
 
www.usn.no  

 

Faculty of Technology, Natural sciences and Maritime Sciences 
Campus Porsgrunn 

 

 

FMH606 Master's Thesis 

 

< CFD Validation of transient 

subsea gas plume model > 

 

 

 

 

  

 

 

 

 

Taewook Kim 

 

 



 
www.usn.no  

 

The University College of Southeast Norway takes no responsibility for the results and 

conclusions in this student report. 

Course: FMH606 Master's Thesis 

Title: CFD Validation of transient subsea gas plume model 

Number of pages: 110pages 

Keywords: <blowout,Computational Fluid dynmaics, CFD, Eulerian-lagrangian, ANSYS 

Fluent, stochastic tracking, randomwalk, integral model, OpenFoam, C++, C language, 

Matlab> 

 

Student: Taewook Kim 

Supervisor:   Amaranath S.Kumara 

External partner:   Lloyd's Register Consulting 

Availability: <Open/Confidential> 

  

Approved for archiving: 

(supervisor signature) 

______________________________________________ 

 

Summary:  

Subsea gas blowouts are often a significant risk contributor to offshore installations. It is important 

to understand plume that is created by the blowout. Different plume models were investigated.  

CFD model in ANSYS Fluent and integral model were performed to confirm its validity. CFD model 

in OpenFoam has also performed additionally. 

For further validation, more experiments of larger depth and higher flow rate are necessary.  

OpenFoam model needs to be modified.  
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Preface 
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cap model’ that was provided by Lloyd’s Register was supposed to be used. However, Rising 

cap model was not comparable to the CFD model that was used in this thesis for some reason. 
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Additionally, I tried to develop an OpenFoam model, but judging from the results, the model 
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programming(OpenFoam). 
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advice.  
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Nomenclature 
div  Divergence - 

grad  Gradient - 

V


 Velocity vector sm /  

t  Time s  

u  x-velocity  sm /  

v  y-velocity sm /  

w  z-velocity sm /  

  Dynamic viscosity smkg /  

S  Source smkg /  

therm
k  Thermal conductivity kmW 2/  

i  Internal energy J  

  Variable - 

   Diffusive term - 

)(tu  Velocity function of time sm /  

  Dissipation function kgsmJ  /3

 

T Temperature k  

U  Mean velocity sm /  

'u  Fluctuating velocity sm /  

k
  Constant (1.00) - 


  Constant (1.30) - 

1C  Constant (1.44) - 
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2C  Constant (1.92) - 

ijS  Mean rate of deformation - 

F  additional acceleration 
2/ sm  

DF  Drag force 
2/1 s  

NP Number of particle - 

vF  Force of virtual mass 
2/ sm  

•

m  
Mass rate skg /  

m  mass kg  

vmC  virtual mass factor(0.5) - 

  normally distributed random number - 

L
T  Fluid Lagrangian integral time s  

  dissipation 
32 / sm  

k  Turbulent kinetic engergy 
22 / sm  

DC  Drag coefficient - 

Re Relative Reynolds number - 

0
E  Eötvös number - 

d  diameter m  

otherF  Other interaction forces 
2/ sm  

  relaxation time s  

1C  coefficient - 

2C  coefficient  m  
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h Height m  

R  Gas constant molkJ /  
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Subscripts 
c centerline 

a atmospheric 

~ Dimensionless value 

g gas 

w water 

f fountain 

b the bottom of the control volume 

M momentum 

i Internal energy 

p particle 

t turbulence 

k kinetic 

  epsilon 

fl  fluid 

0 Initial 

hd Hydrostatic  

r,q r-th phase, q-th phase  

br For breakup 

co For coalescence 

eq  Equilibrium  
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1 Introduction 
The early studies of underwater plumes were motivated by the interest in uncontrolled blowouts 

resulting from accidents in offshore drilling or broken gas pipelines. Potentially it could be a 

danger to ships and offshore structures. The main reason of the sinking of floating structure 

above subsea blowouts is considered mainly to be caused by radial water currents at the sea 

surface. As another consequence of blowouts, ignition of the flammable vapor leakage can 

cause structural damage to the platform. The purpose of modeling the subsea dispersion is to 

provide properties for input data for models that quantify the above hazard. 

To predict plume dynamics, mainly two different modeling method have been used.  

Integral models have been developed by many authors mostly based on Taylor’s idea[1] as a 

derived model, Friedel’s model is introduced in this thesis. 

As an alternative way to predict plume, blowout can be modeled using CFD. As one of the 

CFD models, Cloete introduced CFD model[2] that was validated comparing with 

Engebretsen’s experiment[3]. The simulation of the model is introduced in this thesis, 

validating the model comparing with experimental data of different conditions. 

Integral model and CFD model are compared for validity on the same experiments. 

OpenFoam simulation is attempted to make the same model of Cloete’s. 
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2 Plume modeling 

2.1 Type of models 

The framework illustrated in Figure 2.1 is typically used. The dispersion of the gas from the 

release point to the surface is considered in three zones: 

Zone of Flow Establishment(ZOFE) is the region between the release point and the height 

where the dispersion appears to build a plume structure. At this height, the effect of buoyancy 

is more prevailing than initial release momentum. Zone of Established Flow(ZOEF) is the 

plume-like region that is extended from the ZOFE up to a depth which is beneath the free 

surface by approximately one plume diameter. Zone of Surface Flow(ZOSF) is the region 

above the ZOEF where the plume interacts with the surface where the bubble plume and radial 

flow of water at the surface widen. 

 

 

Figure 2.1: Typical plume model representing zone of flow establishment, zone of established 

flow and zone of surface flow 

Three approaches of different complexity have been used in modeling the dispersion of subsea 

release. The empirical model is the simplest one that is assumed that the plume radius is 

proportional to the release depth or correlations. Another approach is an integral type model 

which is based on local similarity. For instance, a velocity profile is assumed to have a similar 

form at different heights. The plume properties can be well described by Gaussian profiles. 

Entrainment of water into the plume is described by the use of an entrainment coefficient. 

Specific of integral models are introduced in chapter 2.2.  

The most complex models are represented by Computational Fluid Dynamics(CFD) or field 

codes by solving Navier Stokes Equations. Their advantage over integral models is that CFD 
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models do not require the use of empirical constants. CFD model is introduced from chapter 3 

and 4. 

2.2 Integral model (M.J. Friedl -2000) 

M.J. Friedl presented an integral model in 2000[4]. A sketch of the model is described in Figure 

2.2. The main purpose of the model was to develop a theoretical model for the fountain and to 

overcome the problem associated with scaling from small scale to full scale. The assumptions 

and simplifications of the model are discussed briefly in the following. The details are 

described in M.J. Friedl’s work. 

 

Figure 2.2: Sketch of the integral model 

2.2.1 Assumptions 

The mean flow is stationary. The stagnant water is assumed. Incompressible continuous phase 

is assumed. 

Constant average bubble diameter of 1cm is assumed. In the model, bubble size is not as 

important as the buoyancy and its radial distribution. Constant diameter is linked to constant 

slip velocity1 of 0.35m/s. 

The profile of velocity and the void fraction is assumed to have Gaussian shapes. Entrainment 

coefficient ( )  is constant. Entrainment coefficient is the proportionality of the rate of 

entrainment to the local velocity. The proportionality between the momentum carried by the 

mean vertical velocity and the fluctuating vertical velocity is constant ( ). 

                                                 

1 The difference between the average velocities of two different fluids flowing together 
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2.2.2 Theory of bubble plumes 

The governing equations are expressed in cylindrical coordinates. 

The vertical velocity and void fraction are shown below in Equation (2.1) and (2.2)  

respectively. 

))(/( 22

)(),( zbr

c
ezvzrv   

22 ))(/()(),( zbr

c
ezzr    

(2.1) 

(2.2) 

Where   is the ratio of the widths as shown in Figure 2.2. Subscript c represents centerline 

value. 

The length scale 
p

H  is introduced in the model. This term represents the water depth 

corresponding to the atmospheric pressure 
0

P . The relation is such 

g

P
H a

p


  (2.3) 

In the case of fresh water, the value is 10.33m, for the case of ocean water, the value is slightly 

below 10 m at the standard atmospheric condition. 

The dimensionless axial coordinate z~ , the dimensionless width of the plume b
~

, and the 

dimensionless vertical liquid velocity v~  are defined. 
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(2.4) 

 

(2.5) 

 

(2.6) 

g is gravity, 
g

V  is volume flow rate of gas and 
v

H is water depth. 

The continuity equation for the gas phase is 
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where   is momentum amplification factor. And s~  is the influence of slip velocity in 

dimensionless form, which is 
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svs ~)1(~ 2  (2.9) 

Continuity eqaution of the liquid phase and the momentum equation for the mixture is 

cc
vbvb

zd

d ~~
)~~

(~
2   (2.10) 
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  (2.11) 

In the model, by solving these two equations by using a newly introduced approximate 

procedure, it allows to predict large scale plumes from the data of laboratory scale. 

And the approximate solutions for the width and velocity are derived using a perturbation 

technique as shown in Equation (2.12) and (2.13) 
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2.2.3 Theory of fountains 

The fountain can be modeled by using momentum balance. The momentums acting on a plume 

is described in Figure 2.3. In the model, it was assumed that the control volume is infinite 

laterally, so no vertical momentum flux pass through the outer boundaries. The forces apply to 

the control volume are atmospheric pressure(
a

p ) integrated over the water surface, pressure at 

the bottom of the control volume(
b

p ) integrated over the bottom boundary, weight of the water 

masses(
w

G ) below the level of the quiescent surface, weight of the fountain(
f

G ) and total 

buoyancy( B ). The balance equation is such 

a
p +

w
G +

f
G =

b
p + B  (2.14) 

If the lower boundary of the control volume is set below the release point of the plume, the
b

p  

will not be affected by the plume. Meaning that it can be modeled by neglecting terms that 

cancel out each other which are 
a

p , 
b

p  and 
w

G . Then Equation (2.14) yields 
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f
G = B  (2.15) 

 

By defining 
f

G  with density(
f

 ) and volume(
f

V ), it leads to 

ff
Vg = B  (2.16) 

By defining B is equal to the theoretical momentum flux )()()2/1()(
22 zvzbz

c
  at 

v
Hz   

and 
fff

hbV 2 , Equation (2.16) yields 

)()(
2

1
)( 222

vcvvfff
HvHbHhbg    (2.17) 

The density of the fountain 
f

  and the density of the plume at the level of the quiescent 

surface )(
v

H  are assumed to be equal. Also, the kinetic energy at the base was assumed to 

be converted to potential energy. So, Equation (2.17) is simplified as 

f
ghv 2

 (2.18) 

Where )(
vc

Hvv   is the velocity of the fluid particle at the fountain’s base and 
f

h  is its 

height. As a function of r, it is given by 

offset

br

f
hehrh f 

 22 /
)(  (2.19) 

Where 
offset

h  is the offset of the Gaussian profile baseline with respect to the level of the 

quiescent water surface. 

This model is coded in Matlab as attached in Appendix B-1. The applications of this 

codes are shown in chapter 4 and 5. 

 

 

Figure 2.3: The momentums acting on a plume 
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3 Basic theories of CFD 
Computational fluid dynamics(CFD) is the way of calculating fluid flow, heat transfer etc. by 

solving Navier Stokes equations in discretized domain. The basic theory of Navier Stokes 

equations and discretized method will be briefly introduced in the following sub-chapters. 

Also, theoretical background of models that are used in validation cases in further chapters. 

3.1 Discretization 

The main idea of discretization is to convert continuous domain to a discrete domain using a 

grid. By having discretized domain, it enables to obtain approximated algebraic equations from 

Navier Stokes equations. In other words, this conversion simply breaks down Navier Stokes 

equations that are non-solvable partial differential equation into solvable equations. There are 

three different discretization methods being used representatively, such as finite difference 

method, finite element method and finite volume method. In this thesis, Finite Volume 

Method(FVM) is the main interest since CFD programs that are used in this thesis are based 

on finite volume method. 

In FVM, the domain is divided into cells where the variables are stored at the center of the cell. 

Then the governing equations are solved over each cell. Interpolations will be carried out in 

order to describe variables between cell centers. The example of FVM is shown in Figure 3.1. 

 

 

Figure 3.1: Example of finite volume method 

3.2 Navier Stokes equations 

The Navier-Stokes equations govern the motion of a viscous and heat conducting fluid. Strictly 

speaking, Navier Stokes equations describe the momentum of the fluid, however, in the modern 

CFD literature, this terminology is regarded as it includes continuity equation and energy 

equation as well. The governing equations represent the conservation laws of physics: The 

mass of a fluid is conserved (Continuity equation). The change rate of momentum is equal to 

the sum of the forces on a fluid particle (Momentum equation). The change rate of energy 

equals the sum of the rate of heat/work addition to a fluid particle (Energy equation). Continuity 

equation, Momentum equation, and Energy equation that are in the form for finite volume 

method are shown below in Equation (3.1), (3.2) and (3.3) respectively. 
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Navier stokes equations are closely related to the transport equation. In the transport equation, 

the general variable   is introduced, including equations for scalar quantities such as 

temperature and pollutant concentration etc., is given in Equation (3.4). The first term on the 

left-hand side accounts for transient accumulation, the second one for convection which is a 

transport of   due to velocity.   is the diffusive term. On the right-hand side, the first term 

accounts for diffusion due to gradient and the last term is source of  .  





SgraddivVdiv

t





)  ()(

)(

 
(3.4) 

3.3 Turbulence model 

At low Reynolds numbers, flows are laminar which is stable flow type that occurs when a fluid 

flow is in parallel layers, with no disruption between the layers. In the meantime, at high 

Reynolds numbers, flows become turbulent which is a chaotic and random state of motion. In 

the chaotic state, velocity and pressure change continuously over time. An example of both 

flows is seen in Figure 3.2. 
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Figure 3.2: Example of Turbulent flow and laminar flow 

As a physical description, turbulent flows are irregular. This makes turbulence problems 

impossible to solve deterministically. Therefore, statistical approaches and stochastic processes 

are required for solving turbulence problems such as ensemble average that is introduced in the 

later paragraph and stochastic tracking (random walk model) that is used for tracking turbulent 

particles in the next chapter. 

Another physical description of turbulent flow is diffusivity. The diffusivity of turbulence 

increases rates of momentum, mass and heat transfer and make good mixing of the fluid. 

Due to these reasons that account for the huge influence of turbulence, it is crucially important 

to capture turbulence. There are three representative methods for capturing/modeling 

turbulence. 

Before introducing the methods, it is necessary to understand turbulence with a statistical 

approach. As described above, turbulent flows are chaotic and random. This randomness of the 

flow takes place in flow variables such as velocity as shown in the figure below. 

 

 

Figure 3.3: Fluctuating velocity of a turbulent flow over time 

To simplify this randomness, a statistical way is widely used by decomposing flow variables 

into the mean value (U ) and the fluctuating value ( )(' tu ) as shown in the equation below. The 
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mean value here is called ensemble average 2 . And this decomposition process is called 

Reynolds decomposition. 

)()( ' tuUtu   (3.5) 

The first method of modeling turbulence is to use Reynolds-averaged Navier–Stokes(RANS) 

equation. In RANS, instead of including all the fluctuation into the calculation, it takes only 

mean value U with additional transport equations. 

Another method is Large eddy simulation(LES). In this method, small eddies are neglected, 

only large eddies are tracked. 

Lastly, there is Direct Numerical Simulation(DNS). In DNS, the mean velocity and all 

turbulent velocity fluctuations are computed. Since the simulation computes small eddies as 

well, it needs very fine grids for the small eddies. So that it can solve the Kolmogorov length 

scales where energy dissipation occurs and with a small time step to solve the fastest 

fluctuations. 

LES and DNS are relatively costly compared to RANS. RANS is reasonably accurate, the 

computational cost is reasonable. Therefore, RANS(k-epsilon) is used in this thesis.  

3.3.1 K-epsilon model 

RANS turbulence models have additional transport equations accounting for turbulence, except 

Mixing length model has zero extra transport equation. K-epsilon model has 2 additional 

equations 

The standard k-epsilon model is a semi-empirical model based on transport equation for 

turbulent kinetic energy and its dissipation rate epsilon. The two equations are shown below. 
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Where 
k

 =1.00, 


 =1.30, 
1

C =1.44 and 
2

C =1.92. In the derivation of the k −  model, it 

was assumed that the flow is fully turbulent, and the effects of molecular viscosity are 

negligible. The standard k−  model is, therefore, valid only for fully turbulent flows. The 

drawback of this model is delayed and reduced separation. 

                                                 

2 Esemble average 
n

N

nN
x

N
X

1

1
lim


 , where N is the number of case/trial and n

x is a variable at n-th 

case/trial 
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3.4 Euler-Lagrange approach 

In fluid mechanics, Lagrangian description or the Eulerian description is used to define a flow. 

In Lagrangian description, a fluid consists of particles which carry its own properties (velocity, 

pressure etc.). The way of describing the flow is to track the detailed histories of each fluid 

particle. The properties of particles are a function of time such as )(t , )(tu , )(tp , etc. 

Simply put, conservation of mass and Newton’s laws are employed to each particle. 

In Eulerian description, instead of tracking each particle, the fluid properties are recorded as 

the function of location and time such as ),( tx , ),( txu , ),( txp , etc. 

Lagrangian description is computationally expensive since each particle needs to be tracked 

while Eulerian description is mostly used in fluid mechanics. An example of comparison 

between Eulerian description and Lagrangian description are shown as the temperature of 

smoke coming out a chimney in Figure 3.4. 

In the CFD model, Eulerian and Lagrangian description are coupled, meaning that Eulerian 

description is implemented for the fluid phase (sea and atmosphere for the case) as it is treated 

as a continuum by solving the Navier Stokes equations. On the other hand, Lagrangian 

description applies to the dispersed phase (gas bubbles for the case) as it is solved by tracking 

the dispersed phase. The dispersed phase and the fluid phase interact each other by exchanging 

momentum, mass, and energy. 

Using the coupled method is computationally cheap and more accurate than using Euler-Euler 

approach, even though it is mentioned above that using Lagrangian description is 

computationally expensive. The reason is that, in the case where bubbles are injected, the grid 

size is decided related to the gas bubble size in Euler-Euler approach. It needs very fine mesh 

cells compared to Euler-Lagrange approach. 

In ANSYS Fluent, the coupled approach was simply achieved by selecting ‘Discrete Phase 

Model’ and ‘Volume of Fluid’. In the sub-chapters below, theories of the functions in ANSYS 

Fluent, that also were used for the CFD model in the thesis will be explained. 
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Figure 3.4: Example of Eulerian description and Lagrangian description 

3.4.1 Discrete phase model(DPM) 

DPM tracks particles by applying the particle force balance as described in Equation (3.8). 

F
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uuF
dt

ud

p

flp
pflD

p



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

 )(
)(  (3.8) 

This force balance accounts for the particle inertia with the forces acting on the particle[5]. On 

the right side, the first term is the drag force per unit particle mass, the second term is a gravity 

term and the third term is an additional acceleration (buoyancy, lift, etc.). 

3.4.1.1 Parcels 

The mass flow rate of particle injection needs to be introduced, and this mass flow rate will 

determine the number of particles. As a concept of Lagrangian description, the DPM model   

tracks particles. Instead of tracking each particle, the model tracks ‘parcel’. The parcel is 

representative of a fraction of the total continuous mass flow rate in steady tracking or a fraction 

of the total mass flow released in a time step in unsteady tracking. The reason why parcel is 

representative concept is because particles in a parcel share the same properties. 

By decreasing the number of objects to track by implementing the concept of ‘parcel’, it makes 

DPM simulation computationally affordable. For instance, for the CFD validation in the next 

chapter, the case where mass flow rate is 0.208kg/s with 10 injections streams, timestep is 

0.01s, and mass per particle is 8.03906E-08kg, the number of particles in a parcel is 

2587
0803906.8
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







•

kge

sskg

m

t
mNP

p

stream  (3.9) 

In short, without using parcels, the computational cost would 2587 times more expensive. 
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3.4.1.2 Virtual mass 

For the unsteady motion of bodies underwater or unsteady flow around objects, additional 

effect(force) resulting from the fluid, acting on the structure needs to be considered. This added 

effect is called virtual mass or added mass. This added mass is the weight added by an 

accelerating or decelerating body affects surrounding fluid. 

In Fluent, the force of virtual mass is written as the equation below 
















dt

ud
ugraduCF

p
p

p

vmv  



 (3.10) 

vmC  is the virtual mass factor with a default value of 0.5 

3.4.1.3 Random walk model 

As explained in chapter 3.3, Reynolds Averaged Navier Stokes equations can not provide the 

instantaneous velocity. Therefore the fluctuating velocity has to be estimated by stochastic 

tracking to model turbulent dispersion. In Fluent, Discrete Random Walk model(DRW) is used 

for stochastic tracking. 

DRW is a sort of Random Walk model that is rather mathematical or statistical concept. In 

Random Walk model, it assumes situations where an object moves in a sequence of steps in 

randomly chosen directions. Many phenomena can be modeled as a random walk. In the figure 

below, it shows a simple example of random walks where going to the right and the left have 

the same possibility. 

 

Figure 3.5: Example of random walk 

  

In DRW, or Eddy Intergration Model(EIM), each eddy 3  is characterized by a Gaussian 

distributed random velocity fluctuation, 'u , 'v , 'w  in cartesian coordinates and a time scale 

e
 . The velocity fluctuation components occur during the lifetime of the turbulent eddy. Each 

component is sampled with an assumption that they will obey a Gaussian probability 

distribution. They are given by 

2'' uu  , 
2'' vv  , 

2'' ww   (3.11) 

                                                 

3 eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime 
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Where   is normally distributed random number. The remainder of the right-hand side is the 

local RMS value of the velocity fluctuations. It is assumed that the fluctuating values are 

isotropic, meaning that it has no preferred direction, they can be defined for k-epsilon, k-omega  

and their variants as 

3/2
2'2'2' kwvu   (3.12) 

These fluctuating compnents are kept constant over an interval of time given by the 

characteristic lifetime of the eddies. The characteristic lifetime of the eddy is defined as 

Le
T2  (3.13) 

Where 
L

T  is the fluid Lagrangian integral time. For the k-epsilon models and its variants 



k
T

L
15.0  (3.14) 

In Fluent, the trajectory equation(Equation (3.8)) for individual particles will be integrated 

along the particle path to include the random effects of turbulence that are described above. 

3.4.1.4 Drag laws 

In particle tracking in the CFD model that is introduced in chapter 4, the lift force was neglected 

due to its minor contribution to the force balance [2]. Gravity and buoyancy are automatically 

calculated in ANSYS Fluent. In the meantime, the drag force should be included either by basic 

drag laws that Fluent provides, or user-defined function. 

Several laws for drag coefficients applied to the CFD validation in chapter 4. 

3.4.1.4.1 Spherical drag law 

This drag law applies to particles of spherical shape. The relationship between drag coefficient 

( DC ) and Relative Reynolds number(Re) are approximated to the standard drag curve. The 

curve is described in Figure 3.6.  

 



3 Basic theories of CFD 

24 

 

Figure 3.6: Drag coefficient for spherical particles vs. Reynolds number 

DC  for smooth particles can be taken as shown below 

3

32
1

ReRe

aa
aCD   (3.15) 

21  , aa  and 3 a  are given by Morsi and Alexander as shown in Appendix A. 

This drag law can be easily selected as in-built function. 

3.4.1.4.2 Modified Spherical Drag law 

This drag law is also based on the drag on the standard drag curve developed by J.R. Grace and 

M.E. Weber[6]. Many empirical data have been proposed to approximate this curve. The 

difference between this drag and the spherical drag is that this drag law is more specified over 

high Reynolds number. Correlations are shown in Appendix B. The law is coded as a UDF in 

Fluent. The code is shown in Appendix C. 

3.4.1.4.3 Xia’s drag law 

The shape of bubble has significant influence on drag force acting on rising bubble. Xia[7]’s 

simulation comparing with the experimental data using a liquid metal. And bubbles in a liquid 

metal rather have large sizes and distorted shape in the turbulent region. Therefore, the drag 

law that is validated in Xia’s work can account for larger bubbles that are deformed from the 

spherical shape. 

The main relations are shown in the equations below, and originally proposed by Hamathy [8]. 

33

2 0E
CD  , 

 


 2

0

ppq dg
E


  (3.16) 

Where 
0

E is Eötvös number. It is a dimensionless number that characterizes the shape of 

bubbles. This drag law was used by Cloete’s validation[2]. The UDF was provided by 

Mikkel[9]. 
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3.4.1.4.4 Tomiyama’s drag law  

Tomiyama’s model is well suited to gas-liquid flow where the bubbles can have a range of 

shapes[5]. The main relations are shown in the equations below. 
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The UDF of Tomiyama’s drag is shown in Appendix B. 

3.4.1.5 Two-way coupling 

In the coupled approach or two-way coupling, continuous phase flow pattern and the discrete 

phase impact each other. This coupling is achieved by solving the discrete and continuous 

phase equations until the solutions in both phases stop changing. It is described in Figure 3.7. 

 

Figure 3.7: Interaction between particle and continuous phase 

The transfer of momentum, mass and heat from the continuous phase to the discrete phase is 

computed in ANSYS Fluent. However, the heat transfer was not the main interested in the CFD 

model in the next chapters. The explanation of heat will be neglected in this thesis. The 

momentum change and the mass change are computed as described below 
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3.4.2 Volume of fluid(VOF) 

VOF model can model multiple immiscible fluids by solving momentum equations and 

tracking the volume of fraction. If the qth fluid’s volume fraction in the cell is denoted as q  
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then when 10  q , the cell has the interface between qth fluid and one or more fluids.(when 

0q , the cell is empty of qth fluid, and when 1q , the cell is full of qth fluid. 

The tracking of the interface(s) between the phases is accomplished by solving a continuity 

equation for the volume fraction of each phase. For the qth fluid, volume fraction equation is  


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Where pqm


 is the mass transfer from phase q to phase r and qrm


 is the mass transfer in the 

otherwise direction. 
q

S  is source term. 

The volume fraction equation will be solved for the primary phase. It will be solved for 

secondary, tertiary,..., n-th phase while the primary phase is constrained by the equation below 

1
1




q

n

q

  (3.21) 

As for momentum, a single set of momentum equation is solved, and the resulting velocity will 

be shared among the phases via   and  . 

3.5 Scheme 

To calculate gradients and fluxes at the control volume faces, an approximate distribution of 

properties between nodal points is required. An example of 1-D grid is given in Figure3.8, 

discretized by the finite volume method. If steady convection-diffusion condition is assumed, 

the transport equation yields  


 Sgraddivudiv  )  ()(  (3.22) 

Nodal points (W, P, E) that are placed in the center of the control volume store variables of 

interest. Through the calculation by using the transport equation, it is necessary to integrate the 

equation over the control volume. Then diffusive coefficient    and variable   at the cell 

faces (w, e) are required. 

 

 

Figure 3.8: Example of 1-D grid 
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As the simplest method of approximating values at the cell faces is the central differencing 

scheme. For instance, the middle value between W and P can be taken at the cell face w. 

Another representative scheme is the first-order upwind differencing scheme. In the scheme, it 

is assumed that the flow direction determines the value at a cell face. For instance, the value at 

W can be taken for the value at w.  

The drawback of the first-order upwind scheme is inaccuracy. For more accuracy, the second-

order upwind differencing scheme can be used. 

An example of comparison between those schemes presented above is shown in Figure 3.9. 

The example is the transportaion of   by convection-diffusion through the one-dimensional 

domain sketched in Figure 3.8 with smu /5.2 , mL 0.1 , 
3/0.1 mkg  and 

smkg  /1.0  

Matlab code for three schemes are attached in Appendix B-2, B-3 and B-4. 

 

Figure 3.9: Comparision of different schemes 

3.6 Solver 

Navier stokes equations presents with two problems. First problem is the convective term of 

the momentum equations contains non-linear quantities such as )( Vudiv   in Equation (3.2). 

And another problem is equations are coupled because every velocity component appears in 

each momentum equation and the continuity equation. Most problematic issue is to solve 

pressure and there is no equation for the pressure. To resolve the non-linearity and pressure-

velocity linkage, iterative solution strategy is needed. In this chapter, a few representative 

algorithms are presented. 
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3.6.1 SIMPLE algorithm 

SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. The algorithm was 

proposed by Pantankar and Spalding [10]. The algorithm takes a guess-and-correct procedure 

for the calculation of pressure on the staggered grid. The reason why the staggered grid is used 

is because if velocities and pressures are stored at the ordinary control volume, the influence 

of pressure will not be represented in the discretized momentum equations. 

The SIMPLE algorithm’s work flow is given in Figure 3.10 [11]. 

A simple example of using SIMPLE algorithm is illustrated below in Figure 3.11. Planar 2-D 

nozzle is shown with the density of the fluid of 1.0
3/ mkg , nozzle length of 2 m , inlet area of 

0.5 2m , outlet area of 0.1 2m , inlet pressure of 10Pa and outlet pressure of 0Pa. It is solved for 

velocity and pressure by both using SIMPLE algorithm with upwind scheme and analytically 

using Bernoulli’s equation. The comparison of these two solving methods is given in Figure 

3.12 and 3.13. Matlab code is shown in Appendix B-5. 
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Figure 3.10: SIMPLE algorithm 
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Figure 3.11: Planar 2-D nozzle 

 

 

Figure 3.12: Pressure comparision 

 

 

Figure 3.13: Velocity comparision 
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3.6.2 PISO algorithm 

PISO stands for Pressure Implicit with Splitting of Operators, that was proposed by Issa [12]. 

PISO contains one predictor step and two corrector steps which could be seen as an extension 

of SIMPLE with a further corrector step. The work flow is shown in Figure 3.14. 

 

 

Figure 3.14: PISO algorithm 
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4 Model Validation 
Experiments regarding subsea dispersion were conducted by Engebretsen back in 1997 [3]. 

The experiments were to investigate the phenomena of the plume and the gas release above the 

surface. It was performed in fresh water in a rectangular basin of 7m depth and with a surface 

area of 6 x 9m, with different gas rates of 83 sNl / , 170 sNl /  and 750Nl/s released at the 

bottom of the basin. Pure air was injected when parameters below the water surface were of 

interest. And the helium-air mixture was used when gas concentration measurements were to 

be investigated.  

In the further chapters, velocity under the surface of the water, plume’s rising time and the 

fountain that is created by plume are the main focuses. In the experiment, the duration of the 

air release was done for 20s to eliminate the influence of re-circulating flow in the basin, so it 

is assumed that the flow reached steady-state for the underwater measurements. 

CFD model was introduced by Cloete to compare with the result of Engebretsen’s 

experiment[2]. In the model, DPM and VOF were coupled in ANSYS Fluent, as DPM was 

used for tracking bubbles and VOF was used for tracking the interface between sea and 

atmosphere. 

In this chapter, Cloete’s model is majorly used comparing with Engebretsen’s experiment. 

From chapter 4.1 to 4.5, CFD set-ups based on Cloete’s model are presented. In chapter 4.6, 

the results of simulation and discussion are described. 

4.1 Geometry & Mesh 

The shape of geometry is a box with the identical size to the basin of the experiment(7m x 6m 

x 9m). The geometry is created in ANSYS Design Modeler. 

The primary mesh is created in ANSYS Meshing with a uniform grid size of 20cm. Then the 

mesh is refined in ANSYS Fluent. Expected plume area is refined by Region Adaption with 

level 2. The effect of Region Adaption of a cell is to divide the cell into two cells that have the 

identical grid size to each other as shown in Figure 4.1. 

The total number of cells, faces and nodes are 1130920, 3437126 and 1175723 respectively. 

Minimum Orthogonal Quality 4  is 8.14553e-01. Maximum Ortho Skew 5  is 1.85447e-01.  

Maximum Aspect Ratio6 is 1.74031e+00. 

Figure 4.2 describes the exterior of mesh and the mesh on a plane inserted in the middle of the 

mesh. The mesh of the plane in the middle shows well how the mesh is refined. 

                                                 

4 Orthogonal Quality ranges from 0 to 1, where values close to 0 correspond to low quality 

5 Ortho Skew ranges from 0 to 1, where values close to 1 correspond to low quality 

6 It is the ratio of longest to the shortest side in a cell. Ideally it should be equal to 1 to ensure best results 
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Figure 4.1: Region adaptation 

 

 

Figure 4.2: Exterior of the mesh on the left side and the mesh on a plane inserted in the middle 

on the right side 

4.2 Boundary & initial conditions 

Wall is set as the boundary type for all boundaries, except for pressure-outlet at the top of the 

mesh. No slip condition is set for wall boundaries. And escape condition is set for the top. This 

set-up of boundary condition describes that particles (air bubbles) will be reflected when hitting 

the boundaries that are set as walls while the particles will be removed when hitting the top. In 

the result, the particles barely reached the wall-boundaries, where almost no reflection of 

particles is observed. 

The model was initialized with zero values for all variables, besides k and   are guessed to 

be 
22 /01.0 smk   and 

32 /001.0 sm . These two values are initially distributed in every 

single cell. 
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4.3 Models 

4.3.1 DPM 

Discrete phase model is set with the iteration with continuous phase which accounts for two-

way coupling. As a physical model, the virtual mass face was set with the virtual mass factor 

of 0.5 as a default value.  

Injection type of particles was set to be solid-cone type with 0.17m of radius and 13

of cone 

angle. Particle diameter is set to be 5mm as initial bubble diameter. Parcels were injected via 

10 injection streamlines. As a parcel release method, ‘standard’ was used. This method injects 

a single parcel per injection stream per time step. Therefore 10 parcels were injected every time 

at 0.33m from the bottom.  

 

Figure 4.3: Cone injection 

For turbulent dispersion, stochastic tracking is used. Unsteady particle tracking is applied.  

To find out how Random Walk Model works schematically in the injection, cone injection is 

modeled in Matlab with a few assumptions to make the model simple. Figure 4.4 shows 

trajectories of 10 particles only by instantaneous velocity. It represents the main idea of 

Random Walk. Figure 4.5 shows the trajectories in 2D by mean velocity and instantaneous 

velocity combined via cone injection with an angle of 13

. The assumption is that trajectory 

equations(Equation (3.8)) are zero, meaning that drag effect, gravity, interaction with Eurlerian 

description etc. are neglected, another assumption is that the magnitude of instantaneous 

velocities is constant as 3/2k . Figure 4.5 on the right-hand side, describes the effect of k 

value. The code is attached in Appendix B-6. 
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Figure 4.4: Ttrajectories by instantneous velocity 

 

 

Figure 4.5: 2D cone injection with different k value. Left one with k=0.01, right one with 

k=0.5 

As for drag, mainly Xia’s drag is used as the drag of the original model by Cloete. Additionally, 

the Tomiyama’s drag, Spherical drag and the Modified Spherical drag that are mentioned in 

the previous chapter are used. The results of different drags are shown in chapter 4.6.2. 

4.3.2 VOF 

For multiphase model, Volume of Fluid is used with the formulation of explicit and the 

interface modeling of sharp. The density and viscosity of the water phase are set to 998.2
3/ mkg  and 1.003e-3 smkg /  respectively. For air, it was given as 1.225

3/ mkg  and 

1.7894e-5 smkg / . 

4.3.3 Turbulent model 

Standard k-epsilon model is used with default model constants. 
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4.3.4 User defined model 

For the sake of implementing the change of bubble’s density and size, user-defined modeling 

is needed. Otherwise ANSYS Fluent recognize particles with a constant size and density which 

do not account for phenomena of bubble such as coalescence and break-up. Basic theories of 

bubble density change and bubble size model that were implemented are introduced in the 

following. The UDF of the user defined model was provided by Mikkel[9].  

4.3.4.1 Bubble density change 

The bubble is considered as ideal gas. Therefore, the density of bubble(gas) is defined as 

flg

hd
g

TR

P
  (4.1) 

Where hdP  is hydrostatic pressure, 
g

R  is gas constant and flT  is the temperature of the 

ambient fluid. flT  was assumed to be constant which is reasonable since the user defined 

model was used for shallow depth cases. The temperature change is not significant in shallow 

depth as shown in Figure 4.6. 

Hydrostatic pressure is the pressure that presents within a fluid when it is at rest. It acts equally 

in all directions. Also, it acts to any surface in contact with the fluid perpendicularly. It is well 

described in Figure 4.7. 

The pressure change by hydrostatic pressure is defined as 

hgP    (4.2) 

 

Figure 4.6: Temperature change under water 
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Figure 4.7: Hydrostatic pressure 

4.3.4.2 Bubble size model 

The bubble size model is controlled by material properties and turbulence. Local mean bubble 

diameter ( pd ) accounts for loss of bubbles to downstream cells, gain of bubbles from upstream 

cells, break-up and coalescence [2]. In Lagrangian framework, it is defined such, 
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Where p  is the bulk density,   is the relaxation time and 
eq

pd  is the mean equilibrium 

diameter. The equilibrium diameter is the diameter that it is achieved if a bubble resides long 

enough at the same flow conditions. It is defined such 
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Where the coefficients 1C  and 2C  are 4 and m100  respectively. 

The relaxation time is the time that is needed for bubble to reach the equilibrium diameter. 

The mean bubble diameter will be driven to its equilibrium diameter during a timeframe given 

by the relaxation time. 

The relaxation times for breakup ( br ) and coalescence ( co ) are given by the turbulence 

dissipation rate and kinetic energy respectively. They are defined such 

3/13/2   pbr d , )*6*2.0/( kd ppco    (4.5) 

When the model is implemented in code, if a bubble is bigger than 
eq

pd  then the bubble’s 

breakup occurs otherwise the coalescence will occur. br  or co  will be obtained, the 

relaxation time is restricted by turbulent microscale that represents the smallest timescale in 
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turbulent flow [13]. Bubble size is restricted to have a diameter size above 0.0001m. The 

fraction of the bubble is also restricted to be below 060.1 e . 

4.4 Solver & scheme 

For solver, PISO algorithm is used. For gradient scheme, least square cell based is used. 

PRESTO! for pressure, Geo-Reconstruct for volume fraction, second order upwind for 

momentum, turbulent kinetic energy and turbulent dissipation rate and first order implicit for 

transient formulation are used as shown in Table 4.1. 

The timestep is set to 0.01s with the maximum 100 iterations per time step. Simulation is 

executed till 20s simulation time as same as the duration of the release in the experiment. 

The limit of the residuals are set to 1e-05 for every variable. The under-relaxation factors are 

set to the default value.  

 

Table 4.1: Scheme 

Gradient least square cell based 

Pressure PRESTO! 

Momentum second order upwind 

Volume fraction  Geo-Reconstruct 

Turbulent kinetic energy Second order upwind 

Turbulent dissipation rate Second order upwind 

Transient formulation  First order implicit 

4.5 Cases 

Three different comparisons were done for the Engebretsen’s experiment. In Case 1, a CFD 

model is validated by using Cloete’s model.  

Based on the basic CFD model by Cloete, different drags are implemented to see their 

influences in Case 2.  

Case 3 is to compare the integral model that is introduced in chapter 1.2 with the results of the 

experiment and the simulation. 

Table 4.2 shows the overview of the three cases. 

 



4 Model Validation 

39 

Table 4.2: Cases 

 Comparison Drag 

Case 1 Validation of Cloete’s CFD model  Xia’s drag 

Case 2 Effect of different drags Spherical drag law 

Modified Spherical Drag law 

Tomiyama’s drag law 

Case 3 Comparison between Integral model, CFD model and experiment 

4.6 Result & Discussion 

4.6.1 Case 1 

Fountain is observed proving that DPM and VOF are coupled as shown in Figure 4.8. Flow 

reflection is observed as shown in Figure 4.9. Maximum, minimum and mean diameter of 

bubble are reported 7.96e-02m, 1.67e-03m and 5.32e-03m respectively. Bubble parcels 

barely touch the wall boundaries. Parcels are removed when touching the surface of the water 

by UDF implemented. Almost no change in under water measurements is observed after 20s 

of simulation, which can be assumed to be steady-state. 

 

 

Figure 4.8: Fountain 



4 Model Validation 

40 

 

Figure 4.9: Flow reflection 

4.6.1.1 Velocity 

Velocities at the flow rate of 170 sNl /  is of interest at the vertical positions(z-direction) of 

1.75m, 3.80m and 5.88m at 20s. Velocity profiles at 1.75m and 3.80m depth of the simulation 

match the experiments well. In the meantime, quite large deviation at 5.88m is observed. This 

is due to the unsuitable use of the meter for measuring multi-directional flow during the 

experiment[14], meaning that as a flow approaches the surface of the water, the flow becomes 

a multi-direction flow in which radial flow is predominant. However, the meter that is used 

suitable for mono-directional flows. This explains why the velocity only around the center at 

z=5.88 where the vertical flow is predominant shows a good match. Therefore, in the further 

comparisons, the velocity profile at z=5.88m is not considered for validation. The velocity 

profiles are shown in Figure 4.10. 

In addition to the velocity measurement at three different z positions, the velocity near the 

surface is measured at 1.75m from the plume center for the gas flow rates of 83 sNl /  and 170

sNl / . The comparison between the experiment and simulation is shown in Figure 4.11. 

The simulation results have the most deviation at the flow rate of 170 sNl / , especially at the 

nearest points from the surface. It is proved that the model with surface damping correction 

gives improved results[14]. 
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Figure 4.10: Velocity profile at z=1.75, 3.80 and 5.88 

 

 

Figure 4.11: Velocity near the surface 

4.6.1.2 Height of fountain and rising time 

In Engebretsen’s experiments, the initial fountain height when the plume reached the surface 

for the first time and the maximum fountain height were measured. The comparison between 

the experiment and simulation is shown in Table 4.3. 
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Table 4.3: Foundtain height and plume rising time 

Heights of fountain seem to have considerable deviations. In the experiment, it is mentioned 

that one of equipment was splashed at 2 meters above from the water surface. Meanwhile, the 

simulation does not really show the huge motion of splash unlike the experiment. 

Slightly over predicted values are observed in rising time. It is reported by Mikkel[9] that 

higher initial turbulent kinetic energy(k) values cause a longer rise time. Also, it is mentioned 

that variables that are relevant to k might cause more dispersed flow. To investigate how initial 

k affects the rising time, simulations with the different initial k values of 0.007 22 / sm  and 

0.014 22 / sm  are done. 

Plumes at 5s are captured as shown in Figure 4.12. Significant difference of plume position is 

oberved at this time. 

Visible difference in k in plume that have been developed by the time is observed in contour 

images as shown in Figure 4.13. Fixed range scale is used for both cases to see the difference.  

 

 

Figure 4.12: Plume at 5 s 

 

 Experiment Simulation 

Flow rate [ sNl / ] 83 170 750 83 170 750 

Plume rising time [s] 6 4.8 3.1 7.2 5.5 3.25 

Initial fountain height [m] - 0.3 0.45 - 0.18 0.29 

Maximum fountain height 

[m] 

- 0.65 1.25 - 0.43 0.87 
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Figure 4.13: Contour of k at 5s 

Also k value in plume is measured at the center line of the plume. It is shown in Figure 4.14. 

From the measured k values, it is obvious that the plume in the field of the smaller initial k 

value of 0.007 22 / sm  propagates faster, also the plume has a higher k value that is devloped 

over time. Therefore it can be assumed that lower initial k values in the mesh field result in 

higher k values of plume. And higher k values in plume contribute to faster rising velocities. 

 

 

Figure 4.14: Measured k value at the center line of plume 

4.6.1.3 Void fraction 

Since the volume fraction of particles cannot be obtained in ANSYS Fluent without time 

sampling, it is measured by time sampled data of every second for 20 seconds. RMS value is 

measured. The result shows a quite large deviation as described in Figure 4.15. The void 
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interations and the effects of the particle volume fraction on the gas phase are negligible. In 

that regard, the violation of the recommended range was observed. It might have possibly 

caused errors in any results. 

 

 

Figure 4.15: Void fraction 

4.6.2 Case 2 

To see how drag can affect the result, three different drags from chapter 3.4.1.4 are 

implemented. Spherical drag and Modified spherical drag do not account for the shape of 

bubble but only Reynolds number. Meanwhile, Tomiyama’s drag and Xia’s drag account for 

the shape of bubble. The influence of including a factor of the bubble shape is expected to be 

shown in this chapter. Simulations are done only for the flow rate of 170 sNl / . And none of 

other set-up values are changed but only drag. 

4.6.2.1 Velocity 

Velocity profiles of spherical drag and the modified drag seem to match well the experiment 
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better match by a bit within the range of radial position from 0 to 0.5m. 

Reynolds number of Spherical drag coefficient is divided into seven ranges from Re= 0 to 
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reasonable to assume the better result within the range of radial position from 0 to 0.5m might 

have been caused by plume’s low Re. 

Meanwhile the simulation result from Tomiyama’s drag seems to match the best among 3 

drags, even at around the center area. And especially at z=3.8m, the result matches the 

experiment data better than Xia’s drag. The results with different drags are shown in Figure 

4.16-4.19. The reason why Tomiyama’s drag gives a better result than Xia’s can be assumed 

that Reynolds number also is included in Tomiyama’s drag coefficient, not only the shape of 

bubble. 

Velocities of the different drags near the surface are also compared. It is shown in Figure 4.20. 

Disregarding the damping effect which is not applied in the model, the results of velocity near 

the surface show less deviation from the experimental data when Spherical drag and Modified 

spherical drag are used. When Tomiyama’s drag is used, the result is almost identical to the 

result by Xia’s drag. 

It is observed that the drags that include the shape of bubble give a better result besides the 

velocity near the water surface. Assuming bubble’s shape is a crucial factor in plume seems to 

be reasonable. However, since the drags that including only Reynolds number result in a better 

match near the water surface, it might be reasonable to assume that Reynolds number is more 

important than the shape of bubble near the surface. 

 

Figure 4.16: Velocity by Spherical drag 
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Figure 4.17: Velocity by Modified spherical drag 

 

 

Figure 4.18: Velocity by Tomiyama’s drag 
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Figure 4.19: Comparison between the results by Tomiyam’s drag, Xia’s drag and experiment 

 

 

Figure 4.20: Velocity by different drags near the water surface 
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from the experimental data. Xia’s drag and Tomiyama’s drag give the similar results besides 

the maximum fountain height. 

Good agreement of the fountain height is not observed in any of the simulations comparing 

with experimental data. The overview of comparison is shown in Table 4.4. 

As mentioned in chapter 4.6.1, plume rising time is rather dependent upon initial k value. 

Therefore, it is reasonable to say that initial k =0.01 22 / sm  is a good guess for both Spherical 

and Modified spherical drag. 

 

Table 4.4: Plume rising time and fountain height by different drags 

 Experiment Xia’s drag Spherical 

drag 

Modified 

spherical 

drag 

Tomiyama’

s drag 

Flow rate [ sNl / ] 170 170 170 170 170 

Plume rising time [s] 4.8 5.5 4.6 4.75 5.5 

Initial fountain height 

[m] 

0.3 0.18 0.13 0.13 0.19 

Maximum fountain 

height [m] 

0.65 0.43 0.34 0.34 0.35 

4.6.3 Case 3 

The integral model is investigated for the flow rate of 170 sNl / . The comparisons between the 

integral model, the CFD model and the experimental data are seen in case 3.  

4.6.3.1 Velocity 

Integral model is determined by tuning the coefficients that are introduced in chapter 2.2. In 

this thesis, only entrainment coefficient   and proportionality value   are manipulated. 

  is observed to determine the peak of velocity profile and  is observed to affect the entire 

shape such as the peak velocity in the center and width of the velocity profile. Comparisons by 

manipulation of   and   are shown in Figure 4.21 and 4.22. 

For the velocity at the height of z=1.75m, the curve of the integral model seems to be optimized 

when  = 0.1285 and  =1.5 are used. And for the velocity at z=3.80m, using  = 0.11 and 

 =1.5 showed a good match. Also, both tunings showed good matches to experiments over 

the velocities of the vertical direction. However, the velocity at the low z position diverges 

infinitely, it is due to the calculation of the approximate solutions where 0 is put into 
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denominator. The data at small z position should not be considered as valid value. The results 

are shown Figure 4.23~4.25. 

The biggest deviation is observed in the near velocity comparison as shown in Figure 4.26. 

This is due to the assumption of the integral model that the velocity of plume follows Gaussian 

profile. Therefore, the flow reflection near the surface cannot be explained in the integral 

model. 

 

 

Figure 4.21:   manipulation 

 

 

Figure 4.22:  manipulation 
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Figure 4.23: Velocity at z=1.75 when  = 0.1285 and  =1.5 

 

 

Figure 4.24: Velocity at z=3.80m, using  = 0.11 and  =1.5 
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Figure 4.25: Comparison between two manipulations 

 

 

Figure 4.26: Velocity near the surface 
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In addition, Friedl provided relations of the average peak of instantaneous height ph  and the 

maximum peak of instantaneous height 
maxp

h  with respect to the mean surface elevation 
f

h . 

fp hh 2 , 
fp

hh 1.3
max

  (4.6) 

The values following above equation are mh p 39.0  and mh
p

6.0
max

  when  = 0.1285 

and  =1.5. Since the average fountain height of the experiment was not provided by 

Engebretsen, ph  cannot be compared directly. However, if it is assumed that the fountain 

heights after initial height would be the values between the initial height and the maximum 

height, then the heights from the integral model seem to give a good result with a small error. 

4.6.3.3 Void fraction 

Void fraction is also calculated using  = 0.1285 and  =1.5. The result is shown in Figure 

4.27. Compared to the CFD simulation, the result of the integral model matches the 

experimental data well. 

 

Figure 4.27: Void fraction 
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5 Additional validations 
To test the validity of the CFD model and the integral model further, additional validations are 

done with the varied sizes of depth and flow rate. There are some experiments done with respect 

to the subsea blowout. Fanneløp’s experiment(1980)[15] seems to provide more detailed 

experimental data, especially regarding plume width compared to Engebretsen’s experiment. 

Milgram’s experiment(1983)[16] was done in a bigger scale of a basin. Also, it provides 

velocity measurement at higher flow rate than Engebretsen’s experiment. 

CFD model and the integral model are investigated comparing with the experimental data from 

both experiments above. The same set-ups are implemented as used in chapter 4, except for the 

size of geometry and flow rate. 

5.1 Milgram’s experiment 

The experiment was done in a basin of the size of 50m depth at the air flow rates of 24 sNl / , 

118 sNl / , 283 sNl /  and 590 sNl / . Since bigger basin size and higher flow rate are of interest, 

only the data of the flow rate of 590 sNl /  is compared. 

The integral model was tuned by determining the coefficients that show the best fits for 

velocity, void fraction and plume width respectively. Using  =2 seems to show good 

agreement for each outcome variables. However, it is observed that each outcome is more 

sensitive to the value  . The  values that give the best fit are differently set for each 

outcome. 

5.1.1 Velocity 

The result of the CFD model is observed to give a good result with some deviation from the 

experimental data. It could be due to the dissolution of the air into water. Since the basin of 

Milgram’s experiment is larger than the basin that was used in Engebretsen’s experiment, 

which would have caused a longer stay time of gas in the water. it is assumed that if the model 

includes dissolution effect, it could give a better result. 

 = 0.175 is determined in the integral model. It seems to show good agreement. As same as 

the CFD model, gas dissolution is not included in the integral model. The velocity is shown in 

Figure 5.1. 
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Figure 5.1: Velocity 

5.1.2 Void fraction & Plume width 

The CFD model give considerable deviation in void fraction. It could have been caused by gas 

dissolution for both models. The best fit of the void fraction from the integral model is found 

at  = 0.25. The comparison of void fraction is shown in Figure 5.2. 

In the CFD model, it was not clear to define the plume width. The plume width is measured by 

measuring the distance from the center of the plume to the point where void fraction is below 

1e-02. The best fit of the plume width from the integral model is found at  = 0.13 as shown 

in Figure 5.3. 

 

Figure 5.2: Void fraction 
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Figure 5.3: Plume width 
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Figure 5.4: Velocity at the flow rate of 5Nl/s 

 

 

Figure 5.5: Velocity at the flow rate of 10Nl/s 

 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

h
ei

gh
t[

m
]

experiment

simulation

integral model

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

h
ei

gh
t[

m
]

experiment

simulation

integral model



5 Additional validations 

57 

 

Figure 5.6: Velocity at the flow rate of 15Nl/s 

 

 

Figure 5.7: Velocity at the flow rate of 22Nl/s 
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Figure 5.8: Void fraction at the flow rate of 5Nl/s 

 

 

Figure 5.9: Void fraction at the flow rate of 10Nl/s 
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Figure 5.10: Void fraction at the flow rate of 15Nl/s 

 

 

Figure 5.11: Void fraction at the flow rate of 22Nl/s 
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6 OpenFoam simulation 
OpenFoam is a C++ based free CFD software. In this chapter, the outcome of the simulation 

done in OpenFoam will be presented. 

To find a properly coupled solver(Eulerian-Lagrangian), different extended versions of 

OpenFoam were attempted. And OpenFoam v16.06+ that was developed by ESI Group 

contains the coupled solver. 

In the following, mainly the solver will be introduced along with the result. Other set-ups 

such as initial conditions, constants, schemes etc. are attached in Appendix C~E. 

6.1 Solver 

MPPICInterFoam is the solver in which MPPICFoam and InterFoam are combined. InterFoam 

is the solver for VOF and MPPICFoam is the solver for DPM with a colliding particle cloud. 

MPPICInterFoam comprises files in a hierarchical structure as shown in Figure 6.1. 

.C and .H are the extension for source file and header file respectively. 

 

Figure 6.1: Structure of MPPICInterFoam 
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6.2 Result 

Figure 6.2 shows a plume rising, however, the fountain of significant height is not observed 

during the simulation. 

Figure 6.3 shows the velocity profiles. 

The outcome of the simulation is not satisfying. One of the possible causes is that rectangular 

patch injection was implemented instead of cone injection due to the explosion of courant 

number during simulation. Another possible cause is the implementation of colliding particles. 

Lastly, when the solver was modified by me, a few functions were implemented by modifying 

the code and compiling the solver since the raw solver does not include necessary functions for 

the simulation. errors might have been caused possibly in this process. However, allowing for 

all the possible causes mentioned above, the velocity profiles were largely underpredicted 

compared to the experimental data as shown in Figure 6.3. In addition, almost invisible change 

in the water surface cannot be explained enough by those possible causes above. This issue 

seemed to be caused not by possible wrong set-ups but solver. 

 

Figure 6.2: Plume 
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Figure 6.3: Velocity 

The developer of OpenFoam 1606+, Sergio Ferraris mentioned on this issue that “The particles 

interact with the fluid (the phase there are in), but there is an extra small force on particles that 

avoids the particles to cross the interface. This force is only applied when the particle is near 

the interface only. Then, if the interface is affected by the particles momentum, this model will 

not have the desired effect.” In short, the solver is not perfectly coupled.  

In the Ueqn.h file, it is found that a source term is missing transferring from particles. To fix 

this problem, Mainly, the source term from particles should be added in momentum at line 46 

in the file as described below.  

   28 if (pimple.momentumPredictor()) 

   29 { 

   30     solve 

   31     ( 

   32         UEqn 

   33      == 

   34         fvc::reconstruct 

   35         ( 

   36             phicForces/rAUcf 

   37           + 

   38             ( 

   39                 fvc::interpolate 

   40                 ( 

   41                     mixture.sigmaK() 

   42                 )*fvc::snGrad(alpha1) 

   43                 - ghf*fvc::snGrad(rho) 

   44                 - fvc::snGrad(p_rgh) 

   45             ) * mesh.magSf() 

   46         )+Momentum from particle 

   47     ); 

   48  

   49     fvOptions.correct(U); 

   50 } 
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7 Conclusion 
The main object of this thesis was originally to validate the transient subsea gas plume model 

named ‘Rising cap model’ by comparing its outcome to CFD model and vice versa. However, 

Rising cap model’s main outcome is mass flux through the water surface and does not represent 

underwater physics. In the meantime, the CFD model which is used in this thesis was validated 

based on underwater velocity. In addition, the Gaussian profile assumption of surface flux in 

Rising cap model seems to be against the real phenomena on the surface. Therefore, it was 

decided not to use Rising cap model, instead Friedl’s integral model which is steady-state 

plume model was introduced. Friedl’s model also includes Gaussian profile, but the model 

accounts for the underwater physics. 

The main idea of the CFD model that was proposed by Cloete is to couple Lagrangian 

description and Eulerian description in two-way coupling. The model includes the change of 

bubble’s size and density and the drag accounting for bubble’s shape. Cone injection with 

Random walk model is implemented to account for turbulent dispersion of bubbles. 

The CFD model seems to predict underwater blowout well in terms of velocity. For more 

accurate prediction of the velocity, damping effect at the surface needs to be implemented [14] 

and dissolution of water also needs to be included depending on bubble stay time of gas. 

However, in terms of fountain prediction, more improvement seems to be needed. 

Drag in the CFD model seems to be a factor that could affect plume physics as presented. The 

result by different drags shows that the drag laws including bubble’s shape show better 

agreement than the ones without including bubble’s shape in general. 

The CFD model shows generally good agreement under different conditions such as different 

depth and flow rate of releasing gas. However, still to validate this model more realistically, 

more experimental data is necessary with higher flow rate of the gas and larger depth as well. 

As a feedback of the CFD simulation done in this thesis, since it is available to measure 

particles void fraction when time sampling is set, maybe longer simulation should have been 

implemented to measure more accurate results of void fraction and plume width in steady state. 

In the integral model, tuning of coefficients is necessary under different conditions. 

Appropriate tunings show good agreement. However, to determine the appropriate coefficients, 

it also needs further experiments as same as the CFD model does, with high flow rate of gas 

release and larger depth, which is more realistic subsea blowout condition. 

Since Friedl’s integral model uses Gaussian profile as same as most of integral plume models 

use, the model does not account for flow’s reflection at the water surface. Modeling the area 

near the surface separately including reflection phenomena could be a way to improve the 

integral model.  

Integral model is computationally cheaper and more effective in comparison to CFD model. 

OpenFoam model was attempted, however, due to lack of time the model is not completed. 

Relatively new solver named ‘MPPICInterFoam’ is used. The solver is not exactly 2 way-

coupled. It needs to be modified by inserting source term transferring from particles. In 

addition, the explosion of courant number while a cone injection is implemented needs to be 

investigated. 
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Appendices 
Appendix A-1 < Spherical drag > 

Range of Re 
1a  2a  3 a  

0<Re<0.1 0 24 0 

0.1<Re<1 3.690 22.73 0.0903 

1<Re<10 1.222 29.1667 -3.8889 

10<Re<100 0.6167 46.50 -116.67 

100<Re<1000 0.3644 98.33 -2778 

1000<Re<5000 0.357 148.62 -47500 

5000<Re<10000 0.46 -490.546 578700 

10000Re 0.5191 -1662.5 5416700 

Appendix A-2 <Modified sphere drag > 

Range of Re Correlation 

Re<0.1 

Re

24

16

3
DC  

0.01<Re20  )05.082.0(Re1315.01
Re

24 w

DC   

20Re260  6305.0Re1935.01
Re

24
DC  

260Re1500 21558.01242.16435.110 ww

DC   

43 102.1Re105.1   
32 1049.09295.05558.24571.210 www

DC   

44 104.4Re102.1   
20636.06370.09181.110 ww

DC   

54 1038.3Re104.4   
21546.05809.13390.410 ww

DC   

55 104Re1038.3   wCD 3.578.29   

65 10Re104   49.01.0  wCD  



  Appendices 

68 

Re106   

Re

108
19.0

4
DC  

( Relog10w ) 
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Appendix B-1  

 

%% Integral plume model-MJ Fridedl 

% Author: Kim Taewook 

% Linkedin : https://www.linkedin.com/in/taewook-kim/ 

% GITHUB : github.com/Kimtaewookcode 

% Email : kimtaewook87@gmail.com 

% Based on   

% http://www.sciencedirect.com/science/article/pii/S014111879900022X 

clear 

close all 

clc 

g = 9.81;%gravity[m/s2] 

rho_w=998;%density of water[kg/s] 

m_release=0.02695;%0.01838;%0.00625;%0.71milgram%0.208;%mass rate[kg/s] 

phi=3.14;%phi 

p0=101325;%atmopheric pressure[pa] 

rho_g0=1.225;%density of releasing gas[kg/m3] 

vs=0.35;%slip velocity[m/s] 

h=10;%height of the water surface 

hp=10.33; 

x1 = 0;%centerline 

hoff=0;%h offset 

z0=1.75;%z value where you want to know about profile at 

%coefficients% 

alpha=0.12;%0.13;%0.1285;entrainment coefficient 

gam=1;%1.5; 

beta=0.39;%0.5;theoretical value%0.39;experimental value : for a loss-free 

rise;1for instantneous 

lambda=0.8; 

 

%%calculation in x(radial) direction%% 

vs1=vs*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(-

1/3); 

s1=(1+lambda^2)*vs1; 

z1=z0/(h+hp); 

z2=h/(h+hp); 

v1=((25/12)^(1/3))*(z1^(-1/3))*(1+11*z1/39+511/2*(z1/39)^2)-

s1*7/22*(1+345/343*z1/13+86175/11662*(z1/13)^2)+(s1^2)*13/121*(12/25)^(1/3)

*(z1^(1/2))*(1-59489/1436*z1/39-2825583625/23347324*(z1/39)^2); 

v2=((25/12)^(1/3))*(z2^(-1/3))*(1+11*z2/39+511/2*(z2/39)^2)-

s1*7/22*(1+345/343*z2/13+86175/11662*(z2/13)^2)+(s1^2)*13/121*(12/25)^(1/3)

*(z2^(1/2))*(1-59489/1436*z2/39-2825583625/23347324*(z2/39)^2); 

v=v1*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(1/3); 

vh=v2*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(1/3); 

b1=3/5*z1*(1-z1/13-7*(z1/13)^2)+s1*3/110*((12/25)^(1/3))*(z1^(4/3))*(1-

1046/49*z1/39-227726/833*(z1/39)^2)-

(s1^2)*48/15121*((25/12)^(1/3))*(z1^(5/3))*(1-

34663/9408*z1+225707803/240143904*z1^2); 

b2=3/5*z2*(1-z2/13-7*(z2/13)^2)+s1*3/110*((12/25)^(1/3))*(z2^(4/3))*(1-

1046/49*z2/39-227726/833*(z2/39)^2)-

(s1^2)*48/15121*((25/12)^(1/3))*(z2^(5/3))*(1-

34663/9408*z2+225707803/240143904*z2^2); 

b=b1*(2*alpha*(h+hp));%plume width at z0 

bh=b2*(2*alpha*(h+hp));%plume width at the surface 

x = [0 : 0.01: 200];%x range- need to be set 

y=v*exp(-(x.^2)/(b^2));%velocity at z0 

yh=vh*exp(-(x1^2)/(b^2));%velocity at the surface 

 

hf=beta*gam*(yh.^2)/g;%the peak of fountain profile 
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hr=hf*exp(-(x.^2)/(bh^2))-hoff;%fountain profile 

 

void_1=1/(1-z1)/((b1^2)*(v1+s1)); 

void1=void_1*((((1+lambda^2)^2)*gam*(m_release/rho_g0)^2)/((phi^2)*(lambda^

2)*(2^5)*(alpha^4)*((h+hp)^5)*g))^(1/3); 

voidr=void1*exp(-(x.^2)/((lambda^2)*(b.^2)));%void fraction profile at z0 

 

void_2=1/(1-z2)/((b2^2)*(v2+s1)); 

void2=void_2*((((1+lambda^2)^2)*gam*(m_release/rho_g0)^2)/((phi^2)*(lambda^

2)*(2^5)*(alpha^4)*((h+hp)^5)*g))^(1/3); 

voidh=void2*exp(-(x.^2)/((lambda^2)*(b^2)));%void fraction profile at the 

surface 

mflux_surf=voidh*yh*rho_g0;%mass flux per unit area at the surface 

 

plot(x, y, '.-') 

xlim([0 4]) 

title(['velocity at z=',num2str(z0)]); 

xlabel('radial position[m]'); 

ylabel('velocity[m/s]'); 

 

figure;plot(x, hr, '.-') 

xlim([0 4]) 

title('fountain '); 

xlabel('radial position[m]'); 

ylabel('z[m]'); 

 

figure;plot(x, voidr, '.-') 

xlim([0 4]) 

title(['void fraction at z=',num2str(z0)]); 

xlabel('radial position[m]'); 

ylabel('voidfraction'); 

 

figure;plot(x, mflux_surf, '.-') 

xlim([0 4]) 

title(['mass flux at the surface']); 

xlabel('radial position[m]'); 

ylabel('massflux[kg/s/m2]'); 

 

%%%calculation in z direction%% 

initial=0;%z start 

last=h;%z end 

dz=0.01;%delta z 

n=(last-initial)/dz;%the number of data 

zarr=zeros(n,1);% n x 1 array for z 

i=1; 

 

for z=initial:dz:last 

zarr(i)=z; 

z1=z/(h+hp); 

vs1=vs*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(-

1/3); 

s1=(1+lambda^2)*vs1; 

v1_z=((25/12)^(1/3))*(z1.^(-1/3))*(1+11*z1/39+511/2*(z1/39).^2)-

s1*7/22*(1+345/343*z1/13+86175/11662*(z1/13).^2)+(s1^2)*13/121*(12/25)^(1/3

)*(z1.^(1/2))*(1-59489/1436*z1/39-2825583625/23347324*(z1/39).^2); 

v_z=v1_z*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(1/

3); 

b1_z=3/5*z1*(1-z1/13-7*(z1/13)^2)+s1*3/110*((12/25)^(1/3))*(z1^(4/3))*(1-

1046/49*z1/39-227726/833*(z1/39)^2)-

(s1^2)*48/15121*((25/12)^(1/3))*(z1^(5/3))*(1-

34663/9408*z1+225707803/240143904*z1^2); 
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b_z=b1_z*(2*alpha*(h+hp)); 

bz(i,1)=b_z;%designate br's 'i' th value 

veloarr_z(i,1)=v_z*exp(-(x1^2)/(b_z^2));%designate veloarr's 'i' th value 

 

void1_z=1/(1-z1)/((b1_z.^2)*(v1_z+s1)); 

void_z=void1_z*((((1+lambda^2)^2)*gam*(m_release/rho_g0)^2)/((phi^2)*(lambd

a^2)*(2^5)*(alpha^4)*((h+hp)^5)*g))^(1/3); 

voidz(i,1)=void_z*exp(-(x1^2)/((lambda^2)*(b_z^2)));%designate voidr's 'i' 

th value 

 

 

 i=i+1; 

end 

figure;plot(bz,zarr, '.-') 

ylim([0 h]) 

title('plume width'); 

ylabel('z position[m]'); 

xlabel('width[m]'); 

figure;plot(veloarr_z,zarr,'.-') 

xlim([0 4]) 

ylim([0 h]) 

title('velocity at the centerline '); 

ylabel('z position[m]'); 

xlabel('velocity[m/s]'); 

figure;plot(voidz,zarr, '.-') 

xlim([0 0.06]) 

ylim([0 h]) 

title('voidfraction at the centerline'); 

ylabel('z position[m]'); 

xlabel('voidfraction'); 

instantneous_maximum_fountain=3.1*hf; 

instantneous_average_fountain=2*hf; 
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Appendix B-2 

%Central differencing scheme,1-D convection-diffusion steady state, no 

source but only boundary 

%condition 

%Author : Taewook Kim 

%LINKEDIN : www.linkedin.com/in/kimtw 

%GITHUB : github.com/Kimtaewookcode 

%Email : kimtaewook87@gmail.com 

%Ref:"An introduction to Computational Fluid Dynamics:HKversteeg and 

%WMalalasekera example 5.1 

%%%%%%%% 

clear 

clc 

clf 

L=1;%[m] length of geometry 

%rho=1;%[kg/m3] 

ksi=0.1;%[kg/ms] 

u=2.5;%[m/s]%2.5; 

ngrid=20;%numberof grid%20,5 

dx=L/ngrid;%delta x 

 

F=2.5;%coefficient 

D=ksi/dx;%coefficient 

 

phi0=1;%boundary condition at x=0 

phil=0;%boundary condition at x=L 

 

%%%%%%%% 

array=zeros(ngrid); 

bound=zeros(ngrid,1); 

%%%%%%%%% 

  

for i=1:ngrid 

    if i==1 

        aw=0; 

        ae=D-F/2; 

        sp=-(2*D+F); 

        ap=aw+ae-sp; 

        su=-sp*phi0; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 

    elseif i<ngrid 

        aw=D+F/2; 

        ae=D-F/2; 

        sp=0; 

        ap=aw+ae-sp; 

        su=0;%no source 

        array(i,i-1)=-aw; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 

 

    else 

        aw=D+F/2; 

        ae=0; 

        sp=-(2*D-F); 

        ap=aw+ae-sp; 

        su=-sp*phil; 

         

        array(i,i-1)=-aw; 
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        array(i,i)=ap; 

        bound(i,1)=su; 

    end 

end 

 phi=array\bound; 

  

 xarr=zeros(ngrid,1); 

 for j=1:ngrid 

     xarr(j,1)=dx/2+dx*(j-1); 

 end 

  

 %%%%%%%analytical 

 dx1=dx/10; 

 x1=[0:dx1:L]; 

 anaphi=1+(1-exp(25*x1))/(7.20*10^10); 

  

 plot(xarr,phi,'x',x1,anaphi,'-') 

 ylim([0 1.5]) 
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Appendix B-3 

%Upwind scheme,1-D convection-diffusion steady state, no source but only 

boundary 

%condition 

%Author : Taewook Kim 

%LINKEDIN : www.linkedin.com/in/kimtw 

%GITHUB : github.com/Kimtaewookcode 

%Email : kimtaewook87@gmail.com 

%Ref:"An introduction to Computational Fluid Dynamics:HKversteeg and 

%WMalalasekera example 5.2 

%%%%%%%% 

clear 

clc 

clf 

L=1;%[m] length of geometry 

%rho=1;%[kg/m3] 

ksi=0.1;%[kg/ms] 

u=2.5;%[m/s]%2.5; 

ngrid=20;%numberof grid%20,5 

dx=L/ngrid;%delta x 

 

F=2.5;%coefficient 

D=ksi/dx;%coefficient 

 

phi0=1;%boundary condition at x=0 

phil=0;%boundary condition at x=L 

 

%%%%%%%% 

array=zeros(ngrid); 

bound=zeros(ngrid,1); 

%%%%%%%%% 

  

for i=1:ngrid 

    if i==1 

        aw=0; 

        ae=D; 

        sp=-(2*D+F); 

        ap=aw+ae-sp; 

        su=-sp*phi0; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 

    elseif i<ngrid 

        aw=D+F; 

        ae=D; 

        sp=0; 

        ap=aw+ae-sp; 

        su=0;%no source 

        array(i,i-1)=-aw; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 

 

    else 

        aw=D+F; 

        ae=0; 

        sp=-(2*D); 

        ap=aw+ae-sp; 

        su=-sp*phil; 

         

        array(i,i-1)=-aw; 
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        array(i,i)=ap; 

        bound(i,1)=su; 

    end 

end 

 phi=array\bound; 

  

 xarr=zeros(ngrid,1); 

 for j=1:ngrid 

     xarr(j,1)=dx/2+dx*(j-1); 

 end 

  

 %%%%%%%analytical 

 dx1=dx/10; 

 x1=[0:dx1:L]; 

 anaphi=1+(1-exp(25*x1))/(7.20*10^10); 

  

 plot(xarr,phi,'x',x1,anaphi,'-') 
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Appendix B-4 

%Second order upwind scheme,1-D convection-diffusion steady state, no 

source but only boundary 

%condition 

%Author : Taewook Kim 

%LINKEDIN : www.linkedin.com/in/kimtw 

%GITHUB : github.com/Kimtaewookcode 

%Email : kimtaewook87@gmail.com 

%Ref:"Lars Davidson: Numerical Methods for Turbulent Flow chapter5 

%%%%%%%% 

clear 

clc 

clf 

L=1;%[m] length of geometry 

%rho=1;%[kg/m3] 

ksi=0.1;%[kg/ms] 

u=2.5;%[m/s]%2.5; 

ngrid=20;%numberof grid%20,5 

dx=L/ngrid;%delta x 

 

F=2.5;%coefficient 

D=ksi/dx;%coefficient 

 

phi0=1;%boundary condition at x=0 

phil=0;%boundary condition at x=L 

 

%%%%%%%% 

array=zeros(ngrid); 

bound=zeros(ngrid,1); 

%%%%%%%%% 

  

for i=1:ngrid 

    if i==1 

        aw=0; 

        ae=D; 

        ap=3/2*F+3*D; 

        su=(3/2*F+2*D)*phi0; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 

    elseif i==2 

        aw=D+2*F; 

        ae=D; 

        ap=3/2*F+2*D; 

        su=-F/2*phi0;%no source 

        array(i,i-1)=-aw; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 

         

    elseif i<ngrid 

        aw=D+2*F; 

        ae=D; 

        ap=3/2*F+2*D; 

        aww=-F/2; 

        su=0;%no source 

        array(i,i-2)=-aww; 

        array(i,i-1)=-aw; 

        array(i,i)=ap; 

        array(i,i+1)=-ae; 

        bound(i,1)=su; 
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        else 

        aw=D+2*F; 

        ae=0; 

        ap=3/2*F+3*D; 

        aww=-F/2; 

        su=2*D*phil; 

        array(i,i-2)=-aww; 

        array(i,i-1)=-aw; 

        array(i,i)=ap; 

        bound(i,1)=su; 

    end 

end 

 phi=array\bound; 

  

 xarr=zeros(ngrid,1); 

 for j=1:ngrid 

     xarr(j,1)=dx/2+dx*(j-1); 

 end 

  

 %%%%%%%analytical 

 dx1=dx/10; 

 x1=[0:dx1:L]; 

 anaphi=1+(1-exp(25*x1))/(7.20*10^10); 

  

 plot(xarr,phi,'x',x1,anaphi,'-') 
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Appendix B-5 

%SIMPLE algorithm,2-D nozzle steady state,  

%Author : Taewook Kim 

%LINKEDIN : www.linkedin.com/in/kimtw 

%GITHUB : github.com/Kimtaewookcode 

%Email : kimtaewook87@gmail.com 

%Ref:"An introduction to Computational Fluid Dynamics:HKversteeg and 

%WMalalasekera example 6.2 

%%%%%%%% 

clear all 

clc  

clf 

 

rho=1;%density 

L=2;%length of geometry 

nnode=5;%numberof node 

nnodev=nnode-1;%number of cell 

dx=L/nnodev;%delta x, uniform 

AA=0.5;%Area at A 

AE=0.1;%Area at E 

iteration=100;%numberof maximum iteration 

tor=10e-05;%maximum sum of residual  

und=0.8;%underrelaxation factor 

xdarrp=zeros(1,nnode);%matrix of distance for pressure points 

for i=1:nnode 

xdarrp(1,i)=-dx+dx*i;%matrix of x distances for pressure points 

end 

Axp=zeros(1,nnode);%Areas of xdarrp 

Axp=0.5-(AA-AE)/L*xdarrp; 

 

xdarrv=zeros(1,nnodev);%matrix of x distances for velocity points 

for i=1:nnodev 

xdarrv(1,i)=xdarrp(1,i)+dx/2; 

end 

Axv=0.5-(AA-AE)/L*xdarrv;%matrix of areas of velocity points 

 

p0=10;%pressure at the inlet[pa] 

pE=0;%pressure at the outlet 

mdot=1;%[kg/s] 

u_ini=mdot/rho./Axv; 

%%%%psuedo initial velocity 

u_ini_p=mdot/rho./Axp; 

p_ini=p0-p0/L*xdarrp;%%%%p guess-linear guess 

d=zeros(1,nnodev);%parameter that is used for pressure corrector 

%%%%% 

array=zeros(nnodev); 

bound=zeros(nnodev,1); 

residuals=zeros(1,nnodev); 

%%%%% 

for j=1:iteration 

 

for i=1:nnodev 

    if i==1 

        Fw=rho*u_ini_p(1,i)*Axp(1,i); 

        Fe=rho*(u_ini(1,i)+u_ini(1,i+1))/2*Axp(1,i+1); 

        aW=0; 

        aE=0; 

        aP=Fe+Fw*0.5*(Axv(1,i)/Axp(1,i))^2; 

        Su=(p0-p_ini(1,i+1))*Axv(1,i)+Fw*Axv(1,i)/Axp(1,i)*u_ini(1,i);%u_ini 

is the velocity at previous iteration 

        d(1,i)=Axv(1,i)/aP; 
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        array(i,i)=aP; 

        array(i,i+1)=-aE; 

        bound(i,1)=Su; 

        residuals(1,i)=abs(aP*u_ini(1,i)-Su); 

 

    elseif i<nnodev 

        Fw=rho*(u_ini(1,i-1)+u_ini(1,i))/2*Axp(1,i); 

        Fe=rho*(u_ini(1,i)+u_ini(1,i+1))/2*Axp(1,i+1); 

        aW=Fw; 

        aE=0; 

        aP=aW+aE+(Fe-Fw); 

        Su=(p_ini(1,i)-p_ini(1,i+1))*Axv(1,i); 

        d(1,i)=Axv(1,i)/aP; 

         

        array(i,i-1)=-aW; 

        array(i,i)=aP; 

        array(i,i+1)=-aE; 

        bound(i,1)=Su; 

         

        residuals(1,i)=abs(aP*u_ini(1,i)-aW*u_ini(1,i-1)-Su); 

 

    else 

        Fw=rho*(u_ini(1,i-1)+u_ini(1,i))/2*Axp(1,i); 

        Fe=mdot; 

        aW=Fw; 

        aE=0; 

        aP=aW+aE+(Fe-Fw); 

        Su=(p_ini(1,i)-p_ini(1,i+1))*Axv(1,i); 

        d(1,i)=Axv(1,i)/aP; 

 

        array(i,i-1)=-aW; 

        array(i,i)=aP; 

        bound(i,1)=Su; 

        residuals(1,i)=abs(aP*u_ini(1,i)-aW*u_ini(1,i-1)-Su); 

    end 

     

end 

    u=array\bound;%%%%new velocity%%%%% 

     

    %%%%pressure corrector 

    arrayp=zeros(nnode-2,nnode); 

    boundp=zeros(nnode-2,1); 

    for i=2:nnode-1 

            aW=rho*d(1,i-1)*Axv(1,i-1); 

            aE=rho*d(1,i)*Axv(1,i); 

            Fw=rho*u(i-1)*Axv(1,i-1); 

            Fe=rho*u(i)*Axv(1,i); 

            aP=aW+aE; 

            b=Fw-Fe; 

            arrayp(i-1,i-1)=-aW; 

            arrayp(i-1,i)=aP; 

            arrayp(i-1,i+1)=-aE; 

            boundp(i-1,1)=b; 

             

    end 

arrayp(:,[1,nnode])=0;%pressure correction at the first node and last node 

is 0 

pcorr=arrayp\boundp;%%correction pressure 

p=p_ini+pcorr';%%corrected pressure 

for i=1:nnodev 
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    u(i,1)=u(i,1)+d(1,i)*(pcorr(i,1)-pcorr(i+1,1));%corrected velocity 

end 

p(1,1)=p0-0.5*rho*(u(1,1)*Axv(1,1)/Axp(1,1))^2;%corrcted pressure at the 

first node 

%underrelaxation 

u_ini=u'*und+u_ini*(1-und);  

p_ini=p*und+p_ini*(1-und); 

%%%%%%% 

mdot=rho*u_ini(1,1)*Axv(1,1); 

u_ini_p=mdot/rho./Axp;%u_ini_p updated 

resi=sum(residuals(:));%sume of residuals 

if resi<tor 

    disp(j) 

    break%simulation stops when resi is smaller than tor, and shows 

iterations 

end 

end 

disp(mdot) 

xber= [0 : 0.01: 2]; 

Aber=0.5-(0.5-0.1)/L*xber; 

mreal=((2*(p0-0)*(rho*AE)^2)/rho)^0.5; 

preal=p0-(0.5*rho*mreal^2)./((rho*Aber).^2); 

vreal=mreal./Aber/rho; 

%plot(xdarrv,mdot,'x-',xdarrv,mreal,'.-') 

plot(xdarrp,p_ini,'x-',xber,preal,'.-') 

xlim([0 2]) 

figure;plot(xdarrv,u_ini,'x-',xber,vreal,'.-') 

xlim([0 2]) 
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Appendix B-6 

%% 2D cone injection with random walk model 

% Random walk model's isotropic behavior is applied in a cone injection. 

% The injection describes the cone injection that is used in CFD model 

% (ANSYS Fluent ) 

% Author: Kim Taewook 

% Linkedin : https://www.linkedin.com/in/taewook-kim/ 

% GITHUB : github.com/Kimtaewookcode 

% Email : kimtaewook87@gmail.com 

 

clear 

clf 

clc 

hold on;  

steps = 100; 

timestep=0.01;%s 

trials=10;  

x=zeros(trials, steps); 

y=zeros(trials, steps);  

J=0; 

swirl=0;%0.3;%m/s 

coneangle=13;%degree 

conev=1.87;%m/s 

xconev=conev*cosd(coneangle); 

yconev=conev*sind(coneangle); 

k=0.5; 

k2=sqrt(k*2/3); 

for t = 1:trials  

  

 

for i=1:(steps-1) 

J=rand; 

 

if J<0.25 

%x(t,i+1)=x(t,i)+(-k2*timestep); 

%y(t,i+1)=y(t,i)+(k2*timestep); 

x(t,i+1)=x(t,i)+(-k2+xconev)*timestep; 

y(t,i+1)=y(t,i)+(k2+yconev)*timestep; 

 

 

elseif J<0.5  

%x(t,i+1)=x(t,i)+(k2*timestep); 

%y(t,i+1)=y(t,i)+(k2*timestep); 

x(t,i+1)=x(t,i)+(k2+xconev)*timestep; 

y(t,i+1)=y(t,i)+(k2+yconev)*timestep; 

 

elseif J<0.75 

%x(t,i+1)=x(t,i)+(-k2*timestep); 

%y(t,i+1)=y(t,i)+(-k2*timestep); 

x(t,i+1)=x(t,i)+(-k2+xconev)*timestep; 

y(t,i+1)=y(t,i)+(-k2+yconev)*timestep;  

 

else 

%x(t,i+1)=x(t,i)+(k2*timestep); 

%y(t,i+1)=y(t,i)+(-k2*timestep);        

x(t,i+1)=x(t,i)+(k2+xconev)*timestep; 

y(t,i+1)=y(t,i)+(-k2+yconev)*timestep;      

 

 

end  

end  
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coneangle=coneangle-2.6; 

xconev=conev*cosd(coneangle); 

yconev=conev*sind(coneangle); 

plot(x(t,:),y(t,:),'Color', [rand rand rand])  

plot(x(t,100),y(t,100), 'ko') 

 

%xlim([0 0.05]) 

%ylim([-0.05 0.05]) 

xlim([0 2]) 

ylim([-0.45 0.45]) 

 

end 

%title('trajectories by instantaneous velocity(random walk) '); 

title('trajectories by mean velocity+instantaneous velocity(random walk) 

'); 

xlabel('X Displacement[m]'); 

ylabel('Y Displacement[m]'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Appendices 

83 

Appendix B-7 

/* MODIFIED SPHERICAL DRAG (REF:Clift R., Grace J.R., Weber M.E. Bubbles, 

Drops, and Particl P112 ) 

ANSYS Fluent UDF 

AUTHOR : KIMTAEWOOK 

LINKEDIN : www.linkedin.com/in/kimtw 

GITHUB : github.com/Kimtaewookcode 

Email : kimtaewook87@gmail.com 

*/ 

#include "udf.h" 

 

DEFINE_DPM_DRAG(particle_drag_force, Re, p) 

{ 

  real w, drag_force; 

 

  if (Re < 0.01) 

  { 

    drag_force=9/64*Re+18.0; 

    return (drag_force); 

  } 

  else if (Re < 20.0) 

  { 

    w = log10(Re); 

    drag_force = 18.0 + 2.367*pow(Re,0.82-0.05*w) ; 

    return (drag_force); 

  } 

  else if (Re < 260.0) 

  { 

    drag_force = 18.0 + 3.483*pow(Re,0.6305) ; 

    return (drag_force); 

  } 

  else if (Re < 1500.0) 

  { 

    w = log10(Re); 

    drag_force = 44.0048*pow(Re,-1.1242+0.1588*w) ; 

 

  } 

  else if (Re < 12000.0) 

  { 

    w = log10(Re); 

    drag_force = 0.003491*3/4*pow(Re,3.5558-0.9295*w+0.1049*pow(w,2)) ; 

 

  } 

  else if (Re < 44000.0) 

  { 

    w = log10(Re); 

    drag_force = 0.01207*3/4*pow(Re,1.6370-0.0636*w) ; 

 

  } 

  else if (Re < 338000.0) 

  { 

    w = log10(Re); 

    drag_force = 0.00004581*3/4*pow(Re,2.5809-0.1546*w) ; 

 

  } 

  else if (Re < 400000.0) 

  { 

    w = log10(Re); 

    drag_force = 3/4*pow(Re,29.78-5.3*w) ; 

 

  } 
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  else if (Re < 1000000.0) 

  { 

    w = log10(Re); 

    drag_force = 3/4*pow(Re,0.1*w-0.49) ; 

 

  } 

  else 

  { 

    w = log10(Re); 

    drag_force = 3/4*(0.19*Re-80000) ; 

 

  } 

} 
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Appendix B-8 

 

/* TOMIYAMA'S DRAG 

provided by ANSYS CUSTOMER PORTAL 

*/ 

 

 

#include "udf.h" 

 

 

#define drag_surface_tension 0.072 /* N/m */ 

 

real 

calc_cap_drag(real Re) 

{ 

return 72./ Re; 

} 

 

 

real 

calc_sphere_drag(real Re) 

{ 

return 24.*(1.+0.15*pow(Re,0.687))/Re; 

} 

 

 

real 

calc_ellipse_drag(Tracked_Particle *p) 

{ 

cphase_state_t *c = &(p->cphase); /* cell information at particle 

location*/ 

real drag; 

real Eo; 

 

Eo = 9.81*(c->rho - P_RHO(p)) * SQR(P_DIAM(p)) / drag_surface_tension; 

 

drag = 8./3. * Eo / (Eo + 4.); 

 

return drag; 

} 

 

DEFINE_DPM_DRAG(particle_drag_tomiyama,Re,p) 

{ 

 

real drag_coef; 

real CD_sphere,CD_cap,CD_ellipse; 

 

 

CD_cap = calc_cap_drag(Re); 

 

CD_sphere = calc_sphere_drag(Re); 

 

CD_ellipse = calc_ellipse_drag(p); 

 

drag_coef =  MAX(MIN(CD_sphere,CD_cap),CD_ellipse); 

 

return (18.*drag_coef*Re/24.); 

 

} 
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Appendix C<Boundary condition-OpenFoam> 

Appendix C-1< Alpha.water> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      alpha.water; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions      [0 0 0 0 0 0 0]; 

 

internalField   nonuniform List<scalar>  

939360 

(0 

0 

0 

. 

. 

. 

. 

1 

1 

1 

1 

) 

; 

 

boundaryField 

{ 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      uniform 0; 

        value           uniform 0; 

    } 

    wall 

    { 

        type            zeroGradient; 

    } 

    inlet 

    { 

        type            uniformFixedValue; 

        uniformValue    constant 1; 

        value           uniform 1; 

    } 

} 
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// 

************************************************************************* 

// 
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Appendix C-2< epsilon> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      epsilon; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions      [0 2 -3 0 0 0 0]; 

 

internalField   uniform 0.001; 

 

boundaryField 

{ 

    inlet 

    { 

        type            fixedValue; 

        value           $internalField; 

    } 

 

    outlet 

    { 

        type            inletOutlet; 

        inletValue      $internalField; 

        value           $internalField; 

    } 

    wall 

    { 

        type            epsilonWallFunction; 

        value           $internalField; 

    } 

 

} 

 

// 

************************************************************************* 

// 
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Appendix C-3< k> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      k; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions      [0 2 -2 0 0 0 0]; 

 

internalField   uniform 1e-3; 

 

boundaryField 

{ 

    inlet 

    { 

        type            fixedValue; 

        value           $internalField; 

    } 

 

    outlet 

    { 

         type            inletOutlet; 

        inletValue       $internalField; 

        value            $internalField; 

    } 

    wall 

    { 

        type             kqRWallFunction; 

        value            $internalField; 

    } 

 

} 

 

 

// 

************************************************************************* 

// 
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Appendix C-4< nut> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    location    "0"; 

    object      nut; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions      [0 2 -1 0 0 0 0]; 

 

internalField   uniform 0; 

 

boundaryField 

{ 

 

    inlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

 

    outlet 

    { 

        type            calculated; 

        value           uniform 0; 

    } 

    wall 

    { 

        type            nutkWallFunction; 

        value           uniform 0; 

    } 

} 

 

 

// 

************************************************************************* 

// 
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Appendix C-5< p_rgh> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volScalarField; 

    object      p_rgh; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions          [ 1 -1 -2 0 0 0 0 ]; 

 

internalField       uniform 0; 

 

boundaryField 

{ 

    inlet 

    { 

        type            fixedFluxPressure; 

        value           uniform 0; 

    } 

 

    outlet 

    { 

        type            prghTotalPressure; 

        p0              uniform 0; 

        value           uniform 0; 

    } 

    wall 

    { 

        type            fixedFluxPressure; 

        value           uniform 0; 

    } 

 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 
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Appendix C-6< Uair> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      binary; 

    class       volVectorField; 

    object      Uair; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (0 0 0); 

 

boundaryField 

{ 

    inlet 

    { 

        type               uniformFixedValue; 

        uniformValue       table 

                           ( 

                                (0  (0 0 1.868)) 

                                (20  (0 0 1.868)) 

                           ); 

    } 

 

    outlet 

    { 

        type               pressureInletOutletVelocity; 

        value              $internalField; 

        inletValue         $internalField; 

    } 

    wall 

    { 

        type               fixedValue; 

        value              uniform (0 0 0); 

    } 

 

} 

// 

************************************************************************* 

// 
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Appendix D<Constant-OpenFoam> 

Appendix D-1<g> 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       uniformDimensionedVectorField; 

    location    "constant"; 

    object      g; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

dimensions      [0 1 -2 0 0 0 0]; 

value           ( 0 0 -9.81); 

 

 

// 

************************************************************************* 

// 
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Appendix D-2< particleProperties > 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      particleProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

solution 

{ 

    active          true; 

    coupled         true; 

    transient       yes; 

    cellValueSourceCorrection no; 

 

    maxCo           0.3; 

 

    interpolationSchemes 

    { 

        rho         cell; 

        U           cellPoint; 

        mu          cell; 

        gradAlpha   cellPoint; 

    } 

 

    averagingMethod dual; 

 

    integrationSchemes 

    { 

        U               Euler; 

    } 

 

    sourceTerms 

    { 

        schemes 

        { 

            U           semiImplicit 0.8; 

        } 

    } 

} 

 

constantProperties 

{ 

    rho0            1.225;//changed 

    alphaMax        0.9;//needtobechanged 

} 

 

subModels 
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{ 

    particleForces 

    { 

        sphereDrag; 

        //WenYuDrag 

        //{ 

        //    alphac      alphac; 

        //} 

        gravity; 

        interface 

        { 

            C            -10; 

            alphaName    alpha.water; 

        } 

    } 

 

    injectionModels 

    { 

        model1 

        { 

            type            patchInjection; 

            massTotal       0.416e1; 

            SOI             0; 

            parcelBasisType fixed;//mass; 

            nParticle       1; 

            patchName       inlet; 

            duration        20; 

            parcelsPerSecond 1e3;//1e5; 

            U0              (0 0 1.868);//changed 

            flowRateProfile constant 1; 

            sizeDistribution 

            { 

                type        RosinRammler; 

 

                RosinRammlerDistribution 

                { 

                    minValue        0.0018; 

                    maxValue        0.0847; 

                    d               0.0054;//droplet diameter that has the 

largest probability 

                    n               3.5;//from fluent 

                } 

            } 

    } 

    } 

    dispersionModel stochasticDispersionRAS;//none;addedlibrary and 

recompiled 

 

    patchInteractionModel localInteraction; 

 

    localInteractionCoeffs 

    { 

        patches 

        ( 

            wall 

            { 

                type rebound; 

                e    0.95; 

                mu   0.09; 

            } 

            //base 
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            //{ 

            //    type rebound; 

            //    e    0.95; 

            //    mu   0.09; 

            //} 

            inlet 

            { 

                type escape; 

            } 

            outlet 

            { 

                type escape; 

            } 

        ); 

    } 

 

    heatTransferModel none; 

 

    surfaceFilmModel none; 

 

    packingModel implicit; 

 

    explicitCoeffs 

    { 

        particleStressModel 

        { 

            type HarrisCrighton; 

            alphaPacked 0.6; 

            pSolid 10.0; 

            beta 2.0; 

            eps 1.0e-7; 

        } 

        correctionLimitingMethod 

        { 

            type absolute; 

            e 0.9; 

        } 

    } 

 

    implicitCoeffs 

    { 

        alphaMin 0.001; 

        rhoMin 1.0; 

        applyGravity false; 

        applyLimiting   false; 

        particleStressModel 

        { 

            type HarrisCrighton; 

            alphaPacked 0.9; 

            pSolid 5.0; 

            beta 2.0; 

            eps 1.0e-2; 

        } 

    } 

 

    dampingModel relaxation; 

 

    relaxationCoeffs 

    { 

        timeScaleModel 

        { 
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            type nonEquilibrium; 

            alphaPacked 0.7; 

            e 0.8; 

        } 

    } 

 

    isotropyModel stochastic; 

 

    stochasticCoeffs 

    { 

        timeScaleModel 

        { 

            type isotropic; 

            alphaPacked 0.7; 

            e 0.8; 

        } 

    } 

 

    stochasticCollisionModel none; 

 

    radiation off; 

} 

 

 

cloudFunctions 

[1] 

 

 

// 

************************************************************************* 

// 
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Appendix D-3< transportProperties > 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      transportProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

phases (water air); 

 

water 

{ 

    transportModel  Newtonian; 

    nu              nu [ 0 2 -1 0 0 0 0 ] 1e-06; 

    rho             rho [ 1 -3 0 0 0 0 0 ] 1000; 

    CrossPowerLawCoeffs 

    { 

        nu0             nu0 [ 0 2 -1 0 0 0 0 ] 1e-06; 

        nuInf           nuInf [ 0 2 -1 0 0 0 0 ] 1e-06; 

        m               m [ 0 0 1 0 0 0 0 ] 1; 

        n               n [ 0 0 0 0 0 0 0 ] 0; 

    } 

 

    BirdCarreauCoeffs 

    { 

        nu0             nu0 [ 0 2 -1 0 0 0 0 ] 0.0142515; 

        nuInf           nuInf [ 0 2 -1 0 0 0 0 ] 1e-06; 

        k               k [ 0 0 1 0 0 0 0 ] 99.6; 

        n               n [ 0 0 0 0 0 0 0 ] 0.1003; 

    } 

} 

 

air 

{ 

    transportModel  Newtonian; 

    nu              nu [ 0 2 -1 0 0 0 0 ] 1.48e-05; 

    rho             rho [ 1 -3 0 0 0 0 0 ] 1.225;//1; 

    CrossPowerLawCoeffs 

    { 

        nu0             nu0 [ 0 2 -1 0 0 0 0 ] 1e-06; 

        nuInf           nuInf [ 0 2 -1 0 0 0 0 ] 1e-06; 

        m               m [ 0 0 1 0 0 0 0 ] 1; 

        n               n [ 0 0 0 0 0 0 0 ] 0; 

    } 

 

    BirdCarreauCoeffs 

    { 

        nu0             nu0 [ 0 2 -1 0 0 0 0 ] 0.0142515; 
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        nuInf           nuInf [ 0 2 -1 0 0 0 0 ] 1e-06; 

        k               k [ 0 0 1 0 0 0 0 ] 99.6; 

        n               n [ 0 0 0 0 0 0 0 ] 0.1003; 

    } 

} 

 

sigma           sigma [ 1 0 -2 0 0 0 0 ] 0.07; 

 

 

// 

************************************************************************* 

// 
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Appendix D-4< turbulenceProperties > 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "constant"; 

    object      turbulenceProperties; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

simulationType  RAS; 

 

RAS 

{ 

    RASModel        kEpsilon; 

    turbulence      on; 

    printCoeffs     on; 

} 

// 

************************************************************************* 

// 
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Appendix E<system-OpenFoam> 

Appendix E-1< controlDict > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      controlDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

application     MPPICInterFoam; 

 

startFrom       latestTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         20.0; 

 

deltaT          0.01; 

 

writeControl    timeStep;//adjustableRunTime; 

 

writeInterval   50;//1; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  6; 

 

writeCompression off;//uncompressed; 

 

timeFormat      general; 

 

timePrecision   6; 

 

runTimeModifiable true; 

 

adjustTimeStep  off; 

 

maxCo           1.0; 

maxAlphaCo      1.0; 

 

maxDeltaT       0.05; 
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functions 

{ 

 

   // minMax 

    //{ 

    //  type fieldMinMax; 

    //  functionObjectLibs ("libfieldFunctionObjects.so"); 

    //  outputControl timeStep; //outputTime; 

    //  fields (U); 

   // } 

} 

 

// 

************************************************************************* 

// 
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Appendix E-2< createPatchDict > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      createPatchDict; 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

pointSync false; 

 

// Patches to create. 

patches 

( 

    { 

        // Name of new patch 

        name inlet; 

 

        // Type of new patch 

        patchInfo 

        { 

            type patch; 

        } 

 

        // How to construct: either from 'patches' or 'set' 

        constructFrom set; 

 

        // If constructFrom = set : name of faceSet 

        set inlet; 

    } 

); 

 

// 

************************************************************************* 

// 
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Appendix E-3< decomposeParDict > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      decomposeParDict; 

} 

 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

numberOfSubdomains 4; 

 

method          hierarchical; 

 

hierarchicalCoeffs 

{ 

    n               (1 1 4); 

    delta           0.001; 

    order           xyz; 

} 

 

 

// 

************************************************************************* 

// 
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Appendix E-4< fvSchemes > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSchemes; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

ddtSchemes 

{ 

    default         Euler; 

} 

 

gradSchemes 

{ 

    default         Gauss linear; 

} 

 

divSchemes 

{ 

    default         none; 

    div(rhoPhi,U)               Gauss limitedLinearV 1;//Gauss upwind; 

    div(phi,alpha)              Gauss vanLeer; 

    div(phirb,alpha)            Gauss linear; 

    div(alphaRhoPhic,k)         Gauss upwind; 

    div(alphaRhoPhic,epsilon)   Gauss upwind; 

    div((((alphac*rho)*nuEff)*dev2(T(grad(U))))) Gauss linear; 

    div(phiGByA,kinematicCloud:alpha) Gauss linear; 

} 

 

laplacianSchemes 

{ 

    default         Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default         linear; 

} 

 

snGradSchemes 

{ 

    default         corrected; 

} 

 

fluxRequired 
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{ 

    default         no; 

    p_rgh; 

    pcorr; 

    alpha.water; 

} 

 

 

// 

************************************************************************* 

// 
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Appendix E-5< fvSolution > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSolution; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

solvers 

{ 

    "alpha.water.*" 

    { 

        nAlphaCorr      2; 

        nAlphaSubCycles 2; 

        cAlpha          1; 

 

        MULESCorr       yes; 

        nLimiterIter    2; 

 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-7;//1e-7; 

        relTol          0; 

        maxIter         1000; 

    } 

 

    pcorr 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-5; 

        relTol          0; 

    } 

 

    p_rgh 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-07; 

        relTol          0.05; 

    } 

 

    p_rghFinal 

    { 

        $p_rgh; 

        relTol          0; 
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    } 

 

    "(U|k|epsilon).*" 

    { 

        solver          smoothSolver; 

        smoother        symGaussSeidel; 

        tolerance       1e-06; 

        relTol          0; 

    } 

 

    kinematicCloud:alpha 

    { 

        solver          GAMG; 

        tolerance       1e-05; 

        relTol          0.1; 

        smoother        GaussSeidel; 

        cacheAgglomeration true; 

        nCellsInCoarsestLevel 10; 

        agglomerator    faceAreaPair; 

        mergeLevels     1; 

    } 

} 

 

PIMPLE 

{ 

    momentumPredictor   no; 

    nOuterCorrectors    1; 

    nCorrectors         3; 

    nNonOrthogonalCorrectors 0; 

} 

 

relaxationFactors 

{ 

    equations 

    { 

        ".*"                1; 

    } 

} 

 

// 

************************************************************************* 

// 
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Appendix E-6< setFieldsDict > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      setFieldsDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

defaultFieldValues 

( 

    volScalarFieldValue alpha.water 0 

); 

 

regions 

( 

    boxToCell 

    { 

        box (-4.5 -3.5 0) (4.5 3.5 6.67); 

        fieldValues 

        ( 

            volScalarFieldValue alpha.water 1 

        ); 

    } 

); 

 

 

// 

************************************************************************* 

// 
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Appendix E-7< topoSetDict > 

 

/*--------------------------------*- C++ -*--------------------------------

--*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFoam: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  v1606+                                | 

|   \\  /    A nd           | Web:      www.OpenFoam.com                      | 

|    \\/     M anipulation  |                                                 | 

\*-------------------------------------------------------------------------

--*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      topoSetDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* // 

 

actions 

( 

    { 

        name    inlet; 

        type    faceSet; 

        action  new; 

        source  boxToFace; 

        sourceInfo 

        { 

            box (-0.17 -0.17 -0.03)(0.17 0.17 0.001); 

        } 

    } 

 

    { 

        name    inletZone; 

        type    faceZoneSet; 

        action  new; 

        source  setToFaceZone; 

        sourceInfo 

        { 

            faceSet    inlet; 

        } 

    } 

); 

 

// 

************************************************************************* 

// 

 

 

 


