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Abstract—New ultrasound imaging and therapeutic modalities
may require transducer designs that are not easily facilitated by
conventional design guidelines and analytical expressions. This
motivates the investigation of numerical optimization methods
that can include the effect of structural layers (e.g. bonding
and electrodes), electrical loading, and more than one active
piezoceramic layer in the design and optimization procedure.
We have developed a numerical design method that utilizes the
linearity of the spectral phase as the design criterion. The aim
of this paper is to apply our numerical optimization method
to optimize a transducer by linearizing the phase spectrum.
Comparison to an established, analytical, broad-band matching
method is given.

I. INTRODUCTION

Ultrasound imaging transducers are typically designed to
have bandwidths larger than e.g. 60% to achieve the desired
short pulse duration for high axial resolution. However, if the
transducer’s spectrum contains sharp transitions at the band
edges, this can lead to so-called time-sidelobes in the impulse
response. If the time-sidelobe level is high relative to the main
lobe, image degradation may occur [1, p. 122]. Typically a
lossy material is attached to the back of the transducer which
may smoothen the band edges of the spectrum and reduce such
tails. However, this also leads to an unwanted reduction in the
transducer’s sensitivity. Preferably, the backing material has a
low characteristic impedance, and air-backed transducers are
for those reasons, an important class of transducers.

Since the objective of an imaging transducer is to transmit
short pulses, and not necessarily exhibit a wide bandwidth,
we focus on a transducer criteria that is directly related to
the length of the transmitted pulse, i.e. the phase spectrum.
Pohlig [2] has shown that for a given spectrum the shortest
impulse response is obtained if the spectrum has a linear phase.
Applied to ultrasound imaging transducers, this means that the
shortest pulses are obtained when the transducer is designed
to have a linear phase in the relevant frequency band.

Based on this, we have developed a numerical optimization
method for ultrasound transducers by linearizing the phase
spectrum. The optimization is performed by repeated 1D
simulations of a transducer structure where a selected set of
transducer parameters are changed stochastically. The optimal
transducer is obtained by the Simulated Annealing algorithm
[3]. Although several numerical optimization methods have
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Fig. 1. A typical spectrum of the transmit transfer function H(ω) =
U(ω)/V (ω) is shown, where U is the complex particle velocity at the face
of the transducer, V is the complex input voltage at the terminals of the
transducer, and ω = 2πf is angular frequency. |H| denotes magnitude (solid)
and θ denotes phase spectrum (solid). The fitting range is indicated by fr and
the ideal linear phase θl (dashed) is also shown.

been proposed [4]–[6], to the authors knowledge, no one has
yet used the phase spectrum as an optimization criterion.

To demonstrate the linear phase method, we optimize the
matching section of a simulated air-backed piezoceramic trans-
ducer with two matching layers. We compare the optimized
transducer with a similar transducer where the matching
section is defined using the established, analytical, broad-band
matching equations derived by Desilets [7].

II. OPTIMIZATION METHOD

A. Linear phase spectrum

A typical spectrum of a transmitter transfer function
H(ω) = U(ω)/V (ω) is shown in Fig. 1, where U is the com-
plex normal particle velocity at the face of the transducer, V is
the complex input voltage at the terminals of the transducer,
ω = 2πf is the angular frequency, and H = |H| exp(iθ),
where |H| denotes magnitude and θ is the spectral phase.
The transducer’s spectral phase, θ = θ(x̄), is a function of
all physical parameters that describes the transducer, where
x̄ = x1, x2, . . . , xj is a vector containing all the transducer
parameters.



To quantify the linearity of the spectral phase a regression
line is fitted to the spectral phase over a frequency range
[fmin, fmax], denoted fitting range, i.e.

θl = β0 + fβ1, f ∈ [fmin, fmax] , (1)

where θl is referred to as an ideal linear phase, f is frequency,
and β0 and β1 are the coefficients of the regression line. The
coefficients β0 and β1 are obtained from linear regression
using Matlab (The MathWorks, Inc., Natick, Mass., USA).

The approach is to search the parameter space x̄ that
minimize the difference between the ideal linear phase, θl,
and the transducer phase, θ, mathematically expressed as

arg min
x̄

E(x̄), (2)

where E(x̄) is referred to as the cost function to be minimized,
and is defined as

E(x̄) =
1

m

√√√√ m∑
i=1

[θ(fi, x̄)− θl(fi, x̄)]2 ,

fi ∈ [fmin, fmax],

(3)

where E = E(x̄) is the average absolute difference between
the ideal linear phase θl(fi, x̄) and the simulated transducer’s
spectral phase θ(fi, x̄) summed over m discrete frequency
points in the fitting range [fmin, fmax].

B. Simulation and optimization set-up

As an example of the linear phase method, the acoustic
matching section of a simulated air-backed piezoceramic trans-
ducer with center frequency f0 = 4 MHz will be optimized
accordingly. A schematic of the transducer stack is shown in
Fig. 2. The transducer consists of a λ/2-thick piezoceramic
layer with 12 µm silver electrodes, two matching layers and
3 µm bondlines mechanically connecting the layers. The
transducer is radiating in water.

The transducer is simulated by a 1D equivalent circuit
model suggested by Mason [8], implemented as an admittance
matrix. The Mason model is well established for piezoelectric
transducer structures oscillating in thickness mode, however
if other oscillation modes are present, other models should be
considered, e.g. a finite element method.

For our example, we have used the material parameters for
a common piezoceramic FerropermTM Pz27 (Meggitt Sens-
ing Systems, Denmark) provided by the manufacturer. The
remaining material parameters are realistic.

The transducer parameters we are optimizing are the charac-
teristic impedance, Zn, and the thickness, ln, for each match-
ing layer n, represented as two dimensionless ratios Zn/Zp

and ln/λn, where Zp denotes the characteristic impedance in
the piezoceramic plate and λn denotes the wavelength in the
n’th matching layer. In our case, this leads to four optimization
parameters,
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Fig. 2. Schematic of the transducer structure.
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Fig. 3. Schematic of the optimization procedure. x̄ = x1,x2,...xj are the
physical transducer parameters and E is the cost function to be minimized.
In the current work, the 1D model of Mason is used to simulate the
transducer and the Simulated Annealing algorithm is used to obtain the
optimal transducer.

{Z1

Zp
,
l1
λ1
,
Z2

Zp
,
l2
λ2

}
. (4)

The optimization is done by stochastically varying the ratios
Zn/Zp and ln/λn and updating the transducer parameter
vector, x̄, with the new parameter values. The optimal trans-
ducer is obtained using the Simulated Annealing algorithm [3]
implementation in MATLAB’s Optimization Toolbox, Release
2016a. See Fig. 3 for a schematic of the optimization process.
The optimization process is initiated using a set of transducer
parameter values, x̄, either generated randomly or based on
an established model, e.g. Desilets [7]. Bounds on x̄ may be
applied to minimize the search; e.g., in the current work, the
upper bounds on l/λ was half a wavelength. The optimization
process finishes when a set convergence criteria is met, or
when a set iteration limit is reached.

III. RESULTS

The linear phase method was used to optimize the acoustic
matching section of the transducer in Fig. 2. The fitting range
was 2.7 MHz to 5.3 MHz, corresponding to a 65% relative
bandwidth. The results are compared to a similar transducer,
where the matching section was defined using the established,
analytical equations derived by Desilets [7].

The optimized values are given in Table I. The characteristic
impedance in matching layer 1 obtained by the linear phase
method is 16.7% lower than what is obtained using Desilets’
equations, while for matching layer 2 a 3% lower value
is obtained. The thickness l of the matching layers are in
Desilets’ model fixed to λ/4, however, since the added mass of



TABLE I
OPTIMIZATION RESULTS

Matching Desilets Linear phase
layer Z [MRayl] l/λ Z [MRayl] l/λ

1 8.83 0.242 7.36 0.249
2 2.34 1/4 2.27 0.256

the silver electrodes are not accounted for it was necessary to
reduce the thickness of matching layer 1 by 3.6% to preserve a
flat magnitude spectrum. When optimizing for a linear phase,
we obtained approximately a λ/4-thickness for matching layer
1, and for matching layer 2, a 2.4% increase from a λ/4-
thickness was obtained.

Simulated spectra and pulse shapes for the two transducers
using the optimized values in Table I are shown in Fig. 4 (a–
d). The black curves correspond to the results obtained using
the linear phase method, and the red curves correspond to the
results obtained using Desilets’ equations.

In Fig. 4 (a) the two magnitude spectra exhibit a funda-
mental difference: the spectrum obtained with the linear phase
method resembles a Gaussian, while the spectrum obtained
by Desilets’ equations exhibits a nearly flat top. The -3 dB
bandwidths are 48.3% and 62.5%, for the linear phase method
and Desilets’ equations, respectively.

The two phase spectra in Fig. 4 (a) look very similar and
both show a close to linear variation with frequency over the
fitting range. To distinguish the variations in the phase spectra,
the group delay, −∂θ/∂ω, of the two phases is shown in Fig. 4
(b). The constant group delay of an ideal linear phase is shown
for comparison. This plot of the group delay highlights the
difference between the two approaches. The passband ripple
obtained with the linear phase method is -0.75 dB, while the
passband ripple obtained by Desilets’ equations is -3.6 dB.
Outside of this frequency range, the difference is negligible.

In Fig. 4 (c) the impulse responses of the simulated spectra
are given. Until about 0.5 µs, no significant difference be-
tween the two methods is observed. Beyond this, the impulse
response corresponding to the linear phase method exhibits
less and monotonically ringing at the expense of a slightly
wider main lobe.

To illustrate and quantify this difference, the envelope of the
two impulse responses is shown in Fig. 4 (d). The envelope
e(t) is defined as the magnitude of the analytic signal, cal-
culated from the Hilbert transform. The highest time-sidelobe
level obtained by the linear phase method is -29.4 dB, while
Desilets’ equations gives a time-sidelobe level at -16.6 dB.

IV. DISCUSSION

In the results section we saw that optimizing for a linear
phase versus Desilets’ equations gave a reduction in the
bandwidth (48.3% compared to 62.5%, respectively) and a
widening of the main lobe of the impulse response, however,
a significant reduction in the time-sidelobe level was also
seen (cf. Fig 4 (d)). As mentioned in the introduction, if the
time-sidelobe levels are high relative to the main lobe, image

degradation may occur, especially if the time-sidelobes do not
decay monotonically.

From this we learn that optimizing for a wide-banded
transducer is not necessarily the best and, at least, not the
only approach for an imaging transducer, and we note that
bandwidth as a quantitative measure for imaging transducers
may be misleading.

A quantitative measure for imaging transducer that is used,
is the width of the analytic envelope of the impulse response at
e.g. -6 dB or -20 dB. However, from Fig. 4 (d) we see that the
choice of decibel level will alter the result significantly. For
example, at -6 dB the impulse response obtained with Desilets’
equations is 4.1% shorter than what is obtained with the linear
phase method; and at -20 dB the impulse response obtained
with the linear phase method is 31% shorter than what is
obtained with Desilets’ equations. A discrepancy stemming
from the choice of decibel levels are, off course, unwanted.

To aid in quantifying the performance of different transduc-
ers we propose that the average deviation from an ideal linear
phase, E as defined in Eq.(3), over a stated bandwidth may
be used as a quantitative measure for imaging transducers.
For example, at the respective -3 dB bandwidths, E is 0.01◦

and 0.09◦ for the linear phase method and Desilets’ equations
respectively.

Desilets’ equations do not take into account the effect of
structural layers, such as finite electrode thickness, bonding
layers or electrical connection, however, it is well known
that this may affect the overall performance of an ultrasound
transducer. The linear phase method permits the inclusion of
such structural layers in the solution. In Fig. 5 an example
of this is shown. Here we show the resulting thicknesses for
matching layer 1 and 2 obtained by the linear phase method as
a function of varying the thickness of the silver electrode from
0 to 20 µm. The impedance of both matching layers were held
constant using the values in Tab. I. The linear phase method
obtains a close to linear variation in the thickness of both
matching layers with electrode thickness.

V. CONCLUSION

A numerical design method for ultrasound transducers uti-
lizing the linearity of the spectral phase has been presented.
Simulation results demonstrated an implementation of the
method. We found that a transducer optimized for a linear
phase resulted in a transducer with an impulse response with
less and monotonically ringing compared to a transducer op-
timized using the established broad-band matching equations
derived by Desilets.

Most importantly, the linear phase method can be used
to optimize transducers with more complex structures than
the presented example. Specifically, it allows for structural
layers (e.g. backing, bonding, electrodes), electrical loading,
and more than one active piezoceramic layer to be included
in the design and optimization procedure, which is not trivial
using the existing analytical methods.

Therefore, we believe that the linear phase method can be a
valuable design method for medical transducers, both for con-
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Fig. 4. Optimization results for the linear phase method (black) compared to the analytical equations derived by Desilets [7] (red). (a) Magnitude |H| and
phase θ of the transmit transfer function H . (b) Group delay, −∂θ/∂ω, of the two phases in (a). The constant group delay of an ideal linear phase is shown
for comparison. (c) Impulse response, h = F−1{H}, where F−1 denotes the inverse Fourier transform. (d) Normalized magnitude of the analytic signal,
denoted envelope, e(t), of the impulse responses in (c). The vertical line marks the -20 dB level. Where applicable, fr indicates the frequency range where
the cost function E was calculated.
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ventional imaging transducers, and more complex transducers
that are designed for new imaging and therapeutic modalities.
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