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Nomenclature

Catchment The amount of rain, snow, hail, etc., that has fallen at a given place within
a given period.

CSV file Comma Separated Value: A file formatting used, amongst others, by
MATLAB for storing and reading data.

GS2 file A file formatting used in Skagerak Energis internal systems.
MATLAB Matrix Laboratory, software by Mathworks.
Hydrologist “Hydrology is the branch of science concerned with the properties of the

earth’s water, and especially its movement in relation to land.” [1]
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1 Introduction

The Dalsfos hydro power plant is located at the outlet of Lake Toke in Telemark, Norway.
The waterways leading to Lake Toke, the rivers and lakes downstream of it and down to
the ocean are known as the Kragerø waterway. Dalsfos is the first of five hydro power
plants downstream of Lake Toke. Dalsfos consists of a dam with intakes to three turbines,
two flood gates, and the power station itself just below the dam. The dam at Lake Toke
creates a magazine for Dalsfos and the other four hydro power plants downstream, mak-
ing these in effect run-of-the-river hydroelectricity plants that are dependent on flow from
Dalsfos. The turbines are Kaplan turbines with a combined production capacity of just
under 6 MW which equals to an output flow of 36m3/s. The flood gates are controlled
individually from a control room on the dam. The gates have a capacity of 450m3/s each.
Operating hydro power plants come with concession requirements from the Norwegian
Water Resources and Energy Directorate (NVE). These dictate the maximum and min-
imum water levels of Lake Toke, the minimum water flow downstream and the maximum
change of water flow.
The Dalsfos plant is owned by Skagerak Kraft, and is one of 46 plants they have ownership
of (20 full, 26 they have partial ownership of). Skagerak Kraft is a subsidiary company
of Skagerak Energi, in which two thirds are owned by Statkraft and the remaining third
is owned by the municipalities of Skien, Porsgrunn and Bamble.

1.1 Background

The flood gates at Dalsfos are used to regulate the water level in Lake Toke during a
flood. If the regulation is done successfully, it is possible to avoid property damage and
risk of injury for people near Lake Toke and the Kragerø waterways. During a flood, water
levels rise rapidly and if the flood gates are suddenly opened, the water will do extensive
damage to the village down river of the dam and the roads along the river. Any people
close to, or on, the river at the time would also be in severe danger. During the flood
in September 2015, the water inflow peaked at 700m3/s at hourly measurements. To put
that into context, this is enough to fill an Olympic-size pool (50m x 25m x 2m) every 3.6
seconds. During this period, the roads downstream had to be closed and the operators
had emptied the magazine for two weeks in advance to manage the inflow of water.
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1 Introduction

This project is a part of automating the flood gates at Dalsfos. The long-term goal for
Skagerak Kraft is to ensure that the TUC flood server is functioning in a satisfactory
manner under operating conditions so that the output from the system can be relied on.
This requires storage of input- and output values, receiving correct outputs and being
able to check how previous outputs compare to actual results.

1.2 Previous work

The Telemark University College (TUC) flood server is an advisory system that is cur-
rently running at Skagerak Energi office in Porsgrunn. This system calculates the optimal
flood gate opening for the Dalsfos hydro power plant based on inflow forecast and Model
Prediction Control (MPC). A MPC controller is, as the name implies, a model-based
controller that simulates the modeled system for some time to find an optimal input for
the next time step. For this specific case, the TUC flood server simulates the system for
10 days to return its suggestion for the flood gate openings for the next hour and then
will recalculate this one hour later. How well a MPC controller performs is based on how
accurate the model of the system is. The original model for Lake Toke was developed by
Bjørn Glemmestad in 2013. It has been described and validated by previous Master theses
at the University college of South East Norway (USN). During the flood in September
2015, it was discovered that the model for Lake Toke was insufficient for modeling such
extreme conditions.
The MPC controller for TUC flood server was developed by Bernt Lie [2] and implemented
in July 2014 with MATLAB. During the original development of the TUC flood server,
Dalsfos had only one flood gate. Since then, a new gate has been added.
The TUC Flood Control Converter (TFCC) is the part of the TUC flood server that
handles communication between the MPC controller and Skageraks internal systems and
when to start the MPC controller. TFCC converts the GS2 input files to CSV input files
for the MPC controller to read. Then it converts the CSV output files to GS2 output
files. TFCC was developed by Nils-Olav Skeie [3].
The original TUC flood server did not store its data, making it difficult to identify er-
rors when troubleshooting the software. The summer of 2016, master student Alexander
Zhang Gjerseth was hired to develop a replacement for TFCC, the Data Handler and the
Flood management database [4]. The Data handler reads the GS2 input files and stores
the data from them in the Flood management database.

1.3 Overview of report

The main goal of this project is to further improve on the work previously done to auto-
mate the regulation of the flood gates at Dalsfos hydro power plant. The tasks to be
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1 Introduction

undertaken in this project are:

• Integrate data storage with the existing system

• Improve the model of Lake Toke and the flood gates

• Create a simulator interface that can predict future values and compare historical
data

Chapter 2 describes the physical and the software systems, and how they interact.
Chapter 3 shows the model, what was changed and the methods that were used.
Chapter 4 describes the parts of the TUC flood server and how they interact.
In chapter 5, the results, tools and methods used are discussed.
In chapter 6, the conclusions of the report are presented.
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2 System overview

Figure 2.1 shows the catchment for Lake Toke. This is the area where any rain- and
snowfall (or lack thereof) will affect the water level in Lake Toke.

Figure 2.1: Catchment for Lake Toke (From [5], legend modified).

The catchment is 1156 km2 large, making it difficult and time consuming to get an
exact measurement of the catchment. Skagerak subscribes to a weather forecast service
provided by Storm.no. The hydrologists at Skagerak analyze this data to find a forecast
for the inflow to Lake Toke, as marked in Fig. 2.1, just above Dalsfos hydro power plant.
The hydrological data is stored on an internal database (TRADE). From this database,
the hydrological data is sent along with available measurements from the Dalsfos dam
to the TUC flood server. In the TUC flood server, the input data is used to give a
suggestion for the gate opening and both the input and output data are stored in an
internal database. The output data is then sent to a measurement value comparison
system named HIDACS that notifies the dam operator via text message if he or she
should make any changes/action. HIDACS is also connected to sensors at the hydro
power plant and sends these values to TRADE [5]. Any errors detected by the TUC
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2 System overview

server are reported to Skagerak IT personnel through the Status folder.
A representation of the structure of how the TUC flood server interacts with the system
at Skagerak is shown in figure 2.2.

TRADE
Database

GS2 In
GS2 Out

Status Folder

Flood management Database

TUC Flood server

HIDACS server

GS2 input file

IT personnel

Dam operator

GS2 output file

Dalsfos hydro power plant

Sensor data

Figure 2.2: Network representation (From [5], simplified).
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3 Model

Parts of the model for Lake Toke and Dalsfos hydro power plant have shown to be in need
of tuning. This chapter presents the work done on the model. First, a summary of the
updated model is presented, then which parts were updated and how are shown. Finally,
a comparison of the old and the new model are presented.

3.1 Updated model summary

The model used in the updated TUC Flood server is presented below in equations 3.1
- 3.9. The parameters, and their values, are seen in table 3.1. Lastly, the polynomial
coefficients are presented.

• h1 and h2 are the states of the model

• hg is the control input (that can be varied at will)

• V̇i is the inflow of water given by the hydrology model (disturbance)

• Ẇe is the planned power production (disturbance)

• The outputs are: xM, xD, V̇t and V̇g

Calculating the change in the states:

dh1

dt
=

1
(1−α) A(h1)

[(1−β ) V̇i −V̇12] (3.1)

dh2

dt
=

1
α A(h2)

(βV̇i +V̇12 −V̇t −V̇g) (3.2)

Filling curve of Lake Toke:
A(h) = 28×106 ·1.1 ·h

1
10 (3.3)

Inter-compartment flow (volumetric flow within Lake Toke, from Merkebekk to Dalsfos):

V̇12 = k1 ·
√

h1 −h2 + k2 · 4
√

h1 −h2 (3.4)
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3 Model

Volumetric water flow through the flood gate:

V̇g =Cd ·ω ·min(hg,h2) ·
√

2g max(h2,0) (3.5)

The volumetric flow through the turbines is found by choosing the 2nd root of

0 = c1x3
q +(c2 − c1xD)x2

q +(c3 − c2xD + c4V̇g)xq +Ẇe − c3xD − c4V̇gxD − c5 (3.6)

and is inserted into:
V̇t = a

Ẇe

xD − xq
+b (3.7)

Water level at Dalsfos:
xD = h2 + xmin

LRV (3.8)

Water level at Merkebekk:
xM = h1 + xmin

LRV (3.9)

Table 3.1: Parameters for the original Lake Toke model.
Parameter Value Unit Comment
α 0.01 - Fraction of surface area in compartment 2
β 0.01 - Fraction of inflow to compartment
Cd 0.7 - Discharge coefficient, Dalsfos gate
ω1 11.6 m Width of Dalsfos gate 1
ω2 11.0 m Width of Dalsfos gate 2
xmin

LRV 55.75 m Minimal low regulated level value
xmax

HRV 60.35 m Maximum high regulated level value
g 9.81 m/s2 Acceleration of gravity

The polynomial coefficients and their values are:

• a = 124.69

• b = 3.161

• c = [0.1315, −9.5241, 172.34, −7.7045e−3, −87.359]

• k = [100, 1]
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3 Model

3.2 Historical data

The data used for model fitting was provided by Beathe Furenes at Skagerak Energi.
The data contains hourly measurements and their derived values, from the period from
01/01-2015 to 10/01-2017, totaling 17768 measurement points. The measurements for the
water level in Lake Toke and the water inflow to the Dalsfos dam can be seen in figure
3.1.

Figure 3.1: Water level in Lake Toke, 2 measuring points and the difference between them (All data).

When first evaluating the data, one can see from figure 3.1 that the first 4700 values seem
to have some measurement errors. It does not make sense that the water level would be
almost one meter higher at the point furthest downstream (points 1800-3300). Then the
sensor at Dalsfos seems to fail for an extended period, stuck at the same value. These
assumptions can be further verified by looking at the water inflow in the lower half of the
figure. There is nothing to indicate the odd behavior that we see in the first 4700 data
points.
Based on these observations, the first 4800 measurement points of data were excluded
from further work, ending up with the data shown in 3.2.
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3 Model

Figure 3.2: Water level in Lake Toke, 2 measuring points and the difference between them (First 4800
data points removed).

3.3 Gate flow parameter updating

The original formula for the gate flow is the same as the updated one, but the discharge
coefficient Cd was 1.0 and is now updated to 0.7. This is simply an update based on
information from Norwegian Water Resources and Energy Directorate (NVE) [6, p. 10]
supplied by Åsmund Hasaas at Skagerak Energi.

3.4 Inter-compartmental flow model reworking

The inter-compartmental flow for this model is the amount of water flowing from meas-
uring point Merkebekk to Dalsfos based on the water height difference between these two
points. The original equation (shown in equation 3.10) needed to be reworked based on
historical data.

V̇12 = K12(h1 −h2)
√

|h1 −h2| (3.10)

The available data was plotted as seen in figure 3.3. The total water flow is the combined
flow through the turbines and the flood gates. The height difference in water level values
are from measurements made at the same time as the water flow.
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3 Model

Figure 3.3: Total water flow through Dalsfos dam compared to height difference Merkebekk-Dalsfos.

The updated function was suggested by thesis supervisor Bernt Lie as seen in equation 3.4.
To verify that the function was suitable for the available data, the polynomial coefficients
had to be determined and it had to be ensured that the function fits the data.
The polynomial coefficients were found by use of the Least Squares method. This method
solves parameter estimation by the use of vector algebra. The output (in this case, the
total water flow) is defined as seen in equation 3.11 for N measurement points:

y =


y1
y2
...

yN

= k1 ·
√

x+ k2 · 4
√

x+ k0 =


√

x1 4
√

x1 1√
x2 4

√
x2 1

... ... ...√
xN 4

√
xN 1

 ·

k1
k2
k0

= φ ·θ (3.11)

To find the values for k, equation 3.11 can be solved for θ, as seen in equation 3.12:

θ = (θ T ·θ)−1 ·θ T · y (3.12)

There is an available function in MATLAB called polyfit what will solve this, but there
is no option to edit or weigh the factors. So this function cannot be used since we want
the function to go through (0,0) in the plane. This is to ensure that when there is no
height difference between the different measurement points of Lake Toke, there is no
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3 Model

flow of water between those points either. To achieve this, we have to force k0 to be
equal to zero. Thankfully, MATLAB is well suited for solving vector algebra and solving
this problem is simple. Below is a simplification of the MATLAB code used for finding
the polynomial coefficients theta. The whole script used for finding the parameters and
plotting figure 3.4 can be found in appendix C.

x = waterLevelMerkebekk - waterLevelDalsfos;
y = waterFlowTurbines + waterFlowGates;
phi = [x.^1/2 x.^1/4];
theta = [phi\y ; 0];

This method of determining the polynomial coefficients was repeated three times with
different degrees of the function to have the function from first to fourth order. These
four functions were plotted in figure 3.4 against the measurement data to determine how
well they fit the target data. In this figure we see that the first order function (green) falls
outside off the data. The fourth order function (orange) results in a parabola which in is
counterintuitive, the flow of water should increase with the height difference. Finally, we
see that the second and third order functions are nearly identical and are a good fit for
the data. Since the third degree offers no extra information, the second order function
was chosen.

Figure 3.4: Polynomial evaluation, different order of fitted function.
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3 Model

3.5 State estimator parameter tuning

The α and β parameters were originally set to 0.05 and 0.02. This was an experience-
based estimate done when the model first was developed.
To estimate new values, the built-in MATLAB function lsqnonlin was used.
”lsqnonlin is a nonlinear least-squares solver that solves nonlinear least-squares curve
fitting problems of the form (seen in equation 3.13):” [7]

min
x
|| f (x)||22 = min

x
( f1(x)2 + f2(x)2 + ...+ fn(x)2) (3.13)

The MATLAB script paramFit.m (appendix G) was developed to tune the α and β

parameters. The function call order for paramFit.m can be seen in figure 3.5. First para-
mFit.m retrieves the target historical data from the getModelData.m function (appendix
D). This data and the dhEstimator.m function (appendix H) are sent as inputs to the
lsqnonlin function. lsqnonlin will try different inputs for α and β over several iterations
before returning the values that minimize the dhEstimator.m function. The dhEstim-
ator.m function uses the built-in MATLAB function ode15s [8] to solve the differential
equations returned from tokeSimulator.m (appendix I) to simulate the changes in water
level in Lake Toke. tokeSimulator.m takes all the measurement data and the α and β

parameters as inputs. It uses these values to first calculate the water flow through the
turbines and the flood gates using their respective functions (appendix F and E). Finally,
tokeSimulator.m calculates the derivatives for the water level and returns these values.

Figure 3.5: Function call order for MATLAB script paramFit.m.
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3 Model

3.6 Model verification

Figure 3.6 shows a comparison of the new and the old model in open loop simulation for
30 days. Each model was supplied with the initial measurement data at the starting time,
the influx prognosis and the production plan ten days ahead.

Figure 3.6: Comparison of old and new model in open loop simulation.

Figure 3.7 shows a comparison of the new and the old model in closed loop simulation
for 30 days. Both models have been supplied with measurement data at each time step.
This was done to see how the models respond to accurate data.
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3 Model

Figure 3.7: Comparison of old and new model in closed loop simulation.

20



4 TUC Flood server

The TUC flood server consists of three subsystems:

• Data Handler, a C# application

• Flood management, a Microsoft SQL database

• MPC controller, a MATLAB application

The Data Handler runs continuously, monitoring the input folder for new files and starts
the MPC controller at chosen intervals. When the Data handler detects a new file, it
reads the input values in the file stores all the input values in the Flood management
database.
When the The MPC controller is started, it queries the database for the newest input
values and imports these. This data is used by the controller for simulating the system
and calculating future gate openings. The output values are stored in both an output
GS2 file and in the Flood management database. How the subsystems interact is shown
in figure 4.1. By using the functions developed for the MPC controller and gathering data
from the Flood management database, a simulator was developed

Figure 4.1: TUC flood server interaction.

As mentioned in the chapter 1.2, the Data Handler and the Flood management database
were developed by Alexander Zhang Gjerseth. This has been documented in [4].

21



4 TUC Flood server

4.1 Data Handler

Figure 4.2 shows the sequence diagram for Data Handler (from [4]). This figure shows
a simplified flow of the function calls. First, the main class loads the configuration and
creates the timers. Timer.tick controls sets how often the main program runs, while a
secondary timer (not shown in the figure) sets how often the MPC controller is started.
The main program checks for new files at each Timer.tick. When it detects a new file, the
file is read, stored in a local table and then written to the Flood management database.

Figure 4.2: Sequence diagram of Data Handler.
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4 TUC Flood server

The Data handler GUI is seen in figure 4.3. The user has the choice to start the Data
handler, stop it from running and show Data. When the Data Handler application is
started (from the executable), it will not execute any code until the Start button is pressed.
Pressing stop will tell the program to finish its current tasks and halt the program from
running again. It should be noted that all timers will reset when the Stop button is
pressed. So the MPC controller will be not be started again until a full cycle of the timer
has been completed after the Start button has been pressed (default one hour).

Figure 4.3: TUC Data Handler GUI.

When pressing the Show Data button, a new window will be opened, similar to the
one shown in figure 4.4. This window retrieves and shows all the data stored in the
INPUTVALUE table in the database.

Figure 4.4: TUC Data Handler GUI, Show Data.

The settings for the Data Handler can be edited in the config.XML file, as seen in figure
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4 TUC Flood server

4.5. When the Data Handler executable is run, it will check the input folder for a config
file to load data from. If Data Handler can’t find the config file, it will create one from
with default values. Any changes by the user have to be done in this file. The parameters
and a description of each are found in table 4.1.

Figure 4.5: TUC Data Handler configuration file.

Table 4.1: Data Handler configuration parameters.
Parameter Comment
<folderPath> Input folder, where input GS2 files are read
<dbAddress> Database address
<dbInitCatlog> Database initial catalog
<dbUserId> Database user ID
<dbPW> Database password
<batchInterval> Main program timer interval [ms]
<normalInterval> Alternate mode timer interval, not in use
<matlabInterval> MPC controller start timer interval [ms]

4.2 Database

Figure 4.6 shows the diagram for the Flood management database. In this figure, only the
tables containing dynamic information are shown. The tables that are collapsed contain
static information that is unchanged during normal operation. The full diagram is shown
in Appendix B.

With the structure of figure 4.6, all the input values are stored in a single table and are
related to each other by their respective input- or output file. This gives the option of
querying for variables based on both time and their file affiliation, making it simple to get
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4 TUC Flood server

Figure 4.6: Database diagram.

data. Secondly, this structure makes it easy to store and read new variables; only their
corresponding values in the -VARIABLE tables need to be added.

The STATUSLOG table is used for storing reports:

• Status reports are for monitoring the applications during regular operations, these
have a priority value of 3.

• Warning reports are to indicate potential faults or irregularities during operations,
these have a priority value of 2.

• Error reports are for critical faults that interrupts regular operations, these have a
priority value of 1.

When the Data handler detects a file, when it is done with storing the data from the file,
and when it starts the MPC controller, the Data handler stores a status report. If the
Data Handler discovers any errors during operations, a error report will be stored. Report
storing is not implemented in the MPC controller.
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4 TUC Flood server

4.3 MPC controller

The main focus of this thesis has been to change how the MPC controller interacts with
the rest of the TUC flood server and to update how its calculations are done. Thus,
the main functionality of the MPC controller has not been changed during this process.
This section details which of the original files have been altered, which are new and what
changes have been made. The original MPC controller and its files are documented in [2].
Changes from the original MPC controller are summarized in table 4.2.

Table 4.2: MPC controller change log.
File name Line Comment Appendix
findDataFuture.m 64 Updated model for Vdg J
findDataPast.m 37 Updated model for Vdg K
manageToke.m 52 Changed output to GS2 and database L
modLakeToke.m 24-26 Updated parameters a, b and K12, M

–”– 39-42 Updated models for Vd12, Vdg and Vdt M
prepTokeState.m 26 Changed input to database N

The updated MPC controller uses the measurement data and the hydrological data from
Dalsfos to calculate a flood gate opening suggestion. Every time the MPC controller
is started, it gathers data from the newest input file stored in the Flood management
database. Once the MPC controller has finished calculating the output values, these are
stored in a GS2 output file in the GS2 Out folder. An output file containing the same
information as the GS2 output file is stored the Flood management database. Once the
MPC controller has completed its operations, it terminates MATLAB.

Getting and storing data has been reworked as the previous version of the MPC con-
troller communicated by use of CSV files. prepTokeState.m is the function that reads
the input data. First, it gets the file number of the newest input file using database-
GetFileNo.m (appendix O). Then, using the file number as an input to databaseRead.m
(appendix P) to read the input data.
Storing the output data is handled by storeOutput.m (appendix Q), called by manage-
Toke.m. It is a control function for exporting the output data to a GS2 file and the Flood
management database. The function call order for storeOutput.m is shown in figure 4.7
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4 TUC Flood server

Figure 4.7: Function call order for MATLAB function storeOutput.m.

storeOutput.m is called with the output values as inputs. First, it connects to the Flood
management database with the native ODBC Interface [9] and builds the required vari-
ables before calling the remaining functions:

1. matlab2gs2.m (appendix R): This function generates the output GS2 files and store
them in the GS2 out folder. It returns the filename of the newly generated GS2 file.

2. databaseGetFileNo(in).m returns the file number of the newest input file

3. databaseOutputFile.m (appendix S): This function stores an entry for the output
file currently being generated. This entry makes a connection between the GS2 file,
the output values stored in the database and the input file.

4. databaseGetFileNo(out).m returns the file number of the newly generated output
file entry in the database.

5. databaseWrite (appendix T): This function stores the output values in the database
with relation to the newly generated output file.

4.4 Simulator

The script Simulator.m was developed for generating figure 3.6 in section 3.6. Figure
4.8 shows the function call order for Simulator.m. First it gets the measurement data
for comparison from stored historical data using getModelData.m. Then Simulator.m
gets the initial data for simulation from the database by getting the file number from
databaseGetFileNo.m and sending that value to databaseRead.m. Then it sets up the
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4 TUC Flood server

initial states and constraints by calling in order loadSetupToke.m, prepTokeState2.m,
loadStateToke.m and readTokeConstraint.m. prepTokeState2.m is a modified version of
the original prepTokeState.m that takes the data vector as an input value instead of
getting it itself. With all the initial values and states ready, Simulator.m loops over the
desired simulation time by calculating the flood gate opening with ctrlTokeMPC.m and
inserting it into modLakeToke.m to get the water levels for the next time step. This loop
is done twice, once for the new model and once for the old model. Once all the simulations
are completed, the results is plotted.
The complete script used is found in appendix U

Figure 4.8: Function call order for MATLAB function Simulator.m.
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5 Discussion

5.1 Data Handler

Error message are only written to the database and not the error files. This was not
implemented when the Data Handler was designed and there has not been time to im-
plement it during the thesis work. This feature that should be implemented for system
robustness.
Any errors discovered during normal operations are reported in the database. A useful
addition would be to show the status- and error messages on the front panel of the GUI
so that the user does not have to access the database to view them.
Status updates for tasks started and completed by the Data Handler are reported to the
database. It would be useful to monitor the database for the output from the MPC con-
troller to check that it completes its task in time. The alternative of having the MPC
controller itself write status updates to the database is simpler but would still require the
Data Handler to monitor said status updates. But perhaps this is the better solution if
error handling and reporting was implemented in the MPC controller. This would hope-
fully give the user an idea of why the MPC controller could not complete its task rather
than it just a timeout message.

5.2 Database

The Flood management database was designed prior to the thesis work. During the thesis
work, testing showed no issues so no changes have been made to it.
One possible addition to the database could be to implement a trigger that monitors the
activity of the Data Handler. This trigger would give an error message if no activity
was detected within a given time limit. This would be useful as a failsafe in case the
Data Handler for some reason did not function properly. But if the Data Handler did
not function, then the MPC controller would most likely not run and so not generate any
output GS2 files. The need for a trigger would depend on whether the lack of an output
GS2 file gives a suitable error message or not.
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5 Discussion

5.3 Model tuning

5.3.1 Gate flow parameter updating

In the task description (appendix A), under the second bullet point on the first page one
can read: “In addition, a new model for flow through the flood gates should be implemen-
ted, based on available look-up data”. The look-up table mentioned is the same as the
dam operators use to determine the gate opening to achieve a certain water flow. This
table was originally implemented in the MPC controller but during discussions with Ås-
mund Hasaas at Skagerak, it was discovered that this table was derived from an equation
supplied by NVE. It was chosen to rather implement the equation directly as it is simpler
and requires noticeably less computation time.

5.3.2 Inter-compartmental flow model reworking

A weakness of the model is in the development of the inter-compartmental flow model
presented in section (3.4). The assumption for this model is that the flow of water between
the two measuring points in Lake Toke is equal to the flow through the Dalsfos dam. This
is inaccurate since the flow through Dalsfos is controlled by the operator and not (directly)
influenced by the difference in water height. The lack of a clear connection can be seen
in figure 3.3.
To get a better model would require some method for interpreting the currently available
measurement data (if possible). Another option would be to get measurement data of the
water flow by the upper height measurement point. With the methods and measurement
data available, the current assumption for the model is “as good as it gets”.
The original results when determining the value of k were [125.3877; 2.4384; 0]. This
is slightly higher than the values presented in the model summary in section 3.1. After
these values were found, the parameters for the state estimator were tuned as shown in
section 3.5. The original values for k were used when tuning the state estimator. Once
the new state estimator parameters were set, the values for k were then re-tuned using the
new state estimator parameters, giving the values presented in the model summary.

5.3.3 Inter-compartmental flow model reworking MATLAB script

Vfit.m (appendix C) uses the built-in polyval function [10] for evaluation purposes. The
function takes an array of inputs values and a function, evaluating the function at every
input value. For our use, polyval is not entirely suited as the function has to expressed as
an array of coefficients that are interpreted as a polynomial in descending power as seen
in equation 5.1.

y = p1xn + p2xn−1 + ...+ pnx+ pn+1 (5.1)
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5 Discussion

To work around this, the fourth root has been taken of the input data for finding the
parameters and is then raised (back) to the power of four when plotting.

For plotting in figure 3.4, the MATLAB function polyval was used. To get the function
to function properly, a trailing zero needed to be added to the values of k in the script.
Further, one can see that some of the lines seem to deviate into several smaller ones,
especially for the orange line. This is a side effect of there being several x-values for each
y-value, resulting in several lines being returned.

5.4 Model verification

In figure 3.6 we see a comparison of the new and the old model in the open loop simulation.
The data used starts at 11. August 2015. The simulation runs for 30 days, into the start of
September, where Lake Toke experienced a major flood. Both models follow the measured
values well for the first 13 days, and then relatively well until day 21 with slightly better
results from the new model. That the simulation starts to deviate after 10 days and are
getting progressively worse, is as expected since the simulators are only supplied with an
influx prognosis for 10 days.
In figure 3.7 we see the simulator compared in a closed loop simulation with data from
the same time period as the previous figure. The difference from the previous figure is
that the simulators receive measurement data every time step. Both the simulators give
good results for the first 21 days but struggle with the flood. Here we see an improvement
of the new model compared to the old one. The new model follows the trends of the
measurement data but still is slightly off.

5.5 Input data handling

There is no form of filtering or vetting done on the input data received neither in the Data
Handler, nor in the MPC controller. Any errors in the input data is likely to produce
errors in the output data or perhaps result in the MPC controller to abort is operation
and thus give no output. Adding safeguards against invalid inputs that would produce
a helpful error message (instead of aborting without notice) would make the controller
more robust.
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5 Discussion

5.6 MPC controller

As mentioned in section 5.5, there is no vetting done on the input data. It would be an
advantage to check for missing or old data to give an error message, and possibly get
older data to be able to give an output. Whether to use old data or not for calculating
outputs is another matter. Since the time constant of the system is very long, it should
not make a huge difference to use data that is a few hours old. But there would have to
be a limit as to how old data can be used, since the quality of the output would suffer
when going far back. There is also the danger that by continuing to generate output files
on old data, that the error that led to the lack of new data would not be discovered.
The information used for connecting to the database in storeOutput.m and prepTokeState.m
is static. In storeOutput.m, the information used for generating and formatting the out-
put data is also static. It would be better to gather all this information in a settings file
to avoid duplicate data and making it simpler to modify settings for the user. Another
alternative for getting the information for connecting to the database would be to make a
function for reading the configuration file for the Data Handler. This would ensure that
this information is only stored on place.
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6 Conclusions

The new model has been thoroughly tested and has been found to be an improvement to
the old one. The improvements have not been major, more of a needed tuning based on
experience and measurement data. The same would probably be beneficial to do with the
new model at a later stage, when new experience and data has been gathered. No model
is perfect, the best one can hope for is ”good enough” for its intended use.
The updated TUC flood server has shown to solve its task well during testing. Now
remains to deploy it live to validate that it works as intended. Integration of the database
to the MPC controller was completed early during the thesis work. In hindsight, it would
have been wise to implement this change on the live version once it was done. This would
have made more measurement data available during the thesis work. Also, it would
have made it possible to first test the database integration before model changes, making
troubleshooting simpler. The simulator developed functions adequately but is very slow.
Due to time constraints during development (of both the Data Handler and the MPC
controller), these applications operate with little user feedback. The Data Handler has
good error handling and -reporting, but none of these are easily available to the user or
IT personnel at Skagerak. The MPC controller has no error handling or -reporting and
no vetting of input variables that may cause it to fail.

6.1 Future work

• Test and integrate the updated TUC flood server live at Skagerak.

• Data Handler:

– Create and send error files

– Show status and error messages in the GUI

• MPC controller:

– Implement error handling to avoid it from aborting without warning

– Send status and errors reports to the database

• Optimize simulator to reduce computation time
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Appendix A

Signed task description
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Appendix B

Full database diagram

Figure B.1: Database diagram
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Appendix C

Vfit.m

% Get measurement data
[xM, xD, hg1 , hg2 , Wde] = getModelData ( ) ;
dh = xM − xD ;
% C a l c u l a t e water f l ow through f l o o d g a t e s and t u r b i n e s
Vdg = zeros ( length (Wde) , 1 ) ;
Vdt = zeros ( length (Wde) , 1 ) ;
for i = 1 : length (Wde)

Vdg( i ) = gateV ( hg1 ( i ) , hg2 ( i ) , xD( i ) ) ;
Vdt ( i ) = turbineV (Wde( i ) ,xD( i ) , Vdg( i ) ) ;

end
VdTot = Vdg + Vdt ;

% Removing data p o i n t s w i th n e g a t i v e h e i g h t d i f f e r e n c e
% Note : The x−v a l u e s have the f o u r t h r o o t s taken to g e t
% p o l y v a l to g i v e c o r r e c t ouput .
idx = find (dh>=0);
x = ( dh ( idx ) ) . ˆ ( 1 / 4 ) ;
y = VdTot ( idx ) ;

% Making equa t i on o f d i f f e r e n t order
phi1 = [ x . ˆ 1 ] ;
phi2 = [ x . ˆ2 x . ˆ 1 ] ;
phi3 = [ x . ˆ3 x . ˆ2 x . ˆ 1 ] ;
phi4 = [ x . ˆ4 x . ˆ3 x . ˆ2 x . ˆ 1 ] ;
% Find parameter v a l u e s f o r e qua t i on s
p1 = [ phi1 \y ; 0 ] ;
p2 = [ phi2 \y ; 0 ] ;
p3 = [ phi3 \y ; 0 ] ;
p4 = [ phi4 \y ; 0 ] ;
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Appendix C Vfit.m

% P l o t t i n g
% Note : The x−v a l u e s are r a i s e d to the power o f f our to g e t t he
% o r i g i n a l v a l u e s
f igure ( 1 )
t i t l e ( ’ Po lyva l ␣ o f ␣nth␣ orde r ␣ f u n c t i o n ’ , ’ f o n t s i z e ’ , 18 )
ylabel ( ’ Total ␣ f l ow ␣ through ␣ D a l s f o s ␣ [mˆ3/ s ] ’ , ’ f o n t s i z e ’ , 18 )
xlabel ( ’ D i f f e r e n c e ␣ in ␣ water ␣ l e v e l ␣Merkebekk−D a l s f o s ␣ [m] ’ , . . .

’ f o n t s i z e ’ , 18 )
hold on
plot ( x . ˆ 4 , y , ’ . ’ , ’ l i n e w i d t h ’ , 6 )
plot ( x . ˆ 4 , polyval ( p1 , x ) , ’ g− ’ )
plot ( x . ˆ 4 , polyval ( p2 , x ) , ’ r− ’ , ’ l i n e w i d t h ’ , 3 )
plot ( x . ˆ 4 , polyval ( p3 , x ) , ’ b− ’ )
plot ( x . ˆ 4 , polyval ( p4 , x ) )
l 1 = legend ( ’ data ␣ po i n t s ’ , ’ 1 . ␣ o rde r ’ , ’ 2 . ␣ o rde r ’ , . . .

’ 3 . ␣ o rde r ’ , ’ 4 . ␣ o rde r ’ ) ;
set ( l1 , ’ FontS ize ’ , 1 2 ) ;
axis ( [ 0 , 2 . 2 , 0 , 2 5 0 ] )
grid on
hold o f f
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Appendix D

getModelData.m

function [xM, xD, hg1 , hg2 ,Wde, Vdi , t , Vdg1 , Vdg2 , Vdt ] = getModelData ( )

% Data source
T = t a b l e 2 a r r a y ( r e a d t a b l e ( ’ Data_ryddet2 . x l s x ’ , ’ReadRowNames ’ , t rue ) ) ;
T( 1 : 4 8 6 2 , : ) = [ ] ; % Removing ” bad ” data
data = 1 : 1 2 9 0 6 ; % S e l e c t i n g remaining data
t = 0 : 1 : length ( data )−1;

% Get t ing measurement data
xM = (T( data , 1 ) ) ; % [m a . s . l . ] Merkebekk
xD = (T( data , 2 ) ) ; % [m a . s . l . ] Da l s f o s
hg1 = (T( data , 5 ) ) ; % Gate 1 opening [ cm]
hg2 = (T( data , 7 ) ) ; % Gate 2 opening [ cm]
Wde = (T( data , 9 ) )+(T( data , 10 ) )+(T( data , 1 1 ) ) ; % Power prod [MW]
Vdi = (T( data , 1 7 ) ) ; % T i l s i g Da l s f o s [m3/ s ]

% Get t ing v a l u e s d r i v e d from measurements ( Skagerak formu laes )
Vdg1 = (T( data , 6 ) ) ; % Gate 1 vo l ume t r i c f l ow [m3/ s ]
Vdg2 = (T( data , 8 ) ) ; % Gate 2 vo l ume t r i c f l ow [m3/ s ]
Vdt = (T( data , 1 2 ) ) ; % Turbine vo l ume t r i c f l ow [m3/ s ]
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Appendix E

gateV.m

function Vdg = gateV ( hg1 , hg2 , xD)
% Function f o r c a l c u l a t i n g water f l ow through f l o o d g a t e s

% Constants
Cd = 0 . 7 ;
wGate1 = 1 1 . 6 ;
wGate2 = 1 1 . 0 ;
xLRVmin = 5 5 . 7 5 ;
g = 9 . 8 1 ;

% Conver t ing to cm
hg1 = hg1 /100 ;
hg2 = hg2 /100 ;

% Gate f l ow c a l c u l a t i o n
hD = xD − xLRVmin ;
Vdg1 = Cd∗wGate1∗min( hg1 ,hD)∗ sqrt (2∗ g∗max(hD ’ , 0 ) ) ;
Vdg2 = Cd∗wGate2∗min( hg2 ,hD)∗ sqrt (2∗ g∗max(hD ’ , 0 ) ) ;

Vdg = Vdg1 + Vdg2 ;
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Appendix F

turbineV.m

function Vdt = turbineV (Wde, xD, Vdg)
% Function f o r c a l c u l a t i n g water f l ow though the t u r b i n e s

% po lynomia l c o e f f i c i e n t s f o r xQ e s t ima to r and Vdt e s t ima to r
c = [ 1 . 3 1 5 2 e−1; −9.5241; 1 .7234 e2 ; −7.7045e−3; −8.7359e −1 ] ;%
polVdt = [ 1 . 2 4 6 9 e2 ( 3 . 1 6 1 ) ] ;

% Turbine f l ow c a l c u l a t i o n
xQroots = roots ( [ c ( 1 ) , ( c (2)− c (1 )∗xD) , ( c (3)− c (2 )∗xD + . . .

c ( 4 )∗Vdg ) , (Wde−c (3 )∗xD−c (4 )∗Vdg∗xD−c ( 5 ) ) ] ) ;
xQ = xQroots ( 2 ) ;
dxt = xD−xQ ;
Vdt = min( polVdt (1 )∗Wde/ dxt + polVdt ( 2 ) , 3 6 ) ;
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Appendix G

paramFit.m

[xM, xD, hg1 , hg2 , Wde, Vdi , t ] = getModelData ( ) ;

days = 30 ; % Time to s imu l a t e
span = 1 : 1 : days ∗24 ; % Convert days to hours
s h i f t = 0 ; % Increa s e to use o t h e r data ( s t a r t t ime )
d = 1+ s h i f t : length ( span)+ s h i f t ;

% A l l o c a t e d e s i r e d data
xM = xM(d ) ;
xD = xD(d ) ;
hg1 = hg1 (d ) ;
hg2 = hg2 (d ) ;
Wde = Wde(d ) ;
Vdi = Vdi (d ) ;

% Set up func t i on , s t a r t v a l u e s and l i m i t s
toke = @(p ) dhEstimator (p , xM, xD, hg1 , hg2 , Wde, Vdi ) ;
param0 = [ 0 . 0 1 0 . 0 1 ] ;
l b = [ 0 0 ] ;
ub = [ 1 1 ] ;

% Function f o r parameter e s t i m a t i o n
param = l s q n o n l i n ( toke , param0 , lb , ub ) ;
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Appendix H

dhEstimator.m

function e = dhEstimator (p , xM, xD, hg1 , hg2 , Wde, Vdi )

% A l l o c a t e v a l u e s
Xmeas = [xM, xD ] ;
x0 = Xmeas ( 1 , : ) ’ ;
a = p ( 1 ) ;
b = p ( 2 ) ;
N = length (xM) ;
Xmod = zeros (N, 2 ) ;
Xmod( 1 , : ) = x0 ;

% Run s imu l a t o r a t one hour i n t e r v a l s to match measurement data
for i =1:N−1

toke = @( t , x ) tokeS imu la to r ( t , x , hg1 ( i ) , hg2 ( i ) ,Wde( i ) , . . .
Vdi ( i ) , a , b ) ;
[T,X] = ode15s ( toke , [ 0 3600 ] , x0 ) ;
x0 = X(end , : ) ’ ;
Xmod( i +1 , : ) = x0 ’ ;

end

% Find d e v i a t i o n between measured and s imu la t ed v a l u e s
F = Xmeas−Xmod;
% Reshape ou tpu t to a s i n g l e v e c t o r to work wi th l s q n o n l i n
e = reshape (F, 2∗N, 1 ) ;
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Appendix I

tokeSimulator.m

function dxdt = tokeS imu la to r ( t , x , hg1 , hg2 , Wde, Vdi , a , b )
xM = x ( 1 ) ;
xD = x ( 2 ) ;

% C a l c u l a t e water f l ow through the g a t e s and the t u r b i n e s
Vdg = gateV ( hg1 , hg2 , xD ) ;
Vdt = turbineV (Wde, xD, Vdg ) ;

% Constants
xLRVmin = 5 5 . 7 5 ;
K12 = [100 1 ] ;

% Convert to r e l a t i v e h e i g t h and f i n d h e i g h t d i f f e r e n c e
hM = xM − xLRVmin ;
hD = xD − xLRVmin ;
dh = hM−hD;
% Removing n e g a t i v e h e i g h t d i f f e r e n c e to avo id e r ro r
i f ( dh < 0)

dh = 0 ;
end

% C a l c u l a t e In tercompar tmenta l f l ow and f i l l r a t e s
Vd12 = K12 (1 )∗ nthroot (dh ,2)+ K12 (2 )∗ nthroot (dh , 4 ) ;
AhM = max(28 e6 ∗ 1 . 1 ∗ (hM) ˆ 0 . 1 , 1 e3 ) ;
AhD = max(28 e6 ∗ 1 . 1 ∗ (hD) ˆ 0 . 1 , 1 e3 ) ;

% C a l c u l a t e d e r i v a t i v e s
der_hM = ((1−b)∗ Vdi−Vd12)/((1−a )∗AhM) ;
der_hD = (b∗Vdi + Vd12 − Vdt − Vdg )/ ( a∗AhD) ;

dxdt = [ der_hM ; der_hD ] ;
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findDataFuture.m

function dataFuture = f indDataFuture (xM, xD, Hg , nUdim , tnUdim , . . .
VdiWin ,WdeWin, xLRVwin , xHRVwin , tClock , tHor izonFuture , tSamp )

%=======================================
% Lake Toke Flood Management System
%
% Function f o r s e t t i n g up f u t u r e data f o r reportTokeData
% author : Bernt Lie , Kr i s t i an Kvam
% l o c a t i o n : Telemark U n i v e r s i t y Co l l e ge , Porsgrunn
% date : March 21 , 2014 v 0 .1
% June 20 , 2014 v 1 .0
% May 5 , 2017 v 1 .1 Updated model f o r Vdg
%
%=======================================
d i rF i l eToke ;
r e p o r t F i l e = [ ioDir , ’ / ’ , r epo r tDataF i l e ] ;
load ( r e p o r t F i l e ) ;
mParToke ;
hgMin_cm = 0 ;
hgMax_cm = mPar . hgMax∗100 ;
xLRVmin = mPar . xLRVmin ;
xHRVmax = mPar .xHRVmax;
cvec = mPar . cvec ;
polVdt = mPar . polVdt ;
xRef = mPar . xRef ;

%
tWin = ( 0 : tSamp : tHor izonFuture ) ’ ;
hgWin = Hg(1 )∗ ones ( s ize ( tWin ) ) ;
for i =2:nUdim

idx = find ( tWin >= tnUdim ( i ) ) ;
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hgWin( idx ) = Hg( i ) ;
end
xMwin = xM∗ ones ( s ize (hgWin ) ) ;
xDwin = xD∗ ones ( s ize (hgWin ) ) ;
xQwin = zeros ( s ize (xMwin ) ) ;
xQ1win = xQwin ;
xQ3win = xQwin ;
xQLwin = xQwin ;
xQ1Lwin = xQwin ;
xQ3Lwin = xQwin ;
VdtWin = zeros ( s ize (xMwin ) ) ;
VdgWin = zeros ( s ize (xMwin ) ) ;
%
% Loop through hor i zon
NH = length ( tWin ) ;
x = [xM; xD ] ;
tSpan = [ datenum ( tClock ) , datenum ( tClock )+tSamp ] ; % Sim time span
tSpan_s = tSpan ∗3600∗24 ; % Timespan in seconds
tSamp_s = tSamp ∗3600∗24 ;
for I = 1 :NH

% Def in ing anonymous model f u n c t i o n
w = [ VdiWin ( I ) ; WdeWin( I ) ] ;
u = [ hgWin( I ) ; hgWin( I ) ] ;

mToke = @( t , x ) modLakeToke ( t , x , u ,w) ;
% Simu la t ing system
[ tm , X] = ode15s (mToke , tSpan_s , x ) ;
x = X(end , : ) ’ ;
xM = x ( 1 ) ;
xD = x ( 2 ) ;
xMwin( I ) = xM;
xDwin ( I ) = xD ;
hD = xD − xLRVmin ;
Vdg = gateV (u (1 )∗100 , u (2 )∗100 ,xD ) ;
VdgWin( I ) = Vdg ;
% −− t u r b i n e f l ow r a t e
po l = zeros ( 1 , 4 ) ;
po l ( 1 ) = cvec ( 1 ) ;
po l ( 2 ) = cvec (2)− cvec (1 )∗xD ;
po l ( 3 ) = cvec (3)− cvec (2 )∗xD+cvec (4 )∗Vdg ;
po l ( 4 ) = WdeWin( I )−cvec (3 )∗xD−cvec (4 )∗Vdg∗xD−cvec ( 5 ) ;
xQroots = roots ( po l ) ’ ;
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xQwin ( I ) = xQroots ( 2 ) ;
xQ1win ( I ) = xQroots ( 1 ) ;
xQ3win ( I ) = xQroots ( 3 ) ;
xQLwin ( I ) = i s r e a l ( xQroots ( 2 ) ) ;
xQ1Lwin ( I ) = i s r e a l ( xQroots ( 1 ) ) ;
xQ3Lwin ( I ) = i s r e a l ( xQroots ( 3 ) ) ;
%
dxt = xD−xQwin ( I ) ;
VdtWin( I ) = min( polVdt (1 )∗WdeWin( I )/ dxt + polVdt ( 2 ) , 3 6 ) ;
tSpan_s = [ tm(end ) , tm(end)+tSamp_s ] ;
tWin ( I ) = tm(end )/24/3600 ;

end
%
VdoWin = VdtWin + VdgWin ;
xHRVmaxWin = xHRVmax∗ ones ( s ize (xHRVwin ) ) ;
xLRVminWin = xLRVmin∗ ones ( s ize (xLRVwin ) ) ;
refLoWin = (1−xRef )∗xLRVwin + xRef ∗xHRVwin ;
refHiWin = xHRVwin − mPar .dHRV;

idx = find ( ( VdiWin (1 ) >= mPar . VdiThr ) & ( VdiWin >= mPar . VdiThr ) ) ;

refHiWin ( idx ) = mPar .xHRVmax − mPar .dHRV;
hgMaxWin_cm = hgMax_cm∗ ones ( s ize (xLRVwin ) ) ;
hgMinWin_cm = hgMin_cm∗ ones ( s ize (xLRVwin ) ) ;
hgWin_cm = hgWin ∗100 ;
nanWin = nan ( s ize ( tWin ) ) ;
%
dataFuture = [ xMwin , xDwin , xQwin , xQ1win , xQ3win , xQLwin , xQ1Lwin , . . .

xQ3Lwin , nanWin , xLRVwin , xHRVwin , xLRVminWin ,xHRVmaxWin , . . .
refLoWin , refHiWin , nanWin , nanWin , hgWin_cm , hgMaxWin_cm , . . .
hgMinWin_cm , VdiWin , VdtWin , VdgWin , VdoWin , nanWin ,WdeWin , . . .
nanWin , tWin ] ;

%−−> Return
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findDataPast.m

function dataPast = f indDataPast (xM, xD,xQ_NVE,Vdo_NVE , . . .
xLRV,xHRV, hg1 , hg2 , hg , Vdi ,Wde, tClock , tOpt )

%=========================================
% Lake Toke Flood Management System
%
% Function f o r s e t t i n g up pa s t data f o r reportTokeData
% author : Bernt Lie , Kr i s t i an Kvam
% l o c a t i o n : Telemark U n i v e r s i t y Co l l e ge , Porsgrunn
% date : March 21 , 2014 v 0 .1
% Apr i l 1 , 2014 v 0 .2
% June 20 , 2014 v 1 .0
% May 5 , 2017 v 1 .1 Updated model f o r Vdg
%
%=========================================
d i rF i l eToke ;
r e p o r t F i l e = [ ioDir , ’ / ’ , r epo r tDataF i l e ] ;
load ( r e p o r t F i l e ) ;
mParToke ;
hgMin_cm = 0 ;
hgMax_cm = mPar . hgMax∗100 ;
hg_cm = hg ∗100 ;
hg1_cm = hg1 ∗100 ;
hg2_cm = hg2 ∗100 ;
xLRVmin = mPar . xLRVmin ;
xHRVmax = mPar .xHRVmax;
xRef = mPar . xRef ;
cvec = mPar . cvec ;
polVdt = mPar . polVdt ;
%
hD = xD − xLRVmin ;
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r e fLo = (1−xRef )∗xLRV + xRef ∗xHRV;
i f Vdi >= mPar . VdiThr

r e f H i = mPar .xHRVmax − mPar .dHRV;
else

r e f H i = xHRV − mPar .dHRV;
end
Vdg = gateV ( hg1 , hg2 , xD ) ;
% −− cur r en t t u r b i n e f l ow r a t e
po l = zeros ( 1 , 4 ) ;
po l ( 1 ) = cvec ( 1 ) ;
po l ( 2 ) = cvec (2)− cvec (1 )∗xD ;
po l ( 3 ) = cvec (3)− cvec (2 )∗xD+cvec (4 )∗Vdg ;
po l ( 4 ) = Wde−cvec (3 )∗xD−cvec (4 )∗Vdg∗xD−cvec ( 5 ) ;
xQroots = roots ( po l ) ’ ;
xQ = xQroots ( 2 ) ;
xQ1 = xQroots ( 1 ) ;
xQ3 = xQroots ( 3 ) ;
xQL = i s r e a l (xQ ) ;
xQ1L = i s r e a l (xQ1 ) ;
xQ3L = i s r e a l (xQ3 ) ;
%
dxt = xD−xQ ;
Vdt = min( polVdt (1 )∗Wde/ dxt + polVdt ( 2 ) , 3 6 ) ;
Vdo = Vdg + Vdt ;
%
tNow = datenum ( tClock ) ;
%
dataPast ( 1 : end−1 , : ) = dataPast ( 2 : end , : ) ;
dataPast (end , : ) = [xM, xD, xQ, xQ1 , xQ3 , xQL, xQ1L , xQ3L ,xQ_NVE, . . .

xLRV,xHRV, xLRVmin ,xHRVmax, re fLo , r e fH i , hg1_cm , hg2_cm , hg_cm , . . .
hgMax_cm, hgMin_cm , Vdi , Vdt , Vdg , Vdo ,Vdo_NVE,Wde, tOpt , tNow ] ;

%−−> Return
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%=========================================
% Lake Toke Flood Management System
%
% Managing Lake Toke Flood Gate based on f i l e ’ setupToke . mat ’
% author : Bernt Lie , Kr i s t i an Kvam
% l o c a t i o n : Telemark U n i v e r s i t y Co l l e ge , Porsgrunn
% date : March 11 , 2014 v 0 .1
% March 14 , 2014 v 0 .2
% Apr i l 24 , 2014 v 0 .3
% June 19 , 2014 v 0 .4
% June 20 , 2014 v 1 .0
% May 5 , 2017 v 1 .1 Changed ou tpu t from CSV to
% GS2 and da tabase
%
%=========================================
% Management o p e r a t i o n s
%−− Read cur r en t data from s t a t e f i l e
t i c ;
St = loadStateToke ( ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−− Set up c o n s t r a i n t windows xLRVwin and xHRVwin
xRV = readTokeConstra int ( St . tClock , sD . tHorizonFuture , . . .

sD . tSamp , xConst ra in t ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−− Compute ga t e opening us ing MPC
Hg = ctrlTokeMPC ( St .xM, St . xD ,xRV. xLRVwin ,xRV. xHRVwin , . . .

St . VdiWin , St .WdeWin, St . hg1 , St . hg2 , sD . nUdim , . . .
sD . tnUdim , sD . tHorizonFuture , sD . tSamp ,mP) ;

hg = Hg ( 1 ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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%−− Report computed ope ra t i on
xLRV = xRV. xLRVwin ( 1 ) ;
xHRV = xRV. xHRVwin ( 1 ) ;
Vdi = St . VdiWin ( 1 ) ;
Wde = St .WdeWin ( 1 ) ;
%
tOpt = toc ;
dataPast = f indDataPast ( St .xM, St . xD , St .xQ_NVE, St .Vdo_NVE , . . .

xLRV,xHRV, St . hg1 , St . hg2 , hg , Vdi ,Wde, St . tClock , tOpt ) ;
%−−> f u n c t i o n ? to c l ean up code
dataFuture = f indDataFuture ( St .xM, St . xD , Hg , sD . nUdim , sD . tnUdim , . . .

St . VdiWin , St .WdeWin,xRV. xLRVwin ,xRV. xHRVwin , . . .
St . tClock , sD . tHor izonFuture , sD . tSamp ) ;

Vdg = dataFuture ( 1 , 2 3 ) ;
%−− Report
d i rF i l eToke ;
r e p o r t F i l e = [ ioDir , ’ / ’ , r epo r tDataF i l e ] ;
save ( r e p o r t F i l e , ’ dataPast ’ , ’ dataFuture ’ ) ;
P lot r e s u l t s and save p l o t s
okReportTokePlot = reportTokePlot ( dataPast , dataFuture , sD . tSamp , . . .

sD . nPLang ) ;

% Report hg and Vdg
storeOutput ( hg , Vdg ) ;

54



Appendix M

modLakeToke.m

function der_x = modLakeToke ( t , x , u ,w)
%==========================================
%
% Function f o r computing v e c t o r f i e l d o f dynamic model
% f o r Lake Toke
% author : Bernt Lie , Kr i s t i an Kvam
% l o c a t i o n : Telemark U n i v e r s i t y Co l l e ge , Porsgrunn
% date : February 26 , 2014 v 0 .1
% June 20 , 2014 v 1 .0
% May 5 , 2017 v 1 .1 Updated model f o r Vd12 , Vdg
% and Vdt , parameters a , b and K12
%
%==========================================
% Naming s t a t e s
xM = x ( 1 ) ; % m a . s . l .
xD = x ( 2 ) ; % m a . s . l .
% Naming c o n t r o l i npu t
hg1 = u ( 1 ) ; % m
hg2 = u ( 2 ) ; % m
% Naming d i s t u r b a n c e s
Vdi = w( 1 ) ; % m3/s , cu r r en t i n f l o w to Toke
Wde = w( 2 ) ; % MW, cur r en t e l i c t r i c i t y p roduc t i on
% Naming parameters
a = 0 . 0 1 ; % −, volume f r a c t i o n in volume 1
b = 0 . 0 1 ; % −, i n f l o w f r a c t i o n to volume 2
K12 = [100 1 ] ;
xLRVmin = 5 5 . 7 5 ; % m a . s . l . , minimal l e v e l o f r e g u l a t e d va l u e
%
% Computing a l g e b r a i c e x p r e s s i o n s
% −− l e v e l s , areas , f l o w s
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hM = xM − xLRVmin ;
hD = xD − xLRVmin ;
dh = hM−hD;
i f ( dh < 0)

dh = 0 ;
end
A1 = max(28 e6 ∗1 .1∗ abs (hM) ˆ 0 . 1 , 1 e3 ) ;
A2 = max(28 e6 ∗1 .1∗ abs (hD) ˆ 0 . 1 , 1 e3 ) ;
Vd12 = K12 (1 )∗ nthroot (dh ,2)+ K12 (2 )∗ nthroot (dh , 4 ) ;

Vdg = gateV ( hg1 , hg2 , xD ) ;
Vdt = turbineV (Wde, xD, Vdg ) ;

% S e t t i n g up dynamic e qua t i on s
der_xM = ((1−b)∗ Vdi−Vd12)/(1−a )/A1 ;
der_xD = (b∗Vdi+Vd12−Vdt−Vdg)/ a/A2 ;
%
der_x = [ der_xM , der_xD ] ’ ;
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prepTokeState.m

function okPREP = prepTokeState ( tHor izonFuture , tSamp )
%===========================================
% Lake Toke Flood Management System
%
% Function f o r c o n v e r t i n g CST measurements to i n i t T o k e S t a t e f i l e
% author : Bernt Lie , Kr i s t i an Kvam
% l o c a t i o n : Telemark U n i v e r s i t y Co l l e ge , Porsgrunn
% date : March 14 , 2014 v 0 .1
% June 20 , 2014 v 1 .0
% August 28 , 2014 v 1 . 1 , bug f i x wrt . dataVdiWin ( i d x ) =
% dataVdiWin ( i d x (1) −1);
% May 5 , 2017 v 1 . 2 , changed inpu t from CSV to
% da tabase
%
%============================================
%
rP = readRParToke ( ) ;
d i rF i l eToke ;
s t a t e F i l e = [ ioDir , ’ / ’ , s t a t e D a t a F i l e ] ;
i f exist ( s t a t e F i l e , ’ f i l e ’ ) == 2

delete ( s t a t e F i l e ) ;
end
%
% Connect to da tabase and g e t data from newest f i l e
conn = database . ODBCConnection ( ’ TokeData ’ , ’ Sk r i v e ’ , ’ pas sord ’ ) ;
f i l e N o = databaseGetFi leNo ( conn , ’ i n ’ , ’ new ’ ) ;
data = databaseRead ( f i l eNo , conn ) ;
close ( conn ) ;
%
% INSTANCE va lues , measured
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St .xM = data ( 1 ) ; % m a . s . l . , cu r r en t Merkebekk l e v e l
St . xD = data ( 2 ) ; % m a . s . l . , cu r r en t Da l s f o s dam l e v e l
St .Vdo_NVE = data ( 3 ) ; % m3/s , downstream f l ow from NVE
a = rP . polVdo ( 1 ) ;
b = rP . polVdo ( 2 ) ;
c = rP . polVdo (3)−St .Vdo_NVE;
% m a . s . l . , cu r r en t Da l s f o s quay l e v e l
St .xQ_NVE = (−b+sqrt (bˆ2−4∗a∗c ) )/2/ a ;
St . hg1Past_cm = data ( 8 ) ; % cm, pas t ga t e opening , Gate 1 ( o l d )
St . hg2Past_cm = data ( 9 ) ; % cm, pas t ga t e opening , Gate 2 (new)
St . tClock = [ data ( 5 0 : 5 4 ) , 0 ] ; % curren t t ime ; t r u nca t e seconds
%−− PROGNOSIS windows
dataVdiWin = [ data ( 4 0 : 4 9 ) ’ ; data ( 4 9 ) ] ;% m3/s , f u t u r e i n f l o w Toke
idx = find ( isnan ( dataVdiWin ) ) ;
i f length ( idx ) > 0

dataVdiWin ( idx ) = dataVdiWin ( idx (1) −1) ;
end
%
dataTWin = ( 0 : 1 : length ( dataVdiWin ) −1) ’ ;
tWin = ( 0 : tSamp : tHor izonFuture ) ’ ;
% m3/s , f u t u r e i n f l o w to Toke
St . VdiWin = interp1 ( dataTWin , dataVdiWin , tWin ) ;
St . VdiWin (1 ) = data ( 7 ) ; % m3/s , i n s e r t ” ob s e r ved ” i n f l o w Toke
%
% MW, nex t day t o t a l power product ion , Da l s f o s
dataWdeWin = data (10)+ data (20)+ data ( 3 0 ) ;
% MW, f u t u r e power consumption , Da l s f o s
St .WdeWin = dataWdeWin∗ ones ( s ize ( tWin ) ) ;
St .WdeWin(1 ) = sum( data ( 4 : 6 ) ) ; % MW, t o t a l power produc t i on
% Save r e s u l t s to f i l e
save ( s t a t e F i l e , ’ St ’ ) ;
okPREP = 1 ;
%
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function f i l e N o = databaseGetFi leNo ( conn , s e l , date )

q = char ( 3 9 ) ; % Get q u o t a t i o n mark to add to s q l querry

i f strcmp ( s e l , ’ i n ’ )
i f strcmp ( date , ’ new ’ )

ge tF i l eNo = [ ’SELECT␣TOP␣1␣ InputF i l e ID ’ ’ ␣FROM␣ . . .
␣␣␣␣␣␣␣␣␣”FloodManagement ” . ” dbo ” . INPUTFILE␣ORDER␣BY␣Time␣DESC ’ ] ;

else
getF i l eNo = [ ’SELECT␣TOP␣1␣ InputF i l e ID ␣FROM␣ . . .

␣␣␣␣␣␣␣␣␣”FloodManagement ” . ” dbo ” . INPUTFILE␣WHERE␣␣ . . .
␣␣␣␣␣␣␣␣␣Time␣>=’ , q , date , q , ’ ␣ORDER␣BY␣Time␣ASC ’ ] ;

end

e l s e i f strcmp ( s e l , ’ out ’ )
i f strcmp ( date , ’ new ’ )

ge tF i l eNo = [ ’SELECT␣TOP␣1␣ OutputFileID ’ ’ ␣FROM␣ . . .
␣␣␣␣␣␣␣␣␣”FloodManagement ” . ” dbo ” .OUTPUTFILE␣ORDER␣BY␣Time␣DESC ’ ] ;

else
getF i l eNo = [ ’SELECT␣TOP␣1␣ OutputFileID ␣FROM␣ . . .

␣␣␣␣␣␣␣␣␣”FloodManagement ” . ” dbo ” .OUTPUTFILE␣WHERE␣ . . .
␣␣␣␣␣␣␣␣␣␣Time␣>=’ , q , date , q , ’ ␣ORDER␣BY␣Time␣ASC ’ ] ;

end
end

cu r s = f e t c h ( exec ( conn , ge tF i l eNo ) ) ;
% Conver t ing from t a b l e to s t r i n g
f i l e N o = mat2str ( t a b l e 2 a r r a y ( cur s . Data ) ) ;
close ( cu r s ) ;
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function data = databaseRead ( f i l eNo , conn )

data = ones (1 ,55)∗ −1;
%Set p r e f e r e n c e s wi th s e t d b p r e f s .
s e t d b p r e f s ( ’ DataReturnFormat ’ , ’ t a b l e ’ ) ;
s e t d b p r e f s ( ’ NullNumberRead ’ , ’NaN ’ ) ;
s e t d b p r e f s ( ’ Nul lStr ingRead ’ , ’ n u l l ’ ) ;

% Get timestamp from f i l e
t imeSt r i ng = s t r c a t ( ’ ␣FROM␣”FloodManagement ” . ” dbo ” . INPUTFILE␣ . . .
␣WHERE␣ InputF i l e ID=’ , f i l e N o ) ;
getTime =[ ’SELECT␣Time␣ ’ t imeSt r i ng ] ;
cursTime = f e t c h ( exec ( conn , getTime ) ) ;
c e l lT ime = t a b l e 2 a r r a y ( cursTime . Data ) ;
f i l e T i m e = s t r 2doub l e ( s t r s p l i t ( char ( ce l lT ime ) ,{ ’− ’ , ’ : ’ , ’ ␣ ’ , ’ . ’ } ) ) ;

% Get data from f i l e
newStr ing = s t r c a t ( ’ ␣FROM␣”FloodManagement ” . ” dbo ” .INPUTVALUE␣ . . .
WHERE␣ InputF i l e ID=’ , f i l e N o ) ;
getData =[ ’SELECT␣ InputValue ␣ ’ newStr ing . . .

’ORDER␣BY␣ InputVar iab le ID ␣ASC ’ ] ;
cu r s = f e t c h ( exec ( conn , getData ) ) ;
c e l l D a t a = t a b l e 2 a r r a y ( cu r s . Data ) ;

% F i l l i n g r e tu rn array
data ( 1 : 6 ) = s t r 2doub l e ( c e l l D a t a ( 1 : 6 ) ) ;
data ( 7 : 9 ) = s t r 2doub l e ( c e l l D a t a ( 1 2 : 1 4 ) ) ;
data ( 1 0 : 1 9 ) = s t r 2doub l e ( c e l l D a t a ( 7 ) ) ;
data ( 2 0 : 2 9 ) = s t r 2doub l e ( c e l l D a t a ( 8 ) ) ;
data ( 3 0 : 3 9 ) = s t r 2doub l e ( c e l l D a t a ( 9 ) ) ;
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% Ordering array Water i n f l u x EC00
al lEC00 = s t r 2doub l e ( s t r s p l i t ( char ( c e l l D a t a ( 1 0 ) ) , ’ , ’ ) ) ’ ;
data ( 4 0 : 4 9 ) = allEC00 ( 1 : 1 0 ) ;
data ( 5 0 : 5 5 ) = f i l e T i m e ( 1 : 6 ) ;

close ( cu r s ) ;
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storeOutput.m

function storeOutput ( hg , Vdg)

hg1 = hg ( : , 1 ) ∗ 1 0 0 ;
hg2 = hg ( : , 1 ) ∗ 1 0 0 ;

conn = database . ODBCConnection ( ’ TokeData ’ , ’ Sk r i v e ’ , ’ pas sord ’ ) ;
re fTime = datet ime ( ’now ’ , ’ Format ’ , ’ yyyy−MM−dd␣HH:mm: s s . ms ’ ) ;
startGS2 = d a t e s t r ( refTime , ’ yyyy−mm−dd .HH:MM: SS ’ ) ;
stopGS2 = d a t e s t r ( re fTime+hours ( length (Vdg ) ) , ’ yyyy−mm−dd .HH:MM: SS ’ ) ;
startDB = d a t e s t r ( refTime , ’ yyyy−mm−dd␣HH:MM: SS ’ ) ;
stopDB = d a t e s t r ( re fTime+hours ( length (Vdg ) ) , ’ yyyy−mm−dd␣HH:MM: SS ’ ) ;
s t ep = ’ 0000 −00 −00.01:00:00 ’ ;
imgCreated = 1 ;
r e f S t e p = 1 ;

message = ’ GateOpening−data ’ ;
ver = ’ 1 . 2 ’ ;
GMT = 1 ;
headerDesc r ip = ’MPC␣ v e r d i e r ␣ f r a ␣HiT␣modul ’ ;
DBdescrip = ’MatLab␣MPC␣ output ␣ f i l e ’ ;

% Sto r in g ou tpu t in GS2 f i l e
f i l eName = matlab2gs2 ( hg , Vdg , startGS2 , stopGS2 , step , message , ver , . . .

GMT, headerDesc r ip ) ;

% Get f i l enumbe r o f newest inpu t f i l e in da tabase
i nputF i l e ID = s t r 2doub l e ( databaseGetFi leNo ( conn , ’ i n ’ , ’ new ’ ) ) ;
% Creat ing and s t o r i n g ou tpu t f i l e in da tabase
databaseOutputFi l e ( f i leName , inputF i l e ID , conn , message , ver ,GMT, . . .

startDB , DBdescrip , imgCreated ) ;
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% Get f i l enumbe r o f newest ou tpu t f i l e in da tabase
outputFi l e ID = s t r 2doub l e ( databaseGetFi leNo ( conn , ’ out ’ , ’ new ’ ) ) ;
% Sto r in g ou tpu t data in da tabase
databaseWrite ( conn , startDB , hg1 , 1 , outputFi le ID , stopDB , r e f S t e p ) ;
databaseWrite ( conn , startDB , hg2 , 2 , outputFi le ID , stopDB , r e f S t e p ) ;
databaseWrite ( conn , startDB , Vdg , 3 , outputFi le ID , stopDB , r e f S t e p ) ;

close ( conn ) ;
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function f i l eName = matlab2gs2 ( hg , Vdg , r e f S t a r t , r e fS top , . . .
r e fS t ep , message , ver ,GMT, d e s c r i p )

% Rounding ouput v a l u e s to g e t r e l e v a n t dec ima l s
Vdg = round (Vdg ) ;
hg1 = round ( hg ( : , 1 ) ∗ 1 0 0 ) ;
hg2 = round ( hg1 ) ;

% Generate f i l e in d i r e c t o r y
outputFo lder = ’ output \ ’ ;

tNow2 = d a t e s t r (now , ’yyyymmddHHMMSS ’ ) ;
tNow1 = [ tNow2 ( 1 : 1 2 ) ’_ ’ ] ;
f i l eName = [ ’ 444_4_2_ ’ tNow1 tNow1 tNow2 ’ 000 ’ ’ . exp ’ ] ;
f u l lF i l eName = s t r c a t ( outputFolder , f i l eName ) ;
f i l e I D = fopen ( fu l lF i l eName , ’w ’ ) ;

% Generat ing ou tpu t v a l u e s
message = s t r c a t ( ’#Message−type= ’ , message ) ;
ver = s t r c a t ( ’#Vers ion= ’ , ver ) ;
GMT = s t r c a t ( ’#GMT−r e f e r e n c e= ’ , num2str (GMT) ) ;
d e s c r i p = s t r c a t ( ’#D e s c r i p t i o n= ’ , d e s c r i p ) ;
timeNow = d a t e s t r (now , ’ yyyy−mm−dd .HH:MM: SS ’ ) ;
inFileTimeNow = s t r c a t ( ’#Time=’ , timeNow ) ;
s t a r t = s t r c a t ( ’#Sta r t= ’ , r e f S t a r t ) ;
s top = s t r c a t ( ’#Stop= ’ , r e f S t o p ) ;
s t ep = s t r c a t ( ’#Step= ’ , r e f S t e p ) ;
r e f Un i t 1 = ’#Unit=cm ’ ;
r e f Un i t 2 = ’#Unit=m3/ s ’ ;
hgSt r ing1 = [ ] ;
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hgSt r ing2 = [ ] ;
VdgString = [ ] ;
for f = 1 : length ( hg1 )

hgSt r ing1 = s t r c a t ( hgStr ing1 , num2str ( hg1 ( f ) ) , ’ // ’ ) ;
end
va lue1 = s t r c a t ( ’#Value=<’ , hgSt r ing1 , ’> ’ ) ;
no1 = s t r c a t ( ’#No−of−va lu e s= ’ , num2str ( length ( hg1 ) ) ) ;
sum1 = s t r c a t ( ’#Sum=’ , num2str (sum( hg1 ) ) ) ;

for l = 1 : length ( hg2 )
hgSt r ing2 = s t r c a t ( hgStr ing2 , num2str ( hg2 ( l ) ) , ’ // ’ ) ;

end
va lue2 = s t r c a t ( ’#Value=<’ , hgSt r ing2 , ’> ’ ) ;
no2 = s t r c a t ( ’#No−of−va lu e s= ’ , num2str ( length ( hg2 ) ) ) ;
sum2 = s t r c a t ( ’#Sum=’ , num2str (sum( hg2 ) ) ) ;

for k = 1 : length (Vdg)
VdgString = s t r c a t ( VdgString , num2str (Vdg( k ) ) , ’ // ’ ) ;

end
valueM = s t r c a t ( ’#Value=<’ , VdgString , ’> ’ ) ;
noM =s t r c a t ( ’#No−of−va lu e s= ’ , num2str ( length (Vdg ) ) ) ;
sumM = s t r c a t ( ’#Sum=’ , num2str (sum(Vdg ) ) ) ;

% Gather ing ou tpu t s t r i n g s
header = [ ’##Start−message ’ , message , ver , inFileTimeNow , . . .

GMT, d e s c r i p ] ;
gate1 = [ ’##Time−s e r i e s ’ , ’#Re f e r ence =30019210−14 ’ , s t a r t , . . .

stop , step , r e fUn i t1 , value1 , no1 , sum1 , . . .
’#D e s c r i p t i o n =1009␣Setp_luke_1␣ f r a ␣MPC␣modul ’ ] ;

gate2 = [ ’##Time−s e r i e s ’ , ’#Re f e r ence =30019210−15 ’ , s t a r t , . . .
stop , step , r e fUn i t1 , value2 , no2 , sum2 , . . .
’#D e s c r i p t i o n =1009␣Setp_luke_2␣ f r a ␣MPC␣modul ’ ] ;

mpc = [ ’##Time−s e r i e s ’ , ’#Re f e r ence =30019210−16 ’ , s t a r t , . . .
stop , step , r e fUn i t2 , valueM , noM, sumM , . . .
’#D e s c r i p t i o n =1009␣ Testparameter ␣ f r a ␣MPC␣modul ’ ] ;

output =[ header ’@ ’ gate1 ’@ ’ gate2 ’@ ’ mpc ’@ ’ ’##End−message ’ ] ;

% Writ ing to f i l e
for i = 1 : length ( output )

i f ( output ( i ) == ’#’ && output ( i +1) == ’#’ ) | | . . .
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( output ( i ) == ’#’ && output ( i −1) == ’#’ )
e l s e i f output ( i ) == ’#’

fpr int f ( f i l e I D , ’ \n ’ ) ;
e l s e i f output ( i ) == ’@ ’

fpr int f ( f i l e I D , ’ \n\n ’ ) ;
cont inue ;

end
fpr int f ( f i l e I D , char ( output ( i ) ) ) ;

end

% Clos ing f i l e
f c lose ( f i l e I D ) ;
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databaseOutputFile.m

function databaseOutputFi l e ( f i leName , inputF i l e ID , conn , . . .
message , ver ,GMT, timeNow , des , imgCreated )

% Sto r in g ou tpu t f i l e in da tabase
tablename = ’OUTPUTFILE ’ ;
colnames = { ’ Message_type ’ , ’ Vers ion ’ , ’ Time ’ , ’ GMT_reference ’ , . . .

’ D e s c r i p t i o n ’ , ’ FileName ’ , ’ ImageCreated ’ , ’ InputF i l e ID ’ } ;
data = {message , ver , timeNow , GMT, des , f i leName , . . .
imgCreated , i nputF i l e ID } ;
data_table = c e l l 2 t a b l e ( data , ’ VariableNames ’ , colnames ) ;
d a t a i n s e r t ( conn , tablename , colnames , data_table ) ;
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databaseWrite.m

function databaseWrite ( conn , startTime , val , outVarID , . . .
outFi le ID , stopTime , sampID )

tablename = ’OUTPUTVALUE’ ;
colnames = { ’ StartTime ’ , ’ OutputValue ’ , ’ OutputVariableID ’ , . . .
’ OutputFileID ’ , ’ StopTime ’ , ’ SamplingTimeID ’ } ;
outVarVal = num2str (round ( va l ) ) ;
data = { startTime outVarVal outVarID outF i l e ID stopTime sampID } ;
data_table = c e l l 2 t a b l e ( data , ’ VariableNames ’ , colnames ) ;
d a t a i n s e r t ( conn , tablename , colnames , data_table ) ;
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Simulator.m

% Simu la t i on s e t t i n g s
t S t a r t = ’ 2015−08−22␣ 0 0 : 0 0 : 0 0 ’ ;
daysToSim = 30 ;
simH = daysToSim ∗24 ;

% Get measurement data
[xM, xD ] = getModelData ( ) ;
xM = xM(d ) ;
xD = xD(d ) ;

% Connect to da tabase to g e t s im u l a t i o n data
conn = database . ODBCConnection ( ’ TokeData ’ , ’ Sk r i v e ’ , ’ pas sord ’ ) ;
t imeStr = d a t e s t r ( tS ta r t , ’ yyyy−mm−dd␣HH:MM: SS ’ ) ;
f i l e N o = s t r 2doub l e ( databaseGetFi leNo ( conn , ’ i n ’ , t imeStr ) ) ;
data = databaseRead (num2str ( f i l e N o ) , conn ) ;
close ( conn ) ;
% Ass i gn ing s t a r t v a l u e f o r new model
xM0 = data ( 1 ) ;
xD0 = data ( 2 ) ;
% Ass i gn ing s t a r t v a l u e f o r o l d model
xM1 = data ( 1 ) ;
xD1 = data ( 2 ) ;
Wde = ( data (10)+ data (20)+ data ( 3 0 ) ) ∗ ones ( simH , 1 ) ;
hg1Past = data ( 8 ) ;
hg2Past = data ( 9 ) ;
c = 1 ;
d = data ( 4 0 : 4 9 ) ;

% Conver t ing i n f l u x p rogno s i s from d a i l y to hour l y v a l u e s
for k = 1 : daysToSim
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for g = 1 :24
Vdi ( c ) = d( k ) ;
c = c + 1 ;

end
end

% Load s e t t i n g s
[ okLoad , sD ] = loadSetupToke ( ) ;
okPREP = prepTokeState2 ( sD . tHorizonFuture , sD . tSamp , data ) ;
St = loadStateToke ( ) ;
hg1New = St . hg1 ;
hg2New = St . hg2 ;
hg1Old = St . hg1 ;
hg2Old = St . hg2 ;
xConst ra in t = loadOpConstraintToke ( ) ;
xRV = readTokeConstra int ( [ year ( t imeStr ) , month ( t imeStr ) , . . .

day ( t imeStr ) ] , sD . tHor izonFuture , sD . tSamp , xConst ra in t ) ;

% Simu la t i on wi th the new model
N = length (xM) ;

for k=1:N−1
Hg = ctrlTokeMPC (xM0, xD0 ,xRV. xLRVwin ,xRV. xHRVwin , St . VdiWin , . . .
St .WdeWin, hg1New , hg2New , sD . nUdim , sD . tnUdim , . . .
sD . tHor izonFuture , sD . tSamp , mPar ) ;
hgSim = Hg ( 1 ) ;
tokeNew = @( t , x ) modLakeToke ( t , x , u ,w) ;
[T,X] = ode15s ( tokeNew , [ 0 3600 ] , x0New ) ;
x0New = X(end , : ) ’ ;
xM0 = x0New ( 1 ) ;
xD0 = x0New ( 2 ) ;
XmodNew( k +1 , : ) = x0New ’ ;
hg1New = hgSim ;
hg2New = hgSim ;

end

% Simu la t i on wi th the o l d model
for k=1:N−1

Hg = OldCtrlTokeMPC (xM1, xD1 ,xRV. xLRVwin ,xRV. xHRVwin , . . .
St . VdiWin , St .WdeWin, hg1Old , hg2Old , sD . nUdim , sD . tnUdim , . . .
sD . tHor izonFuture , sD . tSamp , OldmPar ) ;
hgSim = Hg ( 1 ) ;
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u = [ hgSim , hgSim ] ;
w = [ Vdi ( k ) , Wde( k ) ] ;
tokeOld = @( t , x ) OldModLakeToke ( t , x , u ,w) ;
[T,X] = ode15s ( tokeOld , [ 0 3600 ] , x0Old ) ;
x0Old = X(end , : ) ’ ;
xM1 = x0Old ( 1 ) ;
xD1 = x0Old ( 2 ) ;
XmodOld( k +1 , : ) = x0Old ’ ;
hg1Old = hgSim ;
hg2Old = hgSim ;

end

t = ( 0 :N−1)/24;
% P l o t t i n g r e s u l t s
subplot (211)
hold on
plot ( t ,xM, ’ r : ’ , ’ l i n e w i d t h ’ , 2 ) ;
plot ( t , xD , ’ b : ’ , ’ l i n e w i d t h ’ , 2 ) ;
plot ( t ,XmodNew( : , 1 ) , ’ r− ’ , ’ l i n e w i d t h ’ , 3 ) ;
plot ( t ,XmodNew( : , 2 ) , ’ b− ’ , ’ l i n e w i d t h ’ , 3 ) ;
t i t l e ( ’ S imulat ion ␣ o f ␣ water ␣ l e v e l s ␣ (new␣model ) ’ , ’ f o n t s i z e ’ , 18 )
legend ( ’ Measured␣Merkebekk ’ , ’ Measured␣ D a l s f o s ’ , . . .
’ S imulated ␣Merkebekk ’ , ’ S imulated ␣ D a l s f o s ’ , ’ f o n t s i z e ’ , 18 )
ylabel ( ’ Water␣ l e v e l ␣ [m. a . s . l . ] ’ , ’ f o n t s i z e ’ , 18 )
xlabel ( ’ Days ’ , ’ f o n t s i z e ’ , 18 )
grid on

subplot (212)
hold on
plot ( t ,xM, ’ r : ’ , ’ l i n e w i d t h ’ , 2 ) ;
plot ( t , xD , ’ b : ’ , ’ l i n e w i d t h ’ , 2 ) ;
plot ( t , XmodOld ( : , 1 ) , ’ r− ’ , ’ l i n e w i d t h ’ , 3 ) ;
plot ( t , XmodOld ( : , 2 ) , ’ b− ’ , ’ l i n e w i d t h ’ , 3 ) ;
t i t l e ( ’ S imulat ion ␣ o f ␣ water ␣ l e v e l s ␣ ( o ld ␣model ) ’ , ’ f o n t s i z e ’ , 18 )
legend ( ’ Measured␣Merkebekk ’ , ’ Measured␣ D a l s f o s ’ , . . .
’ S imulated ␣Merkebekk ’ , ’ S imulated ␣ D a l s f o s ’ , ’ f o n t s i z e ’ , 18 )
ylabel ( ’ Water␣ l e v e l ␣ [m. a . s . l . ] ’ , ’ f o n t s i z e ’ , 18 )
xlabel ( ’ Days ’ , ’ f o n t s i z e ’ , 18 )
grid on
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