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ABSTRACT
Suichuan is a mountainous area at the Jiangxi province in Central China,
where rainfall-induced landslides occur frequently. The purpose of this
study is to assess landslide susceptibility of this region using support
vector machine (SVM) with four kernel functions: polynomial (PL), radial
basis function (RBF), sigmoid (SIG), and linear (LN). A total of 178 landslides
were used to accomplish this approach, of which, 125 (70%) landslides
were randomly selected for training the landslide susceptibility models,
whereas the remaining 53 (30%) were used for the model validation.
Fifteen landslide conditioning factors were considered including slope-
angle, altitude, slope-aspect, topographic wetness index (TWI), sediment
transport index (STI), stream power index (SPI), plan curvature, profile
curvature, distance to rivers, distance to faults, distance to roads,
precipitation, landuse, normalized difference vegetation index (NDVI), and
lithology. Using the training dataset, nine landslide susceptibility models
for the Suichuan area were constructed with the four kernel functions. To
evaluate the performance of these models, the receiver-operating
characteristic curve (ROC) and area under the curve (AUC) were used.
Using the training dataset, AUC values for the SVM-PL models with six
degrees PL function (1–6) are 0.715, 0.801, 0.856, 0.891, 0.919, 0.953,
respectively, and for the SVM-RBF model, the SVM-SIG model, and the
SVM-LN model are 0.716, 0.741, and 0.740, respectively. Using the
validation dataset, AUC values for the SVM-PL models with six degrees PL
function (1–6) are 0.738, 0.730, 0.683, 0.648, 0.608, and 0.598, respectively,
and for the SVM-RBF model, the SVM-SIG model, and the SVM-LN model
are 0.716, 0.741, and 0.740, respectively. Our results suggested that the
SVM-RBF model is the most suitable for landslide susceptibility assessment
for the study area.
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1. Introduction

In mountainous regions, landslides are considered as the most costly and damaging natural hazards
that cause thousands of deaths every year and losses of billions of dollars (Michel et al. 2014). Land-
slides occur as results of complicated and perplexed processes (Feuillet et al. 2014; Perrone et al.
2014), and in general, earthquake and rainfall are considered as the two major triggering (Ding et al.
2014; West et al. 2014). To reduce the serious consequences induced by landslides, in recent years,
many scientists have been engaged in landslide susceptibility mapping, and consequently, various
methods and techniques have been exploited (Carey & Petley 2014; Hassaballa et al. 2014; Lissak
et al. 2014). These methods and techniques were established in combining with Geographic Infor-
mation System (GIS) and remote sensing (RS), and in general, process of producing landslide sus-
ceptibility maps is more easier and accurate (Klose et al. 2014; Paul�ın et al. 2014).

Although many models have been proposed for landslide susceptibility mapping, until now most
scholars have different opinions about the models selection, some of them try to contrast the models
to acquire a result in a study area; this may be a good way to compare the advantages and disadvan-
tages of each model (Yalcin et al. 2011; Pourghasemi et al. 2012a; Kavzoglu et al. 2014; Umar et al.
2014; Youssef et al. 2014, 2015). Several models were conducted to produce landslide susceptibility
map including logistic regression (Ercanoglu & Temiz 2011; Akgun 2012; Conoscenti et al. 2014;
Kavzoglu et al. 2014), artificial neural network (Li et al. 2014), support vector machine (SVM)
(Chen et al. 2016a; Hong et al. 2015, 2016; Li and Kong 2014; Peng et al. 2014), decision tree (Yeon
et al. 2010; Pradhan, 2011; Alkhasawneh et al. 2014), evidential belief functions (Althuwaynee et al.
2012; Pradhan, et al. 2014), index of entropy (Constantin et al. 2011; Pourghasemi et al. 2012b),
weights of evidence (Chen et al. 2016b; Neuhaeuser et al. 2012; Tehrany et al. 2014), analytical hier-
archy process (Chen et al. 2016c; Shahabi et al. 2014), and frequency ratio (Pradhan and Lee, 2010;
Demir et al. 2013). Among all these methods, the SVM model is new technique in landslide suscepti-
bility mapping and it becomes more and more popular, due to its procedure is based on soft com-
puting statistical theory (Yilmaz et al. 2010; Xu et al. 2012).

China is the most populous country worldwide, thousands of years of human activity, the history
of the endless wars, especially in recent decades the rapid development of economy and population
growth rate, but also the use of the nature resources has been increased leading to a strong interfere
with the natural environment (Huang et al., 2014; Miao et al., 2014). In the eastern and central
regions of China, due to the large number of extraction of groundwater and massive exploitation of
mineral resources (including oil and gas resources), resulting in the destruction of groundwater
resources and geotechnical equilibrium state of tectonic stress changes induced and exacerbated
land subsidence, ground subsidence, ground fissures, land salinization, swamping, development and
hazards of geological disasters collapse, slip, flow, mine disasters (Dong et al. 2014; Xu & Xu 2014a;
2014b; Xu et al., 2013a, 2013b).

In the western region of China, due to the development and other over-development of land,
grasslands, forests and water resources, different problems were raised, including acceleration of soil
erosion, desertification and contain collapse, landslides, and mudslides (Yin, 2014). Landslides have
caused huge economic losses and casualties every year. Therefore, prevention and control of land-
slide disasters for China have a special significance (Zhao et al. 2014; Zhuang et al. 2014). In sum-
mary, landslides susceptibility mapping become more and more important in landuse planning and
government management all over the world (Coe 2012; Moretti et al. 2012)

The aim of this study is to produce landslide susceptibility maps using SVM model in the Sui-
chuan area of China. The major achieve of this study is to contrast the results between four kernel
functions named polynomial (PL), Lineal, Radial basis, and SIG. Besides, in PL, six kinds of degree
from 1 to 6 were applied to verify the accuracy of the kernel functions. Finally, nine landslide suscep-
tibility maps using four kernel functions in SVM model were produced.
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2. Study area and data used

2.1. Study area

The Suichuan area is located in the southern section of Luoxiao Mountain, the southwest border of
Jiangxi Province of China. The study area lies between latitudes 25� 280 3200 N. and 26� 420 5500 N.,
and longitudes 113� 560 5100 E. and 114� 450 4500 E. It covers an area of 3,144 km2. Suichuan area is
from the southwest to the northeast of Wanyang mountain; there are low mountains, hills and
river valley plain. The county has two major rivers, Shu River, is a tributary of Ganjiang river
(http://www.jxyh.gov.cn).

Suichuan area belongs to the subtropical monsoon climate, the annual precipitation ranges from
1,111.2 mm to 2241.3 mm with an average of »1,653 mm. The rainy season falls within March to
September, accounting for 77.6% of the yearly rain, according to meteorological data (1960–2012
year) of Suichuan area (http://www.weather.org.cn). The area is characterized by an average annual
temperature of »18.6 �C and average annual sunshine 1720.3 hours. In the Suichuan area, there
was no information about earthquake-induced landslides and about the high amount of precipita-
tion that induced landslides. Figure 1 shows the landslide location and some recent photo about
landslide disaster.

Figure 1. Landslide location map of the study area.
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The altitude of the area ranges from –44.6 to 1229.7 m above sea level. Around 33.6% of the study
area has a slope gradient less than 15� whereas areas with a slope gradient larger than 30� account
for 13.6% of the total study area. Areas fall into the slope category 15�–30� account for 52.8% of the
total study area.

The geological structure of Suichuan area is complex. More than 48 geological groups and units
are recognized (Table 1). The main lithological units in the study area are limestone, sandstone, silty
slate, carbonaceous slate (Figure 2).

Table 1. Types of geological formation of the study area.

No. Unit name Lithology
Geological

age

A Zi Shan Group Grey sandstone siltstone shale carbonaceous shale and
coal seam clamp

Carboniferous

B Xiashan group, Luo soil group, Xiashan group,
Yunshan formation shed group

Grey quartz conglomerate pebbly sandstone; purple red
sandstone siltstone silty rocks interbedded with grey
green sandstone shale dolomite dark grey dolomitic
limestone

Devonian

Mashan Group, Yang Lake Group Grey calcareous mudstone siltstone interbedded with
limestone; limestone clip purple sand siltstone silty
shale chamosite sandstone olitic hematite

Devonian

C The forest group, North Water Group Grey white feldspar quartz sandstone pebbly sandstone
fine sandstone siltstone interbedded with sandy shale
carbonaceous shale and coal seam

Jurassic

The upper part of purple yellow green sandstone
siltstone interbedded with shales the lower part of
purple pebbly sandstone fine sandstone conglomerate

Jurassic

Changle street, Sanjiang port Guposhan,
Xishan, Da Zhen Copper, Ling super unit

monzonitic granite Jurassic

Moon shape goose shape, Lingshan super unit Jurassic
Jiuxian decoction Mufu mountain, Changshan
match, Yangguan super unit, Huang
XieXihua mountain super unit

monzonitic granite Jurassic

Huang Xie the sea will be under the Xihua
mountain, Changshan super unit

monzonitic granite Jurassic

D Xin Wei super unit, new around the unit,
Yunju mountain super unit

Brick red purple red conglomerate pebbly sandstone
sandstone mudstone and silt the bottom
conglomerate

Cretaceous

Gui Feng Group, Lotus pond river group, Purplish red brick red sandstone intercalated with
sandstone the lower clamp andesitic tuff calcium
mirabilite Shi Yan Iding Xuan takeiwa

Cretaceous

E The Aoto group, Grand Valley Group Yellow green sandstone fine sandstone and silty slate
slate black carbonaceous siliceous slate and shale
interbed

Ordovician

The otolith group, Shi Kou group The otolith group (upper) Shi Kou group (middle lower) Ordovician

F - Water Quaternary -

G The waterwheel Guidong snow top super unit monzonitic granite Silurian
The Zuo An chao estuary Nanping Hill unit,
large clutch unit

granodiorite Silurian

Tang Hu chao unit, Fu Fang chao car brain
unit, high delta unit

Tonalite diorite porphyritic granodiorite granite
porphyritic two porphyritic moyite

Silurian

Fu Fangchao unit, Gaoping unit, cat nasal Yin
unit

monzonitic granite Silurian

H The urban super unit, Qing xi over unit,
Qiaotou super unit, jade Jing shan super unit

biotitemonzonitic granite Triassic

I Le chang xia Group Grey purple feldspar quartz sandstone intercalated with
siltstone slate; light grey chert sandwiched phyllite

Upper Sinian

J Eight village group high group Grey greyish green sandstones with grey green silty
slate slate and a small amount of carbonaceous slate

Cambrian

Eight village Stone Group Grey green striped strip slate with metaclastics bottom
common lenticular limestone

Cambrian

Note: �A B C D E F G H I J represent the class of lithology.
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2.2. Data

2.2.1. Landslide inventory map
Landslide inventory map is the important step in landslide susceptibility assessment and the map
can be constructed using various methods such as field survey, satellite image interpretation, aerial
photograph, historical records (Pham et al. 2015). In this study, a landslide inventory map with 178
landslide events was established and these landslides were determined from interpretations of high
resolution satellite images at the Google Earth�, historical records, and field surveys.

Our analysis of these landslide shows that the size of the smallest landslide is 12 m2, the largest is
45,000 m2, and the average is 2,508.5 m2. The landslide inventory map consists of 104 rotational
slides and 74 translational slides, besides 84 slides are shallow and 94 are deep. Larger landslides
(>800 m2) account for around 5.8% of the total number of landslides. These landslides have been
reported affecting 1,987 people. Around 27.7% of the total landslides are medium size (200–800 m2)
and affected 1,134 people. Small-sized landslides (<200 m2) that affected 985 people are accounted
for 66.5% of the total landslides.

2.2.2. Landslide predisposing factors
The landslide predisposing factors are very complex, until now there is no agreement with the total
and deep cause of landslide. However, in most literatures, scientists study the relationship between
landslide occurrence with conditioning factor such as topographical, geological, and climatic condi-
tions. Based on literature review and analysis characteristics of the landslide inventory map of the
Suichuan area, 15 factors were selected. They are slope-angle, altitude, slope-aspect, topographic
wetness index (TWI), sediment transport index (STI), stream power index (SPI), plan curvature,
profile curvature, distance to rivers, distance to faults, distance to roads, precipitation, landuse, nor-
malized difference vegetation index (NDVI), and lithology were considered as major factors to pro-
duce landslide susceptibility map of the study area.

Figure 2. Geologic map of the study area.
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2.2.3. Digital elevation model and derivatives
A digital elevation model (DEM) for the study area with a spatial resolution of 25£25 m was gener-
ated from topographic maps. DEM of the study area was used to extract different conditioning fac-
tors such as slope-angle, altitude, slope-aspect, TWI, STI, SPI, plan curvature, and profile curvature.
Slope-angle is a quantitative description of the extent of ground tilt, but also a basic landform index,
through the influence of gravity, surface runoff and soil erosion affect the occurrence and intensity
of erosion. For medium-sized basin and regional scale distributed hydrological and soil erosion
model, the slope-angle of the surface is the most basic model parameters (Pedrazzini et al. 2013;
Muceku and Korini 2014). The slope-angle map was prepared from the DEM, and reclassified into
four categories: (1) 0–5�, (2) 5–15�, (3) 15–30�, (4) >30� (Figure 3a). Altitude was classified to five
categories including <200m, 200–400m, 400–600m, 600–800m, and >800 m (Figure 3b).The slope-
aspect (Figure 3c) values are grouped into nine classes based on normal or common standard classi-
fication, including flat (–1�), north (337.5�–360� and 0�–22.5�), northeast (22.5�–67.5�), east
(67.5�–112.5�), southeast (112.5�–157.5�), south (157.5�–202.5�), southwest (202.5�–247.5�), west
(247.5�–292.5�), and northwest (292.5�–337.5�). TWI is a kind of stream length through quantita-
tive description of runoff area, but also the watershed soil moisture and runoff generation capacity.
It is defined as

TWID ln
a

tanb

� �
; (1)

where a is the cumulative upslope area draining through a point (per unit contour length), and tanb
is the slope-angle at the point. It reflects the tendency of water to accumulate at any point in the
catchment (in terms of a) and the tendency of gravitational forces to move that water down slope
(expressed in terms of tan b as an approximate hydraulic gradient) (Moore & Grayson 1991;
Poudyal et al. 2010). In the present study, TWI is divided into three classes <7, 7–11, and >11
(Figure 3d). STI represents potential of soil loss from the combined slope properties (Figure 3e).
This index is derived from unit stream-power theory and is sometimes used in place of the length-
slope factor in the revised universal soil loss equation (RUSLE) for slope lengths less than 100 m
and slope less than 14�. STI depends on two parameters As (is the upslope contributing area) and b
(is the local slope gradient in degrees). In the current study, the STI factor was classified into three
categories, including <10, 10–30, and >30 and was prepared according to the following equation:

STID As

22:13

� �0:6

£ sinb
0:0896

� �1:3

(2)

The SPI is a factor that measures the erosive power of flowing water based on the assumption that
discharge is proportional to specific catchment area (Moore & Grayson 1991). The SPI depends on
two parameters. The SPI (Figure 3f) can be defined as (Moore & Grayson 1991) as

SPIDAs tanðbÞ (3)

where As is the specific catchment area and b is the local slope gradient measured in degrees. In the
current study, SPI was reclassified into five categories such as <20, 20–40, 40–60, 60–80, and >80.

Plan curvature reflects the structure and morphology of the terrain, but also affects the distribu-
tion of soil organic matter content in the surface process simulation and hydrology, soil areas has
important implications (Hapke and Green, 2006). Profile curvature is a measure of the slope gradi-
ent of the ground along the direction of the rate of change in ground elevation of maximum gradient
(May et al. 2013). In the current study, plan curvature (Figure 3g) was divided into three categories
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Figure 3. Topographical parameter maps of the study area: (a) slope-angle, (b) altitude, (c) slope-aspect, (d) topographic wetness
index (TWI), (e) sediment transport index (STI), (f) stream power index (SPI), (g) plan curvature, and (h) profile curvature.
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Figure 3. (Continued).
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including: concave, flat, and convex. Profile curvature (Figure 3h) was ranged from 0.001, –0.001
to 0.001, and >0.001.

2.2.4. Distance to rivers, distance to faults, and distance to roads
Some authors found that faults could induce zones of weakness (reduced bulk-rock strength) that
increase hillslope susceptibility to failure (Klose et al. 2014; Paul�ın et al. 2014). In addition, an exten-
sive landsliding in response to a large outburst flood indicates that lateral river erosion is a key driver
of landslide erosion on threshold hillslopes, the fault and river become key factors causing landslide
(Weng et al. 2011; Scheingross et al. 2013). The river network that undercut slopes was extracted
from the topographic map (scale 1:50000) by buffering the river lines The rivers buffer map was
classified into five categories including <100m, 100–300m, 300–500m, 500–700m, and >700 m
(Figure 4a). However, the distance to fault map was constructed by buffering the fault lines and clas-
sified into five categories <500m, 500—1000 m, 1000—2000 m, 2000—3000 m, >3000 m
(Figure 4b). The distance to roads is an important factor of landslides. Many landslides occur along
the roads because of uncontrolled rock cuts. Highways and roads construction can cause slope dis-
turbance causing increase of the strain behind the slope and leading to development of some tension
cracks. In the current study, many landslides were recorded along the roads. The distance to roads
map was prepared by buffering the road lines and classified into five categories including < 500m,
500–1,000m, 1,000–2,000m, 2,000–3,000m, and >3,000 m (Figure 4c).

2.2.5. Precipitation
Precipitation is one of the most major triggered factors of landslides. It had been paid more atten-
tion by many scientists (Raia et al. 2013). The precipitation data were extracted from a database
from the government of Jiangxi Province Meteorological Bureau. The mean annual precipitation for

Figure 4. Other conditioning factors maps including: (a) distance to river, (b) distance to fault, (c) distance to roads, (d) precipita-
tion, (e) land use, and (f) NDVI.
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Figure 4. (Continued).
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the period 1960–2014 at 23 weather stations was used to draw the rainfall map using Kriging
method. The precipitation map was classified into five divisions including 697.1–994.4 mm, 994.4–
1140.7 mm, 1140.7–1306.5 mm, 1306.5–1545.3 mm, and 1545.3–1940.2 mm for the study area
(Figure 4d).

2.2.6. Landuse
Landuse has some relationship with the landslide, they are influenced each other, where unreason-
able mining and building may induced landslide (Hadmoko et al. 2010). With ENVI software, the
role of landuse distribution in landslide susceptibility was evaluated by applying Maximum likeli-
hood classification method to Landsat 7 ETMC satellite image (acquired in 1999.12.10). Maximum
likelihood generated high accuracy results (Kappa coefficient D 0.924) by taking a set of input data
(Suichuan area). The landuse map in the study area was divided into six classes (Figure 4e), namely,
water, residential area, forest, bare, farmland, and grass. The forest unit represents the maximum
percentage (about 58.9%) of the landuse map, whereas the water unit represents the minimum per-
centage (about 0.02%) of the landuse map.

2.2.7. Normalized difference vegetation index
NDVI is defined by

NDVID ðNIR� VISÞ=ðNIRCVISÞ; (4)

where NIR is the reflectance of the Earth’s surface in the near infrared channel (0.725–1.1 mm) and
VIS is the reflectance in the visible portion of the spectrum or the red channel (0.5–0.68 mm)
(Tucker & Sellers 1986). The NDVI map of the current study was produced from Landsat 7 ETMC
image (acquired in 1999.12.10). The NDVI was reclassified into five divisions including: < 0.1, 0.1–
0.2, 0.2–0.3, 0.3–0.4, and >0.4 (Figure 4f).

2.2.8. Lithology
It is widely recognized that the erodibility degree of rocks is the main criterion of lithology type.
Landslides are heavily influenced by rock properties and its change, and most scholars had taken
lithology as an important factor in landslide susceptibility mapping (Chen et al. 2011). The lithology
map of Suichuan area was obtained from China Geology Organization (http://gsd.cgs.cn) (Figure 5
and Table 1). The lithological units of the study area were consisted of ten classes (A, B, C, D, E, F,
G, H, I and J) (Table 1). About 45.8% of the lithology covering the study area falls within the unit
described as class J (Eight village group high group; Eight village group Stone Group) which
includes: grey, greyish green sandstones, with grey green silty slate, slate and a small amount of car-
bonaceous slate: grey green striped strip slate with metaclastics, bottom common lenticular lime-
stone (Table 1).

Also, 20.3% of the study area is covered by class G (The waterwheel, Guidong, snow top super
unit; The ZuoAnchao estuary, Nanping Hill unit unitunit, large clutch unit; Tang Huchao unit,
Fu Fangchao unit car brain unit high delta unit; Fu Fangchao unit Gaoping unit, cat nasal Yin unit),
which including monzoniticgranite; granodiorite; Tonalite diorite, porphyritic granodiorite, granite,
porphyritic two porphyritic moyite; monzonitic granite. Other units constitute about 33.9% of the
study area (Figure 5 and Table 1).

3. Landslide susceptibility modeling

3.1. Support vector machine

SVM is a training machine learning method. It applied for the linearly separable case analysis for
linear non separable, nonlinear mapping algorithm by using low-dimensional input space. It can be
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linearly inseparable sample into high-dimensional feature space in which the linear separable, so
that the high-dimensional feature space by nonlinear characteristics of the samples of the linear
algorithm for linear analysis become possible (Micheletti et al. 2014). The two classes {1, ¡1} denote
landslide pixels and no-landslide pixels. The aim of the SVM classification is to find an optimal sep-
arating hyper plane that can distinguish the two classes, i.e. landslides and no landslides {1, ¡1},
from the mentioned set of training data. For the case of linear separable data, a separating hyper
plane can be defined as

yiðw ¢xiC bÞ=�1� ξ i; (5)

where w is a coefficient vector that determines the orientation of the hyper plane in the feature space,
b is the offset of the hyper plane from the origin, and ji is the positive slack variables (Cortes and
Vapnik 1995). The determination of an optimal hyper plane leads to the solving of the following

Figure 5. Lithology map of the study area.
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optimization (Equations 6 and 7) problem using Lagrangian multipliers (Samui 2008):

Minimize
Xn
iD 1

ai � 1
2

Xn
iD 1

Xn
jD 1

aiajyiyj xixj
� �

; (6)

Subject to
Xn
iD 1

ai yjD 0; 0�ai�C (7)

where ai is Lagrange multipliers, C is the penalty, and the slack variables ji allows for penalized con-
straint violation. The decision function, which will be used for the classification of new data, can then
be written as

g xð ÞD sign
Xn
iD 1

yiaixiC b

 !
(8)

In cases when it is impossible to find the separating hyper plane using the linear kernel function,
the original input data may be transferred into a high-dimension feature space through some non-
linear kernel functions. The classification decision function is then written as

g xð ÞD sign
Xn
iD 1

yiaiK xi; yið ÞC b

 !
(9)

where K(xi, xj) is the kernel function
In the present study, to perform the landslide susceptibility mapping using SVM, SVM classifier pro-

vides four types of kernels including radial basis function (RBF), PL, SIG, and linear (LN). The mathemat-
ical representation of each kernel (RBF, PL, SIG, and LN) is listed as follows (Pourghasemi et al. 2013):

Radial basis function : K xi; yið ÞD �gjjXi � Xjjj
� �

; g> 0; (10)

Polynomial : K xi; yið ÞD gXT
i XjC r

� �d
; g> 0; (11)

Sigmoid : K xi; yið ÞD tanh gXT
i XjC r

� �
; (12)

Linear : K xi; yið ÞDXT
i Xj; (13)

where K(xi, xj) is the kernel function; g is the gamma term in the kernel function for all kernel types except
linear; d is the PL degree term in the kernel function for the PL kernel; r is the bias term in the kernel func-
tion for the PL and SIG kernels; g, d, and r, are user-controlled parameters, as their correct definition sig-
nificantly increases the accuracy of the SVM solution.

3.2. Preparation of training and validation datasets

In the present study, 178 landslide events were randomly split into two parts, out of which, 125 land-
slides (70%) were randomly selected for modeling construction and the remaining 53 landslides
(30%) were used for the model validation. These landslides were assigned value of ‘1.’ Since the land-
slide modeling using SVMs is considered as binary classification, in which the resulting models will
classify pixels into two classes, ‘landslide’ and ‘non-landslide’, therefore it is necessary to collect
non-landslide points (Tien Bui et al. 2016). The non-landslide areas were identified with the usage
of Google Earth� and the analysis of high-resolution DEMs. The areas that potentially are classified
as non-landslide areas are characterized by gentle and without any changes morphometric charac-
teristic. The height difference, the steepness, and the orientation of slopes and also the absence of
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concavities and convexities, are the main criteria for identifying the non-landslide areas. To avoid
bias, the same number of non-landslide points was randomly generated from the landslide-free area
using GIS tools and were assigned value of ‘–1’ (Tien Bui et al. 2016). Finally, values of the 15 land-
slide conditioning factors were extracted for all the landslide pixels and the non-landslide points to
obtain the training and validation datasets.

3.3. Landslide susceptibility mapping

In this research, SVM with four types of kernel classifiers including RBF, PL, SIG, linear (LN), and
PL (six select degrees were used degree 1, degree 2, degree3, degree 4, degree 5, and degree 6) were
used in a GIS platform for landslide susceptibility mapping. A total of 178 landslides were mapped
using field survey. Fifteen landslide conditioning factors were considered including slope-angle, alti-
tude, slope-aspect, TWI, STI, SPI, plan curvature, profile curvature, distance to rivers, distance to
faults, distance to roads, precipitation, landuse, NDVI, and lithology.

The results of spatial relationship between landslide occurrences and conditioning factors using
frequency ratio model is shown in Table 2. In Table 2, for the slope-angle class 0–5�, the frequency
ratio was 0.70 which indicates a very low probability of landslide occurrence. Similarly, for the
slope-angle class 5�-15�, the ratio was 1.31; where the probability of landslide occurrence is high.
The frequency ratio between landslide occurrence and altitude showed that the altitude class
between 200 and 400 m had the highest FR value 1.11 and for altitude class 600–800 m the FR had
the lowest value (0.69). The frequency ratio for the slope-aspect was high for southeast-facing and
south-facing slopes (FR value of 1.39 and 1.27, respectively) but the FR was low for flat class (0.00).
The frequency ratio for the TWI, SPI, and STI were high for classes 7–11, 40–60, and 10–30, respec-
tively, where the FR values were 1.07, 1.28, and 1.06, respectively.

Table 2. Frequency ratio values of landslide-conditioning factors.

Factor Class No. of pixels in domain No. of landslides % Pixels % LS FR

Slope-angle (degree) 0–5� 456763 8 0.0918 0.06 0.70
5–15� 1031810 34 0.2073 0.27 1.31
15–30� 2589367 66 0.5203 0.53 1.01
>30� 898377 17 0.1805 0.14 0.75

Altitude (m) <200 851521 22 0.1711 0.18 1.03
200–400 1978056 55 0.3975 0.44 1.11
400–600 1033201 22 0.2076 0.18 0.85
600–800 461607 8 0.0928 0.06 0.69
>800 651932 18 0.1310 0.14 1.10

Slope aspect Flat 1957 0 0.0004 0.00 0.00
North 646837 12 0.1300 0.10 0.74

Northeast 636463 17 0.1279 0.14 1.06
East 678147 20 0.1363 0.16 1.17

Southeast 658780 23 0.1324 0.18 1.39
South 595249 19 0.1196 0.15 1.27

Southwest 558067 10 0.1121 0.08 0.71
West 572606 10 0.1151 0.08 0.70

Northwest 628211 14 0.1262 0.11 0.89
TWI <7 4074951 101 0.8189 0.81 0.99

7–11 672096 18 0.1351 0.14 1.07
>11 229270 6 0.0461 0.05 1.04

SPI <20 2125199 51 0.4271 0.41 0.96
20–40 1066521 25 0.2143 0.20 0.93
40–60 527667 17 0.1060 0.14 1.28
60–80 276076 7 0.0555 0.06 1.01
>80 980854 25 0.1971 0.20 1.01

(continued)
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In the case of plan curvature, convex has high FR value of 1.04 than concave and flat. In the case
of profile curvature, most of the landslides occurred in class (–0.001) to (0.001) with FR value of
1.54. In addition, it was found that landslides at a distance to river class <100 m had a FR value of
1.78; distance to fault class of 1000–2000 m had a higher FR value of 1.31; whereas a distance to
road class of <500 had the higher FR value of 1.65. In the case of precipitation, 1545.3–1940.2 class
had the highest FR value of 2.62. In the case of landuse, the FR value was high in farmland area

Table 2. (Continued )

Factor Class No. of pixels in domain No. of landslides % Pixels % LS FR

LS (m) <10 2908914 70 0.5846 0.56 0.96
10–30 1985884 53 0.3991 0.42 1.06
>30 81519 2 0.0164 0.02 0.98

Plan Curvature (100\m) Concave 2233462 54 0.4488 0.43 0.96
Flat 62321 1 0.0125 0.01 0.64

Convex 2680534 70 0.5387 0.56 1.04

Profile curvature (100\m) < (–0.001) 2321846 50 0.4666 0.40 0.86
(–0.001)–(0.001) 51737 2 0.0104 0.02 1.54

> (0.001) 2602734 73 0.5230 0.58 1.12

Distance to rivers (m) <100 915599 41 0.1840 0.33 1.78
100–300 1469173 59 0.2952 0.47 1.60
300–500 1188278 17 0.2388 0.14 0.57
500–700 798706 4 0.1605 0.03 0.20
>700 604561 4 0.1215 0.03 0.26

Distance to faults (m) <500 362766 9 0.0729 0.07 0.99
500–1000 339173 6 0.0682 0.05 0.70
1000–2000 605905 20 0.1218 0.16 1.31
2000–3000 508483 15 0.1022 0.12 1.17
>3000 3159990 75 0.6350 0.60 0.94

Distance to roads (m) <500 1595059 66 0.3205 0.53 1.65
500–1000 1223301 22 0.2458 0.18 0.72
1000–2000 1507225 26 0.3029 0.21 0.69
2000–3000 490943 9 0.0987 0.07 0.73
>3000 159789 2 0.0321 0.02 0.50

Precipitation (mm) 697.1–994.4 1372445 26 0.2758 0.21 0.75
994.4–1140.7 1906946 35 0.3832 0.28 0.73
1140.7–1306.5 1283941 49 0.2580 0.39 1.52
1306.5–1545.3 337143 10 0.0677 0.08 1.18
1545.3–1940.2 75842 5 0.0152 0.04 2.62

Land use Farmland 314343 10 0.0632 0.08 1.27
Bare 82036 2 0.0165 0.02 0.97
Forest 2933531 84 0.5895 0.67 1.14
Grass 1254800 22 0.2522 0.18 0.70

Residential area 390513 7 0.0785 0.06 0.71
Water 1094 0 0.0002 0.00 0.00

NDVI <(–0.001) 1034833 20 0.2080 0.16 0.77
(–0.001)–(0.00) 115551 4 0.0232 0.03 1.38
(0.00)–(0.05) 464554 12 0.0934 0.10 1.03
(0.05)–(0.10) 645954 24 0.1298 0.19 1.48

> (0.1) 2715425 65 0.5457 0.52 0.95

Lithology A 14792 0 0.0030 0.00 0.00
B 265356 6 0.0533 0.05 0.90
C 425894 5 0.0856 0.04 0.47
D 478319 6 0.0961 0.05 0.50
E 157814 5 0.0317 0.04 1.26
F 2072 0 0.0004 0.00 0.00
G 1011094 37 0.2032 0.30 1.46
H 334072 18 0.0671 0.14 2.15
I 6762 1 0.0014 0.01 5.89
J 2280142 47 0.4582 0.38 0.82
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(1.27); however, water had a lower FR value of (0.00). In the case of NDVI, the class (0.05)–(0.10)
had a high FR (1.48). There were ten groups of lithological units within the study area, the FR
between landslide occurrence and lithology suggests that the group I (i.e. Z (LechangXia Group))
which include Grey purple feldspar quartz sandstone intercalated with siltstone slate; light grey chert
sandwiched phyllite: grey, greyish green sandstones had the highest value (5.89), whereas the group
A with grey sandstone, siltstone, shale, carbonaceous shale and coal seam clamp: grey quartz con-
glomerate, pebbly sandstone, sandstone; purple red sandstone had the lowest value (0.00).

Finally, the landslide susceptibility maps were produced according to SVM kernels models using
RBF, PL, SIG, and linear (LN). The landslide susceptibility value (LSPV) ranges from 0 to 1, the
value with higher susceptibility means the higher of the landslide occurrence. Figure 6 shows 6 dif-
ferent degree of PL of landslide susceptibility maps, degree 1 to degree 6 were from (a) to (f), the
LSPV of 6 degree were 0.0860-0.8652, 0.0905–0.8174, 0.0420–0.8674, 0.1127–0.8390, 0.1613–0.8244,
and 0.1699–0.8009, respectively. Figure 7 shows the landslide susceptibility using the kernel of RBF,
SIG, and linear (LN), the value of them were 0.0698–0.8864, 0.0768–0.7834, and 0.0843–0.8660,
respectively.

4. Validation and comparison

In this study, the receiver-operating characteristic curve (ROC) and area under the curve (AUC)
were used to evaluate and compare the performance and prediction capability of the landslide mod-
els (Pham et al. 2016, Tien Bui et al. 2016). The ROC curve is a graph that is constructed based on
sensitivity and 1¡specificity with different cut off values. The AUC varies from 0.5 to 1.0, the model
with higher AUC is considered to be the best. Most studies in the process of validation, both the suc-
cess rate and the prediction rate are used to validate and rank the models, so in current study, we use

Figure 6. Landslide susceptibility maps produced by polynomial (PL) model (a) degree 1, (b) degree 2, (c) degree 3, (d) degree 4,
(e) degree 5, and (f) degree 6.
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Figure 6. (Continued).
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Figure 7. Landslide susceptibility maps produced by other models including (a) sigmoid function (SIG), (b) radial basis function
(RBF), and (c) linear function (LN).
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both of them. It is noted that the success rate and the prediction rate here are derived from the ROC
curve that are different with those mentioned in Chung and Fabbri (2003).

The success rate results were obtained by estimating AUC of these susceptibility models using the
training dataset, whereas the prediction rate results were derived in the same way but using the vali-
dation dataset. Figure (8) shows the success rate curves for the six different degree of PL kernel,
degree 6 has the highest AUC (0.953), degree 1 has the lowest AUC (0.715). Figure (9) shows the
other kernel named SIG, RBF, and Linear, the value of AUC were 0.680, 0.833, 0.716, respectively.
The prediction rate showed in Figures 10 and 11, the value of 6 degree of PL was 0.738, 0.730, 0.683,
0.648, 0.608, and 0.598, respectively; the value of SIG, RBF, and Linear were 0.741, 0.716 and 0.740,
respectively.

5. Discussions and conclusions

Landslides susceptibility map is considered as a valuable tool for land use planning and management
(Akgun 2012), therefore these maps should be produced by high performance models. However, it is
still difficult to obtain landslide models with high accuracy because landslide is non-linear and com-
plex process that relates to various conditioning factors (Tien Bui et al. 2016). Literature review
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Figure 8. Success rate curves for the landslide potential maps by polynomial function (PL): degree1, degree 2, degree 3, degree 4,
degree 5, and degree 6.
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shows that although no method or technique is the best for all regions; however, SVMs are consid-
ered to be the most efficient methods and have proven outperforming conventional methods for
susceptibility mapping (Hoang & Tien Bui 2016; Tien Bui et al. 2012; Yao et al. 2008). It is well-
known that performance of SVM models is strongly influenced by the kernel function used and
its parameters. However, investigation of kernel functions in SVM models for landslide susceptibil-
ity modeling is still rare. We fill this gap in literature by investigating and comparing four kernel
functions (RBF, PL, SG, and LN) used in SVMs with a case study at the Suichuan area, the Jiangxi
province (China).

To obtain this purpose, a landslide database with 178 landslide location and 15 conditioning fac-
tors has been established, and then, used to build and validate different SVM models. The results
show that performance of landslide models is strongly depended on kernel function used. For the
case of the PL function, a total of 6 degrees have been checked and the model with the first degree of
the PL function has lowest degree of fit, but has the highest prediction capability. The finding in this
study shows that the higher the degree of the PL function, the better performance of the model on
the training data is (Figure 7). In contrast to results in the training dataset, the prediction capability
of the model in the validation dataset decreases when the degree of the PL function increases. This
indicates that the models with high degree of the PL function are suffered from overfitting problem.
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It is noted that SVM models aim to build hyperplanes that separates pixels into two classes, ‘land-
slide’ and ‘non-landslide.’With higher degree of the PL function, more training samples (called sup-
port vectors) lies on the hyperplanes and therefore increasing loss of generality. Consequently, the
prediction capability of the models is decreased.

For the case of the SVM models with LN, RBF, and SIG function, although the model with RBF
has the highest performance with AUC D 0.833 (followed by SVM-LN with AUC D 0.716 and
SVM-SIG with AUC D 0.680); however, prediction capability checking show that the SVM-RBF
model is slightly (»2%) lower than the SVM-LN model and the SVM-SIG model. Problem of over-
fitting of these models is alleviated since the difference of these AUCs in the training and validation
datasets are low. Based on the above analysis, we conclude that the SVM-RBF model is the best for
this study. This finding is in agreement with some landslide studies such as Tien Bui et al. (2012)
and Hong et al. (2016) who stated that the SVM models with RBF function has the highest predic-
tion capability.

In fact, performance of the SVM-RBF model is influenced by the selection of C and g parameter
values (see Section 3.1) and in this study, these parameters were derived using the grid-search tech-
nique. Therefore, the performance of the SVM-RBF model could be enhanced if the process of pick-
ing up C and g is carried out using new optimization techniques (Hoang et al. 2016). Thus, future
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studies on application of SVMs for landslide susceptibility mapping should focus on using soft com-
puting optimization techniques to optimize kernel parameters values.

Overall, this study contributes to the body knowledge of landslide susceptibility by investigating
potential application of SVMs with four kernel functions with a case study at southwest China.
According to this study, the SVM model with RBF function is the best suit for the data at hand, fol-
lowed by the SVM model with second degree PL, the SVM model with LN, and the SVM model
with SIG. At final conclusion, the result from this study is useful for land use planning and manage-
ment in landslide-prone areas.

Acknowledgments

The authors would like to express their gratitude to the Editor in Chief and the anonymous reviewers for their helpful
comments on the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

0 20 40 60 80 100

100

80

60

40

20

0

100-Specificity

Se
ns

it
iv

it
y

Linear:AUC=0.740,SE=0.048,CI=0.646 to 0.820
RBF:AUC=0.716,SE=0.050,CI=0.620 to 0.799
Sigmoid:AUC=0.741,SE=0.048,CI=0.647 to 0.821

Figure 11. Prediction rate curves for the landslide potential maps by linear function (LN), radial basis function (RBF), and sigmoid
function (SIG).

GEOMATICS, NATURAL HAZARDS AND RISK 565



Funding

This research was supported by the National Natural Science Foundation of China [grant number 41472202], [grant
number 41202235]; the Doctoral Scientific Research Foundation of X�ıan University of Science and Technology [grant
number 2015QDJ067]; and General Program of Jiangxi Meteorological Bureau.

ORCID

Haoyuan Hong http://orcid.org/0000-0001-6224-069X
Biswajeet Pradhan http://orcid.org/0000-0001-9863-2054
Dieu Tien Bui http://orcid.org/0000-0001-5161-6479
Chong Xu http://orcid.org/0000-0002-3956-4925
Wei Chen http://orcid.org/0000-0002-5825-1422

Reference

Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision,
and likelihood ratio methods: a case study at _Izmir, Turkey. Landslides. 9:93–106.

Alkhasawneh MS, Ngah UK, Tay LT, Mat Isa NA, Al-Batah MS. 2014. Modeling and testing landslide hazard using
decision tree. J Appl Math. 2014:568–575.

Althuwaynee OF, Pradhan B, Lee S. 2012. Application of an evidential belief function model in landslide susceptibility
mapping. Comput Geosci. 44:120–135.

Carey JM, Petley DN. 2014. Progressive shear-surface development in cohesive materials: implications for landslide
behaviour. Eng Geol. 177:54–65.

Chena H, Lina GW, Lua MH, Shiha TY, Horngb MJ, Wuc SJ. 2011. Effects of topography, lithology, rainfall and earth-
quake on landslide and sediment discharge in mountain catchments of Southeastern Taiwan. Geomorphology.
133:132–142.

Chen W, Chai H, Zhao Z, Wang Q, Hong H. 2016a. Landslide susceptibility mapping based on GIS and support vec-
tor machine models for the Qianyang County, China. Environ Earth Sci. 75:1–13.

Chen W, Ding X, Zhao R, Shi S. 2016b. Application of frequency ratio and weights of evidence models in landslide
susceptibility mapping for the Shangzhou District of Shangluo City, China. Environ Earth Sci. 75:1–10.

Chen W, Li W, Chai H, Hou E, Li X, Ding X. 2016c. GIS-based landslide susceptibility mapping using analytical hier-
archy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ Earth
Sci. 75:1–14.

Chung C-JF, Fabbri AG. 2003. Validation of spatial prediction models for landslide hazard mapping. Natural Hazards.
30:451–472.

Coe JA. 2012. Regional moisture balance control of landslide motion: implications for landslide forecasting in a chang-
ing climate. Geology. 40:323–326.

Cortes C, Vapnik V. 1995. Support vector network. Mach Learn. 20:273–297.
Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, M€arker M. 2014. Gully erosion susceptibility assess-

ment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology. 204:399–411.
Constantin M, Bednarik M, Jurchescu MC, Vlaicu M. 2011. Landslide susceptibility assessment using the bivariate sta-

tistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci. 63:397–406.
Demir G, Aytekin M, Akg€un A, _Ikizler SB, Tatar O. 2013. A comparison of landslide susceptibility mapping of the

eastern part of the North Anatolian fault zone (Turkey) by likelihood-frequency ratio and analytic hierarchy pro-
cess methods. Nat Hazards. 154:417–441.

Ding H, Li Y, Ni S, Ma G, Shi Z, Zhao G, Yan L, Yan Z. 2014. Increased sediment discharge driven by heavy rainfall
after Wenchuan earthquake: a case study in the upper reaches of the min river, Sichuan, China. Quat Int. 333:122–
129.

Dong G, Zhang F, Ma M, Fan Y, Zhang J, Wang Z, Chen F. 2014. Ancient landslide-dam events in the Jishi gorge,
upper yellow river valley, China. Quat Res. 81:445–451.

Ercanoglu M, Temiz FA. 2011. Application of logistic regression and fuzzy operators to landslide susceptibility assess-
ment in Azdavay (Kastamonu, Turkey). Environ Earth Sci. 64:949–964.

Feuillet T, Coquin J, Mercier D, Cossart E, Decaulne A, Jonsson HP, Saemundsson, B. 2014. Focusing on the spatial
non-stationarity of landslide predisposing factors in Northern Iceland: Do paraglacial factors vary over space?
Prog Phys Geog. 38:354–377.

Hadmoko DS, Lavigne F, Sartohadi J, Hadi P, Winaryo. 2010. Landslide hazard and risk assessment and their applica-
tion in risk management and landuse planning in eastern flank of Menoreh mountains, Yogyakarta province,
Indonesia. Nat Hazards. 54:623–642.

566 H. HONG ET AL.

http://orcid.org/0000-0001-6224-069X
http://orcid.org/0000-0001-9863-2054
http://orcid.org/0000-0001-5161-6479
http://orcid.org/0000-0002-3956-4925
http://orcid.org/0000-0002-5825-1422


Hapke CJ, Green KR. 2006. Coastal landslide material loss rates associated with severe climatic events. Geology.
34:1077–1080.

Hassaballa AA, Althuwaynee OF, Pradhan B. 2014. Extraction of soil moisture from RADARSAT-1 and its role in the
formation of the 6 December 2008 landslide at Bukit Antarabangsa, Kuala Lumpur. Arabian J Geosci. 7:2831–
2840.

Hoang ND, Tien Bui D, Liao KW. 2016. Groutability estimation of grouting processes with cement grouts using differ-
ential flower pollination optimized support vector machine. Appl Soft Comput. 45:173–186.

Hong H, Pradhan B, Jebur MN, Tien Bui D, Xu C, Akgun A. 2016. Spatial prediction of landslide hazard at the Luxi
area (China) using support vector machines. Environ Earth Sci. 75:1–14.

Hong H, Pradhan B, Xu C, Tien Bui D. 2015. Spatial prediction of landslide hazard at the Yihuang area (China) using
two-class kernel logistic regression, alternating decision tree and support vector machines. Catena. 133:266–281.

Huang B, Yin Y, Chen X, Liu G, Wang S, Jiang Z. 2014. Experimental modeling of tsunamis generated by subaerial
landslides: two case studies of the three gorges reservoir, china. Environ Earth Sci. 71:3813–3825.

Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision
analysis, support vector machines, and logistic regression. Landslides. 11:425–439.

Klose M, Gruber D, Damm B, Gerold G. 2014. Spatial databases and GIS as tools for regional landslide susceptibility
modeling. Zeitschrift F€ur Geomorphologie. 58:1–36.

Paul�ın GL, Bursik M, Hubp JL, Mej�ıa LMP, Quesada FA. 2014. A GIS method for landslide inventory and susceptibil-
ity mapping in the r�ıo el estado watershed, pico de orizaba volcano, M�exico. Nat Hazards. 71:229–241.

Li C, Tang H, Ge Y, Hu X, Wang L. 2014. Application of back-propagation neural network on bank destruction fore-
casting for accumulative landslides in the three gorges reservoir region, china. Stochastic Environ Res Risk Assess.
28:1465–1477.

Li XZ, Kong JM. 2014. Application of GA-SVM method with parameter optimization for landslide development pre-
diction. Nat Hazards Earth Syst Sci. 14:525–533.

Lissak C, Maquaire O, Malet JP, Bitri A, Samyn K, Grandjean G, Bourdeau C, Reiffsteck P, Davidson R. 2014. Air-
borne and ground-based data sources for characterizing the morpho-structure of a coastal landslide. Geomorphol-
ogy. 217:140–151.

May C, Roering J, Eaton LS, Burnett KM. 2013. Controls on valley width in mountainous landscapes: the role of land-
sliding and implications for salmonid habitat. Geology. 41:503–506.

Miao H, Wang G, Yin K, Kamai T, Li Y. 2014. Mechanism of the slow-moving landslides in Jurassic red-strata in the
three gorges reservoir, China. Eng Geol. 171:59–69.

Michel GP, Kobiyama M, Goerl RF. 2014. Comparative analysis of SHALSTAB and SINMAP for landslide susceptibil-
ity mapping in the Cunha River basin, southern Brazil. J Soils Sediments. 14:1266–1277.

Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M. 2014. Machine learning
feature selection methods for landslide susceptibility mapping. Math Geosci. 46:33–57.

Moore ID, Grayson RB. 1991. Terrain-based catchment partitioning and runoff prediction using vector elevation data.
Water Resour Res. 27:1177–1191.

Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, Bouchut F. 2012. Numerical modeling of
the mount steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett. 39:276–
289.

Muceku Y, Korini O. 2014. Landslide and slope stability evaluation in the historical town of Kruja, Albania. Nat Haz-
ards Earth SystSci. 14:545–556.

Neuhaeuser B, Damm B, Terhorst B. 2012. GIS-based assessment of landslide susceptibility on the base of the weights-
of-evidence model. Landslides. 9:511–528.

Pedrazzini A, Jaboyedoff M, Loye A, Derron MH. 2013. From deep seated slope deformation to rock avalanche: desta-
bilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics. 605:149–168.

Peng L, Niu R, Huang B, Wu X, Zhao Y, Ye R. 2014. Landslide susceptibility mapping based on rough set theory and
support vector machines: a case of the three gorges area, China. Geomorphology. 204:287–301.

Perrone A, Lapenna V, Piscitelli S. 2014. Electrical resistivity tomography technique for landslide investigation: a
review. Earth-Sci Rev. 135:65–82.

Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia MB. 2015. Landslide susceptibility assessment in the
Uttarakhand area (India) using GIS: a comparison study of prediction capability of na€ıve Bayes, multilayer percep-
tron neural networks, and functional trees methods. Theor Appl Climatol. DOI: 10.1007/s00704-015-1702-9.

Pham BT, Pradhan B, Tien Bui D, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning
methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ ModellSoftw.
84:240–250.

Poudyal CP, Chang C, Oh HJ, Lee S. 2010. Landslide susceptibility maps comparing frequency ratio and artificial neu-
ral networks: a case study from the Nepal Himalaya. Environ Earth Sci. 61:1049–1064.

Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. 2013. Landslide susceptibility mapping using support
vector machine and GIS at the Golestan province, Iran. J Earth Syst Sci. 122:349–369.

GEOMATICS, NATURAL HAZARDS AND RISK 567

http://dx.doi.org/10.1007/s00704-015-1702-9


Pourghasemi HR, Mohammady M, Pradhan B. 2012a. Landslide susceptibility mapping using index of entropy and
conditional probability models in GIS: Safarood Basin, Iran. Catena. 97:71–84

Pourghasemi HR, Pradhan B, Gokceoglu C. 2012b. Application of fuzzy logic and analytical hierarchy process (AHP)
to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards. 63:965–996.

Pradhan B. 2011. Manifestation of an advanced fuzzy logic model coupled with geoinformation techniques for land-
slide susceptibility analysis. Environ Ecol Stat. 18:471–493.

Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect: back-propagation artificial neural net-
works and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw.
25:747–759.

Pradhan B, Abokharima MH, Jebur MN, Tehrany MS. 2014. Land subsidence susceptibility mapping at Kinta valley
(Malaysia) using the evidential belief function model in GIS. Nat Hazards. 73:1019–1042.

Raia S, Alvioli M, Rossi M, Baum RL, Godt JW, Guzzetti F. 2013. Improving predictive power of physically based rain-
fall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev Dis. 7:495–514.

Samui P. 2008. Slope stability analysis: a support vector machine approach. Environ Geol. 56:255–267
Scheingross JS, Minchew BM, Mackey BH, Simons M, Lamb MP, Hensley S. 2013. Fault-zone controls on the spatial

distribution of slow-moving landslides. Geol SocAm Bull. 125:473–489.
Shahabi H, Khezri S, Ahmad BB, Hashim M. 2014. Landslide susceptibility mapping at central Zab Basin, Iran: a com-

parison between analytical hierarchy process, frequency ratio and logistic regression models. Catena. 115:55–70.
Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence

and support vector machine models in GIS. J Hydrol. 512:332–343.
Tien Bui D, Anh Tuan T, Hoang ND, Quoc Thanh N, Nguyen BD, Van Liem N, Pradhan B. 2016. Spatial prediction

of rainfall-induced landslides for the Lao Cai area (Vietnam) using a novel hybrid intelligent approach of
least squares support vector machines inference model and artificial bee colony optimization. Landslides. 1–12.
Doi: 10.1007/s10346-016-0711-9.

Tien Bui D, Pradhan B, Lofman O, Revhaug I. 2012. Landslide susceptibility assessment in Vietnam using support
vector machines, decision tree, and naı€ve Bayes models. Math Probl Eng. 2012:1–27.

Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards:
a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic
regression, and logistic model tree. Landslides. 13:361–378.

Tien Bui D, Pham TB, Nguyen QP, Hoang ND. 2016. Spatial prediction of rainfall-induced shallow landslides using
hybrid integration approach of least squares support vector Machines and differential evolution optimization: a
case study in central Vietnam. Int J Dig Earth. 1–22. Doi: 10.1080/1753894720161169561.

Tucker C, Sellers P. 1986. Satellite remote sensing of primary production. Int J Remote Sens. 7:1395–1416.
Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS. 2014. Earthquake induced landslide susceptibility mapping

using an integrated ensemble frequency ratio and logistic regression models in west Sumatera Province, Indonesia.
Catena. 118:124–135.

Weng MC, Wu MH, Ning SK, Jou YW. 2011. Evaluating triggering and causative factors of landslides in Lawnon
River Basin, Taiwan. Eng Geol. 123:72–82.

West AJ, Hetzel R, Li G, Jin Z, Zhang F, Hilton RG, Densmore AL. 2014. Dilution of 10 be in detrital quartz by earth-
quake-induced landslides: implications for determining denudation rates and potential to provide insights into
landslide sediment dynamics. Earth Planet Sci Lett. 396:143–153.

Xu C, Dai F, Xu X, Yuan HL. 2012. GIS-based support vector machine modeling of earthquake-triggered landslide
susceptibility in the Jianjiang river watershed, china. Geomorphology. 145–146:70–80.

Xu C, Xu X. 2014a. The spatial distribution pattern of landslides triggered by the 20 April 2013 Lushan earthquake of
China and its implication to identification of the seismogenic fault. Chin Sci Bull. 59:1416–1424.

Xu C, Xu X. 2014b. Statistical analysis of landslides caused by the Mw 6.9 Yushu, China, earthquake of April 14, 2010.
Nat Hazards. 72:871–893.

Xu C, Xu X, Pourghasemi HR, Pradhan B, Iqbal J. 2013a. Volume, gravitational potential energy reduction, and
regional centroid position change in the wake of landslides triggered by the 14 April 2010 Yushu Earthquake of
China. Arabian J Geosci. 7:2129–2138.

Xu C, Xu X, Yao X, Dai F. 2013b. Three (nearly) complete inventories of landslides triggered by the May 12, 2008
Wenchuan mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides. 11:441–461.

Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical
hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trab-
zon, ne Turkey. Catena. 85:274–287.

Yao X, Tham LG, Dai FC. 2008. Landslide susceptibility mapping based on support vector machine: a case study on
natural slopes of Hong Kong, China. Geomorphology. 101:572–582.

Yeon Y K, Han JG, Ryu KH. 2010. Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol.
116:274–283.

568 H. HONG ET AL.

http://dx.doi.org/10.1007/s10346-016-0711-9
http://dx.doi.org/10.1080/1753894720161169561


Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional
probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61:821–
836.

Yin Y. 2014. Vertical acceleration effect on landslides triggered by the Wenchuan earthquake, China. Environ Earth
Sci. 71:4703–4714.

Youssef AM, Pradhan B, Jebur MN, El-Harbi HM. 2014. Landslide susceptibility mapping using ensemble bivariate
and multivariate statistical models in Fayfa Area, Saudi Arabia. Environ Earth Sci. 73:3745–3761.

Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2015. Landslide susceptibility mapping using random
forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their
performance at Wadi Tayyah basin, Asir Region, Saudi Arabia. Landslides. DOI: 10.1007/s10346-015-0614-1.

Zhao W, Huang R, Ju N, Zhao J. 2014. Assessment model for earthquake-triggered landslides based on quantification
theory I: case study of Jushui river basin in Sichuan, China. Nat Hazards. 70:1–18.

Zhuang JQ, Javed I, Peng JB, Liu TM. 2014. Probability prediction model for landslide occurrences in Xi’an, Shaanxi
Province, China. J Mountain Sci. 11:345–359.

GEOMATICS, NATURAL HAZARDS AND RISK 569

http://dx.doi.org/10.1007/s10346-015-0614-1

	Abstract
	1. Introduction
	2. Study area and data used
	2.1. Study area
	2.2. Data
	2.2.1. Landslide inventory map
	2.2.2. Landslide predisposing factors
	2.2.3. Digital elevation model and derivatives
	2.2.4. Distance to rivers, distance to faults, and distance to roads
	2.2.5. Precipitation
	2.2.6. Landuse
	2.2.7. Normalized difference vegetation index
	2.2.8. Lithology


	3. Landslide susceptibility modeling
	3.1. Support vector machine
	3.2. Preparation of training and validation datasets
	3.3. Landslide susceptibility mapping

	4. Validation and comparison
	5. Discussions and conclusions
	Acknowledgments
	Disclosure statement
	Funding
	Reference



