before recirculation of flue gas.

The CO₂ obtained at the downstream of the process is compressed and stored. In this capture system the efficiency of CO₂ capture is very close to 100%. It is important to remove NO_x and SO_x to obtain above mentioned percentage of CO₂. Since SO₂ and CO₂ have identical physical properties, it is suggested that SO₂ can be stored with CO₂. This is done to avoid desulphurisation unit. However storing and transporting SO₂ and CO₂ are uncertain("A VGB Report on the State of the Art," 2004). Figure 1-4 shows the schematic diagram of Oxy-fuel Combustion system.

Figure 1-4: Schematic diagram of Oxy-fuel combustion system. (Al-Abbas & Naser, 2013)

Oxy-fuel combustion systems can be used in new or existing plants by retrofitting, whereas postcombustion capture systems can be applied to power generation systems which are coal fuelled and air fired and for gasification plants pre-combustion capture is used. Advantages and disadvantages of these systems are discussed in Table 1-1.

CO ₂ capture systems	Advantages	Disadvantages
Post- combustion capture	 Can be applied to existing coal-fired power plants Additional option by retrofitting technology 	 Dilution of flue gas in CO₂ Low CO₂ partial pressure Not meeting sequestration requirements as CO₂ is produced at low pressure.
Pre- combustion capture	 Concentration of Synthesis gas in CO₂ High CO₂ partial pressure 	 Currently, some of the gasification plants are in operation, thus, can only be applicable mainly to new plants. Cost of equipment
Oxy-fuel combustion	 High levels of CO₂ in flue gas Retrofit technology option 	 Requires cooled CO₂ recycle to maintain the limits of combustion material. Which can lead to low efficiency and high auxiliary load High cost for cryogenic oxygen production.

Table 1-1: Advantages and Disadvantages of CO₂ capture systems

1.2 Post-combustion capture

As mentioned earlier, post-combustion capture involves CO_2 removal from flue gas produced by combustion of fuel. Currently, power plants use air for combustion and thus generate flue gas typically with less than 15% concentration of CO_2 , with a partial pressure of CO_2 less than 0.15atm. This shows that the driving force is low for CO_2 capture from flue gas. Although post-combustion capture has some difficulties, it has potential for decreasing GHG emissions as they can be retrofitted to present power generating units which generate 2/3rd of the carbon dioxide emissions(Metz, 2005).

Anyhow, CO_2 in flue gas depends on the fuel used. Powerful solvents are to be used to capture CO_2 due to their low concentrations and regeneration of these powerful solvents requires lot of energy, and this is, of course, a disadvantage. This problem can be eliminated if oxygen is used instead of air in the combustion of fuel, which leads to higher concentration of CO_2 . But on the other hand production of oxygen is expensive.(Davison et al., 2001).

However, the post-combustion capture system is considered to be more matured capture system because of its advantages over other capture systems.

Many process technologies for post-combustion capture are available in capturing CO₂ from flue gases and many studies have shown that the chemical absorption process by solvents is the best option under post-combustion capture(Rieme & Ormerod, 1995; "A VGB Report on the State of the Art," 2004).

1.2.1 State-of-the-art Amine based technology

Amine scrubbing technology is the most commercially efficient method in CO_2 capture and separation nowadays. In this process, CO_2 in flue gas is separated by passing through a continuous amine scrubbing system. The scrubbing system consists of an absorber and a stripper. The flue gas enters the absorber unit from the bottom and contacts with the alkaline solvent, (usually an amine-lean CO_2 solution) injected from the top. The CO_2 present in the flue gas reacts with the amine solution and forms weak salts so that the CO_2 is isolated from the flue gas. The rich CO_2 solution (CO_2 absorbed by amine solution) is passed to the stripper. Nevertheless, the rich CO_2 solution has to pass through a lean/rich solution heat exchanger before entering the stripper. Due to the chemical reactions occurring at high temperatures in the stripper, the CO_2 is regenerated. Then, the gas passing through the top of the stripper is cooled to separate vapour from CO_2 and obtained CO_2 product is compressed and stored. The amine solution regenerated at the bottom of the stripper is sent to the absorber. Figure 1-5 shows how CO_2 is captured from amine based solvent.

Figure 1-5: Flow sheet of CO₂ capture from Amine based solvent. (Fang & Zhu, 2012)

1.2.2 Significance of using Amines

Monoethanolamine (MEA) is widely used amine for CO_2 capture in amine scrubbing technology, with a recovery rate of 98% for CO_2 . However, there are certain questions regarding the rate of degradation for amine and amount of energy required for regeneration. 40% of energy requirements can be reduced by using improved solvents(amines) compared to MEA. There is considerable interest in using of new solvents which are claimed to have better absorption characteristics and desorption characteristics.

Inorganic solvents such as arsenic solvents can be used for CO_2 absorption process, but they are potent chemicals and dangerous/hazardous to animal and plant life. Other inorganic solvents such as potassium carbonate and sodium carbonate can be used, but the drawback is that they may release potassium and sodium in product gas and can lead to corrosion, erosion and can promote deposition in gas turbines. Thus, considering the advantages and disadvantages, amines are found to be more useful in all aspects of CO_2 absorption.

1.2.2.1 Amines

Amines are organic solvents which are substituted ammonia molecules.(\emptyset i, 2012) The formula for general amine is NR₁R₂R₃, where R₁, R₂, R₃ are alkyl radicals/organic group. These amines are classified into different types based on how many of the hydrogen atoms are replaced. When one hydrogen atom over nitrogen is replaced by a functional group, then they are called primary amines (represented as RNH₂). If two hydrogen atoms over nitrogen are replaced by the functional groups they are called secondary amines (represented as R₁R₂NH), similarly tertiary amines(represented as R₁R₂R₃N) are those whose three hydrogen atoms over nitrogen are replaced by the functional groups. Figure 1-6 shows the structure of amines.

Figure 1-6: Structure of amines.("Introduction, nomenclature and classification of aliphatic amines,")

An amine is called alkanolamine when an organic group consists of an OH-group. At this time most widely used primary amine solutions for CO_2 capture in chemical absorption system is the aqueous solution of monoethanolamine (MEA) because of its advantages over other alkanolamines like high

reactivity, low molecular weight, reasonable thermal stability, high absorption capacity on the weight basis, low solubility of hydrocarbons.(Liu et al., 1999).

Other than primary, secondary and tertiary amines, there is another type of amine called sterically hindered amines. These are primary or secondary amines whose amino group is attached to a tertiary carbon atom.(Sartor & Savage, 1983). As a consequence, their reaction is different from primary, secondary, and tertiary amines.

The use of sterically hindered amines has become a keen interest in post-combustion process as an absorbent because of its advantage like high absorption rates at high CO_2 loadings. Moreover sterically hindered amines have resistance to degradation and due to lower enthalpy of reactions between carbonate and bicarbonate ions the amine can be regenerated easily by heating.(Teng & Mather, 1990; Tontiwachwuthikul et al., 1991; S. Xu et al., 1991).

Figure 1-7 shows examples for alkanolamines and sterically hindered amine.

Primary alkanolamine	Secondary alkanolamine
Monoethanolamine(MEA)	Diethanolamine(DEA)
Н	C ₂ H ₄ OH
H—N—C ₂ H ₄ OH	H—N—C ₂ H ₄ OH
Tertiary alkanolamine	Sterically hindered amines
N-methyldiethanolamine (MDEA)	2-amino-2methyl-1-propanol (AMP)
C ₂ H ₄ OH	CH₃
CH ₃ — N — C ₂ H ₄ OH	
	CH ₃

Figure 1-7: Examples of Alkanolamines and sterically hindered amine

1.2.2.2 Reaction between CO₂ and Amine in aqueous solutions

Amine groups provide the needed basicity to react with the acid gases reversibly. The primary and secondary amines are capable of reacting with CO_2 and can form carbamate and possess high absorption rate, but the CO_2 loading capacities of these amines are limited to 0.5moles of CO_2 per mole of amine because of high carbamate stability and low rate of hydrolysis to bicarbonate. Whereas the tertiary amines do not form carbamate and possess less heat of absorption and desorption energy. The CO_2 loading capacities can be theoretically be achieved to 1 mole of CO_2 per mole of amine.(Kohl & Nielsen, 1997)

Sterically hindered amines form low stable carbamate as bulk carbon groups are attached to the amino group. This leads to the formation of bicarbonates, as carbamate hydrolysis takes place and produces free amines which react to more CO_2 and increases the CO_2 loading capacities to 1 mole of CO_2 per mole of amine.(Teng & Mather, 1990).

The stability of carbamate is an important factor for identifying CO_2 absorption capacity and this stability of carbamate is greatly influenced by the molecular structure of the solvent and temperature. The prime reactions between the primary amine and CO_2 are presented in Table 1-2.

Ionization of water		
$H_2 O = H^+ + O H^-$	(R - 1)	
Hydrolysis and ionization of dissolved CO ₂		
$CO_2 + H_2O = HCO_3^- + H^+$	(R - 2)	
Protonation of alkanolamine		
$RNH_2 + H^+ = RNH_3^+$	(R - 3)	
Carbamate formation		
$RNH_2 + CO_2 = RNHCOO^- + H^+$	(R - 4)	

Table 1-2: Reactions of primary amines with CO₂(Kohl & Nielsen, 1997)

All the reactions from (R-1) to (R-4) are represented for primary amines. These reactions can be applied to the secondary amines by replacing the amine formula. As discussed above for tertiary amines, reaction (R-4) is not applicable as they do not react directly with CO_2 to form carbamates.

1.2.2.3 Improvements for new solvents

Most frequently used amine solvent for CO_2 capture is monoethanolamine (MEA). However, the high vapour pressure is a disadvantage for MEA which can cause volatile emissions and formation of degradation products due to reactions between minor flue gas constituents(Liu et al., 1999).

Research is going on for better solvents than MEA in the following areas

- Low cost
- Less degradation
- High absorption and desorption rates
- High CO₂ capacity
- Less energy for regeneration.
- Improved thermal stability and reduced volatility

On the other hand, improvements on solvents are being pursued by many process developers such as Mitsubishi Heavy Industries, Cansolv Technologies and fluor etc.

Mitsubishi Heavy Industries Ltd. along with Kansai Electric Power, developed Sterically hindered amines named as KS-1, KS-2, KS-3 that features in a low solvent loss, degradation loss and less energy consumption(Metz, 2005; MIMURA et al., 2000). They claimed that KS-1 have 90% less solvent loss and degradation than MEA, and KS-3 have better solvent regeneration.

Cansolv Technologies Inc. has developed a new tertiary amine solvent DC103, which has a fast mass transfer and good chemical stability than MEA. Econamine FG Plus technology developed by Flour Daniel Inc. is an acid gas removal system which showed a reduction in energy consumption.(Freeman & Rhudy, 2007).

Besides, HTC pure energy developed solvents and claimed to have low solvent degradation rate, low corrosion rate, high carbon dioxide working capacities than MEA.(Howard Herzog, 2009). A Canadian group developed the solvents that can be used at higher amine concentrations than MEA along with higher CO₂ loading. These solvents are designated as PSR solvents.(Veawab, 2001)

1.3 Technology enhancements

Although there are many technologies for CO₂ capture, significant improvements are being made on existing technologies in novel approaches, some of them are discussed below for post-combustion capture systems.

1.3.1 Membrane separation system

In membrane separation system, CO_2 is separated from the stream by passing it through a permeable membrane. These membranes allow one component to pass through them while the other component will abide in permeate. Palladium membranes and polymeric membranes are used commonly in this system(Davison et al., 2001).

Many solvent assisted membranes are under research to obtain best results. In this approach the flue gas is made to flow through a bundle of membrane tubes and amine solution is made to flow through the bundle side. CO_2 passed through these membranes will be absorbed in the amine and impurities are blocked from the amine, thus this leads to decrease in amine loss because of the stable salt formation. This amine will be regenerated after leaving the bundle(Falk Pederson et al., 2000).

Zeolite membranes are under investigation by New Mexico Institute of Mining and Technology. These zeolite membranes are considered to be suitable because of their unique surface properties and subnanometer pores.(Zhang, 2006)

1.3.2 Ammonia based system

In this system ammonia is made to react with CO_2 for certain reactions to occur and one of the reactions include ammonia carbonate, water and CO_2 to obtain ammonium bicarbonate. When compared with amine based system, ammonia based system has some advantages like high CO_2 capacity, low cost, low degradation, but on the other hand, they are more volatile than amine based solvent like MEA.

Another system called as CAP - chilled ammonia process is under development by Alstom. Some advantages of using ammonia is they are cheap, less degradation and regeneration at high pressure leading to low compression costs and few disadvantages with this system is ammonia slip, and low temperature in absorber causing low reaction kinetics("8.1 The Alstom Chilled ammonia process,").

These new systems can provide better efficiencies if their hurdles are eliminated.

2 Study on past works

From many years, researchers have done extensive studies and experiments on CO_2 separation from flue gases. They performed several experiments on various combinations of amines to optimise the absorption process and make it easily operated by many industries. Hence in this regard, the study of the viscosity of commercially important amines at different temperatures and concentrations has been discussed.

Physical property like viscosity of amines are important in designing of equipment for CO_2 capture as it affects heat transfer coefficient, pressure drop in heat exchangers and piping system respectively. Development of kinetic and equilibrium models require viscosity data from binary, tertiary, and quaternary systems because these properties affect the liquid side mass transfer coefficient value, k_L . Hence good and reliable data is necessary.

2.1 Monoethanolamine (MEA)

Among many alkanolamines, Monoethanolamine (MEA) is considered as a benchmarking solvent for absorption of CO_2 in post-combustion capture because of its advantages over other alkanolamines. This lead many researchers to perform experiments and produce data exclusively on viscosities of CO_2 loaded and unloaded MEA solutions and some researchers reported viscosities of mixed amine systems with MEA as one of the amines.

From a detailed literature study, viscosities of pure MEA reported by different researchers are presented in Table 2-1. Viscosities of aqueous MEA solutions are shown from Tables 2-2 to 2-14 and CO_2 loaded MEA solution viscosities are presented from Tables 2-15 to 2-20.

DiGuilio et al. (1992) performed viscosity measurements exclusively on pure ethanolamines. They regressed their pure MEA viscosities by using two models and they modified the hard-sphere model of J.H.Dymond (1985) which resulted in a high deviation from experimental viscosities. M.-H. Li and Lie (1994) performed experiments on binary and ternary systems that includes MEA and correlated their viscosity data with Grunberg and Nissan model and obtained an AAD% of 1.2 and 1.1% for binary and ternary systems respectively. Lee and Lin (1995) used Haake falling-ball viscometer to measure viscosities of MEA + water, MEA + ethanol, MEA + 2-propanol and estimated their viscosity measurements to be $\pm 1.5\%$ accurate. They observed the viscosities for alcohol containing mixtures increased with increase in MEA mole fraction and correlated their viscosities (1960) model.

Song et al. (1996) used Ubbelohde type viscometer to report dynamic viscosities of MEA + water + Ethylene glycol. They regressed the viscosities of pure MEA by using the same model used by

DiGuilio et al. (1992). Weiland et al. (1998) developed new correlation model to calculate the viscosities for partially carbonated MDEA, MEA and DEA solutions but with limitations in amine concentrations, temperatures and CO_2 loadings. They observed an increase in viscosity with an increase in CO_2 loading. Although they developed another model to calculate viscosities for carbonated mixed-amine systems, it could not provide them good agreement to their experimental data.

Kapadi et al. (2002) and Maham et al. (2002) measured viscosities by Ubbelohde viscometer and calculated excess properties of aqueous ethanolamine solutions at different temperatures and mole fractions. Mandal et al. (2003) measured viscosities for aqueous blended amines of MEA + MDEA and MEA + AMP for a different temperature range. They maintained their amine concentration to 30 mass % and observed that viscosities decreased with the decrease in MDEA and AMP concentration in the mixtures. They observed 0.9% and 1% AAD between experimental data and predicted viscosities by Grunberg-Nissan model.

Islam et al. (2004) mentioned that the viscosities for their aqueous MEA solutions remained stable over MEA mole fraction 0.7, for all the temperatures they measured. Geng et al. (2008) used a solute aggregation model and a model based on the equation of state for chain-like fluids to predict the viscosity values for the binary mixture of 1-butyl-3-methylimidazolium hexaflurophosphate + MEA.

Amundsen et al. (2009) measured viscosities for partially carbonated MEA solutions and used the model developed by Weiland et al. (1998) for predicting viscosities. They found 10% maximum relative deviation in correlation results from their work and Weiland et al. (1998) work. Apart from carbonated MEA solutions, they reported viscosities for MEA + water for a full range of MEA mass % (20-90).

Muraleedharan et al. (2012) presented data for 30 mass % MEA solutions at 5 different temperatures. Fu et al. (2012) used the correlation proposed by Weiland et al. (1998) for carbonated mixed amines systems, further modified the Grunberg-Nissan model to correlate the viscosities of carbonated aqueous MDEA-MEA solutions and found both the models produced satisfactory results. They followed the same procedure mentioned by Amundsen et al. (2009) in their work for analysing CO_2 loading value in the solution.

García-Abuín et al. (2013) performed an experiment to measure the influence of N-ethyl-2pyrrolidone (NEP) in aqueous MEA solutions. They maintained NEP to 30 mass % as it is considered to be an additive. They observed an increase in viscosity with an increase in MEA concentration. Arachchige et al. (2013) and Jiru (2013) reported the viscosities for pure and aqueous MEA solutions for a wide range of temperatures and concentrations. Both of them correlated the viscosities of pure MEA with the model proposed by Weiland et al. (1998) and used T.T.Teng et al. (1994) model for predicting viscosities of aqueous MEA solutions. X.-X. Li et al. (2013) performed experiments on binary mixtures of MEA + diethylene glycol monobutyl (DEGMBE) and said that the viscosity deviations from their work are a result of the weakening of hydrogen bonds at increased temperatures.

F. Xu et al. (2014) performed viscosity measurements on two ternary systems of type MEA + 1-(2-hydroxyethyl)-3-methyl-imidazolium dicyanamide + water and 1-butyl-3-methylimidazolium + MEA + water. They maintained MEA at 30 mass % throughout the measurements at all temperatures and reported that their viscosities decreased with increase in temperatures.

Hartono et al. (2014) presented two correlation models for predicting viscosities of aqueous MEA solutions and carbonated MEA solutions. They reported that they achieved an average AARD of approximately 4% for both the solutions by using their models.

							Visco	osity(mPa	a.s)						
Temp. (K)	(DiGuilo et al., 1992)	(M-H.Li & Lie., 1994)	(Lee & Lin., 1995)	(Song et al., 1996)	(Kapadi et al., 2002)	(Maham et al., 2002)	(Mandal et al., 2003)	(Islam et al., 2004)	(Geng et al., 2008	(Amundsen et al., 2009)	(García- Abuín et al.,2013)	(Arachchi ge et al., 2013)	(Jiru 2013)	(X-X.Li et al., 2013)	(F.Xu et al., 2014)
288.15									30.77						
293.15							24.10		23.66	17.90		24.085		24.14	23.76
298.15						18.95	18.98		18.64		18.740	18.924	18.903	18.89	
303.15	14.86	15.1088	15	15.1940	15.200	14.05	15.11	14.71	15.04			15.151	15.099	14.88	14.85
308.15					11.966		12.28	11.82	11.89						
313.15	9.89	10.0209	9.94	10.0283	9.702	9.95	10.02	9.27	9.90	9.61		10.006	10.026	9.93	9.94
318.15					7.914		8.455	7.52	8.10						
323.15		6.9715	6.87	6.9463			6.972	6.21	6.98	6.72		6.962	6.991	6.89	6.98
333.15	4.99	5.0473		5.0454		5.00	5.047					5.037	5.090	4.97	5.11
343.15		3.7739		3.8050			3.779			3.69		3.775	3.789		
353.15	2.90	2.9120				2.93	2.912			2.85		2.919	2.959		
363.15												2.334			
373.15	1.85											1.914			
383.15												1.586			
393.15	1.268											1.324			
403.15												1.105			
413.15	0.918											0.934			
423.15	0.796											0.806			

Table 2-1: Viscosities of pure MEA at different temperatures from different literature.

$MEA(1) + H_2O(2)$								
Temperature	30 mass %	20 mass %	Temperature	30 mass %	20 mass %			
(K)	Viscosity(mPa.s)	Viscosity(mPa.s)	(K)	Viscosity(mPa.s)	Viscosity(mPa.s)			
303.15	2.109	1.480	333.15	1.035	0.778			
313.15	1.616	1.161	343.15	0.868	0.659			
323.15	1.277	0.936	353.15	0.732	0.577			

Table 2-2: Viscosities for 30 & 20 mass % MEA solutions from M.-H. Li and Lie (1994)

Table 2-3:

$MEA(1) + H_2O(2)$						
Mole fraction	303.15 K	313.15 K	323.15 K			
(\mathbf{x}_1)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)			
0.1	1.91	1.48	1.21			
0.2	3.87	2.84	2.15			
0.3	6.67	4.62	3.33			
0.4	9.68	6.48	4.58			
0.5	12.3	8.13	5.61			
0.6	14.0	9.26	6.35			
0.7	15.2	9.92	6.83			
0.8	15.4	10.1	6.95			
0.9	15.3	10.0	6.96			

Table 2-3: Viscosities for aqueous MEA solutions from Lee and Lin (1995)

Table 2-4:

$MEA(1) + H_2O(2)$					
Temperature(K)	30 mass %	15.3 mass %			
	Viscosity(mPa.s)	Viscosity(mPa.s)			
303.15	2.096	1.270			
313.15	1.595	1.002			
323.15	1.260	0.8163			
333.15	1.032	0.6807			
343.15	0.8560	0.5806			

Table 2-4: Viscosities for 30 & 15.3 mass % MEA solutions from Song et al. (1996)

$MEA(1) + H_2O(2)$						
Temperature(K)	10 mass %	20 mass %	30 mass %	40 mass %		
	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)		
298.15	1.77	1.72	2.52	3.41		

Table 2-5: Viscosities for 10 to 40 mass % MEA solutions from Weiland et al. (1998)

Table 2-6:

$MEA(1) + H_2O(2)$						
Mole fraction	303.15 K	308.15 K	313.15 K	318.15 K		
(\mathbf{x}_1)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)		
0.1122	2.062	1.780	1.573	1.373		
0.2278	4.543	3.788	3.228	2.732		
0.3067	6.862	5.579	4.673	3.886		
0.4076	9.966	7.974	6.564	5.389		
0.5412	13.275	10.502	8.588	6.936		
0.6257	14.592	11.518	9.367	7.567		
0.7264	15.408	12.095	9.850	7.970		
0.8486	15.638	12.374	10.002	8.127		

Table 2-6: Viscosities for aqueous MEA solution from Kapadi et al. (2002)

Table 2-7:

$MEA(1) + H_2O(2)$					
Temperature(K)	30 mass %				
	Viscosity(mPa.s)				
293.15	2.63				
298.15	2.20				
303.15	2.10				
308.15	1.85				
313.15	1.60				
318.15	1.50				
323.15	1.29				

Table 2-7: Viscosities for 30 mass % MEA solution from Mandal et al. (2003)

Table 2-8:

$MEA(1) + H_2O(2)$								
Mole	298.15 K	303.15 K	313.15 K	333.15 K	353.15 K			
fraction (x ₁)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)			
0.0313	1.246	1.088	0.871	0.609	0.451			
0.0674	1.750	1.490	1.165	0.795	0.574			
0.1102	2.554	2.099	1.596	1.041	0.735			
0.1626	3.786	3.086	2.276	1.402	0.941			
0.2322	5.801	4.829	3.473	1.971	1.259			
0.3032	8.459	6.924	4.745	2.580	1.588			
0.4194	13.04	10.48	7.014	3.622	2.160			
0.4653	14.71	11.80	7.818	3.885	2.320			
0.5382	16.83	13.39	8.808	4.407	2.543			
0.6220	17.92	14.21	9.592	4.744	2.708			
0.7228	19.19	15.28	10.32	5.088	2.896			
0.8446	19.46	15.30	10.46	5.056	2.960			

Table 2-8: Viscosities for aqueous MEA solutions from Maham et al. (2002)

Table 2-9:

$MEA(1) + H_2O(2)$								
Mole	303.15 K	308.15 K	313.15 K	318.15 K	323.15 K			
fraction (x_1)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)			
0.72956	14.56±0.04	11.62±0.04	9.26±0.03	7.57±0.03	6.06±0.02			
0.54516	12.42±0.04	9.75±0.03	7.82±0.03	6.53±0.02	5.24±0.02			
0.41156	9.25±0.03	7.30±0.02	5.88±0.02	4.92±0.02	3.95±0.02			
0.31016	6.27±0.02	5.23±0.02	4.23±0.02	3.51±0.02	2.925±0.009			
0.23057	4.28±0.02	3.61±0.01	2.932±0.009	2.472±0.008	2.125±0.007			
0.16658	2.930±0.008	2.513±0.008	2.085±0.007	1.786±0.006	1.553±0.005			
0.11378	2.041±0.006	1.784±0.006	1.536±0.005	1.345±0.005	1.173±0.004			
0.06969	1.448±0.005	1.282±0.004	1.149±0.004	1.010±0.004	0.907 ± 0.004			
0.03219	1.081±0.004	0.962±0.004	0.865±0.003	0.779±0.003	0.703±0.003			

Table 2-9: Viscosities for aqueous MEA from Islam et al. (2004)

	$MEA(1) + H_2O(2)$								
Temp.	20 mass %	30 mass %	40 mass %	50 mass %	70 mass %	90 mass %			
(K)	η(mPa.s)	η(mPa.s)	η(mPa.s)	η(mPa.s)	η(mPa.s)	η(mPa.s)			
298.15	1.70	2.48	3.58	5.51	12.46	19.40			
313.15	1.18	1.67	2.28	3.39	6.96	10.20			
323.15	0.95	1.33	1.75	2.54	4.94	7.06			
343.15	0.67	0.92	1.14	1.57	2.79	3.81			
353.15	0.58	0.77	0.95	1.28	2.18	2.93			

Table 2-10: Viscosities for 20 to 90 mass % MEA solutions from Amundsen et al. (2009)

Table 2-11:

Temperature		$MEA(1) + H_2O(2)$									
(K)		Viscosity(mPa.s)									
(IX)	10 Wt%	20 Wt%	30 Wt%	40 Wt%	50 Wt%	60 Wt%	70 Wt%	80 Wt%	90 Wt%		
293.15	1.442	2.005	2.990	4.667	7.345	11.295	15.774	21.003	24.023		
298.15	1.299	1.702	2.489	3.765	5.547	9.062	12.602	16.290	19.904		
303.15	1.121	1.501	2.195	3.279	4.960	7.417	10.313	13.148	15.200		
313.15	0.909	1.169	1.671	2.311	3.423	5.291	7.024	8.950	10.220		
323.15	0.715	0.945	1.338	1.782	2.566	3.771	5.055	6.273	7.090		
333.15	0.626	0.775	1.065	1.434	2.041	2.973	3.757	4.585	5.110		
343.15	0.520	0.671	0.903	1.168	1.594	2.243	2.854	3.449	3.830		
353.15	0.449	0.589	0.779	0.977	1.291	1.774	2.226	2.676	2.936		

Table 2-11: Viscosities for 10 to 90 Wt % MEA solutions from Arachchige et al. (2013)

Table 2-12:

$MEA(1) + H_2O(2)$						
Temperature(K)	30 mass %					
	Viscosity(mPa.s)					
293	2.77					
303	2.04					
313	1.57					
323	1.22					
333	0.98					

Table 2-12: Viscosities for 30 mass % MEA solution from Muraleedharan et al. (2012)

Table 2-13:

С	$MEA(1) + H_2O(2)$									
(mol/L)	Viscosity(mPa.s)									
(11101/12)	298.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K	353.15 K			
0.5	0.980	0.871	0.715	0.598	0.508	0.438	0.386			
3	1.591	1.392	1.093	0.884	0.733	0.616	0.532			
5	2.673	2.280	1.744	1.356	1.091	0.888	0.733			
8	5.155	4.299	3.110	2.328	1.800	1.411	1.137			
10	9.342	7.577	5.226	3.777	2.836	2.196	1.744			
12	13.972	11.005	7.500	5.243	3.817	2.867	2.186			
14	18.502	14.623	9.577	6.569	4.732	3.494	2.718			

Table 2-13: Viscosities for aqueous MEA solutions from Jiru (2013)

Table 2-14:

$MEA(1) + H_2O(2)$										
Temperature	6.2 mass %	30 mass %	Temperature	6.2 mass %	30 mass %					
(K)	Viscosity(mPa.s)	Viscosity(mPa.s)	(K)	Viscosity(mPa.s)	Viscosity(mPa.s)					
293.15	1.228	2.874 - 2.879	323.15	0.668	1.305 - 1.318					
298.15		2.450 - 2.457	333.15	0.560	1.055 - 1.067					
303.15	0.960	2.133 - 2.130	343.15	-	0.878 - 0.874					
313.15	0.790	1.628 - 1.638	353.15	-	0.742 - 0.740					

Table 2-14: Viscosities of 6.2 and 30 mass % MEA solutions from Hartono et al. (2014)

Table 2-15:

$MEA(1) + H_2O(2) + CO_2(3)$									
CO_2 loading (α)	10 mass %	20 mass %	20 mass % 30 mass %						
	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)					
0.1	1.80	1.83	2.72	3.76					
0.2	1.83	1.90	2.92	4.30					
0.3	1.87	1.98	3.21	4.97					
0.4	1.92	2.12	3.51	5.90					
0.5	1.93	2.22	3.82	6.73					

Table 2-15: Viscosities for carbonated 10 - 40 mass % MEA solutions from Weiland et al. (1998)

$MEA(1) + H_2O(2) + CO_2(3)$											
	20 mass % MEA										
CO ₂	298.15 K 313.15 K 323.15 K 343.15 K 353.15 K										
loading	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)						
0.1	1.8	1.3	1.0	0.7	0.6						
0.2	1.9	1.3	1.0	0.7	0.6						
0.3	1.9	1.3	1.1	0.8	0.7						
0.4	2.1	1.4	1.2	0.8	0.7						
0.5	2.2	1.6	1.3	0.9	0.8						

Table 2-16: Viscosities for carbonated 20 mass % MEA solution from Amundsen et al. (2009)

<u>Table2-17</u>:

$MEA(1) + H_2O(2) + CO_2(3)$											
	30 mass % MEA										
CO_2	298.15 K 313.15 K 323.15 K 343.15 K 353.15 K										
loading	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)						
0.1	2.6	1.7	1.4	0.9	0.8						
0.2	2.9	2.0	1.6	1.1	0.9						
0.3	3.1	2.0	1.6	1.1	0.9						
0.4	3.5	2.4	1.9	1.3	1.1						
0.5	3.9	2.7	2.1	1.5	1.3						

Table 2-17: Viscosities for carbonated 30 mass % MEA solution from Amundsen et al. (2009)

Table 2-18:

$MEA(1) + H_2O(2) + CO_2(3)$											
	40 mass % MEA										
CO ₂	298.15 K 313.15 K 323.15 K 343.15 K 353.15 K										
loading	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)						
0.1	4.0	2.5	2.0	1.3	1.1						
0.2	4.6	3.0	2.3	1.5	1.3						
0.3	5.1	3.3	2.6	1.7	1.4						
0.4	6.0	4.0	3.1	2.0	1.7						
0.5	7.0	4.6	3.8	2.3	1.9						

Table 2-18: Viscosities for carbonated 40 mass % MEA solution from Amundsen et al. (2009)

Table 2-19:

$MEA(1) + H_2O(2) + CO_2(3)$									
CO_2 loading (α)	298.15 K								
	20mass%	30mass%	40mass%						
	Viscosity(mPa.s)	Viscosity(mPa.s)	Viscosity(mPa.s)						
0.1	1.72	2.51	3.88						
0.2	1.88	2.82	4.69						
0.3	1.95	3.18	5.17						
0.4	2.14	3.44	5.89						
0.5	2.26	3.97	6.93						

Table 2-19: Viscosities for carbonated 20 - 40 mass % MEA solutions from Fu et al (2012)

Table 2-20:

$MEA(1) + H_2O(2) + CO_2(3)$								
	6.2 mass %							
Temperature	(α) - 0.11	(α) - 0.19	(α) - 0.29 (α) - 0.39		(α) - 0.50	(α) - 0.36	(α) - 0.48	
(K)	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	Viscosity	
	(mPa.s)	(mPa.s)	(mPa.s)	(mPa.s)	(mPa.s)	(mPa.s)	(mPa.s)	
293.15	3.112	3.309	3.597	3.899	4.251	1.236	1.286	
	3.107	3.291	3.581	3.872	4.250			
298.15	2.662	2.820	3.086	3.339	3.663			
	2.648	2.816	3.077	3.321	3.665			
303.15	2.290	2.425	2.702	2.887	3.184	0.975	1.016	
	2.284	2.420	2.696	2.886	3.183			
313.15	1.765	1.875	2.101	2.246	2.470	0.799	0.822	
	1.757	1.874	2.100	2.230	2.452			
323.15	1.405	1.486	1.669	1.804	1.988	0.669	0.697	
	1.400	1.482	1.668	1.800	1.999			
333.15	1.148	1.235	1.369	1.492	1.630	0.560	0.581	
	1.148	1.224	1.366	1.487	1.635			
343.15	0.967	1.031	1.144	1.262	1.343			
	0.962	1.027	1.154	1.255	1.351			
353.15	0.818	0.879	0.987	1.075	1.143			
	0.816	0.873	0.986	1.071	1.136			

Table 2-20: Viscosities for CO_2 loaded(α) 30 and 6.5 mass % MEA solutions from Hartono et al. (2014)

2.2 2-Amino-2-methyl-1-propanol - Piperazine (AMP-PZ)

Sterically hindered amine like 2-Amino-2-methyl-1-propanol (AMP) has also been suggested as an attractive solvent for CO_2 removal. Moreover, data has been reported by researchers showing that addition of promoters like Piperazine (PZ) in AMP significantly increased the absorption of CO_2 . From a detailed literature study, viscosities of the ternary system AMP + PZ + Water reported by different researchers are presented in Tables 2-21 to 2-24.

Samanta and Bandyopadhyay (2006), Paul and Mandal (2006) used Ostwald viscometer for measuring the viscosities of AMP + PZ + Water. They maintained the total amine concentration to 30 mass % and reported that the viscosities decreased with the decrease in PZ concentration in the solution. Samanta and Bandyopadhyay (2006) correlated their experimental viscosities with a new model and proposed that the coefficients in their model are temperature dependent. Whereas Paul and Mandal (2006) developed a new model and predicted the viscosities as a function of amine concentration and temperature. Both of them reported that their models showed good agreement with their experimental viscosities.

Murshid et al. (2011) used Ubbelohde viscometer to measure the viscosities of their ternary system AMP + PZ + Water; they also maintained their amine concentration to 30 mass % in the solution and observed that the viscosities increased with an increase in PZ concentration. They correlated their experimental data with the model that is more commonly referred as Andrade (1930) model. Fu et al. (2014) used the model proposed by Weiland et al. (1998) to predict the viscosities of their carbonated AMP-PZ solutions and had a maximum amine concentrating of 40 mass %. They stated that the model could correlate their experimental viscosities with a relative deviation of 9.74% and observed that viscosities of the solution increased with an increase in CO_2 loading.

$PZ(1) + AMP(2) + H_2O(3)$										
	298 K	303 K	308 K	313 K	318 K	323 K	328 K	333 K		
$100(w_2/w_1)$	Viscosity									
	(mPa.s)									
28/2	3.737	3.005	2.524	2.060	1.752	1.475	1.276	1.099		
25/5	3.879	3.123	2.591	2.119	1.795	1.501	1.309	1.126		
22/8	4.063	3.312	2.708	2.235	1.838	1.556	1.363	1.175		

Table 2-21:

Table 2-21: Viscosities for AMP + PZ + Water from Samanta and Bandyopadhyay (2006)
$PZ(1) + AMP(2) + H_2O(3)$										
	288 K	293 K	298 K	303 K	308 K	313 K	318 K	323 K	328 K	333 K
$100(w_2/w_1)$	η	η	η	η	η	η	η	η	η	η
	(mPa.s)									
3/27	5.398	4.499	3.752	3.042	2.557	2.088	1.776	1.497	1.296	1.117
6/24	5.475	4.674	3.892	3.182	2.626	2.227	1.886	1.596	1.342	1.147
9/21	5.654	4.665	4.065	3.327	2.749	2.344	2.077	1.762	1.541	1.343
12/18	5.871	4.823	4.105	3.409	2.817	2.444	2.166	1.957	1.753	1.562

Table 2-22: Viscosities for AMP + PZ + Water from Paul and Mandal (2006)

Table 2-23:

$PZ(1) + AMP(2) + H_2O(3)$								
	298.15 K	303.15 K	308.15 K	313.15 K	318.15 K	323.15 K	328.15 K	333.15 K
$100(w_2/w_1)$	η (mPa.s)							
28.26/1.74	3.24	2.74	2.31	1.96	1.65	1.42	1.29	1.16
26.55/3.45	3.33	2.75	2.33	2.01	1.75	1.51	1.35	1.18
23.12/6.88	3.46	2.89	2.42	2.07	1.80	1.57	1.36	1.23
19.65/10.35	4.12	3.68	3.25	2.89	2.55	2.19	1.88	1.61

Table 2-23: Viscosities for AMP + PZ + Water from Murshid et al. (2011)

Table 2-24:

	$PZ(1) + AMP(2) + H_2O(3)$								
	298.15 K	303.15K	313.15K	323.15K		298.15K	303.15K	313.15K	323.15K
$\frac{w^2}{w^1}$	η	η	η	η	$\frac{w^2}{w^1}$	η	η	η	η
	(mPa.s)	(mPa.s)	(mPa.s)	(mPa.s)		(mPa.s)	(mPa.s)	(mPa.s)	(mPa.s)
0.25	3.92	3.31	2.43	1.87	0.20	3.93	3.47	2.50	1.99
0.05					0.10				
0.30	4.83	4.01	3.18	2.75	0.25	5.38	4.73	3.82	3.08
0.05					0.10				
0.35	6.08	5.14	4.22	3.35	0.30	7.31	6.54	5.21	3.96
0.05					0.10				

Table 2-24: Viscosities for AMP + PZ + Water from Fu et al. (2014)

2.3 3-Amino-1-propanol (3A1P)

3-Amino-1-propanol is another important amine used for removal of acid components like CO_2 and H_2S from gas streams and also used as an ice crystallisation inhibitor (Cacela et al., 2003). The available data reported by few researchers on viscosities of pure 3A1P are presented in Table 2-25.

Omrani et al. (2010) examined the viscosity and other physical properties for a binary system that contains 3A1P and cyclic ethers like 1,4-dioxane as these type of mixtures are necessary for designing industrial process and for a better understanding of molecular interactions. From their results, one can observe that viscosities of the solution decreased with the decrease in 3A1P mole fraction. Kermanpour and Niakan (2012) preformed viscosity and density measurements on binary mixtures of 3A1P and 1-hexyl-3-methylimidazoliumtetrafluoro borate (Ionic liquid) to investigate the excess thermodynamic properties between ionic liquids and 3A1P.

Kermanpour et al. (2013) performed density and viscosity experiments on 3A1P + 1-propanol to observe the effect of chemical interactions in the mixture. They stated that the increase in temperature weakened the attractive interactions in a binary system of 3A1P + 1-propanol (alkanol), which lead to the decrease in viscosity of the mixture.

Temperature(K)	Viscosity(mPa.s)					
remperature(ix)	(Omrani et al.,2010)	(Kermanpour & Niakan,2012)	(Kermanpour et al.,2013)			
293.15			40.456			
298.15	30.4338					
303.15	24.1204	23.868	23.981			
308.15	18.9809	19.071				
313.15		15.266	15.312			
318.15		12.355				
323.15		10.219	10.221			
328.15		8.535				
333.15		7.123	6.962			
338.15		6.045				

Table 2-25:

Table 2-25: Viscosities of pure 3A1P from different literatures.

2.4 Objective of present work

A lot of research has been focused on viscosities of MEA as it is considered to be a benchmarking solvent. Extensive studies on aqueous MEA solution viscosities have been performed and well documented. However, from past works it is found that there is no reported data on CO_2 loaded MEA solution viscosities till date at high MEA concentrations and temperatures. Similarly, the viscosity data for AMP + PZ + Water is available only at limited temperatures and limited AMP concentration in solutions and the available data is also well documented. The available literature for viscosities of pure 3A1P is scarce and no data was found for CO_2 loaded and unloaded 3A1P solution viscosities.

Therefore, the main purpose of this work is to measure the viscosities of CO_2 loaded and unloaded MEA aqueous solutions at high concentrations and temperatures to cover the gap and extend the range of available data. Similarly, to measure the viscosities of ternary system AMP + PZ + Water at higher temperatures with increased AMP concentrations and to produce viscosity data for CO_2 loaded and unloaded 3A1P solutions. Carbonated AMP + PZ + Water solutions will not be measured due to time constraints.

All the measured viscosities will be compared with literature data to the extent available and different models will be used for correlating experimental viscosities. The experimental data from this work will be submitted to an International Journal in coming months. More details on the present work are shown in Tables 2-26, 2-27, and 2-28.

Solution type	MEA concentration (Wt %)	CO2 loading (mole CO2/mole MEA)	Temperature range (K)
MEA	100	-	298.15 - 373.15
$MEA + H_2O$	50, 60, 70, 80, 85, 90, 95	-	298.15 - 373.15
$MEA + H_2O + CO_2$	50	0.52, 0.46, 0.34, 0.23, 0.14	298.15 - 373.15
$MEA + H_2O + CO_2$	60	0.54, 0.39, 0.24, 0.16, 0.08	298.15 - 373.15
$MEA + H_2O + CO_2$	70	0.51, 0.39, 0.32, 0.25, 0.12	298.15 - 373.15
$MEA + H_2O + CO_2$	80	0.51, 0.38, 0.33, 0.24, 0.12	298.15 - 373.15

Table 2-26:

Table 2-26: Viscosity measurements for MEA in this work.

Temperature interval in Table 2-27 is 5 K

Solution type	Mass fractions of AMP(W ₁) and PZ(W ₂) (W ₁ /W ₂)	Temperature range (K)
$AMP + PZ + H_2O$	0.2/0.05, 0.3/0.05, 0.4/0.05, 0.5/0.05	303.15 - 373.15

Table 2-27: Viscosity measurements for AMP + *PZ* + *Water in this work.*

Temperature interval in Table 2-27 is 10 K

Table 2-28:

Solution type	MEA concentration	CO ₂ loading	Temperature
	(Wt %)	(mole CO ₂ /mole 3A1P)	range (K)
3A1P	100	-	298.15 - 373.15
$3A1P + H_2O$	30, 40, 50, 60, 70, 90	-	298.15 - 373.15
$3A1P + H_2O + CO_2$	30	0.54, 0.44, 0.34, 0.25, 0.13	298.15 - 373.15
$3A1P + H_2O + CO_2$	50	0.52, 0.42, 0.32, 0.24, 0.13	298.15 - 373.15

Table 2-28: Viscosity measurements for 3A1P in this work.

Temperature interval in Table 2-28 is 5 K

3 Methods and Experimental Section

This chapter describes how CO₂ loaded and CO₂ unloaded amine solutions were prepared and the viscosity measurement methods.

3.1 Chemicals

The amine solvents selected for viscosity measurements in this work are shown in Table 3-1, and all of them were used without any further purification. Material safety and data sheets for these amine solvents are presented in Appendix 2.

Chemical	CAS No.	Manufacturer	Purity	Molecular weight	Molecular formula
MEA	141-43-5	Sigma Aldrich	≥99.5%	61.08	C ₂ H ₇ NO
AMP	124-68-5	Sigma Aldrich	≥90%	89.14	C ₄ H ₁₁ NO
PZ	110-85-0	Sigma Aldrich	≥98.5%	86.14	$C_4H_{10}N_2$
3A1P	156-87-6	Sigma Aldrich	≥98.5%	75.11	C ₃ H ₉ NO

Table 3-1: Amines solvents used in this work.

3.2 CO₂ unloaded solution preparation method

The aqueous solutions of MEA and 3A1P, AMP + PZ + Water were prepared by mixing the required amount of respective amine with degassed deionized water. It is to be noted that MEA, 3A1P and AMP were also degassed before mixing. Solutions at different concentrations were prepared by weighing them in an analytical balance (Mettler Toledo XS-403S) having an accuracy of $\pm 0.001g$. The amine concentrations used in this work are given below.

Concentrations for aqueous MEA solutions:	50, 60, 70, 80, 85, 90, 95 Wt % MEA
Concentrations for AMP + PZ + Water :	20/5, 30/5, 40/5, 50/5 Wt % AMP/PZ
Concentrations for aqueous 3A1P solutions:	30, 40, 50, 60, 70, 90 Wt % 3A1P

3.2.1 Method for analysing amine concentrations

This method is used only for finding amine concentrations in binary systems such as aqueous MEA and 3A1P solutions. For ternary systems, concentrations of amines are found through regular sample preparation method.

The actual concentration of amine in aqueous amine solutions was analysed by titrating with 1M HCL. Where 1-2g of aqueous amine solution is mixed with 100ml of deionized water and titrated with 1M HCL to an equivalence point and the consumed volume of 1M HCL is used to calculate the concentration of amine in the aqueous amine solution. The titrator employed in this work was Metrohm-905 titrando.

From this method, it was found that there was a negligible difference in mass fractions from the regular sample preparation method. See Appendix 3 for step-by-step titration procedure and calculations.

An example for reaction equation is presented in Table 3-2.

 $NH_2(CH_2)_2OH + H_2O \to H^+ N(CH_2)_2OH + OH^-$ (R - 5) $OH^- + HCl \to H_2O + Cl^-$ (R - 6)

Table 3-2: Reaction equations for finding MEA concentration

3.3 CO₂ loaded solution preparation method

CO₂ loaded MEA and 3A1P solutions were prepared by bubbling CO₂ through the aqueous MEA and aqueous 3A1P solutions.

Concentrations for CO₂ loaded MEA solutions: 50, 60, 70, 80 Wt % MEA

CO2 loading values: 50 Wt % - 0.52, 0.46, 0.34, 0.23, 0.14 mole of CO2/mole MEA

60 Wt % - 0.54, 0.39, 0.24, 0.16, 0.08 mole of CO₂/mole MEA

70 Wt % - 0.51, 0.39, 0.32, 0.25, 0.12 mole of CO₂/mole MEA

80 Wt % - 0.51, 0.38, 0.33, 0.24, 0.12 mole of CO_2 /mole MEA

Concentrations for CO2 loaded 3A1P solutions: 30 and 50 Wt % 3A1P

CO2 loading values: 30 Wt % - 0.54, 0.44, 0.34, 0.25, 0.13 mole of CO2/mole 3A1P

50 Wt % - 0.52, 0.42, 0.32, 0.24, 0.13 mole of CO₂/mole 3A1P

3.3.1 CO₂ loading procedure

The equipment used for loading CO₂ in aqueous MEA and 3A1P solutions is shown in Figure 3-1

Figure 3-1: CO₂ loading equipment

 CO_2 enters the glass column through a sinter. A mass flow controller controls the mass flow (usually 0.15NL/min in this work) of CO_2 . The glass column is filled with required amount of aqueous amine solution. Bubbling is observed in the glass column when the aqueous amine solution is saturated with CO_2 . After few minutes of bubbling, a phase difference can be seen at the bottom of the glass column. As the reaction between CO_2 and amine is exothermic, the temperature will be high at this phase difference.

As the phase difference starts to move up in the column, the temperatures gradually decrease and change in viscosity of the solution can be observed. Figure 3-2 shows the phase difference while loading CO_2 in aqueous MEA solution.

To obtain a particular loading value, CO_2 has to be loaded into the solution for the specific amount of time and mass flow rate. Increase or decrease in loading time may change the loading value. These time calculations are given in Appendix 4.

Figure 3-2: Phase difference while loading CO₂ into aqueous MEA solution

Preparation of different loadings for various MEA and 3A1P concentrations:

Large volumes of 50, 60, 70, 80 Wt % MEA and 30, 50 Wt % 3A1P aqueous solutions were initially loaded with high (0.5mole CO₂/mole MEA) CO₂ loading value. Later the aqueous amine (MEA and 3A1P) solution and high CO₂ loaded solutions of same concentrations were mixed to produce different sets of samples with different CO₂ loading values. A general dilution method is employed for mixing.

3.3.2 Method for analysing CO₂ loading values

 CO_2 loading values in the loaded amine solutions were analysed by titration of Barium carbonate (BaCO₃) precipitate with Hydrochloric acid solution (HCL) and Sodium hydroxide solution (NaOH). This was the method previously used by Amundsen et al. (2009) and Zulkifli Idris and Eimer (2016). The titrator employed in this work was Metrohm-905 titrando.

In this approach 0.2g to 0.5g of loaded amine solution is mixed with 50ml of 0.1M NaOH (NaOH captures CO_2 in the solution) and 0.3M BaCl₂ and this mixture is boiled for 5 min, later cooled in a water bath and then filtrated. The obtained BaCO₃ filter cake is then added to 100ml of deionised water and titrated with 0.1M HCL until the pH value reaches 2. While titrating with 0.1M HCL, all the BaCO₃ precipitate will get dissolved and the solution becomes transparent. After titration with 0.1M HCL, the sample is boiled again for 5 min to remove CO_2 from the solution and later cooled in a water bath.

Now the sample contains only Bacl₂, unreacted HCL, and water. This unreacted (excess) HCL is titrated with 0.1M NaOH until the pH value reaches 7.

Weight of the sample, consumed volume of 0.1M HCL and volume of 0.1M NaOH for this acid/base titration are used for calculating loading values. Reaction equations for this method are showed in Table 3.3. See Appendix 3 for step-by-step titration procedure and calculation methods.

Loading	
$Ba^{2+} + CO_2 + 2OH^- \rightarrow BaCO_3 + H_2O$	(R - 7)
$BaCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 + H_2O$	(R - 8)
Titrations of excess HCL with NaOH	
$HCl + NaOH \rightarrow NaCl + H_2O$	(R - 9)

Table 3-3: Reaction equations for BaCO₃ titration method

3.4 Measuring Instrument and method

All the viscosities in this work were measured using Anton Paar rheometer (MCR 101) with a double gap measuring system, and the operating pressure was maintained at 4 bar continuously over the temperature range.

Figure 3-3: Anton Paar rheometer(left), assembly of pressure cell XL(right)(AntonPaar, 2006)

3.4.1 Air check and motor adjustment

Air check and motor adjustment tests for rheometer were performed every day before measuring viscosity of the sample. Bearings for the pressure head were changed based on the obtained air check and motor adjustment results as these results indicate the wearing, tearing, and alignment of bearings. See Appendix 5 for detailed air check, motor adjustment and bearing change procedure.

3.4.2 Selection of shear rates

Viscosities in this work were measured at constant shear rates, and these constant shear rates were selected based on the measuring system and the range of expected viscosity values. This selection criterion is obtained from Figure 3-4, where DG35.12/XL/Pr(green box) is the valid measuring system for this work.

Figure 3-4: Shear rate selection for different viscosity range. (AntonPaar, 2006; Zul Idris, 2015)

3.4.3 Rheometer calibration

The rheometer was calibrated by using ISO17025/ISO guide 34 certified reference standard solution of type S3S, purchased from Paragon Scientific Ltd.

The reference viscosity values at certain temperatures that were not provided by the Paragon Scientific Ltd. were estimated by linear interpolation. The difference in measured viscosities from given reference viscosities and linearly interpolated viscosities at respective temperatures were analysed and later measured viscosities were corrected. Calibration results are reported chapter 5.

3.4.4 Measurement method for rheometer

All the viscosity measurements were performed only after air check and motor adjustment. A short description on measuring method for rheometer is given below.

- 1) 6-7ml of required amine solution is injected into the pressure cell and placed inside the rheometer.
- 2) The magnetic coupling is attached to the measuring system. Temperature sensor, external pressure sensor and N₂ supply are then connected to the pressure cell.
- 3) The Rheoplus software controls the whole rheometer. In the Rheoplus software, for the method of measurement "constant shear rate" is selected. The measuring system (DG35.12/PR) and measuring cell (C-ETD200-SN80462200) for the rheometer are selected.
- 4) All the viscosity measurements under 303.15 K are performed by using external temperature controller. Beyond 303.15 K, no external temperature controller is used. N₂ is supplied at 4 bar to the pressure cell for all the measurements.
- After configuring the system, the experimental conditions are inserted into the software. Table 3-4 shows the experimental condition setup for temperatures below 303.15 K.

	Reach to desire Temperature	For Data collection
Measuring Points	100	100
Duration for measuring point	20s	20s
Shear rate value	100s ⁻¹	1000s ⁻¹
Accessory 1	298.15 K	298.15 K
Accessory 2	296.15K	296.15K

Table 3-4: Experimental condition setup for temperatures below 303.15 K

Accessory 1 is the desired temperature for the rheometer and Accessory 2 is the temperature for external oil bath which is set to 2 Kelvin lower than the desired temperature.

6) Table 3-5 shows the experimental condition setup for temperatures \geq 303.15 K.

	Reach to desire Temperature	For Data collection
Measuring Points	40	100
Duration for measuring point	20s	20s
Shear rate value	100s ⁻¹	1000s ⁻¹
Accessory 1	303.15 K	303.15 K

Table 3-5: Experimental condition setup for temperatures \geq 303.15 *K*

Only Accessory 1 is used, as the rheometer do not require external temperature controller. New columns are inserted for measurements at different temperatures.

- After setting up the experimental conditions, the position of the instrument is decreased by entering "Measure position."
- 8) The normal force of the system is reset by entering "reset normal force."
- 9) The measurements start by entering "start."
- After measuring viscosity of the sample at high temperature, the system is cooled down to 298.15 K by entering "set temperature."
- 11) After the system is cooled down to 298.15 K, the position of the instrument is lifted up by entering " lift position."
- 12) The pressure cell is taken out of the rheometer and cleaned.

Similarly, viscosities for other samples are measured by repeating the steps from 1 to 12. Each viscosity value in this work is obtained from an average of 100 measuring points. All the viscosity measurements in this work are reported in chapter 5. Detailed procedure for using Rheoplus software for viscosity measurements is shown in Appendix 5.

4 Results and Discussion

Viscosity results for pure amines, CO₂ loaded and unloaded aqueous amine solutions from this work are presented in this chapter. All the experimental viscosities were compared with available data presented in chapter 2 and correlated with different models. Each viscosity value is an average from 100 measuring points. The viscosity values for pure water in this work is adopted directly from Kestin et al. (1978). Average Absolute Deviation (AAD) is used to evaluate deviations between experimental viscosities in this work and available data reported by others/models studied. The AAD formula is provided below in equation (1); N is the number of data available, η_i^E and η_i^C is viscosity value obtained from experimental work and viscosity value obtained from others data/viscosity value calculated from model respectively.

$$AAD(mPa.s) = \frac{1}{N} \sum_{i=1}^{N} |\eta_{i}^{E} - \eta_{i}^{C}|$$
(1)

4.1 Calibration results

The calibration results for the rheometer in this work are given below in Table 4-1.

Temperature(K)	Experimental viscosity(mPa.s)	Reference viscosities(mPa.s)	(Experimental viscosity) - (Reference viscosity)
298.15	3.202	3.267	-0.064
303.15	2.888	2.943 ^a	-0.055
308.15	2.574	2.619 ^a	-0.045
310.93	2.398	2.439	-0.040
313.15	2.313	2.327	-0.013
318.15	2.105	2.120 ^a	-0.014
323.15	1.898	1.913	-0.014
328.15	1.744	1.758 ^a	-0.014
333.15	1.589	1.603	-0.013
338.15	1.484	1.497 ^a	-0.013
343.15	1.379	1.390 ^a	-0.011
348.15	1.275	1.284 ^a	-0.009
353.15	1.169	1.177	-0.007
358.15	1.096	1.108 ^a	-0.012
363.15	1.022	1.040^{a}	-0.018
368.15	0.948	0.971 ^a	-0.023
372.04	0.889	0.918	-0.028
373.15	0.873	0.905	-0.032

Table 4-1: Calibration results for rheometer in this work

^a Linearly interpolated viscosities.

Table 4-1 shows that all the experimental viscosities are less than the reference viscosities at respective temperatures. Thus, all the measured viscosities in this work are corrected by adding the obtained reduced viscosity values from this calibration result.

4.2 Viscosity results for pure MEA

Viscosity of pure MEA was measured from temperatures 298.15 K to 373.15 K at a constant shear rate 1000s⁻¹ and they are presented in Table 4.2 and Figure 4.1

Viscosity of pure MEA						
Temperature(K)	Viscosity(mPa.s)	Temperature(K)	Viscosity(mPa.s)			
298.15	18.439	338.15	4.278			
303.15	14.773	343.15	3.716			
308.15	12.002	348.15	3.237			
313.15	9.839	353.15	2.844			
318.15	8.178	358.15	2.525			
323.15	6.870	363.15	2.255			
328.15	5.829	368.15	2.021			
333.15	4.984	373.15	1.824			

Table 4-2: Viscosity of pure MEA from temperatures 298.15 K to 373.15 K from this work.

Figure 4-1: Viscosity for pure MEA as a function of temperature from this work.

The experimental viscosities for pure MEA are compared with the literature data presented in chapter 2(Table2.1). See Figure 4-2.

Figure 4-2: Viscosity results for pure MEA from this work compared to data reported by other researchers.

Figure 4-1 shows that the viscosity of pure MEA decreases with increase in temperature and from Figure 4-2 it can be seen that viscosity values of pure MEA from this work are in good agreement with literature values.

The average absolute deviation(AAD) in viscosity values for pure MEA from this work and DiGuilio et al. (1992) is 0.04mPa.s. Similarly, the AAD in viscosity values for pure MEA from this work and M.-H. Li and Lie (1994) is 0.13mPa.s, Lee and Lin (1995) is 0.11mPa.s, Song et al. (1996) is 0.17mPa.s, Kapadi et al. (2002) is 0.22mPa.s, Maham et al. (2002) is 0.29mPa.s, Mandal et al. (2003) is 0.21mPa.s, Islam et al. (2004) is 0.43mPa.s, Geng et al. (2008) is 0.14mPa.s, Amundsen et al. (2009) is 0.19mPa.s, García-Abuín et al. (2013) is 0.3mPa.s, Arachchige et al. (2013) is 0.16mPa.s, Jiru (2013) is 0.19mPa.s, X.-X. Li et al. (2013) is 0.13mPa.s and F. Xu et al. (2014) is 0.10mPa.s.

These low AAD's ensure that the measurement method and experimental equipment from this work can be used with reliability.

4.3 Viscosity results for aqueous MEA solutions

Viscosities for 50-95 Wt % MEA aqueous solutions were measured from temperatures 298.15 K to 373.15 K at constant shear rate 1000s⁻¹. The results are presented in Table 4-3 and Figure 4-3, 4-4.

	Viscosities of aqueous MEA solutions								
		Viscosity(mPa.s)							
Temperature(K)	50 Wt %	60 Wt %	70 Wt %	80 Wt %	85 Wt %	90 Wt %	95 Wt %		
	(x ₂ :0.227)	(x ₂ :0.306)	(x ₂ :0.407)	(x ₂ :0.541)	(x ₂ :0.625)	(x ₂ :0.726)	(x ₂ :0.847)		
298.15	5.571	8.438	12.265	16.828	18.069	18.993	19.093		
303.15	4.688	6.914	9.893	13.375	14.402	15.117	15.224		
308.15	3.984	5.744	8.105	10.792	11.588	12.205	12.296		
313.15	3.371	4.767	6.693	8.815	9.432	9.951	10.038		
318.15	2.916	4.020	5.620	7.298	7.794	8.231	8.298		
323.15	2.531	3.446	4.762	6.110	6.486	6.877	6.941		
328.15	2.210	3.002	4.061	5.161	5.458	5.797	5.845		
333.15	1.939	2.623	3.490	4.409	4.628	4.936	4.965		
338.15	1.720	2.307	3.021	3.771	3.960	4.245	4.259		
343.15	1.540	2.038	2.632	3.263	3.409	3.674	3.673		
348.15	1.393	1.808	2.308	2.843	2.964	3.212	3.200		
353.15	1.258	1.620	2.039	2.487	2.582	2.823	2.804		
358.15	1.142	1.455	1.817	2.202	2.277	2.500	2.474		
363.15	1.045	1.340	1.630	1.969	2.035	2.227	2.208		
368.15	0.960	1.232	1.471	1.772	1.804	1.993	1.975		
373.15	0.891	1.113	1.335	1.632	1.633	1.800	1.778		

Table 4-3: Viscosity results for aqueous MEA solutions at 50-95 Wt % MEA from this work.

 $x_2 = MEA$ mole fraction

Figure 4-3: Viscosities for aqueous MEA solutions as a function of temperature from this work.

Figure 4-4: Viscosities for aqueous MEA solutions as a function of MEA mole fraction from this work.

Figures 4-3 and 4-4 show that viscosities of aqueous MEA solutions decreases with increase in temperature and increases with increase in MEA mole fraction. In Figure 4-4, it can be seen that

the viscosity value is higher at mole fraction 0.847(95 Wt % MEA) than at mole fraction 1(pure MEA). The same effect can be seen in Amundsen et al. (2009) work, and Arachchige et al. (2013) work at similar concentrations. It can thus be speculated that adding a small percentage of water to pure MEA can cause certain molecular interactions between MEA and water leading to high viscosity value. Apart from the speculation made, it was even reported by J.B.Irving (1977) that liquid mixture systems containing water/or alcohol can show maximum and minimum in viscosity values.

The experimental viscosities for aqueous MEA solutions at different MEA mole fractions are compared with available data presented in chapter 2, see Figure 4-5.

Figure 4-5: Viscosities for aqueous MEA solutions as a function of MEA mole fraction from this work compared to data produced by other researchers.

Even though the MEA mole fractions from literature data are not the same with MEA mole fractions from this work, still the viscosities are compared as the AAD between MEA mole fractions from literature data to this work is very low. They are shown in Table 4-4.

Literature	AAD between MEA mole fractions from
	literature data to this work
(Kapadi et al.,2002)	5.16E-05
(Maham et al.,2002)	0.004
(Islam et al.,2004)	0.003
(Jiru.,2013)	0.009

Table 4-4: AAD between MEA mole fractions from literature data to this work.

The average absolute deviation in viscosity values for aqueous MEA solutions from this work and Arachchige et al. (2013) is 0.25mPa.s. Similarly, the AAD in viscosity values for aqueous MEA solutions from this work and Amundsen et al. (2009) is 0.14mPa.s, Jiru (2013) is 0.27mPa.s, Maham et al. (2002) is 0.15mPa.s, Kapadi et al. (2002) is 0.16mPa.s, and Islam et al. (2004) is 0.66mPa.s. The agreement between viscosity values for aqueous MEA solutions from this work and those in literature is fairly good. There exists a difference between viscosity values, which can be due to the solution preparation methods and small change in mole fractions.

4.4 Viscosity results for CO₂ loaded MEA solutions

Viscosities for CO_2 loaded MEA solutions at 50-80 Wt % MEA with 5 different CO_2 loading values were measured from temperatures 298.15 K to 373.15 K at constant shear rate $500s^{-1}$. Table 4.5 and Figures 4.6, 4.7 shows the experimental viscosity results for 50 Wt % MEA loaded solutions.

Viscosity for 50 Wt % MEA loaded solution						
		•	Viscosity(mPa.s)		
Temperature(K)	CO ₂ loading (α)					
	0.52	0.46	0.34	0.23	0.14	
298.15	14.269	12.964	10.569	8.130	6.849	
303.15	11.797	10.734	8.789	6.784	5.744	
308.15	9.885	9.046	7.421	5.755	4.870	
313.15	8.364	7.653	6.300	4.901	4.117	
318.15	7.189	6.556	5.428	4.229	3.542	
323.15	6.229	5.682	4.717	3.693	3.079	
328.15	5.446	4.970	4.137	3.239	2.701	
333.15	4.771	4.401	3.650	2.862	2.391	
338.15	4.205	3.914	3.247	2.544	2.135	
343.15	3.734	3.487	2.906	2.274	1.920	
348.15	3.350	3.128	2.620	2.042	1.738	
353.15	3.032	2.825	2.373	1.840	1.564	
358.15	2.734	2.580	2.174	1.676	1.436	
363.15	2.509	2.381	2.008	1.538	1.329	
368.15	2.302	2.207	1.857	1.414	1.212	
373.15	2.123	2.068	1.749	1.312	1.127	

Table 4-5: Viscosities for 50 Wt % MEA loaded solution with 5 different CO_2 loading values at temperatures 298.15 K to 373.15 K form this work.

Figure 4-6: Viscosities for CO_2 loaded MEA solutions at 50 Wt % MEA as a function of temperature from this work.

Figure 4-7: Viscosities for CO_2 loaded MEA solutions at 50 Wt % MEA as a function of CO_2 loading from this work.

Viscosity for 60 Wt % MEA loaded solution						
		ſ	Viscosity(mPa.s)		
Temperature(K)	CO ₂ loading (α)	CO ₂ loading (a)	CO ₂ loading (a)	CO ₂ loading (α)	CO ₂ loading (α)	
	0.54	0.38	0.24	0.16	0.08	
298.15	39.203	24.543	16.494	14.131	10.596	
303.15	30.925	19.635	13.311	11.557	8.684	
308.15	24.934	16.073	11.047	9.587	7.225	
313.15	20.279	13.285	9.212	7.979	6.022	
318.15	16.736	11.069	7.794	6.752	5.121	
323.15	14.034	9.370	6.664	5.795	4.406	
328.15	11.887	8.036	5.761	4.982	3.803	
333.15	10.126	6.939	5.013	4.353	3.303	
338.15	8.658	6.025	4.409	3.796	2.886	
343.15	7.521	5.289	3.893	3.347	2.545	
348.15	6.550	4.669	3.436	2.969	2.258	
353.15	5.794	4.150	3.094	2.644	2.029	
358.15	5.208	3.695	2.831	2.378	1.838	
363.15	4.664	3.355	2.543	2.143	1.687	
368.15	4.192	3.046	2.348	1.945	1.589	
373.15	3.844	2.805	2.158	1.810	1.391	

Table 4.6 and Figures 4.8, 4.9 shows the experimental viscosity results for 60 Wt % MEA loaded solution with 5 different CO₂ loading values from temperatures 298.15 K to 373.15 K.

Table 4-6: Viscosities for 60 Wt % MEA loaded solution with 5 different CO_2 loading values at temperatures 298.15 K to 373.15 K form this work.

Figure 4-8: Viscosities for CO_2 loaded MEA solutions at 60 Wt % MEA as a function of temperature from this work.

Figure 4-9: Viscosities for CO_2 loaded MEA solution at 60 Wt% MEA as a function of CO_2 loading from this work.

Viscosity for 70 Wt % MEA loaded solution						
		ſ	Viscosity(mPa.s)		
Temperature(K)	CO ₂ loading (α)	CO ₂ loading (a)	CO2 loading (a)	CO ₂ loading (α)	CO ₂ loading (a)	
	0.51	0.39	0.32	0.25	0.12	
298.15	119.997	71.517	49.958	33.823	20.044	
303.15	89.196	54.392	38.428	26.442	15.813	
308.15	67.595	42.453	30.201	21.226	12.778	
313.15	52.753	34.550	24.304	17.211	10.504	
318.15	41.940	27.448	19.817	14.035	8.701	
323.15	33.865	22.234	16.274	11.574	7.464	
328.15	27.682	18.345	13.463	9.692	6.059	
333.15	22.945	15.375	11.436	8.070	5.188	
338.15	19.212	12.959	9.627	6.908	4.405	
343.15	16.258	11.043	8.265	5.954	3.816	
348.15	13.877	9.487	7.151	5.180	3.330	
353.15	11.951	8.232	6.262	4.501	2.937	
358.15	10.402	7.240	5.508	3.947	2.684	
363.15	9.145	6.398	4.895	3.494	2.351	
368.15	8.085	5.673	4.391	3.224	2.115	
373.15	7.228	5.080	3.971	2.791	1.959	

Table 4.7 and Figures 4.10, 4.11 shows the experimental viscosity results for 70 Wt % MEA loaded solution with 5 different CO₂ loading values from temperatures 298.15 K to 373.15 K.

Table 4-7: Viscosities for 70 Wt % MEA loaded solution with 5 different CO_2 loading values at temperatures 298.15 K to 373.15 K form this work.

Figure 4-10: Viscosities for CO_2 loaded MEA solution at 70 Wt % MEA as a function of temperature from this work.

Figure 4-11: Viscosities for CO_2 loaded MEA solution at 70 Wt % MEA as a function of CO_2 loading from this work.

Viscosity for 80 Wt % MEA loaded solution						
		,	Viscosity(mPa.s)		
Temperature(K)	CO ₂ loading (α)	CO ₂ loading (a)	CO ₂ loading (a)	CO ₂ loading (α)	CO ₂ loading (α)	
	0.51	0.38	0.33	0.24	0.12	
298.15	508.637	222.586	131.967	74.899	33.031	
303.15	358.172	160.504	96.501	57.166	25.554	
308.15	259.147	119.064	72.983	44.491	20.235	
313.15	191.301	90.158	56.379	35.124	16.263	
318.15	144.058	69.403	44.515	28.172	13.285	
323.15	110.474	54.253	35.089	22.869	10.961	
328.15	86.081	42.982	28.317	18.801	9.167	
333.15	68.104	34.602	23.157	15.664	7.748	
338.15	54.582	28.801	19.131	13.155	6.614	
343.15	44.305	23.526	15.988	11.138	5.684	
348.15	36.341	19.334	13.503	9.516	4.920	
353.15	30.151	16.604	11.527	8.204	4.290	
358.15	25.227	13.739	9.911	7.136	3.763	
363.15	21.311	11.739	8.615	6.270	3.336	
368.15	18.135	10.093	7.554	5.512	2.968	
373.15	15.547	8.849	6.638	4.885	2.662	

Table 4.8 and Figures 4.12, 4.13 shows the experimental viscosity results for 80 Wt % MEA loaded solution with 5 different CO₂ loading values from temperatures 298.15 K to 373.15 K.

Table 4-8: Viscosities for 80 Wt % MEA loaded solution with 5 different CO_2 loading values at temperatures 298.15K to 373.15K form this work.

Figure 4-12: Viscosities for CO_2 loaded MEA solution at 80 wt % MEA as a function of temperature from this work.

Figure 4-13: Viscosities for CO_2 loaded MEA solution at 80 Wt % MEA as a function of CO_2 loading from this work.

From Figures 4-6 to 4-13, it can be seen that viscosity decreases with increase in temperature and increases with increase in MEA concentration along with increase in the dilution of CO_2 . While compared to CO_2 unloaded MEA solutions, the CO_2 loaded MEA solutions showed an increase in viscosity values. This increase in viscosities can be due to the carbamates and bicarbonates in the solution which causes complex molecular interactions (hydrogen bonding) as their concentrations vary with CO_2 loading, amine concentration and temperatures.

The maximum viscosity was found to be at low temperatures for high CO₂ loading in all the concentrations (50, 60, 70, 80 Wt % MEA). For 50 Wt % MEA loaded solution with CO₂ loading (α) 0.52, showed the highest viscosity value of 14.269mPa.s at 298.15 K and lowest 2.123mPa.s at 373.15 K. The percentage decrease in viscosity from highest to lowest CO₂ loading values for 50 Wt % MEA solution is calculated at respective temperatures to see the effect of CO₂ loading on viscosities. Where a decrease of 51.99% in viscosity was found at the lowest temperature and 46.89% decrease at highest temperature.

Similarly, for 60 Wt % MEA loaded solution the percentage decrease in viscosity from 0.54 CO_2 loading value to 0.08 CO_2 loading value at 298.15 K was found to be 72.00% and 63.00% at 373.15 K.

For 70 Wt % MEA loaded solution at 373.15 K, the viscosities corresponding to 0.51 CO_2 loading and 0.12 CO_2 loading are respectively 7.228mPa.s and 1.959mPa.s, while at 298.15 K, they become 119.997mPa.s and 20.044mPa.s. This shows that the viscosity decreased by 93.98% for 0.51 CO_2 loading and 90.20% for 0.12 CO_2 loading from 298.15 K to 373.15 K.

But 80 Wt % MEA loaded solution showed a maximum viscosity value of 508.637mPa.s as expected at 298.15 K for $0.51CO_2$ loading. Since 80 Wt % and 70 Wt % MEA loaded solutions have the same highest and lowest CO₂ loading values, i.e. α =0.51 and α =0.12 respectively, they are compared to see the effect of concentration on viscosities for similar CO₂ loading values. It was found that for α =0.51, the viscosity decreased by 388.640mPa.s and 8.319mPa.s from 80 Wt % to 70 Wt % loaded MEA solutions at 298.15 K and 373.15 K respectively. Similarly for α =0.12, the viscosity drop was 12.9874mPa.s and 0.7029 at 298.15 K and 373.15 K respectively.

Based on these observations it is understood that viscosities increases tremendously with CO_2 loading at lower temperatures, but this effect is found to be low at higher temperatures.

4.5 Viscosity results for AMP + PZ + Water

Viscosities for ternary system of AMP + PZ + Water at 20/5, 30/5, 40/5, 50/5 Wt % AMP/PZ were measured from temperatures 303.15 K to 373.15 K in the interval of 10 K at constant shear rate $1000s^{-1}$. These results are presented in Table 4-9 and Figure 4-14.

Viscosities of AMP + PZ + Water								
Temperature(K)		Viscosity(mPa.s)						
	20/5 Wt %	30/5 Wt %	40/5 Wt %	50/5 Wt %				
303.15	2.499	4.189	7.138	12.059				
313.15	1.819	2.853	4.707	7.563				
323.15	1.405	2.069	3.294	5.073				
333.15	1.114	1.553	2.428	3.583				
343.15	0.907	1.207	1.863	2.632				
353.15	0.756	0.960	1.424	2.038				
363.15	0.645	0.787	1.173	1.630				
373.15	0.578	0.641	0.992	1.338				

Table 4-9: Viscosities for AMP + *PZ* + *Water from this work.*

Figure 4-14: Viscosities for AMP + *PZ* + *Water as a function of temperature from this work.*

From Figure 4-14 it can be seen that viscosities of this ternary system decrease with increase in temperature and increase with increase in AMP concentration in mixture.

4.6 Viscosity results for pure 3A1P

Viscosity of pure 3A1P was measured from temperatures 298.15 K to 373.15 K at a constant shear rate 1000s⁻¹ and they are presented in Table 4.10 and Figure 4.15.

Viscosity of pure 3A1P						
Temperature(K)	Viscosity(mPa.s)	Temperature(K)	Viscosity(mPa.s)			
298.15	27.103	338.15	5.643			
303.15	21.330	343.15	4.840			
308.15	17.050	348.15	4.171			
313.15	13.755	353.15	3.631			
318.15	11.265	358.15	3.190			
323.15	9.323	363.15	2.827			
328.15	7.837	368.15	2.523			
333.15	6.620	373.15	2.249			

Table 4-10: Viscosity of pure 3A1P from temperatures 298.15 K to 373.15 K from this work.

Figure 4-15: Viscosity for pure 3A1P as a function of temperature from this work.

Comparison of experimental viscosities for pure 3A1P from this work to the literature data presented in chapter 2 is shown in Figure 4-16.

Figure 4-16: Viscosity results for pure 3A1P from this work compared to data reported by other researchers.

Figure 4-15 shows that the viscosity of pure 3A1P decreases with increase in temperature and from Figure 4-16 one can observe that the experimental viscosities are consistently lower than the viscosity values reported by other researchers. The AAD in viscosity values for pure 3A1P from this work and Omrani et al. (2010) is 2.68mPa.s. Similarly, the AAD between viscosity values from this work and Kermanpour and Niakan (2012) is 1.20mPa.s and Kermanpour et al. (2013) is 1.36mPa.s. This difference in viscosity values can be due to the purity of 3A1P which has the highest possibility to contribute discrepancies in viscosity measurements found in the literature. The purity of 3A1P is shown below.

4.7 Viscosity results for aqueous 3A1P solutions

Viscosities for 30-90 Wt % 3A1P solutions were measured from temperatures 298.15 K to 373.15 K at constant shear rate 1000s⁻¹. These results are presented in Table 4-11 and Figures 4-17, 4-18.

Viscosities of aqueous 3A1P solutions							
			Viscosit	y(mPa.s)			
l emperature(K)	30 wt% (x ₂ :0.093)	40 wt% (x ₂ :0.137)	50 wt% (x ₂ :0.193)	60 wt% (x ₂ :0.264)	70 wt% (x ₂ :0.358)	90 wt% (x ₂ :0.682)	
298.15	2.954	4.760	7.580	12.167	18.558	29.260	
303.15	2.503	3.974	6.176	9.638	14.501	22.760	
308.15	2.147	3.343	5.099	7.689	11.482	17.963	
313.15	1.824	2.817	4.232	6.252	9.208	14.362	
318.15	1.590	2.421	3.587	5.172	7.498	11.599	
323.15	1.398	2.109	3.065	4.339	6.172	9.472	
328.15	1.237	1.856	2.647	3.689	5.138	7.779	
333.15	1.103	1.656	2.306	3.167	4.325	6.471	
338.15	0.994	1.467	2.030	2.741	3.674	5.430	
343.15	0.900	1.320	1.808	2.385	3.150	4.609	
348.15	0.818	1.195	1.643	2.091	2.723	3.934	
353.15	0.746	1.082	1.464	1.848	2.371	3.387	
358.15	0.686	0.992	1.3212	1.6819	2.088	2.928	
363.15	0.650	0.928	1.2546	1.5064	1.855	2.556	
368.15	0.625	0.876	1.1598	1.3671	1.656	2.242	
373.15	0.593	0.819	1.0508	1.2585	1.492	1.977	

Table 4-11: Viscosity results for aqueous 3A1P solutions from 30-90 Wt % 3A1P from this work $x_2 = 3A1P$ mole fraction

Figure 4-17: Viscosity for aqueous 3A1P solutions as a function of temperature from this work

Figure 4-18: Viscosities for aqueous 3A1P solutions as a function of 3A1P mole fraction from this work.

Figures 4-17 and 4-18 shows that viscosity of aqueous 3A1P solutions decreases with increase in temperature and increases with increase in 3A1P mole fraction. From Figure 4-18, it can be clearly seen that viscosity at mole fraction 0.682(90 Wt % 3A1P) is higher than viscosity at mole fraction 1(pure 3A1P) until temperature 323.15 K. Similar effect was seen in aqueous MEA solution from this work, therefore, it is understood that adding a small percentage of water (10 to 5%) to pure amine (primary amine) can affect the interactions between amine molecules and water molecules and shows higher viscosity than the pure amine.

4.8 Viscosity results for CO₂ loaded 3A1P solutions

Viscosities for CO_2 loaded 3A1P solutions at 30, 50 Wt % 3A1P with 5 different CO_2 loadings were measured from temperatures 298.15 K to 373.15 K at constant shear rate $1000s^{-1}$. Table 4.12 and Figures 4.19, 4.20 shows the experimental viscosities for 50 Wt % 3A1P loaded solution.

Viscosity for 50 Wt % loaded 3A1P solution					
			Viscosity(mPa.s)		
Temperature(K)	CO2 loading (α)	CO ₂ loading (α)	CO ₂ loading (α)	CO2 loading (α)	CO2 loading (a)
	0.52	0.42	0.32	0.24	0.13
298.15	18.067	15.294	13.143	11.610	9.343
303.15	14.736	12.352	10.740	9.402	7.622
308.15	12.176	10.172	8.893	7.746	6.296
313.15	10.162	8.507	7.438	6.468	5.232
318.15	8.588	7.215	6.315	5.484	4.409
323.15	7.333	6.196	5.406	4.692	3.764
328.15	6.317	5.367	4.689	4.060	3.249
333.15	5.494	4.694	4.013	3.542	2.833
338.15	4.821	4.111	3.620	3.117	2.491
343.15	4.267	3.638	3.207	2.766	2.208
348.15	3.809	3.247	2.865	2.471	1.973
353.15	3.432	2.932	2.582	2.207	1.773
358.15	3.122	2.674	2.344	2.002	1.610
363.15	2.868	2.449	2.139	1.837	1.470
368.15	2.659	2.268	1.973	1.689	1.346
373.15	2.489	2.124	1.836	1.558	1.251

Table 4-12: Viscosities for 50 Wt % 3A1P loaded solution with 5 different CO₂ loading values at temperatures 298.15 K to 373.15 K form this work

Figure 4-19: Viscosities for CO_2 loaded 3A1P solution at 50 Wt % 3A1P as a function of temperature from this work.

Figure 4-20: Viscosities for CO_2 loaded 3A1P solution at 50 Wt % 3A1P as a function of CO_2 loading from this work.

Viscosity for 30 Wt % loaded 3A1P solution					
	Viscosity(mPa.s)				
Temperature(K)	CO ₂ loading (a)	CO ₂ loading (α)	CO ₂ loading (a)	CO ₂ loading (a)	CO ₂ loading (a)
	0.54	0.44	0.34	0.25	0.13
298.15	4.142	4.017	3.762	3.512	3.217
303.15	3.584	3.476	3.223	3.017	2.771
308.15	3.113	3.041	2.791	2.609	2.380
313.15	2.699	2.637	2.420	2.255	2.031
318.15	2.384	2.317	2.150	1.996	1.790
323.15	2.117	2.055	1.923	1.781	1.587
328.15	1.894	1.847	1.758	1.597	1.396
333.15	1.708	1.663	1.567	1.439	1.251
338.15	1.546	1.510	1.416	1.307	1.131
343.15	1.403	1.375	1.281	1.190	1.028
348.15	1.275	1.259	1.156	1.089	0.939
353.15	1.169	1.162	1.059	1.000	0.858
358.15	1.083	1.086	0.982	0.930	0.793
363.15	1.009	1.017	0.917	0.869	0.739
368.15	0.952	0.964	0.855	0.795	0.703
373.15	0.895	0.920	0.811	0.758	0.686

Table 4-13 and Figures 4-21, 4-22 shows the experimental viscosity results for 30 Wt % 3A1P loaded solution with 5 different CO₂ loading values from temperatures 298.15 K to 373.15 K.

Table 4-13: Viscosities for 30 Wt % 3A1P loaded solution with 5 different CO_2 loading values at temperatures 298.15 K to 373.15 K form this work

Figure 4-21: Viscosities for CO_2 loaded 3A1P solution at 30 Wt % 3A1P as a function of temperature from this work.

Figure 4-22: Viscosities for CO_2 loaded 3A1P solution at 30 Wt % 3A1P as a function of CO_2 loading from this work.

From Figures 4-19 to 4-22 it can be seen that viscosities of 3A1P loaded solutions decreased with increase in temperature and increased with increase in 3A1P concentration and CO_2 loading. Especially for 30 Wt % 3A1P loaded solution, no major difference in viscosities was found for CO_2 loading value 0.44 and 0.54, and they crossed each other at higher temperature. No further investigation was done to determine this effect.

4.9 Correlations for aqueous MEA and 3A1P solutions

Accurate representations of experimental viscosities are important in designing the equipments for CO_2 capture systems. This lead many researchers to develop models to correlate the experimental viscosity data. Out of them five models were employed in this work to correlate experimental viscosities of aqueous MEA and 3A1P solutions and they are presented below.

The model(2) proposed by Heric and Brewer (1967) is shown below.

$$ln\eta = x_1 ln\eta_1 + x_2 ln\eta_2 + x_1 lnM_1 + x_2 lnM_2 - \ln(x_1M_1 + x_2M_2) + x_1 x_2 [\alpha_{12} + \alpha_{21}(x_1 - x_2)]$$
(2)

Jouyban et al. (2005) presented a model (3) for calculating the viscosities of liquid mixtures for different temperatures. It is shown below.

$$ln\eta = x_1 ln\eta_1 + x_2 ln\eta_2 + x_1 x_2 \sum_{j=0}^{1} \frac{\left(A_j (x_1 - x_2)\right)^j}{T} \qquad (3)$$

J.V.Herraez et al. (2008) introduced a new correlation (4) which is based on linear behavior of liquid mixtures, where they used the corrective polynomial as an exponential function of the molar fraction. The equation is shown below

$$\eta = \eta_1 + (\eta_2 - \eta_1) x_2^{(\sum_i^n = 0(B_i, x_2^i))}$$
(4)

Grunberg and A.H.Nissan (1949) developed a model (5) for binary mixture viscosities, it is shown below.

$$ln\eta = x_1 ln\eta_1 + x_2 ln\eta_2 + G_{12} x_1 x_2$$
(5)

O.Redlich and A.T.Kister (1948) proposed a model for liquid mixture viscosities, it is shown in below.

$$\eta = \eta_1 x_1 + \eta_2 x_2 + x_1 x_2 \sum_{i=0}^n A_i (x_1 - x_2)^i$$
(6)

In equations (2) - (6) η is dynamic viscosity of liquid mixture, η_1 and η_2 are dynamic viscosities of pure components 1 and 2, x_1 and x_2 are mole fractions, T is temperature in Kelvin, M_1 and M_2 are molar masses, α_{12} , α_{21} , A_j , B_i , G_{12} , A_i are model parameters and all these parameters were calculated by using experimental viscosities and by a non-linear regression analysis.

4.9.1 Correlation results for aqueous MEA solutions

Comparison of predicted viscosities for aqueous MEA solutions from Heric-Brewer model to experimental viscosities as a function of MEA mole fraction is shown in Figure 4-23.

Figure 4-23: Predicted viscosities from Heric-Brewer model for $MEA(2) + H_2O(1)$.

The predicted viscosities from Heric-Brewer model showed an excellent agreement with experimental viscosities, with an average absolute deviation of 0.032mPa.s. The determined model parameters α_{12} and α_{21} at each temperature are presented in Table 4-14 and these parameters are temperature dependent which can be correlated with second order polynomial function.

Temp.(K)	a ₁₂	a ₂₁	Temp.(K)	a ₁₂	α_{21}	Temp.(K)	a ₁₂	a_{21}	Temp.(K)	a ₁₂	a ₂₁
298.15	6.05	-2.41	318.15	5.20	-2.12	338.15	4.55	-1.95	358.15	4.02	-1.80
303.15	5.82	-2.33	323.15	5.02	-2.07	343.15	4.40	-1.92	363.15	3.94	-1.80
308.15	5.60	-2.27	328.15	4.85	-2.05	348.15	4.27	-1.86	368.15	3.84	-1.82
313.15	5.39	-2.18	333.15	4.69	-2.01	353.15	4.14	-1.83	373.15	3.78	-1.78

Table 4-14: Heric-Brewer parameters at different temperatures for $MEA(2)+H_2O(1)$.

Comparison of predicted viscosities for aqueous MEA solutions from Herraez model to experimental viscosities as a function of MEA mole fraction is shown in Figure 4-24.

Figure 4-24: Predicted viscosities from Herraez model for $MEA(2) + H_2O(1)$.

The values of parameters at each temperature for Herraez model are presented in Table 4-15. A first order polynomial version of Herraez model (n=1 in equation 4) correlated the experimental data satisfactorily. The parameters B_0 and B_1 can be regressed as a function of temperature by using a second order polynomial function. An AAD of 0.067mPa.s was determined by using the first order polynomial version of Herraez model.

Temp.(K)	B ₀	B ₁									
298.15	5.46	-5.67	318.15	4.68	-4.36	338.15	3.96	-3.12	358.15	3.22	-1.86
303.15	5.24	-5.29	323.15	4.49	-4.04	343.15	3.72	-2.73	363.15	3.11	-1.63
308.15	5.00	-4.89	328.15	4.27	-3.67	348.15	3.60	-2.50	368.15	2.93	-1.29
313.15	4.85	-4.65	333.15	4.10	-3.39	353.15	3.39	-2.15	373.15	3.06	-1.45

Table 4-15: Herraez model parameters at different temperatures for $MEA(2)+H_2O(1)$.

Predicted viscosities for aqueous MEA solutions as a function of MEA mole fraction from second order polynomial version of Redlich-kister (n=2 in equation 6) model is shown in Figure 4-25.

Figure 4-25: Predicted viscosities from Redlich-Kister model for $MEA(2) + H_2O(1)$.

Second order Redlich-Kister model obtained minimal deviations between experimental and predicted viscosities rather than first order Redlich-Kister model. An AAD of 0.035mPa.s was determined by using second order Redlich-Kister model, which was 76.17% lower than the AAD obtained by first order Redlich-Kister model. The parameters A_0 , A_1 and A_2 , can be regressed as a function of temperature by using a third order polynomial function. The parameter values are shown in Table 4-16.

Temperature (K)	\mathbf{A}_{0}	A ₁	A ₂	Temperature (K)	\mathbf{A}_{0}	A ₁	A_2
298.15	23.08	22.64	-27.81	318.15	9.60	7.16	-9.91
303.15	18.18	16.69	-20.78	323.15	7.94	5.43	-7.87
308.15	14.50	12.30	-15.75	328.15	6.63	4.06	-6.43
313.15	11.70	9.41	-12.44	333.15	5.60	3.10	-5.36

Temperature(K)	A ₀	A ₁	A_2	Temperature(K)	A_0	A ₁	A ₂
338.15	4.75	2.40	-4.14	358.15	2.61	0.78	-1.64
343.15	4.04	1.79	-3.37	363.15	2.23	0.55	-1.33
348.15	3.48	1.40	-2.55	368.15	2.06	0.34	-1.04
353.15	3.00	1.04	-1.95	373.15	1.90	0.29	-1.08

Table 4-16: Second order polynomial version of Redlich-Kister model parameters at different temperatures for $MEA(2)+H_2O(1)$.

Comparison of predicted viscosities for aqueous MEA solutions from Jouyban-Acree model to experimental viscosities as a function of MEA mole fraction is shown in Figure 4-26.

Figure 4-26: Predicted viscosities from Jouyban-Acree model for $MEA(2) + H_2O(1)$.

Predicted viscosities from Jouyban-Acree model were observed to be lower than the experimental viscosities at lower temperatures. An average absolute deviation of 0.327mPa.s was determined between experimental and predicted viscosities and the regressed parameters for the entire temperature range are shown in Table 4-17.

Temperature range (K)	\mathbf{A}_{0}	A ₁
298.15 - 373.15	1352.70	-599.40

Table 4-17: Regressed parameters from Jouyban-Acree model for aqueous MEA solution.

Comparison of predicted viscosities for aqueous MEA solutions from Grunberg-Nissan model to experimental viscosities as a function of MEA mole fraction is shown in Figure 4-27.

Figure 4-27: Predicted viscosities from Grunberg-Nissan model for $MEA(2) + H_2O(1)$

Grunberg-Nissan model which usually predicts poor viscosity values for an aqueous system with polar mixture (Poling et al., 2007) showed the same effect even in this work, where an average absolute deviation of 0.435mPa.s was determined. The regressed parameters at each temperature are shown in Table 4-18. These parameters can be regressed as a function of temperature by using second order polynomial function.

Temperature(K)	G ₁₂						
298.15	4.82	318.15	4.08	338.15	3.50	358.15	3.03
303.15	4.62	323.15	3.92	343.15	3.36	363.15	2.95
308.15	4.43	328.15	3.77	348.15	3.25	368.15	2.86
313.15	4.25	333.15	3.62	353.15	3.14	373.15	2.80

Table 4-18: Regressed parameters for Grunberg-Nissan model for aqueous MEA solution.

4.9.2 Correlation results for aqueous 3A1P solutions

Comparison of predicted viscosities for aqueous 3A1P solutions from Heric-Brewer model to experimental viscosities as a function of 3A1P mole fraction is shown in Figure 4-28.

Figure 4-28: Predicted viscosities from Heric-Brewer model for $3A1P(2)+H_2O(1)$.

Predicted viscosities from Heric-Brewer model showed a good agreement with experimental viscosities, where an average absolute deviation of 0.077mPa.s was observed. The parameter values for Heric-Brewer model at each temperature are shown in Table 4-19 and they can be regressed as a function of temperature by second order polynomial function.

Temp.(K)	a ₁₂	α_{21}	Temp.(K)	a ₁₂	a ₂₁	Temp.(K)	a ₁₂	α ₂₁	Temp.(K)	a ₁₂	α ₂₁
298.15	7.79	-4.46	318.15	6.57	-3.64	338.15	5.58	-3.31	358.15	4.85	-3.21
303.15	7.46	-4.24	323.15	6.31	-3.51	343.15	5.38	-3.24	363.15	4.70	-3.29
308.15	7.15	-4.01	328.15	6.04	-3.45	348.15	5.20	-3.21	368.15	4.56	-3.37
313.15	6.85	-3.79	333.15	5.80	-3.37	353.15	5.01	-3.16	373.15	4.43	-3.42

Table 4-19: Heric-Brewer parameters at different temperatures for 3A1P(2)+H2O(1)

Comparison of experimental viscosities and predicted viscosities from Herraez model for aqueous 3A1P solutions as a function of 3A1P mole fraction is shown in Figure 4-29.

Figure 4-29: Predicted viscosities from Herraez model for 3A1P(2)+H2O(1).

Herraez model showed low viscosities at mole fraction 0.682 until 323.15 K, but on whole the average absolute deviation of 0.088mPa.s was determined between experimental and predicted viscosities. The parameter values for Herraez model are shown in Table 4-20. A second order polynomial can be used to regress these parameters as a function temperature.

Temp.(K)	B ₀	B ₁									
298.15	6.85	-6.75	318.15	5.69	-5.18	338.15	4.20	-3.13	358.15	2.68	-0.95
303.15	6.56	-6.34	323.15	5.39	-4.76	343.15	3.82	-2.61	363.15	2.18	-0.19
308.15	6.21	-5.88	328.15	4.96	-4.19	348.15	3.45	-2.05	368.15	1.77	0.44
313.15	5.98	-5.58	333.15	4.59	-3.67	353.15	3.10	-1.56	373.15	1.56	0.81

Table 4-20: Herraez model parameters at different temperatures for 3A1P(2)+H2O(1)

Predicted viscosities for aqueous 3A1P solutions as a function of 3A1P mole fraction from second order polynomial version of Redlich-kister (n=2 in equation 6) model is shown in Figure 4-30.

Figure 4-30: Predicted viscosities from Redlich-Kister model for 3A1P(2)+H2O(1).

Predicted viscosities from second order Redlich-Kister model showed an excellent agreement with experimental viscosities with an average absolute deviation of 0.033mPa.s. Whereas, the first order polynomial version of Redlich-kister model showed an average absolute deviation of 0.188mPa.s. The parameters A₀, A₁, A₂ for second order Redlich-kister model are shown in Table 4-21 and a third order polynomial can be used to regress these parameters as a function of temperature.

Temperature (K)	$\mathbf{A_0}$	A ₁	\mathbf{A}_{2}	Temperature (K)	$\mathbf{A_0}$	\mathbf{A}_{1}	\mathbf{A}_{2}
298.15	46.23	24.65	-50.56	318.15	16.59	7.50	-15.93
303.15	35.13	18.06	-37.09	323.15	13.22	5.46	-12.33
308.15	26.89	13.54	-27.14	328.15	10.51	3.57	-9.97
313.15	21.04	10.29	-20.65	333.15	8.52	2.38	-7.92

Temperature(K)	A ₀	A ₁	A ₂	Temperature(K)	A_0	A ₁	A ₂
338.15	6.97	1.47	-6.47	358.15	3.46	-0.31	-2.93
343.15	5.77	0.92	-5.09	363.15	2.90	-0.58	-2.05
348.15	4.82	0.45	-3.99	368.15	2.43	-0.80	-1.39
353.15	4.05	0.13	-3.29	373.15	2.12	-0.95	-1.18

Table 4-21: Second order polynomial version of Redlich-Kister model parameters at different temperatures for $3A1P(2)+H_2O(1)$.

Regressed viscosity values obtained by using Jouyban-Acree model are compared with experimental viscosities and they are shown in Figure 4-31 as a function of 3A1P mole fraction. An average absolute deviation of 0.440mPa.s was determined. From Figures 4-31 and 4-24(aqueous MEA solution), it is clear that Jouyban-Acree model tends to deviate maximum at low temperatures.

Figure 4-31: Predicted viscosities from Jouyban-Acree model for $3A1P(2) + H_2O(1)$.

A second order version of Jouyban-Acree model was also correlated with experimental viscosities, to see in the case of any betterment in results, but an average absolute deviation of 0.434mPa.s was determined which is almost the same with first order Jouyban-Acree model. The regressed

parameters for the temperature range(298.15 K to 373.15 K) is shown in Table 4-22 for first order Jouyban-Acree model.

Temperature range (K)	\mathbf{A}_{0}	\mathbf{A}_1
298.15 - 373.15	1652.20	-1131.40

Table 4-22: Regressed parameters from Jouyban-Acree model for aqueous 3A1P solution.

Comparison of predicted viscosities for aqueous 3A1P solutions from Grunberg-Nissan model to experimental viscosities as a function of 3A1P mole fraction is shown in Figure 4-32.

Figure 4-32: Predicted viscosities from Grunberg-Nissan model for $3A1P(2) + H_2O(1)$

An average absolute deviation of 0.819mPa.s was determined between experimental and predicted viscosities. As expected Grunberg-Nissan model showed poor results compared to other 4 models. Especially at low temperatures the deviation between experimental and predicted viscosities were found to be high. The fitting parameters for this model are presented in Table 4-23 and they can be regressed as a function of second order polynomial function.

Temperature(K)	G ₁₂						
298.15	5.94	318.15	5.02	338.15	4.20	358.15	3.59
303.15	5.70	323.15	4.81	343.15	4.04	363.15	3.47
308.15	5.46	328.15	4.58	348.15	3.89	368.15	3.35
313.15	5.24	333.15	4.38	353.15	3.73	373.15	3.25

Table 4-23: Regressed parameters for Grunberg-Nissan model for aqueous 3A1P solution.

4.10 Correlations for AMP + PZ + Water

Viscosities for ternary mixture in this work are correlated as a function of temperature by using two models. The model developed by Samanta and Bandyopadhyay (2006) is shown below

$$\ln(\eta) = \sum \sum x_i x_j G_{ij} \tag{7}$$

G_{ij} in equation 7 is temperature dependent and it is assumed to be in the form

$$G_{ij} = a + b(T) + c(T)^2$$
 (8)

The model which is mostly referred to as Andrade (1930) equation is shown below in equation (9) and each concentration has to be correlated separately while using this model.

$$\ln(\eta) = A + \frac{B}{T} \tag{9}$$

In equations (7) - (9) η is dynamic viscosity of liquid mixture, x_i and x_j are mole fractions, T is temperature in Kelvin, and A, B, a, b, c, are model parameters and all these parameters were calculated by using experimental viscosities and by a non-linear regression analysis.

4.10.1 Correlation results for AMP + PZ + Water

Predicted viscosities from Andrade equation are compared with experimental viscosities as a function of temperature and they are shown in Figure 4-33.

Figure 4-33: Predicted viscosities from Andrade equation for AMP+PZ+H₂O.

From Figure 4-33 it can be seen that predicted viscosities from Andrade equation correlated the experimental data satisfactorily at each concentration. The parameters A and B and average absolute deviation between experimental and predicted viscosities at each concentration are presented in Table 4-24.

Concentration(AMP/PZ) Wt %	А	В	AAD
20/5	-7.652	2593.171	0.048
30/5	-8.925	3133.295	0.064
40/5	-9.710	3528.139	0.125
50/5	-11.013	4087.372	0.212

*Table 4-24: Regressed parameters for Andrade equation and AAD at each concentration for AMP+PZ+H*₂*O*.

Predicted viscosities from equation 7 are compared with experimental viscosities as a function of temperature and they are shown in Figure 4-34.

Figure 4-34: Predicted viscosities from correlation equation 7 for AMP+PZ+H₂O.

The predicted viscosities from this correlation (equation 7) are in good agreement with experimental data and an average absolute deviation 0.082mPa.s was determined between

predicted and experimental viscosities. The parameters for equation 8 are obtained by regression analysis of experimental data and they are presented in Table 4-25.

	Parameters								
	а	5182.825		a	2381.072		а	-103.864	
G ₁₂	b	-33.450	G ₂₃	b	-13.108	G ₃₁	b	0.843	
	c	0.052		c	0.017		с	-0.001	

Table 4-25: Parameters for G_{12} , G_{23} , and G_{31} of equation 8 for AMP + PZ + H2O.

4.11 Correlation for CO₂ loaded solutions

Many researchers developed models for correlating CO_2 loaded amine solution viscosities, but most of them have certain limitations either in amine mass fractions or temperatures. Where the model developed by Weiland et al. (1998) works well only at low amine Wt % i.e. from 20 to 40 Wt % for MEA. Similarly, the model proposed by Hartono et al. (2014) works well only for 30 to 40 Wt % for MEA.

Since the experiments in this work were performed under high amine Wt %, both the models proposed by Weiland et al. (1998) and Hartono et al. (2014) cannot be implemented to correlate the experimental viscosities for CO_2 loaded amine solutions. Therefore, a modified setchnow type equation(10) which has been recently used by many researchers for correlating viscosities, densities, surface tension of binary and ternary systems (Kelayeh et al., 2011; Shokouhi et al., 2015) was implemented in this work to correlate the experimental viscosities of CO_2 loaded MEA and 3A1P solutions.

$$ln\frac{\eta}{\eta_r} = (K_1 + K_2 \times T) \times \alpha + (K_3 + K_4 \times T) \times \alpha^2$$
(10)

Where η is the dynamic viscosity for CO₂ loaded amine solution, η_r is dynamic viscosity for aqueous amine solution of same concentration at same temperature T in Kelvin, α is CO₂ loading value and K₁, K₂, K₃, K₄ are fitting parameters.

The correlation model proposed by Hartono et al. (2014) has been modified to fit the data in this work. The modified model is presented below in equations (11) and (12).

$$\ln(\eta_{loaded}) = x_3 \ln(\eta_{\gamma}^*) + (1 - x_3) \ln(\eta_{unloaded})$$
(11)

$$\ln(10^3, \eta_{\gamma}^*) = (a * x_1) + (b * \alpha * x_1) + (c * \alpha^2 * x_1)$$
(12)

 η_{γ}^* is the viscosity deviation for the loaded solution, representing the deviation from unloaded solution. x_3 is the mole fraction of CO₂ in the solution and x_1 is the mole fraction of amine in the solution, a, b, c are the fitting parameters and α is CO₂ loading value. It is to be noted that the viscosity values for equation 11 and 12 are in Pa.s.

4.11.1 Correlation results for CO₂ loaded MEA solutions

Figure 4-35 compares the predicted viscosities from modified setchnow type equation to experimental viscosities for 50 Wt % MEA loaded solution as a function of loading value at each temperature.

Figure 4-35: Predicted viscosities from modified Setchnow type equation for 50 Wt % MEA loaded solution.

The agreement between predicted and experimental viscosity values for 50 Wt % MEA loaded solution is fairly good with an average absolute deviation of 0.098mPa.s. The regressed parameters for the temperature range are shown in Table 4-26.

Temperature range	K ₁	K ₂	K ₃	K 4
(K)				
298.15 - 373.15	0.0682	0.0049	4.0245	-0.0118

Table 4-26: Regressed parameters for modified setchnow type equation for 50 Wt % MEA loaded solution.

Figure 4-36 compares the predicted viscosities from modified Hartono model to the experimental viscosities for 50 Wt % MEA loaded solution.

Figure 4-36: Predicted viscosities from modified Hartono model for 50 Wt % MEA loaded solution.

The predicted viscosities from this correlation are in good agreement with experimental viscosities and an average absolute deviation was determined to be 0.092mPa.s The parameter values at each temperature for modified Hartono model at 50 Wt % loaded solution are presented in Table 4-27.

Temperature(K)	a	b	с	Temperature(K)	a	b	с
298.15	-0.72	240.63	-291.38	323.15	-5.51	246.99	-305.75
303.15	-1.19	235.01	-284.21	328.15	-5.56	246.46	-306.60
308.15	-2.13	235.47	-286.35	333.15	-5.23	245.79	-308.45
313.15	-3.50	241.90	-296.76	338.15	-4.95	243.44	-307.46
318.15	-4.93	244.95	-301.07	343.15	-4.61	239.43	-303.85

Temperature(K)	а	b	c	Temperature(K)	a	b	c
348.15	-4.58	234.01	-296.32	363.15	-4.24	2322.93	-299.44
353.15	-5.99	239.31	-302.80	368.15	-7.10	249.03	-321.26
358.15	-5.31	237.62	-304.00	373.15	-8.84	261.83	-340.95

Table 4-27: Regressed parameters for modified Hartono model for 50 Wt % MEA loaded solution.

Comparison between predicted viscosities from modified setchnow type equation and experimental viscosities for 60 Wt % MEA loaded solution as a function of loading value at each temperature is shown in Figure 4-37.

Figure 4-37: Predicted viscosities from modified Setchnow type equation for 60 Wt % MEA loaded solution.

The predicted viscosities from this model showed fair agreement with experimental viscosities and the regressed parameters are shown in Table 4-28. An average absolute deviation of 0.171mPa.s was determined between experimental and predicted viscosities.

Temperature range (K)	K ₁	K ₂	K ₃	K ₄
298.15 - 373.15	2.5918	0.0012	4.5201	-0.0163

Table 4-28: Regressed parameters for modified setchnow type equation for 60 Wt % MEA loaded solution

Figure 4-38 compares the predicted viscosities from modified Hartono model to the experimental viscosities for 60 Wt % MEA loaded solution.

Figure 4-38: Predicted viscosities from modified Hartono model for 60 Wt % MEA loaded solution.

An average absolute deviation of 0.158mPa.s was determined between predicted and experimental viscosities by using modified Hartono model. The regressed parameter value for this model at each temperature is shown in Table 4-29.

Temperature(K)	a	b	С	Temperature(K)	a	b	с
298.15	39.27	3.71	2.42	323.15	40.49	-21.60	24.87
303.15	39.10	-2.07	8.52	328.15	38.19	-13.62	14.07
308.15	38.83	-4.25	9.02	333.15	36.75	-7.81	4.51
313.15	38.94	-6.73	9.59	338.15	34.90	-0.18	-7.13
318.15	40.12	-16.11	19.40	343.15	34.06	2.36	-11.77

Temperature(K)	a	b	c	Temperature(K)	a	b	c
348.15	33.78	1.33	-11.59	363.15	34.09	-11.43	4.91
353.15	33.81	-1.10	-9.36	368.15	38.21	-39.43	40.85
358.15	34.95	-7.78	-2.24	373.15	31.97	4.83	-21.41

Table 4-29: Regressed parameters for modified Hartono model for 60 Wt % MEA loaded solution.

Figure 4-39 compares the predicted viscosities from modified setchnow type equation to the experimental viscosities for 70 Wt % MEA loaded solution.

Figure 4-39: Predicted viscosities from modified Setchnow type equation for 70 Wt % MEA loaded solution.

The predicted viscosities from this model showed an average absolute deviation of 0.794mPa.s from experimental viscosities. The maximum deviation between predicted and experimental viscosity was observed at temperature 298.15 K for high loading value. The regressed parameters are shown in Table 4-30.

Temperature range	K ₁	\mathbf{K}_{2}	K ₃	K 4
(K)				
298.15 - 373.15	7.5214	-0.0121	2.2881	-0.0049

Table 4-30: Regressed parameters for modified setchnow type equation for 70 Wt % MEA loaded solution

Comparison between predicted viscosities from modified Hartono model and experimental viscosities for 70 Wt % MEA loaded solution as a function of loading value at each temperature is shown in Figure 4-40.

Figure 4-40: Predicted viscosities from modified Hartono model for 70 Wt % MEA loaded solution.

The predicted viscosities from this model showed fair agreement with experimental viscosities even at lower temperatures, where an average absolute deviation of 0.489mPa.s was determined. The parameter values are shown in Table 4-31.

Temperature(K)	a	b	с	Temperature(K)	a	b	с
298.15	29.09	22.24	-5.22	323.15	25.75	11.10	3.14
303.15	27.10	25.70	-10.97	328.15	20.60	33.67	-25.58
308.15	25.80	27.19	-15.17	333.15	20.21	30.92	-21.89
313.15	25.03	27.49	-17.37	338.15	18.30	36.92	-29.66
318.15	23.98	26.71	-16.65	343.15	17.65	37.15	-30.56

Temperature(K)	a	b	c	Temperature(K)	а	b	c
348.15	17.07	37.37	-31.59	363.15	16.97	28.68	-20.84
353.15	16.83	35.47	-29.42	368.15	16.31	32.68	-28.77
358.15	19.59	17.49	-6.69	373.15	18.74	14.19	-2.79

Table 4-31: Regressed parameters for modified Hartono model for 70 Wt % MEA loaded solution.

Modified setchnow type equation was able to predict viscosities for 80 Wt % MEA loaded solution, with maximum deviation from experimental viscosities at temperature 298.15 K. Figure 4-41 compares the predicted and experimental viscosities.

Figure 4-41: Predicted viscosities from modified Setchnow type equation for 80 Wt % MEA loaded solution.

An average absolute deviation of 2.810mPa.s was observed between experimental and predicted viscosities. The regressed parameters are shown in Table 4-32.

Temperature range (K)	K ₁	K ₂	K ₃	K4
298.15 - 373.15	10.5555	-0.0167	9.6412	-0.0259

Table 4-32: Regressed parameters for modified setchnow equation for 80 Wt % MEA CO₂ loaded solution.

Figure 4-42 compares the predicted viscosities from modified Hartono model to the experimental viscosities for 80 Wt % MEA loaded solution.

Figure 4-42: Predicted viscosities from modified Hartono model for 80 Wt % MEA loaded solution.

Modified Hartono model showed an average absolute deviation of 1.657mPa.s between predicted and experimental viscosities. Regressed parameter values are presented in Table 4-33.

Temperature(K)	a	b	c	Temperature(K)	a	b	с
298.15	21.56	36.77	-22.34	338.15	16.93	24.52	-15.94
303.15	20.47	36.02	-22.48	343.15	16.74	22.04	-13.55
308.15	19.69	34.71	-22.14	348.15	16.57	19.66	-11.31
313.15	18.99	33.56	-22.02	353.15	16.24	19.41	-12.16
318.15	18.39	32.27	-21.75	358.15	16.00	17.38	-10.21
323.15	17.89	30.07	-19.72	363.15	15.59	16.91	-10.48
328.15	17.53	27.87	-17.93	368.15	15.09	16.85	-11.03
333.15	17.11	26.28	-16.92	373.15	13.82	19.81	-14.91

Table 4-33: Regressed parameters for modified Hartono model for 80 Wt % MEA loaded solution

From Figures 4-35 to 4-42 it can be seen that both the modified setchnow type equation and modified Hartono model showed similar AAD's for 50 and 60 Wt % MEA loaded solutions. When it comes to higher Wt % MEA loaded solutions i.e. at 70 and 80 Wt % MEA, modified Hartono models showed better AAD's compared to modified setchnow type equation. Therefore, on the basis of this work, it can be said that that the modified Hartono model can be used for correlating MEA loaded solutions at high MEA concentration for improved results.

Though the average absolute deviations obtained from modified Hartono model are low, it is to be noted that this model provides bad fitting while estimating the parameters for lower concentrations i.e. 50 and 60 Wt % MEA loaded solutions in this work.

4.11.2 Correlation results for CO₂ loaded 3A1P solutions

Figure 4-43 compares the predicted viscosities from modified setchnow type equation to the experimental viscosities for 50 Wt % 3A1P loaded solution as a function of loading value at each temperature.

Figure 4-43: Predicted viscosities from modified Setchnow type equation for 50 Wt % 3A1P loaded solution.

Predicted viscosities from modified setchnow type equation showed a good agreement with experimental viscosities for 50 Wt % 3A1P loaded solution, where an average absolute deviation of 0.073mPa.s was determined. The regressed parameters for the temperature range are shown in Table 4-34.

Temperature range (K)	K ₁	K ₂	K ₃	\mathbf{K}_4
298.15 - 373.15	2.5967	-0.0026	-1.4731	0.0039

Table 4-34: Regressed parameters for modified setchnow equation for 50 Wt % 3A1P CO₂ loaded solution.

Comparison between predicted viscosities from modified Hartono model and experimental viscosities for 50 Wt % 3A1P loaded solution as a function of loading value at each temperature is shown in Figure 4-44.

Figure 4-44: Predicted viscosities from modified Hartono model for 50 Wt % 3A1P loaded solution.

The predicted viscosities from modified Hartono model showed good agreement with experimental viscosities, with an average absolute deviation of 0.066mPa.s. The determined model parameters at each temperature are presented in Table 4-35.

Temperature(K)	a	b	c	Temperature(K)	a	b	c
298.15	49.32	55.01	-70.05	323.15	41.46	76.85	-100.18
303.15	49.21	47.31	-58.78	328.15	39.71	85.35	-113.35
308.15	48.46	45.72	-56.54	333.15	38.69	89.44	-120.36
313.15	47.03	52.93	-67.68	338.15	37.53	92.76	-125.88
318.15	43.20	70.26	-90.89	343.15	35.29	99.00	-133.32

Temperature(K)	a	b	c	Temperature(K)	a	b	c
348.15	28.95	119.47	-155.14	363.15	19.01	149.51	-183.88
353.15	31.17	108.33	-141.12	368.15	14.48	168.79	-205.22
358.15	32.66	101.37	-133.05	373.15	22.69	135.09	-164.76

Table 4-35: Regressed parameters for modified Hartono model for 50 Wt % 3A1P loaded solution.

Comparison between predicted viscosities from modified setchnow type equation and experimental viscosities for 30 Wt % 3A1P loaded solution is shown in Figure 4-45.

Figure 4-45: Predicted viscosities from modified Setchnow type equation for 30 Wt % 3A1P loaded solution.

Modified setchnow type equation correlated the experimental viscosities of 30 Wt % 3A1P loaded solution satisfactorily, but showed a maximum deviation at lower temperature(298.15 K). An average absolute deviation of 0.034mPa.s was determined between experimental and predicted viscosities. The regressed parameters for the temperature range are shown in Table 4-36.

Temperature range (K)	K ₁	\mathbf{K}_2	K ₃	K_4
298.15 - 373.15	-1.1471	0.0069	2.1341	-0.0084

Table 4-36: Regressed parameters for modified setchnow equation for 30 Wt % 3A1P CO₂ loaded solution.

Figure 4-46 compares the predicted viscosities from modified Hartono model to the experimental viscosities for 30 Wt % 3A1P loaded solution.

Figure 4-46: Predicted viscosities from modified Hartono model for 30 Wt % 3A1P loaded solution.

Predicted viscosities from modified Hartono model correlated the experimental viscosities satisfactorily. An average absolute deviation of 0.010mPa.s was determined and the obtained parameter values are presented in Table 4-37.

Temperature(K)	a	b	с	Temperature(K)	а	b	с
298.15	73.79	131.84	-195.10	338.15	93.82	234.44	-419.79
303.15	97.94	26.29	-69.36	343.15	98.99	210.14	-393.85
308.15	93.15	66.20	-121.56	348.15	108.40	160.95	-336.53
313.15	90.64	115.95	-197.09	353.15	106.28	185.55	-373.05
318.15	103.16	84.70	-179.12	358.15	108.34	196.77	-397.99
323.15	110.04	82.74	-198.38	363.15	82.04	296.99	-509.14
328.15	89.10	221.47	-382.69	368.15	76.42	216.73	-347.22
333.15	90.72	239.85	-419.55	373.15	127.25	-32.00	-60.63

Table 4-37: Regressed parameters for modified Hartono model for 30 Wt % 3A1P loaded solution
From Figures 4-43 to 4-47 it can be seen that modified Hartono model produced best results compared to modified setchnow type equation by showing low average absolute deviations, but poor fittings were observed while estimating the parameters by modified Hartono model.

4.12 Uncertainties

The uncertainties in this work were analysed by using QUAM (Quantifying Uncertainty in Analytical Measurements) method, developed by Eurachem and CITAC.(Ellison & Williams, 2012)

Quantifying the uncertainty components

Uncertainty in viscosity measurements can be caused due to several factors such as purity of chemicals used, sample preparations methods and instrument effects. All these uncertainties are identified and presented as combined uncertainty in viscosity measurement at the end of this section.

$$\frac{u_c(\eta)}{\eta_i} = \sqrt{\sum_{i=1}^{N} (\frac{u(x_i)}{x_i})^2}$$
(11)

 $u_c(\eta) = combined$ uncertainty in viscosity measurements $\eta_i = viscosity$ for each temperature at each concentration $u(x_i) = standard$ uncertainty of each intermediate value

$$\frac{u(x_i)}{x_i} = relative \ uncertainty$$

A triangular distribution is assumed for calculating the standard uncertainties for all the sources as the probability of each value to be near the distribution is higher.

Uncertainty in Purity:

All the amines used in this work were purchased from Sigma Aldrich and according to the certificate of analysis by the supplier, the purity of MEA, AMP, PZ and 3A1P are given below

MEA - ≥99.5%

AMP - ≥90%

PZ - ≥98.5%

3A1P - ≥98.5%

A triangular distribution is assumed as the probability of concentration for each amine near the specified % is higher. The standard uncertainty for purity of amines is given as $u(Pr_{AMINE})$.

$$u(Pr_{MEA}) = \frac{0.005}{\sqrt{6}} = 0.002 \tag{12}$$

$$u(Pr_{AMP}) = \frac{0.1}{\sqrt{6}} = 0.041 \tag{13}$$

$$u(Pr_{PZ}) = \frac{0.015}{\sqrt{6}} = 0.006 \tag{14}$$

$$u(Pr_{3A1P}) = \frac{0.015}{\sqrt{6}} = 0.006 \tag{15}$$

Uncertainty in weighing the sample:

All the samples were weighed by using Mettler Toledo XS-403S. The manufacturer quotes the accuracy of measurements to ± 0.001 g. Therefore, from triangular distribution the standard uncertainty in weighing (u(w)) the sample is

$$u(w) = \frac{0.001}{\sqrt{6}} = 0.0004g \tag{16}$$

Uncertainty in Temperature:

According to the rheometer manufacturer - Anton Paar, they quote that the accuracy in temperature is ± 0.03 K. Thus, the standard uncertainty in temperature (u(T))is

$$u(T) = \frac{0.03}{\sqrt{6}} = 0.012K \tag{17}$$

Uncertainty in Torque:

All the rheometers produce viscosity values as a function of angular velocity and torque. They use certain form factors to calculate viscosity by converting torque to shear stress and angular velocity to shear rate. Hence in this regard, the uncertainties in torque (u(Torque)) is important.

According to Anton Paar the accuracy of torque in the measuring device is ± 0.0002 Nm Assuming triangular distribution,

$$u(Torque) = \frac{0.0002}{\sqrt{6}} = 8.16E - 5Nm \quad (18)$$

Uncertainty in Titrator:

The uncertainty in dosing unit for Metrohm titrando 905 is important as the CO₂ loading value is calculated based on the consumed volumes of 0.1M HCL and 0.1M NaOH by this equipment. The manufacturer indicated the accuracy of dosing unit to be $\pm 30\mu$ L.

The standard uncertainty in dosing(u(Do)) unit is

$$u(Do) = \frac{30}{\sqrt{6}} = 12.247\mu L \tag{19}$$

Therefore, by using formula shown in equation (11), the combined uncertainty for pure MEA and pure 3A1P viscosity were estimated to be 0.013mPa.s and 0.039mPa.s respectively. The combined uncertainties in viscosity for aqueous MEA solutions, aqueous 3A1P solutions and AMP + PZ + Water were estimated to be 0.010mPa.s, 0.026mPa.s, 0.108mPa.s respectively. The combined uncertainty for CO₂ loaded MEA and 3A1P systems were estimated to be 0.060mPa.s and 0.022mPa.s respectively.

5 Conclusion

Viscosities for the binary system of 50-95 Wt % MEA aqueous solutions, 30-90 Wt % 3A1P aqueous solutions and ternary mixtures of AMP + PZ + Water for mass fractions 0.2/0.05, 0.3/0.05, 0.4/0.05 AMP/PZ were measured from temperatures 298.15 K to 373.15 K. In all the cases viscosities of aqueous MEA and 3A1P solutions decreased with increase in temperature and increased with increase in respective amine concentrations. While for AMP + PZ + water, viscosities increased with increase in AMP concentration in the mixture. Viscosity data for 50-95 Wt % MEA aqueous solutions were compared with available literature and minimal deviations were observed. No research data was available for comparing the binary mixture of 3A1P aqueous solutions and the ternary mixture of AMP + PZ + Water viscosities.

Viscosity data for pure MEA was measured from temperatures 298.15 K to 373.15 K and found to be in line with data produced by other researchers. Viscosity data for pure 3A1P was found to be consistently low while compared with literature data throughout the same temperature range as mentioned above. These low viscosity values are likely due to the purity of 3A1P.

Five different models were used to correlate viscosity data for unloaded MEA and 3A1P solutions. Among them, the lowest average absolute deviation of 0.032mPa.s between experimental and predicted viscosities for MEA aqueous solutions was calculated using Heric-Brewer model. Whereas, the average absolute deviation from Redlich-Kister(second order), Herraez, Jouyban-Acree and Grunberg-Nissan models were found to be 0.035, 0.067, 0.327, 0.435mPa.s respectively.

Similarly the lowest average absolute deviation of 0.033mPa.s between experimental and predicted viscosities for 3A1P aqueous solutions was determined from Redlich-Kister(second order) model. The models of Heric-Brewer, Herraez, Jouyban-Acree and Grunberg-Nissan produced an average absolute deviation of 0.077, 0.088, 0.440, 0.819mPa.s respectively.

All the parameter values obtained for each correlation are temperature dependent.

Viscosities of ternary mixture AMP + PZ + water were correlated using two models. Average absolute deviation of 0.082mPa.s was observed from the model developed by Samanta & Bandyopadhyay. Average absolute deviations for 20/5, 30/5, 40/5, 50/5 Wt % AMP/PZ from Andrade equation were found to be 0.048, 0.064, 0.125, 0.212mPa.s respectively.

Viscosities of 50-80 Wt % MEA CO_2 loaded solutions and 30, 50 Wt % 3A1P CO_2 loaded solutions were measured from temperatures 298.15 K to 373.15 K with five different CO_2 loadings. Viscosities of these solutions increased with increase in CO_2 loading and were found to be higher than viscosities of unloaded MEA and 3A1P solutions at respective concentrations and

temperatures. In all cases, viscosities of loaded solutions increased rapidly at high loadings and lower temperatures but showed less effect at higher temperatures and low CO_2 loadings. A tremendous increase in viscosity was observed especially for 70 and 80 Wt % MEA loaded solution at low temperatures and high CO_2 loadings (refer to chapter 4.4).

Two models were used to correlate viscosity data for CO_2 loaded MEA and 3A1P solutions. Among these two models, the modified Hartono model provided lowest AAD's in all cases, although poor fittings were obtained while estimating parameters. The average absolute deviations from modified setchnow type equation and modified Hartono model for 50, 60, 70, 80 Wt % MEA CO_2 loaded solutions were observed to be (0.098, 0.171, 0.794 and 2.810) and (0.092, 0.158, 0.489, 1.657)mPa.s respectively. Similarly, for 30, 50 Wt % 3A1P loaded solutions the average absolute deviations from modified setchnow type equation and modified model for 50, 60, 70, 80 Wt % MEA (0.0489, 1.657)mPa.s respectively. Similarly, for 30, 50 Wt % 3A1P loaded solutions the average absolute deviations from modified setchnow type equation and modified Hartono model were observed to be (0.034, 0.073) and (0.010, 0.066)mPa.s.

Sources for uncertainty in viscosity measurements were identified and represented as combined uncertainty. The estimated combined uncertainty for unloaded aqueous MEA, 3A1P solutions and AMP + PZ + Water was estimated to 0.010, 0.026, 0.108mPa.s respectively. For pure MEA and 3A1P, the values were estimated to be 0.013 and 0.039mPa.s respectively. The combined uncertainty for CO_2 loaded MEA and 3A1P systems were approximated to be 0.060 and 0.022mPa.s respectively.

The main purpose of this thesis to cover the gap and extend the range of available viscosity data for the systems mentioned has been fulfilled.

References

- 8.1 The Alstom Chilled ammonia process. Retrieved 28th feb, 2016, from https://hub.globalccsinstitute.com/publications/evaluation-novel-post-combustion-co2-capture-solvent-concepts/81-alstom-chilled-ammonia
- Al-Abbas, A. H., & Naser, J. (2013). Oxy–Fuel Combustion in the Lab–Scale and Large–Scale Fuel–Fired Furnaces for Thermal Power Generations. In M. Rasul (Ed.), *Thermal Power Plants - Advanced Applications*.
- Amundsen, T. G., Øi, L. E., & Eimer, D. A. (2009). Density and Viscosity of Monoethanolamine + Water + Carbon Dioxide from (25 to 80) °C. J. Chem. Eng. Data, 54, 3096-3100.
- Andrade, E. N. D. C. (1930). The viscosity of liquids. Nature, 125, 309-310.
- AntonPaar. (2006). Physica MCR, Instrument manual.
- Arachchige, U. S. P. R., Aryal, N., Eimer, D. A., & Melaaen, M. C. (2013). Viscoities of Pure and Aqueous Solutions of Monoethanolamine(MEA), Diethanolamine(DEA) and N-Methyldiethanolamine(MDEA). Annual Transactions of the Nordic Rheology Society,, 21.
- Cacela, C., Baudot, A., Duarte, M. L., Matos-Beja, A. M., Ramos, Silva, M., . . . Fausto, R. (2003). Low temperature polymorphism in 3-amino-1-propanol. *J. Mol. Struct.*, 649, 143-153.
- Davison, J., Freund, P., & Smith, A. (2001). Putting carbon back into the groung: IEA Greenhouse Gas R&D Programme.
- DiGuilio, R. M., Lee, R.-J., Schaeffer, S. T., Brasher, L. L., & Teja, A. S. (1992). Densities and Viscosities of Ethanolamines. J. Chem. Eng. Data, 37, 239-242.
- Ellison, S. L. R., & Williams, A. (2012). Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement (Third ed.).
- Falk Pederson, O., Dannstrom, H., Gronvold, M., Stuksrud, D., & Ronning, O. (2000). Gas treating using membrane gas/liquid contactors. Paper presented at the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia.
- Fang, M., & Zhu, D. (2012). Chemical Absorption. In W.-T. Chen, J. Seiner, T. Suzuki & M. Lackner (Eds.), *Handbook of climate change mitigation*.
- Freeman, B., & Rhudy, R. (2007). Assessment of Post-Combustion Carbon Capture Technology Developments
- Fu, D., Chen, L., & Qin, L. (2012). Experiment and model for the viscosity of carbonated MDEA– MEA aqueous solutions. *Fluid Phase Equilib.*, 319, 42-47.
- Fu, D., Li, Z., & Liu, F. (2014). Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution. *J. Chem. Thermodyn.*, 68, 20-24.
- García-Abuín, A., Gómez-Díaz, D., & Navaza, J. M. (2013). Density, Speed of Sound, and Viscosity of Monoethanolamine + Water + N- Ethyl-2-pyrrolidone from T = (293.15 to 323.15) K. J. Chem. Eng. Data, 58, 3387–3391.
- Geng, Y., Chen, S., Wang, T., Yu, D., Peng, C., b, H. L., & Hu, Y. (2008). Density, viscosity and electrical conductivity of 1-butyl-3-methylimidazolium hexafluorophosphate + monoethanolamine and + N, N-dimethylethanolamine. *J. Mol. Liq.*, *143*, 100-108.
- Grunberg, L., & A.H.Nissan. (1949). Mixture law for viscosity. Nature, 164, 799-800.
- Hartono, A., Mba, E. O., & Svendsen, H. F. (2014). Physical Properties of Partially CO2 Loaded Aqueous Monoethanolamine (MEA). J. Chem. Eng. Data, 59, 1808-1816.

- Heric, E. L., & Brewer, J. G. (1967). Viscosity of Some Binary liquid Nonelectrolyte Mixtures. J. Chem. Eng. Data, 12(4), 574-583.
- Howard Herzog, J. M., Alan Hatton. (2009). Advanced Post-Combustion CO2 Capture
- Idris, Z. (Ed.). (2015). Operating manual for rheometer. Telemark University College
- Idris, Z., & Eimer, D. A. (2016). Density Measurements of unloaded and CO₂ loaded 3-Amino-1propanol at temperatures(293.15 to 353.15)K. *J. Chem. Eng. Data, 61*, 173-181.
- IEA. (2009). Global Energy Trends to 2030. World Energy Outlook
- Introduction, nomenclature and classification of aliphatic amines. from http://chemguide.blogspot.no/2010/04/introduction-nomenclature-and.html
- Islam, M. N., Islam, M. M., & Yeasmin, M. N. (2004). Viscosity of aqueous solutions of 2methoxyethanol, 2-ethoxyethanol, and ethanolamine. J. Chem. Thermodyn., 36, 889-893.
- J.B.Irving. (1977). Viscositis of Binary Liquid mixtures: The Effectiveness of Mixture Equations. *N.E.L. Report* (Vol. 631): Natural Engineering Laboratory(Great Britain).
- J.H.Dymond. (1985). Hard-sphere theories of transport properties. Chem. Soc. Rev, 14, 317-356.
- J.V.Herraez, R.Belda, O.Diez, & M.Herraez. (2008). An equation for the correlation of viscosities of binary mixtures. J. Solution Chem., 37, 233-248.
- Jiru, Y. (2013). Mass Transfer Kinetics of Carbon Dioxide into Concentrated Aqueous Solutions of Monoethanolamine. (Doctor of Philosophy), Telemark University College, Norway.
- Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z., & Acree, W. E. (2005). Calculation of the viscosity of binary liquids at various temperatues using Jouyban-Acree Model. *Chem. Pharm. Bull.*, 53(5), 519-523.
- Kapadi, U. R., Hundiwale, D. G., Patil, N. B., & Lande, M. K. (2002). Viscosities, excess molar volume of binary mixtures of ethanolamine with water at 303.15, 308.15, 313.15 and 318.15 K. *Fluid Phase Equilib.*, 201, 335-341.
- Kelayeh, S. A., Jalili, A. H., Ghotbi, C., Hosseini-Jenab, M., & Taghikhani, V. (2011). Densities, Viscosities, and Surface tensions of Aqueous Mixtures of Sulfolane + Triethanolamine and Sulfolane + Diisopropanolamine. J. Chem. Eng. Data, 56, 4317-4324.
- Kermanpour, F., & Niakan, H. Z. (2012). Measurement and modeling the excess molar properties of binary mixtures of {[C6mim][BF4] + 3-amino-1-propanol} and {[C6mim][BF4] + isobutanol}: Application of Prigogine–Flory–Patterson theory. J. Chem. Thermodyn., 48, 129-139.
- Kermanpour, F., Niakan, H. Z., & Sharifi, T. (2013). Density and Viscosity Measurements of Binary Alkanol Mixtures from (293.15 to 333.15) K at Atmospheric Pressure. J. Chem. Eng. Data, 58, 1086-1091.
- Kestin, J., Sokolov, M., & Wakeham, w. A. (1978). Viscosity of liquid water in the range -8°c to 150°c. J. Phys. Chem. Ref. Data, 7(3), 941-948.
- Kohl, A. L., & Nielsen, R. B. (1997). Gas Purification: Gulf Publishing Company.
- Lee, M.-J., & Lin, T.-K. (1995). Density and Viscosity for Monoethanolamine + water, + Ethanol, and + 2-Propanol. J. Chem. Eng. Data, 40, 336-339.
- Li, M.-H., & Lie, Y.-C. (1994). Densities and Viscosities of Solutions of Monoethanolamine + N-Methyldiethanolamine + Water and Monoethanolamine + 2-Amino-2-methyl-1 - propanol + Water. J. Chem. Eng. Data, 39, 444-447.
- Li, X.-X., Fan, G.-C., Zhang, Z.-L., Wang, Y.-W., & Lu, Y.-Q. (2013). Density and Viscosity for Binary Mixtures of Diethylene Glycol Monobutyl Ether with Monoethanolamine,

Diethanolamine, and Triethanolamine from (293.15 to 333.15) K. J. Chem. Eng. Data, 58, 1229-1235.

- Liu, Y., Zhang, L., & Watanasiri, S. (1999). Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO₂ System Using the Electrolyte Nonrandom-Two-Liquid Model. *Ind. Eng. Chem. Res.*, 38, 2080-2090.
- Maham, Y., Liew, C.-N., & Mather, A. E. (2002). Viscosities and Excess Properties of AqueousSolutions of Ethanolamines from 25 to 80°C. J. Solution Chem., 31(9).
- Mandal, B. P., Kundu, M., & Bandyopadhyay, S. S. (2003). Density and Viscosity of Aqueous Solutions of (N-Methyldiethanolamine + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine), (2-Amino-2-methyl-1-propanol + Monoethanolamine), and (2-Amino-2methyl-1-propanol + Diethanolamine). J. Chem. Eng. Data, 48, 703-707.
- Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer. (2005). Carbon Dioxide Capture and Storage *IPCC Special Report on Carbon dioxide Capture and Storage*.
- MIMURA, T., MATSUMOTO, K., IIJIMA, M., & MITSUOKA, S. (2000). *Development and application of flue gas carbon dioxide recovery technology*. Paper presented at the Fifth Greenhouse Gas Control Technologies, Cairns, Australia.
- Muraleedharan, R., Mondal, A., & Mandal, B. (2012). Absorption of carbon dioxide into aqueous blends of 2-amino-2-hydroxymethyl-1,3-propanediol and monoethanolamine. Sep. Purif. Technol., 94, 92-96.
- Murshid, G., Shariff, A. M., Keong, L. K., & Bustam, M. A. (2011). Physical Properties of Aqueous Solutions of Piperazine and (2-Amino-2-methyl-1-propanol + Piperazine) from (298.15 to 333.15) K. J. Chem. Eng. Data, 56, 2660-2663.
- NASA. (2015). Vital Signs: Carbon Dioxide. Retrieved 31st january, 2015, from http://climate.nasa.gov/vital-signs/carbon-dioxide/
- O.Redlich, & A.T.Kister. (1948). Algebraic representation of hermodynamic properties and the classification of solutions. *Ind. Eng. Chem, 40*, 345-348.
- Øi, L. E. (2012). *Removal of CO2 from exhaust gas.* (degree of Doctor Philosophiae), Telemark University College.
- Omrani, A., Rostami, A. A., & Mokhtary, M. (2010). Densities and volumetric properties of 1,4dioxane with ethanol, 3-methyl-1-butanol, 3-amino-1-propanol and 2-propanol binary mixtures at various temperatures. J. Mol. Liq., 157, 18-24.
- Paul, S., & Mandal, B. (2006). Density and Viscosity of Aqueous Solutions of (N-Methyldiethanolamine +Piperazine) and (2-Amino-2-methyl-1-propanol + Piperazine) from (288 to 333) K. J. Chem. Eng. Data, 51, 1808-1810.
- Poling, B. E., Prausnitz, J. M., & O'Connell, J. P. (2007). *Properties of gases and liquids* (Vol. 5th): McGraw Hill.
- PRE-COMBUSTION CO2 CAPTURE. Retrieved 7th february, 2016, from https://www3.kfupm.edu.sa/CCS/Pre-Combustion.html
- R.A.McAllister. (1960). The viscosity of liquid mixtures. AIChE, 6, 427-431.
- Rieme, P. W. F., & Ormerod, W. G. (1995). International perspectives and the results of carbon dioxide capture disposal and utilisation studies. *Energy Convers Manage*, 36((6-9)), 813-818.
- Samanta, A., & Bandyopadhyay, S. S. (2006). Density and Viscosity of Aqueous Solutions of Piperazine and (2-Amino-2-methyl-1-propanol + Piperazine) from 298 to 333 K. J. Chem. Eng. Data, 51, 467-470.

- Sartor, G., & Savage, D. W. (1983). Sterically Hindered Amines for CO, Removal from Gases. *Ind. Eng. Chem. Fund.*, 22(2).
- Shokouhi, M., Jalili, A. H., Samani, F., & Hosseini-Jenab, M. (2015). Experimental investigation of the density and viscosity of CO2-loaded aqueous alkanolamine solutions. *Fluid Phase Equilib.*, 404, 96-108.
- Song, J.-H., Park, S.-B., Yoon, J.-H., Lee, H., & Lee, K.-H. (1996). Densities and Viscosities of Monoethanolamine + Ethylene Glycol + Water. J. Chem. Eng. Data, 41, 1152-1154.
- T.T.Teng, Y.Maham, L.G.Helper, & A.E.Mather. (1994). Viscosity of Aqueous Solutions of N-Methyldiethanolamine and of Diethanolamine. J. Chem. Eng. Data, 39, 290-293.
- Teng, T. T., & Mather, A. E. (1990). Sofublifty of CO₂ in an AMP Solution. J. Chem. Eng. Data, 35, 410-411.
- Tontiwachwuthikul, P., Melsen, A., & Lim, C. J. (1991). Solubility of COz in 2-Amino-2-methyl-1-propanol Solutions. J. Chem. Eng. Data, 36, 130-133.
- Veawab, A., Aroonwilas, A., Chakma, A. and Tontiwachwuthikul, P. (2001). Solvent Formulation for CO2 Separation from Flue Gas Streams. Paper presented at the First National Conference on Carbon Sequestration, Washington, DC.
- . A VGB Report on the State of the Art. (2004) CO₂ Capture and Storage.
- Weiland, R. H., Dingman, J. C., Cronin, D. B., & Browning, G. J. (1998). Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends. J. Chem. Eng. Data, 43, 378-382.
- Xu, F., Gao, H., Dong, H., Wang, Z., Zhang, X., Ren, B., & Zhang, S. (2014). Solubility of CO₂ in aqueous mixtures of monoethanolamine and dicyanamide-based ionic liquids. *Fluid Phase Equilib.*, 365, 80-87.
- Xu, S., Otto, F. D., & Mather, A. E. (1991). Physical Properties of Aqueous AMP Solutions. J. Chem. Eng. Data, 36, 71-75.
- Zhang, L. F. (2006). *The southwest regional carbon sequestration partnership-development of CO*₂ *capture technology.In.* Paper presented at the Second Annual Carbon Capture and Transportation Working Group Workshop, Palo Alto, CA.

Appendices

- Appendix 1: Task description
- Appendix 2: Material safety and data sheets
- Appendix 3: Step-by-Step procedures for using 905 Titrando and calculation procedure for analyzing concentration of amine and CO₂ loading value.
- Appendix 4: CO₂ loading Time calculations
- Appendix 5: Operating manual for Rheometer

Appendix 1

-ISN	University College of Southeast Norway

Faculty of Technology M.Sc. Programme

	MASTER'S T	HESIS, COURSE CODE FMH606	
Student:	Nithin Bharadwaj K	ummamuru	
Thesis title:	Measurement and co	orrelation of aqueous amine solution viscosities	
Signature:	nithin bhard	rdwaj.K	
Number of pages:	193		
Keywords:	Viscosity, Monoetha	Viscosity, Monoethanolamine, MEA, 2-Amino-2-methyl-1-propanol, AMP, Piperazine	
	PZ, 3-Amino-1-prop	anol, 3A1P, CO ₂ loading, high concentrations, Correlations	
Supervisor:	Dag A. Eimer	Sign.:	
2 nd supervisor:	Zulkifli Bin Idris	Sign.:	
Censor:		Sign.:	
External partner:	Tel Tek	Sign.:	
Availability:	Open		
Archive approval (su	pervisor signature): Sign	Date: 03.June.2016	

Abstract:

The viscosity of amines are important in designing equipment for Carbon dioxide (CO_2) capture as it affects heat transfer coefficient, pressure drop in heat exchangers and piping system respectively. Reliable viscosity data from binary, tertiary, and quaternary systems are necessary for the development of kinetic and equilibrium models. This work discusses viscosity of selected alkanolamine systems with the aim of providing new and complementary experimental data. Viscosities were measured using a rheometer with a double gap measuring system, and all the measurements were performed at a constant shear rate at 4 bar throughout different temperatures. The first part of this thesis covers the viscosity for the binary system of Monoethanolamine (MEA) and 3-Amino-1-propanol (3A1P) aqueous solutions at high concentrations and ternary system of 2-Amino-2-methyl-1-propanol (AMP) + Piperazine (PZ) + Water for mass fractions 0.2/0.05, 0.3/0.05, 0.4/0.05 AMP/PZ. All the measurements were performed at temperatures between 298.15 K and 373.15 K. The second part of this thesis covers the viscosities of 50-80 Wt % MEA CO₂ loaded solutions and 30, 50 Wt % 3A1P CO2 loaded solutions with five different CO2 loadings from temperatures 298.15 K to 373.15 K. All the measured viscosities were compared and found to agree with literature data to the extent available. Viscosities of these amine solutions were found to decrease with increase in temperature and increase with increase in CO2 loadings and respective amine concentrations. In this work, data representation was also investigated by five different models for aqueous MEA, and 3A1P solutions. Two different models were used to correlate viscosity data for ternary system AMP + PZ + water. The experimental viscosities for CO2 loaded MEA and 3A1P solutions were regressed by using two models. These are discussed in detail in the subsequent chapters. The experimental viscosities showed good agreement with regressed values of viscosities from various models. The uncertainties in measurements are also discussed.

University College of Southeast Norway accepts no responsibility for results and conclusions presented in this report.

Appendix 2

Material safety and data sheets

Monoethanolamine

SIGMA-ALDRICH®

sigma-aldrich.com

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Specification

Product Name: Ethanolamine - purified by redistillation, ≥99.5%

Product Number: CAS Number: MDL: Formula: Formula: 411000 141-43-5 MFCD00008183 C2H7NO 61.08 g/mol

TEST	Specification		
Appearance (Color)	Colorless		
Appearance (Form)	Liquid or Viscous Liquid		
Infrared spectrum	Conforms to Structure		
Color Test	< 20 APHA		
Purity (GC)	> 99.50 %		
Recommended Retest Period			
2 Years			
Specification: PRD.1.ZQ5.10000033461			

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

1 of 1

SIGMA-ALDRICH

sigma-aldrich.com

SAFETY DATA SHEET according to Regulation (EC) No. 453/2010 Version 6.0 Revision Date 16.07.2015

Print Date 10.07.2015 Print Date 01.04.2016

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1	I.1 Product identifiers Product name : Ethanolamine		Ethanolamine	
	Product Number Brand Index-No. REACH No. CAS-No.		411000 Aldrich 603-030-00-8 A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline. 141-43-5	
1.2	Relevant identified uses of	the	e substance or mixture and uses advised against	
	Identified uses	:	Laboratory chemicals, Manufacture of substances	
1.3	Details of the supplier of the safety data sheet			
	Company	:	Sigma-Aldrich Company Ltd. The Old Brickyard NEW ROAD, GILLINGHAM Dorset SP8 4XT UNITED KINGDOM	
	Telephone Fax E-mail address	:	+44 (0)1747 833000 +44 (0)1747 833313 eurtechserv@sial.com	
1.4	Emergency telephone num	be	r	
	Emergency Phone #		+44 (0)1747 833100	

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) No 1272/2008 Acute toxicity, Oral (Category 4), H302 Acute toxicity, Inhalation (Category 4), H332 Acute toxicity, Dermal (Category 4), H312 Skin corrosion (Category 1B), H314 Chronic aquatic toxicity (Category 3), H412 Specific target organ toxicity - single exposure (Category 3), Respiratory system, H335

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 Label elements

Labelling according Regulation (EC) No 1272/2008
Pictogram

Aldrich - 411000

Page 1 of 8

In case of skin contact

Take off contaminated clothing and shoes immediately. Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed The meet important known symptoms and effects are described in the lab

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed No data available

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

- 5.2 Special hazards arising from the substance or mixture Carbon oxides, Nitrogen oxides (NOx)
- 5.3 Advice for firefighters Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information Use water spray to cool unopened containers.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas. For personal protection see section 8.

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13). Keep in suitable, closed containers for disposal.

6.4 Reference to other sections For disposal see section 13.

SECTION 7: Handling and storage

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

hygroscopic Handle and store under inert gas.

Aldrich - 411000

Page 3 of 8

Storage class (TRGS 510): Combustible, corrosive hazardous materials

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	ValueForm	Control	Basis
		of exposure	parameters	
Ethanolamine	141-43-5	STEL	3 ppm	UK. EH40 WEL - Workplace
			7.6 mg/m3	Exposure Limits
	Remarks	Can be abso	rbed through skin.	The assigned substances are those
		for which the	re are concerns th	at dermal absorption will lead to
		systemic toxi	icity.	-
		TWA	1 ppm	UK. EH40 WEL - Workplace
			2.5 mg/m3	Exposure Limits
		Can be abso	rbed through skin.	The assigned substances are those
		for which the	re are concerns th	at dermal absorption will lead to
		systemic toxi	city.	
		TWA	1 ppm	Europe. Indicative occupational
			2.5 mg/m3	exposure limit values
		Identifies the	possibility of signi	ficant uptake through the skin
		CTEL	2	Europe, Indicative conventional
		STEL	7.6 mg/m3	exposure limit values
		Identifies the	possibility of signi	ficant uptake through the skin
		Indicative		

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Tightly fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Full contact Material: Nature latex/chloroprene Minimum layer thickness: 0.6 mm Break through time: 480 min Material tested:Lapren® (KCL 706 / Aldrich Z677558, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.2 mm Break through time: 30 min Material tested:Dermatril® P (KCL 743 / Aldrich Z677388, Size M)

Aldrich - 411000

Page 4 of 8

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

	a)	Appearance	Form: liquid, clear Colour: colourless
	b)	Odour	amine-like
	c)	Odour Threshold	No data available
	d)	pН	12.1 at 100 g/l at 20 °C
	e)	Melting point/freezing point	Melting point/range: 10 - 11 °C - lit.
	f)	Initial boiling point and boiling range	170 °C - lit. 69 - 70 °C at 13 hPa
	g)	Flash point	91 °C - closed cup
	h)	Evaporation rate	No data available
	i)	Flammability (solid, gas)	No data available
	j)	Upper/lower flammability or explosive limits	Upper explosion limit: 17 %(V) Lower explosion limit: 2.5 %(V)
	k)	Vapour pressure	0.3 hPa at 20 °C
	I)	Vapour density	2.11 - (Air = 1.0)
	m)	Relative density	1.012 g/mL at 25 °C
	n)	Water solubility	1,000 g/l at 20 °C - completely miscible
	o)	Partition coefficient: n- octanol/water	log Pow: -2.299 at 25 °C
	p)	Auto-ignition temperature	424 °C
	q)	Decomposition temperature	No data available
	r)	Viscosity	No data available
Aldrich -	s) - 411(Explosive properties	No data available

Page 5 of 8

	t)	Oxidizing properties	No data available
9.2	Oth	her safety information	
		Relative vapour density	2.11 - (Air = 1.0)
SECT	ON	10: Stability and reactivity	ty
10.1	Rea No	activity data available	
10.2	Ch Abs Sta	emical stability sorbs carbon dioxide (CO2 ble under recommended si) from air. torage conditions.
10.3	Po: No	ssibility of hazardous rea data available	ctions
10.4	Co Exp Hea	nditions to avoid posure to moisture at, flames and sparks.	
10.5	Inc Str	ompatible materials ong acids and oxidizing age	ents, Iron, Copper, Brass, Rubber
10.6	Ha: Oth In t	zardous decomposition p ner decomposition products he event of fire: see section	roducts - No data available n 5
SECT	ON	11: Toxicological inform	ation
11.1	Inf	ormation on toxicological	effects
	Act LD (OE	ute toxicity 50 Oral - Rat - male and fei ECD Test Guideline 401)	male - 1,089 mg/kg
	Inh trac	alation: Material is extreme ct.	ly destructive to the tissue of the mucous membranes and upper respiratory
	LD!	50 Dermal - Rabbit - 1,015	mg/kg
	Ski Res (OB	in corrosion/irritation in - Rabbit sult: Causes burns. ECD Test Guideline 404)	
	Ser Eye Res (OB	rious eye damage/eye irri es - Rabbit sult: Corrosive ECD Test Guideline 405)	tation
	Re: No	spiratory or skin sensitis data available	ation
	Ge Am Sal Re	rm cell mutagenicity les test Imonella typhimurium sult: negative	
	OE Mo Re:	CD Test Guideline 474 use - male and female sult: negative	
	Ca	rcinogenicity	
	IAF	RC: No component of probable, possible	this product present at levels greater than or equal to 0.1% is identified as or confirmed human carcinogen by IARC.
Aldrich	411	000	Page 6 of 8

Reproductive toxicity No data available

Specific target organ toxicity - single exposure No data available

Specific target organ toxicity - repeated exposure No data available

Aspiration hazard No data available

Additional Information RTECS: KJ5775000

burning sensation, Cough, wheezing, laryngitis, Shortness of breath, spasm, inflammation and edema of the larynx, spasm, inflammation and edema of the bronchi, pneumonitis, pulmonary edema, Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin. To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Liver - Irregularities - Based on Human Evidence

SECTION 12: Ecological information

12.1 Toxicity

12 2

Toxicity to fish	semi-static test LC50 - Cyprinus carpio (Carp) - 150 mg/l - 96 h
Toxicity to daphnia and other aquatic invertebrates	EC50 - Daphnia magna (Water flea) - 65 mg/l - 48 h
Toxicity to algae	static test EC50 - Selenastrum capricornutum (green algae) - 2.8 mg/l - 72 h (OECD Test Guideline 201)
Toxicity to bacteria	EC50 - Pseudomonas putida - 110 mg/l - 17 h (DIN 38 412 Part 8)
Persistence and degrad Biodegradability	dability aerobic - Exposure time 28 d

aerobic - Exposure time 28 d Result: > 70 % - Readily biodegradable (OECD Test Guideline 301F)

12.3 Bioaccumulative potential No data available

12.4 Mobility in soil No data available

12.5 Results of PBT and vPvB assessment

This substance/mixture contains no components considered to be either persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB) at levels of 0.1% or higher.

12.6 Other adverse effects Toxic to aquatic life.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product

This combustible material may be burned in a chemical incinerator equipped with an afterburner and scrubber. Offer surplus and non-recyclable solutions to a licensed disposal company.

Contaminated packaging

Dispose of as unused product.

Aldrich - 411000

Page 7 of 8

14.1	UN numbe ADR/RID: 2	r 2491	IMDG: 2491	IATA: 2491
14.2	UN proper ADR/RID: IMDG: IATA:	shipping name ETHANOLAMINE ETHANOLAMINE Ethanolamine		
14.3	Transport ADR/RID: 8	hazard class(es)	IMDG: 8	IATA: 8
14.4	Packaging ADR/RID: I	group	IMDG: III	IATA: III
14.5	Environme ADR/RID: r	ental hazards 10	IMDG Marine pollutant: no	IATA: no
14.6	Special pro	ecautions for user ailable		

SECTION 15: Regulatory information

SECTION 14: Transport information

This safety datasheet complies with the requirements of Regulation (EC) No. 453/2010.

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

15.2 Chemical Safety Assessment

For this product a chemical safety assessment was not carried out

SECTION 16: Other information

Full text of H-Statements referred to under sections 2 and 3.

H302	Harmful if swallowed.
H302 + H312 +	Harmful if swallowed, in contact with skin or if inhaled
H332	
H312	Harmful in contact with skin.
H314	Causes severe skin burns and eye damage.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.
H412	Harmful to aquatic life with long lasting effects.

Further information

Copyright 2015 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigmaaldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Page 8 of 8

Sigma-Aldrich - 08581

SIGMA-ALDRICH

sigma-aldrich.com

SAFETY DATA SHEET

according to Regulation (EC) No. 1907/2006 Version 5.3 Revision Date 07.05.2014 Print Date 14.05.2016 GENERIC EU MSDS - NO COUNTRY SPECIFIC DATA - NO OEL DATA

SECT	ION 1: Identification of the su	Ibstance/mixture and of the company/undertaking	
1.1	Product identifiers		
	Product name :	2-Amino-2-methyl-1-propanol	
	Product Number :	08581	
	Brand :	Sigma-Aldrich	
	Index-No. :	603-070-00-6	
	REACH NO. :	A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline.	
	CAS-No. :	124-68-5	
1.2	Relevant identified uses of t	he substance or mixture and uses advised against	
	Identified uses :	Laboratory chemicals, Manufacture of substances	
1.3	Details of the supplier of the	e safety data sheet	
	Company :	Sigma-Aldrich Norway AS	
		Filipstad Brygge 1	
	Tolophono	+47 22 176000	
	Fax :	+47 23 176000	
	E-mail address :	eurtechserv@sial.com	
1.4	Emergency telephone number		
	Emergency Phone # :	Giftinformasjonssentralen 22 59 13 00	
SECT	ION 2: Hazards identification		
2.1	Classification of the substar	nce or mixture	
	Classification according to Regulation (EC) No 1272/2008		
	Eye irritation (Category 2), H319		
	Skin irritation (Category 2), H3 Chronic aquatic toxicity (Category	315 Jony 3) H412	
	For the full text of the H-State	ments mentioned in this Section see Section 16	
	Classification according to l	EII Directives 67/5/8/EEC or 1999//5/EC	
	Xi Irritant	R36/38 R52/53	
	For the full text of the R-phras	es mentioned in this Section, see Section 16.	
2.2	Label elements		
	Labelling according Regulat	tion (EC) No 1272/2008	
	Pictogram	$\langle \mathbf{t} \rangle$	
	Signal word	Warning	
	Hazard statement(s)	Oncome alteriation	
	H315	Causes skin irritation.	

H319	Causes serious eye irritation.
H412	Harmful to aquatic life with long lasting effects.
Precautionary statement(s)	Avoid release to the environment.
P273	IF IN EYES: Rinse cautiously with water for several minutes. Remove
P305 + P351 + P338	contact lenses, if present and easy to do. Continue rinsing.
Supplemental Hazard Statements	none

2.3 Other hazards - none

SECTION 3: Composition/information on ingredients

3.1 Substances

Synonyms	:	β-Aminoisobutyl alcohol AMP
Formula	1	C ₄ H ₁₁ NO
Molecular Weight	2	89,14 g/mol
CAS-No.	1	124-68-5
EC-No.	1	204-709-8
Index-No.	1	603-070-00-6

Hazardous ingredients according to Regulation (EC) No 1272/2008

Component		Classification	Concentration
2-Amino-2-methylpro	opanol		
CAS-No.	124-68-5	Eye Irrit. 2; Skin Irrit. 2;	<= 100 %
EC-No.	204-709-8	Aquatic Chronic 3; H319,	
Index-No.	603-070-00-6	H315, H412	

Hazardous ingredients according to Directive 1999/45/EC

Component		Classification	Concentration
2-Amino-2-methylprop	panol		
CAS-No. EC-No. Index-No.	124-68-5 204-709-8 603-070-00-6	Xi, R36/38 - R52/53	<= 100 %

For the full text of the H-Statements and R-Phrases mentioned in this Section, see Section 16

SECTION 4: First aid measures

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance.

lf inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

Sigma-Aldrich - 08581

Page 2 of 8

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed no data available

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

- 5.2 Special hazards arising from the substance or mixture Carbon oxides, nitrogen oxides (NOx)
- 5.3 Advice for firefighters Wear self contained breathing apparatus for fire fighting if necessary.
- 5.4 Further information no data available

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. For personal protection see section 8.

6.2 Environmental precautions Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

- 6.3 Methods and materials for containment and cleaning up Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.
- 6.4 Reference to other sections For disposal see section 13.

SECTION 7: Handling and storage

- 7.1 Precautions for safe handling Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at places where dust is formed. For precautions see section 2.2.
- 7.2 Conditions for safe storage, including any incompatibilities Store in cool place. Keep container tightly closed in a dry and well-ventilated place.

7.3 Specific end use(s) Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Components with workplace control parameters

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Sigma-Aldrich - 08581

Page 3 of 8

Personal protective equipment

Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Full contact Material: butyl-rubber Minimum layer thickness: 0,3 mm Break through time: 480 min Material tested:Butoject® (KCL 897 / Aldrich Z677647, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0,4 mm Break through time: 30 min Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

a) Appearance Form: Semi-solid melting to a liquid b) Odour no data available c) Odour Threshold no data available d) pН 11,0 - 12 at 8,9 g/l at 25 °C Melting point/freezing Melting point/range: 24 - 28 °C e) point Initial boiling point and 165 °C f) boiling range

Sigma-Aldrich - 08581

Page 4 of 8

g)	Flash point	68 °C - closed cup
h)	Evapouration rate	no data available
i)	Flammability (solid, gas)	no data available
j)	Upper/lower flammability or explosive limits	no data available
k)	Vapour pressure	< 0,1 hPa at 25 °C 79 hPa at 100 °C
I)	Vapour density	3,08 - (Air = 1.0)
m)	Relative density	0,934 g/mL at 25 °C
n)	Water solubility	8,9 g/l at 20 °C
o)	Partition coefficient: n- octanol/water	log Pow: -0,63
p)	Auto-ignition temperature	no data available
q)	Decomposition temperature	no data available
r)	Viscosity	no data available
s)	Explosive properties	no data available
t)	Oxidizing properties	no data available
Oth	er safety information	

9.2 Other safety information

Relative vapour density 3,08 - (Air = 1.0)

SECTION 10: Stability and reactivity

- 10.1 Reactivity no data available
- 10.2 Chemical stability Stable under recommended storage conditions.
- 10.3 Possibility of hazardous reactions no data available
- 10.4 Conditions to avoid no data available
- **10.5** Incompatible materials Oxidizing agents, Strong acids, Copper, Brass, Aluminum
- 10.6 Hazardous decomposition products Other decomposition products - no data available In the event of fire: see section 5

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - rat - 2.900 mg/kg LD50 Dermal - rabbit - > 2.000 mg/kg

Skin corrosion/irritation Skin - rabbit (Draize Test)

Sigma-Aldrich - 08581

Page 5 of 8

Serious eye damage/eye irritation

Eyes - rabbit Result: Corrosive to eyes (Draize Test)

Respiratory or skin sensitisation

Buehler Test - guinea pig Did not cause sensitisation on laboratory animals.

Germ cell mutagenicity no data available

Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

Reproductive toxicity

no data available

Specific target organ toxicity - single exposure no data available

Specific target organ toxicity - repeated exposure no data available

Aspiration hazard no data available

Additional Information RTECS: Not available

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

SECTION 12: Ecological information

12.1 Toxicity

	Toxicity to fish	static test LC50 - Lepomis macrochirus (Bluegill) - 190 mg/l - 96,0 h
	Toxicity to daphnia and other aquatic invertebrates	- Daphnia magna (Water flea) - 65 mg/l - 24 h (OECD Test Guideline 202)
	Toxicity to algae	Growth inhibition EC50 - Scenedesmus capricornutum (fresh water algae) - ca. 520 mg/l - 72 h (OECD Test Guideline 201)
12.2	Persistence and degrad Biodegradability	ability aerobic Chemical oxygen demand - Exposure time 28 d Result: 50 % - Not readily biodegradable.
	Biochemical Oxygen Demand (BOD)	< 10 mg/l Concentration: 1 g/l
	Chemical Oxygen Demand (COD)	2.050 mg/g
12.3	Bioaccumulative notent	ial
12.0	Bioaccumulation	Chlorella fusca vacuolata - 1 d - 50 μg/l
		Bioconcentration factor (BCF): 320
12.4	Mobility in soil no data available	

Sigma-Aldrich - 08581

Page 6 of 8

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

Harmful to aquatic life with long lasting effects.

SECT	ION 13: Disposal co	onsiderations			
13.1	Waste treatment m	nethods			
	Product Offer surplus and non-recyclable solutions to a licensed disposal company. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.				
	Contaminated pac Dispose of as unuse	kaging ed product.			
SECT	ION 14: Transport i	nformation			
14.1	UN number ADR/RID: -		IMDG: -	IATA: -	
14.2	UN proper shippin ADR/RID: Not dan IMDG: Not dan IATA: Not dan	g name ngerous goods ngerous goods ngerous goods			
14.3	Transport hazard of ADR/RID: -	class(es)	IMDG: -	IATA: -	
14.4	Packaging group ADR/RID: -		IMDG: -	IATA: -	
14.5	Environmental haz ADR/RID: no	zards	IMDG Marine pollutant: no	IATA: no	
14.6	Special precaution no data available	ns for user			
SECT	ION 15: Regulatory	information			
	This safety datashe	et complies with	n the requirements of Regulat	tion (EC) No. 1907/2006.	
15.1	Safety, health and environmental regulations/legislation specific for the substance or mixture				
	no data available				
15.2	Chemical Safety A	ssessment	assessment was not carried o	u t	
	r or this product d c	nemical survey c			
SECT	ION 16: Other infor	mation			
	Full text of H-State	ements referred	d to under sections 2 and 3.		
	Aquatic Chronic Eye Irrit. H315 H319 H412 Skin Irrit.	Chronic aquat Eye irritation Causes skin ir Causes seriou Harmful to aqu Skin irritation	ic toxicity ritation. Is eye irritation. Jatic life with long lasting effec	cts.	
	Full text of R-phras	ses referred to	under sections 2 and 3		
	Xi R36/38 R52/53	Irritant Irritating to eye Harmful to aqu	es and skin. uatic organisms, may cause k	ong-term adverse effects in the aquatic	
Sigma-	Aldrich - 08581			Page 7 of 8	

environment.

Further information

Copyright 2014 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Sigma-Aldrich - 08581

Page 8 of 8

SIGMA-ALDRICH[®]

sigma-aldrich.com

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techserv@sial.com Outside USA: eurtechserv@sial.com

Product Specification

Product Name: Piperazine - ReagentPlus*, 99%

Product Number: CAS Number: MDL: Formula: Formula Weight:	P45907 110-85-0 MFCD00005953 C4H10N2 86.14 g/mol		
TEST		Specification	
Appearance (Color)		Conforms to Requirements	
White to Light Yellow			
Appearance (Form)		Conforms to Requirements	
Crystals, Flakes or Chips			
Infrared spectrum		Conforms to Structure	
Titration by HCL		98.5 - 101.5 %	
Water (by Karl Fischer)		<u><</u> 1.0 %	
Purity (GC)		> 98.5 %	

Specification: PRD.1.ZQ5.10000010715

Sigma-Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

1 of 1

SIGMA-ALDRICH

sigma-aldrich.com SAFETY DATA SHEET

according to Regulation (EC) No. 1907/2006 Version 5.2 Revision Date 15.11.2013 Print Date 20.04.2016

SECT	SECTION 1: Identification of the substance/mixture and of the company/undertaking			
1.1	Product identifiers Product name	:	Piperazine	
	Product Number Brand Index-No. REACH No. CAS-No.		P45907 Sigma-Aldrich 612-057-00-4 A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline. 110-85-0	
1.2	Relevant identified uses of	f th	e substance or mixture and uses advised against	
	Identified uses	:	Laboratory chemicals, Manufacture of substances	
1.3	Details of the supplier of the	he s	safety data sheet	
	Company	:	Sigma-Aldrich Company Ltd. The Old Brickyard NEW ROAD, GILLINGHAM Dorset SP8 4XT UNITED KINGDOM	
	Telephone Fax E-mail address	:	+44 (0)1747 833000 +44 (0)1747 833313 eurtechserv@sial.com	
1.4	Emergency telephone nun	nbe	r	
	Emergency Phone #	:	+44 (0)1747 833100	

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) No 1272/2008 Skin corrosion (Category 1B), H314 Respiratory sensitisation (Category 1), H334 Skin sensitisation (Category 1), H317 Reproductive toxicity (Category 2), H361fd

For the full text of the H-Statements mentioned in this Section, see Section 16.

Classification according to EU Directives 67/548/EEC or 1999/45/EC

		R62, R63
С	Corrosive	R34
		R42/43, R52

For the full text of the R-phrases mentioned in this Section, see Section 16.

2.2 Label elements

Pictogram

Labelling according Regulation (EC) No 1272/2008

Sigma-Aldrich - P45907

Page 1 of 9

Signal word	Danger
Hazard statement(s) H314 H317 H334 H361fd	Causes severe skin burns and eye damage. May cause an allergic skin reaction. May cause allergy or asthma symptoms or breathing difficulties if inhaled. Suspected of damaging fertility. Suspected of damaging the unborn child.
Precautionary statement(s) P261 P280	Avoid breathing dust. Wear protective gloves/ protective clothing/ eye protection/ face protection.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER or doctor/ physician.
Supplemental Hazard Statements	none

2.3 Other hazards - none

SECTION 3: Composition/information on ingredients

3.1 Substances

Synonyms	:	Diethylenediamine 1,4-Diazacyclohexane	
Formula	:	C ₄ H ₁₀ N ₂	
Molecular Weight	:	86.14 g/mol	
CAS-No.	:	110-85-0	
EC-No.	:	203-808-3	
Index-No.	:	612-057-00-4	

Hazardous ingredients according to Regulation (EC) No 1272/2008

Component		Classification	Concentration
Piperazine			
CAS-No.	110-85-0	Skin Corr. 1B; Resp. Sens. 1;	<= 100 %
EC-No.	203-808-3	Skin Sens. 1; Repr. 2; H314,	
Index-No.	612-057-00-4	H317, H334, H361fd	

Hazardous ingredients according to Directive 1999/45/EC

Component		Classification	Concentration
Piperazine			
CAS-No. EC-No. Index-No.	110-85-0 203-808-3 612-057-00-4	C, Xn, Repr.Cat.3, R34 - R42/43 - R52 - R62 - R63	<= 100 %

For the full text of the H-Statements and R-Phrases mentioned in this Section, see Section 16

SECTION 4: First aid measures

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

Sigma-Aldrich - P45907

Page 2 of 9

In case of skin contact

Take off contaminated clothing and shoes immediately. Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed no data available

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

- 5.2 Special hazards arising from the substance or mixture Carbon oxides, nitrogen oxides (NOx)
- 5.3 Advice for firefighters Wear self contained breathing apparatus for fire fighting if necessary.
- 5.4 Further information no data available

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. For personal protection see section 8.

6.2 Environmental precautions Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

- 6.3 Methods and materials for containment and cleaning up Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.
- 6.4 Reference to other sections For disposal see section 13.

SECTION 7: Handling and storage

- 7.1 Precautions for safe handling Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at places where dust is formed. For precautions see section 2.2.
- 7.2 Conditions for safe storage, including any incompatibilities Store in cool place. Keep container tightly closed in a dry and well-ventilated place.

Store under inert gas. Light sensitive. hygroscopic

7.3 Specific end use(s) Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

Sigma-Aldrich - P45907

Page 3 of 9

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control	Basis
Piperazine	110-85-0	TWA	0.1 mg/m3	Europe. Commission Directive 2000/39/EC establishing a first list of indicative occupational exposure limit values
	Remarks	Indicative	+	1
		STEL	0.3 mg/m3	Europe. Commission Directive 2000/39/EC establishing a first list of indicative occupational exposure limit values
		Indicative		
		TWA	0.1 mg/m3	UK. EH40 WEL - Workplace Exposure Limits
		Indicative TWA 0.1 mg/m3 UK, EH40 WEL - Workplace Exposure Limits Substances that can cause occupational asthma (also known asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, i or other mechanism. Once the airways have become hyper- responsive, further exposure to the substance, sometimes ev- tiny quantities, may cause respiratory symptoms. These symp can range in severity from a runny nose to asthma. Not all wo who are exposed to a sensitiser will become hyper-responsive is impossible to identify in advance those who are likely to be hyper-responsive. 54 Substances that can cause occupation asthma should be distinguished from substances which may fit the symptoms of asthma in people with pre-existing airway hy responsiveness, but which do not include the disease themses The latter substances are not classified asthmagens or respir sensitisers. Wherever it is reasonably practicable, exposure to substance can cause occupational asthma should be prevented. Where not possible, the primary aim is to apply adequate standards control to prevent workers from becoming hyper-responsive. I substances that can cause occupational asthma, COSHH rec that exposure be reduced as low as is reasonably practicable Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employe exposed or liable to be exposed to a substance which may ca occupational asthma and there should be appropriate consult with an occupational health professional over the degree of ri level of surveillance. Capable of causing occupational asthma. The identified subs are those which: - are assigned the risk phrase 'R42: May ca sensitisation by inhalation'; or 'R42/43: May c		supational astima (also known as ensitisers) can induce a state of veness via an immunological, irritant airways have become hyper- o the substance, sometimes even to viratory symptoms. These symptoms my nose to asthma. Not all workers or will become hyper-responsive and it once those who are likely to become ces that can cause occupational d from substances which may trigger ople with pre-existing airway hyper- not include the disease themselves. classified asthmagens or respiratory ticable, exposure to substances that a should be prevented. Where this is is to apply adequate standards of a becoming hyper-responsive. For upational asthma, COSHH requires was is reasonably practicable. Impeak concentrations should en risk management is being a is appropriate for all employees d to a substance which may cause should be appropriate consultation of essional over the degree of risk and al asthma. The identified substances d the risk phrase 'R42: May cause R42/43: May cause sensitisation by - are listed in section C of HSE al assessments of the evidence for hal asthma' as updated from time to hich the risk assessment has shown pational asthma. WELs has been assigned only to ause occupational asthma.

Sigma-Aldrich - P45907

Page 4 of 9

	STEL	0.3 mg/m3	UK. EH40 WEL - Workplace Exposure Limits
	Substances t asthmagens specific airwa or other mec responsive, f tiny quantitie can range in who are expo is impossible hyper-respon asthma shou the symptom responsivene The latter sul sensitisers. Wherever it is can cause of not possible, control to pre substances t that exposure Activities givi receive partic considered. I exposed or li occupational with an occup level of surve Capable of c are those wh sensitisation inhalation an publication 'A agents implic	that can cause occ and respiratory se ay hyper-responsive hanism. Once the urther exposure to s, may cause resp severity from a run based to a sensitise to identify in adva- nsive. 54 Substan- ld be distinguished s of asthma in peo- ess, but which do r bastances are not co s reasonably pract coupational asthma the primary aim is event workers from hat can cause occ e be reduced as lo ng rise to short-ter cular attention whe health surveillance able to be exposed asthma and there pational health pro- pational health pro- pational health pro- pational health pro- pational health pro- pational health pro- sillance. ausing occupation ich: - are assigne by inhalation'; or 'l d skin contact' or sthmagen? Critica cated in occupation	Exposure Limits cupational asthma (also known as nsitisers) can induce a state of veness via an immunological, irritant airways have become hyper- o the substance, sometimes even to irratory symptoms. These symptoms nny nose to asthma. Not all workers ir will become hyper-responsive and it ince those who are likely to become ces that can cause occupational d from substances which may trigger ople with pre-existing airway hyper- not include the disease themselves. classified asthmagens or respiratory ticable, exposure to substances that a should be prevented. Where this is to apply adequate standards of a becoming hyper-responsive. For upational asthma, COSHH requires w as is reasonably practicable. I'm peak concentrations should en risk management is being a is appropriate for all employees d to a substance which may cause should be appropriate consultation ofessional over the degree of risk and al asthma. The identified substances d the risk phrase 'R42: May cause R42/43: May cause sensitisation by - are listed in section C of HSE al assessments of the evidence for nal asthma' as updated from time to hich the risk assessment has shown
	The 'Sen' not those substa	tation in the list of nces which may c	WELs has been assigned only to ause occupational asthma.

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Full contact

Sigma-Aldrich - P45907

Page 5 of 9

Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Appearance	Form: solid
Odour	no data available
Odour Threshold	no data available
рН	10.8 - <mark>1</mark> 1.8 at 100 g/l
Melting point/freezing point	Melting point/range: 109 - 112 °C - lit.
Initial boiling point and boiling range	145 - 146 °C - lit.
Flash point	109 °C
Evapouration rate	no data available
Flammability (solid, gas)	no data available
Upper/lower flammability or explosive limits	Upper explosion limit: 14 %(∨) Lower explosion limit: 4 %(∨)
Vapour pressure	0.21 hPa at 20 °C
Vapour density	no data available
Relative density	1.100 g/cm3
Water solubility	ca.0.9 g/l at 20 °C
	Appearance Odour Odour Threshold pH Melting point/freezing point Initial boiling point and boiling range Flash point Evapouration rate Flammability (solid, gas) Vapour dinsity Vapour pressure Vapour density Relative density Water solubility

Sigma-Aldrich - P45907

Page 6 of 9

	0)	Partition coefficient: n- octanol/water	log Pow: -1.17		
	p)	Auto-ignition temperature	no data available		
	q)	Decomposition temperature	no data available		
	r)	Viscosity	no data available		
	s)	Explosive properties	no data available		
	t)	Oxidizing properties	no data available		
9.2	Oth	ner safety information			
		Bulk density	0.40 - 0.50 g/l		
SECT	SECTION 10: Stability and reactivity				
10.1	Reactivity no data available				
10.2	Chemical stability Stable under recommended storage conditions.				
10.3	Possibility of hazardous reactions no data available				
10.4	Conditions to avoid Avoid moisture.				
10.5	Incompatible materials Strong oxidizing agents, Strong acids				
10.6	6 Hazardous decomposition products Other decomposition products - no data available In the event of fire: see section 5				
SECTION 11: Toxicological information					
11.1	Information on toxicological effects				

Acute toxicity

LD50 Oral - rat - 2,600 mg/kg (OECD Test Guideline 401)

LC0 Inhalation - rat - 4 h - 0.8 mg/l

LD50 Dermal - rabbit - 8,300 mg/kg (OECD Test Guideline 402)

Skin corrosion/irritation Skin - rabbit Result: Causes burns.

Serious eye damage/eye irritation Eyes - rabbit

Result: Severe eye irritation - 24 h

Respiratory or skin sensitisation Maximisation Test - guinea pig May cause sensitisation by skin contact.

Germ cell mutagenicity no data available

Carcinogenicity

Sigma-Aldrich - P45907

Page 7 of 9
IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

Reproductive toxicity

no data available

Specific target organ toxicity - single exposure no data available

Specific target organ toxicity - repeated exposure no data available

Aspiration hazard no data available

Additional Information RTECS: TK7800000

Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin., Cough, Shortness of breath, Headache, Nausea

SECTION 12: Ecological information

12.1 Toxicity

	Toxicity to fish	1.050 = Poecilia reticulate (guppy) = > 1.800 mg/l = 96.0 h	
	Toxicity to fish		
	Toxicity to daphnia and other aquatic invertebrates	EC50 - Daphnia magna (Water flea) - 21 mg/l - 48 h	
	Toxicity to algae	EC50 - Pseudokirchneriella subcapitata (green algae) - > 1,000 mg/l - 72 h	
12.2	Persistence and degrad	lability	
12.3	Bioaccumulative potent no data available	ial	
12.4	Mobility in soil no data available		
12.5	Results of PBT and vPvB assessment PBT/vPvB assessment not available as chemical safety assessment not required/not conducted		
12.6	Other adverse effects Harmful to aquatic life.		
SECT	ION 13: Disposal conside	erations	
13.1	Waste treatment metho	ds	
	Product Offer surplus and non-rec with a combustible solver	cyclable solutions to a licensed disposal company. Dissolve or mix the material t and burn in a chemical incinerator equipped with an afterburner and scrubber.	
	Contaminated packagin Dispose of as unused pro	ig oduct.	
SECT	ION 14: Transport inform	nation	

14.1 UN number ADR/RID: 2579

14.2 UN proper shipping name ADR/RID: PIPERAZINE IMDG: PIPERAZINE IATA: Piperazine Sigma-Aldrich - P45907 IMDG: 2579

IATA: 2579

Page 8 of 9

14.3	Transport hazard class(es) ADR/RID: 8	IMDG: 8	IATA: 8
14.4	Packaging group ADR/RID: III	IMDG: III	IATA: III
14.5	Environmental hazards ADR/RID: no	IMDG Marine pollutant: no	IATA: no
14.6	Special precautions for user no data available		

SECTION 15: Regulatory information

This safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006.

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

no data available

15.2 Chemical Safety Assessment

For this product a chemical safety assessment was not carried out

SECTION 16: Other information

Full text of H-Statements referred to under sections 2 and 3.

H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H361fd	Suspected of damaging fertility. Suspected of damaging the unborn child.
Repr.	Reproductive toxicity
Resp. Sens.	Respiratory sensitisation
Skin Corr.	Skin corrosion
Skin Sens.	Skin sensitisation

Full text of R-phrases referred to under sections 2 and 3

С	Corrosive
Xn	Harmful
R34	Causes burns.
R42/43	May cause sensitisation by inhalation and skin contact.
R52	Harmful to aquatic organisms.
R62	Possible risk of impaired fertility.
R63	Possible risk of harm to the unborn child.
Repr.Cat.3	Toxic to Reproduction Category 3

Further information

Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Sigma-Aldrich - P45907

Page 9 of 9

Specification Sheet

Product Name

Product Number Product Brand CAS Number Molecular Weight 3-Amino-1-propanol, 99% A76400 ALDRICH 156-87-6 75.11

TEST

SPECIFICATION

APPEARANCE (COLOR) APPEARANCE (FORM) COLOR (IN APHA) TITRATION (NT) HCLO4 0.1M PURITY (GC AREA %) INFRARED SPECTRUM RECOMMENDED RETEST PERIOD

Colorless Viscous Liquid ≤ 20 APHA 98.5 - 101.5 % ≥ 98.5 % CONFORMS TO STRUCTURE 73 MONTHS SIGMA-ALDRICH'

SIGMA-ALDRICH

sigma-aldrich.com

SAFETY DATA SHEET

according to Regulation (EC) No. 1907/2006 Version 5.1 Revision Date 15.05.2013 Print Date 22.04.2016

SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name 3-Amino-1-propanol A76400 Product Number ÷ Brand Aldrich REACH No. A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline. CAS-No. 156-87-6 1.2 Relevant identified uses of the substance or mixture and uses advised against : Laboratory chemicals, Manufacture of substances Identified uses Details of the supplier of the safety data sheet 13 Company Sigma-Aldrich Company Ltd. The Old Brickyard NEW ROAD, GILLINGHAM Dorset SP8 4XT UNITED KINGDOM Telephone +44 (0)1747 833000 +44 (0)1747 833313 Fax E-mail address eurtechserv@sial.com 1.4 Emergency telephone number Emergency Phone # +44 (0)1747 833100 5

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) No 1272/2008 Acute toxicity, Oral (Category 4), H302 Skin corrosion (Category 1B), H314

For the full text of the H-Statements mentioned in this Section, see Section 16.

Classification according to EU Directives 67/548/EEC or 1999/45/EC Corrosive, Harmful R22, R34 C, Xn

For the full text of the R-phrases mentioned in this Section, see Section 16.

2.2 Label elements

Labelling according Regulation (EC) No 1272/2008 Pictogram

Signal word

Danger

Hazard statement(s) H302 H314

Harmful if swallowed. Causes severe skin burns and eye damage.

Aldrich - A76400

Page 1 of 8

Precautionary statement(s)	
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER or doctor/ physician.
Supplemental Hazard Statements	none

2.3 Other hazards - none

SECTION 3: Composition/information on ingredients

3.1 Substances

Synonyms	:	3-Aminopropyl alcohol
Formula	:	C ₃ H ₉ NO
Molecular Weight	:	75.11 g/mol
CAS-No.	:	156-87-6
EC-No.	:	205-864-4

Hazardous ingredients according to Regulation (EC) No 1272/2008

Component		Classification	Concentration
3-Aminopropan-1-ol			
CAS-No.	156-87-6	Acute Tox. 4; Skin Corr. 1B;	<= 100 %
EC-No.	205-864-4	H302, H314	

Hazardous ingredients according to Directive 1999/45/EC				
Component		Classification	Concentration	
3-Aminopropan-1-ol				
CAS-No.	156-87-6	C, Xn, R22 - R34	<= 100 %	
EC-No.	205-864-4			

For the full text of the H-Statements and R-Phrases mentioned in this Section, see Section 16

SECTION 4: First aid measures

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Take off contaminated clothing and shoes immediately. Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed no data available

Aldrich - A76400

Page 2 of 8

SECTION 5: Firefighting measures

5.1	Extinguishing media
	Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
5.2	Special hazards arising from the substance or mixture Carbon oxides, nitrogen oxides (NOx)
5.3	Advice for firefighters Wear self contained breathing apparatus for fire fighting if necessary.
5.4	Further information no data available
SECT	ION 6: Accidental release measures
6.1	Personal precautions, protective equipment and emergency procedures Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. For personal protection see section 8.
6.2	Environmental precautions Do not let product enter drains.
6.3	Methods and materials for containment and cleaning up Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.

6.4 Reference to other sections For disposal see section 13.

SECTION 7: Handling and storage

- 7.1 Precautions for safe handling Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. For precautions see section 2.2.
- 7.2 Conditions for safe storage, including any incompatibilities Store in cool place. Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Hygroscopic.

7.3 Specific end use(s) A part from the uses mentioned in section 1.2 no other specific uses are stipulated

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Components with workplace control parameters

Contains no substances with occupational exposure limit values.

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Tightly fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Aldrich - A76400

Page 3 of 8

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Full contact Material: Nitrile rubber Minimum layer thickness: 0.4 mm Break through time: 480 min Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

Splash contact Material: Nature latex/chloroprene Minimum layer thickness: 0.6 mm Break through time: 120 min Material tested:Lapren® (KCL 706 / Aldrich Z677558, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Do not let product enter drains.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

a) Appearance	Form: viscous Colour: colourless
b) Odour	no data available
C)	Odour Threshold	no data available
d) pH	no data available
e) Melting point/freezing point	Melting point/range: 10 - 12 °C - lit.
f)	Initial boiling point and boiling range	184 - 187 °C - lit.
g) Flash point	101 °C
h)) Evapouration rate	no data available
i)	Flammability (solid, gas)	no data available
j)	Upper/lower flammability or	no data available
Aldrich - A	76400	

Page 4 of 8

explosive limits

k)	Vapour pressure	0.4 hPa at 20 °C
I)	Vapour density	no data available
m)	Relative density	0.982 g/cm3
n)	Water solubility	soluble
0)	Partition coefficient: n- octanol/water	log Pow: -1.12
p)	Auto-ignition temperature	385 °C
q)	Decomposition temperature	no data available
r)	Viscosity	no data available
s)	Explosive properties	no data available
t)	Oxidizing properties	no data available
Oth no (er safety information data available	

SECTION 10: Stability and reactivity

10.1 Reactivity no data available

9.2

- 10.2 Chemical stability Stable under recommended storage conditions.
- 10.3 Possibility of hazardous reactions no data available
- 10.4 Conditions to avoid no data available
- 10.5 Incompatible materials Strong oxidizing agents
- 10.6 Hazardous decomposition products Other decomposition products - no data available In the event of fire: see section 5

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - rat - male and female - 1,348 mg/kg (OECD Test Guideline 401)

LC50 Inhalation - rat - male and female - 1 h - > 16.4 mg/l

LD50 Dermal - rat - male and female - > 2,000 mg/kg

Skin corrosion/irritation Skin - rabbit Result: Causes burns.

Serious eye damage/eye irritation Eyes - rabbit

Result: Risk of serious damage to eyes.

Respiratory or skin sensitisation

- guinea pig Result: Does not cause skin sensitisation.

Aldrich - A76400

Page 5 of 8

Germ cell mutagenicity Ames test S. typhimurium Result: negative

Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

Reproductive toxicity

Developmental Toxicity - mouse - Intraperitoneal Specific Developmental Abnormalities: Musculoskeletal system.

Specific target organ toxicity - single exposure

no data available

Specific target organ toxicity - repeated exposure no data available

Aspiration hazard

no data available

Additional Information

RTECS: UA5600000

burning sensation, Cough, wheezing, laryngitis, Shortness of breath, spasm, inflammation and edema of the larynx, spasm, inflammation and edema of the bronchi, pneumonitis, pulmonary edema, Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin. To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

SECTION 12: Ecological information

12.1 Toxicity

	Toxicity to fish	static test LC50 - Leuciscus idus (Golden orfe) - 100 - 215 mg/l - 96 h
	Toxicity to daphnia and other aquatic invertebrates	static test EC50 - Daphnia magna (Water flea) - > 500 mg/l - 48 h
	Toxicity to algae	static test EC50 - Desmodesmus subspicatus (Scenedesmus subspicatus) - 145.41 mg/l - 72 h
	Toxicity to bacteria	EC50 - Pseudomonas putida - 155.3 mg/l - 17 h
12.2	Persistence and degrada Biodegradability	ability aerobic - Exposure time 28 d Result: 86 % - Readily biodegradable. (OECD Test Guideline 301C)
12.3	Bioaccumulative potenti no data available	ial
12.4	Mobility in soil no data available	
12.5	Results of PBT and vPv PBT/vPvB assessment no	B assessment ot available as chemical safety assessment not required/not conducted
12.6	Other adverse effects	
	no data available	

Aldrich - A76400

Page 6 of 8

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product

Offer surplus and non-recyclable solutions to a licensed disposal company.

Contaminated packaging

Dispose of as unused product.

SECTION 14: Transport information

14.1	UN number ADR/RID: 2735		IMDG: 2735	IATA: 2735
14.2	UN proper ship ADR/RID: AMI IMDG: AMI IATA: Ami	p ping name INES, LIQUID, COR INES, LIQUID, COR ines, liquid, corrosiv	ROSIVE, N.O.S. (3-Aminopropan-1 ROSIVE, N.O.S. (3-Aminopropan-1 e, n.o.s. (3-Aminopropan-1-ol)	-ol) -ol)
14.3	Transport haza ADR/RID: 8	rd class(es)	IMDG: 8	IATA: 8
14.4	Packaging grou ADR/RID: II	ир	IMDG: II	IATA: II
14.5	Environmental ADR/RID: no	hazards	IMDG Marine pollutant: no	IATA: no
14.6	Special precaut	tions for user		

no data available

SECTION 15: Regulatory information

This safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006.

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

no data available

15.2 Chemical Safety Assessment For this product a chemical safety assessment was not carried out

SECTION 16: Other information

Full text of H-Statements referred to under sections 2 and 3.

Acute Tox.	Acute toxicity
H302	Harmful if swallowed.
H314	Causes severe skin burns and eye damage.
Skin Corr.	Skin corrosion

Full text of R-phrases referred to under sections 2 and 3

C	Corrosive
Xn	Harmful
R22	Harmful if swallowed.
R34	Causes burns.

Further information

Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held

Aldrich - A76400

Page 7 of 8

liable for any damage resulting from handling or from contact with the above product. See www.sigmaaldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Aldrich - A76400

Page 8 of 8

Appendix 3

Step-by-Step procedures for using 905 Titrando and calculation procedure for analyzing concentration of amine and CO_2 loading value.

1. RESPONSIBILITY

The users of the instrument are responsible for operating the instrument in agreement with procedure and user manual. All users must be trained to use the instrument before doing experiments.

Responsible person: Klaus Joachim Jens,

Department of Process, Energy & Environmental Technology,

Telemark University College,

+47 3557 5193

<u>Klaus.J.Jens@hit.no</u>

2. PROCEDURE FOR ANALYZING AMINE CONCENTRATION

1. Weight exactly 1-2g sample into a 250ml beaker (note the weight).

2. Add 100ml deionised water and titrate to equivalence point using 1M HCl. Note the consumption of HCl.

2.1 Start up

Open software by double clicking on [Tiamo 2.2] on the desktop. A new window will appear

2.2 Calibration of electrodes

Click on [Method] \rightarrow [Open folder] (or Ctrl+O), 'Open method' window appears. Select [Electrode_Calibration] \rightarrow [Open].

【 tiamo 2.2 - N	o method loa	ded								_ @ 🗙
File Edit Yiew	Insert Help									
🗅 🔊 🖩 💼 🗉	2 🕗 🔤 🗆	1		8:10:节名	1		8 🖳	2		
Workplace										
Database										
_		<0 D	en method						X	
■ ⇒		Method	group Maip group							
Method			Name A	Saved	User	Full name	Version	Signed	Method comment	
Healou		2	Acid_sase ticracion	2015-04-20 14:47:3	Admin		3	no D0		
1.4-1.		3	Back titration carbonyl	2015-04-14 13:06:1	Admin		40	no		
그 같은 물 때			Electrode_calbration	2015-04-14 12:53:4	Admin		20	no		
THE		5	Measure_pH	2015-04-14 12:54:1	Admin		7	no		
Configuration		6	pH 2 Carbonyl	2015-04-14 13:06:5	Admin		22	no		
		Mather	name Electrode calibration							
		Modilod							Open Cancel	
Manual										
Press F1 for help										
📕 start	tiamo 2.2	- No met	ho 🚺 Manual control	🦉 get - Paint		My Pictures				2 2 3 3 13:19

Click on [Workplace]. On the sub-window [Run] on the top right corner, under [Method], select [Electrode_Calibration], at [sample position], type 1, click [start].

The buffers have to run in this order: pH4 - pH7 - pH9. Result is found in the *[Report]* subwindow at the bottom left corner. The slope value should be between 97-102%.

Buffer solutions should be changed after 1 week. The best is to change buffer solutions every Monday. Remember to write the changing date in Excel (electrode calibration).

2.3 Get rid of air bubbles in tubings and cylinders

Insert the 800 Dosino **Port 3** to the doing unit on the bottle of **HCl 1.0M.** Before the first titrating in a day, it is important to check if there are bubbles in tubings and cylinders. If there are bubbles, get rid of them by opening *[Manual]* on the bottom left corner, *[Manual control]* window appears \rightarrow click on *[Dosing device 3]* \rightarrow *[Prepare]* \rightarrow *[Start]* \rightarrow *[yes]*. After finish rinsing, click on *[Close]*.

Remember to use a beaker for waste and point the burette tip into it.

2.4 Concentration analysis

Place the electrode and the burette tip in the sample beaker. On *[workplace]* window \rightarrow see *[Run]* sub-window \rightarrow under *[Method]*, select *[Amine conc.]* \rightarrow sample position: $1 \rightarrow [ID1]$: type ID of sample, (for example: A1) $\rightarrow [Start]$.

The analyzing will be automatically stopped. Rinse the electrode and tube with distilled water before moving to the next sample. Result is shown on the *[Report]* sub-window, gives the consumed volume of 1.0M HCl.

2.5 Finished experiments

Close the rubber plug and place the electrode in the storage vessel holder containing KCl 3M. Close Tiamo software, shutdown computer, and unplug titrator.

3. PROCEDURE FOR ANALYZING CO2 LOADING VALUE.

After loading CO_2 into the aqueous amine solution as described in chapter 3.3.1 the following procedure is performed for the CO_2 loading value analysis.

1. Make three parallels (or more) of each sample, and one blank sample (BS) by following the same procedure.

- 2. Add 50ml of 0.1M NaOH to the EM flask
- 3. For low CO₂ loaded samples:

Weigh exactly 0.2-0.5g sample into the EM flask (note the weight).

For high CO₂ loaded samples:

When the needed sample weight is below 0.2g, use a diluted sample. Weigh exactly 2-3g of the sample (note the weight) and transfer to a 100ml volumetric flask, dilute with distilled water to the mark. Take out 10ml of the diluted sample by using a pipette and transfer to the EM-flask.

- 4. Add 50ml of 0.3M BaCl₂.
- 5. Insert the plug with the capillary tube in order to avoid absorption of CO_2 from the air. Heat the solution and keep it at the boiling point for at least 5 min.
- 6. Cool the solution to room temperature in a water bath.
- 7. Filter the solution in the filter funnel through the membrane filter. Wash the EM flask carefully with distilled water to ensure all the precipitated BaCO₃ particles are captured at the filter.
- 8. Finish steps **2.1** and **2.2** as described above.

3.1 Get rid of air bubbles in tubings and cylinders

Insert the 800 Dosino Port 3 to the dosing unit on the bottle of HCl 0.1M and 800 Dosino Port 2 to the dosing unit on the bottle of NaOH 0.1M. Check if there are bubbles in tubings and cylinders. If there are bubbles, get rid of them by opening [Manual] on the bottom left corner, [Manual control] window appears \rightarrow click on [Dosing device 3] \rightarrow [Prepare] \rightarrow [Start] \rightarrow [yes](see figure below). After finish rinsing, click on [Close] and continue the same for Dosing device 2. Remember to use a beaker for waste and point the burette tip into it.

3.2 pH2 Carbonyl method

pH2 method is used to titrate solution with 0.1 M HCl to pH2.

Place the electrode and burette tip in the sample beaker. On *[workplace]* window \rightarrow see *[Run]* sub-window \rightarrow under *[Method]*, select *[pH 2 Carbonyl]* \rightarrow sample position $1 \rightarrow$ *[ID1]*: type ID of sample, (for example:A1) \rightarrow *[Start]*.

During the titration, check if some precipitate is still on the wall of beaker, use distilled water to rinse it. If there is much of precipitate when pH close to 2, click on *[hold]* to keep stirring but not running titration until all precipitate dissolved. Click on *[continue]* to continue titrating. Titrating will be automatically stopped. Result is shown on the *[Report]* sub-window, gives the volume of 0.1M HCl. This method is also used for **pH2 blind**. The only difference is to select *[pH2 blind]* instead on *[pH2 Carbonyl]*. Rinse the electrode and tube after titration.

Boil this solution for 5 min and then continue to next step.

3.3 Back titration Carbonyl

Back titration is used to retitrate the solution with **0.1M NaOH** by using **Port 2.** Place the electrode and burette tip in the sample beaker. On [workplace] window \rightarrow see [*Run*] sub-window

 \rightarrow under[*Method*], select [*Back titration Carbonyl*] \rightarrow sample position:1 \rightarrow [*ID1*]:type ID of sample, (for example:A1) \rightarrow [*Start*].

Retitrating will be automatically stopped. Result is shown on the *[Report]* sub-window, gives the volume of 0.1M NaOH.

Rinse the electrode and tube with distilled water before moving to the next sample.

This method is also used for **back titration Blind.** The only difference is to select *[Back titration Blind]* instead of *[Back titration Carbonyl]*.

3.4 Finished experiments

Close the rubber plug and place the electrode in the storage vessel holder containing KCl 3M. Close Tiamo software, shutdown computer, and unplug titrator.

4 Calculations

An example with formulas for analysing concentration of 60 Wt % MEA aqueous solution and CO₂ loading value is given below.

Concentration analysis

Mass of sample = 1.017g

Volume of HCL = 0.010061L

Concentration of HCL = 1 mol/L

Molecular Weight of MEA = 61.08g/mol

Mass of MEA in sample = Volume of HCL * concentration of HCL * Mw MEA = 0.6145g

Wt % of MEA = $\frac{\text{Mass of MEA in sample}}{\text{Mass of sample}} = \underline{0.6043\%}$

Weight of MEA = 60.43g

CO₂ loading analysis

Concentration of HCL = 0.1 mol/L

Concentration of NaOH = 0.1 mol/L

Molecular Weight of $CO_2 = 44.01$ g/mol

Mass of sample with $CO_2 = 0.201g$

 $V_{HCL(sample)}$ from titration = 0.0314L

 $V_{NaOH(sample)}$ from titration = 0.0129L

 $V_{HCL(Blank)}$ from titration = 0.0123L

 $V_{NaOH(Blank)}$ from titration = 0.0111L

$$n_{CO2 in Sample} = \frac{C_{HCL} * V_{HCL(sample)} - C_{NaOH} * V_{NaOH(sample)}}{2} = 0.00092641 moles \quad (1)$$

$$n_{CO2 in Blank} = \frac{C_{HCL} * V_{HCL(Blank)} - C_{NaOH} * V_{NaOH(Blank)}}{2} = 0.000060325 moles$$
(2)

$$m_{CO2 in Blank} = n_{CO2 in Blank} * Mw_{CO2} = 0.00265490325g$$
(3)

$$m_{CO2 in Sample} = (n_{CO2 in Sample} * Mw_{CO2}) - m_{CO2 in Blank} = 0.03811g$$
(4)

$$m_{MEA+Water} = m_{Sample} - m_{CO2 in Sample} = 0.16288359915g$$
(5)

$$\frac{n_{CO2}}{m_{MEA+Water}} = \frac{n_{CO2 \text{ in Sample}} - n_{CO2 \text{ in Blank}}}{m_{MEA+Water}} * \frac{1000g}{kg} = 5.3172$$
(6)

$$\frac{n_{MEA}}{m_{MEA+Water}} = \frac{\frac{Wt \text{ of MEA}(\text{from MEA concentration analysis})}{100}}{molecular \text{ weight of MEA}} * \frac{1000g}{kg} = 9.89311$$
(7)

CO₂ loading value (
$$\alpha$$
)= $\frac{\left(\frac{n_{CO2}}{m_{MEA+Water}}\right)}{\frac{n_{MEA}}{m_{MEA+Water}}} = 0.54$

Appendix 4

CO₂ loading - Time calculations

An example for time required to load 0.5 mole CO_2 /mole of MEA in 60 Wt % of aqueous MEA solution is described below.

MEA concentration = 60 Wt %

Mass of MEA = 60g (60 Wt % solution is 100g).

Note: If the 60 Wt % solution is 50g, then the mass of MEA is 30g

Molecular Weight of MEA = 61.08g/mole

Moles of MEA = $\frac{\text{Mass of MEA}}{\text{Molecular weight of MEA}} = \frac{60\text{g}}{61.08\text{g/mole}} = 0.98\text{moles}$

 CO_2 flow rate = 0.40NL/min

Required mole of CO_2 /mole of MEA(α) = 0.5

Moles of $CO_2 = \frac{\text{mole of } CO_2}{\text{mole of } MEA} X$ moles of MEA = 0.5 X 0.98 = 0.49

Volume for 1 mole of $CO_2 = 22.40$ L/mole CO_2

Volume of CO_2 = moles of CO_2 X Volume for 1 mole of CO_2 = 0.49 X 22.40 = 11L

 $Time = \frac{Volume of CO2}{CO2 flow rate} = \frac{11L}{0.40NL/min} = 27.50min$

Thus the time required to load 0.5 mole CO₂/mole of MEA in 60wt% of aqueous MEA solution is 27.50min.

Similarly different loading times can be calculated by changing the mass of amine and required mole of CO_2 /mole of MEA(α).

Appendix 5

Operating manual for Rheometer

Table of contents

	Page
An overview of the Rheometer MCR 101	2
An overview of the Pressure Cell XL	3
Procedure for cleaning and assembling/dissembling the pressure cell and	5
its accessories	
Air check and motor adjustment	
Before performing air check	7
Performing air check	8
Performing Motor Adjustment	14
How to setup an experiment on the Rheoplus software	20
How to export data to an excel readable format file	25
How to set calibration factor	26
Selecting shear rate for experiment	28
How to change bearings	29

Created and last edited: 09th July 2015.

Zul Idris

An overview of the Rheometer MCR 1011

The figure below shows the Physica MCR 501 as an example. The described elements are identical for all instruments of the Physica MCR xx1 series.

¹Anton Paar Instruction Manual, Physica MCR Series, March 2006

An overview of the Pressure Cell XL²

Pressure cell permit rheological measurements under special temperature and/or pressure conditions. The pressure cell that we have in the CO2-laboratory is called Pressure Cell XL DG (Double Gap) which is able to operate in conditions of upto 150 bar and 180 °C.

The pressure cell consists of:

• Magnetic coupling

It conveys the torque of the measuring drive to the pressure head and to the measuring cylinder mounted in the pressure head.

- Pressure head It seals the cell, so that it is pressure tight and contains the rotating part of the pressure cell.
- Measuring system
 - It consists of
 - -a measuring cylinder
 - -a pressure cup
 - -a corresponding inset which sits in the pressure cup

The measuring system forms the exactly defined gap geometry required for rheological measurements.

The pressure cup or the inset holds the sample. Mounted on the pressure cup is the connection for pressure and the safety valve. The disposable inset made of stainless steel permits an easy cleaning of the pressure cup. Double gap measuring systems are for measuring low viscous sample.

A diagram of the Pressure Cell XL DG is shown in the figure below:

² Anton Paar Instruction Manual, Pressure Cell XL, May 2007

Procedure for cleaning and assembling/dissembling the pressure cell and its accessories.

- 1. First, always make sure that the position of the measuring head is at 65 mm. To do this, click the rheoplus icon () and set the position of the 'Lift Position' to 65 mm. Press 'Lift Position.
- Detached the magnetic coupling. There is a bearing in between the measuring head and the magnetic coupling, so DO THIS CAREFULLY. DO NOT use force when removing the magnetic coupling from the measuring head. See picture below:

- Next, unscrew the fixing screw (this screw holds the pressure cup inside the rheometer).
- Take the pressure cup out of the rheometer. BE EXTREMELY CAREFUL to not hit the measuring head, otherwise you might damage the bearing.
- 5. Unscrew the pressure head and put it in the holder. See picture below:

- If you have amine solution inside your pressure cup, be sure to throw the solution into an amine waste container before loosening the screw at the bottom of the pressure cup.
- 7. Clean the pressure cup, pressure head, measuring cylinder and metal inset thoroughly with water and acetone. Also note that there is another small bearing in the pressure head, so be careful when cleaning the pressure head.
- 8. Always make sure that these accessories are dry before re-assemble.
- 9. For experiments, put in around 7 mL solution inside the pressure cup, in the gap between metal inset and pressure cup (see pictures below).

Air check and motor adjustment

It is important to do air check and motor adjustment of the instrument before you used it for the first time. It is also advisable to at least run air check and motor adjustment once a week (Everyday especially if you are checking viscosities of CO₂-loaded solutions). You will have to perform air check before and after motor adjustment. The air-check and motor adjustment are performed at atmospheric pressure i.e. no need to attach the external pressure sensor and N₂ supply.

Before performing air check:

- 1. Make sure that the pressure cell and its accessories are clean and dry.
- 2. Assemble the apparatus. DO NOT PUT the metal inset (see picture)

- 3. Open rheoplus software
- 4. Click on the rheoplus icon (A) and the screen below will appear:

Control Public MCR101 SHIE421381.14	rt) nate (terror)	2
Har Joan Catalon Herman Har Catalon Herman H	Participant R m Namework Second Namework Second Namework Second Namework Second	
OK Carcel		

- 5. Now check that 'meas. position' value is set at 0 mm. If it is not, change it to 0 mm. Then click on the 'meas. position' icon. You will now hear a sound, and the movable part of the rheometer (with the magnetic coupling) will move to 0 mm position.
- The machine will stop once it is positioned at 0 mm. And on the front screen of the rheometer, an OK status will appear.
- Now click 'Reset Normal Force' icon. The machine will set the normal force to 0 N. Always remember to double check that the normal force is at 0 N before you begin your experiment. Click OK.
- 8. Now you are ready to do the first air check.

Performing air check:

1. Click on 'create workbook' icon to open/make a new workbook. The icon is shown in the picture below:

 Now you will see a new window appears. Since we are going to do air check and motor adjustment, go to 'SUPPORT' and choose 'Smart Application Adjustment: Motor Adjustment and Air Check Pressure Cell'. See picture below:

MHEREUN/22 V3.31		2 8
He gat per part chains price Inte-		
R G S S P	,	
□□■ ※考验 金魚 回出 4	NG=및원들 = = + ▲객업 책 앱립 부 +	
	Cowards 1	
	Standard Tangkoon 💌 MCRIOL SHENYT1288, COM1	
	-Bedrer Rev. Cookdon Time Temperature MAA-Terrien Evamples (2000) ville Adverture,Soslards Agrint 1	
	2pe of Wardanak	
	- Smart Applications Adjustment, Noter Adjustment and Ar Check, INCRSDIPTOT 086004 500501	
	 Shart Association: Advictment: Noter Advictment and Air Check, Pressure: Cell Shart Association: Measuring Science: Very Bodien and Calcindery: Specification and Mitter Don In 20000014500401 	
	 Init Appoints Version Version Bulls PETCHERNE MISTER AD DRIVER ADDRESS HER INFormation 	
	EIPERT Measuring System Verification and Calibrative Elevated Of	
	Internet Add Adjustment Internet for Section Theoretic all denses for Range	
	Interacting System: Connect CSS4CS4-Pactor	
	a since	
		D120.12(99)
Alatant Senecessity and	Decement - House .	B 1 (B) 23144

- 3. Click OK.
- 4. Now a new window will appear, and it looks like this:

Welcarre to the Adjust	treet Software from Antan Paar	Venios 23.06.2037
AIR CHECK AN	D MOTOR ADJUSTMENT PRESSURE CELL	CONTROL PANEL RESULTS >
Inte:		GOTO DALERATION POSITION
User Romank		START AR DRESK (23)

5. Now click on the 'CONTROL PANEL' icon. You will now see a familiar control panel's window appear:

	Control Panel: ACC101 5180471788. Not	- Review	
Weizere Is the Adjustment Softw AIR CHECK AND NOTO		Participant of the second seco	Version 23 05, 2007 RESILUTE > RESILUTE > RESILUTE > RESILUTE >

 Go to 'Configuration' and select all the details for the rheometer. On the 'Measuring System', choose DG35.12/PR. For the detection type, choose 'Without Toolmaster'. See picture below:

SeverArowers / Workbook * Directory: - (Application 1) State Bit Colors 1	Start]					
*****		,				
		/				
		·			_	
	Centrel Panel: MCR101 5H3	0471288, Net1				
	ControlPanel Configuration 0	lap Setting Cambol	er Service		1	
	Measury System	Hegs. System	dimer			
		Detection Type:	DODE T2491		lineire mar mar	
wechne is the Adjustment Sorwi	Measuing Cell			-	Venion 2306-200	
AIR CHECK AND MOTO		Detection Type:	Technitik Check Manu	Q SN V Detect	000/0 TO >	
100 C		C Switchorty	ous. Coll after Test		neovulo -	
111	Tomperature-Controller					
1.1		Dev-COM1:	-Hand-	-		
		C Selder T	out, Carlinder after leaf			
	Annatiog Chiland				ATION POSITION	
ine.			M1	N2		
		DSP (jwielde:	-dating-	-tating-	R DHECK (P3)	
Uper		OTINE	0	0		
Bernark		Cector:	1	1		
	Peley / Audires		Exter/	chipters 💌		
			AUSTINE	dizze»		
	OK Canod					
L						
-1 Start 🗣 sulssers (Weißs. 🗹 Seasent)	- Maximal				010	B CONTRA

7. On the 'Measuring Cell', Choose C-ETD200-SN80462200. For the detection type, choose 'Without Toolmaster'. See picture below:

	Control Panel: ACR101	9480471785, Nort			E	3
	Control Panal Configuration	Geo-Setting Contro	er Service			
	Meanating Dyslem	Marco Donima	COOR & NEW		-	
		Detection Type:	WhortTedexdar	• •	deal .	
Welcome to the Adjustment Sol	Meesuring Cell					Version 25.06.2007
AIR CHECK AND NOT	a l	Mees. Dolt	0.871298-546940299			
		Switch of a	inter Coll alter Test		eee:	RESULTS >
1	Terperiture Controller					
1.1		Den(COMT:	-1010-		-	
		C Darket and (are. Cardolar aller Teel			
hiv	denting Datest					ATON POSITION
-		Accessory	M3	M2		
		DOF YORKAR	-521 (p	-totage		а снаснојта)
User		Other	0	0	_	
Famale	False (In size	Gene			_	
			THE:	-00.00*		
			AUENDA	-1018-		
		1				1

- We DO NOT need temperature controller ON at this moment, so make sure it is not selected. The same applies to AUX Input (for external pressure sensor). Leave these two spots blank (NONE).
- 9. Click OK.
- 10. Click 'GO TO CALIBRATION POSITION'

11. A message will appear. If there is any problem, you will get a warning. Otherwise, you will see the picture below appear.

Welcome I	Mesr.Cet. C-2102 Moving Postion Factors Network Force	0.94964523101 1000 mn 0.000 mn 139.95 % 1.22 N 1.22 N	Vensor 23 05:2007 CONTROL PAVEL. RESULTS >
Inter User Remark		Logn	GOTO CALERATION POSITION

12. During this step, the position of the magnetic coupling cup will be set to 1 mm by the machine. So if you look at the front of the rheometer apparatus, the screen will show this picture:

- 13. Now next to the 'GO TO CALIBRATION POSITION', you will see a green tick.
- 14. Press 'START AIR CHECK' icon. Now a new window will appear (see picture below), and you will now have the opportunity to save the workbook into your folder. Put all necessary information such as date onto the file name.

Image: Binardia Binardia Binardia Image: Lappe: Binardia Binardia Image: Binardia Binardia Binardia	Normality Set State Set	the active work	block with a new nam	× [2]	×	
	ber ber ber ber ber ber ber ber	everjes 📋 Filvespla		• * 🗓 🖶 🖬 •		
Agent Server Server Venters 22:02:207 Venters 20:02:007 Server Venters 20:02:007 Venters 20:02:007 Server Server Venters 20:02:007 <td< td=""><td>Agent Total Control See See Set 100 (See Se</td><td>HODE-OD HER O-MERA 604 Josek Josek20050027</td><td>as</td><td></td><td></td><td></td></td<>	Agent Total Control See See Set 100 (See Se	HODE-OD HER O-MERA 604 Josek Josek20050027	as			
ME UT DR ALL AND	ME UT DREAD AND AND AND AND AND AND AND AND AND A	ngana 📷	ek (*0FD)	Serr Casoli	l Pau	Vesion 23.05 203
Мс. Царк. Бие	Мс: Царк: User	EA CHARACTORIA EA CHARACTORIA EL INTERNIZIONIA MEZITIORIA	5.001 Covel 5.001 Covel Time Feet Artim Page	riktor Aduttmet and Partie	MENT: PRESSURE CELL	CONTROL PANEL. RESULTS >
ht Lage. Shattan cieco (Fg	Mc. Logic. Shaft All Cold Cold (P)				-	
Dar	Der Ennyh		Mx		Lagin:	
						START AR CHECK (F3)
			User Farmatic			STARTAR CHECK (F3)
			User Farmark			STARTAR CHECK (F3)
			Liter Farmat:			CARTAR GRECK F1
			Utar Parsuk			

- 15. Click 'Save'.
- 16. Now the air check will start and this window will appear:

API CHECK 03/0.6 H	►1	STOP (ESC) CONTROL PANEL
8.2 #### 8.1	- dia/in/and instrup) — w Yeya - Siyale jacativari.p)	
M D		START 251 AR CHECK (15)
-0.2 C" 200° 430° Deflection Augle ♥	0001 UPAL-PO mm	
Hoa Ro. Tess Desc Deficiency Deficiency <thdeficiency< th=""> <thdeficiency< th=""> <thdeficien< th=""><th>Informations WARDY, WARDY, WARDY, WARDY, WARDY, WARDY, WARDY,</th><th></th></thdeficien<></thdeficiency<></thdeficiency<>	Informations WARDY, WARDY, WARDY, WARDY, WARDY, WARDY, WARDY,	
COPY TABLE COPY REPORT	FERT	< RETURN CUIT

17. REMINDER: Always make sure that the front door of the lab is CLOSED, and that you are standing far from the machine when it is performing air check. If the door is opened, and you are standing in the vicinity (making vibrations to the table etc), you will get bad air check results (big torque values). See picture below:

- 18. When the air check is running, the 'COPY TABLE' and 'COPY REPORT' icons will be disabled, but once it is finished you can click on these icons. Click 'COPY TABLE' to copy the details of the air check procedures onto excel, and click 'COPY REPORT' to copy the graph.
- 19. The first air check is now complete. Usually the reading of the torque should be within $\pm 50 \ \mu$ Nm, and the curve should look like this:

This indicates good bearings, if the values are higher, and the curve are not smooth, then you might want to change the bearings. If this is the case, please inform your supervisor. The torque curve has a wave form due to the properties of the magnetic coupling. Now you are ready to perform 'motor adjustment'.

Performing Motor Adjustment:

1. After the first air check is finished, you can now tick the 'PERFORM MOTOR ADJUSTMENT'.

2. Now click on the 'CONTROL PANEL' icon, and a window will appear as below:

	Certen(Rave), MCR00, MCR00, MCR00, Decider, Genetic Toresty Compares: Decider, Genetic Toresty Indicates 3/dire investes Indicates 3/dire invest	CONTROL PAREL.
4.1 -0.2 -		5 AR (7 E(K (7))
COPY TABLE CO	Bread gales	QUIT

3. On the panel, go to 'Gap Setting', and click 'Details' (picture below):

RESULT OF THE ADJUSTMENT	Control Faces F and CS IF Control Faces And Control Faces And Control Faces And Control Faces And Faces An	CONTROL PAREL
	Messeng holden in Hore Beer Messeng holden i	A AND THE PERFORMENT.
233 401 525 178 118 0 49 535 165 119 COPY TABLE COI	Dent plan	Q04T

4. Press 'Settings' for the 'Measuring Position (Manual). A new window will appear, as shown below:

aperling relations	2	\$510471281, Berl:		X
Profer to HeastryProton -WangsAndow -Magnan Proton -Magnan Proton -Magnan Proton -Magnan Proton -Magnan Proton	D-02 MM 60 MM D-3 M 500H B	n (Sep Setting Constoler Service analisis		CONTROL PAMEL.
101 43 1,00 43 1,00 49 1,00 49 1,00 49 1,00 49 1,00 49 1,00 49 1,00 49 1,00 49	Dere Inset	hat Hencel Settings	• Sert Ro	ACUSTMENT (Service)
- nal tongun c'harque linit O mens arrig dates active active pordora Deland golans		envel) Secol Coded	• Settige	
22 49 536 31 110 23 49 535 110 1 23 49 53 12 12 1 20 49 53 12 12 1 0 49 53 12 12 1 0 49 53 12 12 1	COF Designer Selling	and Controlled	y Solings	Сит
	OK Geo	- I		

- Choose 'no setting' for the 'Setting measuring device'. Untick 'gap control active after positioning' and untick 'measuring drive active after positioning'.
- 6. Repeat steps 4 and 5 for 'Lift position'.
- Click 'Zero gap setting' and make sure that 'move to measuring gap' is tick (see picture below).

Central Pavel: arCR101 3388411388 Avr.1 20	
ESULT OF THE ADJUSTMENT Turing CONTROL FAMEL CONTROL FAMEL CONTROL FAMEL CONTROL FAMEL CONTROL FAMEL CONTROL FAMEL	
-reg. routes 1.80 arb -reg. routes arb binut dataget a -reg. routes 1 arb binut dataget a -reg. routes 1 arb a a -reg. routes 1 a a a -reg. routes 1 a a a -reg. routes 1 a a a	
Densiti (skale Or Cardial 2017 Statistical Statistical Marco Risk Marco Risk Statistical Via 10.12 20.5 Via 20.5 7.6 Via 20.5 7.7 Via 20.5 7.7	
COTY TABLE COT Investgement OK Owned	

- 8. Click OK.
- 9. Now go back to the 'Control Panel'.
- 10. Check that measuring position is at 0 mm. If it is not, press the icon to set it to 0 mm.
- 11. Check that the normal force is 0 N. If not, reset the force to 0 N.
- 12. Now choose 'Service' tab. Press 'motor adjustment' (shown in the picture below):

	/	
Certr	el Pavel: MCR101 SN80471288, Net1:	
Con	niPerel Configuration Orga Setting Camboler Service	
RESULT OF THE ADJUSTMENT:	1070	CONTROL PANEL.
0.2 milita 0.1	betwere texts of Mose. System or Drive gran. System	
		R ADJUSTMENT (Senice)
· · ·	Breaster Complexee. 150 and	
-0.1	Motor Correcting: 1	d AIR CHECK (#3)
-0.2	Actor ¿Santraet. Dogologal. P[100 AB-Cost	
0° 200°	Uper Start Angle	
Deflection	Cannypicale with Bedronic in Recovery Hole	
Ness. The Speed longue Defined 11 11+1940 171 266 308 6.395 31.12 145 296 308 6.391 30.2 716 296 308 6.391 30.0 716 296 308 6.391 30.0 716	Sangati Paramiter Songat Dignotic 1 git M	
798 440 E371 178 718 998 441 E371 178 718 908 481 E375 1576 719	Info Test Types More Ligences .	
COPY TABLE COP	Torinet Schere	outr
	94 Canod	

13. A new window will appear (as below). Choose the right rheometer, in this case it is DG35.12/PR
| 1 | Cantrol Panel: MCR101 SN80471288. Net1: | X |
|---|---|----------------------|
| Motor Adjustment for TIG35 12/RK | n Dep Setting Controller Service | |
| Bett (types:3)vs./Speed (betr (Time / Fype: defeat 0 CC27418738-Out (000-CM823) 0 CC32289 0 CC32289 0 CC32187 0 CC32187 0 CC32189 0 CC32189 0 CC32189 0 | 1 150-0001 10
3 150-0000 10
5 150-0000 10
1 1500-000 10
1 1500-0000 10
1 1500-00000 10
1 1500-000000000000000000000000000000000 | CONTROL PANEL. |
| | grat Systen. grie. | |
| Adving to go Adviterts offer beet: | No No No Antifact Conjunct 1.50 No Formation F No Structure Despination No Structure Despination No Structure Despination No Structure Despination | R ADJUSTMENT (Samor) |
| Cancal | Detail Vear Consultation with Bochronic in Recovery Mode | |
| Int International International <thinternational< th=""> International</thinternational<> | Sangle President
Songe Opplet: gene
Hen. See Types. Here Jugenees. | |
| COPY TABLE COP | Of Canad | our |

14. Click 'Start'. Upon clicking start button, you will receive a message of recommended steps (see below), press 'continue'.

Sprachback ACCID SUBJECTSUR Auf With Adjustment of the State (State (CONTROL FAREL.
--	----------------

15. Another message asking you to whether replace the adjusted data to the new one will appear (as below). Click OK.

17

	CENTRE IN CONTRACT DATABASE CONTRACT SERVICE	
Der rigten Byn 1 Speed 1 betr riter Phys Mar 2014 (1996) And 1000-00000 0000 584 584 600408 0000 584 584 600408 0000 1 1001	Сай 3.1 160 лова 1.6 10 - 4	CONTROL PAREL.
Control Control Control	The second secon	R ACUASTMENT (Sinner).
040 448 658 309 715 044 448 653 309 715 049 441 535 1026 715 049 441 535 1026 715 049 441 535 1026 715 000 441 535 1000 715 000 441 535 10000 715 000 400 700 700 7000 700 7000 7000 7000	Hr Telliger Werkgeen	ουπ

16. During the motor adjustment run, the 'OK' and 'Start' icons will be disabled (see below). It will only become enable again after the adjustment is finished. Usually this will take approximately 5 – 9 minutes.

	Centrol Panel: MCR101 SN80471288. Net1:	×
Notor Adjustment for 10535-12798	n Oep Setting Camboler Service	
Det agent tys Alexan (Den Hon Hon Hon Hon Hon Hon Hon Hon Hon Ho	To transmission of the second	CONTROL FAVEL.
0:00:12 CR Carrol PM 200 854 255 2732 145 CM 200 854 250 2732 145 CM 200 854 250 2732 145 CM 200 854 250 760 76 CM 200 854 250 760 760 760 760 760 760 760 760 760 76	Sever generation of the sector	
COPY TABLE CO	Denait julies	oun

- 17. Once the run is finished, click OK on the 'Motor Adjustment for DG35.12/PR window.
- 18. Click OK again to exit the control panel.
- 19. Motor adjustment is completed.
- 20. Now start an after-motor-adjustment air check. Click 'START 2nd AIR CHECK'.

21. When the run is finished, you will see two sigmoidal curves on the graph panel, as shown below (green and blue lines refer to before and after motor adjustment, respectively).

- 22. Copy/Save tables and graphs into excel folder.
- 23. Now you can 'QUIT' the air check and motor adjustment workbook. Click YES to save the results.

19

How to setup an experiment on the Rheoplus software:

1. Click on a new workbook icon. A screen as below will appear:

- Depending on the nature of your experiments, choose appropriate types of workbook. If you want to use constant shear rate during your experiments, go to FLOW or TIME or ALL tabs, and select 'Shear Test: Constant Shear Rate'.
- 3. Click OK.
- 4. New windows will appear, as shown below:

<pre>IP IP prove prove prove grant :</pre>	Visualization / Warkback * Dis	et lity:	
	He Bit (me)wart Dagsan (r	ense Dade Mendow 1	
	🖂 🖾 🔓 🔎		
No. (mon 0) Viscourts / the track lenge hove (mon 0) Viscourts / house (mon 0) Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove Image: State of the track lenge hove I	🗋 🖼 📓 🕺 🍓 🖓 🖓	20 - 및 등 = ■ → 르크네 및 및 별 별 별 부 >	
	3-dis Series: 0	Si Diagram I : Time Test Single Point	🖸 💥 🐺 Application 1: Austrant 💿 🖂
		Phwopi as	
		1,	
		920	
		0.9	
1 0		0.0	Still Meter
			The -
		0.7	Detx: -,J-
			Teng: -
		**T	1
		▲	Becaring France
		0.0	Bolt Shew Refe.
		14	
			Stat Fur
		12	Segmain
			Define input Deta
		0.2	Cettre SC Cittere
			Start Calcolution
		0.1	
California Sector California (California)		0 01 02 03 04 05 06 07 09 09 1	
bits 1. Data bits 1. Data bits 2. Data 2. Analyth bits 2. Data 2. Analyth bits 2. Data 2. Data 2. Data 3. Data3. Data 3. Data3. D			
Taken 1: Sold Standard Dave Date Date Date Date Date Date Date Dat			
Man. Mr. Dore 19 100 Mar. Man. Mar. Mar. Mar. Mar. Mar. Mar. Mar. Mar		E Table 1: Deta	nh 🗾 🗖 🗶
Pvd Pvl 000 0 000	harry .	(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	M DN (Pro)
	Lawie		
	Constanting (
Junio La Contra	lenni.		
lane -	hendt		
Marco -	Tane .		
Correl Research	Correct Researched		
E OPERATION AND A DESCRIPTION	Constage in survey		
		Mitemar C C X Manalysi C C X Mappis C C X	
Galacerto / Matteoli * Dentry	- unit	nowo/Wałbok/*Deetay	

 Click on the 'Measurement' window. You might see a red warning indicating 'No Meas. System'. Don't panic. Select rheoplus icon (^A). A new window will appear, as shown below:

🖗 + unknown + 7 Workbook * Directory:		1				. 6 🔀
the first lines pract Benarmoret Spring Indo Madow	τ.	/				
		101 1 1 1 2	1 112 1			
Dia Serec 1 2 Vearurement 1						anistant 💶 🗖 🔀
Baset Append	MD _			Chield Phil	19 Ilef .	
10C71921	Centrel Panel: MCR101 SN	(83471288, Net1)		2		
No Peses To dama	ControlPanel Configuration	Days Setting Combolk	r Service			
	Measuing System					
		Megs. System	003613.PR			der .
		Detection Type:	Without Toolenseler	Ortect		-
	Measuing Cell					
		Henn Ork	C-810 200-59400462200	•		-
		Detection Type:	Without Toolenader	Ortect		
		C Switch of M	as. Cell after Test			tang Polite
	Temperature Controller					Edit Shear Pake.
		Der-COMT:	-ltre-	•		
						Olef Exet
		C Seichoff D	mp. Caribales after Test			
	Arvetog Chiland					Define Input Data
			M±	M2		Start Colonalities
		Accessory:	-titores ·	-None>		
		Data Zanatan:	-datasp-	-tabygo •		
		OFINE	0	0		
		Cezo:	1	·		
	Peley / Auctions		Refer			
Table 1: Date			toury.			
Mag. Ry. Sina			AUG NEXE	Ph-25523.08	W100	ety:
Hane. PO					[000]	
Settle						
Contract.	OK Onot					
Des d		1				
Tree						
Constructioners of the						
Carrent Loga Mensarement	Statute di Si		ৰদাহ			
	Contraction of the second					
🗐 start 💊 sudesses (Web 🛛 Docard	- Marsouf					😡 🗂 🕏 🔟 10.22 AM

- Go to 'Configuration'. Select 'Measuring System'. Put in: DG35.12/PR and Without Toolmaster.
- 7. For the 'Measuring Cell', select C-ETD200-SN80462200, Without Toolmaster.
- Depending on the temperatures of your experiments, select the external temperature controller. NOTE: it is necessary to use this if you want to check viscosity of a solution below 30 °C. Otherwise, leave blank (None).
- If you are going to do experiments at high temperatures (higher than 80 °C), or if your solution is CO₂-loaded, make sure that you attached the external pressure sensor, and select 'AUX Input' as PA-23S/200bar.
- 10. Click OK.
- 11. Now the red error message should disappear (see next page), and you can now set the conditions of your experiments.
- 12. Clicking 'Append' will add a new column to the measurement workbook.

😻 - unknown - / Workbook * Die	ectory:								. 6 🗙
Die Die gen gunt Brmurmen	t Groter Jush Modern	ž							
R R 16 P									
🗋 🗃 🖬 👗 🖬 🕾 🚳 🔕	2 1 4 2 -	5 💺 📾 🖬 🗠	요네네 내 테네	12 🕨					
Data Series: 8	🖾 Measurement 1: -	few Measurement Ten	eplate •			L		anistant	
	Boot Append De	wa				Check Profile	154d		
	10021101 24035.12991		100 20 Per. 3 8 s						
		Rolation 5,74	P 100 10					4ce	ור
		Oscillation (p, y						- - -1-	
		Coolisien 1,M						-	
		· · ·						saring Profile	
	C-ETE200-5800462200	Accessory1 T						Ditt Shear Pale .	
								Oleri Farri	
								Define hgud Detis	
								Set Gisiston	
									- 1
	Distant Serve				-				
	May. Ry. Sine	Accounty Stear Rota Str	en 1942 1010.0 100.0		904. HJ. 946	r 846 - 1846 - 1856	11 M.Hos	Ry .	
Hane:	43	(N) (N)	e pini p		[M]	PI	[h4]		
Constator	-				-				
Pomaric:									
Perut									
Method -									
Const Measurement									
E Constitute Menanteri		🖬 Analysi 🗹	🗆 🔣 🖬 kayake 🖉						
						r		0625.12/98	
📲 start 💊 «urleser» ((Warib Document	- Marsof, .						B 1 90	10.25.04

13. It is advisable to follow these procedures for your experimental settings:

 a. Use the first column to get to the desired temperature of your experiment. Settings:

cun iş	<i>j</i>	
i.	Interval settings:	Meas. Points: 100. Time Unit second.
		Duration: Meas. Pt. 20 s.
		Data recording: OFF
ii.	Rotation:	Shear rate value: 100/s
iii.	Accessory 1:	This is the set temperature of rheometer. Set to
	desired temperature	

- desired temperature.
 iv. Accessory 2: This is the set temperature for the external oil bath. Set to 2 degrees lower than the desired temperature. ONLY USED FOR experiments below 30 °C.
- b. The second column is for data collection. Settings:
 - i. Interval settings: Meas. Points: 30. Time Unit second.
 - Duration: Meas. Pt. 20 s.
 - Data recording: ON
 - ii. Rotation: Shear rate value: 1000/s. Please consult the advisable shear rate (check the figure on page 26).
 - iii. Accessory 1: This is the set temperature of rheometer. Set to desired temperature.
 - iv. Accessory 2: This is the set temperature for the external oil bath. Set to 2 degrees lower than the desired temperature. ONLY USED FOR experiments below 30 °C.
- 14. An example of the measurement workbook is shown:

		- 100 TA TA			_							under E	
Frant Append D	Vent Acovil Debte.				Accercial Gender.				Me			Over	anna
MCRHH DIOIS 12 PR		8 =	0.Phi.	2 3	0 Pto. 8 A	3 8	100Phi. 234	4 8	30 R s. 20 4	5 8	20 N	6	
	Rotation $\dot{\gamma}, \pi, \phi, \gamma$	1 108	1.8	÷ 1000	1.8	ý 100	14	Ý 180	10	7 900	110	¥ 100	
	Robiton s , M												
	Codition e.y			1		1				1		1	
	Coolision 1.M					1				1		1	
	P.11					-						-	
C-ET0298-S808-852190	Accessery1 1	7 80	10	7 50		T 56	~	т 16		7 40	10	T 40	

- 15. Before you press 'Start', always make sure that measuring position and normal force is at 0. So go back to rheoplus icon and check. Change if necessary.
- 16. Now you are ready to start the experiment, click 'Start' and a new window as below will appear:

- 17. Put details of your file name. Make sure that if you or anyone else would like to check the data later in the future, there will be no problem in retrieving the data.
- 18. Click 'Save'. Experiment will now start (diagram window will appear).

20% AMP, 30-80 degree.007	I fed 0.3 met 260615.00X / Workbook * Directory: C: Decuments and Setting/AdminDesktop/Presence Welshei	11.7605151.20% AMP, 20-30 degre 💽 💽 😹
Die Die Seu Juset Dagen D	prim Dook Mandow 1	
🖾 🔁 h 🔎		
🗋 🖼 📓 🖉 🖓 🖏	NGN 46 20 회원 10 20 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Data Series 1	Stephanen 1 : Time Test Single Point	🔳 🖬 🗶 anistant 📰 🗮
30% AMP, 30-31 degree.cc)	Fitooplus	0.7525 20.0
		No. No. 1 10 10 10 10 10 110 10 110 10 110 10 110 10 110 10 110 10 110 10 110 10 110 10 110 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 1100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 100 10 <
	an la fai	2
	Table 1: Bele	
Marec 25% AMR, 28-30 Apro Sample Inst Opendot Rocopy Remail: Inst	Image for Process Process	(Rev Rus) Vinistr P4 (Rvi)
Result Method INCPIDE SHEDH/1208; F Type: Meansing Data IF Conservoussement	Three Setting: 100 Maxx. Pix. Reject Maxx. P Countries 20 o messuring Profile There Mate digammatrifier 100 TIs Terrespondent TST-11 07 C	
Constitute Messarent		
		• 1 0 00:00-29 Data Series 1
📲 start 💊 205.A05.3	0.00 deg 😰 Securet 1 - Marcal 🔁 Status	🖬 🕈 🕏 🖪 10 10 10

- 19. After your experiments have finished, click on the rheoplus icon and change the temperature of the rheometer to 25 °C. This is a MANDATORY STEP! Also note that the pressure cell might be extremely hot depending on the nature of your experiments, so please avoid touching the cell. Wait until it is safe to touch and dissemble the cell.
- 20. If you used pressure in your experiments, always released the pressure first before taking out the pressure cell accessories.
- 21. CLEAN the pressure cell after use.

How to export data to an excel readable format file

1. After the experiment has finished, click anywhere on 'Table 2: Analysis' window and then click the experiment file (top left corner). See picture below:

- 2. The experimental data will then appear on the Table 2 and can be copy-paste onto an excel spreadsheet.
- You will also be able to add extra column to the data table. Double click on a column and a new window will open. Choose from the available parameters then press insert.

How to set calibration factor

It is important to compare the viscosity values that you obtained during your experiments with standard values. A standard oil, with known viscosities is used for this purpose.

It is advisable to perform viscosity experiments with standard oil at least once a month.

Follow the procedures for cleaning and preparing the pressure cell, and set up experiment procedures as usual. The standard oil has specified viscosities at specified temperatures, so please set temperatures of your experiments accordingly.

After experiments, compare the viscosity values from your experiments with that of standard oil. Then calculate calibration factors at each temperatures:

$$C.F.\% = rac{standard\ value - experimental\ value}{standard\ value} imes 100$$

The calibration factor (average value) can be inserted onto the program, and if you do this please remember to write the value that you used in the log book. Inserting the calibration value to the program is not mandatory, but it is mandatory to always consider this factor in your calculations.

To insert calibration factor value:

- 1. Open rheoplus software
- 2. Go to 'Tools', then 'set-up' and then go to 'devices and accessories'. Click.

 A new 'Configuration' window will open. Go to 'Meas. Systems'. Make sure 'DG.35.12/PR' is selected, and then click on 'edit'.

 Another window will open, and here you can set/change the calibration factor. As a rule, it should always be set to 0 (zero) if you are going to add/deduct the values manually.

Br 60%	Change Measuring Sec	stern	👷 regili imini/Deddas/Prasarna Walabett0190713160% AMP, 30-90 degra
Deta Sar	Moon Dystems:	OK Circi	
	200 Control of the second seco	Bit Description Viete register Image: Imag	
Hene: Sanake Quardor Penet: Henit Helitol: Type: IF Our	10% AMY, 30-59 electric tech tech tech tech tech tech tech tec	Table 1: Brits Team (Internet Note: Note Note: Note Note: Note Note: Note Note: Note Note: Note Note Note: Note Note Note Note Note Note Note Note	
📲 st	APT 🔶 🗞 GEN AND,	33-48 dag 💭 Nosama Wolahots 🛛 🔯 Document I Microsof	🗎 🕻 🖉 😹 🖬 2007

5. Then click OK. And now close the 'configuration' window by clicking OK again.

Selecting shear rate for experiment.

How to change bearings.

5. Reassemble the inner part by using new bearings.

- Put the inner part carefully into the lower part and close the pressure head with the cap.
- Screw in the 10 allen screws until feeling a slight resistance (Never fasten just one screw only!)
- Thighten the Screws diagonally in pairs to avoid bending the axis of the pressure head!

