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ABSTRACT
The objective of this study is to attempt a new soft computing approach
for assessment of landslide susceptibility in the Luc Yen district, Yen Bai
province (Viet Nam) using a novel classifier ensemble model of Na€ıve
Bayes and Rotation Forest. First, history of 95 landslide locations was
identified byfield investigations and interpretation of aerial photos. Also,
the total ten landslide causal factors were selected (slope, aspect,
elevation, curvature, lithology, land use, distance to roads, distance to
rivers, distance to faults, and rainfall) to evaluate the spatial relationship
with landslide occurrences. Information Gain technique is carried out to
quantify the predictive capability of these factors. Second, landslide
susceptibility assessment was carried out utilizing the novel classifier
ensemble model. Finally, the performance of landslide model was
validated using receiver operating characteristic curve technique, and
statistical index-based evaluations. The novel classifier ensemble model
indicates high prediction capability (AUC D 0.846) and relatively high
accuracy (ACC D 78.77%). The study reveals that this model performs well
in comparison to the other landslide models such as AdaBoost, Bagging,
MultiBoost, and Random Forest. Overall, the novel classifier ensemble
model is a promising method that could be used for landslide
susceptibility assessment.

KEYWORDS
Landslides; GIS; Na€ıve Bayes;
Rotation Forest; Viet Nam

1. Introduction

Landslide is known as one of the most serious natural hazards having devastating effects on human
life and infrastructures (Tsangaratos et al. 2013; Alimohammadlou et al. 2014). All over the world,
there were 2620 deadly landslide events occurred within 6 years from 2004 to 2010, killing a total of
32,322 people (Petley 2012). In Asia, approximately 18,000 people died and about 5.5 million people
have been affected due to landslides during the period of 1950–2009, and the number of landslides
in this region is relatively high in comparison to other regions of the world (EM-DAT 2010).

CONTACT Binh Thai Pham phambinhgtvt@gmail.com; binhpt@utt.edu.vn

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

GEOMATICS, NATURAL HAZARDS AND RISK, 2017
VOL. 8, NO. 2, 649–671
http://dx.doi.org/10.1080/19475705.2016.1255667

http://orcid.org/0000-0001-9707-840X
http://orcid.org/0000-0001-9707-840X
http://orcid.org/0000-0001-5161-6479
http://orcid.org/0000-0001-5161-6479
http://orcid.org/0000-0002-4309-0187
http://orcid.org/0000-0002-4309-0187
mailto:phambinhgtvt@gmail.com
mailto:binhpt@utt.edu.vn
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1080/19475705.2016.1255667
http://www.tandfonline.com


Viet Nam is one of the top six countries frequently affected by natural disasters including land-
slides (Guha-Sapir et al. 2011). Over the years, landslides have occurred frequently in the country
especially in north-western mountainous and hilly regions (Tien Bui 2012). However, only limited
studies of landslides have been carried out in this region (Tien Bui et al. 2013; Tien Bui et al. 2015).

Landslide susceptibility assessment is considered as an appropriate solution for reducing land-
slide damages through proper land use planning (Fell et al. 2008). On regional scales, the assessment
is based on the statistical assumption that landslide events in the future will occur under the same
conditions that happened in the past (Guzzetti et al. 2005). Many methods and techniques have
been developed for the landslide susceptibility assessment during last decade. These methods can be
broadly grouped into two categories (1) qualitative methods and (2) quantitative methods (Guzzetti
2006). Qualitative methods are relatively subjective approaches which are based on expert’s perspec-
tive for defining the parameters and giving weights (Castellanos Abella 2008). Quantitative methods
are more objective which are based on criteria for selecting and assigning the weight for variables
(Castellanos Abella 2008). Therefore, quantitative methods are preferable for landslide susceptibility
assessment.

Many quantitative methods have been applied widely in landslide problems in recent years such
as frequency ratio (Pham et al. 2015a, Youssef et al. 2015), evidential belief function (Jebur et al.
2015; Tien Bui et al. 2015), multi-criteria decision analysis (Gorsevski & Jankowski 2010; Dragi�cevi�c
et al. 2015), artificial neural networks (Conforti et al. 2014; Polykretis et al. 2015), support vector
machine (Jebur et al. 2015; Ren et al. 2015; Pham et al. 2016a), decision tree (Lombardo et al. 2015,
Tsangaratos & Ilia 2016), and logistic regression (Shahabi et al. 2015; Youssef 2015). These methods
usually use new soft computing techniques that perform better than conventional methods and
techniques (Pham et al. 2016d).

Even though these models have been applied successfully and efficiently in landslide susceptibil-
ity assessment, no model is totally perfect. Therefore, the improvement in these models is needed to
achieve desire results. The performance of landslide models can be enhanced by using feature selec-
tion and ensemble frameworks (Tien Bui et al. 2014). The feature selection could quantify the pre-
dictive ability of landslide causal factors. Thereafter, the factors with non-predictive ability would
have to be removed to improve the performance of landslide models (Mart�ınez-�Alvarez et al. 2013).
Whereas, the ensemble frameworks that combine multiple classifiers to improve the performance of
individual classifiers based on characteristics of the diversity (Kuncheva 2014).

Ensemble frameworks started in 1990s but received significant attentions of researchers in recent
years. Ensemble techniques such as Bagging (Breiman 1996); AdaBoost (Freund & Schapire 1997);
Random Subspace (Ho 1998); MultiBoost (Webb 2000); Random Forest (Breiman 2001); and Rota-
tion Forest (Rodriguez et al. 2006) have been applied efficiently in improvement of the performance
of individual classifiers for different problems. Out of these, Rotation Forest technique has resulted
better outcomes (Rodriguez et al. 2006). Despite its merit, application of these ensemble frameworks
for landslide models is still rare. Therefore, the main objective of present study is to attempt a novel
classifier ensemble data mining approach for landslide susceptibility assessment at the Luc Yen dis-
trict in Yen Bai province (Viet Nam). This method is a combination of Na€ıve Bayes classifier and
Rotation Forest ensemble. These two methods are current state-of-the-art techniques but they have
so far been seldom used for landslide models. In addition, the performance of the novel classifier
ensemble model was also compared with other ensemble models such as Bagging, AdaBoost, Multi-
Boost, and Random Forest.

2. Study area

The study area of Luc Yen district (latitudes 21o 5503000N to 22o1703000N and longitudes 104o300000E
to 105o5303300E), which is located in the northeast of the Yen Bai province in Viet Nam, is affected
by numerous landslides every year (Figure 1). It covers an area of about 810 km2 that is 1.2% area of
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the Yen Bai province. As per record, the population of Luc Yen district in the year 2010 was 10,3587
and average populated density was 120 people per km2.

Luc Yen district is a mountainous region occupied by hills, small valleys, mounts, cliffs, and plains.
The district is dissected by two dominant mountain ranges running in northwest-southeast direction
namely Nui Voi and Large Rock mountains. Elevation in the area ranges from 43 to 1325 m above
standard sea level, with an average elevation of 262m. Slope angles in the region vary from nearly flat
to 81o. Approximately 29.71% of the study area has very gentle slopes under 8�, and around 12.93%
falls into slopes from 8o to 15o. Slopes in the range of 15�–25� occupy about 26.58% of the study area
whereas 20.93% of the study area belongs to slopes of 25�–35�. Around 7.96% of the study area has
slopes between 35� and 45�. Only 1.89% area is having slopes greater than 45� (Figure 6).

Geologically, there are eight main geological formations (Nui Voi, Ngoi Chi, Thac Ba, Phan
Luong, An Phu, Tu Le, Ha Giang, and Nui Chua) in the study area. Different types of rocks (sedi-
mentary, igneous and metamorphic) exist in the study area. Predominant rocks in the area are meta-
morphic (48%), whereas igneous rocks are occupying only 5.4% area. Alluvium and recent deposits
are also present at places (Figure 6).

Different types of land use patterns have been observed in this area namely forest; barren; cultiva-
tion; grass; scrub, and residential area. Forest land occupies the largest area (68.07%), followed by
barren and cultivation lands (15.09%), grass and scrub lands (7.36%), and residential area (4.5%).
Water bodies occupy only 4.98% of the total area (Figure 6).

Luc Yen district is situated in the tropical monsoon region, thus regularly experiencing heavy rainfall
during the months of June, July, and August. The annual average rainfall varies from 2500 to 3550 mm.
Rainfall usually occurs with high intensity and over a short period of time, often triggering landslides,

Figure 1. Landslide inventory map of study area.
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flooding, and causing erosion in the study area. The average daily temperature is 22�C. The temperature
in the area varies from 2�C to 40�C. The average daily humidity ranges between 60% and 72%.

3. Materials and methodology

Landslide susceptibility analysis has been carried out in five main steps: (i) data collection from vari-
ous sources, (ii) preparation of dataset, (iii) evaluation of prediction capability of landslide causal
factors, (iv) assessment of landslide susceptibility using the novel classifier ensemble model, and (v)
validation and comparison of landslide models.

3.1. Landslide inventory map

Preparation of landslide inventory map is considered as a primary and important step for landslide
susceptibility assessment (Fell et al. 2008). The map indicates the location of landslide events that
occurred in the past as well as in present. To construct a landslide inventory map, consultation of lit-
erature and interpretation of high-resolution satellite images/air photos are being done in conjunc-
tion with field investigation (Xu et al. 2012; Pradhan 2013).

Landslide inventory map in this study was constructed with the help of air photos (1:33.000) of the
year in 2013 obtained from the Aerial Photo-Topography Company (Vietnam). Interpretations were
carried out under a current national project in Viet Nam at the Vietnam Institute of Geosciences and
Mineral Resources, namely ‘Survey, assessment and zoning of landslide warning in the mountainous
region of Vietnam’. Field investigations were also carried out to check the interpretation results. Figure 2
shows photos of landslides in the study area that were taken during the field work phase.

Figure 2. Examples of landslides in the study area: (a) and (b) landslides at the Tan Linh commune; (c) landslide at the Khanh Hoa
commune; (d) landslide at Phuc Loi commune.
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A total of 95 landslides that have been occurred during five year periods from 2008 to 2013 were
identified and mapped to construct landslide inventory map (Figure 1). Field investigations along
road and in the populated area revealed the biggest landslide event occurred in August, 2008 with
volume of about 90,000 m3 at the An Lac commune, and the smallest one is in July 2013 at volume
of only 9 m3 at the Dong Quan commune. From interpretation of air photos, the area of the largest
landslide is about 664,158 m2, whereas the smallest is approximately 22,821 m2.

These landslides were classified into three types namely translational, rotational, and debris slides.
In the study area, the number of translational landslides is 65 that are 68.4% of total landslides. The
number of debris slides is 18 that equals to 19% of total landslides. Remaining 12 locations fall into
rotational type of landslides that is approximately 12.6% of total landslide occurrences. Landslide loca-
tions were divided randomly into two parts, and then converted into raster data with the pixel size of
20£20 m for analysis. One part of 75% landslide locations (29,038 pixels) used for training process
and another of 25% landslide locations (4979 pixels) utilized for validation process.

3.2. Landslide causal factors

Based on the analysis of the natural mechanism of landslides and the geo-environmental character-
istics of the study area, a total of ten landslide causal factors (slope, aspect, elevation, curvature,
lithology, land use, distance to roads, distance to rivers, distance to faults, and rainfall) were selected
for landslide analysis in the present study. Moreover, these factors were reclassified into different
classes for landslide spatial prediction which is based on the frequency analysis of landslides in this
study and landslide studies (Table 1). Similar approaches have been adopted by other researchers in
the identification of causal factors (Dai & Lee 2002; Pourghasemi et al. 2013; Tien Bui et al. 2016a).

3.2.1. Geomorphologic factors
It is well known that landslides are largely influenced by terrain types, therefore geomorphologic fac-
tors should be taken into account for landslide susceptibility assessment (Dou et al. 2014). In the
present study, geomorphologic factors, i.e. slope; aspect; elevation; and curvature were obtained
from a Digital Elevation Model (DEM) with a spatial resolution of 20 m. The DEM was generated
from national topographic maps available on a scale of 1:50000 obtained from Vietnam Institute of
Geosciences and Mineral Resources (Tien Bui et al. 2016b).

Slope is considered as one of the most important factors for slope instability analysis (Sadr et al.
2014), where slope is steeper there is high probability of slope failure (Dai et al. 2001). However, var-
iations of soil thickness and strength should also be taken into account. The slope map was con-
structed with five categories (Tien Bui et al. 2014) namely 0–8�, 8–15�, 15–35�, 35–45�, and > 45�

(Figure 3a). The distribution of landslide pixels on slope map is shown in Figure 6a. The slopes of
15–25o occupy the highest percentage of landslide pixels (42.13%), followed by slopes of 25–35o

(29.66%), slopes of 8–15o (16.31%), slopes of 35–45o (10.46 %), slopes larger than 45o (1.44%),
respectively. There are no landslide pixels in flat slopes of 0–8o.

Table 1. Landside causal factors and their classes employed in this study.

No. Landslide causal
factors

Classes

1 Slope (�) (1) [0,8); (2) [8,15); (3) [15,25); (4) [25,35); (5) [35,45); and (6) � 45
2 Aspect (1) flat; (2) north; (3) northeast; (4) east; (5) southeast; (6) south; (7) southwest; (8) west; and (9)

northwest
3 Elevation (m) (1) [0,100); (2) [100,200); (3) [200,400); (4) [400,700); and (5) � 700
4 Curvature (1) concave (< -0.05); (2) flat [-0.05,0.05]; and (3) convex (> 0.05)
5 Lithology (1) group 1; (2) group 2; (3) group 3; (4) group 4; (5) group 5; (6) group 6; and (7) group 7
6 Land use (1) forests; (2) grass & scrub lands; (3) barren & cultivated lands; (4) residential area; and (5) water
7 Distance to Faults (m) (1) [0,100); (2) [100,200); (3) [200,400); (4) [400,700); (5) [700,1000); and (6) � 1000
8 Distance to Roads (m) (1) [0,40); (2) [40,80); (3) [80,120); and (4) � 120
9 Distance to Rivers (m) (1) [0,40); (2) [40,80); (3) [80,120); and (4) � 120
10 Rainfall (mm) (1) [2770,2800); (2) [2800,2950); (3) [2950,3100); (4) [3100,3300); and (5) � 3300
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Aspect is also important factor influencing the slope instability as it controls topographic mois-
ture due to impaction of solar radiation and rainfall (Sadr et al. 2014). The aspect map was con-
structed with nine classes (Tien Bui et al. 2014) such as flat (–1), north (0–22.5 and 337.5–360),
northeast (22.5–67.5), east (67.5–112.5), southeast (112.5–157.5), south (157.5–202.5), southwest
(202.5–247.5), west (247.5–292.5), northwest (292.5–337.5) (Figure 3b). The distribution of land-
slide pixels on the aspect map is shown in Figure 6b. There are no landslide pixels in flat class. The
highest percentage of landslide pixels belongs to east class (27%), followed by southeast (22.2%),
south (18.51%), northeast (15.65%), southwest (6.62%), north (6%), northwest (2.29%), and west
(1.73%), respectively.

Elevation is known as one of the conditioning factors to landslide occurrences because degrees of
weathering of rock depend on the elevation beside types of rocks and water conditions (Mika 2013).
The elevation map was built with five intervals (Ercanoglu and Gokceoglu 2002) such as 0–100, 100–
200, 200–400, 400–700, and > 700m (Figure 3c). The distribution of landslide pixels on the eleva-
tion map is shown in Figure 6c. The number of landslide pixels is the highest between elevation 200
and 400m (48.91%), followed by 400–700m (22.74%), 100–200m (20.34%), > 700m (7.01%), and 0–
100m (1%), respectively.

Curvature is a factor that reflects the morphology of terrain surface representing changes in slope
angles along a very small arc of the curve (Tien Bui et al. 2014), and thus be susceptible to slope
instability. The curvature map (Figure 3d) was generated with three classes (Tien Bui 2012) such as
concave (< –0.05), flat (–0.05–0.05), and convex (> 0.05). The distribution of landslide pixels on
the curvature map is shown in Figure 6d. The landslide pixels only appear in concave (51.71%) and
convex (48.29%) classes and no landslide pixels are shown in flat class.

Figure 3. (a) Slope map, (b) aspect map, (c) elevation map, and (d) curvature map.
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3.2.2. Lithology
Lithology is one of the most important factors that influence the type and mechanism of the land-
slides because different types of rocks and soils are having different internal structures, mineral com-
positions, and thus susceptibility to landslide occurrences (Ercanoglu 2005).

In this study, the lithology map (Figure 4a) was constructed based on the Geological and Mineral
Resources Map of the Luc Yen district on a scale of 1:50,000. Lithology was classified into seven
groups (Table 2) based on mineral composition, degree of weathering, and estimated strength and
density (Van et al. 2006; Tien Bui 2012). The distribution of landslide pixels on the lithological map
is shown in Figure 6e. The highest percentage of landslide pixels falls in group 2 (78.38%) whereas
the smallest percentage of landslide pixels (0.44%) is observed in group 7.

3.2.3. Land use
Land use pattern affects to landslide occurrences due to human intervention (Glade 2003). For
instance, landslide occurs more frequently in barren area, and less frequently in forest and residen-
tial regions (Lallianthanga & Lalbiakmawia 2013). The land use map was generated from air photos
on a scale of 1:33.000 using Envi 5.0 software with the maximum likelihood classification. A total of
five land use classes were identified and grouped, i.e. forests, grass & scrub lands, barren & cultivated
lands, residential area, and water bodies (Figure 4b). The distribution of landslide pixels on the land

Figure 4. (a) Lithology map and (b) land use map.

Table 2. The components of lithological groups.

No. Class Main characteristics Components

1 Group 1 Quaternary deposits Alluvial sedimentary and Pluvial sedimentary: pebbles, stone,
cobble, sand, silt, etc.

2 Group 2 Metamorphic rocks with rich
aluminosilicate components

Quartz mica–schist, quartz sericite–schist, quartzite, and
sericite–quartzite, etc.

3 Group 3 Terrigenous sedimentary and
metamorphic rocks with rich quartz
components

Gritstone, sandstone, siltstone, claystone, carbonates,
alternated rhyolites, dacites, andesite sediments, quartz–
mica sandstone, quartzitic sandstone, cherty shale, etc.

4 Group 4 Carbonate rocks Limestone, dolomitized limestone, cherty limestone, clayish
limestone

5 Group 5 Terrigenous sedimentary rocks with rich
aluminosilicate components

Gritstone, sandstone, siltstone, claystone, carbonates,
alternated rhyolites, dacites, andesite sediments

6 Group 6 Acid-neutral intrusive magmatic rocks Rhyolite, dacite, felsite, and andesite rocks, plagioclase–
granite, granophyre, granosyenite, granodiorite, diorite, and
quartz–diorite

7 Group 7 Mafic-ultramafic magma rocks Dunit,peridotit, pyroxenit, tremolite schist, artinolite schist,
gabbro–pyroxenit, gabbro–amphibolit, gabbro–norit,
gabbro–anorthosit, gabbro–diorit, gabbro–diabas, diabas,
mafic bazan olivin, bazan tholeite, bazan dolerite, etc.
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use map is shown in Figure 6f. The highest percentage of landslide pixels in forests is 64%, following
by grass and scrub lands (17.75%), barren and cultivation lands (16.99%), residential area (0.75%),
respectively. There are no landslide pixels in water bodies.

3.2.4. Distance to features
Features such as faults, rivers, and roads should be taken into account for landslide susceptibility
assessment (Tien Bui 2012). Faults are products of tectonic activities that break the continuity of
soil or rock masses and are considered weak planes influencing slope stability. The fault lines were
extracted from the Geological and Mineral Resources Map of the Luc Yen district at the scale of
1:50,000. The distance to faults map was then constructed with six classes by buffering these fault
lines into study area (Tien Bui 2012) namely 0–100 m, 100–200 m, 200–400 m, 400–700 m, 700–
1000 m, and > 1000 m (Figure 5a). The distribution of landslide pixels on distance to faults map is
shown in Figure 6g. The percentage of landslide pixels at a distance of 200–400 m is 22.57% and at
400–700 m is 24.91%. Lower percentage of landslide pixels has been observed at distances 0–100 m
(9.96%) and 700–1000 m (9.77%).

The erosion of soil and rock masses caused by the activities of rivers has also influenced signifi-
cantly landslide occurrences in the study area. The density of drainage affects moisture of terrain as
more dense drainage pattern helps in accumulation of water, and thus making area more susceptible
to landslide occurrence (Stevens & Wolfe 2012). In this study, river sections that undercut slopes
larger than 15� were also extracted from national topographic maps on a scale of 1:50,000 (Tien Bui

Figure 5. (a) Distance to faults map, (b) distance to rivers map, (c) distance to roads map, and (d) rainfall map.
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2012). Then the distance to rivers map was constructed with four categories: 0–40 m, 40–80 m, 80–
120 m, and > 120 m (Figure 5b). The distribution of landslide pixels on the distance to rivers map
is shown in Figure 6h. The percentage of landslide pixels is the highest at 0–40 m (91.58%), and
very less in the rest categories, i.e. 40–80 m (6.4%), 80–120 m (8.39%), and > 120 m (9.23%).

Figure 6. Distribution of pixels on landslide causal factors maps: (a) slope map, (b) aspect map, (c) elevation map, (d) curvature map,
(e) lithology map, (f) land-use map, (g) distance to faults map, (h) distance to rivers map, (i) distance to roads map, and (j) rainfall map.
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Road sections in the mountainous and hilly regions that undercut slopes larger than 15�, break-
ing the continuity of soil or rock masses are considered to be susceptible to instability of slopes. The
road networks were extracted from national topographic maps on a scale of 1:50,000. After that, the
distance to roads map was constructed with four intervals (Tien Bui et al. 2015) such as 0–40 m, 40–
80 m, 80–120 m, and > 120 m (Figure 5c). The distribution of landslide pixels on the distance to
roads map is shown in Figure 6i. The percentage of landslide pixels is the highest at a distance
between 0 and 40 m (75.98%), and very small at the distances: 40–80 m (2.41%), 80–120 m (2.89%),
and > 120 m (3.12%).

3.2.5. Rainfall
Rainfall is considered to be a triggering factor that influences significantly to landslide occurrences
(Shahabi et al. 2014). This is because rainfall affects the soil properties such as decreasing of soil
shear strength. Rains also causes liquefaction of soil material and even flow of soil/ debris mass
enhancing the susceptibility of soil masses to landslides (Highland & Bobrowsky 2008). In fact, land-
slide usually occurs during long-term intensive rainfall in the study area. The rainfall data during
30 years from 1984 to 2014 was extracted from the database of Climate Forecast System Reanalysis
(CFSR) in Global Weather data for SWAT (NCEP 2014). The rainfall map was then generated with
five classes namely rainfall less than 2800 mm, 2800–2950 mm, 2950–3100 mm, 3100–3300 mm,
and greater than 3300 mm (Figure 5d). The distribution of landslide pixels on the rainfall map is
shown in Figure 6j. The two highest percentages of landslide pixels are in the two highest rainfall
classes, i.e. 3100–3300 mm (55%), > 3300 mm (41.73%). Lower percentage of landslide pixels has
been observed in smaller rainfall, i.e. < 2800 mm (6.51%), 2800–2950 mm (12.11%), and 2950–
3100 mm (19%).

3.3. Methodology

3.3.1. Feature selection of information gain
Information Gain method is one of the widely used techniques in feature selection for data mining
(Tatsunori Mori 2002; Witten et al. 2011; Sharma & Dey 2012; Azhagusundari & Thanamani 2013).
Although this method has demonstrated merits for spatial data analysis and modelling (Mart�ınez-
�Alvarez et al. 2013), the application of this method in landslide studies is rare. The principle of this
technique is based on evaluation of prediction ability and importance of the input variables (Sharma
& Dey 2012; Azhagusundari & Thanamani 2013). The irrelevant or unimportant variables are then
removed for learning process (Azhagusundari & Thanamani 2013). Consequently, the accuracy of
results can be improved and the process of learning could be implemented more quickly (Doshi &
Chaturvedi 2014).

Let zi, iD!
1; n (zi is the landslide causal factors); Lj, jD!

1;m (Lj is the out classes including
landslide, non-landslide). The information gain value of each landslide causal factor is
quantified based on the reduction measurement of the entropy (information) using the following
equation:

InfoGainðL; ziÞ D IFðLÞ ¡ IFzðLÞ; (1)

where IFðLÞis the entropy value of L that is the expected information needed to classify a landslide
causal factor for L and is given by

IFðLÞ D ¡
Xm
jD 1

PðLjÞ log2PðLjÞ: (2)
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IFzðLÞ is the information of L after integrating values of landslide causal factors zi and is calcu-
lated by

IFzðLÞ D ¡
Xn
iD 1

j Li j
j L j IFðLiÞ; (3)

where j Li j = j L j is the weight of the ith landslide causal factor and IFðLiÞis the entropy of L corre-
sponding to the ith landslide causal factor. As a remark, the factors with higher Information Gain
value would have more important to landslide models. Also, the factors with zero Information Gain
value are having no contribution to landslide models, thus it must be removed during dataset
preparation.

3.3.2. Na€ıve Bayes classifier
Na€ıve Bayes classifier is one of the simplest soft computing methods which is based on the Bayesian
theory and the maximum posteriori hypothesis (Rish et al. 2001). Na€ıve Bayes classifier uses a statis-
tical hypothesis that all values of numeric attributes are independent and normally distributed in
each class (Zhang & Su 2004). Na€ıve Bayes classifier has been applied effectively in many fields such
as medical diagnosis (Domingos & Pazzani 1997), and management (Hellerstein et al. 2000). How-
ever, its application is still limited in landslide problems.

Let t D ti, i D 1, 2,…, 10 are the attributes of the 10 landslide causal factors, GDGj, j D landslide,
non-landslide that represent classified variables and outputs. The prediction using Na€ıve Bayes clas-
sifier is presented as follows:

GNBC D argmax PðGiÞ
Gi D ½landslide;non landslide�

Y10
iD 1

Pðti jGiÞ; (4)

where PðGiÞ is termed as the prior probability of Gj which can be estimated using the proportion of
the observed cases with output class Gj in the training dataset. Pðti jGiÞ is defined as the conditional
probability which can be calculated as follows:

Pðti jGiÞD 1ffiffiffiffiffiffi
2p

p
b
e
�ðti�nÞ2

2b2 ; (5)

where n is mean and b is standard deviation of tiNa€ıve Bayes classifier is easy to construct, and
has surprisingly good performance in classification. On the other hand, it is also shown as a method
of poor probability estimation due to the conditional independence assumption (Zhang & Su 2004).
Therefore, some researches have tried to improve its probability estimates (Friedman et al. 1997;
Zadrozny & Elkan 2001). Additionally, the performance of Na€ıve Bayes classifier might be improved
by using ensemble classifier framework (Pham et al. 2016c).

3.3.3. Rotation forest ensemble
Rotation Forest is a relatively new framework for creating classifier ensembles. It was first proposed
by Rodriguez et al (2006). The basis of Rotation forest is that principal component analysis (PCA) is
used to extract the features to create training datasets for learning base classifiers (Zhang & Zhang
2009; Koyuncu & Ceylan 2013). Rotation Forest ensemble has been utilized to solve several classifi-
cation problems (Koyuncu & Ceylan 2013). The principal aim of Rotation Forest ensemble tech-
nique is to encourage same time individual accuracy and diversity (Rodriguez 2007 ). The success of
Rotation Forest is relied on the rotation matrix created by the transformation methods and the base
classifiers (Xia et al. 2014).
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Suppose that x D (x1, x2, …,x10) is the vector of the 10 landslide causal factors and y D (y1,y2) is
the vector of landslide and non-landslide classes, X represents the training set. C1, C2, …, CL are
classifiers in the ensemble, and by T which is landslide causal factor set. The steps for training classi-
fier Ci are implemented as follows (Rodriguez et al. 2006; Rodriguez 2007; Zhang & Zhang 2009; Xia
et al. 2014):

First, generating the rotation matrix Ri
a by rearranging the matrix of Ri is as shown as follows:

Ri D

ai;1ð1Þ; ai;1ð2Þ; ::::; ai;1ðQ1Þ 0 � � � 0

0 ai;1ð1Þ; ai;1ð2Þ; ::::; ai;1ðQ2Þ � � � 0

..

. ..
.

} ..
.

0 0 � � � ai;1ð1Þ; ai;1ð2Þ; ::::; ai;1ðQK Þ

2
66664

3
77775
: (6)

To make the matrix ofRi, (i) T is split into K subsets with the number of the landslide causal fac-
tors for each subset is Q D 10/K. (ii) For classifier Ci, let Ti,j be the jth, j D 1, 2, …, K subset of the
landslide causal factors. Xi,j is landslide causal factors in Ti,j from X. Xi,j

’ is randomly selected from
Xi,j with 75% size using bootstrap algorithm. After that, Xi,j

’ would be transformed to obtain the
coefficients ai;1ð1Þ; ai;1ð2Þ; ::::; ai;1ðQiÞ, the size of ai;1

0
is Q x 1. (iii) Arrange a sparse rotation matrix

Riwith the obtained coefficients
Then, the confidence is calculated for each class by the average combination method in the given

test sample x,

mkðhÞD 1
L

XL
iD 1

g i;kðhRi
aÞ; kD 1; 2;::::::; c; (7)

where g i;kðhRi
aÞis the probability generated by the classifier Ci to the hypothesis that h belongs to

class k.
Lastly, the h will be assigned to the class with the largest confidence.

3.3.4. The novel classifier ensemble model
In this study, the novel ensemble classifier model is generated by the combination of Na€ıve Bayes
classifier and Rotation Forest ensemble. Rotation Forest ensemble was first applied to create the sub-
sets of training. Thereafter, Na€ıve Bayes classifier was used to construct base classifiers from these
subsets for classification. Methodological flow chart of the novel classifier ensemble model is shown
in Figure 7. The advantage of the novel classifier ensemble model is that the training subsets are
being optimized using Rotation Forest ensemble, and then these training subsets are utilized for
training a base classifier of Na€ıve Bayes. Therefore, the novel classifier ensemble model could
improve predictive capability of a base classifier of Na€ıve Bayes.

3.3.5. Statistical index-based evaluations
The five statistical indexes namely Positive Predictive Value (PPV), Negative Predictive Value
(NPV), sensitivity, specificity, and accuracy (Pham et al. 2016b) were chosen to evaluate the perfor-
mance of landslide models. Here, PPV indicates the probability of pixels that is classified correctly
as ‘landslide’ class. NPV indicates the probability of pixels that is classified correctly as ‘non-land-
slide’ class. Sensitivity is the probability of landslide pixels that is classified correctly as ‘landslide’
class. Specificity is the probability of non-landslide pixels that is classified correctly as ‘non-landslide’
class. Accuracy is the proportion of landslide and non-landslide pixels that are correctly classified.
These values were calculated using the values of confusion matrix (Dou et al. 2015) including true
positive (TP), false positive (FP), true negative (TN), and false negative (FN) that was obtained
through training and validating process in Weka software 3.6.11 version.
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The overall performance of the landslide models is evaluated by using Receiver Operating Char-
acteristic (ROC) curve technique. ROC curve is a graph with each point on it representing a pair of
sensitivity and 100-specificity corresponding to a particular decision threshold (Fawcett 2006; Dou
et al. 2014). The area under the ROC curve (AUC) indicates the goodness-of-fit of landslide models
on the training data and prediction capability of landslide models using the validation data (Jones
and Athanasiou 2005). The AUC value equals to ‘1’ representing a perfect model whereas the AUC
value equals to ‘0’ indicating a non-accurate model. When the AUC value is closer to ‘1’ the perfor-
mance of landslide model is better (Walter 2002; Pourghasemi et al. 2012). According to Kantardzic
(2011) the AUC values can be classified into different intervals with respective performance such as
0–0.7 (poor), 0.7–0.8 (fair), 0.8–0.9 (good), and 0.9–1.0 (very good).

4. Results

4.1. Feature selection using information Gain method

Utilizing Information Gain method with ten folds cross validation standard, the evaluation of pre-
dictive capability of ten landslide causal factors was carried out using training data. The Average
Information Gain (AIG) value and its standard deviation for each factor were calculated and ranked
(Table 3). In general, the total of ten landslide causal factors has contribution to landslide models
(AIG > 0). Aspect shows the highest contribution to landslide models in the study area with AIG
value is 0.189, followed by slope (AIG D 0.166), rainfall (AIG D 0.154), curvature (AIG D 0.15),
lithology (AIG D 0.138), elevation (AIG D 0.13), land use (IG D 0.074), distance to rivers (AIG D
0.004), respectively. Distance to faults and distance to roads factors have the least contribution to
landslide models with AIG of 0.002.

4.2. Model performance and validation

The performance of the novel classifier ensemble model for landslide susceptibility assessment is
shown in Table 4 and Figure 8, 9. The results show that the novel model has a very high degree of
the goodness-of-fit in the case of training data with 87.37% of predictive accuracy and 0.94 of area

Figure 7. Methodological flow chart of the novel classifier ensemble model.
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under ROC curve (AUC D 0.94). More specifically, the probability of pixels that are classified cor-
rectly as ‘landslide’ class is 95.13% (PPV D 95.13%) whereas the probability of pixels which are clas-
sified correctly as ‘non-landslide’ class is 79.62% (NPV D 79.62%). The probability of the landslide
pixels are classified correctly to ‘landslide’ class is 82.36% (sensitivity D 82.36%). The probability of
non-landslide pixels which are classified correctly as ‘non-landslide’ class is 93.20% (specificity D
82.36%).

The novel classifier ensemble model was validated using the validation dataset which has not
been used during training process. The results indicate that the novel model has a good performance
in landslide susceptibility assessment with 78.77% of predictive accuracy and 0.846 of the AUC
value. Moreover, the probability of pixels is classified correctly as ‘landslide’ class is 78.79% (PPV D
78.79%). The probability of pixels which are classified correctly as ‘non-landslide’ class is 78.75%
(NPV D 78.75%). The probability of landslide pixels are classified correctly to ‘landslide’ class is
78.76% (sensitivity D 78.76%). The probability of non-landslide pixels are classified correctly into
‘non-landslide’ class is 78.78% (specificity D 78.78%).

4.3. Reclassification of landslide susceptibility map

Landslide susceptibility map is the final result of landslide susceptibility assessment using the novel
classifier ensemble model. In order to construct this map, landslide susceptibility indexes was
extracted after the successful model training phase. By using ArcGIS software 10.2 each pixel inside
the study area was assigned an unique susceptible index, and then the reclassification of landslide
susceptibility map was carried out by ranking and grouping the landslide susceptibility indexes.

According to Pradhan and Lee (2010), the classification of landslide susceptibility classes can be
implemented based on percentage of area of the region. At first, the susceptible indexes of all cells
were sorted in descending order. And then, these indexes were grouped into several groups accord-
ing to area percentage of the region. Moreover, Althuwaynee et al. (2014) proposed that the land-
slide susceptibility classes might be classified into five categories (very high, high, moderate, low,
and not susceptible). In this study, landslide susceptibility map (Figure 10) was constructed with

Table 4. Performance of the novel classifier ensemble model using training and validation data.

No. Parameter Training dataset Validation dataset

1 True positive 13812 3923
2 True negative 11559 3921
3 False positive 707 1056
4 False negative 2959 1058
5 PPV (%) 95.13 78.79
6 NPV (%) 79.62 78.75
7 Sensitivity (%) 82.36 78.76
8 Specificity (%) 94.24 78.78
9 Accuracy (%) 87.37 78.77

Table 3. Predictive capability of the landslide causal factors to landslide models in this study area.

No. Landslide causal factors AIG Standard deviation

1 Aspect 0.189 §0.001
2 Slope 0.166 §0
3 Rainfall 0.154 §0.001
4 Curvature 0.15 §0.001
5 Lithology 0.138 §0.001
6 Elevation 0.13 §0.001
7 Land use 0.074 §0.001
8 Distance to rivers 0.004 §0
9 Distance to faults 0.002 §0
10 Distance to roads 0.002 §0
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into five classes on the base of area percentage of the region, namely: Not susceptible (50%), Low
(20%), Moderate (15%), High (10%), and Very high (5%).

4.4. Model comparison

The performance of the novel classifier ensemble model was compared to other ensemble techniques
using Na€ıve Bayes as a base classifier such as Bagging, AdaBoost, MultiBoost. These models are well
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Figure 9. ROC curves and AUC analysis using the validation dataset.
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Figure 8. ROC curves and AUC analysis using the training dataset.
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known as boosting techniques that is one of the most important recent methodological develop-
ments in classification (Friedman & Tibshirani 2000). Additionally, an individual classifier ensemble
of Random Forest was also taken into account for comparison.

Bagging is one of the earliest ensemble learning algorithms proposed by Breiman (1996). It is
known as a bootstrap aggregation using the training dataset to generate multiple random subsets.
After that, the Na€ıve Bayes classifier-based model is constructed on the base of each subset. The final
classifier ensemble model is formed by integrating these classifiers.

AdaBoost is one of the most popular boosting algorithms for classification (Mease & Wyner
2008). AdaBoost was introduced by Freund and Schapire (1997), and it is known as an extremely
effective adaptive boosting (Dietterich 2002). It creates the training subsets and assigns the weights
for each subset through sampling process using base training set, and then the Na€ıve Bayes classifier
uses these weighted subsets for classification.

MultiBoost is a combination of boosting and wagging techniques for reducing both variance and
bias and avoiding the over-fitting (Geoffrey 2000). Using the training set, the subsets of training are
built through random selection. These subsets are then assigned the weights through the boosting
technique. Thereafter, the Na€ıve Bayes classifier model uses these subsets to produce the outcomes.
However, the training process is to be continuous by resetting the weights of subsets according to
the overall accuracy performance of the Na€ıve Bayes classifier model. Training process is finished if
the optimal weights are assigned in training subsets to get the highest overall accuracy performance.

Random Forest is a combination of multiple decision tree classifiers that utilizes both bagging and
random variable selection, it was proposed by Breiman (2001). In the beginning, the subsets of train-
ing are generated randomly from original training dataset using bootstrap aggregation approach,

Figure 10. Landslide susceptibility map at the Luc Yen district using the novel classifier ensemble model.
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and then each of the individual decision trees is constructed from each subset (D�ıaz-Uriarte & De
Andres 2006). Random Forest is an effective ensemble technique that could obtain good results with
both low bias and low variance (Gislason et al. 2006).

Using training dataset, the performance of four landslide susceptibility models namely Bagging,
AdaBoost, MultiBoost, Random Forest is shown in Table 5 and Figure 11. It can be clearly seen that
these four models have high degree of the goodness-of-fit in landslide susceptibility assessment. Out
of these models, the Random Forest model is the highest (Accuracy D 96.26%, AUC D 0.994), fol-
lowed by the AdaBoost model (Accuracy D 83.40%, AUC D 0.906), the MultiBoost model (Accu-
racy D 83.24%, AUC D 0.903), and the Bagging model (Accuracy D 83.17%, AUC D 0.901),
respectively. Overall, the novel classifier ensemble model has higher degree of the goodness-of-fit
compared to Bagging, AdaBoost, MultiBoost. However it is less than the Random Forest model.

The validation of the four landslide models has been carried out using the validation dataset. The
results are shown in Table 6 and Figure 12. The predictive accuracy of the MultiBoost model is high-
est (Accuracy is 79.3%), followed by the Bagging model (Accuracy is 79.03%), the AdaBoost model
(Accuracy is 77.44%), and the Random Forest model (Accuracy is 67.53), respectively. The Multi-
Boost model and the Bagging model have higher accuracy comparing with the novel classifier
ensemble model while the AdaBoost model and the Random Forest model have lower accuracy.
Regarding to the area under ROC curves of these models, the Bagging model indicates the highest

Table 5. Model performance using training dataset.

No. Parameter AdaBoost Bagging MultiBoost Random Forest

1 True positive 12623 13784 13719 14321
2 True negative 11594 10365 10451 13629
3 False positive 1896 735 800 198
4 False negative 2924 4153 4067 889
5 PPV (%) 86.94 94.94 94.49 98.64
6 NPV (%) 79.86 71.39 71.99 93.88
7 Sensitivity (%) 81.19 76.85 77.13 94.16
8 Specificity (%) 85.95 93.38 92.89 98.57
9 Accuracy (%) 83.40 83.17 83.24 96.26
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Figure 11. ROC curves and AUC analysis using the training dataset for the AdaBoost, Bagging, MultiBoost, and Random Forest
models.
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(AUC D 0.844), following by the AdaBoost model (AUC D 0.837), the MultiBoost model (AUC D
0.818), respectively. The Random Forest model illustrates the smallest value of AUC (0.788) com-
pared to other models. The AUC value of the novel classifier ensemble model is higher than all of
four other models.

The performance capability of the novel classifier ensemble model has been further compared
with four other landslide models using McNemar’s test. It was proposed by Everitt (1992) as a statis-
tical test based on the chi-square test value (x2) (Kuncheva 2004). This test compares the signifi-
cance of differences between the landslide models. In case x2 value is greater than the critical value
of 3.841459 and the level of significance (p) is less than 0.05, then the hypothesis of two significantly
different models is correct. Thus the null hypothesis of two non-different models might be rejected
(Dietterich 1998).

The results of the statistical test of prediction ability of the novel classifier ensemble model com-
pared with other landslide models (AdaBoost, Bagging, MultiBoost, and Random Forest) are shown
in Table 7. It could be observed that the statistical test of the novel classifier ensemble model vs. the
AdaBoost model has the smallest chi-square value (38.823). It is dramatically higher than critical
value of 3.841459. Furthermore, the p-value of all tests (p < 0.0001) is extremely lower than 0.05.
Therefore, the novel classifier ensemble model has a difference with four other landslide models.
This difference is statistically significant. It means that the performance of the novel classifier
ensemble model is comparable to other landslide models.

Table 6. Model performance using validation dataset.

No. Parameter AdaBoost Bagging MultiBoost Random Forest

1 True positive 3742 4351 4347 2226
2 True negative 3969 3519 3550 4499
3 False positive 1237 628 632 2753
4 False negative 1010 1460 1429 480
5 PPV (%) 75.16 87.39 87.31 44.71
6 NPV (%) 79.71 70.68 71.30 90.36
7 Sensitivity (%) 78.75 74.88 75.26 82.26
8 Specificity (%) 76.24 84.86 84.89 62.04
9 Accuracy (%) 77.44 79.03 79.30 67.53
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Figure 12. ROC curves and AUC analysis using the validation dataset for the AdaBoost, Bagging, MultiBoost, and Random Forest
models.
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5. Discussions

Landslide susceptibility assessment has been done at Luc Yen district, Yen Bai province (Viet Nam)
using the novel ensemble classifier model which is a combination of Na€ıve Bayes classifier and Rota-
tion Forest ensemble. Na€ıve Bayes is an effective classifier. However, in the landslide problems, its
performance is affected by independent assumption (Pham et al. 2016e). In contrast, Rotation Forest
is a promising ensemble technique which could be used to improve the performance of individual
classifiers (Pham et al. 2016e). Therefore, the ensemble classifier framework encompassing these
two techniques could result better performance of landslide susceptibility assessment.

Landslide causal factors are usually used to prepare input data for running landslide models.
Selection of these factors plays crucial role in getting qualitative output from the used model (Tien
Bui 2012). Feature selection is an effective method in selection of variables in input data for model-
ling (Pham et al. 2015b) which can be used to realize the irrelevant or unimportant variables in the
set of variables. Then these variables are removed to optimize the inputs for improving prediction
accuracy of modelling (Dash & Liu 1997). In this study, the feature selection of Information Gain
Method was selected to pick up the best landslide causal factors for the novel classifier ensemble
model in landslide susceptibility assessment in the study area. Results show that all of the ten land-
slide causal factors (slope, aspect, elevation, curvature, rainfall, land use, lithology, distance to rivers,
distance to faults, and distance to roads) are capable of prediction to landslide modelling. However,
aspect and slope have the highest contribution to landslide models which is in agreement with other
studies carried out by Sadr et al. (2014), and Van Den Eeckhaut et al. (2006).

Analysis results show the novel classifier ensemble model has the best degree of fit to landslide sus-
ceptibility assessment compared to other models on the base of the area under ROC curve. Moreover,
its performance is dramatically higher than the AdaBoost model (1.33%), and the Random Forest
(11.24%) model regarding to the predictive accuracy. However, it is slightly lower than the Bagging
model (0.26%) and the MultiBoost (0.53%) model. Results of the present study are comparable with
Rodriguez et al (2006) and Kavzoglu et al (2015) which showed that the Rotation Forest ensemble
performs significantly better than other models such as AdaBoost and Random Forest; however, its
performance is less than the MultiBoost ensemble, and quite similar to the Bagging ensemble. In com-
parison to other methods, the novel classifier ensemble model uses Na€ıve Bayes classifier which has
abilities to deal with uncertainty and Rotation Forest ensemble which is more effective in dealing with
small sample sizes, high-dimensional and complex data structures (Pham et al. 2016d).

Moreover, the present study proposed to use the McNemar’s statistical test (Kavzoglu et al. 2015)
for evaluation of the different significance of the novel classifier ensemble model and the other land-
slide models. McNemar’s statistical test is known as one of the most powerful statistical tests for
comparison (Roggo et al. 2003) which should be used to evaluate the performance of landslide mod-
els. Results (Table 7) show that the performance of the novel classifier ensemble model is different
statistically with other models (AdaBoost, Bagging, MultiBoost, and Random Forest).

6. Conclusions

New methodological approach which combines the Rotation Forest ensemble and the Na€ıve Bayes
classifier has been proposed for landslide susceptibility assessment at Luc Yen district of Yen Bai

Table 7. The performance of the novel classifier ensemble model (CEM) compared to other landslide models using McNemar’s
test.

No. Pairwise comparison x2 p Significance

1 CEM vs. AdaBoost 38.823 <0.0001 Yes
2 CEM vs. Bagging 695.588 <0.0001 Yes
3 CEM vs. MultiBoost 665.719 <0.0001 Yes
4 CEM vs. Random Forest 2062.655 <0.0001 Yes
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province (Viet Nam). This combined approach has not been carried out so far in other landslide
studies. Performance of the novel landslide model was compared with other landslide models using
current state-of-the art ensemble frameworks (AdaBoost, Bagging, MultiBoost, and Random Forest).
In addition, feature selection method using the Information Gain Technique has been adopted to
select the best landslide causal factors for running landslide models.

Results analysis proved that the novel classifier ensemble method is a promising technique that
could be considered as an alternative for assessment of landslide susceptibility. Analysis also reveals
that the performance of the novel model is comparable with other landslide models such as Ada-
Boost, Bagging, MultiBoost, and Random Forest. Moreover, while using this model, the Information
Gain Technique should be used as a feature selection method to evaluate the importance of landslide
causal factors for landslide susceptibility assessment. Additionally, this novel classifier ensemble
method can be used for the evaluation of different types of landslides under varying geo-environ-
mental conditions. Results of the present study could be helpful for the natural hazard management,
planning and decision makings of the area affected by landslides.
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