

www.usn.no

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2017

Systems and Control Engineering

IoT and Modbus protocol development

Alexander Zhang Gjerseth

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2017

Title: IoT and Modbus protocol development

Number of pages: 56

Keywords: Internet of Things, Modbus, Software development, Laboratory Assignment

Student: Alexander Zhang Gjerseth

Supervisor: Nils-Olav Skeie, Ole Magnus Brastein (co-supervisor)

External partner: None

Availability: Open

Approved for archiving:

(supervisor signature)

__

Summary:

An Internet of Things (IoT) device has been developed by the “SMART” research group at

University College of Southeast Norway. It is intended for laboratory experiments. It uses Modbus

TCP on top of the TCP/IP stack for communication. The main tasks were to both develop a set of

objects for Modbus communication using Object-Oriented Analysis and Design (OOAD) methods

and also an application based on the objects to communicate with the IoT Device. In addition, a

laboratory assignment on Modbus, IoT and network using the application developed should be

proposed.

By using Unified process as development process, Unified Modeling Language and design

patterns, the application and software objects was developed in one solution and by using the

OOAD approach. A proposal to a laboratory assignment was also created using the application and

software objects as part of the assignment.

Modbus has been implemented in the software as a IoT protocol for communication with the

device. The developed software has been tested and is working according to the requirements

collected. The laboratory assignment proposed will give the students knowledge in technology

relevant for the future.

 Preface

3

Preface
This is a master thesis conducted in the fourth semester in master program System and Control

Engineering at University College of Southeast Norway (HSN).

I would like to thank my supervisor Nils-Olav Skeie, co-supervisor Ole Magnus Brastein and

Per Kristian Fylkesnes for their time and valuable help throughout this project.

The source code for the software developed in this thesis has been sent to the supervisor.

Porsgrunn, 15.05.2017

Alexander Zhang Gjerseth

 Contents

4

Contents

Preface ... 3

Contents ... 4

1 .. Introduction ... 6

1.1 Background ... 6
1.2 Objectives .. 6
1.3 Related Work ... 7
1.4 Report Structure ... 7

2 .. System Description... 8

2.1 The IoT Device ... 9
2.2 Intranet ... 10

2.2.1 Router ... 11
2.2.2 DHCP .. 11
2.2.3 Switch ... 11
2.2.4 Description of the intranet for this system ... 11

2.3 Laboratory Assignment ... 12

3 .. IoT Protocols ... 13

3.1 OPC UA .. 13
3.2 CoAP .. 13
3.3 MQTT .. 13
3.4 XMPP .. 14
3.5 Modbus .. 14
3.6 Comparison of the Protocols .. 15
3.7 IoT Protocol for this thesis .. 15

4 .. Methods ... 18

4.1 Unified Process ... 18
4.2 UML .. 18
4.3 Version Control System ... 19
4.4 Coding Conventions ... 21
4.5 Design Patterns ... 21
4.6 Testing ... 21
4.7 Wireshark ... 22

5 .. Analysis ... 23

5.1 Requirements Specification .. 23
5.2 FURPS+ .. 23
5.3 Use Case Diagram .. 24
5.4 Prototype Of User Interface ... 25
5.5 The First Iteration .. 27

5.5.1 Fully Dressed Use Case ... 27

6 .. Results ... 29

6.1 Software Implementation ... 29
6.1.1 Graphical User Interface ... 32

6.2 Testing ... 34
6.3 Laboratory Assignment ... 34

 Contents

5

7 .. Discussion ... 35

7.1 Future Works ... 35

8 .. Conclusion .. 37

References ... 38

Appendices .. 40

 1 Introduction

6

1 Introduction
Modbus is an old, well known and widely used communication protocol in the industry. One

of the goals for this thesis is to find out if it is suitable to use as an Internet of Things(IoT)

Protocol.

1.1 Background

IoT has become an important field in the technological advances the world has seen the last

years. Both for consumer use and as Industrial IoT (IIoT) which is IoT for the industry. IoT

often are devices intended for the consumer like smart thermostats and lightbulbs, and are

made for convenience. While IIoT for example can be used in high risk environments to

improve safety.

The background for this thesis is an IoT box created by the “SMART” research group at HSN.

The intention behind the box is to have a lab exercises where the students gets hands on

experience with communication protocols, IoT, Modbus and network.

1.2 Objectives

The following objectives are gathered from the thesis description found in Appendix A.

a) Give an overview of the status for IoT protocols.

b) Make a description of the intranet with a router, switch, DHCP server and computers.

Include documentation for setup of the DHCP server,

c) Discuss the usage of the Modbus TCP protocol as an IoT protocol,

d) Develop a set of software objects in C# for Modbus TCP client/server communication

using the Modbus TCP protocol specification and OOAD methods,

e) Develop an application, based on the Modbus TCP communication objects, for

communicating with the IoT device,

f) Evaluate how a Network Analyzer software like the Wireshark application can be

used to debug and trace the Modbus messages between the application and the IoT

device,

g) Include a module in the application for testing of the error conditions in the Modbus

TCP protocol,

h) Propose a laboratory assignment, on both BSc. and MSc. Programmes (IA and IIA)

that can use the application, Wireshark, and the objects, with documentation. Setup of

the router with the DHCP server for the LAN, IoT system, and Modbus TCP should

be the learning objectives.

i) Include a report module for documenting the time period, traffic of messages and

range of Modbus registers used. The preferred format of the report should be PDF.

Evaluate C# components for the PDF format.

 1 Introduction

7

1.3 Related Work

When it comes to using Modbus as an IoT protocol there exists some cases, but it is not

commonly used. Intel has an example where Modbus is used, but only as a local protocol

connecting to a gateway that uses another application layer protocol for communication over

the internet.[1] This is similar to the work for this thesis, but for this thesis Modbus is the

only application layer protocol that will be used for communication between the application

and the IoT device.

Another aspect of this thesis is creating a laboratory assignment focusing on the IoT Device,

Modbus and IoT. When it comes to laboratory products that focuses on IoT, ARM, one of the

world’s leading manufacturers of semiconductors, has developed a IoT Education kit as part

of their ARM University program.[2] This education kit contains both hardware boards,

software licenses and teaching material, both for lectures and lab exercises. But most of the

focus when using this kit is on learning the ARM mbed IoT device platform and Android

SDK.

On HSN, there exists a laboratory assignment on IIoT in systems and control laboratory

course on Industrial IT and Automation masters.[3] The assignment uses either a raspberry pi

or a myRio from National Instruments. But this assignment focuses on using a web services

for IoT commutation, while the assignment proposed in this thesis will use Modbus TCP as a

IoT protocol for direct communication with the IoT device.

1.4 Report Structure

This report starts with an introduction and background for this thesis. Followed by the system

description chapter describing the different parts that make up the system. The next chapter is

about the methods used. Furthermore there is a chapter describing the analysis phase of the

development. Next there is a chapter where the results are presented. Followed by a discussion

chapter and then a conclusion chapter.

 2 System Description

8

2 System Description
This chapter will present the IoT device, describe the intranet used to connect to the IoT

device. Before discussing the laboratory assignment that will be proposed.

IoT is a term describing the interconnection between devices via the internet. There currently

exists no universal standard for IoT, but a lot of different groups are working on creating an

open standard for the IoT.[4] But for this report, IoT is defined as a network of devices using

the internet to communicate.

There are two main ways to connect to a IoT device, either use an Application Programming

Interface (API) or a protocol on top of the Transmission Control Protocol/Internet Protocol

(TCP/IP) stack. The TCP/IP stack is the set of protocols used on the internet. The API is often

used to connect to middleware, and then the middleware connects to the device.[5] While a

protocol on top of the TCP/IP stack would ensure direct connection to the IoT device. The task

description found in Appendix A states that for this project a protocol on top of the TCP/IP

should be used.

To better describe IoT protocols and the TCP/IP stack, the concept of the OSI model is

introduced. The OSI model is a conceptual framework that can be used to divide network into

seven layers.[6] This separation makes it easier to tie protocols up to their purpose in a network.

The seven layers of the OSI model is Physical, Data Link, Network, Transport, Session,

Presentation and Application. For the physical and data link layer the TCP/IP suite has a range

of different protocols, but for this thesis the Ethernet protocol is required. For layer 3, the

network layer the TCP/IP stack uses the IP protocol. On layer 4, transport layer the stack

defines either the use of TCP or User Datagram Protocol. The IoT protocol to use needs to be

implemented on layer 7 in the OSI model, which is the application layer. Figure 2.1 shows the

TCP/IP stack represented using the OSI model and the structure of the Ethernet frame.

Figure 2.1 TCP/IP stack represented using the OSI Model. To simplify the model layer 5,6

and 7 in the OSI model is grouped together.[7]

 2 System Description

9

It is described in Appendix A that Modbus TCP should be used as IoT protocol. Modbus TCP

is an application layer protocol belonging to layer 7 in the OSI model.

2.1 The IoT Device

A IoT device is defined as an embedded connected device that has an IP address.[6] And it

has some sensor(s) for collecting data and/or actuator(s) for performing a tasks. Because it is

a connected device the data collected by the sensor can be sent to an application. The

application can then analyze the data, and then for example send a command back to the IoT

device to make it perform an action based on the sensor data.

The IoT device used in this project has been developed for laboratory experiment purposes by

the “SMART” research group at HSN. The device uses Modbus TCP protocol for

commutation. The device is designed to give the students practical experience both with the

Modbus protocol and communication with a IoT device. A picture of the IoT device is shown

in Figure 2.2.

Figure 2.2 The IoT Device.

The IoT device has both analog and digital inputs and outputs. On the left side of the front is

where the digital Input / Output (I/O) is located. Consisting of two switches and four LEDs,

these I/Os are not hard connected, but instead mapped to Modbus registers. The two switches,

acting as digital input, are mapped to the Modbus Discrete input register. Then the four LEDs,

acting as digital outputs, are mapped to the Modbus Coil Register. The registers are only

accepting a single bit value, 0 or 1. For the digital input switch, the register value is 1 for off

and 0 for on. The switch has three states, but only mapped to two registers, since there is only

two LED’s per switch. The upper switch is meant to be paired with LEDs DO1 and DO2, and

the lower switch is meant to be paired with DO3 and DO4.

For analog I/O there is two knobs for input, and two LEDs and 2 voltage output connectors.

Each knob is a potentiometer with 16-bit resolution. The value of these potentiometers can be

 2 System Description

10

read using the input register in Modbus. The LEDs and voltage output can be set using the

holding register in Modbus. But because of the design of the IoT device, Coil register 5 and 6

needs to be set high to be able to write to holding registrars for analog output. This is because

there is a calibration happening when coil register 5 and 6 is set to low, as they default are. As

long as there is power there is no need to set coil 5 and 6 after it is initially done. Holding

register 9 and above is used for configuration of the IoT Device.

Since the analog input is 16 bit, it gives a value in type of short, which is a value between -

32768 to 32767. The output register is also a 16 bit, so there is no need for conversion between

input and output. The resolution of voltage output is calculated in equation (2.1).

 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠
=

20 𝑣𝑜𝑙𝑡

65536
= 305 µ𝑉/ 𝑠𝑡𝑒𝑝 (2.1)

To keep a connection to the IoT device open, a Modbus package must be sent every two

seconds. Else the IoT device will set the RST flag in the TCP header, forcing the connection to

be terminated.

2.2 Intranet

An intranet is a local private network where only a given set of people has access to the

network.[8] The main parts an intranet consists of is a router, one or multiple switches, one or

multiple computers and/or other connected devices. An example of an intranet is shown in

Figure 2.3.

Router

Switch

PrinterPCPC

Figure 2.3 An intranet set up with a router, switch, two computers and a printer.

 2 System Description

11

2.2.1 Router

The router’s main purpose is to know all the Internet Protocol (IP addresses and direct packages

to its destination using its routing table)[6]. A router operates on layer 3 in the OSI model

which is the network layer.

2.2.2 DHCP

Every device connected to the network needs an IP address. And by using DHCP (Dynamic

Host Configuration Protocol) devices connected to the network gets assigned a IP address from

a given range of IP addresses. It also sets settings as lease time for the IP address handed out.

Typically, in a network the DHCP server is located on a router or a dedicated server. Having

multiple DHCP servers on the same network will cause problems, because multiple sources are

giving out IP addresses.

2.2.3 Switch

A switch operates on level 2 in the OSI model and this is the Data link layer. A switch connects

devices together based on the Media Access control (MAC) address of the device. A MAC

address is a unique identifier assigned to network interface.

2.2.4 Description of the intranet for this system

A CISCO RV320 router is configured with a DHCP server. The router is then connected to a

switch. The IoT Device is connected to the switch. And a computer is also connected to another

gate at the switch. Figure 2.4 shows how the intranet are connected.

Appendix B documents how to configure the DHCP server on CISCO RV320.

Router

PC

IoT Device

Figure 2.4 Intranet for IoT System.

 2 System Description

12

2.3 Laboratory Assignment

Laboratory assignments are tasks designed to give students both theoretical knowledge but also

practical experience in certain subjects. To learn the students about IoT, protocols and

interconnection, it is important to first make sure they have the theoretical knowledge to be

able to tackle a practical problem. This can be achieved by study about the basic principles of

IoT, protocols and networking, then write in a report a brief overview of what they read. And

after they learn the basic theory, it is important that the tasks in the practical part is using this

theory.

It is also important that the assignment is a set of tasks to be solved and not a step by step guide

to follow. By using a step by step guide, the students will be handed the solution, instead of

using their minds to try to find the solution, making the learning outcome limited.

A diagram showing how to connect the intranet for the assignment are shown in Figure 2.4.

The diagram shows a computer connected to the router and the IoT device connected to the

router.

 3 IoT Protocols

13

3 IoT Protocols
As described in chapter 2, there is no universal standard for IoT. Based on the definition of IoT

made earlier, this chapter will give an overview of different protocols working on the

application layer and is suitable IoT and IIoT.

3.1 OPC UA

OPC stands for Open Platform Communications and is a set of specifications for industrial

automation.[9] UA stands for Unified Architecture and this protocol is used for collecting data

and control.[10] It is the new OPC protocol with better features than its predecessor OPC

Classic. OPC Classic consisted of three separate specifications: OPC Data Access, OPC

Alarms & Events and OPC Historical Data Access. The specifications were based on windows

technology and therefore bound to the windows system. While the new UA is platform

independent, making it possible to be used on a range of hardware platforms and operating

systems.

OPC UA operates on layer 5-7 in the OSI model.

3.2 CoAP

CoAP stands for Constrained Application Protocol.[11] It is designed for use on constrained

devices. That is devices with constrained resources, for example limited battery life. CoAP

uses UDP as transport layer protocol. UDP is a connectionless protocol, that is a method for

transferring data without ensuring that the recipient is available or ready to receive data.

Since CoAP uses UDP it supports UDP broadcast and multicast.

CoAP is based on client-server relationship, where the client sends a request to the server and

the server sends a response back to the client.

A sensor node in CoAP is often a server and note a client. So, the sensor has resources for

indicating status or alter state that the client can access.

CoAP is operating on layer 7 in the OSI model.

3.3 MQTT

MQTT stands for Message Queue Telemetry Transport and is a messaging protocol designed

for lightweight machine to machine (M2M) communication.[11] It uses TCP and consists of

one server known as a broker and one or many sensors known as clients that is connected to

the broker. In MQTT the clients can subscribe to what is known as a topic. A topic is an address

where all the messages are published to. One client can subscribe to multiple topics.

Each client can also register what is known as a Last Will and Testament message on the

broker. If the client disconnects the broker will then send out the message to the subscribers.

MQTT is working on layer 5-7 in the OSI model.[12]

 3 IoT Protocols

14

3.4 XMPP

XMPP stands for Extensible Messaging and Presence Protocol.[13] It is originally a protocol

for instant messaging and routing of XML (Extensible Markup Language) data. XMPP is an

open and free protocol.

XMPP operates on level 5-7 in the OSI model.[14]

3.5 Modbus

Modbus is an open protocol developed by Modicon.[15] When released in 1979 it was a serial

communications protocol for use with PLCs. Now there are three main versions of Modbus;

Modbus RTU, Modbus ASCII and Modbus TCP. The foundation is the same for all three types

and only interface specifics are different. Modbus RTU is for communicating over serial using

binary representation of data. Modbus ASCII is for communication over serial using ASCII

characters for protocol communication. And Modbus TCP is using TCP/IP for communication.

Modbus RTU and ASCII needs the slave ID in the beginning of the message and a checksum

at the end. While Modbus TCP needs only a Modbus Application Header (MBAP header) at

the start of each message. The data part of a Modbus message is called a Protocol Data Unit

(PDU) and is the same for all three versions of Modbus. The PDU consists of Modbus function

code and then data. The whole Modbus message, where the header and PDU is combined is

called an application data unit(ADU). A comparison of the ADU structure for Modbus RTU

and Modbus TCP can be seen in Figure 3.1. Modbus TCP operates on layer 7 in the OSI model.

Figure 3.1 ADU: Modbus RTU ADU and Modbus TCP ADU

The function code is a set of codes specified by the Modbus specification.[16] Storing the data

in Modbus are done on the slave in four different registers. An overview and specification for

each register is shown in Table 3.1.

Table 3.1 Modbus Registers overview.

Register Access Size

Coil Read/Write 1 bit

Discrete Input Read Only 1 bit

Holding Read/Write 16 bit

Input Read Only 16 bit

 3 IoT Protocols

15

When it comes to security the Modbus protocol has nothing to offer. And since it has a known

data structure for the sending data, the data can easily be intercepted and read by unwanted

persons. In addition, when using Modbus TCP, anyone who gets access to the network can

connect to the device and send commands. The same applies for Modbus RTU and Modbus

ASCII.

3.6 Comparison of the Protocols

Table 3.2 shows a comparison of the different protocols presented in this chapter.

Table 3.2 Comparison of IoT Protocols.

Protocol Transport Messaging Advantages

OPC UA TCP Request/Response

Publish/Subscribe

Platform

Independent

CoAP UDP Request/Response Multicast Support

MQTT TCP Publish/Subscribe Last Will and

Testament

message

XMPP

TCP Request/Response

Publish/Subscribe

Open protocol

Modbus

TCP

TCP Request/Response Open protocol and

easy to implement

3.7 IoT Protocol for this thesis

In this thesis, the task description stated that Modbus TCP should be used. As described in

chapter 3.5, Modbus TCP works on layer 7 and is an open protocol. Modbus TCP is an easy

protocol to implement, and a big part of this is because the Modbus organization has created a

implementation guide for implementing Modbus TCP.[17]

An important part of Modbus is the ADU build for each Modbus TCP message. Table 3.3

shows the structure and parts making up the ADU for Modbus TCP.

 3 IoT Protocols

16

Table 3.3 Table showing the Structure of a Modbus ADU.

Field Part of Length Description

Transaction

Identifier

MBAP 2 Bytes This is a unique id for each transaction

set by the client and echoed by the

server.

Protocol

Identifier

MBAP 2 Bytes Set by client and is always set to zero.

Length MBAP 2 Bytes Set for each message and is indicating

the total number of bytes in the message.

Unit Identifier MBAP 1 Bytes Set by client and echoed by the server. It

is used as an identifier for the connected

slave(server)

Function Code PDU 2 Bytes 2 bytes set by the client indicating the

function to be performed by the slave.

This is then echoed by the server.

Data PDU Variable Data to be sent is inserted here

As seen in the table, the ADU consist of a MBAP header and a PDU containing a function code

and data. But there exist three types of PDUs in Modbus: MODBUS Request PDU, MODBUS

Response PDU and MODBUS Exception Response PDU. The Request PDU is sent by the

client. Then the server sends back a ADU with either a Response PDU or an Exception response

PDU, depending if there was an error. Figure 3.2 shows the processing of the Modbus request

on the Modbus server.

 3 IoT Protocols

17

Figure 3.2 Modbus Transaction state diagram. [16]

Another important aspect to Modbus is that is limited to selected data types as shown in

Table 3.1. Coil and Discrete input register are limited to on/off values. And Holding and

Input register are of type short, which are 16-bit a integer value from -32768 to 32767 can be

stored.

Because of this Modbus don’t support float numbers. But by defining a standard, for example

if a three-digit number is sent, then the decimal is the last number. So, to illustrate. If the

value 422 is received, the float number would be 42.2.

 4 Methods

18

4 Methods
In this chapter the different tools and methods used to solve the tasks in this assignment are

presented.

One of the main tasks in this thesis is to develop software based on the Object-Oriented

Analysis and Design (OOAD) approach. Both develop a set of objects for client server

communication but also an application for communicating with the IoT device. To do this

properly a development process chosen to be used as well as tools and design patterns relating

to objects.

4.1 Unified Process

Unified process is a software development process.[18] It is use case driven and is an

incremental and iterative development process. A software development project can be divided

into four main parts; Inception, Elaboration, Construction and Transition. These parts are then

broken into smaller parts known as iterations. This is shown in Figure 4.1. After each iteration,

the project has incremented with additional or improved features. And, because testing is a part

of each iteration in UP, after each iteration the software should be free of bugs.

Figure 4.1 Diagram showing how workload on different areas changes throughout a Unified

Process project.[18]

A use case is a functionality in the system and to say it is use case driven means each iteration

is focusing on a use case. It is common that the use case selected for the first iteration in UP is

the hardest or the most work heavy.

4.2 UML

UML stands for Unified Modelling Language and is a standard modelling language for

documenting software systems.[19] UML provides a set of diagrams to develop and each

diagram serves its own purpose. By using a development process that uses UML, it makes sure

 4 Methods

19

the software is well documented and it makes it easier for others who knows UML to both

understand the software and to make changes to it. UP uses UML as a tool in the development

process. The UML diagrams chosen for this project are: Use Case diagram, Interaction diagram

and class diagram.

A use case diagram is used to show the use cases and actors in a system. As stated in 4.1 a use

case is a functionality while an actor is entity that interacts with the use case. The purpose of

a use case diagram is to get a high-level view of the system. Only one use case document will

be created for the whole software. The use case diagram is developed in the analysis phase

when using the OOAD approach. For each iteration when using UP, in the analysis phase, a

fully dressed use case document based on the use case for the current iteration are created.

Interaction diagram is used to describe the interaction between the different parts of the system.

There are two types of interaction diagram: Sequence diagram and Collaboration diagram. For

this project sequence diagram was chosen as interaction diagram. This because it shows the

interaction with focus on time, while a collaboration diagram only focuses on the link between

objects. A sequence diagram is developed based on the main success scenario and extensions

in the fully dressed use case document. In UP, there will be one interaction diagram produced

per iteration. An interaction diagram created in the design phase of each iteration when using

OOAD approach.

Class diagram is a diagram describing the classes and connection between the classes. It also

gives an overview of attributes and methods for each class. Only one class diagram will be

created in design phase of the first iteration, and this diagram will be modified in the later

iterations.

4.3 Version Control System

A version control system is a system for keeping track of changes to files over time.[20] There

exist three main types of version control systems. The first one is local version control systems.

This is a system where all the changes to files is kept in a simple database on the local machine.

Figure 4.2 shows the structure of a local version control system. Such a database when it comes

to version control is known as a repository.

Figure 4.2 Local Version Control System.[20]

 4 Methods

20

The problem with a local version control system is that it is designed to work only locally on

one machine, so there is not possible to keep track of changes done by other computers. A

solution for this problem is Centralized Version Control System (CVCS). The idea behind

CVCS is that it uses a repository located on server and multiple clients can check files in and

out of that server. Figure 4.3 shows the structure of a CVCS.

Figure 4.3 Centralized Version Control System.[20]

An advantage that CVCS has over a local VCS is that it gives the users of the CVCS possibility

to see changes made by other users. A downside to CVCS is that because it consists of a single

server, in an event where the server goes down, the repository can’t be accessed and therefore

not save new changes. Or worse, if the hard drive of the server fails the whole repository is

lost. To solve this issue, Distributed Version Control Systems were introduced. As the name

implies the version control system is distributed instead of only consist on a single server. It

still has a single server, but each computer working on the files mirror the whole repository.

So, in an event where the server fails, it can be restored by copying the repository from any of

the clients. Figure 4.4 shows the structure of a Distributed Version Control System.

Figure 4.4 Distributed Version Control System.[20]

 4 Methods

21

Since the development of the software took place both at school on a portable computer and at

home on a desktop computer, GitHub was chosen as version control system. GitHub is

distributed version control system and has a web based interface for keeping track of the

repository. Since GitHub is a distributed it keeps a copy of the repository on each location

which gives an added security and backup in case something happens to either.

4.4 Coding Conventions

Coding conventions is guidelines for the programming style.[21] The main reason to use

coding conventions is that it gives the code a structure and the code a specific style.

For the software developed C# naming conventions is used. The specific naming conventions

used are lower camel case for variable names and Hungarian notation for naming controls.

Lower camel case is using initial lowercase letter for first letter in the name.[22] If the name

consists of multiple words there is no space between the word, but the first letter of the next

word is in uppercase. For example, to name a variable Log Event in lower camel casing would

become logEvent.

Hungarian notation is first putting in a short name of the type of object and then a name for the

object.[23] For example, to name a button Connect, the name using Hungarian notation would

be btnConnect.

Another coding convention used is keeping each class in separate files. This ensures that it is

easy to find the code for a specific class since each class are in separate files.

4.5 Design Patterns

A design pattern is a general repeatable solution to common problems that occur when

designing software.[24] In addition to being a template for solving a problem it also can make

the code more readable.

For design of the software the Facade pattern is used. This pattern is a part of the 23 patterns

defined as Gang of four patterns. Facade pattern is about hiding a complex system behind a

new interface class. The facade pattern is used in the design phase.

Another group of patterns are called general responsibility assignment software patterns

(GRASP). [25]This group consists of patterns with guidelines for assigning responsibility to

classes and objects. Grasp patterns is used when creating interaction diagram. From GRASP

the following patterns has been used: controller, information expert and creator pattern.

The controller pattern is used to give another class than a UI class the responsibility of

dealing with system events. Creator pattern is used to assign responsibility to a class that will

create an instance of another class if certain criteria are fulfilled. Information expert pattern is

used to assign responsibility to the class that has the information to fulfill it.

4.6 Testing

For testing of the software, a test plan is used. A test plan is a document describing how to

test the software and other factors concerning testing, for example where to test and

 4 Methods

22

hardware/software requirements.[26] The test plan contains test cases which are cases created

based on the software requirements and fully dressed use cases. The purpose of a test plan is

to ensure that the test can be repeated and still obtain the same results. And in addition, be

used to perform tests according to the plan after changes to the software has been made. This

is to verify that the testing of the cases still has the gives the same results. The test plan for

the software can be found in Appendix C.

4.7 Wireshark

Wireshark is a network protocol analyzer. It can be used to capture packets sent over a network

in real time.[27] By selecting a network interface, packages sent over the network are shown

in the graphical user interface. It is possible to add filter to view only certain packages with the

selected attribute. Wireshark has a filter for Modbus, enabling for decoding Modbus packages

sent over the network.[28] This makes it possible not only to see that a Modbus message is sent

over the network, but also know what it contains.

By applying the Modbus filter only packages built up as valid Modbus messages are recognized

by Wireshark and displayed. So TCP messages for SYN, ACK and RST is not displayed. This

can be confusing because these messages can affect the connection between Modbus client and

server.

Figure 4.5 shows a screenshot of the Wireshark application. This screenshot shows packages

sent on the network and because the Modbus filter is enabled, it only shows packages using

Modbus/TCP protocol. The selected package is a package sent from the computer to the IoT

Device. As shown in the Modbus section in the lower part of the screenshot, Wireshark can

decode a Modbus ADU and display the its content, including the values sent.

Figure 4.5 Screenshot of Wireshark with Modbus filter enabled and a message selected.

 5 Analysis

23

5 Analysis
This chapter covers the requirements for the software and the analysis of the first iteration. The

main result from the analysis for each iteration is the fully dressed use case created.

5.1 Requirements Specification

The IoT device needs to be connected to a network setup with DHCP to obtain an IP address.

The IP address of the IoT device is required to be able to establish a connection to it.

The device has two 3-State toggle switches for digital input. The state of the switches is stored

in the Discrete input register. For digital output the device has four LEDs that can be set by

writing to the coil registers. The LEDs are supposed to light according to the position of the

digital input switches. There is no direct connection between the input switches and the output

LEDs, but both are accessible by using Modbus. So, the logic needs to be performed in the

software.

For analog input the device has two knobs that are potentiometers that gives a number from -

32768 to 32767. The value of the potentiometers can be read from the input registers. For

analog output, there is two LEDs and two sets of connectors that can give out a voltage between

-10 and 10 volts. To control the outputs, a value needs to be written to the holding register. The

register is 16 bit so a value from -32768 to 32767 is accepted. When writing a value of 32767

to holding register with address 00 the device should output 10 volts on AO1 and the AO1 LED

should be green.

There should be a ability to generate a PDF report containing time period, traffic of messages

and range of Modbus registers used.

5.2 FURPS+

FURPS+ is a classification system for collection of requirements.[19] The name FURPS+ is

an acronym standing for: Functionality, Usability, Reliability, Performance, Supportability.

And the + is used for design limitations. Below are the requirements gathered based on the

requirement specification using FURPS+.

Functionality:

 Handle Digital I/O: Read digital inputs, write digital output and handle output based on

input.

 Handle Analog I/O: Read analog inputs, write analog output and handle output based on

input.

 Handle Modbus Communication: Connection and communication with Modbus Slave

 Generate Report: Generate a PDF report based on the communication with IoT Device.

Usability:

 Interact using digital switches and analog knobs on IoT Device.

 Keyboard and mouse for input.

 5 Analysis

24

 GUI for displaying information using a tab view. One tab page for writing and reading to

registers using textboxes. One tab page for controlling the inputs on the device and

indicating the outputs. And one tab page showing the messages sent between the

application and the IoT device.

Reliability:

 Running when connected to IoT Device

Performance:

 Continuous polling of Device with option to do it manually.

 GUI update after new poll

Supportability:

- None

+ Implementation:

 Connection between software and IoT device using TCP/IP protocol.

 Needs a Router that has a DHCP server giving out IP between 100 and 150.

 Programming language is C#.

5.3 Use Case Diagram

Based on the functional requirements found using FURPS+ the following UML use case

diagram shown in Figure 5.1 was developed.

Figure 5.1 Use case diagram for the system.

The use case diagram contains six actors and four use cases. “Handle Analog I/O” reads the

position of the analog knobs and sets the output according to value read.

 5 Analysis

25

“Handle Digital I/O” reads the position of the switch and sets the LEDs according to the

position of the switch.

The use case “Handle Modbus Communication” handles all the communication with the

Modbus slave.

The last use case is “Generate Report” which is handling generating of the PDF report

containing information about the Modbus communication with the IoT device.

5.4 Prototype Of User Interface

Before the first iteration, a prototype of a user interface for the software was developed. The

purpose for creating a prototype is to give an idea how the user interface might look.

Screenshots of the prototype is shown in Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5.

Figure 5.2 Screenshot of prototype with value tab selected.

 5 Analysis

26

Figure 5.3 Screenshot of prototype with Device Simulator tab selected.

Figure 5.4 Screenshot of prototype with Message tab selected.

 5 Analysis

27

Figure 5.5 Screenshot of prototype with Report form open.

5.5 The First Iteration

In UP, the use case for the first iteration is either the hardest one or the one with highest risk.[18]

For this application, the use case selected for the first iteration was Handle Modbus

Communication. Out of the four use cases found in the use case diagram in Figure 5.1 it is the

most complex use case to implement, and the use case associated with the highest risk.

5.5.1 Fully Dressed Use Case

Table 5.1 shows the fully dressed use case created for the Handle Modbus Communication use

case. A fully dressed use case document gives a more detailed overview of how the use case

should work.[19] The most important parts of the fully dressed use case is the main success

scenario and the extensions. That is because they are used to test the software when done. When

using UP there should be produced one fully dressed use case diagram per iteration.

Table 5.1 Fully dressed use case for Handle Modbus Communication use case.

Use case section Comment

Use Case name Handle Modbus Communication

Scope IoT Modbus

Level User Goal

Primary actor IoT Device

Stakeholders and interests User needs system to communicate with

Modbus Slave

 5 Analysis

28

Preconditions Computer and IoT device needs to connect to a

network with router and DHCP server.

Success guarantee Communicate with IoT Device using Modbus

TCP/IP.

Main Success Scenario
A. Read IP address and port from GUI.

B. Connect to IoT Device.

C. Save connection time

D. Wait for Input

E. Create ADU

F. Send ADU

G. Wait for Response from Slave

H. Record transaction info

I. Goto D

Extensions A1. No IP address or port, give error message

B1. Not able to connect, Give error message

B2. On disconnect record stop time

D1. If no changes in input & not first iteration,

then read registers to keep alive.

G1. If message received has exception code,

show exception message on screen and

disconnect

Special req. None

Technology list None

Frequency of occurrence Every time communicating with Modbus Slave

Miscellaneous None

 6 Results

29

6 Results
In this chapter the results for this thesis will be presented. First the results of implementing

the software based on the analysis done in chapter 5 and the Modbus TCP implementation

guide.[17] Then a part describing testing of the software. And then a description of the

proposed laboratory assignment created.

6.1 Software Implementation

After the analysis phase in the first iteration, the design phase was conducted. The results

from the design phase for the first iteration is the interaction diagram. Based on main success

scenario from the fully dressed use case in Table 5.1 and by using the design patterns

described in 4.5 the interaction diagram in Figure 6.1 was created.

Figure 6.1 Interaction diagram for use case "Handle Modbus Communication".

 6 Results

30

The fully dressed use cases and interaction diagrams for the rest of the iterations can be found

in Appendix D.

The other result of the design phase is the class diagram. A class diagram shows the classes,

attributes and methods for the software and these are taken from the interaction diagrams. A

simplified class diagram showing only the important attributes and methods are shown in

Figure 6.2.

Figure 6.2 Simplified class diagram for the application.

In the objectives for this thesis there were two software development task. One was

developing a set of objects in C# for Modbus TCP client/server communication and the other

was to develop an application based on the objects created in the first task. Since these two

were so closely related, they were developed in one solution.

The Modbus communication is implemented using the facade pattern and therefore offers a

facade class with the more complex system hidden behind the facade. The facade class has

been named ComHandler and can be seen in the class diagram in Figure 6.2. The ComHandler

is works as a interface class and contains a set of simple methods and attributes. Behind the

facade class there is the ModbusTCP class handling interaction with multiple classes.

To use the ComHandler, an object of needs to be created. The ComHandler constructor has

two parameters that needs to be provided, a name as string and a student number as int. Then

there are four delegates in ComHandler that needs to be added to event handlers. The code for

this is show below.

 ModbusCom.OnResponseData += new ComHandler.ResponseData(OnResponse);
 ModbusCom.OnError += new ComHandler.ErrorData(OnError);
 ModbusCom.OnOutData += new ComHandler.OutData(OnOutData);

 ModbusCom.OnException += new ComHandler.ExceptionData(OnException);

 6 Results

31

After this is done the connect method in ComHandler can be called. The method has two

parameters, the IP of the Modbus slave as a string and the port number as a int.

Then when connected the send method in ComHandler can be used to communicate with the

IoT Device. There are two versions of the send method, accepting different parameters. One

is for sending a read function code and the other is for write function code. Table 6.1 shows

the Modbus function codes supported and Table 6.2 shows the supported Modbus exception

codes that the Modbus slave can respond with.

Table 6.1 Modbus function codes supported.

Function

Code

Function Type

1 Read Coil

2 Read Discrete Input

3 Read Holding Registers

4 Read Input Registers

5 Write Single Coil

6 Write Single Holding Register

15 Write Multiple Coils

16 Write Multiple Holding Registers

Table 6.2 Modbus exception codes supported.

Exception

Code

Exception Type

1 Illegal Function

2 Illegal Data Address

3 Illegal Data Value

4 Slave Device Failure

5 Acknowledge

6 Slave Device Busy

 6 Results

32

8 Memory Parity Error

10 Gateway Path Unavailable

11 Gateway Target No Response

12 Timeout

In ComHandler there is a method named generateReport. When called, this method generates

a PDF report that gets put on the desktop of the user’s computer. The file contains the username,

student number, information about connection time, statistics on function code calls and an

exception code log. An example of a report can be found in Appendix E.

The two classes digitalIO and analogIO has been created and are used to calculate output

based on input.

The source code for the software objects for can be found on:

https://github.com/Zhangnamstyle/IoTUsingModbus/tree/master/IoTModbus/Modbus

And the source code for the whole Modbus application can be found on:

https://github.com/Zhangnamstyle/IoTUsingModbus/tree/master/IoTModbus/IoTModbus

6.1.1 Graphical User Interface

The graphical user interface in the developed software is based on the prototype. But

throughout the development process changes has been made. There are now only two tabs, IoT

Device Simulator and function code tester. And there is a separate form opening when starting

the application. In this form the user is asked to input username and student number. There is

also not a separate form for report, only a button on the main screen that generates a PDF report

on the desktop. A screenshot of the welcomForm is shown in Figure 6.3. Figure 6.4 shows the

Device simulator tab and Figure 6.5 shows the Function Code Tester tab.

Figure 6.3 Screenshot of the GUI for welcomeForm.

https://github.com/Zhangnamstyle/IoTUsingModbus/tree/master/IoTModbus/Modbus
https://github.com/Zhangnamstyle/IoTUsingModbus/tree/master/IoTModbus/IoTModbus

 6 Results

33

Figure 6.4 Main screen with Device Simulator tab selected.

Figure 6.5 Main screen with Function Code Tester tab selected.

 6 Results

34

6.2 Testing

Since UP has been used as development process, testing is a part of each iteration. So after

each iteration most bugs has been identified and fixed during the development process. But to

make sure the software fulfilled the requirements and to identify any bugs remaining, a last

was conducted. This test was done according to the test plan in Appendix C. The test cases

were performed and all but one had the expected outcome. There were one bug in the PDF

report where the total time the application has been open showed the wrong value.

6.3 Laboratory Assignment

A proposal to a laboratory has been created. It is one lab assignment for both BSc. And MSc.

programs and it consist of four parts. The first part is theory, mainly Modbus but also about

LAN, DHCP and IoT. In this part the students need to find information and write the answers

in a report for the Assignment.

The next part is network setup. In this part the students need to configure the router and set

up a DHCP server on the router with a specific range. They also need to make sure both their

computer and the IoT device is handed a IP address by the DHCP server.

Then the next part is practical Modbus where they are going to use the IoT Device and the

software developed in this thesis to solve a given task. In this part the students also needs to

use Wireshark to debug Modbus messages.

Finally, the last part is development of software for Modbus Communication. In this part the

students are going to develop a Modbus communication application using the dynamic-link

library (DLL) developed in this thesis. Or if they want a challenge they can try writing the

whole Modbus communication their self.

The proposed assignment text can be found in Appendix F

 7 Discussion

35

7 Discussion
The main focus during this thesis has been to develop a working application for communication

with the IoT Device. The application produced has been developed according to the

requirement specification in Chapter 5.1.

For the development of the application, UP was used. And in UP every iteration has an equal

fixed length. For this software development project, the length of each iteration was not

specified, but a deadline for the development process was set. This was mainly because the

first iteration contained a large workload compared to the three remaining iterations. As

expected the first iteration was time consuming while the rest was done in a short time. The

deadline was set to a formal meeting where a demo would be held. The application was

developed within the deadline and a working program was demonstrated. There were a few

minor issues, but the main functionality worked according to the requirements. Also some

feedback was received from the demo, and these were implemented after the meeting. Also the

minor issues that occurred was fixed right after the meeting.

To generate the PDF report, different C# libraries was evaluated, but ITextSharp was

chosen.[29] This because it was easy to implement and well documented. The other libraries

evaluated was either poorly documented or was hard to implement.

The intranet used for testing and development has consisted of a the IoT device, a CISCO

RV320 router with DHCP and a laptop. But according to the Task description, a switch should

also have been part of the intranet. A switch has not been used since it operates on Layer 2, the

data link layer, and would not affect the software, since this is handled by the TCP/IP stack.

The suggested laboratory assignment covers the topics stated in the objectives. The theory part

will give the students the information they need for solving the rest of the assignment. The

assignment is given as tasks that they need to solve, and not as a step by step guide to follow.

This is the case in many other laboratory assignments at HSN. While a step by step guide make

sure everybody gets through the assignment, the learning outcomes are small since you are told

what to do.

7.1 Future Works

During testing holding register 8 and above was written to. Those registers are linked to the

configuration of the device. Writing to those registers resulted in that the configuration for the

device was deleted and the device needed to be configured using USB. A fix has been started

implemented in the application by restricting writing to Holding register addresses above 99.

But to implement this fix the firmware of the IoT device configuration register address to start

from an address above 99. The bug that shows the wrong total time open the application has

been open in the PDF report will also need to be fixed.

Another suggestion for future work is to extend the application so that there is a tab for Lab

work. In this tab the Modbus action to perform can be given. In the current solution, this action

must be given to the students from the person responsible for the exercise. By making the

software give each student a random action helps making sure each student does their own lab

work and not just copy each other. In the same Lab tab page, controls for testing the ADU that

the students make can also be added. And since the action is given by the application, it is

 7 Discussion

36

possible to compare the student created ADU with the correct ADU. The analog outputs on the

IoT device has not been included in the suggested laboratory assignment. But this can be added

in the future by making the students connect LEDs or measure the output voltage using a

multimeter.

 8 Conclusion

37

8 Conclusion

A set of objects in C# has been developed for Modbus communication according to the

requirement specification and by using OOAD methods. An application using these objects

was also developed. This application and the objects is then used in a proposed laboratory

assignment. The IoT device developed by the “SMART” research group is an embedded

system and it has an IP address. It also has sensors and actuators making it an IoT device. A

laboratory assignment on IoT is very handy because IoT is still a relatively new field with lots

of possibilities. And by getting hands on experience the students get a better understanding of

IoT and the technologies making it possible. And since IoT is part of Internet 4.0, which are

called the fourth industrial revolution, the theory they learn are relevant for the future.

Modbus TCP has been implemented in the software as a IoT protocol. It is possible to send

function codes both for reading and writing to the registers on the IoT device. And if the device

sends a exception code, the software shows the user the exception. Generating a PDF with

transaction information has been implemented.

 References

38

References

[1] M. T. J. (2016). A Comparison of IoT Gateway Protocols: MQTT and Modbus.

Available: https://software.intel.com/en-us/articles/a-comparison-of-iot-gateway-

protocols-mqtt-and-modbus

[2] ARM. (2017). Course/Lab Material for Internet of Things. Available:

https://www.arm.com/support/university/educators/iot-material/index.php

[3] H.-P. Halvorsen. (2016). Industrial Internet of Things (IIoT) using Raspberry Pi.

Available:

http://home.hit.no/~hansha/documents/subjects/SCE4206/iiot_raspberry_pi.htm

[4] R. Sutaria and R. Govindachari. (2013). Understanding The Internet Of Things.

Available: http://www.electronicdesign.com/iot/understanding-internet-things

[5] Intel Corporation. (2014, Developing Solutions for the Internet of Things. Available:

http://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/developing-solutions-for-iot.pdf

[6] N.-O. Skeie, "Industrial Information Technology," 2015.

[7] Micrium Software. (2017). Part 3: IoT Protocol Stack Options. Available:

https://www.micrium.com/iot/internet-protocols/

[8] Wikipedia contributors. (2017). Intranet. Available:

https://en.wikipedia.org/wiki/Intranet

[9] OPC Foundation. (2017). What is OPC? Available:

https://opcfoundation.org/about/what-is-opc/

[10] OPC Foundation. (2017). Unified Architecture. Available:

https://opcfoundation.org/about/opc-technologies/opc-ua/

[11] T. Jaffey. (2014). MQTT and CoAP, IoT Protocols. Available:

https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php

[12] HiveMQ. (2015). MQTT Essentials Part 3: Client, Broker and Connection

Establishment. Available: http://www.hivemq.com/blog/mqtt-essentials-part-3-client-

broker-connection-establishment

[13] XSF. (2017). An Overview of XMPP. Available: https://xmpp.org/about/technology-

overview.html

[14] A. N. Solutions. (2017). Solution Technology. Available:

http://aunigma.com/solution_technology/

[15] Wikipedia contributors. (2017). Modbus. Available:

https://en.wikipedia.org/wiki/Modbus

[16] Modbus.org, "MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3,"

2012.

[17] Modbus.org, "MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE

V1.0b," 2006.

[18] Wikipedia contributors. (2017). Unified Process. Available:

https://en.wikipedia.org/wiki/Unified_Process

https://software.intel.com/en-us/articles/a-comparison-of-iot-gateway-protocols-mqtt-and-modbus
https://software.intel.com/en-us/articles/a-comparison-of-iot-gateway-protocols-mqtt-and-modbus
https://www.arm.com/support/university/educators/iot-material/index.php
http://home.hit.no/~hansha/documents/subjects/SCE4206/iiot_raspberry_pi.htm
http://www.electronicdesign.com/iot/understanding-internet-things
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-solutions-for-iot.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-solutions-for-iot.pdf
https://www.micrium.com/iot/internet-protocols/
https://en.wikipedia.org/wiki/Intranet
https://opcfoundation.org/about/what-is-opc/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment
http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment
https://xmpp.org/about/technology-overview.html
https://xmpp.org/about/technology-overview.html
http://aunigma.com/solution_technology/
https://en.wikipedia.org/wiki/Modbus
https://en.wikipedia.org/wiki/Unified_Process

 References

39

[19] N.-O. Skeie, "Object-oriented Analysis, Design, and Programming using UML and

C#," 2016.

[20] S. Chacon and B. Straub. (2014, 1). Getting Started - About Version Control.

Available: https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

[21] Wikipedia contributors. (2017). Coding conventions. Available:

https://en.wikipedia.org/wiki/Coding_conventions

[22] Wikipedia contributors. (2017). Camel case. Available:

https://en.wikipedia.org/wiki/Camel_case

[23] Wikipedia contributors. (2017). Hungarian notation. Available:

https://en.wikipedia.org/wiki/Hungarian_notation

[24] Wikipedia Contributors. (2017). Software design pattern. Available:

https://en.wikipedia.org/wiki/Software_design_pattern

[25] Wikipedia contributors. (2017). GRASP (object-oriented design). Available:

https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)

[26] H.-P. Halvorsen. (2017). Software Testing. Available:

http://home.hit.no/~hansha/documents/industrial_it/resources/resources/Software%20

Engineering/Software%20Testing%20Video.pdf

[27] U. Lamping, R. Sharpe, and E. Warnicke. (2014). Wireshark User’s Guide For

Wireshark 2.1. Available: https://www.wireshark.org/docs/wsug_html_chunked/

[28] Wireshark. (2017). Display Filter Reference: Modbus. Available:

https://www.wireshark.org/docs/dfref/m/modbus.html

[29] B. Lowagie and P. Soares. (2017). iTextSharp 5.5.11. Available:

https://www.nuget.org/packages/iTextSharp/

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://en.wikipedia.org/wiki/Coding_conventions
https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design
http://home.hit.no/~hansha/documents/industrial_it/resources/resources/Software%20Engineering/Software%20Testing%20Video.pdf
http://home.hit.no/~hansha/documents/industrial_it/resources/resources/Software%20Engineering/Software%20Testing%20Video.pdf
https://www.wireshark.org/docs/wsug_html_chunked/
https://www.wireshark.org/docs/dfref/m/modbus.html
https://www.nuget.org/packages/iTextSharp/

 Appendices

40

Appendices

Appendix A Task Description

Appendix B Setup of DHCP server on CISCO RV320

Appendix C Test Plan

Appendix D Documentation for the second, third and fourth iteration.

Appendix E Example of Modbus PDF report

Appendix F Proposed laboratory assignment

 Appendices

41

Appendix A: Task Description

 Appendices

42

 Appendices

43

Appendix B: Setup of DHCP server on CISCO RV320

Guide for setting up DHCP server on CISCO RV320
Open your browser and input 192.168.1.1 in the Address field. You will then be redirected to

the page shown in Figure 1.

Figure 1 Login Page for CISCO RV320

If you are not displayed the page shown in Figure 1 but instead the page shown in Figure 2.

Click where the arrow shows.

Else if you are shown Figure 1. Enter cisco as both username and password. You will then be

presented with the page presented in Figure 4. If you are not granted access, use a pen or a

similar object to push and hold the reset button located on the front of the RV320 router.

Figure 2 Not secure warning page

Then click on “Proceed to 192.168.1.1(unsafe)” as shown in Figure 3.

 Appendices

44

Figure 3 Warning page showing advanced part where you will click proceed.

Then you will be presented with the a page as the one shown in Figure 1.

Figure 4 Change password screen

 Appendices

45

After saving the new password, use it to login when presented with the page shown in Figure

5.

Figure 5 Login page

After logging in, the getting started page in Figure 6 are shown. Click on DHCP in the menu

on the left side.

Figure 6 Getting started page, Click on DHCP in the menu

Then the DHCP setup page is displayed as shown in Figure 7. Configure the settings and

remember to click save.

 Appendices

46

Figure 7 DHCP setup page

After clicking save, you are presented with the same page again. Then click on DHCP status

in the menu on the left side as shown in Figure 8.

Figure 8 Setup page after clicking save

 Appendices

47

Then the DHCP status page as shown in Figure 9 will be displayed. This page will show the

clients connected to the router and information like the IP address given and remaining lease

time

Figure 9 DHCP status page

 Appendices

48

Appendix C: Test Plan

Test Plan for IoT Modbus Application
The goal of the testing is to make sure the software is working according to the requirement

specification and fully dressed use case documents. And uncover if there are any bugs in the

software.

The important parts to test is to test if it is possible to establish and hold a connection open

with the IoT device. Test if both digital and analog I/O are connected and are logically

connected as stated in the requirement specification. Ability to obtain an IP address using

DHCP and create a PDF report containing time period, traffic of messages and range of

Modbus registers used. Also show Modbus exception code when sending a message with

error.

The test method that will be used is functional and nonfunctional testing.

The test will be carried out by the developer of the software.

The testing environment should be on a computer running Windows 10. A intranet should be

set up with a CISCO RV320 router with IP address 192.168.1.1. This router must have a

DHCP server configured with a IP range between 100 and 150 and default lease time. Also, a

IoT device must be part of the intranet. And all the devices in the intranet must be connected

using Ethernet.

Since Unified Process is used as development method, testing is a part of each iteration. So

the test cases below will be run after all the iterations are done as a final test.

As stated above, the following test cases are based on the functional and nonfunctional

requirements for the software. The first column in the table contains the case. The second

column shows the expected result from the case. The third column is used to mark if the test

case gave the expected result. The fifth is to indicate if the case failed, and the sixth column is

for comments.

Test Case Expected result OK Failed Comment

Connect IoT Device to

router

Obtains an IP address from

the DHCP server within the

range specified.

X

DI Upper switch is

centered

No light on DO1 and DO2
X

DI Upper switch is at 1 DO1 green light and DO2

no light
X

DI Upper switch is at 2 DO1 no light and DO2

green light
X

 Appendices

49

DI Lower switch is

centered,

No light on DO3 and DO4
X

DI Lower switch is at 3, DO3 green light and DO4

no light
X

DI Lower switch is at 4 DO3 no light and DO4

green light
X

AI1 knob at middle at 0V AO1 No light and 0 volt

output
X

AI1 knob turned left to -

10V

AO1 red light and -10 volt

output
X

AI1 knob turned right to

10V

AO1 green and 10 volt

output
X

AI2 knob at middle at 0V AO2 no light and 0 volt

output
X

AI2 knob turned left to -

10V

AO2 red light and -10 volt

output
X

AI2 knob turned right to

10V

AO2 green and 10 volt

output
X

Push generate PDF button A PDF file is generated

containing time period,

traffic of messages and

range of Modbus registers

used.

 X

The field

showing total

time opened is

showing the

wrong value.

Write a unsupported

function code

Show the exception code on

screen and disconnect
X

 Appendices

50

Appendix D: Documentation for the second, third and fourth iteration.

2. Iteration: Generate Report

Fully dressed Use Case:

Use case section Comment

Use Case name Generate Report

Scope IoT Modbus

Level User Goal

Primary actor Button

Stakeholders and interests User needs system to generate a report on Modbus

Communication with IoT Device

Preconditions Needs to be connected with IoT Device Using

Modbus

Success guarantee A generated report contacting information on

Modbus Communication with IoT Device.

Main Success Scenario
A. User Input name and student number

B. Save connection time

C. Save transaction information

D. Save disconnect time

E. Save timespan connected

F. Make table over transaction information

G. Wait for button click

H. Generate PDF report

Extensions A1. Give an error if no username or id is inputted

C1. If Modbus exception, save in own table with info

on transaction

H1. If file exists, overwrite existing file

Special req. None

Technology list

Frequency of occurrence Once

Miscellaneous None

 Appendices

51

Interaction diagram:

3. Iteration: Handle Analog I/O

Fully dressed Use Case:

Use case section Comment

Use Case name Handle Analog I/O

Scope IoT Modbus

Level User Goal

Primary actor IoT Device

Stakeholders and interests User needs system to connect the analog input and

analog output on IoT Device

Preconditions Computer and IoT device are connected. And

address of input and output register.

Success guarantee Analog Input and Output on IoT Device are

connected.

Main Success Scenario
A. Read input register and save to variable

B. Set output register according to value read

from input register

Extensions
A. If error, show error message

B. If error, show error message

Special req. None

Technology list None

Frequency of occurrence On every poll sampling time

Miscellaneous None

 Appendices

52

Interaction diagram:

 Appendices

53

Use case section Comment

Use Case name Handle Digital I/O

Scope IoT Modbus

Level User Goal

Primary actor IoT Device

Stakeholders and interests User needs system to connect digital input and

digital output on IoT Device

Preconditions Computer and IoT device are connected. And

address of input and output register

Success guarantee Digital Input and Output on IoT Device are

connected.

Main Success Scenario
C. Read input register and save to variable

D. Set output register according to value read

from input register

Extensions
C. If error, show error message

D. If error, show error message

Special req. None

Technology list None

Frequency of occurrence On every poll sampling time

Miscellaneous None

Interaction diagram:

 Appendices

54

Appendix E: Example of Modbus PDF report

 Appendices

55

Appendix F: Proposed laboratory assignment

Proposed Laboratory Assignment with
focus on Modbus, Network and IoT
Software and other resources needed to solve the assignment:

Visual Studio: https://www.visualstudio.com/downloads/

Wireshark: https://www.wireshark.org/#download

IoTModbus.exe

Modbus.DLL

Useful documents for solving this assignment:

MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3:

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

SCE1306 OOADP Lecture Notes

Part 1: Theory

1. Connect the IoT Device to power and try changing position of switches and knobs. What is

happening and why?

2. What is a communication protocol and why do we need to use one?

3. Read part 1-5 in the Modbus Specification 1.1b3 . Given a brief overview of the different

types of Modbus and the differences between these types.

4. Modbus is a so-called Client/Server protocol. Give a brief overview of what this means and

how it works.

5. Give a brief overview of addressing in Modbus.

6. Give a brief overview of the three messages types in Modbus. Also, discuss functions and

exceptions.

7. Give a brief overview of what LAN is.

8. What is DHCP and what is the benefit of using DHCP?

9. What is IoT ? And how is IoT, Modbus TCP and networks related ? Give a brief answer.

Part 2: Network Setup

1. Connect your computer to the router and power on the router. Then log into the router’s

configuration interface using a web browser. Set username to “Student” and password to

“netlab1”.

2. Go into Make sure LAN address for router is 192.168.1.1 and configure DHCP to give out IP

between 100 and 150.

https://www.wireshark.org/#download
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

 Appendices

56

3. Make sure your computer is set to obtain a IP automatically. Get the local ip address of your

computer and show that it is given a IP inside the range set up in DHCP. Include a

screenshot.

4. Connect the IoT Device to the router. By using the router’s web interface find the IP of both

the IoT Device and your computer. Also find the lese time for the IP addresses given

Part 3: Practical Modbus

1. Get action to be performed.

2. Create the PDU, MBAP and ADU for the action given and describe each part.

3. Open the Modbus IoT application and go to the function code tester. Perform the action and

take a screenshot of output.

4. Go to Modbus Simulator screen. Try switching the position of switches and knobs. Is there

any difference to what happened in step one in theory part?

5. Play around and get familiar with the IoT Device and Modbus Application.

6. Open Wireshark, and start listening on the network. Apply the Modbus filter and send a

message using the Modus application. Select the message in Wireshark and take a

screenshot of it. Is the captured package readable ?

7. In the Modbus application push the print button. This will generate a PDF report on the

desktop of your computer. Include this document as an appendix in your report.

Part 4: Development of software for Modbus Communication

Develop a Modbus communication application using the DLL Modbus and DLL for

performing the given action. And generate a report using the generateReport() method In

ComHandler class.

Hint: First an object of Modbus.ComHandler. Then Connect and send. Also, the four events

in ComHandler needs to be added. This is shown below.

 ModbusCom.OnResponseData += new ComHandler.ResponseData(OnResponse);

 ModbusCom.OnError += new ComHandler.ErrorData(OnError);

 ModbusCom.OnOutData += new ComHandler.OutData(OnOutData);

 ModbusCom.OnException += new ComHandler.ExceptionData(OnException);

Add your code and screenshot of application + report generated in your report.

