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Summary:  

Closed-loop Transient step response analysis SID technique is known for its simplicity and 

effectiveness in accommodating practical constraints and operational restrictions of particular 

system, and thus giving customized models for the particular process. Different algorithms have 

therefore been developed within the field the closed-loop step-response transient analysis.   

The objective of this thesis is to review the most common transient step response SID algorithms, 

and analyse the algorithm’s performance in model estimation and PID controller auto-tuning.  

Nine different transient step-response SID algorithms are reviewed and studied by means of 

simulating different numerical examples which represent processes with various dynamic 

characteristics. Among the discussed algorithms, five (YS, JR, JL, CLC and MF) are primarily for 

FOPDT and the remaining (JS, JSDR, DR and DR1) are for SOPDT. The simulation takes also 

into account the stochastic framework where the systems are influenced with measurement noise, 

and weighs up the performance of the algorithms based on accuracy in estimating model 

parameters, robustness of PID-setting, and strength in withstanding the measurement noise.  

The study reveals that JL has the strongest performance among FOPDT algorithms which also 

provides the most robust PI-controller auto-tuning. For SOPDT algorithms, the study points out 

the DR1 algorithm as superb and the most robust when not exposed to measurement noise. 
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Abbreviation 
CLC Cheng-Liang Chen 

DR Dalen & Di Ruscio method 

DR1 Dalen & Di Ruscio method 1 

ESSM Extended State Space Model 

FOPDT First-Order process Plus Delay Time 

GM Gain Margin [dB] 

HF, HR Half-rule model reduction technique 

JL Jietae Lee method 

JR Jutan & Rodriguez method 

JS Jahanshahi & Skogestad method 

JSDR Modified JS method – by DR 

LTIFD Linear Time Invariant system of Finite Order  

MF Mamat & Fleming method 

P Proportional - controller 

PI Proportional Integral - controller  

PID Proportional Integral and Derivative - controller  

PM Phase Margin [°] 

SID System Identification 

SNR Signal to Noise Ratio 

SOPDT Second-Order process Plus Delay Time 

SSM State space model 

YS Yuwana & Seborg method 

 



  Nomenclature 

5 

Nomenclature 
A Magnitude of set point change 

ℎ𝑝(𝑠) Process transfer function in Laplace domain 

ℎ𝑐(𝑠) Controller’s transfer function in Laplace domain 

K Open loop gain      𝐾 = 𝐾𝑐𝐾𝑝 

𝐾𝑐 Controller’s gain for step test 

𝐾𝑝 Process static gain (steady state gain) 

𝐾𝑝𝑖, 𝐾𝑝𝑖𝑑 PI-controller and PID-controller gain respectively 

𝑅0, R Set point initial and final value respectively 

s Laplace transformation variable 

t Time [s] 

T System’s Time constant [s] 

𝑇𝑖  Integral time [s] 

𝑇𝑑 Derivative time [s] 

𝑡𝑝1 Time taken for the closed-loop response to reach the first peak [s] 

𝑡𝑝2 Time taken for the closed-loop response to reach the second peak [s] 

𝑡𝑢 Time taken for the closed-loop response to reach first lowest point [s] 

𝑦𝑚1 Close-loop response value at 𝑡𝑢 

𝑦𝑝1 Close-loop response value at 𝑡𝑝1 

𝑦𝑝2 Close-loop response value at 𝑡𝑝2 

𝑦∞ Steady state response of the closed-loop 

𝛥𝑡 Half period of the oscillation for closed-loop step response [s] 

𝜏𝑝 Identified process time delay [s] 

┬𝑝 Identified process time constant [s] 

ζ  Damping ratio of the closed-loop response 
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1 Introduction 
Open-loop transient step response SID provides, in some cases, sufficient result. However, 

the approach is reported to perform poorly or even impossible to execute when the open-loop 

process is unstable [1]. The fact that most industrial systems works under feedback control 

favours and calls for closed-loop transient step response SID. With the closed-loop SID, the 

practical constraints and operational restrictions of the particular system or process can be 

accommodated during identification experiment, which ensures safety and less time 

consumption [1].  

In the closed-loop step response analysis, the experimentation and data collection is 

performed on-line in an output feedback system, whereby small step change in controller’s 

set point 𝑟(𝑡) is triggered to produce response 𝑦(𝑡) from the closed-system [2]. The closed-

loop response is thereafter used in fitting a chosen model structure of the system by means of 

back calculation [3]. Different methods and algorithm have therefore been developed to back 

calculate and fit the estimated models.  

The main objective of this thesis is to review the most common transient step response SID 

algorithms, as well as analyse the algorithm’s performance in model estimation and PID 

controller auto-tuning by means of simulations of numerical example using MATLAB 

software. The thesis report consist of mainly five chapters ranging from Introduction, System 

Identification theory, Closed-loop Transient step-change response SID, Discussion to 

Conclusion. 

The Introduction chapter introduces the research topic in its domain, and familiarizes the 

reader with background information that has given rise to this thesis work. The chapter goes 

on further to highlight the objectives and clarify the scope of the thesis, and provides 

orientation of previous works done in the field of Closed-loop transient response system 

identification. Chapter 2 builds up theoretical understanding and provides the reader with the 

necessary background information and knowledge of main concepts within system 

identification and the techniques associated with it, and thereafter channels the reader’s 

attention into the main subject matter of the thesis.  

Chapter 3 presents practical implementation and results of the individual tasks in sequential 

order arranged according to their subtopic, as highlighted in section 1.2. In this chapter, nine 

common transient step response SID methods and algorithms are discussed, analysed and 

tested by means of simulation using different numerical examples that represent systems with 

various response dynamics. The chapter, which also serve as the main chapter, gives the 

reader an insight into on-line PID-controller tuning based on identified parameters from the 

discussed algorithms, and sums the overall performance of algorithms by using Monte Carlo 

simulation technique.   

The Discussion chapter weighs up the result against previous work and literature, and 

provides the reader with an objective interpretation, explanation and analysis of the results 

obtained in chapter 3. Finally, the Conclusion chapter provides summary of the findings and 

some suggestions based on findings.  
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1.1 Previous works 

The closed loop transient response system identification is a relative old field with many 

proposed, proven and documented methods and algorithms started back in early 80s. YS was 

the most pioneering work that paved the way for further development and improvement of 

the technique. The YS utilized the critical points observed in closed-loop response of 

feedback system controlled by means of P-controller [2], to back-calculate the open-loop 

model of first-order plus time delay. YS used first-order Padé approximation of delay term, 

the move that gave rise to JR method. The JR method extended the Padé approximation of 

the delay term into second-order to improve the algorithms ability in dealing with systems 

containing large dead time [4]. 

In 1989, a new method JL was developed by matching dominant poles of the feedback 

system with the typical second-order process response, and hence moved away from utilizing 

Padé approximation [5]. In the same year, another method called CLC was developed based 

on critical magnitude ratio and crossover frequency of the system and its relationship to the 

typical second-order response transfer function [6, 7]. The CLC was later updated to 

counteract the steady state offset by utilizing the commonly used industrial controller (PI-

controller), hence leading to a new method MF [8]. Several other updates and new methods 

for FOPDT have been developed since then.  

In recent decades, identification of second-order process models has really gained 

momentum. Plenty of proposals and later proven algorithms have been suggested and 

documented, including estimation of unstable second-order model from unstable higher-order 

process, a method called JS [9], which was modified into JSDR, and later updated 

generalized to form a method known as DR which incorporate both unstable and stable 

second-order process model estimation regardless of the original systems dynamics 

behaviour. By updating and improving the DR’s systems response in time domain, a new 

method called DR1 initiated [10].  

In 2010, a new method algorithm specializing in estimation of second-order inverse response 

process from transient response was presented. The algorithm provides simple identification 

procedures by avoiding solving nonlinear equations, and estimates, instead, model parameters 

in sequential way [11].  

The closed-loop transient step response is an interesting and still maturing field. Several 

previous works, other than mentioned above, have been carried out reported from different 

holds. Among the main objective of this thesis is to review some most common algorithms 

for both FOPDT and SOPDT.  

1.2 Scope and Limitation of the project 

The main objective of this thesis is to review the most common system identification methods 

and algorithms developed for closed-loop step response transient analysis, and investigate the 

performance of such algorithms in model estimation of first-order and as well as second-

order plus time delay process models. Having that in mind, the scope is further broken down 

into the following tasks reflecting the thesis description given in Appendix A.  

 Conducting literature review of most common step response transient analysis SID 

methods. 
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 Discussing and illustrating how the first and second-order models are identified based 

on the back calculation techniques using the methods reviewed in the point above.  

 Investigating and illustrating estimation of time delay of systems with different 

dynamics.  

 Demonstrating and discussing how the methods or algorithms can be applied in 

designing and on-line auto tuning of PID controller.  

 Performing simulations and detailed comparison of the algorithms in stochastic 

framework both when and when not influenced measurement noise.  

 Applying and demonstrating the performance of the algorithms on the quadruple tank 

laboratory process.  

Unfortunately, the expected quadruple tank laboratory process has not been available during 

the entire execution period of the thesis due to delayed production of the process, neither any 

other process experimental data were provided as an alternative. Therefore, this thesis is 

limited to simulation of only numerical examples collected from some of previous works.  
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2 System Identification Theory 
Many systems and processes are complicated by nature. Industries strive in controlling the 

systems and process within defined operating conditions aiming for safe, effective and 

beneficial operation. To tune and maintain the systems into the desired conditions requires 

good understanding of system’s dynamics and properties. This is where the system 

identification comes into place, a diverse field of techniques to reveal the system’s behaviour 

as well as better understanding of cause-effect relationships of particular system [12] [13]. 

This chapter builds up theoretical understanding and familiarize the reader with the main 

concepts of system identification and techniques associated with the subject matter. The 

chapter provides the necessary background information to be used in later chapters.  

2.1 Introduction to System Identification 

System identification can be referred as technique used in determination of mathematical 

models of dynamic systems based on observed set of experimental data [1] [3]. The identified 

systems are normally in specified form (model structure), with free parameters adjusted based 

on defined prediction criterion, which takes into account the difference between the measured 

output and the output from resulted model [13] [14]. 

 

 

Figure 2-1: Overview of System Identification (SID) approach 

 

Figure 2-1 gives an overview of the system identification technique whereby an experiment is 

conducted to observe and collect data necessary for estimation of the system dynamics by 

fitting into mathematical model of a pre-specified model structure [15]. 

Generally, the model should be compact and adequate to best reflect the system in question 

by including all system dynamics, and hence serves the purpose it is intended for. In system 

and control engineering, such purpose may include simulation, design of system’s controller, 

prediction algorithms, etc. [15] [1].  However, applications of system identification are 

widespread, and have even gone beyond the traditional technical fields, as for example in 

biology and environmental sciences where the identified models enhance better scientific 

knowledge and trends in objects [15] [1]. 
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2.2 Systems and Models of dynamic systems 

2.2.1 Dynamic System 

System is an object or collection of objects with known boundaries, containing different 

variables and the properties of the interest [16, 17]. The variables interacts with each other 

and/or with the surrounding environment to produce observable signals. Here, the 

surrounding environment is joint term for the external (outside system boundary) factors 

affecting the system, which includes both user’s manipulated signal (input 𝑢(𝑡)), and non-

manipulated signal known as disturbance (𝑤(𝑡) and 𝑣(𝑡)) [3, 16]. Normally, the observable 

signals (output 𝑦(𝑡)) define the behaviour in which the system is modelled upon it [3, 16, 17]. 

 

Figure 2-2: Typical dynamic system with inputs, disturbances and output 

 

Figure 2-2 gives graphical presentation of typical dynamic system consisting of input 

signals 𝑢(𝑡), measurable disturbances 𝑤(𝑡), non-measurable disturbances 𝑣(𝑡), and output 

signal𝑦(𝑡) [3]. 

A system is considered as dynamic if its variable(s) varies with respect to time [17]. The 

variations may be due to external excitement of the system through inputs and disturbances, 

or internally due to change in system operating conditions [17, 18]. However all systems are 

dynamic as they normally experience movement and exhibit inertia against changes [16, 17].  

2.2.2 Models of dynamic system 

A model is a representation of the system including inputs and outputs, which reflect the 

essential behaviour of the system [16]. Being representation means it is extremely rare to find 

model with exactly similar dynamics as its original system since it is impossible to include all 

factors influencing the system. However, with models, experiments or simulations on various 

operational conditions can be conducted, and hence provides valuable platform in studying 

the dynamics of the original system as well as designing, testing and tuning controller for the 

particular systems [1, 16-18]. 
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2.2.2.1 Types of models 

In system identification, models are estimated based on data obtained from experimentation 

on the real system [3]. The term system in this context also includes single or set of processes 

working together toward common goal [16].  

Different classification of models are available, as for example empirical and mechanistic 

model. Empirical models are typically based on cause-and effect data obtained from direct 

observation and extensive data record on the particular system. On the other hand, the 

mechanistic models are based on underlying physical principles, as for example balance laws 

and/or natural constants [17, 19]. 

2.2.2.1.1 White-box models 

White-box models, also known as analytical models, are exclusively mechanistic models, i.e. 

the models are result of first principles (physical and chemical laws) thus relationships 

between variables are clearly known [13]. With the white-box models, simple experiments 

may be needed to inquire into the principles involved [13, 20]. Among examples of white-

box (analytical models) are aircraft flight model, carbon dioxide concentration in a ventilated 

room, etc. [17].  

2.2.2.1.2 Black-box models 

Black-box models refers to models exclusively based on experimental data, without any 

previous knowledge of the system’s structure and variables [13, 20, 21]. These type of 

models are obtained using advanced algorithms, and focus on describing the relationship 

between the inputs and outputs of the system rather than the actual structure and variables of 

the system. Among examples of black-box models are neural network models, neuro-fuzzy 

models, etc. [13, 20, 21]. 

2.2.2.1.3 Grey-box models 

Grey-box models are referred as intermediate case of modelling whereby the model structure 

is generically known and described using first principles [13, 22]. However, the internal 

particularities of the system are not entirely known, hence experimental data analysis is 

needed to estimate the parameters and remaining elements of the system [13, 22].  

𝐺(𝑠) = 𝑘
e−τs

𝑠2 + 𝑎1𝑠 + 𝑎0
  (2.1) 

Among good examples of grey-box models are subspace models, transfer functions models, 

etc. Their model structure are previously known [13, 22]. For example, the typical second-

order transfer-function process model as given by Equation (2.1), where k, τ, 𝑎1 and 𝑎2 are 

parameters to be estimated through experimentation and identification techniques.  

Generally, the system identification techniques are used to estimate black-box or grey-box 

model of dynamic systems [13]. However, in this thesis, the focus will be on identification of 

grey-box models, with the transfer function as chosen model structure for further study on 

closed-loop transient response SID techniques.  
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2.3 Practical steps in System Identification 

Implementation of the system identification techniques involves series of sequential and 

iterative steps, starting from experimentation and data collection, during which the system is 

excited with input signals to produce output data [1, 3]. The data are then fitted into the 

chosen model structure, and the model’s unknown parameters are estimated using 

identification algorithm suitable for that particular model. The final step involves testing and 

validation of the resulted model against the real system [1, 3]. 

 

 

Figure 2-3: Practical procedure of system identification  

 

Figure 2-3 gives graphical overview of the sequential steps used in system identification [1]. 

As seen on the figure, the practical implementation is rather iterative and may require several 

repetitions of different steps before the estimated model become acceptable [1]. The 

individual steps are further discussed in sub-sections below. 
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2.3.1 Experimentation and Data collection 

Experimentation and data collection is among the most delicate stages in SID. Inputs signals 

are manipulated to trigger response from the system. The signals should cover wide enough 

range and carefully chosen to ensure maximum information [16]. It is natural to believe that 

prior knowledge of the system leads to better design and planning of experiment [3, 16, 17]. 

Among examples of inputs signals are step change, sinusoid, impulse signal, random signal, 

etc. This thesis will focus on step change in controller’s reference value as the chosen input 

signal.  

2.3.1.1 Experimental Design 

Conducting experiments is not only time-consuming, but often involves use of resources and 

material that may be expensive in nature. A thoroughly plan and experimental design is 

essential to ensure effective and successful experiments [16, 17]. The minimum requirement 

in designing experiment for system identification include a prior decision in signals and 

variables of interest, timeframe of measurement, sampling time, number of observations, 

signals to manipulate and how the manipulation shall be done [1].  

2.3.1.2 Pre-treatment of data 

Pre-treatment of the data collected from experimentation is inevitable, as the raw data are less 

likely ready for immediate application in SID algorithms. There are several challenges the 

collected data may encounter during experimentation. These includes, but not limited to; [1] 

 High-frequency noisy signals 

 Presence of outliers and data missing 

 Drift and offset, and low-frequency noisy signals 

To minimize the effect the deficiencies, some special measures need to be employed, 

including the use of low-pass filter of suitable filter constant to withhold signals with 

frequency higher than the target signal. Additionally, it is recommended to let the noise 

model cancel out the effect of low-frequency disturbances [1]. 

2.3.2 Determination of model structure 

Next to pre-treatment of experimental data is determination of model structure to be utilized 

for system identification. This is crucial stage, as the structure of chosen model influences the 

quality of final identification result. Choosing suitable model structure requires good 

understanding of identification techniques and adequate knowledge of the system [1]. When 

determining the model structure, one should first outline the model type, for example non-

parametric model of transfer-function type, and then decide the size of the model for example 

transfer-function model of second-order process plus delay, and finally choose model 

parameterization [1]. 

It is strongly recommended that the model structure should cover as many relevant linear and 

non-linear phenomenon as possible [20]. However, being too flexible could minimize the 

ability of the model to accommodate the physical insight of the particular system [20]. 
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2.3.3 Model fitting and parameter estimation 

Fitting and parameterizing the model structure chosen from the above stage, involves feeding 

of estimation data (part of collected experimental data) into suitable identification algorithm 

based on the identification method and the chosen model structure. The goal is to obtain well 

conditioned parameterization that accomplish given quality criteria, which limit numerical 

error influence on input-output behaviour of the system [3, 13, 20].  

In closed-loop transient response SID, the change in controller’s set-point acts as input part of 

the estimation data, while the system response retains the output role. Often, the estimation 

data is structured as in Equation (2.2) before being imported to the closed-loop SID algorithm 

[10]. 

𝑅 = [
𝑟1

𝑇

⋮
𝑟𝑁

𝑇
] , 𝑎𝑛𝑑  𝑌 = [

𝑦1
𝑇

⋮
𝑦𝑁

𝑇
] (2.2) 

2.3.4 Model Validation 

Models estimated from SID must undergo qualitative check known as validation, a practical 

process of assessing models performance. The assessment is conducted by feeding validation 

dataset (separate dataset, other than training dataset used for model estimation) into the model 

and compare the model results against certain performance criteria, for example general 

prediction error, spectra analysis, etc. [13, 20, 22]. 

Once the model passes the performance criteria, the model attain generalization status. 

Generalization is a qualitative measure of model’s ability in providing accurate predictions 

and explanation of systems output from inputs different to those used during model 

development [13, 22]. 

 

2.4 System Identification Approaches 

Different system identification methods have been presented and documented in diverse 

literature. Based on their identified model structure, the methods are grouped into two 

categories, known as parametric and nonparametric system identification approach [1, 13, 

15]. The two approaches works independently of each other, however often combined to 

exploit the strength of both simultaneously. For example, starting directly on parametric 

models may appear complicated and gives mislead results, thus using nonparametric 

approach (for example impulse response) helps in relieving specific dynamic of the system 

and hence assist in detecting the mislead results [1, 13, 15]. 

2.4.1 Parametric methods 

In parametric system identification, the models rely on a parameter vector [1, 13]. The 

parameters within the vector are calculated and varied in respect to the defined prediction 

criteria to produce models. Among common examples of parametric system identification 
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methods are least-square method, prediction error method, instrument-variable method, etc. 

[1, 13, 23]. 

2.4.1.1 Least-Square Method  

The least-square method is capable of estimating models of predefined structure for both 

static and dynamic systems [24]. The method is based on standard regression model that is 

given as,  

𝑦 = [𝜑1 … 𝜑𝑛] [
𝜃1

⋮
𝜃𝑛

],  which can be written as   𝑦 = 𝜑𝜃 (2.3) 

where φ is known as regression vector containing regression variables, y is the observed 

variable with known value, and 𝜃 denotes the unknown parameter vector to be estimated 

[24]. Consider m number of observed values, the corresponding extended equation becomes, 

[

𝑦1

⋮
𝑦𝑚

] = [

𝜑11 … 𝜑1𝑛

⋮ ⋱ ⋮
𝜑𝑚1 … 𝜑𝑚𝑛

] [
𝜃1

⋮
𝜃𝑛

],  which can be written as  𝑌 = Φ𝜃 (2.4) 

Equation (2.4) is used to estimate the vector θ containing values of the unknown parameters 

[24]. 

2.4.1.2 Prediction-Error Method (PEM) 

The prediction-error method is believed to exploit the system’s dynamic structure in best 

possible way. Its focus is rather shifted to accuracy of the predictions calculated from 

observations [1, 25]. 

 

𝑦(𝑡) = 𝐺0(𝑧)𝑢(𝑡) + 𝑣(𝑡)  (2.5) 

Consider an unknown system 𝐺0 described by LTIFD as given in Equation (2.5) [15]. The 

system consist of measured input 𝑢(𝑡) and output 𝑦(𝑡) signals, in addition to unmeasurable 

disturbance 𝑣(𝑡). Assume that 𝑣(𝑡) is power spectrum signal expressed as in Equation (2.6), 

where 𝑒(𝑡) denotes white noise with variance 𝜎𝑒
2 and that 𝐻0(𝑧) is stable, monic and 

minimum phase transfer function [15]. 

𝑣(𝑡) = 𝐻0(𝑧)𝑒(𝑡)  (2.6) 

The system model is then estimated using Equation (2.7).  

𝑦(𝑡) = 𝐺0(𝑧)𝑢(𝑡) + 𝐻0(𝑧)𝑒(𝑡)  (2.7) 

However, the expression is only valid if the disturbance can be generated from the white 

noise, implying that 𝑢(𝑡) and 𝑣(𝑡) cannot be correlated. This underlines the importance of 

verifying the compatibility of the predefined model structure with PEM assumptions [15].  
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2.4.1.3 Instrument-Variable Method 

The Least-square method is easy and simple to implement. However, the method’s ability in 

producing consistent parameters is limited to only certain condition due to correlation 

between the regression vector and observed data vector [1, 26]. Counteracting this deficiency 

has given rise to Instrument-Variable method, by introducing a general correlation 𝑍(𝑡) 

containing elements known as instruments. The instrument matrix replaces the regression 

vector from the LS as seen in Equation (2.3) [1].   

𝜃 = [∑ 𝑍(𝑡)Φ𝑇(𝑡)𝑁
𝑡=1 ]−1[∑ 𝑍(𝑡)y(𝑡)𝑁

𝑡=1 ]  (2.8) 

2.4.1.4 Subspace Identification 

Subspace system identification adds to the techniques used to estimate parametric models 

with limited number of mathematic parameters, for example state space model realization 

[15]. The method’s basic step is to identify the order of the observed system and observability 

matrix through combining the knowledge of impulse response, and computation of rank and 

decomposition of matrix often by singular value decomposition [15, 27]. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐶𝑣𝑘  (2.9) 

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝐹𝑣𝑘 (2.10) 

Consider the state-space model (SSM) given in Equation (2.9) and (2.10). Using the concept 

of observability and triangular Toeplitz matrix, the SSM can be extended into 

𝑦𝑘+1|𝐿 = �̃�𝐿𝑦𝑘|𝐿 + �̃�𝐿𝑢𝑘|𝐿+𝑔 + �̃�𝐿𝑣𝑘|𝐿+1  (2.11) 

Where the matrices in Equation (2.11) are given as,  

�̃�𝐿 ≝ 𝑂𝐿𝐴(𝑂𝐿
𝑇𝑂𝐿)−1𝑂𝐿

𝑇  (2.12) 

�̃�𝐿 ≝ [𝑂𝐿𝐵 𝐻𝐿
𝑑] − �̃�𝐿[𝐻𝐿

𝑑 0𝐿𝑚×𝑟] (2.13) 

�̃�𝐿 ≝ [𝑂𝐿𝐶 𝐻𝐿
𝑠] − �̃�𝐿[𝐻𝐿

𝑠 0𝐿𝑚×𝑙] (2.14) 

The model in Equation (2.11) can be identified directly from the sliding window of known 

data, unless when the inputs is affected in persistent excitation. In such situation, one rather 

should consider to identify only the minimal order of Equation (2.11) [14].  

2.4.2 Non-parametric methods 

Nonparametric system identification methods are generally simple and effective technique in 

estimating models of systems. Common for nonparametric methods is that the techniques 

yield models in form of curves or function, which contains characteristic behaviour of the 

system. The term nonparametric reflects the mathematical nature and the absence of physical 
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parameters in models obtained from the approach. However, the models may still consist of 

mathematical parameter(s) to be identified [1, 13, 15]. 

Nonparametric models exist in time-domain, for example models from impulse response and 

step change response, and as well as in frequency domain, for example models from 

correlation analysis, spectral analysis and frequency analysis [15]. 

2.4.2.1 Correlation analysis  

Correlation analysis method utilizes white noise signal as input. The goal is to estimate the 

weighting function mapping output against the input using normalized cross-covariance 

function between them [1, 3]. 

𝑦(𝑡) = ∑ ℎ(𝑘)𝑢(𝑡 − 𝑘)

∞

𝑘=1

+ v(t)  (2.15) 

Consider the typical model description for correlation analysis as given by Equation (2.15), 

whereby ℎ(𝑘) is the weighting sequence and v(t) is disturbance. If the input is quasi-

stationary sequence, which is independent of the disturbance, then the covariance function is 

given as, [1, 3] 

𝑟𝑦𝑢(𝜏) = ∑ ℎ(𝑘)𝑟𝑢(𝑡 − 𝜏)

∞

𝑘=0

  (2.16) 

Since the input is white noise, the covariance function can be estimated from the data by 

solving Equation (2.17) and (2.18) [1, 3]. 

�̂�𝑦𝑢(𝜏) =
1

𝑁
∑ 𝑦(𝑡 + 𝜏)𝑢(𝑡)

𝑁−max(𝜏,0)

𝑡=1−min(𝜏,0)

                                τ = 0, ±1, ±2, …  (2.17) 

�̂�𝑢(𝜏) =
1

𝑁
∑ 𝑢(𝑡 + 𝜏)𝑢(𝑡)

𝑁−τ

𝑡=1

                �̂�𝑢(−𝜏) = �̂�𝑢(𝜏)            τ = 0,1, 2, … (2.18) 

The estimate of weighting matrix ℎ(𝑘) can be obtained by solving Equation (2.19).  

�̂�𝑦𝑢(𝜏) = ∑ ℎ̂(𝑘)�̂�𝑢(𝜏 − 𝑘)

∞

𝑘=0

 (2.19) 

Generally, pure white noise simplify the solution for the weighting matrix [1, 3].  

2.4.2.2 Spectral analysis 

A frequency domain analysis in which the frequency response of system is derived from 

cross-spectrum of the impulse response signal. The derived frequency response contain 

information about gain and phase of the system from inputs of different frequencies [1, 13]. 

Consider the model description in Equation (2.15), applying discrete Fourier transformation 

on the model yields to spectral densities as given in Equation (2.20). 
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∅𝑦𝑢(𝜔) = 𝐻(𝑒−𝑖𝜔)∅𝑢(𝜔) (2.20) 

Where, 

∅𝑦𝑢(𝜔) =
1

2𝜋
∑ 𝑟𝑦𝑢(𝜏)𝑒−𝑖𝜏𝜔

∞

𝑡=−∞

 (2.21) 

∅𝑢(𝜔) =
1

2𝜋
∑ 𝑟𝑢(𝜏)𝑒−𝑖𝜏𝜔

∞

𝑡=−∞

 (2.22) 

𝐻(𝑒−𝑖𝜔) = ∑ ℎ(𝑘)𝑒−𝑖𝑘𝜔

∞

𝑘=0

 (2.23) 

The transfer function 𝐻(𝑒−𝑖𝜔) can be estimated using the Equation (2.23). However, it is 

worth to mention that  ∅𝑦𝑢(𝜔) yields complex solutions [1, 13].  

2.4.2.3 Frequency analysis 

The key input in frequency-analysis system identification is sinusoidal signal, in which 

change in amplitude and phase creates base for the system response. Here, the frequency of 

the input signal and its corresponding system response is identical [1]. Consider a sinusoidal 

input to the system, given as 

𝑢(𝑡) = a sin(𝜔𝑡)  (2.24) 

If the system is asymptotically stable, its output at the steady state is given as in Equation 

(2.25).  

𝑦(𝑡) = 𝑏𝑠𝑖𝑛(𝜔𝑡 + 𝜃) (2.25) 

Where b is the response amplitude and θ is phase shift given as in Equation (2.26). 

𝑏 = 𝑎|𝐺(𝑖𝜔)| and  𝜃 = 𝑎𝑟𝑔[𝐺(𝑖𝜔)] (2.26) 

In practice, it less likely to achieve accurate estimate of the parameters b and θ due to 

presence of noise signal during experimentation [1]. 

2.4.2.4 Transient response analysis 

This nonparametric identification technique uses transient response of a system excited with 

input signal of either step or impulse form. The choice of input signal depends on the nature 

of the process, for example, the impulse signal is commonly used in processes involving 

injection of substance as form of input [1]. 

The techniques is quite flexible as it can accommodate both direct, indirect and joint input-

output identification. By direct identification means no feedback involved, only input 𝑢(𝑡) 

and output 𝑦(𝑡) data are used for model fitting. Indirect identification is performed in a 

feedback loop, and it requires knowledge of the loop’s controller (controller transfer 
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function), controller’s set point 𝑟(𝑡), and system’s response 𝑦(𝑡). The third approach is also 

applied in closed-loop and requires input signal 𝑢(𝑡) in addition to the same information 

needed for indirect identification [1, 10]. 

2.4.2.4.1 Impulse response 

Consider an approximated impulse signal given in Equation (2.27) as input to the system, 

where α denotes the impulse length. It is assumed that the signal resembles ideal input and 

satisfies ∫ 𝑢(𝑡)𝑑𝑡 [1]. 

𝑢(𝑡) = {
−1/α, 0 ≤ t < α

0, α ≤ t
  (2.27) 

The impulse input approximation (Equation (2.27)) works just fine if the magnitude of α is 

less compared to the time constant of system in question. With larger α, the signal becomes 

distorted [1]. When the input signal 𝑢(𝑡) is triggered into the system, the system responds by 

producing output 𝑦(𝑡) as given in Equation (2.28), [15] 

𝑦(𝑡) = 𝛼𝑔0(𝑡) + 𝑣(𝑡) (2.28) 

whereby the system impulse can be estimated for all values of ┬ ≥ 0 (i.e. for high SNR) as  

𝑔(┬) =  
𝑦(┬)

𝛼
 (2.29) 

The impulse response method is adored for its simplicity, however, systems tend to exhibit 

nonlinear dynamics when subjected to inputs with high amplitude.  

2.4.2.4.2 Step response 

The step-response technique uses step input to trigger transient response from system, which 

contains characteristic dynamics (time delay, dominating time constant, static gain, damping 

ratio, etc.) of the process. These dynamics are essential when it comes to designing and 

tuning controller for the system [1, 3]. Consider a system is excited with step input signal 

given by Equation (2.30).  

𝑢(𝑡) = {
β, t ≥ 0
0, t < 0

  (2.30) 

The system’s response to the input is as given in Equation (2.31), where β is magnitude of the 

step input provided to the system [3].  

𝑦(𝑡) = 𝛽 ∑ 𝑔0(𝑘)

𝑡

𝑘=1

+ 𝑣(𝑡) (2.31) 

It follows that the system estimate 𝑔0(𝑘) can be identified for all values of ┬ ≥ 0 as, [3] 

𝑔(┬) =  
𝑦(┬) − 𝑦(┬ − 1)

𝛽
 (2.32) 

The step response transient analysis method is subjected to relatively large error term, making 

it not well suited for identification of definite impulse response [3]. 

2.4.2.4.2.1 Open-Loop Transient Response SID 
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Open-loop transient identification, also known as direct identification utilizes the step input 

𝑢(𝑡) and the observed response 𝑦(𝑡) to fit the system into simple (first and second) order 

models described in transfer function.  

First order open-loop Transient response 

Consider the Laplace transformed expression for the output signal 𝑦(𝑡) given as,  

𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) (2.33) 

where 𝑈(𝑠) is the step input signal in Laplace domain [18]. The system model G(s) is 

thereafter estimated using the standard transfer function for first order process given as [18] 

𝐺(𝑠) = 𝑘
𝑒−𝜏𝑠

1 + ┬𝑠
 (2.34) 

where k is the static gain of the system, ┬ is the time constant (i.e. time taken for the output 

y(t) to reach 63% of the maximum system response) of the system, and the 𝜏 denotes time 

delay (dead-time) of the system [18]. The parameters in Equation (2.34) can be deduced 

directly from the system response as illustrated in Figure 2-4.  

 

 

Figure 2-4: Open-Loop step response technique for identification of first order system 

 

Open-loop Transient response for oscillating processes 

For the second order process, the system is identified using the typical transfer function for 

damped system given as, [1] 

𝐺(𝑠) = 𝑘
𝜔0

2𝑒−𝜏𝑠

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2
 (2.35) 

where the parameters k and τ are identical to those in Equation (2.34) discussed above, 

𝜔0 denotes the natural frequency of the system response, while ζ represents the relative damping 

which characterizes the response of the system. The systems experiences oscillations at 

0<ζ<1, becomes critically damped at ζ = 1, and is said to be undamped when ζ < 0.  [1] 
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Figure 2-5: Open-Loop step response for oscillating systems [1] 

 

The model parameters are obtained by solving Equation (2.36) and (2.37) based on critical 

points in the system step response as shown in Figure 2-5.  

𝜁 =  
−𝑙𝑜𝑔𝑀

√𝜋2 + (𝑙𝑜𝑔𝑀)2
 (2.36) 

𝜔0 =  
2𝜋

𝑇√1 − 𝜁2
 (2.37) 

The variables K and M can be deduced from the expression presented on the response graph, 

while T is the periodic time of the oscillation (t3 - t1) [1].  

2.4.2.4.2.2 Step change Closed-loop Transient Response SID 

In closed-loop step response analysis, the experimentation and data collection is performed 

on-line in an output feedback system, whereby small step change in controller’s set point 𝑟(𝑡) 

is triggered to produce response 𝑦(𝑡) from the closed-system [2]. This closed-loop response 

is thereafter used in fitting transfer function model of the system [3]. 

The practice requires knowledge of the controller forming the feedback system, in addition to 

𝑟(𝑡) and 𝑦(𝑡) [10]. P-controller is the mostly used controller type in closed-loop step-

response analysis, however, different algorithms have been developed based on PI-controller 

not only because of its status as commonly used industrial controller, but also as a measure in 

counteracting the steady state offset associated with the P-controller [8]. The step-change 

closed-loop transient response system identification is the main theme of this thesis. From 

now onward, the attention will be solely tuned into this technique of system identification.  

2.5 Persistent excitation  

Quality of the system data collected during experimentation has huge influence in obtaining 

distinctive models with best possible reflection of the original system. The data should be 
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sufficiently rich and should cover whole frequency range within the region of the interest (i.e. 

where the model need to be accurate), a phenomenon known as persistent excitation [28, 29].  

For the input signal to be persistently exciting of order n, the following two conditions should 

be met [1].  

1. The limit for 𝑟𝑢(𝜏) given by Equation (2.38) exists 

2. The matrix 𝑅𝑢(𝑛)  given by Equation (2.39) is positive definite.  

 

𝑟𝑢(𝜏) =  lim
𝑁→∞

1

𝑁
∑ 𝑢(𝑡 + 𝜏)𝑢𝑇(𝑡)

𝑁

𝑡=1

 (2.38) 

𝑅𝑢(𝑛) = [

𝑟𝑢(0) 𝑟𝑢(1) ⋯ 𝑟𝑢(𝑛 − 1)

𝑟𝑢(−1) 𝑟𝑢(0) ⋮
⋮

𝑟𝑢(1 − 𝑛)
… 𝑟𝑢(0)

] (2.39) 

Normally, inputs composed of only set of frequencies are applied under experimentation, 

resulting into limited ability of SID techniques as only models of certain orders can be 

distinguished [28]. Usually, persistent excitation in open loop SID guarantees distinctive 

models with respect to structure of the preferred model. It is however, not the case when 

closed-loop SID is concerned. In some cases, the closed-loop SID fails to distinguish unlike 

models of a system in feedback loop by only using input-output data collected during 

experimentation, as illustrated below [29]. 

Consider a system given by,  

𝑥(𝑡 + 1) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡) + 𝑣(𝑡) (2.40) 

where 𝑢(𝑡) is input signal to the system, and 𝑣(𝑡) represent random white noise acting on the 

feedback system. Assuming that the system is controlled by P-controller with proportional 

gain 𝐾𝑐, gives the input signal 𝑢(𝑡) as,  

𝑢(𝑡) = 𝐾𝑐𝑥(𝑡) (2.41) 

Applying the feedback rule, and substituting Equation (2.41) into Equation (2.40) gives,  

𝑥(𝑡 + 1) = (𝑎 + 𝑏𝐾𝑐)𝑥(𝑡) + 𝑣(𝑡) (2.42) 

hence proving that all models 〈�̂�, �̂�〉 having following model structure  

�̂� = 𝑚 − 𝛼𝑘 and  �̂� = 𝑛 + 𝛽 (2.43) 

of the system (Equation (2.40)) gives identical input-output behaviour of the system and 

hence cannot be distinguished by just using the observed (input-output) data [29]. 
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2.6 Monte Carlo Simulation 

Monte Carlo simulation is a wide known technique used in assessing performance of 

algorithms especially when achieving exact computed result seems impossible [30]. The 

technique can be performed in many ways. It follows, however a fixed pattern in the 

following steps; [30] 

 Defining input domain  

 Generating random inputs within the input domain 

 Calculating algorithm’s results by deterministic computation using the inputs 

 Aggregating individual result into final results 

 Validating the result against predefined performance criteria, if present.  

This simulation technique is applied in comparing the performance and robustness of the 

chosen algorithms for set-point change transient response of closed-loop system later in 

chapter 3.4.  

𝑃 =  
1

𝑚 − 1
∑ 𝑛(𝜃𝑘 − 𝜃0)(𝜃𝑘 − 𝜃0)𝑇

𝑚

𝑘=1

 (2.44) 

The algorithms performance is measured against the performance criterion given in Equation 

(2.44), where 𝜃 denotes the identified parameters, 𝜃0 stands for the real parameters, while n 

and m represent number of samples and simulation runs respectively [1]. 
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3 Closed-Loop Transient Step-change 
Response SID 

A closed-loop step-change change transient response SID can be described as an on-line 

identification approach whereby an output feedback system is excited with simple step 

change in controller’s reference value (set point) to trigger response from the closed system. 

The approach, also known as indirect identification, is normally performed in the following 

steps [2, 3, 31]; 

1. Switch controller in P-mode, and set suitable controller gain 𝐾𝑐 to produce 

underdamped response. PI-mode is used for the MF algorithm, hence suitable integral 

time 𝑇𝑖 shall also be provided. 

2. A closed-loop is identified using set point 𝑟(𝑠), controller ℎ𝑐(𝑠), system 

output 𝑦(𝑠), and critical points on 𝑦𝑝1, 𝑦𝑚1, 𝑦𝑝2, 𝑡𝑝1, 𝑡𝑢, 𝑡𝑝2 and ∆𝑡 as illustrated in 

Figure 3-6. 

3. Open-loop (process model) parameters are determined using back calculation.  

 

 

Figure 3-1: A standard and an accumulated feedback system for set point test 

 

Back Calculation 

The set-point experiment conducted on the closed-loop produces set of data for transient 

response as shown in Figure 3-3. The data obtained are used in estimation and mapping of the 

parameters in the feedback transfer function model, which are later used in back calculation. 

Back calculation is determination of open-loop process model dynamics from the estimated 

closed-loop response using set of mathematical expressions (algorithms). These algorithms 

relate the second-order feedback response parameters (given by Equation (3.6), (3.32), (3.37) 

and (3.59)) with parameters for standard transfer function of the process ℎ𝑝(𝑠) as given by 

Equation (3.1), (3.58) and (3.72).  

For successful back calculation which leads to distinctive transfer models of first and second 

orders, the system excitation should at least fulfil requirements for persistent excitation of 

sufficiently higher order [29]. 
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3.1 Closed-loop Transient response SID 
methods/algorithms 

Since early 80s, plenty of efforts has been dedicated in finding robust and reliable process 

models from set point response of the closed-loop systems, resulting into miscellaneous 

algorithms with various strengths and limitations when applied to processes with different 

dynamics. In this chapter, nine common methods/algorithms will be reviewed. Whereby five 

of them are only for first-order process SID.  

3.1.1 Yuwana and Seborg method (YS) 

The YS method has paved the way and provided fundamental approach in tuning controllers 

on-line using single experiment test performed in feedback system under operation. The 

experiment is conducted by observing, and analysing the closed-loop response to the small 

step changes in controller’s set point implemented on the system.  

 

 

Figure 3-2: Block diagram for simplified feedback control system 

 

The method is particularly meant for simple first order process plus dead time as given by 

Equation (3.1) whereby the parameters are estimated directly from the closed system 

response data.  

h𝑝(𝑠) =
K𝑝e−𝜏𝑝𝑠

1 +  ┬𝑝𝑠
  (3.1) 

The K𝑝 in the Equation (3.1) denotes process gain, also known as steady state gain,  𝜏𝑝  

denotes process time delay (dead time), while  ┬𝑝  denotes process time constant (time taken 

for the process to reach 63% of the maximum response) [18].  

3.1.1.1 Method built-up  

Consider a closed loop system (a feedback system) as shown in Figure 3-2. The system which 

is composed of first order process model with time delay, is controlled by proportional 



 3 Closed-Loop Transient Step-change Response SID 

28 

controller, a special form of PID-controller whereby the Integral and Derivative parts of the 

controller are made inapplicable. It is highly recommended that the value of the proportional 

gain is carefully chosen and large enough to excite the system to form overshoot i.e. 

oscillatory behaviour [2]. 

 

 

Figure 3-3: Closed-loop response to set point step-change 

 

The YS method is based on the following assumptions 

 The disturbances (noise) acting on the system are negligible, i.e. 𝑣(𝑠) = 0.   

 The process and the closed loop transfer function are unknown. 

Based on the assumption, the closed loop transfer function for the step change shown in 

Figure 3-3 is given as in Equation (3.2) [2].   

y(𝑠)

𝑟(𝑠)
=

h𝑐(𝑠)h𝑝(𝑠)

1 +  h𝑐(𝑠)h𝑝(𝑠)
  (3.2) 

Where h𝑐(𝑠) denotes controller’s transfer function,   𝑟(𝑠) represents step change in controller’s 

set-point (reference value), while y(𝑠) denotes the closed system output. Since the controller 

used in YS’s transient response system identification is a simple proportional controller (P-

controller), the controller transfer function is therefore reduced to [2], 

h𝑐(𝑠) = K𝑐   (3.3) 

Substituting and simplifying the Equations (3.2) and (3.3) yields loop transfer function 

expression containing primarily of an accumulated gain, time constant and dead time as given 

in Equation (3.4) [2].  

y(𝑠)

𝑟(𝑠)
=

K𝑐K𝑝e−𝜏𝑝𝑠

1 +  ┬𝑝𝑠 + K𝑐K𝑝e−𝜏𝑠
   (3.4) 
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YS employed analytical method in estimation of the model parameters from the closed loop 

response, by introducing first order Padé-approximation of the dead time given as, [2] 

𝑒−𝜏𝑠 ≅
1 − 0.5τs

1 +  0.5τs
   (3.5) 

The YS then eliminates the delay term in the denominator of the system response transfer-

function by substituting the Equation (3.5) into the denominator of the Equation (3.4), 

resulting into step change response as expressed in Equation 3.6.   

y(𝑠)

𝑟(𝑠)
= (

K𝑐K𝑝

K𝑐K𝑝 + 1
) ∗

(1 +  0.5τ𝑠)e−𝜏𝑠

┬2𝑠2 + 2𝜁┬𝑠 + 1
   (3.6) 

Where the parameters ┬ and ζ denotes the natural frequency and the relative damping (also 

known as damping ratio) of the system.  Their magnitudes depend on the process time 

constant ┬𝑝 and its time delay 𝜏𝑝, and are given as [2] 

┬ = √
┬𝑝𝜏

2(K𝑐K𝑝 + 1)
   (3.7) 

𝜁 =  
┬𝑝 + 𝜏

2
(1− K𝑐K𝑝)

√2┬𝑝𝜏(K𝑐K𝑝 + 1)
   (3.8) 

The value of ζ influences the oscillatory behaviour of the closed-loop system response. When 

0 < ζ < 1, it yields an underdamped response as shown in Figure 3-3. The process model 

parameters are deduced by the back-calculation method using Equations (3.9), (3.10) and 

(3.11) as given below [2],  

𝐾𝑝 =
𝑦∞

𝐾𝑐(𝐴 − 𝑦∞)⁄    (3.9) 

𝜏𝑝 =  
2∆𝑡√(1 − 𝜁𝑟

2) ∗ (1 +  K𝑐K𝑝)

𝜋 [𝜁𝑟√1 +  K𝑐K𝑝 + √𝜁𝑟
2(K𝑐K𝑝 + 1) + K𝑐K𝑝 ]

   (3.10) 

┬𝑝 =  
∆𝑡

𝜋
(𝜁𝑟√1 +  K𝑐K𝑝 +  √𝜁𝑟

2(K𝑐K𝑝 + 1)) (√(1 − 𝜁𝑟
2) ∗ (1 +  K𝑐K𝑝)) (3.11) 

The value of 𝐴 in Equation (3.9) represents the magnitude of the set point applied to the 

feedback system, 𝑦∞ denotes the system response at the steady state, while the value of 𝜁𝑟  can 

be calculated using two different expressions as provided in Equation (3.12) and (3.13). 
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𝜁𝑟 =

−ln [
𝑦∞ −  𝑦𝑚1

𝑦𝑝1 −  𝑦∞
]

[√𝜋2 + {ln (
𝑦∞ − 𝑦𝑚1

𝑦𝑝1 −  𝑦∞
)}

2

]

   
(3.12) 

𝜁𝑟 =

−ln [
𝑦𝑝2 −  𝑦∞

𝑦𝑝1 −  𝑦∞
]

[√4𝜋2 + {ln (
𝑦𝑝2 −  𝑦∞

𝑦𝑝1 −  𝑦∞
)}

2

]

   
(3.13) 

The quantities 𝑦𝑝1, 𝑦𝑝2, 𝑦𝑚1, and 𝑦∞ are directly measured from the step response data as 

illustrated in Figure 3-3. Some closed-loop systems takes longer time to reach the steady 

state. To deal with such situation, YS calculated the steady state response based on the 

magnitude of the two first oscillations as [2], 

𝑦∞ =
𝑦𝑝2𝑦𝑝1 −  𝑦𝑚1

2

𝑦𝑝1 + 𝑦𝑝2 − 2𝑦𝑚1
   (3.14) 

As a result, the YS method derived an expression for the time-domain transient response 

based on step change of controller’s set point as given in Equation (3.15). 

𝑦(𝑡′) = 𝐴
K𝑐K𝑝

K𝑐K𝑝 + 1
∗ [1 − 𝐷𝑒−𝜁𝑡′

┬ sin(𝐸𝑡′ + 𝜙)] (3.15) 

YS defined the parameters in the transient response as, 

𝑡′ = 𝑡 − 𝜏 (3.16) 

𝐷 =  

√1 −  𝜁𝜏
┬

+ 1
4

(𝜏
┬

)2

√1 − 𝜁2
 

(3.17) 

𝐸 =  
√1 − 𝜁2

┬
 (3.18) 

𝜙 =  tan−1 [
┬√1 − 𝜁2

𝜁┬ − 0.5𝜏
] (3.19) 

The YS method estimates, in addition, the time 𝑡𝑘 at which the critical points (maximum 

overshoot and undershoot) of the response takes place, as given by Equation (3.20). 𝑘 is a 

positive integer representing the order at which those critical points appear [2].  
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𝑡𝑘
′ =  

tan−1 (
1 − 𝜁2

𝜁 ) + 𝑘𝜋 − 𝜙

√1 − ζ2 ┬⁄
   (3.20) 

3.1.1.2 Strengths and shortcomings 

The development of YS method proved to influential for closed-loop system identification, as 

it omits the need for trial and error test, and hence less time consuming when it comes to 

controller tuning. However, the performance of the method is worsens when applied to 

processes with large time delay (dead time), truly due to the implementation of low order 

Padé approximation of the delay term [4].  

3.1.2 Jutan and Rodriguez’s method (JR) 

The JR method is basically an extension of the YS method, where by the impact of the Padé 

approximation in the process model is examined and improved by applying higher order 

approximation [4]. 

 

Figure 3-4: Set-point response data curve as defined in [4] 

 

3.1.2.1 Method built-up 

A set point response as shown in Figure 3-4 is produced when a closed-loop feedback system 

is excited with the step change in the reference value. Using Laplace transformation, the 

response is expressed as in Equation (3.4). At this stage, the delay term is extended into 

second order Padé approximation in functional form (Equation (3.21)), which includes 

constants 𝛾1, 𝛾2, and 𝛿, to be fitted by for example nonlinear least squares [4].  

𝑒−𝜏𝑠 ≅
1 + γ1𝑠 + 𝛾2τ2𝑠2

1 + 𝛿𝜏𝑠
   (3.21) 
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The introduction of the expanded delay term expression influences the process model 

parameters to be estimated. As a result, the Equation (3.7), (3.8), (3.9), (3.10), and (3.11) are 

respectively replaced by Equation (3.22), (3.23), (3.24), (3.26), and (3.25) in order to 

accommodate the constant terms within the delay expression (refer to Equation (3.21)) [4].  

┬ = √
𝛿┬𝑝𝜏 + 𝛾2K𝑐K𝑝𝜏2

K𝑐K𝑝 + 1
   (3.22) 

𝜁 =  
┬𝑝 + 𝜏(𝛿+𝛾1K𝑐K𝑝)

√2(1 + K𝑐K𝑝)(┬𝑝𝜏 + 𝛾2K𝑐K𝑝𝜏2)
   (3.23) 

The JR calculates back the process model parameters using the response data 𝑦𝑝1, 

𝑦𝑝2, 𝑦𝑚1, ∆𝑡, and 𝑦∞ from step-change excited into the feedback system as illustrated in 

Figure 3-4. The steady state gain 𝐾𝑝, the process time constant ┬𝑝, and the process time delay 

 𝜏𝑝 can be estimated as given in the below expressions [4]; 

𝐾𝑝 =
|𝑦∞ − 𝑦0|

𝐾𝑐(|𝑅 − 𝑅0| − |𝑦∞ − 𝑦0|)
 (3.24) 

┬𝑝 =  
−(2𝛾2K𝑐K𝑝𝛼𝛽 + 𝛼𝛿) ± √(2𝛾2K𝑐K𝑝𝛼𝛽 + 𝛼𝛿)2 − 4(𝛽2𝛾2K𝑐K𝑝 + 𝛽𝛿)(1 + K𝑐K𝑝)(𝛾2K𝑐K𝑝𝛼2 − ┬2(1 + K𝑐K𝑝))

2(𝛽2𝛾2K𝑐K𝑝 + 𝛽𝛿)
   (3.25) 

𝜏 = 𝛼 + 𝛽┬𝑝 (3.26) 

Where the variables α and β are provide as,  

𝛼 =  
2𝜁┬(1 +  K𝑐K𝑝)

𝛿 + 𝛾1K𝑐K𝑝
   (3.27) 

𝛽 =  −(𝛿 + 𝛾1K𝑐K𝑝)−1 (3.28) 

Moreover, the JR identified the similar expression for system response in time-domain 

(Equation (3.15)) as defined in [2]. However, due to application of an extended Padé 

approximation, the magnitudes of variables 𝐷, 𝐸, and 𝜙, change to [4], 

𝐷 =  √1 −  
2𝛿𝜁𝜏

┬
+ 𝛿2(

𝜏

┬
)2 (3.29) 

𝐸 =  
√1 − 𝜁2

┬
 (3.30) 

𝜙 =  tan−1 [
┬√1 − 𝜁2

𝜁┬ − 𝛿𝜏
] (3.31) 
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3.1.2.2 Strengths and shortcomings 

The JR method expands the system identification for closed-loop to yield improved and 

acceptable parameters also when dealing with processes containing large time delay. 

Introducing the second order Padé approximation matches the behaviour of the closed-loop, 

due to its second-order nature of the response of the feedback system. The method also 

identifies and update the expression for variable 𝐸 due to calculation flaw appeared in the YS 

method [4]. However, solving the higher-order Padé approximation using nonlinear function, 

adds up to calculation complexity as it requires least square fitting to estimate the constant 

parameters in Equation (3.21) [4].  

3.1.3 Jietae Lee’s method (JL) 

The JL method seeks to improve the closed-loop transient response for the process models 

with significant large dead time. It is an extension of the YS method whereby the Padé 

approximation for the time-delay term is replaced with a model reduction technique that 

requires solving nonlinear equation iteratively [5].  

 

 

Figure 3-5: Standard feedback system - block diagram  

 

3.1.3.1 Method built-up 

Consider a second order closed-loop transfer function with time delay as expressed in 

Equation (3.32). A Step change in the controllers (P-controller) reference value gives system 

response as shown in Figure 3-3. 

y(𝑠)

𝑟(𝑠)
=

𝐾(𝑞𝑠 + 1)e−𝜏𝑠

┬2𝑠2 + 2𝜁┬𝑠 + 1
   (3.32) 

The JL method chooses, instead of direct approximation of the delay term, to map and equate 

the dominant poles of the transfer function of the closed-loop model in Equation (3.4) to 

poles of the observed process transfer function as given by Equation (3.32) [5]. A further 

comparison of steady state gains for the both transfer functions gives the magnitude of the 

process gain  K𝑝 as given in [2] by Equation (3.9). It also leads to a trigonometrical 

expression for the error term 𝑒−𝛼𝜏, a new process time-constant expression ┬𝑝 based on the 

process time delay 𝜏𝑝 and damping ratio 𝜁, and as well as new expression for natural 

frequency of the system ┬. The new mathematical expressions are as given in Equation 

(3.33), (3.34) and (3.35) respectively [5].   
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e−ατ =
K𝑐K𝑝

𝛽
[𝛼 sin(𝛽𝜏) − 𝛽 cos(𝛽𝜏)]   (3.33) 

𝜏𝑘+1 =
1

𝛽
[𝑣 + tan−1 (

𝛽e−ατ𝑘

K𝑐K𝑝√𝛼2 + 𝛽2 cos(𝛽𝜏𝑘 − 𝑣)
)]   (3.34) 

┬𝑝 =
1

𝛼
[1 + K𝑐K𝑝e−ατ cos(𝛽𝜏)] (3.35) 

Where the value of quantities α, β and v are given as 

𝛼 =
𝜁

┬
  , 𝛽 =  

√1−𝜁2

┬
 , and  𝑣 = tan−1(𝛽 𝛼⁄ )  (3.36) 

The method opens for different nonlinear iterative approaches, for example a fixed point 

iteration method, to be utilized in solving Equation (3.33), with the first positive value from 

the calculation as preferred magnitude of the process time delay [5].  

3.1.3.2 Strengths and shortcomings 

By introducing the nonlinear iterative approach for the time delay term, the system response 

for the process with large time delay is improved. The method provides therefore an 

alternative to the Padé approximation in estimation of process model parameters. However, 

the approach also adds mathematical complexity due to iterative expressions [5].  

3.1.4 Cheng-Liang Chen’s method (CLC) 

The CLC method is an acknowledgement of JL’s modification of the delay term expression 

involving the iterative nonlinear expression. The main concept is to observe and demonstrate 

the validity of the JL method on underdamped processes. The method makes it possible to 

deduct the system critical data, i.e. phase cross-over frequency 𝜔𝑐 and system’s gain margin 

GM, directly from the closed-loop response rather than using the characterized (standard) 

low-order parametric model [6, 7]. 
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Figure 3-6: Standard underdamped feedback response 

 

3.1.4.1 Method built-up 

Consider a process controlled by proportional controller in a closed-loop system with large 

enough feedback gain (i.e. underdamped closed-loop system). Figure 3-6 shows the response 

to the step change of the controller’s reference value as given in the expression below [6],  

y(𝑠)

𝑟(𝑠)
=

𝐾e−𝜏𝑠

┬2𝑠2 + 2𝜁┬𝑠 + 1
   (3.37) 

Instead of using the closed-loop response (Equation (3.37)) to estimate the parameters for 

process model (i.e. open-loop parametric model), Chen went on defining ultimate gain (gain 

margin, |𝐺𝑐𝑙(𝑖𝜔𝑐)|) and ultimate frequency (cross-over frequency, 𝜔𝑐) for the open loop 

system which are essential in tuning the controller [6]. The phase cross-over frequency is 

estimated by solving this nonlinear expression. 

−𝜏𝜔 𝑐 − tan−1 (
2𝜁┬𝜔 𝑐

√1 − ┬2𝜔 𝑐2
) = −𝜋  (3.38) 

While the magnitude (GM) at this particular frequency is given as 

|𝐺𝑐𝑙(𝑖𝜔𝑐)| =
𝐾

√(1 − ┬2𝜔 𝑐2)2 + (2𝜁┬𝜔 𝑐)2
 (3.39) 

Both the closed-loop (𝐺𝑐𝑙(𝑠)) and the open-loop (𝐺𝑐(𝑠)𝐺𝑝(𝑠)) experience the same ultimate 

frequency [6]. The corresponding open-loop ultimate gain is given as 

|𝐺𝑐(𝑖𝜔𝑐)𝐺𝑝(𝑖𝜔𝑐)| =
|𝐺𝑐𝑙(𝑖𝜔𝑐)|

√1 + 2|𝐺𝑐𝑙(𝑖𝜔𝑐)| + |𝐺𝑐𝑙(𝑖𝜔𝑐)|2
 (3.40) 
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Applying reciprocal on the Equation (3.40) equals to the gain margin for the system with the 

controller gain 𝐾𝑐, thus giving the ultimate gain for the feedback controller as [6], 

𝐾𝑐𝑢 = 𝐾𝑐𝐺𝑀 (3.41) 

The process model parameters in the Equation (3.1) are thereafter identified from the resulted 

ultimate frequency and closed-loop controller gain as follows, 

┬𝑝 =
1

𝜔𝑢

√𝐾𝑐𝑢
2𝐾𝑝

2 − 1 (3.42) 

𝜏 =
1

𝜔𝑢
[𝜋 − tan−1(┬𝑝𝜔𝑢)]  (3.43) 

While the value of 𝐾𝑝 can be estimated as proposed in [2]. I addition to that, Chen utilized the 

measurable quantities 𝑦𝑝1, 𝑦𝑚1, 𝑦𝑝2 and  𝑦∞ from the underdamped step-change response of 

the closed-loop (Figure 3-5) in estimation of the parameters (𝐾, ┬, 𝜁) for the feedback transfer 

function as follows [6], 

For closed-loop feedback gain,  

𝐾 =
𝑦∞

𝐴⁄    
(3.44) 

expression for natural frequency is given as, 

┬ =
(𝑡𝑚1 − 𝑡𝑝1)√1 − 𝜁2

𝜋
  

(3.45) 

and the damping ratio can be estimated as, 

𝜁 =  
− ln(𝐻)

√π2 + (ln 𝐻)2
   

(3.46) 

where the magnitude of the variable H is estimated from the critical points in the response as 

given in below[6], 

𝐻 =  
1

3
[
𝑦𝑝1 − 𝑦∞

𝑦∞
+

𝑦∞ − 𝑦𝑚1

𝑦𝑝1 − 𝑦∞
+

𝑦𝑝2 − 𝑦∞

𝑦∞ − 𝑦𝑚1
]   (3.47) 

The expression involves the steady state response value for the system (𝑦∞). However, 

waiting for systems to reach the steady state is unnecessary, as the value can be calculated 

using YS’s Equation (3.14). Thus, less time consuming also when processes with long time 

constants are concerned [6].  

3.1.4.2 Strength and Shortcoming 

The CLC method eliminates the need for low order approximation of the delay term in the 

feedback transfer function. However, it adds difficulties as it involves solving non-linear 

equation. Direct determination of the ultimate gain and phase cross-over frequency, however, 

simplify the concept of on-line tuning since the control parameters can be easily tuned using 

Nichol’s method [6, 7].  
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3.1.5 Mamat and Fleming’s method (MF) 

Similar to the CLC, the MF method’s main concept is based on determination of the ultimate 

gain and phase cross-over frequency of the open-loop system directly from the closed-loop 

system response [8]. However, the MF uses a widely used PID type (PI-controller) in a 

closed-loop with the process to be identified. The application of the PI-controller eliminates 

or minimizes the steady-state offset occurring when P-controller is used during the step-

change experimentation [8].  

3.1.5.1 Method built-up 

Consider the closed-loop feedback system as in Figure 3-5 and its corresponding response to 

a step-change in the PI-controller’s set point when the controller’s parameters 𝐾𝑐 and 𝑇 𝑖 are 

wisely chosen such that the system possesses underdamped behaviour as shown in Figure 

3-6. The controller’s transfer function, the process model, and the closed-loop transfer 

function are as given in Equation (3.48), (3.1) and (3.37) respectively [8]. 

ℎ𝑐(s) = K𝑐(1 +
1

𝑇𝑖𝑠
)   (3.48) 

The values of parameters of the closed–loop transfer function are estimated in time domain 

using the following expressions.  

┬ =
(𝑡𝑝2 − 𝑡𝑝1)√1 − 𝜁2

2𝜋
  (3.49) 

𝜁 =  √

(−
1

2𝜋 ln [
𝑦𝑝2 − 𝑦∞

𝑦𝑝1 − 𝑦∞
])

2

1 + (−
1

2𝜋 ln [
𝑦𝑝2 − 𝑦∞

𝑦𝑝1 − 𝑦∞
])

2   (3.50) 

𝜏 =
𝑆𝑐

𝑦∞
− 2𝜁┬ (3.51) 

Where the quantity 𝑆𝑐 can be solved analytically using integral Equation (3.52). As for the 

feedback gain K, the MF’s method makes the use of Equation (3.44) given by [6]. 

𝑆𝑐 = ∫ [𝑦∞ − 𝑦(𝑡)]
∞

0

dt   (3.52) 

The MF method determines the frequency response of the feedback system using the time-

domain parameters 𝐾, 𝜁, 𝜏, and ┬  estimated above. At this stage, the ultimate gain and the 

phase crossover frequency of closed-loop system are determined. To obtain the dynamic of 

the process alone 𝐻𝑝(𝑗𝜔), the MF then eliminates the dynamics of the PI-controller 𝐻𝑐(𝑗𝜔) 

from the closed-loop dynamics 𝐻𝑐𝑙(𝑗𝜔) [8]. At the phase crossover frequency 𝜔𝑐, which is 

the ultimate frequency both for the open and closed-loop transfer function, the open-loop gain 

can therefore be given as,  
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|𝐻𝑐𝐻𝑝(𝑖𝜔𝑐)| =
|𝐻𝑐𝑙(𝑖𝜔𝑐)|

1 + |𝐻𝑐𝑙(𝑖𝜔𝑐)|
 (3.53) 

whereby the ultimate frequency (phase cross-over frequency 𝜔𝑐 ), can be determined by 

solving a similar nonlinear expression given as Equation (3.54). For the closed-loop 

dynamics, its corresponding ultimate gain (|𝐻𝑐𝑙(𝑖𝜔𝑐)|, the magnitude at 𝜔𝑐) is given by 

Equation (3.39) [8].  

𝜏𝜔 𝑐 + tan−1 (
2𝜁┬𝜔 𝑐

1 − ┬2𝜔 𝑐2
) = 𝜋  (3.54) 

The process model parameters ┬𝑝, 𝜏𝑝, and 𝐾𝑝 are then back-calculated using the given 

expressions below 

┬𝑝 =
1

𝜔𝑐

√
𝐾𝑐

2𝐾𝑝
2(1 + 𝑇𝑖

2𝜔𝑐
2) − |𝐻𝑐𝑙(𝑖𝜔𝑐)|2𝑇𝑖

2𝜔𝑐
2

|𝐻𝑐𝑙(𝑖𝜔𝑐)|𝜔𝑐
2𝑇𝑖

 (3.55) 

𝜏𝑝 =
1

𝜔𝑐
[tan−1(𝑇𝑖𝜔𝑐) + tan−1 (

1

┬𝜔𝑐
)]  (3.56) 

𝐾𝑝 =
𝑇𝑖

𝐾𝑐𝑆𝑐
𝑦∞ (3.57) 

 

3.1.5.2 Strengths and shortcoming 

Using the PI-controller during transient response test experiment improves the response of 

the identified process model due to elimination of the steady-state offset, an error that occurs 

when P-controller is used instead. However, the PI-controller increases the complexity of the 

method due to the increased non-linear parameter’s expressions [8]. During testing, the 

parameters for PI-controller must be wisely chosen such that feedback systems exhibit 

oscillatory behaviour. Choosing the optimal parameter values requires therefore prior 

knowledge or/and experience with the process in question [8].   

3.1.6 Jahanshahi and Skogestad’s method (JS) 

The JS method extends the concept of step-change transient response system identification to 

also include higher-order process models dynamics, i.e. the models consisting of one or more 

zeros and multiple poles in transfer function. To minimize the identification complexity 

associated with higher-order models (due to increased number of parameters to be estimated), 

the higher-order models are truncated using square root method and so reduced into second-

order process model [9].  
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Figure 3-7: Experimental closed-loop step response for stabilized 

 

If the original process model contains both stable and unstable poles (poles located on the 

right side of the complex plane), the unstable poles are preferred since the poles have more 

contribution in the process dynamic based on Henkel singular value approach [9]. JS controls 

the reduced process model with P-controller to form a feedback system ready for online step-

change experimentation [9].  

3.1.6.1 Method built-up 

Consider a typical unstable second-order transfer function model containing a single zero, 

two poles, and zero time delay as in Equation (3.58),  

h𝑝(𝑠) =
𝑏1𝑠 + 𝑏0

𝑠2 − 𝑎1𝑠 + 𝑎0
  (3.58) 

where 𝑎1 and 𝑎0 > 0. A P-controller is connected to the process to form a feedback system 

with the closed-loop transfer function as given in Equation (3.59) [9]. 

y(𝑠)

𝑟(𝑠)
=

𝐾𝑐0(𝑏1𝑠 + 𝑏0)

𝑠2 + (−𝑎1 + 𝐾𝑐0𝑏1)𝑠 + (𝑎0 + 𝐾𝑐0𝑏0)
  (3.59) 

The response is compared with the typical closed-loop transfer function as given in Equation 

(3.60) whereby the parameters 𝐾, 𝜁, 𝜏, and ┬  are the estimated from the measurable response 

data ∆𝑦𝑝, ∆𝑦𝑢, ∆𝑦𝑠, ∆𝑦∞, 𝑡𝑝 and 𝑡𝑝 as illustrated in Figure 3-8.  

y(𝑠)

𝑟(𝑠)
=

𝐾2(1 + ┬𝑧𝑠)

┬2𝑠2 + 2𝜁┬𝑠 + 1
   (3.60) 

At this stage, the JS method applies back calculation approach to determine the steady-state 

gain 𝐾𝑝 and other parameters of the process model as given below [9], 
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𝐾𝑝 =
∆𝑦∞

𝐾𝑐0|∆𝑦𝑠 − ∆𝑦∞|
 (3.61) 

𝑎0 =  
1

┬2(1 + 𝐾𝑐0𝐾𝑝)
 (3.62) 

𝑏0 = 𝐾𝑝𝑎0 (3.63) 

𝑏1 =  
𝐾2┬𝑧

𝐾𝑐0┬2
 (3.64) 

𝑎1 =  
−2𝜁

┬
+ 𝐾𝑐0𝑏1 (3.65) 

The JS went on defining the time-domain step-change response as similar to Equation (3.66) 

given in [2] where the expression for the damping ratio ζ and the quantity E are identical to 

Equation (3.17) and Equation (3.18) respectively. 

𝑦(𝑡) = ∆𝑦𝑠𝐾2 [1 + 𝐷𝑒−𝜁𝑡
┬ sin(𝐸𝑡 + 𝜙)] (3.66) 

However, the phase shift ϕ and quantity D are influenced by presence of pole in the open-

loop transfer function and are given as,  

𝐷 =  

√1 −
2𝜁┬𝑧

┬ + (
┬𝑧

┬ )2

√1 − 𝜁2
 

(3.67) 

ϕ = tan−1 [
┬√1 − 𝜁2

𝜁┬ − ┬𝑧
]  (3.68) 

The rest of the parameters ┬,  𝐾𝑝 and ┬𝑧 are determined using the following expressions [9] 

┬ =
𝑡𝑢√1 − 𝜁2

𝜋
 (3.69) 

𝐾2 =
∆𝑦∞

∆𝑦𝑠
 (3.70) 

┬𝑧 = 𝜁┬ + √𝜁2┬2 − ┬2[1 − 𝐷2(1 − 𝜁2)] (3.71) 

3.1.6.2 Strengths and shortcoming 

The method paves the way for identification of high-order process models regardless of the 

dynamic nature (stability) of the process. However, the method has inherited some of the 

flaws in earlier method [9, 10].  



 3 Closed-Loop Transient Step-change Response SID 

41 

3.1.7 Dalen and Di Ruscio’s method (DR) 

The DR method is based on investigation on the creditability and validity of the JS’s 

proposed method in practical application. Their assessment resulted into pointing out number 

of flaws, and suggested some possible changes aimed at improving the JS method [10].  

 

Figure 3-8: Closed loop response to set-point step change [10] 

 

The study inspired the authors to come up with the DR method proposal for identification of 

second order process transfer-function model with a single zero as given in Equation (3.72). 

3.1.7.1 Method built-up 

Consider a closed-loop system consisting of a second order process model controlled by P-

controller with large enough gain 𝐾𝑐.  

h𝑝(𝑠) =
𝑏1𝑠 + 𝑏0

𝑠2 + 𝑎1𝑠 + 𝑎0
  (3.72) 

When a step change in the controller’s reference value is excited into the feedback loop, the 

system responds as shown in Figure 3-8 and its closed-loop transient response in time domain 

is given as, [10] 

𝑦(𝑡) = 𝐾𝑅[1 − 𝑒
−

𝜁
┬

𝑡
( cos(𝜔𝑡) + 𝑐 sin(𝜔𝑡))] (3.73) 

Where ω is angular velocity which can be estimated as 

𝜔 =
√1 − 𝜁2

┬
 (3.74) 

While the value of quantity c in Equation (3.73) is based on time duration for the response to 

reach the first peak 𝑡𝑝, and is given as  
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𝑐 =
cos(𝑡𝑝𝜔) +

𝑒
𝑡𝑝𝜁

┬ (𝑦𝑝 − 𝑅𝐾)
𝑅𝐾

sin(𝑡𝑝𝜔)
 

(3.75) 

Whereby the value of  𝑡𝑝 is estimated as,  

𝑡𝑝 =

𝜋
2 + tan−1 (

𝑐𝜁 + ┬𝜔
𝜁 − 𝑐┬𝜔)

𝜔
 

(3.76) 

Even though the proposed algorithm is primarily time-domain based response, the DR 

method estimates also the zero ┬𝑧 in the open-loop transfer function as,  

┬𝑧 = 𝜁┬ − 𝑐┬√1 − 𝜁2 (3.77) 

┬𝑧 = 𝜁┬ − 𝑐┬2𝜔 (3.78) 

whereby the relative damping ζ is estimated using Equation (3.12) [10].  

3.1.7.2 Strengths and shortcoming 

The DR method highlights the limitation of the JS method, and suggests possible 

improvement of the method, as well as providing a simplified method with non-complex 

solution, which estimate transient response of process directly into time-domain. However, 

the method is meant for high (second and/or higher) order process models [10].  

3.1.8 Dalen and Ruscio’s method 1 (DR1) 

The DR1 is primarily identical to the DR method. The only difference is on the value of the 

step response of the process model in time-domain (Equation (3.73)), whereby a different 

value of variable c is suggested as, 

𝑐 =
𝜁 + ┬𝜔 tan(𝑡𝑝𝜔)

┬𝜔 − 𝜁 tan(𝑡𝑝𝜔)
 (3.79) 

The DR1 algorithm is however, more prone to noise compared to the DR [10]  

 

3.2 Method analysis and Simulation Study 

This section presents individual and sequential evaluation of the algorithms and performance 

of the methods presented in chapter 3.1. To start with, method’s mathematical expressions are 

first weighed up against the mathematical development techniques (formula deriving 

techniques), and thereafter validated against findings in the proceeding methods.  

To evaluate the methods, a simulation study using numerical examples is conducted for each 

method. The objective is to determine methods’ validity, performance and robustness of the 

response under the step change experimentation. Five different values of P-controller gain 𝐾𝑐 
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are used during simulation to observe 𝐾𝑐 sensitivity on process model parameters to be 

identified. The simulation study is performed in MATLAB software using the programming 

codes available in Appendix B and C.  

3.2.1 Simulated examples 

For this phase of simulation, three non-noisy, different numerical examples (representing 

systems of different dynamics) are used, particularly to evaluate the identified parameters. 

More examples, also with added measurement noise, are to be simulated later during online 

tuning of PID controller in section 3.3.  

During simulation, the step response identification methods YS, JR, JL, CLC and MF are 

used to calculate first order approximation of Equation (3.80), (3.81) and (3.82). While JS, 

JSDR, DR and DR1 are applied to develop second order approximation of the similar 

examples. Additionally, the half-rule model reduction technique discussed in [32] and 

denoted by HR (or HF in some cases), is used to verify the first-order approximation method 

results.  

Example 1 

Equation (3.80) represents a third-order process model containing three poles (𝑇1=2, 𝑇2=1 

and 𝑇3=0.5) plus time delay (𝜏 = 1). The model has a dominant pole 𝑇1 (i.e. 𝑇1 > 𝜏). The 

example is identical to example 1 in [2]. 

𝐻𝑝(𝑠) =
𝑒−𝑠

(2𝑠 + 1)(𝑠 + 1)(0.5𝑠 + 1)
 (3.80) 

Example 2 

Equation (3.81) represents a firth-order process model containing five identical poles of T=1, 

with no time delay (i.e. 𝜏 =0). The model will provide indication of algorithm performance 

when applied to higher order process. It is identical to example 2 in [2]. 

𝐻𝑝(𝑠) =
1

(𝑠 + 1)5
 (3.81) 

Example 3 

Equation (3.82) represents a third-order process model containing one dominant 𝑇1=2 and 

two identical poles 𝑇2=𝑇3=1, plus a time delay of 𝜏 =3 which is larger than the dominant pole 

.It is identical to example 3 in [2], and particularly chosen to reveal the performance the 

algorithms for processes with significant large dead time. 

𝐻𝑝(𝑠) =
𝑒−3𝑠

(𝑠 + 1)2(2𝑠 + 1)
 (3.82) 

3.2.2 Choosing 𝐾𝑐 and 𝑇𝑖 for step change experimentation/simulation 

As condition for applicability, the algorithms require oscillatory, but stable closed-loop 

system response [2, 4, 6, 8-10]. It follows that the values of 𝐾𝑐 and 𝑇𝑖 must be carefully 

chosen to ensure that damping ratio interval 0 < 𝜁 < 1 is maintained during set-point test. 
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This underline the importance of understanding the process behaviour prior to 

experimentation. In most practical cases, the process dynamics and the suitable value of 𝐾𝑐  

are not known in advance. It may therefore takes several trial and error attempts before 

landing in suitable value of 𝐾𝑐  and 𝑇𝑖 [33].  

3.2.3 Step Response SID for first order processes  

In order to have consistent study, each example is simulated using the same 𝐾𝑐 values for all 

the five algorithms to be investigated as shown in Table 3.1.  

 

Table 3.1: 𝐾𝑐 values used for simulation 

Example 𝐾𝑐1 𝐾𝑐2 𝐾𝑐3 𝐾𝑐4 𝐾𝑐5 

1 2.00 1.50 1.00 0.75 0.50 

2 2.00 1.50 1.00 0.75 0.50 

3 1.25 1.00 0.75 0.50 0.25 

 

3.2.3.1 YS method 

3.2.3.1.1 Method Analysis 

In their calculation for the ζ of closed-loop response (Equation 7 in [2]), YS ignored the 

possibility of having two values for the ζ as ± sign on the denominator is left out as pointed in 

[4]. Additionally, YS provides two separate expressions for ζ, Equation (3.12) and (3.13) 

based on critical points (𝑦𝑝1, 𝑡𝑝1, 𝑦𝑚1, 𝑡𝑚1, 𝑦𝑝2 and  𝑦∞) obtained from the step response of 

the closed-loop (Figure 3-3), and recommends the average of the two equations as applicable 

value of ζ. However, the Equation (3.12) is found to give better-signal- to noise properties as 

outlined in [4]. 

The process model gain 𝐾𝑝 given by [2] does not consider responses with non-zero initial 

values (i.e. for 𝑦(0) ≠ 0), neither the dynamic set-point change 𝑅, applied before the system 

reaches steady state due to the previous step change, 𝑅0 [4]. An alternative expression to 

incorporate the dynamic set-point change in both directions, i.e. increment and decrement 

change, is proposed as Equation (3.24) in [4]. 

YS developed Equation (3.10) and (3.11) for respective back calculation of 𝜏𝑝 and ┬𝑝 [2] 

respectively. Based on their derivation technique, the expressions are incorrect and should 

rather be given as below; [4, 10] 

┬𝑝 =
∆𝑡𝛽1𝛽2

𝜋
  and  𝜏𝑝 =

2∆𝑡𝛽2

𝜋𝛽1
 (3.83) 

Where 𝛽1 and 𝛽2 are given as 

𝛽1 = 𝜁√𝐾𝑐𝐾𝑚 + 1 + √𝜁2(𝐾𝑐𝐾𝑚 + 1) − 1 + 𝐾𝑐𝐾𝑚  and  𝛽2 = √(1 − 𝜁2)(𝐾𝑐𝐾𝑚 + 1) (3.84) 
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As consequence, the expression would yield complex number solutions for ┬𝑝, for all values 

of ζ such that the open-loop gain K is, [7]. 

𝐾 <
1 − 𝜁2

1 + 𝜁2
 

Finally, the YS’s time-domain based transient estimation 𝑦(𝑡) (Equation (A-1) in [2]), 

contains a wrong expression for E. The correct value of E should read as provided in [7, 10] 

as  

𝐸 =
√1 − 𝜁2

┬
 

According to [2], the method’s applicability is restricted to process with no significant dead 

time due to low order approximation of delay term (Equation (3.5)). JR tested the validity of 

the claim by simulation with extended delay term (Equation 3.21) [4].  

3.2.3.1.2 Simulation Results  

Example 1  

Figure 3-9 shows three different step responses of the closed-loop made of P-controller and 

the original third-order process model Equation (3.80) at left. The corresponding step 

response of first-order model approximated using YS algorithm is given on right graph of the 

same figure. Five various controller gain values (refer to Table 3.1) are used to investigate the 

algorithm’s performance and sensitivity on various 𝐾𝑐, as presented in Table 3.2.  

 

 

Figure 3-9: Third-order original process and its first-order approx. by YS - Example 1 

 

The 𝐾𝑐 values chosen were within the boundary for underdamped stable process. The higher 

the value, the bigger the oscillation that counteract to higher ┬𝑝 and higher 𝜏𝑝. Comparing to 

half-rule (HR) based model approximation, the algorithm aligned toward the HR when the 

magnitude of the overshoot decreased.  
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Table 3.2: Process model parameters by YS – example 1  

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 0.9987 3.56 2.51 

1.50 1 3.382 2.42 

1.00 1 3.181 2.25 

0.75 1 3.03 2.08 

0.50 1 3.012 1.94 

HR 1 2.5 2.0 

 

However, for this particular process, the value of ┬𝑝 converged towards 3.012, while the 

magnitude of 𝜏𝑝 kept on decreasing until at lowest value 𝐾𝑐= 0.14 before which the algorithm 

failed to gives solutions. The highest values of 𝐾𝑐 before which the method produced 

unrealistic and non-number solutions was observed to be at 𝐾𝑐 = 3.07, with ┬𝑝 and 𝜏𝑝 equals 

to 4.12 and 2.67 respectively. 

Example 2 

Similar values of 𝐾𝑐 as used for this firth order process model, as given by Equation (3.81). 

Figure 3-10 shows the step response of the feedback system containing the original process 

on the left graph, and its corresponding approximated first-order model response using YS 

method. 

 

 

Figure 3-10: Firth-order original process and its first-order approx. by YS - Example 2 

 

The chosen 𝐾𝑐 values were inside the desired ζ limit. Again, as the 𝐾𝑐 decreased, the 

estimated time constant ┬𝑝 moved closer to the HR’s value, while the effective delay 𝜏𝑝 

deviated more from the HR’s value, as shown in the Table 3.3.  
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Table 3.3: Process model parameters by YS – example 2 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 1 4.114 3.19 

1.50 1 3.814 3.14 

1.00 1 3.495 2.99 

0.75 1 3.314 2.84 

0.50 1 3.188 2.66 

HR 1 1.5 3.5 

 

However, with YS algorithm for this particular process, the values of ┬𝑝 and 𝜏𝑝 converged 

towards 2.941 and 1.91 respectively at the lowest value of 𝐾𝑐 = 0.08 before the algorithm 

failed to produce solutions. The highest values of 𝐾𝑐 before which the method gave 

unrealistic and non-number solutions was observed to be at 𝐾𝑐 = 2.88, with ┬𝑝 and 𝜏𝑝 

corresponding to 4.581 and 3.18 respectively. 

Example 3  

Five various 𝐾𝑐 values (1.25, 1.0, 0.75, 0.5 and 0.25) are used to estimate first-order model 

from the process model given by Equation (3.82). Figure 3-11 shows the step response of the 

closed-loop system consisting of the original model at left, and its corresponding step 

response of the first-order approximation at right. 

 

 

Figure 3-11: Third-order original process and its first-order approx. by YS - Example 3 
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As illustrated in Figure 3-11, high values of 𝐾𝑐 were associated with bigger oscillations (see 

Figure 3-11) which in turn gave increasing magnitude of model parameters (┬𝑝 and 𝜏𝑝) as 

seen in Table 3.4. In respect to HR, the algorithm aligned the model toward the HR when low 

values of 𝐾𝑐 were applied. However, effective delay 𝜏𝑝 deviated more from the HR’s value as 

the 𝐾𝑐 kept decreasing. It should be noted that the 𝐾𝑐 values chosen were within the boundary 

for underdamped stable process.  

 

Table 3.4: Process model parameters by YS – example 3 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

1.25 1 4.09 4.9 

1.00 1.016 3.843 4.67 

0.75 1 3.763 4.38 

0.50 1.01 3.579 4.17 

0.25 1 3.555 3.17 

HR 1 2.5 4.5 

 

Using low 𝐾𝑐 in this example, the estimated model parameters ┬𝑝 and 𝜏𝑝 converged towards 

3.547 and 2.85 respectively, with 𝐾𝑐 = 0.17 as the lowest before failed to produce solutions. 

On the other hand, the highest values of 𝐾𝑐 before which the method gave unrealistic or non-

number solutions was observed to be at 𝐾𝑐 = 1.72, with ┬𝑝 and 𝜏𝑝 corresponding to 4.413 

and 5.11 respectively.  

 

3.2.3.2 JR method  

3.2.3.2.1 Method Analysis 

JR used Marquardt optimization to map and correlate values of the constants γ1, γ2, and δ for 

the second order delay term approximation (Equation (3.21)) as -0.6143, 0.1247, and 0.3866 

respectively [4]. The 𝛾1 in Equation 27 in [4] increases sensitivity of the ┬𝑝 and 𝜏𝑝 toward 

low values of the open-loop gain (𝐾 = 𝐾𝑐𝐾𝑝). When 𝐾 ≪ 1 the negative solution from the 

square root in Equation (3.25) is preferred in order to avoid unusually low  ┬𝑝 and hence 

negative 𝜏𝑝. [4]. 

The JR method is applicable solely to stable but oscillatory closed-loop systems containing at 

least two overshoots with peak values 𝑦𝑝1 and 𝑦𝑝2 as shown in Figure 3-4, meaning that 

𝐾𝑐 shall always be high enough to allow oscillations [4].  

3.2.3.2.2 Simulation Results 

Example 1  
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Using the JR algorithm, the third-order process model in Equation (3.80) is reduced into first-

order with four different P-controller gain values as outlined in Table 3.1. The step response 

for the original and the approximated model is as shown in Figure 3-12.  

 

 

Figure 3-12: Third-order original process and its first-order approx. by JR - Example 1 

 

Again the higher the 𝐾𝑐 value, the bigger the oscillation that counteracted to higher ┬𝑝 and 

higher 𝜏𝑝. A similar tendency that was also observed with YS algorithm. The estimated 

model parameters moved toward HR’s based model approximation, when the magnitude of 

the overshoot decreased, i.e. with low 𝐾𝑐 values. 

 

Table 3.5: Process model parameters by JR – example 1 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 0.9987 3.119 2.45 

1.50 1 2.928 2.54 

1.00 1 2.658 2.64 

0.75 1 2.498 2.69 

0.50 1 5.2933 -34.24 

HR 1 2.5 2.0 

 

For this particular process, the values of ┬𝑝 and 𝜏𝑝 converged towards 2.416 and 2.72 

respectively at the lowest value of 𝐾𝑐= 0.63 before the algorithm gave negative effective 

delay solutions. The highest registered value of 𝐾𝑐 before which the algorithm produced non-

number solutions was observed to be at 𝐾𝑐 = 3.07, with ┬𝑝 and 𝜏𝑝 equals 3.443 and 2.29 

respectively. 
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Example 2  

Figure 3-13 shows the step response (on the left graph) of the original process given by 

Equation (3.81) and its corresponding approximated first-order model results using JR 

method. The four 𝐾𝑐 values used for estimation are as listed in Table 3.1. 

 

 

Figure 3-13: Firth-order original process and its first-order approx. by JR - Example 2 

 

As seen in Table 3.6, the dominant time constant ┬𝑝 of estimated first-order process, 

increased with increasing value of 𝐾𝑐, contrary to the estimated effective process dead time 

which decreased with increasing size of 𝐾𝑐.  

 

Table 3.6: Process model parameters by JR – example 2 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 1 3.519 3.08 

1.50 1 3.197 3.25 

1.00 1 2.788 3.46 

0.75 1 2.56 3.66 

0.50 1 5.367 -35.27 

HR 1 1.5 3.5 

 

However, the estimated parameters moved closer toward the HR’s calculated values as the 

oscillations got smaller due to decreasing value of 𝐾𝑐. The value of ┬𝑝 and 𝜏𝑝 converged 

towards 2.419 and 3.77 respectively at the lowest value 𝐾𝑐 = 0.63 before the algorithm gave 

negative effective time delay and/or unrealistic solutions. While the highest registered 
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𝐾𝑐 before which the algorithm gave non-number solutions was observed to be at 𝐾𝑐 = 2.88 

with ┬𝑝 and 𝜏𝑝 equals 4.042 and 2.92 respectively. 

Example 3  

The JR algorithm is used to estimate a first-order model approximation from the originally 

third-ordered process model with significant dead time given by Equation (3.82). Figure 3-14 

shows step response of the closed-loop system and its approximated first-order model 

respectively.  

 

 

Figure 3-14: Third-order original process and its first-order approx. by JR - Example 3 

 

As presented in Table 3.7, the dominant time constant ┬𝑝 of estimated first-order process 

increased with increasing value of 𝐾𝑐 hence experienced more deviation from the 

corresponding HR’s value. While on the other hand, the identified effective process dead 

time decreased with increasing magnitude of 𝐾𝑐 which made it to move closer toward the 

HR’s calculated values. 

 

Table 3.7: Process model parameters by JR – example 3 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

1.25 1 2.985 5.13 

1.00 1.016 2.715 5.24 

0.75 1 2.548 5.55 

0.50 1 5.2426 -35.52 

0.25 1 -0.0544 13.8693 

HR 1 2.5 4.5 
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The value of ┬𝑝 and 𝜏𝑝 converged towards 2.397 and 5.69 respectively at the lowest value of 

𝐾𝑐= 0.63 before reaching negative time delay and/or negative time constant. The highest 

registered 𝐾𝑐 before which the algorithm gave non-number solutions was observed to be 

at 𝐾𝑐 = 1.72, with ┬𝑝 and 𝜏𝑝 equals 3.307 and 4.91 respectively. 

 

3.2.3.3 JL method  

3.2.3.3.1 Method Analysis 

JL mapped dominant poles of the closed-loop transfer function to the corresponding poles in 

observed step response of the underdamped system response (refer to Equation (3.32) and 

Figure 3-4) [5]. Based on pole matching, JL derived an iterative, non-linear expression for the 

process time delay 𝜏𝑝 given as Equation (3.33). JL recommends fewest iteration possible, 

mostly about five iterations, for faster and sufficient results [5]. He also suggested initial 

value for the 𝜏𝑝 (refer to Equation 12 in [5]), though with no explanation. However, [7] 

suggests the observable delay in closed-loop response as alternative and possibly better 

starting point, based on his findings. 

The process gain 𝐾𝑝 which is inherited from [2] cannot deal with non-zero initial response 

(i.e. for 𝑦(0) ≠ 0), neither the dynamic set-point change R, as highlighted in [4] and in 

3.2.3.1.1 section. An alternative expression to incorporate the dynamic set-point change in 

both directions (increment and decrement) as well as non-zero initial response is given as 

Equation (3.24) [4]. 

The method requires an oscillatory closed-loop system containing at least one overshoot with 

peak value 𝑦𝑝1 and one undershoot 𝑦𝑚1 as shown in Figure 3-6, meaning that 𝐾𝑐 should be 

chosen large enough to allow oscillations [5].  

3.2.3.3.2 Simulation results 

Example 1 

In this example, a first-order process model approximation from the third-order model given 

as Equation (3.80) is produced using JL algorithm with four different values of 𝐾𝑐 as given in 

the fourth row in Table 3.1. Figure 3-15 show the step response of the P-controlled feedback 

system composed of the third-order model at left, and its corresponding step response of the 

estimated first-order model at right.  
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Figure 3-15: Third-order original process and its first-order approx. by JL - Example 1 

 

Similar tendency was observed as shown in Table 3.8 as the dominant time constant ┬𝑝 of 

estimated first-order process increased with increasing value of 𝐾𝑐, hence experienced more 

deviation from the corresponding HR’s value. The effective dead time, however, decreased 

with increasing magnitude of 𝐾𝑐 while at the same time got closer the HR’s calculated 𝜏𝑝. 

 

Table 3.8: Process model parameters by JL – example 1 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 0.9987 3.114 2.24 

1.50 1 3.031 2.31 

1.00 1 2.879 2.4 

0.75 1 2.726 2.42 

0.25 1 2.656 2.58 

HR 1 2.5 2.0 

 

The values of ┬𝑝 and 𝜏𝑝 converged towards 2.44 and 3.15 respectively at the lowest value of 

𝐾𝑐 = 0.14 before the algorithm failed to gives solutions. The highest registered value of 

𝐾𝑐 before which the algorithm gave non-number solutions was observed to be at 𝐾𝑐 = 3.08, 

with ┬𝑝 and 𝜏𝑝 equals to 3.153 and 2.06 respectively. 

Example 2 

The performance of JL algorithm is further tested in reducing this firth-order process model 

given by Equation (3.81) into lowest order model using similar P-controller gains as in 

example 1. The controller together with the original model forms a closed-loop system with 
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step response as shown in Figure 3-16 at left, with corresponding step response of the its first-

order approximation at right.  

 

 

Figure 3-16: Firth-order original process and its first-order approx. by JL - Example 2 

 

Table 3.9 shows the estimated time constant ┬𝑝, and the effecting time delay 𝜏𝑝 of the 

resulted model, whereby the deviation between the parameters obtained from JL and HR 

decreased with lower values of 𝐾𝑐. While ┬𝑝 increased with increasing 𝐾𝑐. The magnitude of 

𝜏𝑝 was registered to move in the opposite direction.  

 

Table 3.9: Process model parameters by JL – example 2 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 1 3.444 2.81 

1.50 1 3.24 2.92 

1.00 1 2.975 3.08 

0.75 1 2.79 3.17 

0.50 1 2.611 3.37 

HR 1 1.5 3.5 

 

Generally, The values of ┬𝑝 and 𝜏𝑝 converged towards 2.033 and 4.31 respectively at the 

lowest value of 𝐾𝑐 = 0.08 before the algorithm failed to give solutions. The highest 

registered value of 𝐾𝑐 before which the algorithm gives non-number solutions was observed 

to be 𝐾𝑐=2.88, with ┬𝑝 and 𝜏𝑝 corresponding to 3.704 and 2.63 respectively. 

Example 3 
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Figure 3-17 shows the step response for the closed-loop system composed of a P-controller 

and the process model Equation (3.82), and its corresponding step response of the 

approximated first-order model using JL method.  

 

 

Figure 3-17: Third-order original process and its first-order approx. by JL - Example 3 

 

When the 𝐾𝑐 increased, the magnitude of 𝜏𝑝 decreased and aligned more toward the HR 

calculated parameters τ = 4.5. On the contrary, the ┬𝑝 experienced lowest deviation from 

HR’s calculated values when 𝐾𝑐 moved toward 0.75, but at the same time increased its 

magnitude when 𝐾𝑐 increased.  

 

Table 3.10: Process model parameters by JL – example 3 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

1.25 1 2.818 4.55 

1.00 1.016 2.684 4.56 

0.75 1 2.72 4.67 

0.50 1 2.674 4.77 

0.25 1 2.519 4.94 

HR 1 2.5 4.5 

 

 

The values of ┬𝑝 and 𝜏𝑝 finally converged to around 2.467 and 5.07 respectively at the 

lowest value of 𝐾𝑐 = 0.17 before the algorithm became unable to produce feasible solutions. 

The highest registered value of 𝐾𝑐 before which the algorithm gave non-number solutions 

was observed to be at 𝐾𝑐 = 1.72, with ┬𝑝 and 𝜏𝑝 equals 2.867 and 4.46 respectively. 
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3.2.3.4 CLC method  

3.2.3.4.1 Method Analysis 

CLC utilized the similarity of the ultimate frequency 𝜔𝑐 between the closed-loop transfer 

function 𝐺𝑐𝑙 and the open-loop transfer function 𝐺𝑐𝐺𝑝. The CLC went on further to relate the 

ultimate gains 𝐺𝑐𝑙 and 𝐺𝑐𝐺𝑝 for the two loops (open and closed) to form the ultimate 

feedback controller gain 𝐾𝑐𝑢, given as in Equation (3.41) [6].  

CLC also defined the non-linear equation for 𝑤𝑐 as given in Equation (3.38) [CLC]. 

However, based on mathematical development, Taiwo, in [7], indicated that the expression 

should rather be as given in Equation (3.54). 

In contrast to the algorithms discussed earlier, CLC provided an updated estimation of the 

relative damping ζ for the closed-loop response, which involves critical response values at 

first 𝑦𝑝1 and second peak 𝑦𝑝2, and the minimum value at response undershoot 𝑦𝑚1. The 

method is therefore applicable to stable and oscillatory closed-loop systems containing at 

least two overshoots [6].   

3.2.3.4.2 Simulation results 

Example 1 

The graph on the left-hand side of Figure 3-18 shows the closed-loop response formed using 

different values of the controller gain 𝐾𝑐 ranging from 1.0 to 0.25 within the boundary of the 

stable underdamped response. The figure gives also the corresponding first-order model 

result approximated using CLC algorithm.  

 

 

Figure 3-18: Third-order original process and its first-order approx. by CLC - Example 1 

 

Increased magnitude of 𝐾𝑐 created bigger oscillations which gave longer time constant ┬𝑝 as 

seen in Table 3.11. The process time-delay 𝜏𝑝 decreased with increasing magnitude of 𝐾𝑐, 

and appeared to have its maximum values towards lowest 𝐾𝑐. However, the delay seemed 

also to increase in length around 𝐾𝑐 = 1. Comparing to HR’s based model approximation, the 

algorithm aligned toward the HR with decreasing values of 𝐾𝑐.   
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Table 3.11: Process model parameters by CLC – Example 1 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 1 11.49 0.583 

1.50 0.9999 10.31 0.609 

1.00 1 3.073 2.34 

0.75 1 3.249 1.87 

0.5 1 3.249 1.87 

0.25 1 2.99 2.25 

HR 1 2.5 2.0 

 

It follows that, the values of ┬𝑝 converged towards 2.827, while the magnitude of 𝜏𝑝 kept on 

increasing to 2.57 at lowest value of 𝐾𝑐 = 0.14, before which the algorithm failed to give 

solutions. The highest values of 𝐾𝑐 before which the method yielded unrealistic and non-

number solutions was observed to be at 𝐾𝑐 = 3.07, with ┬𝑝 and 𝜏𝑝 equals 12.09 and 0.612 

respectively. 

Example 2 

This firth-order process model example is chosen to test the performance of the CLC 

algorithm on higher order models, using similar P-controller gains as in the example above. 

Figure 3-19 shows the closed-loop step response for various controller gains as seen in the 

legend, with corresponding step response of the its first-order approximation at right.  

 

 

Figure 3-19: Firth-order original process and its first-order approx. by CLC - Example 2 

 

As seen in the Table 3.12, the dominating time-constant of the approximated process 

increased with increasing 𝐾𝑐. While the delay-time 𝜏𝑝 decreased with increasing magnitude 

of 𝐾𝑐, and appeared to have its maximum values towards lowest 𝐾𝑐. However, the delay 
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seemed also to increase around 𝐾𝑐 = 0.75, a similar trend as observed in the example 1 

above.  

 

Table 3.12: Process model parameters by CLC – Example 2 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

2.00 0.9996 15.64 0.66 

1.50 1 11.29 0.807 

1.00 1 10.41 0.803 

0.75 1 3.101 3.21 

0.50 1 3.6 2.15 

0.25 1 2.88 2.84 

HR 1 2.5 2.0 

 

With CLC algorithm, the values of ┬𝑝 converged towards 2.507 while 𝜏𝑝 moved toward 3.42 

at the lowest value of 𝐾𝑐 = 0.08 before the algorithm failed to produce solutions due to 

overdamped closed response. The highest values of 𝐾𝑐 before which the method produced 

non-number solutions was observed to be at 𝐾𝑐 = 2.88, with ┬𝑝 and 𝜏𝑝 corresponding to 

17.15 and 0.66 respectively. 

Example 3 

In this example, the CLC algorithm is utilized to estimate a first-order model from the 

process model given by Equation (3.82). Figure 3-20 shows the step response of the feedback 

system (with different 𝐾𝑐 values) at left, and its corresponding step response of the 

approximated model at right. 

 

 

Figure 3-20: Third-order original process and its first-order approx. by CLC - Example 3 
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High values of 𝐾𝑐 are associated with bigger oscillations and longer time-constant ┬𝑝 of the 

approximated process. Lower 𝐾𝑐 gave generally longer process delay 𝜏𝑝. However, the delay 

seemed to reach highest value around 𝐾𝑐 = 0.5, and so just to decrease again slightly toward 

the lower values as seen in Table 3.13. In respect to HR, the algorithm aligned the model 

toward the HR when low values of 𝐾𝑐 were applied. However, effective delay 𝜏𝑝 deviated 

more from the HR’s value as the 𝐾𝑐 kept decreasing.  

 

 

Table 3.13: Process model parameters by CLC – Example 3 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

1.25 0.9999 11.45 1.36 

1.00 1 10.62 1.36 

0.75 1 9.269 1.39 

0.50 1 3.019 4.77 

0.25 1 3.015 4.59 

OL 1 2.5 2.0 

 

Generally, the estimated model parameters ┬𝑝 and 𝜏𝑝 converged towards 3.023 and 4.44 

respectively, with 𝐾𝑐 = 0.17 as the lowest before failed to produce solutions. On the other 

hand, the highest values of 𝐾𝑐 before which the method gave unrealistic non-number 

solutions due to unstable dynamics of the feedback system was observed to be at 𝐾𝑐 = 1.72, 

with ┬𝑝 and 𝜏𝑝 corresponding to 12.24 and 1.41 respectively.  

 

3.2.3.5 MF method  

3.2.3.5.1 Method analysis 

MF replaced the P-controller Equation 3.3 with the most commonly used industrial 

controller, PI-controller, for the purpose of counteracting the steady-state offset occurring 

during step change experimentation [8]. 

Similar to the CLC, the MF method utilized the identical cross-over frequency 𝜔𝑐 and 

estimated the ultimate open-loop magnitude from closed loop’s 𝜔𝑐 for further back 

calculation of the process model parameters ┬𝑝 , 𝐾𝑝, 𝜏𝑝 as given in Equation (3.55), (3.57) 

and (3.56) respectively [8]. MF pointed also the inconsistence of the non-linear expression 

for the ultimate frequency (refer to Equation 8 in [6]), and updated it as given in Equation 

(3.54). The parameters 𝐾𝑐 and 𝑇𝑖 should be defined to reflect the particular system prior to the 

step change experimentation such the relative damping satisfies 0 < ζ < 1 [8].  

3.2.3.5.2 Simulation results 
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Three examples are simulated using MF algorithm with varying controller gain 𝐾𝑐 but similar 

value of integral time (𝑇𝑖 = 3). The integral time is randomly chosen without any prior 

knowledge of its effect on the processes to be simulated. 

Example 1 

In this example, a first-order model is approximated form the third-order process with time 

delay, as given by Equation (3.80), using the MF algorithm. Figure 3-21 shows step 

responses of the feedback system controlled by a PI-controller with various values of 𝐾𝑐 as 

seen on the left. The respective step-responses of the first-order estimated model are given on 

the right side.  

 

 

Figure 3-21: Third-order original process and its first-order approx. by MF - Example 1 

 

As seen in the Table 3.14, the process model exhibited longer dominating time-constants 

when the proportional gain of the PI-controller increased. The delay time, however, 

decreased with increasing value of 𝐾𝑐. With respect to HR’s estimated model, the lower 

values of 𝐾𝑐 appeared to align identified model parameter toward HR’s parameter values.  

 

Table 3.14: Process model parameters by MF – Example 1 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

1.50 1.25 11.2 0.619 

1.25 1.203 8.897 0.685 

1.00 1.16 6.545 0.812 

0.80 1.143 4.724 1.05 

0.75 1.149 4.397 1.17 

HR 1 2.5 2.0 



 3 Closed-Loop Transient Step-change Response SID 

61 

In general, the identified model parameters ┬𝑝 and 𝜏𝑝 converged towards 4.124 and 1.29 

respectively at the lowest value of 𝐾𝑐 = 0.72 before the algorithm failed to provide solutions 

due less overshoot (less than two oscillations) experienced by closed-loop response. On the 

other hand, the highest value of controller gain before which the algorithm produced non-

number is 𝐾𝑐 = 2.10 corresponding to 2.413, 52.62 and 0.293 for 𝑲𝒑, ┬𝑝 and 𝜏𝑝 respectively. 

Example 2 

This firth-order process model given by Equation (3.81) will provide indication in 

performance and robustness of the MF algorithm on higher order processes.  Figure 3-22 on 

the left, shows the step-response of feedback system with various values of the controller 

gain 𝐾𝑐, and its respective step-response of the identified first-order models.  

 

 

Figure 3-22: Firth-order original process and its first-order approx. by MF - Example 2 

 

The time-constant  ┬𝒑 of the identified first-order process followed similar trend as in the 

example 1 above, whereby the increasing controller gain 𝐾𝑐 was associated with longer time 

constant, while the process dead-time increased when 𝐾𝑐 increased as seen in Table 3.15.  

 

Table 3.15: Process model parameters by MF – Example 2 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

1.00 1.097 7.278 0.967 

0.80 1.081 5.486 1.12 

0.70 1.076 4.452 1.26 

0.60 1.083 3.408 1.55 

0.57 1.093 2.968 1.73 

HR 1 1.5 3.5 
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Generally, lower values of 𝐾𝑐 moved the model toward HR’s approximated parameters 

though failed to come closest enough to HR. The algorithm appeared to give increased 

magnitude of 𝐾𝑝 and 𝝉𝒑 at the lowest value of  𝐾𝑐 = 0.54  corresponding to 1.157 and 4.124 

respectively, while ┬𝒑  decreased unexpectedly. The highest values of 𝐾𝑐 before which the 

method produced non-number solutions was observed to be at 𝐾𝑐 = 1.77, with 𝐾𝑝, ┬𝑝 and 𝜏𝑝  

corresponding to 0.6192, 2.904 and 1.52 respectively. 

Example 3 

Figure 3-23 shows the step-response of a feedback system composed of a PI-controlled third-

order process with relatively large time-delay, and the corresponding step response of first-

order model approximated using MF algorithm. The controller’s 𝐾𝑐 used under simulation 

are as seen in Table 3.16, the integral time remains constant at 𝑇𝑖 = 3 throughout the 

simulation.  

 

Figure 3-23: Third-order original process and its first-order approx. by MF - Example 3 

 

Based on the simulation result, lower 𝐾𝑐 values gave more accurate approximation as the 

identified parameters resembles the HR’s calculated parameters. While the delay time 𝜏𝑝  

showed some sort of increment with decreasing 𝐾𝑐, the time constant moved in the opposite 

direction.    

Table 3.16: Process model parameters by MF – Example 3 

𝑲𝒄 𝑲𝒑 ┬𝒑 𝝉𝒑 

0.80 1 6.911 1.51 

0.60 1.01 5.91 1.54 

0.50 1.003 5.043 1.61 

0.40 1.002 3.846 1.78 

0.35 1.002 3.11 2.03 

HR 1 2.5 4.5 
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The estimated parameters 𝐾𝑝,  ┬𝑝 and 𝜏𝑝, converged toward 1.006, 1.835 and 3.01 at lowest 

value of 𝐾𝑐 before which the algorithm’s limitation on producing solution was reached. The 

highest value of 𝐾𝑐 before which the closed-loop response became unstable was registered at 

𝐾𝑐 = 1.00 which corresponded to 0.5657, 1.126 and 2.66 for 𝐾𝑝,  ┬𝑝 and 𝜏𝑝 respectively.  

 

3.2.4 Step Response SID for second order processes  

This subsection presents analysis and simulation study on second-order process SID 

algorithms utilizing similar examples as the ones used during simulation for the first-order 

process model identification. The examples are simulated using the similar 𝐾𝑐 values for all 

the four algorithms (JS, JSDR, DR and DR1) as given in Table 3.17 

 

Table 3.17: Controller gains for simulation of different examples 

Example 𝐾𝑐1 𝐾𝑐2 𝐾𝑐3 

1 2.00 1.50 1.00 

2 2.00 1.50 1.00 

3 1.00 0.75 0.50 

 

3.2.4.1 JS and JSDR method  

3.2.4.1.1 Method analysis 

JS identifies second order unstable process model given as Equation (3.58) by stabilizing the 

corresponding closed-loop system using P-controller. By utilizing the stable closed-loop 

transfer function Equation (3.60), the process model parameters 𝑏0, 𝑏1, 𝑎0 and 𝑎1 are back 

calculated, which gives unstable process model when 𝑎1> 0. [9] 

JS’s expression for step response in time domain (i.e. Equation A.2 in [9]) is incorrect, even 

though the method refers to the correct expression given by Equation (3.15). The mistake is 

also highlighted in [10].  

DR substituted √1 − 𝜁2 term into the 𝑠𝑖𝑛(𝜔𝑡 + 𝜙) term and suggested an updated expression 

for the ┬𝑧 as given in Equation (3.77), which gave rise to JSDR. In many cases, the JS is 

observed to yield complex solutions when ┬𝑧 < 0, suggesting that ┬𝑧 sign should be known 

in advance to avoid the complex solutions, as highlighted in [10]. DR suggested the real part 

of ┬𝑧 as alternative solutions [10].  

3.2.4.1.2 Simulation results 

Example 1 

The JS and JSDR algorithms are used to identify the second-order model from the third-order 

process given by Equation (3.80). Figure 3-24 on left, shows the step response of the 

feedback system made of the original process (third-order process) and P-controller of 
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different proportional gain 𝐾𝑐, and the corresponding step-response of a second-order model 

produced by JS algorithm when 𝐾𝑐 = 1 is presented on right.  

 

 

Figure 3-24: Third-order original process and its first-order approx. by JS - Example 1 

 

Table 3.18 presents the resulted model parameters obtained from the JS on the left side, and 

JSDR on the right side of the table. As seen in the table, the JS algorithm produced negative 

magnitude of 𝑎1 and hence unstable second-order model for 𝐾𝑐 values of 2.0 and 1.5. This 

explains to why Figure 3-24 contains step response from the estimated process model only 

when 𝐾𝑐 = 1.0 which was barely stable and exhibited no inverse response.  

 

Table 3.18: Process model parameters by JS and JSDR respectively – Example 1 

 JS JSDR 

𝑲𝒄 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 

2.0 0.2327 0.2023 0.2327 -0.1625 0.2327 -0.1216 0.2327 0.4853 

1.5 0.2498 0.3194 0.2498 -0.0924 0.2498 -0.1647 0.2498 0.6338 

1.0 0.286 0.547 0.286 0.03511 0.286 -0.2559 0.286 0.838 

 

The JSDR algorithm gave positive 𝑎1 and hence stable second-order process for the all three 

values of 𝐾𝑐 as seen in the Table 3.18. With JSDR, the estimated model showed inverse 

response dynamics as shown in Figure 3-25, reflecting the time-delay of the original system. 
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Figure 3-25: Third-order original process and its first-order approx. by JSDR - Example 1 

 

Example 2  

The performance of JS and JSDR is further tested by estimating a second-order model, this 

time from a firth-order process model of identical time-constant and with no time delay as 

given by Equation (3.81).  

 

 

Figure 3-26: Firth-order original process and its first-order approx. by JS - Example 2 

 

Figure 3-26 shows the step-response for both the feedback system composed of the original 

process and P-controller at different values of controller gain 𝐾𝑐, and the approximated model 

result from JS algorithm on the right.  

 

Table 3.19: Process model parameters by JS and JSDR respectively – Example 2 

 JS JSDR 

𝑲𝒄 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 
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2.0 0.1509 0.02261 0.1496 0.09006 0.1509 0.02261 0.1496 0.09006 

1.5 0.1705 0.1817 0.1707 -0.02441 0.1705 -0.0825 0.1707 0.3719 

1.0 0.1871 0.319 0.1871 0.0588 0.1871 -0.1301 0.1871 0.5079 

 

As seen in Table 3.19, the JS algorithm managed to produce unstable second-order process 

model only when 𝐾𝑐=1.5. The two other values of 𝐾𝑐 gave positive 𝑎1, which in turn 

produced stable process dynamics. It should be noted that, Figure 3-26 shows only the stable 

process model estimated.  

 

 

Figure 3-27: Firth-order original process and its first-order approx. by JSDR - Example 2 

 

On the other hand, the JSDR approximated models with stable dynamics for all three chosen 

values of 𝐾𝑐. The models showed, in addition, inverse response of the system  for 2 values of 

𝐾𝑐 as illustrated on the right graph in Figure 3-27. From the graph, it can be seen that the 

lower the 𝐾𝑐 value, the more the oscillatory behaviour of the system.   

Example 3  

In this example, a third-order process characterized with significant time delay (Equation 

(3.82)) is reduced into second-order process model using JS and JSDR algorithms. Figure 

3-28 gives graphical representation of the closed-loop response of the system in series with 

the P-controller with different sizes of 𝐾𝑐, on the left. Its corresponding identified second-

order model is given on the right graph.  
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Figure 3-28: Third-order original process and its first-order approx. by JS - Example 3 

 

Only at the lowest 𝐾𝑐 (0.5), the JS algorithm managed to produce a stable second-order 

process model as shown in Figure 3-28. The model exhibited direct (no inverse response) but 

oscillatory behaviour due to positive values of 𝑏1 as seen under JS section in Table 3.20. 

Based on the results presented in the table, the stability of the models approximated by JS 

algorithm increased with decreasing magnitude of the controller gain 𝐾𝑐. 

 

Table 3.20: Process model parameters by JS and JSDR respectively – Example 3 

 JS JSDR 

𝑲𝒄 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 

1.0 0.107 0.2766 0.108 -0.1002 0.107 -0.1888 0.108 0.3652 

0.75 0.1214 0.391 0.1215 -0.03427 0.1214 -0.2431 0.1215 0.4413 

0.5 0.1402 0.6013 0.1402 0.07277 0.1402 -0.3523 0.1402 0.5496 

 

Contrary to JS, the JSDR produced stable second-order models for all three values of 

controller gain as shown on Figure 3-29. The identified models experienced inverse response 

due to negative 𝑏1  (refer to Table 3.20 under the JSDR column) as reflection to time-delay 

existed in the original process. Based on the Figure 3-29, the magnitude of the inverse 

response, appeared to increase along with increasing size of 𝐾𝑐. 
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Figure 3-29: Third-order original process and its first-order approx. by JSDR - Example 3 

 

3.2.4.2 DR and DR1 method  

3.2.4.2.1 Method analysis 

DR emphasized in generalizing the identification of second order process models (Equation 

(3.58)) proposed in [9] to also apply for other second-order models regardless of their 

stability behaviour [10]. The DR also correlated the time-domain response provided in [2] to 

better reflect response of the second-order process model as given by Equation (3.72).  

The DR eliminated the complex solution problem experienced in [9] by proposing two 

alternative expressions for ┬𝑧, Equation (3.77) and (3.78). Knowing the sign of ┬𝑧 before 

hand is therefore no longer necessary [10].  

As highlighted earlier, DR and DR1 methods differs slightly in step response in time domain 

expression 𝑦(𝑡) as given by Equation (3.73). The DR1 is more sensitive to noise because of 

having different value of c as given by Equation (3.79) [10]. 

  

3.2.4.2.2 Simulation results 

Example 1 

This simulation for example 1 is meant to observe the performance of DR and DR1 

algorithms in approximating a second-order model from the third-order process with delay as 

given by Equation (3.80). Figure 3-30 gives graphical view of the step-response of P-

controlled third-order process on left, and its corresponding step-response of the identified 

model on right, using DR algorithm.  
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Figure 3-30: Third-order original process and its first-order approx. by DR - Example 1 

 

For all the three 𝐾𝑐 values used for step experiment, the DR algorithm produced stable, with 

oscillatory dynamics models, which also exhibited inverse response as seen in Figure 3-30. 

The observed dynamic characteristics of the identified model are due to positive and negative 

magnitude of parameters 𝑎1 and 𝑏1 respectively as seen under DR column in Table 3.21.  

 

Table 3.21: Process model parameters by DR and DR1 respectively – Example 1 

 DR DR1 

𝑲𝒄 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 

2.0 0.2327 -0.1459 0.2327 0.5344 0.2327 -0.4455 0.2327 1.133 

1.5 0.2498 -0.1586 0.2498 0.6218 0.2498 -0.5103 0.2498 1.152 

1.0 0.286 -0.2009 0.286 0.783 0.286 -0.8474 0.286 1.429 

 

Using DR1 algorithm on same original process model, gave also stable dynamics with 

inverse response for all three values of 𝐾𝑐 as presented in Table 3.21. The step-response of 

the approximated models show however, no oscillatory behaviour as illustrated in Figure 

3-31. The static gain of the identified model was identical for all three values of 𝐾𝑐. 
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Figure 3-31: Third-order original process and its first-order approx. by DR1 - Example 1 

 

Example 2  

Example 2 involves an overdamped process of firth-order without input delay as given by 

Equation (3.81). The objective is to deduce second-order model approximation through step-

response transient analysis using DR and DR1 algorithms. Figure 3-32 on left, shows the 

step-response of an output feedback system composed of the original process and P-controller 

of various gains 𝐾𝑐, and its corresponding step-response of the approximated model located 

on the right, using DR algorithm. 

 

 

Figure 3-32: Firth-order original process and its first-order approx. by DR - Example 2 

 

With DR algorithm, the identified model possessed stable dynamics with some sort of inverse 

response for all three values of 𝐾𝑐, due to positive and negative magnitude of parameters 𝑎1 

and 𝑏1 respectively (refer to the DR column in Table 3.22), as illustrated graphically on the 

right graph in Figure 3-32. Based on the graph, the lower values of 𝐾𝑐 produced process 

model with oscillatory dynamics.  
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Table 3.22: Process model parameters by DR and DR2 respectively – Example 2 

 DR DR1 

𝑲𝒄 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 

2.0 0.1509 -0.07532 0.1496 0.2859 0.1509 -0.3033 0.1496 0.7419 

1.5 0.1705 -0.1168 0.1707 0.4233 0.1705 -0.5275 0.1707 1.039 

1.0 0.1871 -0.1177 0.1871 0.4955 0.1871 -0.6251 0.1871 1.003 

 

On the other hand, the DR1 algorithm produced process model with only overdamped 

response for all the values of 𝐾𝑐 used. With DR1, the approximated model exhibited stable 

dynamics with inverse response as shown on the right graph in Figure 3-33.  

 

 

Figure 3-33: Firth-order original process and its first-order approx. by DR1 - Example 2 

 

Both DR and DR1 produces model approximation possessing inverse response for all the 

chosen value of 𝐾𝑐. However, the magnitude of the inverse response experienced when using 

DR decreases with decreasing size of 𝐾𝑐, while for DR1, the inverse response increases and 

hence moves in opposite direction.  

Example 3 

In this simulation, a third-order process with significant large time delay is reduced into 

second-order process model using transient step-response analysis algorithms DR and DR1. 

The left graph in Figure 3-34 shows an output feedback response of the original process 

controlled by P-controller with various controller gains. Its corresponding step-response of 

the identified model using DR algorithm is presented on right graph in Figure 3-34.  
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Figure 3-34: Third-order original process and its first-order approx. by DR - Example 3 

 

The DR algorithm produced stable second-order process model containing inverse response, 

whereby high values of 𝐾𝑐 were associated with increasing magnitude of the inverse response 

(𝑏1) as seen under DR column in Table 3.23. With DR algorithm and for all test values of 𝐾𝑐, 

the resulted model approximation experienced small overshoot and very slight oscillatory 

dynamics as illustrated on right graph in Figure 3-34.  

 

Table 3.23: Process model parameters by DR and DR2 respectively – Example 3 

 DR DR1 

𝑲𝒄 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 𝒃𝟎 𝒃𝟏 𝒂𝟎 𝒂𝟏 

1.00 0.1047 -0.6481 0.1287 0.9712 0.1047 -4.359 0.1287 4.682 

0.75 0.123 -0.393 0.1283 0.6091 0.123 -7.005 0.1283 5.568 

0.50 0.1402 -0.3051 0.1402 0.5258 0.1402 13.3 0.1402 -6.279 

 

Using DR1 algorithm on the same example produced quite different results as shown on the 

step-response of the identified model on the right graph in Figure 3-35. At 𝐾𝑐=0.5, the DR1 

algorithm identified negative value for the parameter 𝑎1 (refer to Table 3.23) and hence 

identified a model with unstable dynamics.  
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Figure 3-35: Third-order original process and its first-order approx. by DR1 - Example 3 

 

3.3 Using Transient response SID algorithms in auto 
tuning PID 

The closed-loop response system identification provides simple and effective on-line auto-

tuning and adjustment of PID controller parameters to facilitate safe, flexible, and optimal 

process operation. During the on-line PID tuning, small step change in controller’s reference 

value is applied to an output feedback system made of the process in question, and P-

controller or in some cases PI-controller. The step change experimentation produces a closed-

loop response as in Figure 3-6 from which the critical response values 

𝑦𝑝1, 𝑦𝑚1, 𝑦𝑝2, 𝑦∞, 𝑡𝑝1, 𝑡𝑚1 and 𝑡𝑝1 are deduced. To obtain the controller parameters, the below 

steps should be followed;[2, 31]   

1. Estimation of closed-loop response model parameters (┬, 𝜁, 𝐾, 𝐾2, 𝑡𝑧 , 𝑏0, 𝑏1, 𝑎0, 𝑎1) 

from the critical response points (𝑦𝑝1, 𝑦𝑚1, 𝑦𝑝2, 𝑦∞, 𝑡𝑝1, 𝑡𝑚1 and 𝑡𝑝1) using online 

transient response SID methods (YS, JR, JL, CLC, MF, JS, DR, DR1, etc.). 

2. Back calculation of the process model parameters (𝐾𝑝, 𝜏, ┬𝑝, 𝑏0, 𝑏1, 𝑎0, 𝑎1) from the 

estimated closed-loop response parameters. 

3. Calculating PID controller parameters (𝐾𝑐, 𝑇𝑖, 𝑇𝑑) from the identified parameters of 

the process model using known PID settings, for example SIMC, Nicholas Ziegler’s 

settings, etc.  

The focus of this section is on the third mentioned step, since the first two steps are already 

addressed in detail in section 3.2. Under this section, the SIMC’s PID settings are used to 

calculate the PID-controller parameters and investigate the performance and robustness of the 

identification algorithms discussed in section 3.1.  

The SIMC’s settings are model based, and do not require to drive the closed-loop around its 

stability limit, which is clear advantage over both Good margin and Nichols Ziegler’s 

methods. SIMC’s settings are in addition more applicable and yield better loop stability as 

compare to Ziegler’s method [24]. 
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3.3.1 PID Controller 

PID controller is an industrial standard and widely used controller, which stands for 

Proportional Integral and Derivative controller. The controller has received massive 

recognition due to its simplicity, robustness and flawless applicability within the control loop. 

The PID controller is an error-based type of controller whereby the control action depends on 

magnitude of the deviation between the controller’s set point and the measured process 

output [18, 31]. 

𝑢(𝑠) = 𝐾𝑝𝑖𝑑

(𝑇𝑖𝑠 + 1)(𝑇𝑑𝑠 + 1)

𝑇𝑖𝑠
𝑒(𝑠) (3.85) 

The P-term tends to react faster, though alone cannot bring the process into steady state since 

it amplifies the error. Opposite to the P-term, the I-term can alone bring the process into 

steady state. The D-term facilitates faster control while at the same time stabilize the system, 

even though the term has a tendency of amplifying measurement related error [18]. 

Equation (3.85) presents the PID transfer function in cascade (serial) form, whereby 

𝑒(𝑠) denotes the error which is the difference between the reference value 𝑟(𝑠) and the 

process measured output 𝑦(𝑠). To tune PID-controller means defining contribution of each 

active controller-terms (P, I, D), by adjusting the value of 𝐾𝑝𝑖𝑑, 𝑇𝑖 and 𝑇𝑑 respectively. 

Whereby; [24] 

 𝐾𝑝𝑖𝑑 is controller’s proportional gain 

 𝑇𝑖 is controller’s integral time  

 𝑇𝑑 is controller’s derivative time 

It follows that a PI-controller is special type of PID-controller in which the derivative part of 

the controller is deactivated (i.e. 𝑇𝑑 = 0), while a P-controller has both Integral and Derivative 

terms deactivated (i.e.  𝑇𝑖=𝑇𝑑=0) [34].  

3.3.1.1 SIMC PID settings 

The SIMC settings are widely used model-based PID tuning whereby the controller 

parameters are analytically derived from process models [18]. The method follows two steps 

as given below; [18, 32]  

1. Obtain a first or a second order process model containing time delay 

2. Derive model based controller parameters, with PI and PID-controller as starting point 

for the first-order and second-order process respectively. 

Figure 3-36 gives an overview of SIMC PID settings for various types of the process [18]. The 

method recommends the value for the constant 𝑐 = 4, while the tuning parameter  𝑇𝑐 should 

be kept equivalent to the effective time delay τ of the process model [35].  
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Figure 3-36: SIMC's PID-controller settings for different process types [18] 

3.3.1.2 PID controller for oscillating systems 

For oscillating processes, for example Equation (3.97), different settings other than presented 

on section 3.3.1.1 applies. Consider a step response of typical second-order transfer function 

model given by Equation (3.85), where τ, ζ and k represent time delay, damping ratio, and 

static gain of the process response respectively. The variable ┬0 determines speed of the 

system response, which is equivalent to the reciprocal of the natural frequency of the system 

𝜔0 [34, 36]. 

ℎ𝑝(𝑠) = 𝑘
𝑒−𝜏𝑠

┬0
2𝑠2 + 2𝜁┬0𝑠 + 1

 (3.85) 

The system’s damping ratio determines the oscillatory behaviour of the response, whereby 

the system produce oscillating dynamics when 0 < 𝜁 < 1. Under this condition, the PID-

settings for the process are given as, [34] 

ℎ𝑐(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) (3.86) 

where the tuning parameters proportional gain (𝐾𝑝), integral time (𝑇𝑖), and derivative time 

(𝑇𝑑) are given respectively as,  

𝐾𝑝 =
2𝜁┬0

𝑘(𝑇𝑐 + 𝜏)
 (3.87) 

𝑇𝑖 = 2𝜁┬0 (3.88) 

𝑇𝑑 =
┬0

2𝜁
 (3.89) 

These PID-settings are only applicable for underdamped process, with damping ratio ranging 

from 0 to 1 as outlined above [34, 36]. 

3.3.1.3 Stability – Gain and Phase Margin 

Gain and Phase Margins can be referred as measure for stability of feedback system. The 

margins give indication on how much the loop transfer function can withstand changes before 

the asymptotically stable system becomes marginally stable [24]. Consider a loop transfer 

function in complex domain given as  

𝐿(𝑗𝜔) = ℎ𝑐(𝑗𝜔)ℎ𝑝(𝑗𝜔) (3.90) 
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where ω is the response frequency. Usually, the Gain Margin (GM) is expressed in decibel 

(dB) which is calculated by using Equation (3.91), while the Phase Margin (PM) is measured 

in degrees, and be calculated using Equation (3.92), whereby 𝜔180 and 𝜔𝑐 are known as 

phase crossover and amplitude crossover frequency respectively [24].    

𝐺𝑀 [𝑑𝐵] = −|𝐿(𝑗𝜔180)| [𝑑𝐵] (3.91) 

𝑃𝑀 = 180° + ∠𝐿(𝑗𝜔𝑐) (3.92) 

The GM indicates the maximum gain the loop can have before the system becomes unstable, 

while PM indicates the maximum phase lag function of the loop that can be reduced before 

the loop become unstable [24]. Generally, the larger the values (GM and PM), the better the 

stability, though with the expense of increased sluggishness in systems dynamics. The 

reasonable ranges are therefore given as, [24] 

6𝑑𝐵 ≤ 𝐺𝑀 ≤ 12𝑑𝐵 and 30° ≤ 𝑃𝑀 ≤ 60°  

 

3.3.2 Auto-tuning PID using back calculated model parameters and 
SIMC 

3.3.2.1 Simulation examples 

Seven more examples (Equation (3.93) – (3.97)) are involved, in addition to the examples 

(Equation (3.80) – (3.82)) used earlier during individual method analysis in section 3.2, to 

fully investigate the performance of algorithms in on-line tuning of the PID-controller. The 

examples covers process models of various dynamics, low and higher-order, as well as 

models with significant dead time.  

Example 4 

Equation (3.93) is stable first-order process model with relatively large time delay 𝜏 = 4.5 

and dominant (i.e. 𝑇 > 𝜏) time constant of 𝑇 = 9.  

ℎ𝑝(𝑠) =
1

9𝑠 + 1
𝑒−4.5𝑠 (3.93) 

Example 5 

Example 5 represents a stable first-order process model with dominant time constant of 𝑇 =
1. The process consist of, however, minor time-delay of  𝜏 = 0.5 as given by Equation (3.94).  

ℎ𝑝(𝑠) =
1

𝑠 + 1
𝑒−0.5𝑠 (3.94) 

Example 6 

Example 6 is a simple and stable first-order process model with time constant T identical to 

the model’s dead time τ as given by Equation (3.95) where 𝑇 = 𝜏 = 1.  
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ℎ𝑝(𝑠) =
1

𝑠 + 1
𝑒−𝑠 (3.95) 

Example 7 

Equation (3.96) represent a stable first-order process model experiencing a time delay τ larger 

than the process time constant T. The magnitude of process parameters T and τ are given as 1 

and 2 respectively. 

ℎ𝑝(𝑠) =
1

𝑠 + 1
𝑒−2𝑠 (3.96) 

Example 8  

A stable second-order process model containing two poles, both positioned on the left side of 

the complex plane, as given by Equation (3.97). The process experiences an input delay of τ 

=1.  

ℎ𝑝(𝑠) =
1

9𝑠2 + 2.4𝑠 + 1
𝑒−𝑠 (3.97) 

 

3.3.2.2 Simulation study 

The mode of simulation under this section follows the categories of the closed-loop transient 

response SID methods presented earlier in section 3.1.  

Lowest-order model examples (Equations (3.93) – (3.96)) are simulated for PID auto-tuning 

using combination of the SIMC’s PI-controller settings and the first-order step-response SID 

methods (YS, JR, JL, and CLC) only. The FOPDT’s methods are, additionally used to 

simulate on-line PID-controller tuning for the all other process model examples. It should be 

noted that, the MF’s method for FOPDT is purposely not included in PID-auto tuning 

simulation experiment due to the difficultness in finding a proper combination of the step 

experiment parameters 𝐾𝑐 and 𝑇𝑖 during model identification as highlighted in section 3.2.3.  

For simulation of the second-order step-response SID methods (JS, JSDR, DR and DR1), 

only the models with higher model dynamics (Equation (3.80) – (3.82), and Equation (3.97)) 

are used. The simulation study was performed in MATLAB software using the programming 

codes available in Appendix B and C. 

 

3.3.2.2.1 PID auto-tuning using FOPDT methods and SIMC settings 

As mentioned above, the simulation study under this section is performed using the four 

discussed transient response SID algorithms, namely YS, JR, JL and CLC, in addition to the 

half-rule model reduction technique (HR), which functions as reference for performance 

measurement. 

Example 1 

Four various transient step-response identification algorithms (YS, JR, JL and CLC) are used 

to first, to estimate parameters for first-order process model approximated from the third-
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order process with input time delay as given in Equation (3.80) using test P-controller gain 

𝐾𝑐=1.0, and then provide basis for designing and tuning PI-controller with the help of SIMC 

tuning rules.  

 

Table 3.24:  PI Auto-tuning results with different algorithms for 𝐾𝑐=1.0 - Example 1 

 Without noise With noise 

 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 1 3.181 2.25 0.7079 3.1814 1.021 20.63 23.85 0.4236 20.626 

JR 1 2.658 2.64 0.5043 2.6580 1.291 10.27 12.83 0.3099 10.266 

JL 1 2.879 2.4 0.5999 2.8792 1.021 14.97 23.36 0.3138 14.967 

CLC 1 3.099 2.44 0.6353 3.0989 1.021 -21.79 -15.18 0.7035 -121.4 

HR 1 2.5 2.0 0.6250 2.5 1 2.5 2.0 0.6250 2.5 

 

Table 3.24 gives overview of the identified model parameters together with corresponding 

PI-tuned parameter results obtained both without and with measurement noise induced into 

closed-loop system during step test experimentation. As seen in the Table 3.24, all the 

algorithm performed poorly when the output feedback system of the original process 

subjected to the noise. Based on the result, JR algorithm produced the least error among the 

four, though still very far from expected (HR) results.  

 

 

Figure 3-37: PI Auto-tuning result using different algorithms for 𝐾𝑐=1.0 - Example 1 

 

Figure 3-37 gives graphical overview of the step-response of the original process on left, and 

the corresponding PI-tuned process results when no noise involved during set-point test. 

Generally, all four algorithms produced stable and relatively robust closed-loop response. HR 
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and YS were the only algorithm that produced overshoot in the feedback loop as shown in 

Figure 3-37, while JR, JL and CLC produced overdamped closed-loop response. Among the 

algorithms, JL gave the best possible robust PI-parameters compared to others.  

Example 2  

In this example, the algorithms are supposed to estimate suitable PI-controller parameters for 

a firth-order process with no input delay as given in Equation (3.81). A controller gain of 𝐾𝑐= 

0.75 is used during step test on the feedback loop, first without and then with white Gaussian 

noise induced. Table 3.25 presents model and PI-tuning parameters results with and without 

noise for the four algorithms in addition to HR. 

 

Table 3.25: PID Auto-tuning with different algorithms for 𝐾𝑐= 0.75 - Example 2 

 Without noise With noise 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 1 3.3136 2.8415 0.5831 3.3136 1.012 7.896 13.9 0.2808 7.8962 

JR 1 2.56 3.66 0.3495 2.5595 0.8422 1.502 12.3 0.0728 1.5019 

JL 1 2.79 3.17 0.4394 2.7900 1.0123 3.13 14.7 0.1054 3.1298 

CLC 1 3.101 3.21 0.4835 3.1011 1.0123 -14.29 -5.3970 1.3075 -43.18 

HR 1 1.5 3.5 0.2143 1.5 1 1.5 3.5 0.2143 1.5 

 

As seen in Table 3.25, with noise, all four algorithms were unable to produce PI-tuning 

parameters that could provide smooth and stable closed-loop response. The worst was CLC 

algorithm, which returned both negative time-constant, negative input delay and negative 

integral time for the PI-controller.  

 

 

Figure 3-38: PI Auto-tuning result using different algorithms for 𝐾𝑐 =0.75 - Example 2 
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However, when no noise involved, the algorithms regained their strength and were able to 

provide PI-settings that gave stable and robust closed-loop response as illustrated on the right 

graph in Figure 3-38. JR, JL and CLC algorithms produced overdamped feedback response, 

while YS experienced very slight oscillation. The speed of the closed-loop response produced 

varied depending on the algorithm used. YS appeared to have highest response speed, while 

JR had the lowest response speed among the four.   

Example 3 

The algorithms are further tested in designing and tuning robust PI-controller for a third-order 

process with large time delay as given by Equation (3.82). During step test, a controller gain 

of 𝐾𝑐 = 1.0 is used to the feedback system composed of the original process and P-controller. 

The test was performed in two conditions, first without and later with Gaussian white noise 

subjected to the feedback loop. Table 3.26 shows identified model and PI-tuning parameters 

result for 𝐾𝑐 = 1.0 both without and with the measurement noise.  

 

Table 3.26: PID Auto-tuning with different algorithms for 𝐾𝑐=1.0 - Example 3 

 Without noise With noise 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 1 3.948 4.72 0.4180 3.9478 1.0260 3.155 3.98 0.3863 3.1555 

JR 1 2.801 5.33 0.2626 2.8009 1.238 3.102 4.6 0.2725 3.1024 

JL 1 2.795 4.63 0.3016 2.7954 1.026 2.131 3.86 0.2689 2.1314 

CLC 1 10.62 1.36 3.9124 10.6186 1.017 13.71 1.08 6.2391 8.6429 

HR 1 2.5 4.5 0.2778 2.5 1 2.5 4.5 0.2778 2.5 

 

When exposed to noise, the JR algorithms provided almost identical process time-day (𝜏𝑝 = 

4.6) as HR. Its identified time-constant, however, deviated more from HR when noise was 

involved. The rest of algorithms gave relatively poor result, with CLC the worst among them.  
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Figure 3-39: PI Auto-tuning results using different algorithms for 𝐾𝑐=1.0 - Example 3 

 

Figure 3-39 shows step-response of the original process on the left, and its corresponding 

step-response (on the right) when PI-tuned without imposed noise, using different algorithms.  

Notice that when CLC was used to tune the PI-controller, the closed loop became 

destabilized and underwent unstable dynamics, and therefore not included in the graph. A 

slight overshoot was observed when the controller was tuned with parameters from JL and 

HF (also referred as HR). The fastest response speed was attained when the system was tuned 

with YS parameters, while the slowest response was produced when JR is used. In general, 

all the three algorithms (YS, JR and JL) produce robust controlled system response, which 

reached the steady state almost simultaneously.  

Example 4  

The algorithms are supposed, in this example, to design and tune PI-controller for a first-

order model as given in Equation (3.93). Figure 3-40 shows step-response of the process to 

be controlled.  

 

 

Figure 3-40: Step response of the original process - Example 4 
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Two different controller gain values (2.0 and 1.0) were used for all four algorithms during 

step test experiment. The model and PI-parameters results are as presented in Table 3.27. 

Generally, when using JL algorithm, the identified model parameters were closest to the real 

process parameter (HR), regardless of the size of the controller gain 𝐾𝑐. The CLC model 

parameter results deviated most in both values of 𝐾𝑐, however, at 𝐾𝑐=1.0 the CLC results 

were noticeably improved. Based on the Table 3.27, the identified time delay of the 

approximated process is favoured when 𝐾𝑐=1.0. 

 

Table 3.27: PI auto-tuning with different algorithms for 𝐾𝑐=2.0 and 𝐾𝑐=1.0 - Example 4 

 𝑲𝒄 = 𝟐. 𝟎𝟎 𝑲𝒄 = 𝟏. 𝟎𝟎 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 0.9998 9.32 4.79 0.9785 9.3197 1 9.036 3.78 1.1946 9.0360 

JR 0.9998 8.704 4.9 0.8892 8.7035 1 8.222 4.59 0.8949 8.2221 

JL 0.9998 9.005 4.52 0.9969 9.0047 1 8.952 4.53 0.9890 8.9519 

CLC 0.9998 25.01 1.41 8.8991 11.2422 1 10.07 3.71 1.3554 10.0651 

HR 1 9 4.5 1 9 1 9 4.5 1 9 

 

Figure 3-41 presents step-response of the feedback system composed of the original process 

and PI-controller tuned using different transient response SID algorithm for 𝐾𝑐=2.0 and 

𝐾𝑐=1.0 respectively. At 𝐾𝑐=2.0, the PI-tuning parameter obtained from the CLC algorithm 

could not stabilize the feedback system, and therefore not seen in the graph. The YS, JR and 

JL provided robust set-point tracking control with minimal overshoot that brought the system 

quickly into steady state. The JL and HF (HR) provided almost similar response when 

𝐾𝑐=2.0.  

 

 

Figure 3-41: PI auto-tuning with different algorithms for 𝐾𝑐=2.0 and 𝐾𝑐=1.0 - Example 4 
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Noticeable overshoot, and slight oscillations were observed when YS and CLC algorithm 

were used for 𝐾𝑐=1.0. The CLC exhibited, in addition, fastest response-speed among the four, 

while JR was the slowest. In general, all four algorithms stabilized the system and brought 

the system into the steady state almost simultaneously. The most robust settings for this 

particular example at 𝐾𝑐=1.0 were originated from HF and JL algorithm. 

Example 5  

This example represents a first order process containing input delay, with dominating time 

constant. Figure 3-42 shows step-response of the original process as given by Equation (3.94).  

 

 

Figure 3-42: Step response of the original process - Example 5 

 

The process is to be controlled in a feedback system with PI-controller tuned by using YS, 

JR, JL and CLC identified model and PI-parameters. Table 3.28 gives overview of the 

parameter results obtained from all the algorithms when using test controller gain of 𝐾𝑐=2.5 

and 𝐾𝑐=2.0 respectively. 

 

Table 3.28: PI auto-tuning with different algorithms for 𝐾𝑐=2.5 and 𝐾𝑐=2.0 - Example 5 

 𝑲𝒄 = 𝟐. 𝟓𝟎 𝑲𝒄 = 𝟐. 𝟎𝟎 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 0.9977 1.138 0.603 0.9457 1.1379 0.9996 1.047 0.535 0.9789 1.0472 

JR 0.9977 1.054 0.583 0.9059 1.0536 0.9996 0.012 0.574 0.8895 1.0211 

JL 0.9977 1.067 0.538 0.9941 1.0668 0.9996 1.012 0.507 0.9973 1.0119 

CLC 0.9977 1.107 0.576 0.9625 1.1068 0.9996 1.059 0.552 0.9602 1.0588 

HR 1 1 0.5 1 1 1 1 0.5 1 1 
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Based on the result presented in the table, all four algorithms produced better model 

parameter result when 𝐾𝑐=2. The model parameters obtained from JL for both values of 𝐾𝑐 

were the most closest to the real process parameter (HR). A general finding for this particular 

example was that, all the four algorithms produced sufficiently good result regardless of the 

𝐾𝑐 value used.   

 

 

Figure 3-43: PI auto-tuning with different algorithms for 𝐾𝑐=2.5 and 𝐾𝑐=2.0 - Example 5 

 

Figure 3-43 shows step-response of the PI-tuned feedback system with different algorithms at 

𝐾𝑐=2.5 and 𝐾𝑐=2.0 respectively. All the algorithms led to stable and robust system control 

with good set-point tracking behaviour for both values of 𝐾𝑐. Notice that, only HF and the JL 

algorithm produced response with slight overshoot in both condition. In general, the 

algorithms settled the system faster into steady state when 𝐾𝑐=2.0. 

Example 6  

In this simulation example, a PI-controller is designed and tuned to control a first-order 

process with identical time-constant and input delay. Figure 3-44 shows step-response of the 

process to be controlled as given by Equation (3.95).  
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Figure 3-44: Step response of the original process - Example 6 

 

Four different SID algorithms (YS, JR, JL and CLC) were applied during step experiment 

with 𝐾𝑐=1.0 and 𝐾𝑐=0.75. Table 3.29 presents the identified model and corresponding PI-

setting results for both values of 𝐾𝑐. 

 

Table 3.29: PI auto-tuning with different algorithms for 𝐾𝑐=1.0 and 𝐾𝑐=0.75 - Example 6 

 𝑲𝒄 = 𝟏. 𝟎𝟎 𝑲𝒄 = 𝟎. 𝟕𝟓 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 1.001 1.126 0.934 0.6023 1.1255 1 1.162 0.895 0.6496 1.1624 

JR 1.001 0.9587 1.15 0.4177 0.9587 1 0.935 1.16 0.4015 0.9350 

JL 1.001 0.9693 0.967 0.5009 0.9693 1 1.014 1.02 0.4971 1.0139 

CLC 1.001 2.159 0.387 2.789 2.1595 1 1.097 1.03 0.5329 1.0965 

HR 1 1 1 0.5 1 1 1 1 0.5 1 

 

Based on the result in the table, the identified model parameters obtained when using CLC 

were very poor and experienced largest deviation from the real parameters when 𝐾𝑐=1. As a 

result, the PI-controller with CLC setting gave unstable system dynamics. The YS and JR 

algorithm had better model parameters when 𝐾𝑐=1, which in turn gave stable and robust 

feedback response as shown in Figure 3-45.  
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Figure 3-45: PI auto-tuning with different algorithms for 𝐾𝑐=1.0 and 𝐾𝑐=0.75 - Example 6 

 

Generally, JL provided best PI-setting for the process when 𝐾𝑐=1.0, while CLC failed even to 

stabilize the systems. When 𝐾𝑐= 0.75, the CLC together with JL algorithm provided the most 

robust control settings among the four algorithms. The YS settings on other hand, gave 

response with some minor overshoot for both values of 𝐾𝑐. 

Example 7  

A first-order process with significant large time delay (as twice as long as its time-constant) 

given by Equation (3.96), is to be controlled and tuned by PI-controller containing parameter 

settings obtained by using YS, JR, JL and CLC algorithms. Figure 3-46 shows step-response 

of the original process.  

 

 

Figure 3-46: Step response of the original process - Example 7 

 

Two different values of 𝐾𝑐 (1.25 and 0.75) are applied to all four algorithms during step 

experiment, and the results for both values of 𝐾𝑐 are as presented in Table 3.30.  

In both cases, the JL algorithm provided best possible model parameters ┬𝑝 and 𝜏𝑝, closest to 

the real (HR) process parameters, which in turn produced almost similar PI-settings as 
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obtained when using half-rule technique. In contrast to JL, the CLC algorithm provided 

poorest model and PI-parameter setting for both values of 𝐾𝑐. At 𝐾𝑐=1.25, the CLC could not 

provide suitable enough setting for stable and robust closed-loop response.  

 

Table 3.30: PI auto-tuning with different algorithms for 𝐾𝑐=1.25 and 𝐾𝑐=0.75 - Example 7 

 𝑲𝒄 = 𝟏. 𝟐𝟓 𝑲𝒄 = 𝟎. 𝟕𝟓 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 1.002 1.585 2.09 0.3792 1.5854 1.002 1.441 1.81 0.3977 1.4406 

JR 1.002 1.126 2.2 0.2553 1.1264 1.002 0.9647 2.35 0.2046 0.9647 

JL 1.002 0.9907 1.93 0.2566 0.9907 1.002 0.9829 1.91 0.2567 0.9829 

CLC 1.002 3.258 0.76 2.1408 3.258 1.002 1.045 1.196 0.2660 1.0453 

HR 1 1 2 0.25 1 1 1 2 0.25 1 

 

As shown in Figure 3-47, the PI-settings with YS algorithm gave the fastest response in both 

cases. The algorithm exhibited also some sort of overshoot when 𝐾𝑐=0.75. Some small 

overshoots were also detected when JL algorithm was used for both values of 𝐾𝑐 as seen in 

Figure 3-47. The JR algorithm, unlike others, produced PI-setting with slowest response 

dynamics, and with no overshoot for both values of 𝐾𝑐, without compromising the time taken 

to bring the system to steady state. 

 

 

Figure 3-47: PI auto-tuning with different algorithms for 𝐾𝑐=1.25 and 𝐾𝑐=0.75 - Example 7 

 

Example 8 

A second-order system (Equation (3.97)) with oscillating dynamics is to be auto-tuned with 

PI-controller composed of settings obtained from YS, JR, JL and CLC algorithms. Figure 

3-48 shows open-loop response of the original process. The process has two complex poles, 
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and input time delay of magnitude 1. Two test gain values are used during step test, and the 

results are as presented in Table 3.31. 

 

 

Figure 3-48: Step response of the original process - Example 8 

 

Note that, none of the algorithms managed to provide similar or close enough identified 

model parameters ┬𝑝 and 𝜏𝑝 as that of HR. In addition to that, the deviation between the 

identified parameters across the algorithms were unusually large. The CLC algorithm gave 

the worst identified model parameters which led to completely poor PI-settings and hence 

unstable system dynamics for both values of 𝐾𝑐 as presented in Table 3.31. The identified 

model result from YS, JR and JL algorithms in both cases (𝐾𝑐=1.25 and 𝐾𝑐=1.00) indicated 

that the first order approximation of the original process has ┬𝑝 and 𝜏𝑝 values of 

approximately 3 and 5 respectively.  

 

Table 3.31: PI auto-tuning with different algorithms for 𝐾𝑐=1.25 and 𝐾𝑐=1.0 - Example 8 

 𝑲𝒄 = 𝟏. 𝟐𝟓 𝑲𝒄 = 𝟏. 𝟎𝟎 

𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 𝑲𝒑 ┬𝒑 𝝉𝒑 𝑲𝒑𝒊 𝑻𝒊 

YS 1 4.151 4.7 0.4412 4.1514 0.9999 3.916 4.93 0.3970 3.9162 

JR 1 3.124 4.99 0.3129 3.1238 0.9999 2.713 5.5 0.2445 2.7132 

JL 1 2.994 4.39 0.3409 2.9937 0.9999 2.655 4.82 0.2755 2.6551 

CLC 1 33.84 0.452 37.4189 3.6174 0.9999 33.49 0.452 37.0475 3.6163 

HR 1 1.8 1.6 0.5625 1.800 1 1.8 1.6 0.5625 1.800 

 

When it comes to PI-controller auto-tuning and control of the process, all the three algorithms 

(YS, JR and JL) provided better and more robust closed-loop system response compared to 

response observed when using PI-controller tuned with HR settings. With HR (also referred 
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as HF) settings, the response evinced oscillations and was barely stable as seen in Figure 

3-49.  

 

 

Figure 3-49: PI auto-tuning with different algorithms for 𝐾𝑐=1.25 and 𝐾𝑐=1.0 - Example 8 

 

Both YS’s, JR’s and JL’s PI-settings demonstrated oscillating response, and took quite long 

time to bring the system to steady state. The closed-loop responses for all the three algorithms 

shows similar patterns, however, the JR and JL are the most robust among the three.  

  

3.3.2.2.2 PID auto-tuning using SOPDT methods 

Simulation study using four process examples is used to assess the performance of the 

discussed second-order SID algorithms (JS, JSDR, DR and DR1) on auto-tuning PID-

controller. A step experiment was performed under two conditions, first without, and later 

with white Gaussian noise imposed into closed-loop system composed of the process and P-

controller at a given controller gain (𝐾𝑐) size. Thereafter, the SID algorithms were applied to 

identify the model and PID-parameters for the process in question. The resulted PID-settings 

were then applied to control the original process. Additionally, half-rule model-reduction 

technique (HR) was used to tune the PID-controller. These HR’s settings will serve as 

reference for performance measurement. 

Example 1  

In this example, the algorithms are supposed to auto-tune a PID-controller for a third-order 

process with input time delay as given by Equation (3.80). Figure 3-50 shows step-response 

of the original process on the left, and its corresponding step-response, on the right graph, of 

the noise induced closed-loop controlled by P-controller with 𝐾𝑐=2.0.  
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Figure 3-50: Process step-response and corresponding feedback response with P-controller at 

𝐾𝑐=2.0 

 

Table 3.32 presents the result obtained from model identification and PID parameter auto-

tuning. Based on the identified model results, the JS algorithm yielded negative damping 

ratio both when with and when without noise, leading to unstable process dynamic in both 

cases. The PID-setting obtained by using the JS algorithm also failed to provide stable 

closed-loop dynamics when applied to the original process. Similar to JS, the DR1 algorithm 

gave also negative damping ratio and hence unstable dynamics but only when exposed to 

measurement noise.   

 

Table 3.32: PID Auto-tuning SOPDT with different algorithms for 𝐾𝑐=2.0 - Example 1 

 Without noise With noise 

┬𝟎 𝜻𝒑 𝑲𝒑𝒊𝒅 𝑻𝒊 𝑻𝒅 ┬𝟎 𝜻𝒑 𝑲𝒑𝒊𝒅 𝑻𝒊 𝑻𝒅 

JS 2.0593 -0.213 0.4487 -4.83 2.059 1.7907 -0.788 -1.921 0.5244 9.7063 

JSDR 2.0593 0.5631 1.87 2.32 1.83 1.7907 1.2551 1.1007 3.6058 0.8893 

DR 2.0593 0.5936 1.79 2.44 1.73 1.7907 1.3272 1.1146 3.9391 0.8141 

DR1 2.0593 1.1867 1.28 4.89 0.868 1.7907 -2.827 0.8925 -10.13 -0.317 

HR 1.5811 1.0277 0.8 2.0 1.25 1.5811 1.0277 0.8 2.0 1.25 

 

When no noise involved, the JSDR, DR and DR1 gave stable second-order model 

approximation of the original process with similar static gain. Their estimated models 

displayed also inverse response as shown on the left graph in Figure 3-51. The JSDR and DR 

resulted models had damping ratio within 0 <  𝜁𝑝 < 1 range, hence exhibited some sort of 

oscillation and overshoot. Similar to the HR, the DR1 algorithm identified the approximated 

model with 𝜁𝑝 > 1 (refer to without noise column in Table 3.32) leading to overdamped 

response. 



 3 Closed-Loop Transient Step-change Response SID 

91 

 

 

Figure 3-51: Step-response of identified model without and with noise – Example 1 

 

Using the DR1 algorithm to auto-tune the PID controller for the process when the random 

Gaussian noise involved, gave negative integral and negative derivative time as seen in Table 

3.32, and hence invalid PID-settings for the process. The JSDR and DR algorithms, however, 

could provide PID-settings with more stable response dynamics when subjected to the 

random noise as illustrated in Figure 3-52.  

 

 

Figure 3-52: Closed-loop response of original process and PID tuned controller without and with noise – 

Example 1 

 

When not subjected to measurement noise, the DR1 algorithm gave PID-settings with most 

robust and stable dynamics as seen on the left graph in Figure 3-52, while the both JSDR and 

DR algorithms produced controller settings with oscillatory dynamics which took long time 

to reach the steady state. Note that, among the three algorithms (JSDR, DR and DR1), the 

JSDR produced the least robust and yet stable closed-loop response as seen in Figure 3-52.  
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Example 2  

This example is meant to assess the performance of the algorithms in auto-tuning PID-

controller for a firth-order process containing five identical time-constants with no time delay 

as given in Equation (3.81). Figure 3-53 shows step-response of the original process on left, 

and its corresponding response of the feedback system composed of P-controller with 𝐾𝑐=1.5.  

 

 

Figure 3-53: Process step-response and corresponding feedback response with P-controller at 

𝐾𝑐=1.5 – Ex. 2 

 

The PID-auto tuning results in both cases (without and with the masurement noises) are 

presented in Table 3.33. In both cases, the JS algorithm identified a second-order model 

approximation with negative relative frequency 𝜁𝑝, and hence unstable dynamics. As a result, 

the algorithm gave invalid PID-setting due to negative integral and derivative time as seen in 

Table 3.33. 

 

Table 3.33: PID Auto-tuning SOPDT with different algorithms for 𝐾𝑐=1.5 - Example 2 

 Without noise With noise 

┬𝟎 𝜻𝒑 𝑲𝒑𝒊𝒅 𝑻𝒊 𝑻𝒅 ┬𝟎 𝜻𝒑 𝑲𝒑𝒊𝒅 𝑻𝒊 𝑻𝒅 

JS 2.3729 -0.174 0.2516 -0.824 -0.82 2.2631 -0.154 0.2689 -0.698 -7.341 

JSDR 2.3729 0.6592 1.57 3.13 1.8 2.2631 0.5466 1.5139 2.4741 2.0702 

DR 2.3729 0.6577 1.573 3.12 1.8 2.2631 0.5483 1.5092 2.4816 2.0639 

DR1 2.3729 1.3432 1.01 6.37 0.883 2.2631 0.9559 1.0542 4.3267 1.1838 

HR 1.2247 1.0206 0.3 1.5 1.0 1.2247 1.0206 0.3 1.5 1.0 

 

When no noise involved, the JSDR, DR and DR1 identified a second-order model with stable 

dynamics and inverse response. Having 𝜁𝑝 of 0.6592 and 0.6577 respectively, models from 
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JSDR and DR experienced overshoot and minimal inverse response compared to model 

obtained from DR1, which possessed no overshoot and had relatively large magnitude of the 

inverse response as shown on the left graph in Figure 3-54. In general, when not subjected to 

the noise, the step-response of models from all the three algorithms (JSDR, DR and DR1) 

converged toward similar steady-gain as that of HR.  

 

 

Figure 3-54: Step-response of identified model without and with noise – Example 2 

 

With noise, the JSDR and DR provided almost identical model with similar response 

containing same magnitude of both the overshoot and the inverse response as seen on right 

graph in Figure 3-54. The model from DR1 is almost critically damped and experienced the 

largest inverse response as illustrated on the same graph in Figure 3-54. Notice that, the 

steady-state gain obtained with JSDR, DR and DR1 differs from HR when the closed-loop 

was subjected to the measurement noise. 

  

 

Figure 3-55: Closed-loop response of original process and PID tuned controller without and 

with noise – Ex. 2 
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Figure 3-55 shows PID- controller auto tuning result obtained from JSDR, DR, and DR1 

algorithms without and with the white Gaussian noise applied to the closed-loop during step 

experimentation, on left and right respectively. When without noise, the DR1 algorithm 

produced the most stable feedback response, while the JSDR produced the least robust 

closed-loop dynamics as seen in the left graph in Figure 3-55. When subjected to the noise, 

the DR1 still managed to provide the most robust PID-tuned response, while the JSDR and 

DR produced almost exactly similar settings and hence identical PID-tuned response as 

shown on the right graph in Figure 3-55.  

Example 3  

A third-order process with large time delay is to be controlled by PID-controller with tuning 

parameters obtained from JS, JSDR, DR and DR1 algorithms during step test experiment 

conducted on the feedback loop which consist of the original process and P-controller with 

𝐾𝑐=0.75. Figure 3-56 shows the step-response of the process and its corresponding closed-

loop system when subjected to Gaussian’s random white noise. 

 

 

Figure 3-56: Process step-response and corresponding feedback response with P-controller at 

𝐾𝑐=0.75 - Example 3 

 

Similar trend as in previous examples was observed for JS algorithm, The algorithm gave 

second-order model approximation with unstable dynamics in both cases due to negative 

relative damping, which resulted into negative 𝑇𝑖 and 𝑇𝑑 therefore invalid PID-settings as 

seen in Table 3.34. When without noise, the JSDR and DR gave relatively identical identified 

model with overshoot and similar magnitude of the inverse-response. The DR1 produced 

overdamped response with similar static gain as others, but with extremely large inverse-

response as seen on the left graph in Figure 3-57. 

 

Table 3.34: PID Auto-tuning SOPDT with different algorithms for 𝐾𝑐=0.75 - Example 3 

 Without noise With noise 

┬𝟎 𝜻𝒑 𝑲𝒑 𝑻𝒊 𝑻𝒅 ┬𝟎 𝜻𝒑 𝑲𝒑 𝑻𝒊 𝑻𝒅 
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JS 2.7923 -0.1917 0.114 -1.0705 7.2835 2.3021 -0.641 0.2262 -2.9513 -1.796 

JSDR 2.7923 0.8859 0.743 4.95 1.58 2.3021 1.3136 0.4552 4.9853 1.0631 

DR 2.7923 0.8504 0.775 4.75 1.64 2.3021 1.6164 0.4530 6.6446 0.7976 

DR1 2.7923 7.7736 0.397 43.4 0.18 2.3021 0.1355 -0.1775 0.6238 8.4966 

HR 1.7321 1.0104 0.2857 2.0 1.5 1.7321 1.0104 0.2857 2.0 1.5 

 

When the noise was applied to the feedback system, the DR1 produced barely stable 

oscillatory response, however, with shorter inverse response as compared to response when 

noise was involved as shown on right graph in Figure 3-57. JSDR and DR gave an identified 

model with overdamped response and larger inverse-response as compared to DR1. In 

general, when exposed to the noise, all the three algorithms (JSDR, DR and DR1) converged 

into steady-state with static gain lower than the gain obtained with HR as illustrated in Figure 

3-57.  

 

 

Figure 3-57: Step-response of identified model without and with noise – Example 3 

 

Figure 3-58 shows closed-loop response with PID-controller tuned using settings obtained 

from SID algorithms (JS, JSDR, DR and DR1), both without and with the random white 

noise injected into the system.  

The PID-controller settings obtained with JSDR and DR algorithm when no noise involved 

were quite similar and gave identical controlled loop dynamics containing oscillations, 

overshoots and small inverse response as shown on the left graph in Figure 3-58. The 

responses were the quickest and reached the steady state faster than HR’s settings. The DR1 

algorithm, unlike others, exhibited no overshoots and took long time to bring the process into 

steady state. 
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Figure 3-58: Closed-loop response of original process and PID tuned controller without and 

with noise – Example 3 

 

When exposed to the noise, both JSDR and DR algorithm’s PID settings provided stable and 

non-oscillatory response dynamics, though the JSDR gave settings with the most robust 

response among the two as illustrated on the right graph in Figure 3-58. On the other hand, 

the DR1 algorithm produced negative controller gain (𝐾𝑝=-0.1775), leading to direct action 

mode and hence worst set point tracking behaviour as seen on right graph in Figure 3-58. 

Example 8  

Example 8 represents a second-order process with oscillatory dynamics and an input time 

delay of magnitude one, as given in Equation (3.97). The process is supposed to be controlled 

and auto-tuned using PID-controller with parameter settings based on identified model 

obtained by using JS, JSDR, DR and DR1 algorithms with 𝐾𝑐=0.5. Figure 3-59 gives 

overview of the process response on left, and its corresponding closed loop response (on 

right) when random noise of white Gaussian type was induced into the feedback system. 

 

 

Figure 3-59: Process step-response and corresponding feedback response with P-controller at 

𝐾𝑐=0.50 - Example 8 
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Based on the simulation results presented in Table 3.35, the JS algorithm, when subjected to 

the noise, produced second-order model with negative damping ratio and hence unstable 

response. Consequently, the negative damping led to negative 𝑇𝑖 and 𝑇𝑑 thus invalid PID-

settings.  

On contrary, JSDR, DR and DR1 identified model with stable dynamics and inverse response 

when subjected to the noise as illustrated in Figure 3-60. The JSDR and DR models 

possessed almost identical underdamped and inverse response, while the DR1’s model was 

almost critically damped and had the largest magnitude of inverse response as seen in Table 

3.35 and illustrated on right graph in Figure 3-60.  

 

Table 3.35: PID Auto-tuning SOPDT with different algorithms for 𝐾𝑐=0.50 - Example 8 

 Without noise With noise 

┬𝟎 𝜻𝒑 𝑲𝒑 𝑻𝒊 𝑻𝒅 ┬𝟎 𝜻𝒑 𝑲𝒑 𝑻𝒊 𝑻𝒅 

JS 3.0563 0.1575 -0.258 0.9625 9.7051 2.7613 -0.066 0.0397 -0.3658 -20.85 

JSDR 3.0563 0.3594 1.8276 2.1966 4.2523 2.7613 0.6572 0.5363 3.6293 2.1009 

DR 3.0563 0.3423 2.6672 2.0923 4.4645 2.7613 0.6388 0.5545 3.5280 2.1612 

DR1 3.0563 0.4069 1.0517 2.4875 3.7551 2.7613 0.9521 0.3958 5.2583 1.4500 

HR 3.0 0.4 1.2 2.4 3.37 3.0 0.4 1.2 2.4 3.37 

 

All the algorithms produced stable models with oscillatory dynamics when with no noise 

involved. The JS’s model exhibited no inverse response and contained more oscillations then 

others. The JSDR, DR and DR1 estimated models with both oscillation and inverse response, 

however, the DR1 model experienced the largest magnitude of inverse response and the 

smallest overshoot among the four algorithms as illustrated on the left graph in Figure 3-60.  

 

 

Figure 3-60: Step-response of identified model without and with noise – Example 8 
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Figure 3-61 illustrates the response of the closed-loop system controlled by PID with settings 

originated from estimated models obtained by using JS, JSDR, DR and DR1 algorithms. The 

graph on the right side shows the response when no noise was involved, while the graph on 

the left side displays the closed-loop response when the feedback system was subject to the 

noise.  

When not subjected with the noise, the JS algorithm produced a combination of negative 

proportional gain and high integral time (refer to Table 3.35) leading to unstable closed-loop 

dynamics. DR and JSDR produced stable but oscillatory feedback response, while the DR1 

gave the most robust PID settings with high response speed and no oscillations as illustrated 

on the right graph in Figure 3-61.   

 

 

Figure 3-61: Closed-loop response of original process and PID tuned controller without and 

with noise – Example 8 

 

With noise, the JSDR and DR algorithms produced almost identical settings reflecting similar 

closed-loop dynamics as shown on the right graph in Figure 3-61. The DR1 settings produced 

the feedback response with slowest speed, and used the longest time to bring the response to 

steady state.  

 

3.4 Monte Carlo simulations on SID algorithms in 
stochastic framework 

In this section, Monte Carlo simulation are performed aimed at further assessment and 

comparison of the performance of the algorithms discussed in this thesis. The technique is 

applied in simulation of different examples (i.e. examples representing different response 

dynamics) to both first and second-order algorithms. It should be noted that the simulation 

involves only numerical examples, due to unavailability of experimental data as stated in 

section 1.2.  
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A random signal of white Gaussian noise type with SNR of 25dB was added to signal 

(closed-loop response). Total of 100 simulation (m) were conducted for n=1, and with 

Equation (2.44) as performance criterion. The algorithms are assessed and validated against 

either HR parameters or real parameters, i.e. parameters in the numerical examples of the 

same order as the order of the algorithm to be applied on the example. The numerical results 

obtained at the end of simulation determines the strength of algorithm, whereby small 

numerical values are associated with good performance. Generally, the smaller the value, the 

stronger the performance [10].  

The Monte Carlo simulation was performed in MATLAB software using the programming 

codes available in Appendix D. Note that, similar code structure is applicable for the Monte 

Carlo simulation for SOPDT algorithms. The FOPDT algorithms codes are off coarse 

replaced with relevant SOPDT algorithms codes as given in Appendix C.  

3.4.1 Monte Carlo Simulation for SID algorithms for FOPDT 

Three examples (example 1, 2 and 7) with two different values of 𝐾𝑐 are simulated by 

applying the four FOPDT algorithms (YS, JR, JL and CLC).  

3.4.1.1 Example 1 

This numerical example represents a third-order process with three different poles (T1 = 2, T2 

= 1, T3 = 0.5) and an input time delay τ of one second as given by Equation (3.80). The real 

(reference) parameters for simulations for this particular example are 𝐾𝑝,┬𝑝 and 𝜏𝑝 obtained 

by using HR technique corresponding to 1.0, 2.5, and 2.0 respectively. Two values of 𝐾𝑐 

(1.75 and 1.25) are applied during simulation, to enable observation of influence of 𝐾𝑐 on 

performance of the algorithms. 

Figure 3-62 gives graphical overview of the estimated static gain 𝐾𝑝 of the identified first 

order model using 𝐾𝑐 = 1.75 and 𝐾𝑐 = 1.25 respectively. Based on the distribution of the 

parameter (𝐾𝑝), the JR algorithm (blue coloured cross) underwent the most deviation, while 

the other algorithm gave relatively stable 𝐾𝑝. 

 

 

Figure 3-62: Monte-Carlo’s  𝐾𝑝 estimate using 𝐾𝑐 = 1.75 and 𝐾𝑐 = 1.25 respectively – 

Example 1 
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When it comes to the time constant ┬𝑝, the CLC algorithm displayed very high variation and 

hence highest deviations among others, as illustrated in Figure 3-63. The YS experienced also 

some noticeable variations, while the JL showed the most stable prediction of the ┬𝑝.  

 

 

Figure 3-63: Monte-Carlo’s  ┬𝑝 estimate using 𝐾𝑐 = 1.75 and 𝐾𝑐 = 1.25 respectively – 

Example 1 

 

Figure 3-64 gives graphical overview of distribution of the identified time delay 𝜏𝑝 for the 

two 𝐾𝑐 values used during simulation. For both values of 𝐾𝑐, there is clear separation 

between the CLC’s values and the rest. The CLC algorithm displayed better precision for 𝜏𝑝 

compared to ┬𝑝 as illustrated in Figure 3-63, though with low accuracy in both cases. Note 

that at 𝐾𝑐=1.25, the YS, JR and JL precision were minimized.   

 

 

Figure 3-64: Monte-Carlo’s  𝜏𝑝 estimate using 𝐾𝑐 = 1.75 and 𝐾𝑐 = 1.25 respectively – 

Example 1 

 

Table 3.36 gives overall performance result of the tested algorithms for both values of 𝐾𝑐. 

The JL algorithm displayed strongest performance in both cases, while the CLC’s 

performance in both cases were the poorest and extremely unreliable due to the huge 
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registered difference from the real parameters as seen in the Table 3.36. The JR’s 

performance is rated second when 𝐾𝑐=1.75, and was the third strongest when 𝐾𝑐=1.25.  

 

Table 3.36: Algorithm's performance - Example 1 

Algorithm Performance 

𝐾𝑐 =1.75 𝐾𝑐 = 1.25 

YS 1.2886 1.0664 

JR 0.7047 1.0692 

JL 0.4346 0.5447 

CLC 850.96 460.44 

 

3.4.1.2 Example 2 

Example 2 represents a firth-order process with identical poles of T=1 and no input time 

delay as given by Equation (3.81). The reference values for this example are HR’s 

parameters 𝐾𝑝,┬𝑝 and 𝜏𝑝 with corresponding values 1.0, 1.5, and 3.5 respectively. During 

simulation, two values of 𝐾𝑐 are used, which are 1.25 and 0.75.  

The distribution of the static gain 𝐾𝑝 during simulation showed similar trend as for example 1 

above. The JR algorithm displayed the largest deviation for both size of 𝐾𝑐, though still with 

acceptable limit as illustrated in Figure 3-65.  

 

 

Figure 3-65: Monte-Carlo’s  𝐾𝑝 estimate using 𝐾𝑐 = 1.25 and 𝐾𝑐 = 0.75 respectively – 

Example 2 
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For the time constant ┬𝑝, the CLC algorithm showed again highest deviations amongst the 

algorithms in both cases as illustrated in Figure 3-66. At 𝐾𝑐=0.75, the precision of the rest of 

algorithms experienced some decrements in strength.  

 

 

Figure 3-66: Monte-Carlo’s  ┬𝑝 estimate using 𝐾𝑐 = 1.25 and 𝐾𝑐 = 0.75 respectively – 

Example 2 

 

Figure 3-67 gives overview of distribution of time delay 𝜏𝑝 during the simulations for both 

values of 𝐾𝑐. As seen in the graphs, the CLC algorithm identified the 𝜏𝑝 mostly between 0 

and 2, while the other three algorithms gave higher values of 𝜏𝑝 ranging from 2 and above, 

and hence displayed clear separation among them.  

 

 

Figure 3-67: Monte-Carlo’s  𝜏𝑝 estimate using 𝐾𝑐 = 1.25 and 𝐾𝑐 = 0.75 respectively – 

Example 2 

 

Table 3.37 gives overview of the overall performance of the algorithms for both values of 𝐾𝑐. 

Based on the result, the CLC algorithm experienced least strong and very poor performance 
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in both conditions.  The JL and JR showed almost identical strength when 𝐾𝑐=1.25, while the 

YS algorithm took the third place. When 𝐾𝑐=0.75, the JL displayed strongest performance 

followed by YS and JR in sequence.  

 

Table 3.37: Algorithm's performance - Example 2 

Algorithm Performance 

𝐾𝑐 =1.50 𝐾𝑐 = 1.00 

YS 4.5006 3.5485 

JR 2.1494 1.5236 

JL 2.1362 1.2680 

CLC 1555 765.6 

 

3.4.1.3 Example 7  

Example 7 represents a first-order process with static gain 𝐾𝑝, time-constant ┬𝑝 and input 

delay time 𝜏𝑝 of 1, 1 and 2 respectively. The process parameters are, off course, the natural 

reference values used for validation of the simulation result, whereby two different values of 

1.0 and 0.75 for 𝐾𝑐 were used.   

 

 

Figure 3-68: Monte-Carlo’s  𝐾𝑝 estimate using 𝐾𝑐 = 1.0 and 𝐾𝑐 = 0.75 respectively – 

Example 7 

 

Figure 3-68 gives graphical result and distribution of the estimated static gains by the three 

algorithms for 𝐾𝑐 = 1.0 and 𝐾𝑐 = 0.75 respectively. All the algorithms identified the gain 

around 1, however, the JR showed the least precision among the four.  
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Figure 3-69: Monte-Carlo’s  ┬𝑝 estimate using 𝐾𝑐=1.0 and 𝐾𝑐=0.75 respectively – Example 7 

 

For the time constant ┬𝑝, the CLC algorithm exhibited largest deviations and poor precision 

for 𝐾𝑐= 1.0. However, at 𝐾𝑐= 0.75 the algorithms improved the estimations and identified the 

┬𝑝 value around 1 as shown in Figure 3-69. The YS algorithm showed poor accuracy, though 

with relatively stable precision in both cases as seen Figure 3-69.  

 

 

Figure 3-70: Monte-Carlo’s  𝜏𝑝 estimate using 𝐾𝑐=1.0 and 𝐾𝑐=0.75 respectively – Example 7 

 

The CLC displayed similar trend in estimation of time delay 𝜏𝑝, which is poor accuracy and 

low precision at 𝐾𝑐=1.0, but improved performance at 𝐾𝑐=0.75. At 𝐾𝑐=0.75, the JR’s 

identified 𝜏𝑝 experienced largest deviation among the four algorithms as seen in Figure 3-70.  

 

Table 3.38: FOPDT algorithms’ performance - Example 7 

Algorithm Performance 

𝐾𝑐 =1.00 𝐾𝑐 = 0.75 
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YS 0.2717 0.2044 

JR 0.1167 0.2813 

JL 0.0335 0.0656 

CLC 2.5231 0.0281 

 

Table 3.38 presents overview of the overall performance of the algorithms for both values 

of 𝐾𝑐. When 𝐾𝑐=1.00, the JL algorithm displayed strongest performance amongst the 

algorithms, followed sequentially by JR and YS. The CLC had the least strong performance 

at 𝐾𝑐=1.0. However, the algorithm displayed the strongest performance when 𝐾𝑐=0.75, 

followed by JL, YS and JR at last place.  

 

3.4.2 Monte Carlo Simulation for SID algorithms for SOPDT 

For the second-order SID algorithms, five numerical examples (example 1, 2, 3, 8 and 9) 

representing systems of different dynamic characteristics are simulated to assess and compare 

the algorithm’s performances among each other.  

3.4.2.1 Example 1 

The example is identical to example 1 used for Monte Carlo simulation for FOPDT. The 

reference parameters for simulations for this particular example are 𝑏0, 𝑏1, 𝑎0 and  𝑎1 

obtained by HR technique corresponding to 0.4, -0.5, 0.4 and 0.96 respectively. The value of 

𝐾𝑐 used during simulation is 2.5.  

Figure 3-71 gives graphical overview of the identified parameters 𝑏1 and 𝑏0 respectively. 

Generally, all the algorithms experienced high precision around zero for the parameter 𝑏1, 

however, the DR1 algorithm was least precise among the four. When it comes to 𝑏0, the 

algorithms provided almost identical estimation for all the 100 numbers of simulations 

conducted as shown in Figure 3-71.  
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Figure 3-71: Monte-Carlo’s simulation result for estimated parameters 𝑏1 and 𝑏0 respectively 

– Example 1 

 

When identifying the parameter 𝑎1, the DR1 algorithm displayed huge deviation in very few 

numbers of simulations.  Otherwise, the similar trend is spotted for the estimated parameters 

𝑎1 and 𝑎0 as shown in the Figure 3-72.  

 

 

Figure 3-72: Monte-Carlo’s simulation result for estimated parameters 𝑎1 and 𝑎0 respectively 

– Example 1 

 

Table 3.39 presents overall performance of the algorithms based on the Monte Carlo 

simulation of this particular example with 𝐾𝑐=2.5. The DR algorithm displayed the strongest 

performance among the four, while the JSDR followed closely at the second place. Based on 

the simulation result, the DR1 had the least strong performance as seen in Table 3.39.  

 

Table 3.39: SOPDT algorithms’ performance - Example 1 

Algorithm Performance with 𝐾𝑐=2.5 

JS 2.5232 
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JSDR 0.5098 

DR 0.4802 

DR1 183.71 

 

3.4.2.2 Example 2 

This example is identical to the example 2 simulated for FOPDT algorithms in section 

3.4.1.2. The reference parameters are similarly 𝑏0, 𝑏1, 𝑎0 and  𝑎1 obtained by HR technique 

corresponding to 0.6667, -1.6667, 0.6667 and 1.6667 respectively. The value of 𝐾𝑐 used 

during simulation is 2.0.  

 

 

Figure 3-73: Monte-Carlo’s simulation result for estimated parameters 𝑏1 and 𝑏0 respectively 

– Example 2 

 

Figure 3-73 shows graphical distribution of the identified parameter 𝑏1 on the left and the 

parameter 𝑏0 on the right. The DR1 algorithm displayed, again, least precision as it showed 

noticeably huge variation in some simulations. The other three algorithms estimated 

𝑏1 mostly around zero with high precision. For 𝑏0, the algorithms produced identical values 

of the parameter for almost all 100 simulations. 
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Figure 3-74: Monte-Carlo’s simulation result for estimated parameters 𝑎1 and 𝑎0 respectively 

– Example 2 

 

Similar trend is observed when it comes to estimation of parameters 𝑎1 and 𝑎0 using the 

Monte Carlo simulation as shown in Figure 3-74. The only noticeable difference is that the 

𝑎1 value identified using DR1 deviated more toward negative value compared to the 

deviation displayed by 𝑏1.  

 

Table 3.40: SOPDT algorithms’ performance - Example 2 

Algorithm Performance with 𝐾𝑐=2.0 

JS 7.3215 

JSDR 4.8721 

DR 4.4109 

DR1 41.5358 

 

Compared to the HR identified parameters, the overall performances of the algorithms in this 

particular numerical example are as given in Table 3.40. The DR exhibited the strongest 

performance amongst all, though followed closely by JSDR at second, and JS at third place. 

The DR1 appeared again to be the least strong as seen in Table 3.40.  

3.4.2.3 Example 3 

This example represents a third order process containing significant large (larger than the 

dominating time constant) 𝜏𝑝=3, and three time-constants 𝑇1=2, 𝑇2=𝑇3=1, as given by 

Equation (3.82). A 𝐾𝑐=1.0 was used for simulations, with the HR’s second-order calculated 

parameter 𝑏0, 𝑏1, 𝑎0 and  𝑎1 as reference (real) values used for validation. The values are 

given in their respective order as 0.3333, -1.1667, 0.3333 and 1.1667.  
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The distribution and variation of the identified parameters 𝑏0, 𝑏1, 𝑎0 and 𝑎1 obtained as a 

result of simulations showed exactly similar trend as the one observed in simulation results 

for example 2 as illustrated in Figure 3-73 and Figure 3-74.  

 

Table 3.41: SOPDT algorithms’ performance - Example 3 

Algorithm Performance with 𝐾𝑐=1.0 

JS 3.9054 

JSDR 1.8675 

DR 1.5416 

DR1 17.7001 

 

Table 3.41 presents the overall performance result of all the algorithms tested on the example 

3. As seen in the table, the DR algorithm emerged with the strongest performance of all, yet 

again closely followed by JSDR, and JS in the respective order. The DR1 algorithm displayed 

the least strong performance of all.  

3.4.2.4 Example 8 

The example represents a second-order process with underdamped response and an input 

delay 𝜏𝑝=1. The Monte Carlo simulation for this example are performed at 𝐾𝑐=0.75, and with 

the model’s real data as reference data for validation of the simulation results obtained using 

the four algorithms (JS, JSDR, DR and DR1). These validation parameters 𝑏0, 𝑏1, 𝑎0 and  𝑎1 

corresponds respectively to 0.1111, -0.1111, 0.1111 and 0.2667.  

 

 

Figure 3-75: Monte-Carlo’s simulation result for estimated parameters 𝑏1 and 𝑏0 respectively 

– Example 8 

 

The DR1, DR and JS algorithms experienced some sort of variation and less precision in 

identifying the parameter 𝑏1 as illustrated in Figure 3-75. However, when it comes to 
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estimation of parameter 𝑏1, all the algorithms gave identical results in all simulations as also 

observed in previous examples.  

 

 

Figure 3-76: Monte-Carlo’s simulation result for estimated parameters 𝑎1 and 𝑎0 respectively 

– Example 8 

 

Figure 3-76 gives result overview of the identified parameter 𝑎1  and 𝑎0. In most simulations, 

the algorithms estimated the parameter 𝑎1 within the interval of -0.5 to 0.5. However, some 

few deviations were detected whereby the DR1 stood for the most of it as shown in left graph 

in Figure 3-76. The algorithms estimate for the parameter 𝑎0  were identical and appeared to 

be within the range of 0.06 – 0.2.  

 

Table 3.42: SOPDT algorithms’ performance - Example 8 

Algorithm Performance with 

𝐾𝑐=0.75 

JS 0.2322 

JSDR 0.0983 

DR 0.4223 

DR1 2.5695 

 

Table 3.42 presents the overall performance result for the algorithms against the HR 

parameters for this particular example and at 𝐾𝑐=0.75. Based on the results, the JSDR 

emerged with the strongest performance, followed by JS and DR. The DR1 displayed the 

least strong performance of all as seen in the Table 3.42.  

3.4.2.5 Example 9  

The process model given by Equation (3.98) represents a stable but oscillatory second-order 

process with no input time-delay. Both of the process’ poles are located on the left hand side 
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of the complex plane. The process contains also a zero, situated at the right hand side of the 

plane.  

ℎ𝑝(𝑠) =
0.1518𝑠 + 0.03928

𝑠2 + 0.1067𝑠 + 0.0485
 (3.98) 

Monte Carlo simulations were performed using the JS, JSDR, DR and DR1 algorithms with 

𝐾𝑐=0.2. The reference parameters for performance validation 𝑏0, 𝑏1, 𝑎0 and  𝑎1 are the real 

model parameters given as 0.0393, 0.1518, 0.0485 and 0.1067 respectively.  

 

 

Figure 3-77: Monte-Carlo’s simulation result for estimated parameters 𝑏1 and 𝑏0 respectively 

– Example 9 

 

Figure 3-77 gives graphical overview of the identified parameter 𝑏1 and 𝑏0  displayed on the 

left and the right graph respectively. The algorithms estimated the value of 𝑏1 ranging from 

around -0.5 to 0.5 with relatively good precision as seen on left graph in Figure 3-77. The 

algorithms were again consistent and identical when identifying the parameter 𝑏0  as shown 

on right graph in Figure 3-77.  
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Figure 3-78: Monte-Carlo’s simulation result for estimated parameters 𝑎1 and 𝑎0 respectively 

– Example 9 

 

The same pattern is followed when it came to identification of the parameter 𝑎1 and 𝑎0. 

Based on the right graph in Figure 3-78, the algorithms estimated 𝑎1 mostly within the 

interval of 0 – 0.2, though with varied precision and accuracy among them. For the 

parameter 𝑎0, the result ranged mostly from 0.03 to 0.07. The algorithms produced identical 

values of 𝑎0 in same simulation index.  

 

Table 3.43: SOPDT algorithms’ performance - Example 9 

Algorithm Performance with 𝐾𝑐=0.2 

JS 0.0122 

JSDR 0.0529 

DR 0.0378 

DR1 0.2752 

 

Table 3.43 gives overview of the overall performance of the algorithms when applied to 

example 9 with 𝐾𝑐=0.2. Generally, all performance of the entire assessed algorithm were 

quite impressive, and did not differ much among them. However, the JS algorithm showed 

strongest performance followed by DR, JSDR, and DR1 in the name sequence as seen in the 

Table 3.43.  
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4 Discussion 
This chapter weighs up the results obtained from the intensive simulation study conducted as 

presented in sections 3.2, 3.3 and 3.4. The chapter provides objective interpretation, 

explanation and analysis of the results greater perspective as a whole, and compare the 

findings against the literature, in the outlined sequence.  

4.1 Choice of suitable 𝑲𝒄  

Apart from the MF algorithm, all the Transient analysis SID methods presented in this thesis 

utilizes the simplicity of P-controller in studying the response of an output feedback system, 

leading to identification of open-loop system by means of back calculation. However, the 

simplicity of P-controller comes with its price, namely by introducing steady state offset in 

the system response [8, 24]. The offset does not prevent to system to attain stable and 

consistent response, but it makes the system unable to exactly align its response with 

controller’s reference value.  

 

 

Figure 4-1: Steady state offset in air-heater’s response with P-controller 

 

Figure 4-1 illustrates the steady state offset observed during step test experimentation 

conducted on an air heater controlled by P-controller at 𝐾𝑐 = 1.25. An offset of around 0.50° 

Celsius prevent the system response (blue coloured) aligning with the set-point (dotted red 

line).  

Moreover, the algorithms presented, are based on underlying assumption that the size of the 

controller gain 𝐾𝑐 shall be chosen wisely to produce underdamped closed-loop response (i.e. 

with relative damping ζ in interval 0<ζ<1) [2, 4-6, 8-10]. The simulations performed in 

chapter 3.2 has proven the inapplicability of the algorithms when ζ of the closed loop 

response lies outside the required interval. The algorithms fails to produce solutions, and 

gives complex solutions when ζ > 1 and ζ < 0 respectively.   

The size of 𝐾𝑐 has huge influence on the performance of algorithm. Even when the chosen 𝐾𝑐 

satisfies 0<ζ<1, still cannot guarantee validity of the results. As shown and illustrated during 

simulation study, the algorithms reacts different to size of 𝐾𝑐. In general, all the presented 

algorithms favour small values of 𝐾𝑐, which again are associated with small overshoot. The 
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CLC algorithm produces best possible results when the closed-loop response undergoes 

minimal overshoot with magnitude of normally not larger than 0.15. For the JR algorithm, 

however, an overshoot with magnitude smaller than 0.075 gives poor results. Depending on 

nature of the response, the JL algorithm has proven to cover the largest range of overshoot of 

about 0.031 – 0.625 in magnitude, and still being able produce good model parameters. The 

size of 𝐾𝑐 influenced also the performance of the algorithms for second-order models. 

4.2 Persistent excitation and Back calculation  

In closed-loop system identification, the persistent excitation alone does not always guarantee 

sufficiently informative data for the identification purpose, which lead to distinguishable 

models based on only input-output description of the system [29]. Using transfer function as 

chosen model structure, however, minimized the probability of ending up with non-

distinctive models when the back calculation was applied.  

The simulation study in chapter 3.2 has proven that, when no noise is involved, the back 

calculation techniques can approximate models that can be distinguished based on only the 

input-output description of the system. The finding underlines the need of proper filtering 

(i.e. removing white noise, high and low frequency disturbances) of the signal data obtained 

from the step experimentation before being imported into the SID algorithms.  

4.3 Step-response Transient SID algorithms for FOPDT 

Five algorithms for step-response transient analysis SID for FOPDT have been discussed in 

this study. The algorithms strength and performance have been assessed though simulation 

study of different examples representing processes of different dynamics and response 

behaviour.  

Starting with the YS algorithm, the simulation results obtained in subchapter 3.2.3.1.2 and 

3.3.2.2.1 captures repeated trend in YS’s performance. Generally, the algorithm estimates 

sufficiently good model parameters for systems with first-order dynamics as seen in 

simulation results for examples 4, 5, 6 and 7. The algorithm yields less good model results 

when applied to systems with significant large time delay as illustrated in simulation result 

for examples 3, 4, 6 and 7. The algorithm’s performance worsens with increasing order of the 

system, as shown in simulation results for examples 1, 2, 3 and 8. Moreover, the algorithm’s 

ability in identifying model parameter is even worsened when applied to higher-order system 

with oscillatory dynamics.  

Under the similar conditions, the JR algorithm identified model parameters that gave 

somehow better reflection of the original system as compared to YS algorithms as proved by 

the simulation results presented in section 3.2.3.2 and 3.3.2.2.1. However, the JR algorithm 

identified a slightly higher time delay, which in most cases deviated further from HR 

parameters as seen in almost all the simulation results. Additionally, the JR algorithm yields 

negative time delay and/or negative time constant for the estimated model when the 

underdamped closed-loop response of the original system moves closer to overdamped 

response as discussed in chapter 4.1.  

Among the five algorithms, the JL algorithm identified model parameters with best possible 

dynamics description and reflection of the original system, based on the simulation results 
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obtained in sub-chapter 3.2.3.3 and 3.3.2.2.1. The algorithm exhibits good ability in coping 

with various conditions for example low- and high-order system, system with oscillatory 

dynamics, as well as system with significant large dead time as seen in simulation results for 

examples three, four, six and seven. Unlike other, the algorithm accepts the largest range of 

magnitude of the overshoot occurring in closed loop response without compromising much 

on validity and quality of the estimated parameters. 

CLC-algorithm’s ability to identify models that match original system dynamics is highly 

dependent on the size of overshoots the feedback response. Based on the simulation results in 

sections 3.2.3.4.2 and 3.3.2.2.1, the algorithm’s best performance happened when the 

overshoots are extremely low. Even when applied to closed-loop response with minimal 

overshoots, the algorithm still struggled to provide good sets (combination) of model 

parameters. In most examples, the algorithm identified quite acceptable gain and time 

constant, but with poor (in respect to HR) identified dead time, or vice versa. In respect with 

the original system dynamics, the CLC algorithm’s coped better with first-order systems 

compared to ones with higher-order dynamics.  

Unlike other, the MF algorithm utilizes PI-controller in estimation of models from closed-

loop system response (as highlighted in section 3.1.5), requiring pre-setting of both the test 

gain and integral time prior to step test experimentation. Finding best combination of 

controller test parameters has proven to be very challenging, as it requires sufficient 

knowledge of the system dynamics. Similar to CLC, the MF also appeared to perform best 

when applied to feedback system having response with very small overshoots. The simulation 

results obtained in section 3.2.3.5.2 shows however an interesting finding. The algorithm 

produced relatively acceptable and better time-constant when the original system dynamics 

contains experience input time delay, while the algorithm gave relatively acceptable 

estimated time delay when the original system dynamics contains no input delay.  

4.4 Step-response Transient SID methods for SOPDT 

For second-order with time-delay SID, four algorithms (JS, JSDR, DR and DR1) have been 

discussed and assessed by means of simulation study of different examples representing 

systems with different dynamics as presented in chapter 3.1 and 3.2.4.  

Staring with the JS algorithm, the simulation result in section 3.2.4.1.2 has revealed the 

highest (among the discussed algorithms for SOPDT) sensitivity to size of the controller test 

gain 𝐾𝑐, i.e. sensitivity on the magnitude of the overshoot displayed in closed-loop response. 

Even when chosen gain satisfied the underdamped criterion (i.e. 0<ζ<1), the algorithm 

identified model parameters with completely different dynamics. For example, the algorithm 

gave model with unstable dynamics in example 1 for 𝐾𝑐 values 2 and 1.5, but also produced 

model parameter with stable dynamics form the same original system when 𝐾𝑐=1. The 

similar trend is also traced in example 2. Moreover, when applied to systems with time delay, 

the algorithm failed to reflect the dead time existing in the original process’s response, 

neither displayed inverse response.  

The JSDR is primarily a modified JS algorithm. The JSDR showed improved performance 

and minimized sensitivity on 𝐾𝑐 and hence avoided yielding models with complete different 

dynamics, as proved with simulation results in section 3.2.4.1.2 and 3.3.2.2.2. Additionally, 

the JSDR estimated models incorporated inverse response to reflect the input delay 
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experienced in systems response as illustrated, among others, in Figure 3-25, Figure 3-27 and 

Figure 3-29.  

Based on the simulation results obtained under similar conditions as for JS and JSDR 

algorithms, the DR algorithm provided, generally, identified parameters with better and 

closer response to original dynamics of the systems as shown in simulation results for 

example 1, 2 and 3 in section 3.2.4.2.2. The resulted model dynamics display almost constant 

inverse response despite the variation in size of the 𝐾𝑐 used during step experimentation. In 

all simulated examples, the DR algorithm identified models showed underdamped response 

regardless of the nature of response in the original system. The phenomenon is highlighted in 

the simulation results obtained in section 3.2.4.2.2, whereby the DR algorithm identified 

models with oscillatory behaviour while the original system response is overdamped (i.e. 

contains no oscillations). However, it should be noted that, the amount (size) of the 

oscillations decreases with decreasing size of 𝐾𝑐.  

The DR1 algorithm, on the other hand, identified model parameters, which provided best 

possible reflection of the original system response. For example, the estimated model 

obtained from overdamped systems (examples 1, 2 and 3 in section 3.2.4.2.2) also displayed 

overdamped response, while the algorithm also managed to match the underdamped response 

of the original system (example 8 in chapter 4.4) with the response of the equivalent 

dynamics. Additionally, the DR1 algorithm, identified models with inverse response to 

counteract the dead time experienced by systems, as illustrated in simulation results in section 

3.2.4.2.2.  

4.5 Time delay and Effect of noise in identification of 
delay 

When no noise involved, the identification of system’s time delay during estimation of first-

order models (using SID algorithms for first-order models) appeared to be straightforward, 

since all the algorithms (YS, JR, JL, CLC, and MF) have incorporated time delay 𝜏𝑝 as direct 

output. The quality or validity of identified time delay has proven to depend on strength of 

individual algorithm and size of controller gain (and test integral time for MF) as seen in 

simulation results presented in section 3.2.3. Generally, the JL algorithm identified, in most 

cases, the most valid delay time (with respect to HR). The JR comes second, while YS, CLC 

and MF makes the remaining sequence.  

Identifying the time delay for second-order approximated models is not as straightforward as 

for first-order models. The second-order algorithms discussed (JS, JSDR, DR and DR1) do 

not have delay time as integrated direct output form the algorithms. However, the JSDR, DR 

and DR1 produced model parameters with inverse response to reflect the time delay in the 

original system, whereby the magnitude of time delay is appeared to be equivalent to the time 

taken for the inverse response to change direction (i.e. turn into direct response) as illustrated 

in Figure 4-2.  
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Figure 4-2: Black square indication response turning point 

 

Figure 4-2 shows the point (just graphical approximation) at which the inverse response turns 

direct response of the identified system. The magnitude of the dead time existing in original 

system has proven to adhere with the negative ratio of the identified parameters b1 and b0 

(i.e. 𝜏𝑝 = −
𝑏1

𝑏0
). Based on the simulation results obtained in 3.2.4, the DR provided best 

possible estimations of time delay, followed by JSDR, and DR1. In almost all simulated 

examples, the JS algorithm failed complete to identify the input delay experienced in the 

original systems.  

On the other hand, when the random white noise was induced into closed-loop during step 

test, the algorithms’ strength in estimating correct dead time decreased noticeably. Their 

estimations become no longer reliable as shown in simulation results in chapter 3.3.2.2. For 

the individual first-order algorithms, JR showed the least effect, followed by YS and then JL. 

The CLC algorithm appeared to be the most affected among the four. For the second-order 

algorithms, the DR algorithm showed least effect, though only in few cases (simulated 

examples) the algorithm provided acceptable time delay. The DR1 comes at second place, 

however, with unreliable time delay in most of time. Only in few occasions, the JSDR 

managed to provide estimate for time delay, not necessarily acceptable results though, while 

JS should not even counted on.  

 

4.6 Using Transient response SID algorithms in auto 
tuning PID 

The PID auto-tuning mechanism in this study was based SIMC settings derived from the 

model parameters estimated using the discussed system identification algorithms. The 

effectiveness of the PID-settings depended therefore on the validity and the quality of the 

estimated model parameters.  

Among the discussed first-order SID algorithms, the JL produced, in most cases, the most 

robust PI-settings that gave stable feedback dynamics with impressive set-point tracking 

ability. The JL’s PI-settings experienced good response speed with no or very minimum 
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overshoot regardless of original systems dynamics behaviour as shown in simulation results 

in section 3.3.2.2.1. The simulation results for examples 1, 2 and 3 in the same section show 

also the algorithms good ability in coping with noise signals.  

When the PI-settings from YS algorithm were used, the closed-loop response exhibited, in 

most cases, stable dynamics though with some oscillations. The algorithm produced the 

fastest response in expense of robust control. However, the algorithm poor ability in coping 

with noise signal as seen in Table 3.24, Table 3.25 and Table 3.26. 

The JR’s PI-settings gave quite robust control and stabilized the closed-loop system. 

However, the algorithm produced the slowest response with in most cases no overshoot. The 

CLC algorithms PI-settings were the most unreliable, and many cases produced unstable 

feedback response as seen in section 3.3.2.2.1. The poor settings are mainly due to the large 

controller gains 𝐾𝑐 used during step-test experimentation, since the algorithm is extremely 

sensitive to both size of 𝐾𝑐 and noise. 

 

Table 4.1: Gain Margin (GM) and Phase Margin (PM) for FOPDT algorithms 

 Example 1 Example 6 Example 8 

𝑲𝒄 1.25 1.00 1.25 0.75 1.00 0.50 

 GM PM GM PM GM PM GM PM GM PM GM PM 

YS 10.11 67.68 9.95 66.61 9.448 65.68 8.34 60.26 8.89 89.78 10.12 87.89 

JR 11.79 68.72 12.22 68.84 11.19 65.45 11.49 64.28 10.00 84.75 - - 

JL 10.61 66.03 10.98 66.91 9.95 61.76 10.06 62.14 8.76 82.65 10.88 80.22 

CLC 10.66 68.32 10.53 67.89 3.76 164.7 9.82 63.76 19.61 -118 21.77 -104 

HR 9.99 59.46 9.99 59.46 9.94 61.35 9.94 61.35 4.35 21.72 4.35 21.72 

 

Table 4.1 gives an overview of Gain Margins (GM) and Phase Margins (PM) for three chosen 

example with PI-settings obtained by the four algorithms. Note that, the CLC’s PI-settings for 

both 𝐾𝑐 in example 8, and the example 6 when 𝐾𝑐=1.25 gave unstable dynamics. Note also 

that, JR gave no results for example 8 when 𝐾𝑐=0.5 due to negative integral time and hence 

invalid PI-settings. 

Generally, the JR’s PI-settings gave both largest GM and largest PM, meaning that the JR’s 

settings had largest stability margins hence most flexible to changes. The JL experienced the 

second largest GM, hence good flexibility in loop transfer-function gain. The YS 

experienced, on the contrary, the smallest margins and hence least flexible.  

When it comes to second-order algorithms, the DR1 algorithm has proved to be unreliable 

when the closed-loop response is subjected to noise during step-test. Either provided poor 

PID-setting or failed to provide PID-settings at all. Based on the simulation results in 

3.3.2.2.2, the DR and JSDR when subjected to noise, produced PID-settings with almost 
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identical dynamics behaviour, in most cases. Note that, the JS failed totally, both when and 

when no noise was involved.  

Generally, when no noise was involved, the DR1 provided the most robust PID-settings with 

underdamped dynamics (i.e. no overshoots) but with slowest response speed. The DR1’s 

PID-settings showed best tracking behaviour as illustrated on the left graphs in Figure 3-52, 

Figure 3-55, Figure 3-58 and Figure 3-61. The PID-settings from JSDR and DR gave stable 

closed-loop dynamics with fastest response speed and oscillations. The JSDR had, in most 

cases, higher oscillation compare to DR. 

 

Table 4.2: Gain Margin (GM) and Phase Margin (PM) for SOPDT algorithms 

 Example 1 Example 2 Example 8 

𝑲𝒄 1.25 1.00 1.25 0.75 1.00 0.50 

 GM  PM GM  PM GM  PM GM  PM GM  PM GM  PM 

JS - - 26.21 -139 ∞  -153 ∞  -133 21.85 -148 24.66 -123 

JSDR 6.00 61.68 6.44 60.63 3.00 26.08 8.68 59.13 5.80 47.04 5.32 43.22 

DR 5.38 60.44 4.66 55.22 3.68 33.26 7.39 55.52 4.67 40.29 1.66 16.44 

DR1 13.68 94.98 14.56 84.66 15.67 74.50 17.43 99.89 9.56 61.55 11.06 65.75 

HR 12.77 53.38 12.77 53.38 15.46 54.41 15.46 54.41 9.94 61.35 9.94 61.35 

 

Table 4.2 gives an overview of Gain Margins (GM) and Phase Margins (PM) for three chosen 

example with PID-settings obtained by the four algorithms when no noise was involved. Note 

that, the JS algorithm produced unstable response for all tested example with the specified 

size of 𝐾𝑐. 

Generally, the DR1’s PID-settings gave both largest GM and largest PM, hence most flexible 

due to largest stability margins. The JSDR experienced the second largest GM and PM, hence 

good flexibility in both loop transfer-function gain phase lag function of the loop. The DR 

experienced, on the contrary, the smallest margins and hence least flexible.  

 

4.7 Strength and Performance and Effect of 
measurement noise 

Generally, the results from Monte Carlo simulations for the first-order model identification 

algorithms in section 3.4.1 are consistent, and validates the algorithms’ performances 

indicated during individual simulation. The results underlines the JL as the algorithm with the 

overall strongest performance, followed closely by JR, YS and CLC in the respective order.  
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However, the results also revealed minimized performance strength encountered by the 

algorithms when identifying higher-order systems as shown in Table 3.36, Table 3.37 and 

Table 3.38. The similar trend is also revealed for second-order algorithms as seen in section 

3.4.2. The reduced performance is primarily due to algorithms limitations, but is also 

believed to be associated with the use of HR calculated parameters as reference (real) 

parameters for the validation criterion. It should be noted that the HR parameters are 

themselves based on estimation. 

The performance results for the second-order algorithms were not as consistent as for the 

first-order algorithms. Generally, the DR algorithm encountered the strongest performance, 

followed by closely by JSDR, JS in their respective order. Based on Monte Carlo simulation 

results, the DR1 displayed the least strong performance of all. However, the Monte Carlo 

simulations used random inputs of white Gaussian noise, meaning that the performance result 

of the DR1 algorithm may be misleading since the algorithm is highly sensitive to- and 

influenced by the noise. 

Generally, all the algorithms have displayed reduced strength when exposed to measurement 

noise in stochastic framework. The extent to which the algorithms are affected by the 

measurement noise differs. JS and DR1 has proved to be the most prone and delicate to noise 

amongst the SOPDT algorithm. Their practical application are therefore more suited in 

deterministic framework rather than stochastic.   
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5 Conclusion 
Five and four algorithms for step-response transient analysis SID for first and second-order 

models respectively, have been reviewed and their performance been assessed through 

simulations of numerical examples representing systems of various response dynamics.  

JL algorithm’s impressive good performance is highlighted, which is also found to withstand 

largest range of the magnitude of the overshoots (i.e. largest variation of the P-controllers test 

gain 𝐾𝑐) without compromising much on the quality of estimated parameters. The JR 

algorithms is also proven to be robust in identifying parameters first-order models plus time 

delay, and auto-tuning of PI-controller for stable, robust and good set-point tracking 

behaviour, while the YS algorithm is found to give satisfactory results.  

The study has also proven the reduced strength of the YS algorithm when applied to systems 

with significant large delay time. Moreover, the enormous sensitivity of CLC algorithm to the 

size of controller’s test gain, which is directly associated with size of overshoot of feedback 

system, has been highlighted. The CLC’s strength and good performance is found to be 

highly favoured with small magnitudes of overshoot, preferably under 0.15.  Unfortunately, 

the MF algorithm has not been properly assessed. Finding the suitable combination of test 

parameters 𝑇𝑖 and 𝐾𝑐 for the MF algorithm, has proven to be challenging as it requires several 

trial and error step-experiments. 

For second-order SID algorithms, the study has proven the solid performance and robustness 

of DR1 algorithm in identifying second-order models, as well as auto-tuning of PID-

controller for best possible stable and tracking behaviour of the system. Both the DR and 

JSDR are found to provide quite acceptable model parameters, with PID-settings that gives 

stable but oscillatory dynamics, while the JS algorithm is proven to be the lest reliable. 

The simulation results has also visualized the effect noise on the performance of algorithms. 

All the algorithms are proven to display reduced strength when subjected to noise. The DR1 

has shown to be the most affected and highly unreliable when applied to noisy closed-loop 

response. The JS is the second most affected, while DR and JSDR have shown almost 

identical strength and proven to be the least affected and hence the most reliable in noisy 

systems. 
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Appendices 
Appendix A: Thesis’s Task Description 
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Appendix B: Individual SID algorithm for FOPDT 

 

YS - Algorithm 
function [Kp,tau,Tp,Kc_pi,Ti_pi] = sim_pi_yuwana(yp1,ym1,yp2,dT,Kc,A) 

%% Transient response SID & Autotuning - Yuwana & Seborg 

% Using SIMC settings for 1st order process 

% Author: Abass Mwadini Abass 

% Date: 10.04.2017 - OK 

%********************************************** 

%Defining steady state response and zeta 

y_inf = ((yp2*yp1-ym1^2)/(yp1+yp2-2*ym1));          % Steady st. res. Eq.13 

v_1 = (y_inf-ym1)/(yp1-y_inf);                      % Overshoot 

v_2 = (yp2-y_inf)/(yp1-y_inf);                      % Overshoot 

zeta_1 = -log(v_1)/sqrt(pi^2+log(v_1)^2);             % Damping ratio Eq.11 

zeta_2 = -log(v_2)/sqrt(4*pi^2+log(v_2)^2);           % Damping ratio Eq.12 

zeta = mean([zeta_1 zeta_2]);                         % Average zeta 

  

% Back calculating model parameters 

Kp = y_inf/(Kc*(A-y_inf));                             % Process gain Eq.8 

const_1 = zeta*sqrt(Kc*Kp+1)+sqrt(zeta^2*(Kc*Kp+1)+Kc*Kp); 

const_2 = sqrt((1-zeta^2)*(Kc*Kp+1));        

  

Tp = (dT/pi)*const_1*const_2;               % Process T constant Eq.9 

tau = (2*dT/pi)*const_2/const_1;            % Process Time delay Eq.10 

Tp = real(Tp); tau = real(tau); 

[Kc_pi,Ti_pi]= simc_pi(Kp,Tp,tau);             % Skogestad Tuning 

 

JR - Algorithm 
function [Kp,tau,Tp,Kc_pi,Ti] = sim_pi_jutan(yp1,ym1,yp2,dT_j,Kc,R0,R,y0) 

%% Transient response SID & Autotuning - Jutan & Rodriguez 

% Using SIMC settings for 1st order process 

% Author: Abass Mwadini Abass 

% Date: 10.04.2017 

%********************************************** 

% Defining constants  

gamma_1=-0.6143; gamma_2=0.1247; delta=0.3866; 

%Defining variables  

y_inf = (yp2*yp1-ym1^2)/(yp1+yp2-2*ym1);            % Steady st. resp Eq.16 

Kp = abs(y_inf-y0)/(Kc*(abs(R-R0)-abs(y_inf-y0)));  % Process gain Eq.9 

K = Kc*Kp;                                          % Open-loop gain 

  

% Estimating the damping ratio 

alpha_1 = (y_inf-ym1)/(yp1-y_inf); 

zeta = -log(alpha_1)/sqrt(pi^2+log(alpha_1)^2);    % Damping ratio Eq.14 

T = dT_j*sqrt(1-zeta^2)/pi;                        % closed-loop freq. Eq.8 

  

% Back calculation of model parameters 

alpha = 2*zeta*T*(1+K)/(delta+gamma_1*K);            % Eq.26 

beta = -1/(delta+gamma_1*K);                         % Eq.27 

A_1 = beta^2*gamma_2*K + beta*delta;                 % Eq.23 

B_1 = 2*gamma_2*K*alpha*beta + alpha*delta;          % Eq.24 

C_1 = gamma_2*K*alpha^2 - T^2*(1+K);                 % Eq.25 

  

Tp = (-B_1+sqrt(B_1^2-4*A_1*C_1))/(2*A_1);           % Eq.21 

tau = alpha+beta*Tp;                                 % Time delay Eq.22 

[Kc_pi,Ti]= simc_pi(Kp,Tp,tau);  

 

JL - Algorithm  
function [Kp,tau,Tp,Kc_pi,Ti] = sim_pi_lee(yp1,ym1,yp2,dT,Kc,A,y) 

%% Transient response SID - Jietae Lee 

% Using SIMC settings for 1st order process 

% Author: Abass Mwadini Abass 

% Date: 10.04.2017 

%************************************************************************** 
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%Defining variables  

y_inf = (yp2*yp1-ym1^2)/(yp1+yp2-2*ym1);       % Steady state res. Eq.13 YS 

zeta = -log((y_inf-ym1)/(yp1-y_inf))/... 

    sqrt(pi^2+log((y_inf-ym1)/(yp1-y_inf))^2);         % Damping ratio Eq.3 

  

T = (dT/pi)*sqrt(1-zeta^2);                             % Cl.-loop fr. Eq.4 

alpha=zeta/T; beta=sqrt(1-zeta^2)/T; v=atan(beta/alpha);    % Lee variables 

  

% Back calculating process model parameters 

Kp = y_inf/(Kc*(A-y_inf));                              % Process gain Eq.9 

tau(1) = (v+pi/4)/beta; 

for i = 1:((length(y)+1)/12) 

    tau(i+1) = (1/beta)*(v+atan(beta*exp(-

alpha*tau(i))/(Kc*Kp*sqrt(alpha^2+beta^2)... 

        *cos(beta*tau(i)-v))));                 % process Time delay Eq. 12 

    tau(i) = tau(i+1); 

end 

tau = tau(end); 

Tp = (1/alpha)*(1+Kc*Kp*exp(alpha*tau)*cos(beta*tau));      % Eq.11 

[Kc_pi,Ti]= simc_pi(Kp,Tp,tau);                             % SIMC PI Tuning 

 

CLC - Algorithm 
function [Kp,tau,Tp,Kc_pi,Ti] = sim_pi_chen(yp1,ym1,yp2,tp1,tm1,Kc,A) 

%% Transient response SID & Auto Tuning - Cheng-Liang Chen 

% Using SIMC settings 

% Author: Abass Mwadini Abass 

% Date: 10.04.2017 

%************************************************************************** 

%Defining variables  

y_inf = (yp2*yp1-ym1^2)/(yp1+yp2-2*ym1);          % Steady state res. Eq.6 

K = y_inf/A;                                      % Closed-loop gain Eq.2 

% Estimating the damping ratio (zeta) 

H = (1/3)*(((yp1-y_inf)/y_inf)+((y_inf-ym1)/(yp1-y_inf))... 

    +((yp2-y_inf)/(y_inf-ym1)));                       % Overshoot Eq.7 

zeta = -log(H)/sqrt(pi^2+log(H)^2);                    % Damp- ratio Eq.3 

T = ((tm1-tp1)*sqrt(1-zeta^2))/pi;                     % Cl.loop freq Eq.4 

d = 2*tp1-tm1;                                         % Cl.loop delay Eq.5 

  

% Estimating crossover frequency (omega_c) 

w_c = 0; 

w_c = fsolve(@f_omega,w_c,optimset('Display','off')); 

function func = f_omega(omega_c) 

    func = -d*omega_c-atan(2*zeta*T*omega_c/... 

        sqrt(1-T^2*omega_c^2))+pi;                % Eq 8 

end 

  

% Calculating ultimate loop gains, gain margin, and ultimate controler gain 

G_cl = K/sqrt((1-T^2*w_c^2)^2+(2*zeta*T*w_c)^2);   % Cl.ult. Eq.9 

G_op = G_cl/sqrt(1+2*G_cl+G_cl^2);                         % Op.ult. Eq.10 

GM = 1/G_op;  

K_cu = Kc*GM;                                  % Ult. controller gain Eq.11 

  

% Estimating transfer model parameters 

Kp = y_inf/(Kc*(A-y_inf));                         % Process gain Eq.15 

Tp = (1/w_c)*sqrt((K_cu^2*Kp^2 -1)); % Eq.13 

tau = (1/w_c)*(pi-atan(Tp*w_c)); % Eq.14 

  

Tp = real(Tp); tau = real(tau); 

[Kc_pi,Ti]= simc_pi(Kp,Tp,tau);                    % SIMC Tuning rules 

end 

 

MF – Algorithm  
function [Kp,tau,Tp,Kc_pi,Ti_pi] = sim_pi_mamat(yp1,ym1,yp2,tp1,tp2,Kc,A,y,Ti,Tt) 

%% Transient response SID & PID Auto Tuning - Mamat & Flemming 

% Using SIMC Tuning rules 

% Author: Abass Mwadini Abass 
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% Date: 10.04.2017 

%********************************************** 

%Defining variables  

y_inf = (yp2*yp1-ym1^2)/(yp1 + yp2 -2*ym1);            % Steady state 

K = y_inf/A;                                           % Cl. loop gain Eq.4 

phi = -log((yp2-y_inf)/(yp1-y_inf))/(2*pi);            % Overshoot Eq.8 

zeta = sqrt(phi^2/(1+phi^2));                          % Damping ratio Eq.5 

T = (tp2-tp1)*sqrt(1-zeta^2)/(2*pi);                   % Cl. loop freq Eq.6 

S_c = trapz(Tt,(y_inf*ones(length(y),1)-y));           % Eq. 9 

d = (S_c/y_inf)-2*zeta*T;                              % Resp. delay Eq.7 

  

% Estimating crossover frequency (omega_c) 

w_c = 0; 

w_c = fsolve(@f_omega,w_c,optimset('Display','off')); 

function func = f_omega(omega_c) 

    func = d*omega_c+atan(2*zeta*T*omega_c/... 

        (1-T^2*omega_c^2))-pi;                          % Eq 12 

end 

  

% Ultimate loop gains, gain margin, and ultimate controler gain 

M = K/sqrt((1-T^2*w_c^2)^2+(2*zeta*T*w_c)^2); %Cl.lp ult.G Eq.13 

% Estimating process model parameters 

Kp = Ti*y_inf/(Kc*S_c);                                    % Gain Eq.16 

Tp = sqrt((Kc*Kp)^2*(1+Ti^2*w_c^2)-M^2*Ti^2*w_c^2)... 

    /(M*w_c^2*Ti);                                      % T.const. Eq.14 

tau = (1/w_c)*(atan(Ti*w_c)+atan(1/(T*w_c)));              % T delay Eq.15 

Tp = real(Tp); tau = real(tau); 

[Kc_pi,Ti_pi]= simc_pi(Kp,Tp,tau);                         % SIMCS settings 

  

end 

 

 

 

Utility  –  Critical points from closed-loop response 

 
function [y,yp1,ym1,yp2,tp1,tm1,tp2,dT,dT_j,Tt]= response_data1(Fs) 

T = 0:0.1:60; 

% Defining the measure quantities based on the response graph 

[y,Tt]=step(Fs,T);                         % Step response 

[yp1,ip] = max(y);                       % Response value at 1st overshoot 

tp1 = Tt(ip);                            % Response Time at 1st overshoot 

[ym1,im] = min(y(ip:end));               % Response value at 1st overshoot 

tm1 = Tt(ip+im-1);                       % Response Time at 1st undershoot 

[yp2,iu]= max(y((ip+im-1):end));         % Response value at 2nd overshoot 

tp2 = Tt(ip+im+iu-1);                    % Response Time at 2nd overshoot 

dT = tm1-tp1;                            % Half period Eq. A-11 

dT_j = (tp2-tp1)/2;                      % Half period Jutan Reponse graph 
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Appendix C: Individual SID Algorithms for SOPDT 

JS – Algotithm  
function [K_2,T_z,T,a_0,a_1,b_0,b_1] = sim_jahanshahi(yp1,ym1,tp1,tm1,Kc,R,y) 

%% Transient response SID - Jahanshahi & Skogestad 

% Author: Abass Mwadini Abass 

% Date: 07.04.2017 

%********************************************** 

% Defining constants   

y_inf=y(end);y_s=R;y_p=yp1;y_u=ym1;t_p=tp1;t_u=tm1; 

  

% Damping ratio & gain 

v = (y_inf-y_u)/(y_p-y_inf);                                % Eq. A.9 

zeta = -log(v)/sqrt(pi^2+log(v)^2);                         % Eq. A.8 

T = t_u*sqrt(1-zeta^2)/pi;                                  % Eq. A.10 

K_2 = y_inf/y_s;                                            % Eq. A.11 

phi = atan((1-zeta^2)/zeta)-(t_p*sqrt(1-zeta^2)/T);         % Eq. A.12 

E = sqrt(1-zeta^2)/T;                                       % Eq. A.13 

D_0 = (y_p-y_inf)/y_inf;                                    % Eq. A.14 

D = D_0/(exp(-zeta*t_p/T)*sin(E*t_p+phi));                  % Eq. A.16 

T_z = zeta*T+sqrt(zeta^2*T^2-T^2*(1-D^2*(1-zeta^2)));       % Eq. A.17 

 

% back calculation  

Kp = y_inf/(Kc*(abs(y_s-y_inf)));                           % Eq. A.18 

a_0 = 1/(T^2*(1+Kc*Kp));                                    % Eq. A.19 

b_0 = Kp*a_0;                                               % Eq. A.20 

b_1 = K_2*T_z/(Kc*T^2);                                     % Eq, A.21 

a_1 = -2*zeta/T+Kc*b_1;                                     % Eq. A.22 

% Non-complex numbers 

a_0 = real(a_0);  

a_1 = real(a_1);  

b_0 = real(b_0); 

b_1 = real(b_1); 

 

JSDR – Algorithm  
function [K,T_z,T,a_0,a_1,b_0,b_1] = sim_modJahanshahi(yp1,ym1,tp1,tm1,Kc,R,y) 

%% Transient response SID - Modified Jahanshahi & Skogestad 

% Author: Abass Mwadini Abass 

% Date: 07.04.2017 

%********************************************** 

% Defining constants   

y_inf=y(end);y_s=R;y_p=yp1;y_u=ym1;t_p=tp1;t_u=tm1; 

  

% Damping ratio & gain 

v = (y_inf-y_u)/(y_p-y_inf);                                % Eq.10 

zeta = -log(v)/sqrt(pi^2+log(v)^2);                         % Eq.9 

T = t_u*sqrt(1-zeta^2)/pi;                                  % Eq.16 

K = y_inf/y_s;                                              % Eq.11 

omega = sqrt(1-zeta^2)/T;                                   % Eq.7 

phi = atan(sqrt(1-zeta^2)/zeta)-t_p*omega;                  % Eq.13 

  

E = sqrt(1-zeta^2)/T;                                       % Eq.A.4 

D_0 = (y_p-y_inf)/y_inf;                                    % Eq.14 

D = D_0/(exp(-zeta*t_p/T)*sin(E*t_p+phi));                  % Eq.A.16 

T_z = zeta*T+sqrt(zeta^2*T^2-T^2*((zeta^2-1)*D^2+1));       % Eq.20 A 

%T_z = zeta*T-sqrt(zeta^2*T^2-T^2*((zeta^2-1)*D^2+1));       % Eq.20 B 

T_z = real(T_z); 

  

% back calculation  

Kp = y_inf/(Kc*abs(y_s-y_inf));                             % Eq. A.18 

a_0 = 1/(T^2*(1+Kc*Kp));                                    % Eq. A.19 

b_0 = Kp*a_0;                                               % Eq. A.20 

b_1 = K*T_z/(Kc*T^2);                                       % Eq, A.21 

a_1 = -2*zeta/T+Kc*b_1;                                     % Eq, A.21 
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DR – Algorithm  
function [K,T_z,T,a_0,a_1,b_0,b_1] = sim_dalen(yp1,ym1,tp1,tm1,Kc,R,y) 

%% Transient response SID - Dalen & Russio 

% Author: Abass Mwadini Abass 

% Date: 07.04.2017 

%********************************************** 

% Defining constants   

y_inf=y(end);y_s=R;y_p=yp1;y_u=ym1;t_p=tp1;t_u=tm1; 

  

% Damping ratio & gain 

v = (y_inf-y_u)/(y_p-y_inf);                                % Eq.10 

zeta = -log(v)/sqrt(pi^2+(log(v)^2));                       % Eq.9 

T = t_u*sqrt(1-zeta^2)/pi;                                  % Eq.16 

K = y_inf/y_s;                                              % Eq.11 

  

omega = sqrt(1-zeta^2)/T; 

gamma = exp(t_p*zeta/T)*(y_p-R*K)/(R*K);  

c = (-cos(t_p*omega)+gamma)/sin(t_p*omega);                 % Eq.23 

  

T_z = zeta*T-c*T*sqrt(1-zeta^2);                            % Eq.25 

%Kp = y_inf/(Kc*(abs(y_s-y_inf)));                          % Eq. A.18 

  

% Back calclulations 

b_0 = K/(T^2*Kc);                                        % Eq. A.20 

b_1 = T*b_0;                                             % Eq, A.21 

a_0 = 1/T^2-Kc*b_0;                                      % Eq. A.19 

a_1 = -2*zeta/T+Kc*b_1;                                  % Eq. A.22 

 

DR1 - Algorithm 
function [K,T_z,T,a_0,a_1,b_0,b_1] = sim_dalen2(yp1,ym1,tp1,tm1,Kc,R,y) 

%% Transient response SID - Dalen & Russio 2 

% Author: Abass Mwadini Abass 

% Date: 07.04.2017 

%********************************************** 

% Defining constants   

y_inf=y(end);y_s=R;y_p=yp1;y_u=ym1;t_p=tp1;t_u=tm1; 

  

% Damping ratio & gain 

v = (y_inf-y_u)/(y_p-y_inf);                                % Eq.10 

zeta = -log(v)/sqrt(pi^2+(log(v)^2));                       % Eq.9 

T = t_u*sqrt(1-zeta^2)/pi;                                  % Eq.16 

K = y_inf/y_s;                                              % Eq.11 

  

omega = sqrt(1-zeta^2)/T;                                   % Eq.7 

c = (zeta+T*omega*tan(t_p*omega))/... 

    (T*omega-zeta*tan(t_p*omega));                          % Eq.28 

  

T_z = zeta*T-c*T*sqrt(1-zeta^2);                            % Eq.25 

Kp = y_inf/(Kc*(abs(y_s-y_inf)));                           % Eq. A.18 

  

% Back calclulations 

a_0 = 1/(T^2*(1+Kc*Kp));                                 % Eq. A.19 

b_0 = Kp*a_0;                                            % Eq. A.20 

b_1 = K*T_z/(Kc*T^2);                                    % Eq, A.21 

a_1 = -2*zeta/T+Kc*b_1;                                  % Eq. A.22 
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Appendix D: Monte Carlo Simulation  
%% MONTE CARLO - FOPDT 

% Random Gaussian white noise of y = awgn(y,30,'measured') 

% Example 1 for Kc=1.75 and Kc=1.25 

% Example 2 for Kc=1.25 and Kc=0.75 

% Example 7 for Kc=1.00 and Kc=0.75 

%************************************************************************* 

  

% Initail parameters 

T=0:0.1:60; R0=0; R=1; Y=step(Fs,T); 

N=1; M=100; z_vec=zeros(M,1);cr_sum=0; 

  

% Initiating parameter vectors 

kp_ys=z_vec; tau_ys=z_vec; tp_ys=z_vec;             % For Yuwana & Seborg 

kp_jr=z_vec; tau_jr=z_vec; tp_jr=z_vec;             % For Jutan & Rodriguez 

kp_jl=z_vec; tau_jl=z_vec; tp_jl=z_vec;             % For Lee 

kp_clc=z_vec; tau_clc=z_vec; tp_clc=z_vec;          % For Chen 

  

% For validation  

diff_param_ys = zeros(M,3);diff_param_jr = zeros(M,3); 

diff_param_jl = zeros(M,3);diff_param_clc = zeros(M,3); 

sum_ys=0;sum_jr=0;sum_jl=0;sum_clc=0; 

real_param = [Kp_hf,Tp_hf,tau_hf]; 

  

for i = 1:M; 

     

    % Calculate critical points on the response 

    [y,yp1,ym1,yp2,tp1,tm1,tp2,dT,dT_j,Tt]= response_data1_monte(Fs,T); 

    % Yuwana & Seborg 

    [Kp_YS,tau_YS,Tp_YS] = sim_pi_yuwana(yp1,ym1,yp2,dT,Kc,A); % YS  

    kp_ys(i)=Kp_YS; tau_ys(i)=tau_YS; tp_ys(i)=Tp_YS;   % Storing YS param 

    diff_param_ys(i,:) =[Kp_YS,Tp_YS,tau_YS]-real_param; % For validation 

    sum_ys = sum_ys+diff_param_ys(i,:)*diff_param_ys(i,:)'; 

    % Jutan & Rodriguez  

    y0 = y(1); 

    [Kp_JR,tau_JR,Tp_JR] = sim_pi_jutan(yp1,ym1,yp2,dT,Kc,R0,R,y0); % JR 

    kp_jr(i)=Kp_JR; tau_jr(i)=tau_JR; tp_jr(i)=Tp_JR;   % Storing JR param 

    diff_param_jr(i,:) =[Kp_JR,Tp_JR,tau_JR]-real_param; % For validation 

    sum_jr = sum_jr+diff_param_jr(i,:)*diff_param_jr(i,:)'; 

    % Jitae Lee 

    [Kp_JL,tau_JL,Tp_JL] = sim_pi_lee(yp1,ym1,yp2,dT,Kc,A,y); % JL 

    kp_jl(i)=Kp_JL; tau_jl(i)=tau_JL; tp_jl(i)=Tp_JL;   % Storing JL param 

    diff_param_jl(i,:) =[Kp_JL,Tp_JL,tau_JL]-real_param; % For validation 

    sum_jl = sum_jl+diff_param_jl(i,:)*diff_param_jl(i,:)'; 

    % Cheng-Liang Chen 

    [Kp_CLC,tau_CLC,Tp_CLC] = sim_pi_chen(yp1,ym1,yp2,tp1,tm1,Kc,A); 

    kp_clc(i)=Kp_CLC; tau_clc(i)=tau_CLC; tp_clc(i)=Tp_CLC; % Stor. CLC par 

    diff_param_clc(i,:) =[Kp_CLC,Tp_CLC,tau_CLC]-real_param; % For validation 

    sum_clc = sum_clc+diff_param_clc(i,:)*diff_param_clc(i,:)'; 

end 

P_ys = sum_ys*N/(M-1),P_jr = sum_jr*N/(M-1), 

P_jl = sum_jl*N/(M-1),P_clc = sum_clc*N/(M-1), 

  

figure() 

k_i = 1:1:100; 

plot(k_i,tp_ys,'*r',k_i,tp_jr,'+b',k_i,tp_jl,'xg',k_i,tp_clc,'*c') 

title('Process parameter estimate for time-constant T_p'); 

xlabel('simulations (M)'); ylabel('T_p'); legend('YS','JR','JL','CLC') 

grid on, %ylim([0 20]); 

  

figure() 

plot(k_i,tau_ys,'*r',k_i,tau_jr,'+b',k_i,tau_jl,'xg',k_i,tau_clc,'*c') 

title('Process parameter estimate for time delay \tau_p'); 

xlabel('simulations (M)'); ylabel('\tau_p'); legend('YS','JR','JL','CLC') 

grid on, %ylim([-1 10]); 

  

figure() 
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plot(k_i,kp_clc,'*k',k_i,kp_ys,'*r',k_i,kp_jr,'+b',k_i,kp_jl,'xg') 

title('Process parameter estimate for static gain K_p'); 

xlabel('simulations (M)'); ylabel('K_p'); legend('CLC','YS','JR','JL') 

grid on, %ylim([0.5 2]); 

 

Utility for Monte Carlo Simulation  
function [y,yp1,ym1,yp2,tp1,tm1,tp2,dT,dT_j,Tt]= response_data1_monte(Fs,T) 

  

% Defining the measure quantities based on the response graph 

[y,Tt]=step(Fs,T);                       % Step response 

y = awgn(y,30,'measured');               % Random Gausssian white noise 

[yp1,ip] = max(y);                       % Response value at 1st overshoot 

tp1 = Tt(ip);                            % Response Time at 1st overshoot 

[ym1,im] = min(y(ip:end));               % Response value at 1st overshoot 

tm1 = Tt(ip+im-1);                       % Response Time at 1st undershoot 

[yp2,iu]= max(y((ip+im-1):end));         % Response value at 2nd overshoot 

tp2 = Tt(ip+im+iu-1);                    % Response Time at 2nd overshoot 

dT = tm1-tp1;                            % Half period Eq. A-11 

dT_j = (tp2-tp1)/2;                      % Half period Jutan Reponse graph 

 




