

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis

< CFD Validation of transient

subsea gas plume model >

Taewook Kim

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis

Title: CFD Validation of transient subsea gas plume model

Number of pages: 110pages

Keywords: <blowout,Computational Fluid dynmaics, CFD, Eulerian-lagrangian, ANSYS

Fluent, stochastic tracking, randomwalk, integral model, OpenFoam, C++, C language,

Matlab>

Student: Taewook Kim

Supervisor: Amaranath S.Kumara

External partner: Lloyd's Register Consulting

Availability: <Open/Confidential>

Approved for archiving:

(supervisor signature)

__

Summary:

Subsea gas blowouts are often a significant risk contributor to offshore installations. It is important

to understand plume that is created by the blowout. Different plume models were investigated.

CFD model in ANSYS Fluent and integral model were performed to confirm its validity. CFD model

in OpenFoam has also performed additionally.

For further validation, more experiments of larger depth and higher flow rate are necessary.

OpenFoam model needs to be modified.

 Preface

3

Preface
This thesis is completed with the changed task description. Initially sea currents, change of

density and size of bubbles and gas dissolution. However, it was decided not to include sea

currents and gas dissolution in this thesis. Also, an analytical transient model named ‘Rising

cap model’ that was provided by Lloyd’s Register was supposed to be used. However, Rising

cap model was not comparable to the CFD model that was used in this thesis for some reason.

The reason is presented in the conclusion. Instead, I coded the steady state integral model.

Additionally, I tried to develop an OpenFoam model, but judging from the results, the model

needs to be developed further for validity.

The entire work was carried out from January 2017 to May 2017. The time is spent on

literature reviews, CFD simulation, C programming, Matlab programming, C++

programming(OpenFoam).

I really appreciate Amaranath S. Kumara for opening this thesis topic and his great help and

support throughout the period of this thesis.

Also thanks to Jan Erik Olsen who is senior research scientist at SINTEF for giving me great

advice.

Lastly, I am grateful to Mikkel Bakli who is an advisor at Acona Flow Technology AS for

helping me on CFD model. Without his help, I cannot imagine where this thesis would have

ended up. Mange takk Mikkel.

Porsgrunn, 2017-05-14

Taewook Kim

 Nomenclature

4

Nomenclature
div Divergence -

grad Gradient -

V


 Velocity vector sm /

t Time s

u x-velocity sm /

v y-velocity sm /

w z-velocity sm /

 Dynamic viscosity smkg /

S Source smkg /

therm
k Thermal conductivity kmW 2/

i Internal energy J

 Variable -

  Diffusive term -

)(tu Velocity function of time sm /

 Dissipation function kgsmJ  /3

T Temperature k

U Mean velocity sm /

'u Fluctuating velocity sm /

k
 Constant (1.00) -


 Constant (1.30) -

1C Constant (1.44) -

 Nomenclature

5

2C Constant (1.92) -

ijS Mean rate of deformation -

F additional acceleration
2/ sm

DF Drag force
2/1 s

NP Number of particle -

vF Force of virtual mass
2/ sm

•

m
Mass rate skg /

m mass kg

vmC virtual mass factor(0.5) -

 normally distributed random number -

L
T Fluid Lagrangian integral time s

 dissipation
32 / sm

k Turbulent kinetic engergy
22 / sm

DC Drag coefficient -

Re Relative Reynolds number -

0
E Eötvös number -

d diameter m

otherF Other interaction forces
2/ sm

 relaxation time s

1C coefficient -

2C coefficient m

 Nomenclature

6

h Height m

R Gas constant molkJ /

 Subscripts

7

Subscripts
c centerline

a atmospheric

~ Dimensionless value

g gas

w water

f fountain

b the bottom of the control volume

M momentum

i Internal energy

p particle

t turbulence

k kinetic

 epsilon

fl fluid

0 Initial

hd Hydrostatic

r,q r-th phase, q-th phase

br For breakup

co For coalescence

eq Equilibrium

 Contents

8

Contents

1 .. Introduction ... 10

2 .. Plume modeling .. 11

2.1 Type of models .. 11
2.2 Integral model (M.J. Friedl -2000) .. 12

2.2.1 Assumptions.. 12
2.2.2 Theory of bubble plumes ... 13
2.2.3 Theory of fountains ... 14

3 .. Basic theories of CFD ... 16

3.1 Discretization .. 16
3.2 Navier Stokes equations .. 16
3.3 Turbulence model ... 17

3.3.1 K-epsilon model .. 19
3.4 Euler-Lagrange approach .. 20

3.4.1 Discrete phase model(DPM) ... 21
3.4.2 Volume of fluid(VOF) .. 25

3.5 Scheme .. 26
3.6 Solver ... 27

3.6.1 SIMPLE algorithm ... 28
3.6.2 PISO algorithm .. 31

4 .. Model Validation ... 32

4.1 Geometry & Mesh ... 32
4.2 Boundary & initial conditions .. 33
4.3 Models .. 34

4.3.1 DPM .. 34
4.3.2 VOF ... 35
4.3.3 Turbulent model .. 35
4.3.4 User defined model ... 36

4.4 Solver & scheme ... 38
4.5 Cases ... 38
4.6 Result & Discussion ... 39

4.6.1 Case 1 ... 39
4.6.2 Case 2 ... 44
4.6.3 Case 3 ... 48

5 .. Additional validations ... 53

5.1 Milgram’s experiment ... 53
5.1.1 Velocity ... 53
5.1.2 Void fraction & Plume width .. 54

5.2 Fanneløp’s experiment ... 55
5.2.1 Velocity ... 55
5.2.2 Void fraction .. 57

6 .. OpenFoam simulation .. 60

6.1 Solver ... 60
6.2 Result ... 61

7 .. Conclusion .. 63

 Contents

9

1 Introduction

10

1 Introduction
The early studies of underwater plumes were motivated by the interest in uncontrolled blowouts

resulting from accidents in offshore drilling or broken gas pipelines. Potentially it could be a

danger to ships and offshore structures. The main reason of the sinking of floating structure

above subsea blowouts is considered mainly to be caused by radial water currents at the sea

surface. As another consequence of blowouts, ignition of the flammable vapor leakage can

cause structural damage to the platform. The purpose of modeling the subsea dispersion is to

provide properties for input data for models that quantify the above hazard.

To predict plume dynamics, mainly two different modeling method have been used.

Integral models have been developed by many authors mostly based on Taylor’s idea[1] as a

derived model, Friedel’s model is introduced in this thesis.

As an alternative way to predict plume, blowout can be modeled using CFD. As one of the

CFD models, Cloete introduced CFD model[2] that was validated comparing with

Engebretsen’s experiment[3]. The simulation of the model is introduced in this thesis,

validating the model comparing with experimental data of different conditions.

Integral model and CFD model are compared for validity on the same experiments.

OpenFoam simulation is attempted to make the same model of Cloete’s.

2 Plume modeling

11

2 Plume modeling

2.1 Type of models

The framework illustrated in Figure 2.1 is typically used. The dispersion of the gas from the

release point to the surface is considered in three zones:

Zone of Flow Establishment(ZOFE) is the region between the release point and the height

where the dispersion appears to build a plume structure. At this height, the effect of buoyancy

is more prevailing than initial release momentum. Zone of Established Flow(ZOEF) is the

plume-like region that is extended from the ZOFE up to a depth which is beneath the free

surface by approximately one plume diameter. Zone of Surface Flow(ZOSF) is the region

above the ZOEF where the plume interacts with the surface where the bubble plume and radial

flow of water at the surface widen.

Figure 2.1: Typical plume model representing zone of flow establishment, zone of established

flow and zone of surface flow

Three approaches of different complexity have been used in modeling the dispersion of subsea

release. The empirical model is the simplest one that is assumed that the plume radius is

proportional to the release depth or correlations. Another approach is an integral type model

which is based on local similarity. For instance, a velocity profile is assumed to have a similar

form at different heights. The plume properties can be well described by Gaussian profiles.

Entrainment of water into the plume is described by the use of an entrainment coefficient.

Specific of integral models are introduced in chapter 2.2.

The most complex models are represented by Computational Fluid Dynamics(CFD) or field

codes by solving Navier Stokes Equations. Their advantage over integral models is that CFD

2 Plume modeling

12

models do not require the use of empirical constants. CFD model is introduced from chapter 3

and 4.

2.2 Integral model (M.J. Friedl -2000)

M.J. Friedl presented an integral model in 2000[4]. A sketch of the model is described in Figure

2.2. The main purpose of the model was to develop a theoretical model for the fountain and to

overcome the problem associated with scaling from small scale to full scale. The assumptions

and simplifications of the model are discussed briefly in the following. The details are

described in M.J. Friedl’s work.

Figure 2.2: Sketch of the integral model

2.2.1 Assumptions

The mean flow is stationary. The stagnant water is assumed. Incompressible continuous phase

is assumed.

Constant average bubble diameter of 1cm is assumed. In the model, bubble size is not as

important as the buoyancy and its radial distribution. Constant diameter is linked to constant

slip velocity1 of 0.35m/s.

The profile of velocity and the void fraction is assumed to have Gaussian shapes. Entrainment

coefficient () is constant. Entrainment coefficient is the proportionality of the rate of

entrainment to the local velocity. The proportionality between the momentum carried by the

mean vertical velocity and the fluctuating vertical velocity is constant ().

1 The difference between the average velocities of two different fluids flowing together

2 Plume modeling

13

2.2.2 Theory of bubble plumes

The governing equations are expressed in cylindrical coordinates.

The vertical velocity and void fraction are shown below in Equation (2.1) and (2.2)

respectively.

))(/(22

)(),(zbr

c
ezvzrv 

22))(/()(),(zbr

c
ezzr  

(2.1)

(2.2)

Where  is the ratio of the widths as shown in Figure 2.2. Subscript c represents centerline

value.

The length scale
p

H is introduced in the model. This term represents the water depth

corresponding to the atmospheric pressure
0

P . The relation is such

g

P
H a

p


 (2.3)

In the case of fresh water, the value is 10.33m, for the case of ocean water, the value is slightly

below 10 m at the standard atmospheric condition.

The dimensionless axial coordinate z~ , the dimensionless width of the plume b
~

, and the

dimensionless vertical liquid velocity v~ are defined.

pv
HH

z
z


~

)(2

~

pv
HH

b
b






3/1

2

2

2

1~





















pv

g

HH

Vg
vv







(2.4)

(2.5)

(2.6)

g is gravity,
g

V is volume flow rate of gas and
v

H is water depth.

The continuity equation for the gas phase is

)~~(
~

1
~1

1
)~(

~
2 svbz

z
c

c


 (2.7)

3/1

5

2

4522

22

)(2

)1(
)~(

~





















gHH

V
z

pv

g

cc






 (2.8)

where  is momentum amplification factor. And s~ is the influence of slip velocity in

dimensionless form, which is

2 Plume modeling

14

svs ~)1(~ 2 (2.9)

Continuity eqaution of the liquid phase and the momentum equation for the mixture is

cc
vbvb

zd

d ~~
)~~

(~
2  (2.10)

)~1)(~~(

1
)~~

(~
22

zsv
vb

zd

d

c

c


 (2.11)

In the model, by solving these two equations by using a newly introduced approximate

procedure, it allows to predict large scale plumes from the data of laboratory scale.

And the approximate solutions for the width and velocity are derived using a perturbation

technique as shown in Equation (2.12) and (2.13)









































































23/5

3/1

2

2

3/4

3/12

~

240143904

225707803~

9408

34663
1~

12

25

15125

48~

39

~

833

227726

39

~

49

1046
1~

25

12

110

3~

13

~
7

13

~
1~

5

3
)~(

~

zzzs
z

z
zs

zz
zzb

 (2.12)

 













































































 

2

2/1

3/1

2

22

3/1

3/1

39

~

23347324

2835583625

39

~

1456

59489
1~

25

12

121

13~

13

~

11662

86175

13

~

343

345
1

22

7~

39

~

2

511

39

~
111~

12

25
)~(~

zz
zs

zz
s

zz
zzv

c

 (2.13)

2.2.3 Theory of fountains

The fountain can be modeled by using momentum balance. The momentums acting on a plume

is described in Figure 2.3. In the model, it was assumed that the control volume is infinite

laterally, so no vertical momentum flux pass through the outer boundaries. The forces apply to

the control volume are atmospheric pressure(
a

p) integrated over the water surface, pressure at

the bottom of the control volume(
b

p) integrated over the bottom boundary, weight of the water

masses(
w

G) below the level of the quiescent surface, weight of the fountain(
f

G) and total

buoyancy(B). The balance equation is such

a
p +

w
G +

f
G =

b
p + B (2.14)

If the lower boundary of the control volume is set below the release point of the plume, the
b

p

will not be affected by the plume. Meaning that it can be modeled by neglecting terms that

cancel out each other which are
a

p ,
b

p and
w

G . Then Equation (2.14) yields

2 Plume modeling

15

f
G = B (2.15)

By defining
f

G with density(
f

) and volume(
f

V), it leads to

ff
Vg = B (2.16)

By defining B is equal to the theoretical momentum flux)()()2/1()(
22 zvzbz

c
 at

v
Hz 

and
fff

hbV 2 , Equation (2.16) yields

)()(
2

1
)(222

vcvvfff
HvHbHhbg   (2.17)

The density of the fountain
f

 and the density of the plume at the level of the quiescent

surface)(
v

H are assumed to be equal. Also, the kinetic energy at the base was assumed to

be converted to potential energy. So, Equation (2.17) is simplified as

f
ghv 2

 (2.18)

Where)(
vc

Hvv  is the velocity of the fluid particle at the fountain’s base and
f

h is its

height. As a function of r, it is given by

offset

br

f
hehrh f 

 22 /
)((2.19)

Where
offset

h is the offset of the Gaussian profile baseline with respect to the level of the

quiescent water surface.

This model is coded in Matlab as attached in Appendix B-1. The applications of this

codes are shown in chapter 4 and 5.

Figure 2.3: The momentums acting on a plume

3 Basic theories of CFD

16

3 Basic theories of CFD
Computational fluid dynamics(CFD) is the way of calculating fluid flow, heat transfer etc. by

solving Navier Stokes equations in discretized domain. The basic theory of Navier Stokes

equations and discretized method will be briefly introduced in the following sub-chapters.

Also, theoretical background of models that are used in validation cases in further chapters.

3.1 Discretization

The main idea of discretization is to convert continuous domain to a discrete domain using a

grid. By having discretized domain, it enables to obtain approximated algebraic equations from

Navier Stokes equations. In other words, this conversion simply breaks down Navier Stokes

equations that are non-solvable partial differential equation into solvable equations. There are

three different discretization methods being used representatively, such as finite difference

method, finite element method and finite volume method. In this thesis, Finite Volume

Method(FVM) is the main interest since CFD programs that are used in this thesis are based

on finite volume method.

In FVM, the domain is divided into cells where the variables are stored at the center of the cell.

Then the governing equations are solved over each cell. Interpolations will be carried out in

order to describe variables between cell centers. The example of FVM is shown in Figure 3.1.

Figure 3.1: Example of finite volume method

3.2 Navier Stokes equations

The Navier-Stokes equations govern the motion of a viscous and heat conducting fluid. Strictly

speaking, Navier Stokes equations describe the momentum of the fluid, however, in the modern

CFD literature, this terminology is regarded as it includes continuity equation and energy

equation as well. The governing equations represent the conservation laws of physics: The

mass of a fluid is conserved (Continuity equation). The change rate of momentum is equal to

the sum of the forces on a fluid particle (Momentum equation). The change rate of energy

equals the sum of the rate of heat/work addition to a fluid particle (Energy equation). Continuity

equation, Momentum equation, and Energy equation that are in the form for finite volume

method are shown below in Equation (3.1), (3.2) and (3.3) respectively.

3 Basic theories of CFD

17

0)(



Vdiv

t



 (3.1)

Mx
Sugraddiv

x

p
Vudiv

t

u










) ()(

)(




My
Svgraddiv

y

p
Vvdiv

t

v










) ()(

)(




Mz
Swgraddiv

z

p
Vwdiv

t

w










) ()(

)(




(3.2)

itherm
STgradkdivVdivpVidiv

t

i





) ()(

)(



 (3.3)

Navier stokes equations are closely related to the transport equation. In the transport equation,

the general variable  is introduced, including equations for scalar quantities such as

temperature and pollutant concentration etc., is given in Equation (3.4). The first term on the

left-hand side accounts for transient accumulation, the second one for convection which is a

transport of  due to velocity.  is the diffusive term. On the right-hand side, the first term

accounts for diffusion due to gradient and the last term is source of  .





SgraddivVdiv

t





) ()(

)(

(3.4)

3.3 Turbulence model

At low Reynolds numbers, flows are laminar which is stable flow type that occurs when a fluid

flow is in parallel layers, with no disruption between the layers. In the meantime, at high

Reynolds numbers, flows become turbulent which is a chaotic and random state of motion. In

the chaotic state, velocity and pressure change continuously over time. An example of both

flows is seen in Figure 3.2.

3 Basic theories of CFD

18

Figure 3.2: Example of Turbulent flow and laminar flow

As a physical description, turbulent flows are irregular. This makes turbulence problems

impossible to solve deterministically. Therefore, statistical approaches and stochastic processes

are required for solving turbulence problems such as ensemble average that is introduced in the

later paragraph and stochastic tracking (random walk model) that is used for tracking turbulent

particles in the next chapter.

Another physical description of turbulent flow is diffusivity. The diffusivity of turbulence

increases rates of momentum, mass and heat transfer and make good mixing of the fluid.

Due to these reasons that account for the huge influence of turbulence, it is crucially important

to capture turbulence. There are three representative methods for capturing/modeling

turbulence.

Before introducing the methods, it is necessary to understand turbulence with a statistical

approach. As described above, turbulent flows are chaotic and random. This randomness of the

flow takes place in flow variables such as velocity as shown in the figure below.

Figure 3.3: Fluctuating velocity of a turbulent flow over time

To simplify this randomness, a statistical way is widely used by decomposing flow variables

into the mean value (U) and the fluctuating value ()(' tu) as shown in the equation below. The

3 Basic theories of CFD

19

mean value here is called ensemble average 2 . And this decomposition process is called

Reynolds decomposition.

)()(' tuUtu  (3.5)

The first method of modeling turbulence is to use Reynolds-averaged Navier–Stokes(RANS)

equation. In RANS, instead of including all the fluctuation into the calculation, it takes only

mean value U with additional transport equations.

Another method is Large eddy simulation(LES). In this method, small eddies are neglected,

only large eddies are tracked.

Lastly, there is Direct Numerical Simulation(DNS). In DNS, the mean velocity and all

turbulent velocity fluctuations are computed. Since the simulation computes small eddies as

well, it needs very fine grids for the small eddies. So that it can solve the Kolmogorov length

scales where energy dissipation occurs and with a small time step to solve the fastest

fluctuations.

LES and DNS are relatively costly compared to RANS. RANS is reasonably accurate, the

computational cost is reasonable. Therefore, RANS(k-epsilon) is used in this thesis.

3.3.1 K-epsilon model

RANS turbulence models have additional transport equations accounting for turbulence, except

Mixing length model has zero extra transport equation. K-epsilon model has 2 additional

equations

The standard k-epsilon model is a semi-empirical model based on transport equation for

turbulent kinetic energy and its dissipation rate epsilon. The two equations are shown below.













ijijt

k

t SSkgraddivukdiv
t

k
2) ()(

)(
 (3.6)

k
CSS

k
Cgraddivudiv

t
ijijt

t

2

21
2) ()(

)(



















 (3.7)

Where
k

 =1.00,


 =1.30,
1

C =1.44 and
2

C =1.92. In the derivation of the k − model, it

was assumed that the flow is fully turbulent, and the effects of molecular viscosity are

negligible. The standard k− model is, therefore, valid only for fully turbulent flows. The

drawback of this model is delayed and reduced separation.

2 Esemble average
n

N

nN
x

N
X

1

1
lim


 , where N is the number of case/trial and n

x is a variable at n-th

case/trial

3 Basic theories of CFD

20

3.4 Euler-Lagrange approach

In fluid mechanics, Lagrangian description or the Eulerian description is used to define a flow.

In Lagrangian description, a fluid consists of particles which carry its own properties (velocity,

pressure etc.). The way of describing the flow is to track the detailed histories of each fluid

particle. The properties of particles are a function of time such as)(t ,)(tu ,)(tp , etc.

Simply put, conservation of mass and Newton’s laws are employed to each particle.

In Eulerian description, instead of tracking each particle, the fluid properties are recorded as

the function of location and time such as),(tx ,),(txu ,),(txp , etc.

Lagrangian description is computationally expensive since each particle needs to be tracked

while Eulerian description is mostly used in fluid mechanics. An example of comparison

between Eulerian description and Lagrangian description are shown as the temperature of

smoke coming out a chimney in Figure 3.4.

In the CFD model, Eulerian and Lagrangian description are coupled, meaning that Eulerian

description is implemented for the fluid phase (sea and atmosphere for the case) as it is treated

as a continuum by solving the Navier Stokes equations. On the other hand, Lagrangian

description applies to the dispersed phase (gas bubbles for the case) as it is solved by tracking

the dispersed phase. The dispersed phase and the fluid phase interact each other by exchanging

momentum, mass, and energy.

Using the coupled method is computationally cheap and more accurate than using Euler-Euler

approach, even though it is mentioned above that using Lagrangian description is

computationally expensive. The reason is that, in the case where bubbles are injected, the grid

size is decided related to the gas bubble size in Euler-Euler approach. It needs very fine mesh

cells compared to Euler-Lagrange approach.

In ANSYS Fluent, the coupled approach was simply achieved by selecting ‘Discrete Phase

Model’ and ‘Volume of Fluid’. In the sub-chapters below, theories of the functions in ANSYS

Fluent, that also were used for the CFD model in the thesis will be explained.

3 Basic theories of CFD

21

Figure 3.4: Example of Eulerian description and Lagrangian description

3.4.1 Discrete phase model(DPM)

DPM tracks particles by applying the particle force balance as described in Equation (3.8).

F
g

uuF
dt

ud

p

flp
pflD

p







)(
)((3.8)

This force balance accounts for the particle inertia with the forces acting on the particle[5]. On

the right side, the first term is the drag force per unit particle mass, the second term is a gravity

term and the third term is an additional acceleration (buoyancy, lift, etc.).

3.4.1.1 Parcels

The mass flow rate of particle injection needs to be introduced, and this mass flow rate will

determine the number of particles. As a concept of Lagrangian description, the DPM model

tracks particles. Instead of tracking each particle, the model tracks ‘parcel’. The parcel is

representative of a fraction of the total continuous mass flow rate in steady tracking or a fraction

of the total mass flow released in a time step in unsteady tracking. The reason why parcel is

representative concept is because particles in a parcel share the same properties.

By decreasing the number of objects to track by implementing the concept of ‘parcel’, it makes

DPM simulation computationally affordable. For instance, for the CFD validation in the next

chapter, the case where mass flow rate is 0.208kg/s with 10 injections streams, timestep is

0.01s, and mass per particle is 8.03906E-08kg, the number of particles in a parcel is

2587
0803906.8

01.0

10

/208.0








•

kge

sskg

m

t
mNP

p

stream (3.9)

In short, without using parcels, the computational cost would 2587 times more expensive.

3 Basic theories of CFD

22

3.4.1.2 Virtual mass

For the unsteady motion of bodies underwater or unsteady flow around objects, additional

effect(force) resulting from the fluid, acting on the structure needs to be considered. This added

effect is called virtual mass or added mass. This added mass is the weight added by an

accelerating or decelerating body affects surrounding fluid.

In Fluent, the force of virtual mass is written as the equation below
















dt

ud
ugraduCF

p
p

p

vmv



 (3.10)

vmC is the virtual mass factor with a default value of 0.5

3.4.1.3 Random walk model

As explained in chapter 3.3, Reynolds Averaged Navier Stokes equations can not provide the

instantaneous velocity. Therefore the fluctuating velocity has to be estimated by stochastic

tracking to model turbulent dispersion. In Fluent, Discrete Random Walk model(DRW) is used

for stochastic tracking.

DRW is a sort of Random Walk model that is rather mathematical or statistical concept. In

Random Walk model, it assumes situations where an object moves in a sequence of steps in

randomly chosen directions. Many phenomena can be modeled as a random walk. In the figure

below, it shows a simple example of random walks where going to the right and the left have

the same possibility.

Figure 3.5: Example of random walk

In DRW, or Eddy Intergration Model(EIM), each eddy 3 is characterized by a Gaussian

distributed random velocity fluctuation, 'u , 'v , 'w in cartesian coordinates and a time scale

e
 . The velocity fluctuation components occur during the lifetime of the turbulent eddy. Each

component is sampled with an assumption that they will obey a Gaussian probability

distribution. They are given by

2'' uu  ,
2'' vv  ,

2'' ww  (3.11)

3 eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime

3 Basic theories of CFD

23

Where  is normally distributed random number. The remainder of the right-hand side is the

local RMS value of the velocity fluctuations. It is assumed that the fluctuating values are

isotropic, meaning that it has no preferred direction, they can be defined for k-epsilon, k-omega

and their variants as

3/2
2'2'2' kwvu  (3.12)

These fluctuating compnents are kept constant over an interval of time given by the

characteristic lifetime of the eddies. The characteristic lifetime of the eddy is defined as

Le
T2 (3.13)

Where
L

T is the fluid Lagrangian integral time. For the k-epsilon models and its variants



k
T

L
15.0 (3.14)

In Fluent, the trajectory equation(Equation (3.8)) for individual particles will be integrated

along the particle path to include the random effects of turbulence that are described above.

3.4.1.4 Drag laws

In particle tracking in the CFD model that is introduced in chapter 4, the lift force was neglected

due to its minor contribution to the force balance [2]. Gravity and buoyancy are automatically

calculated in ANSYS Fluent. In the meantime, the drag force should be included either by basic

drag laws that Fluent provides, or user-defined function.

Several laws for drag coefficients applied to the CFD validation in chapter 4.

3.4.1.4.1 Spherical drag law

This drag law applies to particles of spherical shape. The relationship between drag coefficient

(DC) and Relative Reynolds number(Re) are approximated to the standard drag curve. The

curve is described in Figure 3.6.

3 Basic theories of CFD

24

Figure 3.6: Drag coefficient for spherical particles vs. Reynolds number

DC for smooth particles can be taken as shown below

3

32
1

ReRe

aa
aCD  (3.15)

21 , aa and 3 a are given by Morsi and Alexander as shown in Appendix A.

This drag law can be easily selected as in-built function.

3.4.1.4.2 Modified Spherical Drag law

This drag law is also based on the drag on the standard drag curve developed by J.R. Grace and

M.E. Weber[6]. Many empirical data have been proposed to approximate this curve. The

difference between this drag and the spherical drag is that this drag law is more specified over

high Reynolds number. Correlations are shown in Appendix B. The law is coded as a UDF in

Fluent. The code is shown in Appendix C.

3.4.1.4.3 Xia’s drag law

The shape of bubble has significant influence on drag force acting on rising bubble. Xia[7]’s

simulation comparing with the experimental data using a liquid metal. And bubbles in a liquid

metal rather have large sizes and distorted shape in the turbulent region. Therefore, the drag

law that is validated in Xia’s work can account for larger bubbles that are deformed from the

spherical shape.

The main relations are shown in the equations below, and originally proposed by Hamathy [8].

33

2 0E
CD  ,

 


 2

0

ppq dg
E


 (3.16)

Where
0

E is Eötvös number. It is a dimensionless number that characterizes the shape of

bubbles. This drag law was used by Cloete’s validation[2]. The UDF was provided by

Mikkel[9].

3 Basic theories of CFD

25

3.4.1.4.4 Tomiyama’s drag law

Tomiyama’s model is well suited to gas-liquid flow where the bubbles can have a range of

shapes[5]. The main relations are shown in the equations below.

  





















43

8
,

Re

72
,Re15.01

Re

24
minmax

0

0687.0

E

E
CD

 (3.17)

The UDF of Tomiyama’s drag is shown in Appendix B.

3.4.1.5 Two-way coupling

In the coupled approach or two-way coupling, continuous phase flow pattern and the discrete

phase impact each other. This coupling is achieved by solving the discrete and continuous

phase equations until the solutions in both phases stop changing. It is described in Figure 3.7.

Figure 3.7: Interaction between particle and continuous phase

The transfer of momentum, mass and heat from the continuous phase to the discrete phase is

computed in ANSYS Fluent. However, the heat transfer was not the main interested in the CFD

model in the next chapters. The explanation of heat will be neglected in this thesis. The

momentum change and the mass change are computed as described below

  tmFuu
d

C
F potherflp

pp

D 















•

24

Re18
2




 (3.18)

0,

0,

p

p

p
m

m

m
M

•
 (3.19)

3.4.2 Volume of fluid(VOF)

VOF model can model multiple immiscible fluids by solving momentum equations and

tracking the volume of fraction. If the qth fluid’s volume fraction in the cell is denoted as q

3 Basic theories of CFD

26

then when 10  q , the cell has the interface between qth fluid and one or more fluids.(when

0q , the cell is empty of qth fluid, and when 1q , the cell is full of qth fluid.

The tracking of the interface(s) between the phases is accomplished by solving a continuity

equation for the volume fraction of each phase. For the qth fluid, volume fraction equation is














 ••



)()(
)(1

1
qrrq

n

p
qqq

qq

q

mmSVdiv
t q





 (3.20)

Where pqm


 is the mass transfer from phase q to phase r and qrm


 is the mass transfer in the

otherwise direction.
q

S is source term.

The volume fraction equation will be solved for the primary phase. It will be solved for

secondary, tertiary,..., n-th phase while the primary phase is constrained by the equation below

1
1




q

n

q

 (3.21)

As for momentum, a single set of momentum equation is solved, and the resulting velocity will

be shared among the phases via  and  .

3.5 Scheme

To calculate gradients and fluxes at the control volume faces, an approximate distribution of

properties between nodal points is required. An example of 1-D grid is given in Figure3.8,

discretized by the finite volume method. If steady convection-diffusion condition is assumed,

the transport equation yields


 Sgraddivudiv ) ()((3.22)

Nodal points (W, P, E) that are placed in the center of the control volume store variables of

interest. Through the calculation by using the transport equation, it is necessary to integrate the

equation over the control volume. Then diffusive coefficient  and variable  at the cell

faces (w, e) are required.

Figure 3.8: Example of 1-D grid

3 Basic theories of CFD

27

As the simplest method of approximating values at the cell faces is the central differencing

scheme. For instance, the middle value between W and P can be taken at the cell face w.

Another representative scheme is the first-order upwind differencing scheme. In the scheme, it

is assumed that the flow direction determines the value at a cell face. For instance, the value at

W can be taken for the value at w.

The drawback of the first-order upwind scheme is inaccuracy. For more accuracy, the second-

order upwind differencing scheme can be used.

An example of comparison between those schemes presented above is shown in Figure 3.9.

The example is the transportaion of  by convection-diffusion through the one-dimensional

domain sketched in Figure 3.8 with smu /5.2 , mL 0.1 ,
3/0.1 mkg and

smkg  /1.0

Matlab code for three schemes are attached in Appendix B-2, B-3 and B-4.

Figure 3.9: Comparision of different schemes

3.6 Solver

Navier stokes equations presents with two problems. First problem is the convective term of

the momentum equations contains non-linear quantities such as)(Vudiv  in Equation (3.2).

And another problem is equations are coupled because every velocity component appears in

each momentum equation and the continuity equation. Most problematic issue is to solve

pressure and there is no equation for the pressure. To resolve the non-linearity and pressure-

velocity linkage, iterative solution strategy is needed. In this chapter, a few representative

algorithms are presented.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Ф

distance[m]

central differencing

first-order upwind

second-order upwind

analytical solution

3 Basic theories of CFD

28

3.6.1 SIMPLE algorithm

SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations. The algorithm was

proposed by Pantankar and Spalding [10]. The algorithm takes a guess-and-correct procedure

for the calculation of pressure on the staggered grid. The reason why the staggered grid is used

is because if velocities and pressures are stored at the ordinary control volume, the influence

of pressure will not be represented in the discretized momentum equations.

The SIMPLE algorithm’s work flow is given in Figure 3.10 [11].

A simple example of using SIMPLE algorithm is illustrated below in Figure 3.11. Planar 2-D

nozzle is shown with the density of the fluid of 1.0
3/ mkg , nozzle length of 2 m , inlet area of

0.5 2m , outlet area of 0.1 2m , inlet pressure of 10Pa and outlet pressure of 0Pa. It is solved for

velocity and pressure by both using SIMPLE algorithm with upwind scheme and analytically

using Bernoulli’s equation. The comparison of these two solving methods is given in Figure

3.12 and 3.13. Matlab code is shown in Appendix B-5.

3 Basic theories of CFD

29

Figure 3.10: SIMPLE algorithm

3 Basic theories of CFD

30

Figure 3.11: Planar 2-D nozzle

Figure 3.12: Pressure comparision

Figure 3.13: Velocity comparision

-2

0

2

4

6

8

10

12

0 0.5 1 1.5 2

p
re

ss
u

re
[p

a]

distance from inlet[m]

SIMPLE(7grid) Real

0

1

2

3

4

5

0 0.5 1 1.5 2

ve
lo

ci
ty

[m
/s

]

distance from inlet[m]

SIMPLE(7grid) Real

3 Basic theories of CFD

31

3.6.2 PISO algorithm

PISO stands for Pressure Implicit with Splitting of Operators, that was proposed by Issa [12].

PISO contains one predictor step and two corrector steps which could be seen as an extension

of SIMPLE with a further corrector step. The work flow is shown in Figure 3.14.

Figure 3.14: PISO algorithm

4 Model Validation

32

4 Model Validation
Experiments regarding subsea dispersion were conducted by Engebretsen back in 1997 [3].

The experiments were to investigate the phenomena of the plume and the gas release above the

surface. It was performed in fresh water in a rectangular basin of 7m depth and with a surface

area of 6 x 9m, with different gas rates of 83 sNl / , 170 sNl / and 750Nl/s released at the

bottom of the basin. Pure air was injected when parameters below the water surface were of

interest. And the helium-air mixture was used when gas concentration measurements were to

be investigated.

In the further chapters, velocity under the surface of the water, plume’s rising time and the

fountain that is created by plume are the main focuses. In the experiment, the duration of the

air release was done for 20s to eliminate the influence of re-circulating flow in the basin, so it

is assumed that the flow reached steady-state for the underwater measurements.

CFD model was introduced by Cloete to compare with the result of Engebretsen’s

experiment[2]. In the model, DPM and VOF were coupled in ANSYS Fluent, as DPM was

used for tracking bubbles and VOF was used for tracking the interface between sea and

atmosphere.

In this chapter, Cloete’s model is majorly used comparing with Engebretsen’s experiment.

From chapter 4.1 to 4.5, CFD set-ups based on Cloete’s model are presented. In chapter 4.6,

the results of simulation and discussion are described.

4.1 Geometry & Mesh

The shape of geometry is a box with the identical size to the basin of the experiment(7m x 6m

x 9m). The geometry is created in ANSYS Design Modeler.

The primary mesh is created in ANSYS Meshing with a uniform grid size of 20cm. Then the

mesh is refined in ANSYS Fluent. Expected plume area is refined by Region Adaption with

level 2. The effect of Region Adaption of a cell is to divide the cell into two cells that have the

identical grid size to each other as shown in Figure 4.1.

The total number of cells, faces and nodes are 1130920, 3437126 and 1175723 respectively.

Minimum Orthogonal Quality 4 is 8.14553e-01. Maximum Ortho Skew 5 is 1.85447e-01.

Maximum Aspect Ratio6 is 1.74031e+00.

Figure 4.2 describes the exterior of mesh and the mesh on a plane inserted in the middle of the

mesh. The mesh of the plane in the middle shows well how the mesh is refined.

4 Orthogonal Quality ranges from 0 to 1, where values close to 0 correspond to low quality

5 Ortho Skew ranges from 0 to 1, where values close to 1 correspond to low quality

6 It is the ratio of longest to the shortest side in a cell. Ideally it should be equal to 1 to ensure best results

4 Model Validation

33

Figure 4.1: Region adaptation

Figure 4.2: Exterior of the mesh on the left side and the mesh on a plane inserted in the middle

on the right side

4.2 Boundary & initial conditions

Wall is set as the boundary type for all boundaries, except for pressure-outlet at the top of the

mesh. No slip condition is set for wall boundaries. And escape condition is set for the top. This

set-up of boundary condition describes that particles (air bubbles) will be reflected when hitting

the boundaries that are set as walls while the particles will be removed when hitting the top. In

the result, the particles barely reached the wall-boundaries, where almost no reflection of

particles is observed.

The model was initialized with zero values for all variables, besides k and  are guessed to

be
22 /01.0 smk  and

32 /001.0 sm . These two values are initially distributed in every

single cell.

4 Model Validation

34

4.3 Models

4.3.1 DPM

Discrete phase model is set with the iteration with continuous phase which accounts for two-

way coupling. As a physical model, the virtual mass face was set with the virtual mass factor

of 0.5 as a default value.

Injection type of particles was set to be solid-cone type with 0.17m of radius and 13

of cone

angle. Particle diameter is set to be 5mm as initial bubble diameter. Parcels were injected via

10 injection streamlines. As a parcel release method, ‘standard’ was used. This method injects

a single parcel per injection stream per time step. Therefore 10 parcels were injected every time

at 0.33m from the bottom.

Figure 4.3: Cone injection

For turbulent dispersion, stochastic tracking is used. Unsteady particle tracking is applied.

To find out how Random Walk Model works schematically in the injection, cone injection is

modeled in Matlab with a few assumptions to make the model simple. Figure 4.4 shows

trajectories of 10 particles only by instantaneous velocity. It represents the main idea of

Random Walk. Figure 4.5 shows the trajectories in 2D by mean velocity and instantaneous

velocity combined via cone injection with an angle of 13

. The assumption is that trajectory

equations(Equation (3.8)) are zero, meaning that drag effect, gravity, interaction with Eurlerian

description etc. are neglected, another assumption is that the magnitude of instantaneous

velocities is constant as 3/2k . Figure 4.5 on the right-hand side, describes the effect of k

value. The code is attached in Appendix B-6.

4 Model Validation

35

Figure 4.4: Ttrajectories by instantneous velocity

Figure 4.5: 2D cone injection with different k value. Left one with k=0.01, right one with

k=0.5

As for drag, mainly Xia’s drag is used as the drag of the original model by Cloete. Additionally,

the Tomiyama’s drag, Spherical drag and the Modified Spherical drag that are mentioned in

the previous chapter are used. The results of different drags are shown in chapter 4.6.2.

4.3.2 VOF

For multiphase model, Volume of Fluid is used with the formulation of explicit and the

interface modeling of sharp. The density and viscosity of the water phase are set to 998.2
3/ mkg and 1.003e-3 smkg / respectively. For air, it was given as 1.225

3/ mkg and

1.7894e-5 smkg / .

4.3.3 Turbulent model

Standard k-epsilon model is used with default model constants.

4 Model Validation

36

4.3.4 User defined model

For the sake of implementing the change of bubble’s density and size, user-defined modeling

is needed. Otherwise ANSYS Fluent recognize particles with a constant size and density which

do not account for phenomena of bubble such as coalescence and break-up. Basic theories of

bubble density change and bubble size model that were implemented are introduced in the

following. The UDF of the user defined model was provided by Mikkel[9].

4.3.4.1 Bubble density change

The bubble is considered as ideal gas. Therefore, the density of bubble(gas) is defined as

flg

hd
g

TR

P
 (4.1)

Where hdP is hydrostatic pressure,
g

R is gas constant and flT is the temperature of the

ambient fluid. flT was assumed to be constant which is reasonable since the user defined

model was used for shallow depth cases. The temperature change is not significant in shallow

depth as shown in Figure 4.6.

Hydrostatic pressure is the pressure that presents within a fluid when it is at rest. It acts equally

in all directions. Also, it acts to any surface in contact with the fluid perpendicularly. It is well

described in Figure 4.7.

The pressure change by hydrostatic pressure is defined as

hgP   (4.2)

Figure 4.6: Temperature change under water

4 Model Validation

37

Figure 4.7: Hydrostatic pressure

4.3.4.2 Bubble size model

The bubble size model is controlled by material properties and turbulence. Local mean bubble

diameter (pd) accounts for loss of bubbles to downstream cells, gain of bubbles from upstream

cells, break-up and coalescence [2]. In Lagrangian framework, it is defined such,




 p

eq

p

p

pp dd

t

d 





 (4.3)

Where p is the bulk density,  is the relaxation time and
eq

pd is the mean equilibrium

diameter. The equilibrium diameter is the diameter that it is achieved if a bubble resides long

enough at the same flow conditions. It is defined such

2

25.0

4.0

6.0
5.0

1

)/(
CCd

p

p

eq

p 


















 (4.4)

Where the coefficients 1C and 2C are 4 and m100 respectively.

The relaxation time is the time that is needed for bubble to reach the equilibrium diameter.

The mean bubble diameter will be driven to its equilibrium diameter during a timeframe given

by the relaxation time.

The relaxation times for breakup (br) and coalescence (co) are given by the turbulence

dissipation rate and kinetic energy respectively. They are defined such

3/13/2   pbr d ,)*6*2.0/(kd ppco   (4.5)

When the model is implemented in code, if a bubble is bigger than
eq

pd then the bubble’s

breakup occurs otherwise the coalescence will occur. br or co will be obtained, the

relaxation time is restricted by turbulent microscale that represents the smallest timescale in

4 Model Validation

38

turbulent flow [13]. Bubble size is restricted to have a diameter size above 0.0001m. The

fraction of the bubble is also restricted to be below 060.1 e .

4.4 Solver & scheme

For solver, PISO algorithm is used. For gradient scheme, least square cell based is used.

PRESTO! for pressure, Geo-Reconstruct for volume fraction, second order upwind for

momentum, turbulent kinetic energy and turbulent dissipation rate and first order implicit for

transient formulation are used as shown in Table 4.1.

The timestep is set to 0.01s with the maximum 100 iterations per time step. Simulation is

executed till 20s simulation time as same as the duration of the release in the experiment.

The limit of the residuals are set to 1e-05 for every variable. The under-relaxation factors are

set to the default value.

Table 4.1: Scheme

Gradient least square cell based

Pressure PRESTO!

Momentum second order upwind

Volume fraction Geo-Reconstruct

Turbulent kinetic energy Second order upwind

Turbulent dissipation rate Second order upwind

Transient formulation First order implicit

4.5 Cases

Three different comparisons were done for the Engebretsen’s experiment. In Case 1, a CFD

model is validated by using Cloete’s model.

Based on the basic CFD model by Cloete, different drags are implemented to see their

influences in Case 2.

Case 3 is to compare the integral model that is introduced in chapter 1.2 with the results of the

experiment and the simulation.

Table 4.2 shows the overview of the three cases.

4 Model Validation

39

Table 4.2: Cases

 Comparison Drag

Case 1 Validation of Cloete’s CFD model Xia’s drag

Case 2 Effect of different drags Spherical drag law

Modified Spherical Drag law

Tomiyama’s drag law

Case 3 Comparison between Integral model, CFD model and experiment

4.6 Result & Discussion

4.6.1 Case 1

Fountain is observed proving that DPM and VOF are coupled as shown in Figure 4.8. Flow

reflection is observed as shown in Figure 4.9. Maximum, minimum and mean diameter of

bubble are reported 7.96e-02m, 1.67e-03m and 5.32e-03m respectively. Bubble parcels

barely touch the wall boundaries. Parcels are removed when touching the surface of the water

by UDF implemented. Almost no change in under water measurements is observed after 20s

of simulation, which can be assumed to be steady-state.

Figure 4.8: Fountain

4 Model Validation

40

Figure 4.9: Flow reflection

4.6.1.1 Velocity

Velocities at the flow rate of 170 sNl / is of interest at the vertical positions(z-direction) of

1.75m, 3.80m and 5.88m at 20s. Velocity profiles at 1.75m and 3.80m depth of the simulation

match the experiments well. In the meantime, quite large deviation at 5.88m is observed. This

is due to the unsuitable use of the meter for measuring multi-directional flow during the

experiment[14], meaning that as a flow approaches the surface of the water, the flow becomes

a multi-direction flow in which radial flow is predominant. However, the meter that is used

suitable for mono-directional flows. This explains why the velocity only around the center at

z=5.88 where the vertical flow is predominant shows a good match. Therefore, in the further

comparisons, the velocity profile at z=5.88m is not considered for validation. The velocity

profiles are shown in Figure 4.10.

In addition to the velocity measurement at three different z positions, the velocity near the

surface is measured at 1.75m from the plume center for the gas flow rates of 83 sNl / and 170

sNl / . The comparison between the experiment and simulation is shown in Figure 4.11.

The simulation results have the most deviation at the flow rate of 170 sNl / , especially at the

nearest points from the surface. It is proved that the model with surface damping correction

gives improved results[14].

4 Model Validation

41

Figure 4.10: Velocity profile at z=1.75, 3.80 and 5.88

Figure 4.11: Velocity near the surface

4.6.1.2 Height of fountain and rising time

In Engebretsen’s experiments, the initial fountain height when the plume reached the surface

for the first time and the maximum fountain height were measured. The comparison between

the experiment and simulation is shown in Table 4.3.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Simulation at 1.75m

Simulation at 3.80m

Simulation at 5.88m

Experiment at 1.75m

Experiment at 3.80m

Experiment at 5.88m

5.8

6.0

6.2

6.4

6.6

6.8

7.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

h
eg

it
h

[m
]

velocity[m/s]

simulation(83ml/s)

experiment(83ml/s)

simulation(170ml/s)

experiment(170ml/s)

4 Model Validation

42

Table 4.3: Foundtain height and plume rising time

Heights of fountain seem to have considerable deviations. In the experiment, it is mentioned

that one of equipment was splashed at 2 meters above from the water surface. Meanwhile, the

simulation does not really show the huge motion of splash unlike the experiment.

Slightly over predicted values are observed in rising time. It is reported by Mikkel[9] that

higher initial turbulent kinetic energy(k) values cause a longer rise time. Also, it is mentioned

that variables that are relevant to k might cause more dispersed flow. To investigate how initial

k affects the rising time, simulations with the different initial k values of 0.007 22 / sm and

0.014 22 / sm are done.

Plumes at 5s are captured as shown in Figure 4.12. Significant difference of plume position is

oberved at this time.

Visible difference in k in plume that have been developed by the time is observed in contour

images as shown in Figure 4.13. Fixed range scale is used for both cases to see the difference.

Figure 4.12: Plume at 5 s

 Experiment Simulation

Flow rate [sNl /] 83 170 750 83 170 750

Plume rising time [s] 6 4.8 3.1 7.2 5.5 3.25

Initial fountain height [m] - 0.3 0.45 - 0.18 0.29

Maximum fountain height

[m]

- 0.65 1.25 - 0.43 0.87

4 Model Validation

43

Figure 4.13: Contour of k at 5s

Also k value in plume is measured at the center line of the plume. It is shown in Figure 4.14.

From the measured k values, it is obvious that the plume in the field of the smaller initial k

value of 0.007 22 / sm propagates faster, also the plume has a higher k value that is devloped

over time. Therefore it can be assumed that lower initial k values in the mesh field result in

higher k values of plume. And higher k values in plume contribute to faster rising velocities.

Figure 4.14: Measured k value at the center line of plume

4.6.1.3 Void fraction

Since the volume fraction of particles cannot be obtained in ANSYS Fluent without time

sampling, it is measured by time sampled data of every second for 20 seconds. RMS value is

measured. The result shows a quite large deviation as described in Figure 4.15. The void

fraction ranges from 0.3 to 0.5. Even larger deviation is observed when Mean value is used.

According to Fluent manual, the rule of thumb of using DPM is that volume fraction of particles

should be lower than 10-12%. This represents the assumption that the particle-particle

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

0 1 2 3 4 5 6 7

k[
m

2
/s

2
]

z[m]

k=0.007

k=0.014

4 Model Validation

44

interations and the effects of the particle volume fraction on the gas phase are negligible. In

that regard, the violation of the recommended range was observed. It might have possibly

caused errors in any results.

Figure 4.15: Void fraction

4.6.2 Case 2

To see how drag can affect the result, three different drags from chapter 3.4.1.4 are

implemented. Spherical drag and Modified spherical drag do not account for the shape of

bubble but only Reynolds number. Meanwhile, Tomiyama’s drag and Xia’s drag account for

the shape of bubble. The influence of including a factor of the bubble shape is expected to be

shown in this chapter. Simulations are done only for the flow rate of 170 sNl / . And none of

other set-up values are changed but only drag.

4.6.2.1 Velocity

Velocity profiles of spherical drag and the modified drag seem to match well the experiment

data, except for the center area of the plume. In the center area, larger deviation than the original

model that is presented in case 1 (with Xia’s drag) is observed. Spherical drag and Modified

drag seem to give almost the same result except for the fact that Spherical drag results in a

better match by a bit within the range of radial position from 0 to 0.5m.

Reynolds number of Spherical drag coefficient is divided into seven ranges from Re= 0 to

10000 while it is divided into three ranges in Modified spherical drag coefficient. Judging from

different division of Re, it can be assumed that Spherical drag gives more accurate result in

lower Re, while Modified spherical drag give accurate result in higher Re. Therfore it is

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0E+00 1.0E-01 2.0E-01 3.0E-01 4.0E-01 5.0E-01

h
ei

gh
t[

m
]

void fraction[-]

experiment

simulation

4 Model Validation

45

reasonable to assume the better result within the range of radial position from 0 to 0.5m might

have been caused by plume’s low Re.

Meanwhile the simulation result from Tomiyama’s drag seems to match the best among 3

drags, even at around the center area. And especially at z=3.8m, the result matches the

experiment data better than Xia’s drag. The results with different drags are shown in Figure

4.16-4.19. The reason why Tomiyama’s drag gives a better result than Xia’s can be assumed

that Reynolds number also is included in Tomiyama’s drag coefficient, not only the shape of

bubble.

Velocities of the different drags near the surface are also compared. It is shown in Figure 4.20.

Disregarding the damping effect which is not applied in the model, the results of velocity near

the surface show less deviation from the experimental data when Spherical drag and Modified

spherical drag are used. When Tomiyama’s drag is used, the result is almost identical to the

result by Xia’s drag.

It is observed that the drags that include the shape of bubble give a better result besides the

velocity near the water surface. Assuming bubble’s shape is a crucial factor in plume seems to

be reasonable. However, since the drags that including only Reynolds number result in a better

match near the water surface, it might be reasonable to assume that Reynolds number is more

important than the shape of bubble near the surface.

Figure 4.16: Velocity by Spherical drag

0

0.5

1

1.5

2

2.5

3

0 0.5 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Spherical drag at 1.75m

Spherical drag at 3.80m

Experiment at 1.75m

Experiment at 3.80m

4 Model Validation

46

Figure 4.17: Velocity by Modified spherical drag

Figure 4.18: Velocity by Tomiyama’s drag

0

0.5

1

1.5

2

2.5

3

0 0.5 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Modified spherical drag at 1.75m

Modified spherical drag at 3.80m

Experiment at 1.75m

Experiment at 3.80m

0

0.5

1

1.5

2

2.5

3

0 0.5 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Tomiyama drag at 1.75m

Tomiyama drag at 3.80m

Experiment at 1.75m

Experiment at 3.80m

4 Model Validation

47

Figure 4.19: Comparison between the results by Tomiyam’s drag, Xia’s drag and experiment

Figure 4.20: Velocity by different drags near the water surface

4.6.2.2 Height of fountain and rising time

Spherical drag and Modified spherical drag again show the almost identical results in plume

rising time and fountain height. And rising time from the drags shows only a little deviation

0

0.5

1

1.5

2

2.5

3

0 0.5 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Tomiyama drag at 3.80m

Simulation at 3.80m

Experiment at 3.80m

5.8

6.0

6.2

6.4

6.6

6.8

7.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

h
eg

it
h

[m
]

velocity[m/s]

simulation(170ml/s)

experiment(170ml/s)

Spherical drag

Modified spherical drag

Tomiyama drag

4 Model Validation

48

from the experimental data. Xia’s drag and Tomiyama’s drag give the similar results besides

the maximum fountain height.

Good agreement of the fountain height is not observed in any of the simulations comparing

with experimental data. The overview of comparison is shown in Table 4.4.

As mentioned in chapter 4.6.1, plume rising time is rather dependent upon initial k value.

Therefore, it is reasonable to say that initial k =0.01 22 / sm is a good guess for both Spherical

and Modified spherical drag.

Table 4.4: Plume rising time and fountain height by different drags

 Experiment Xia’s drag Spherical

drag

Modified

spherical

drag

Tomiyama’

s drag

Flow rate [sNl /] 170 170 170 170 170

Plume rising time [s] 4.8 5.5 4.6 4.75 5.5

Initial fountain height

[m]

0.3 0.18 0.13 0.13 0.19

Maximum fountain

height [m]

0.65 0.43 0.34 0.34 0.35

4.6.3 Case 3

The integral model is investigated for the flow rate of 170 sNl / . The comparisons between the

integral model, the CFD model and the experimental data are seen in case 3.

4.6.3.1 Velocity

Integral model is determined by tuning the coefficients that are introduced in chapter 2.2. In

this thesis, only entrainment coefficient  and proportionality value  are manipulated.

 is observed to determine the peak of velocity profile and  is observed to affect the entire

shape such as the peak velocity in the center and width of the velocity profile. Comparisons by

manipulation of  and  are shown in Figure 4.21 and 4.22.

For the velocity at the height of z=1.75m, the curve of the integral model seems to be optimized

when  = 0.1285 and  =1.5 are used. And for the velocity at z=3.80m, using  = 0.11 and

 =1.5 showed a good match. Also, both tunings showed good matches to experiments over

the velocities of the vertical direction. However, the velocity at the low z position diverges

infinitely, it is due to the calculation of the approximate solutions where 0 is put into

4 Model Validation

49

denominator. The data at small z position should not be considered as valid value. The results

are shown Figure 4.23~4.25.

The biggest deviation is observed in the near velocity comparison as shown in Figure 4.26.

This is due to the assumption of the integral model that the velocity of plume follows Gaussian

profile. Therefore, the flow reflection near the surface cannot be explained in the integral

model.

Figure 4.21:  manipulation

Figure 4.22:  manipulation

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

α=0.1285, γ=1.5

α=0.1285, γ=1.2

α=0.1285, γ=1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

α=0.1285, γ=1.5

α=0.1, γ=1.5

α=0.06, γ=1.5

4 Model Validation

50

Figure 4.23: Velocity at z=1.75 when  = 0.1285 and  =1.5

Figure 4.24: Velocity at z=3.80m, using  = 0.11 and  =1.5

0

0.5

1

1.5

2

2.5

3

0 0.5

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Simulation at 1.75m

Experiment at 1.75m

Integral model at 1.75m

0

0.5

1

1.5

2

2.5

3

0 0.5 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Simulation at 3.80m

Experiment at 3.80m

Integral model at 3.8m

4 Model Validation

51

Figure 4.25: Comparison between two manipulations

Figure 4.26: Velocity near the surface

4.6.3.2 Height of fountain

One of the parameters in the integral model that hugely impacts the height of the fountain is

empirical constant  . It accounts for the loss in momentum balance. For a free-loss rise

5.0 . However, Friedl[4] mentioned the empirical constant 39.0 seems to be the best

value determined through a fitting procedure with experimental data. Therefore, 39.0 is

used for the comparison of fountain height.

0

1

2

3

4

5

6

7

0 1 2 3 4

h
ei

gh
t[

m
]

velocity[m/s]

integral model(α=0.1285, γ=1.5)

integral model(α=0.11, γ=1.5)

experiment

5.8

6.0

6.2

6.4

6.6

6.8

7.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

h
eg

it
h

[m
]

velocity[m/s]

simulation(170ml/s)

experiment(170ml/s)

Integral model(170ml/s)

4 Model Validation

52

In addition, Friedl provided relations of the average peak of instantaneous height ph and the

maximum peak of instantaneous height
maxp

h with respect to the mean surface elevation
f

h .

fp hh 2 ,
fp

hh 1.3
max

 (4.6)

The values following above equation are mh p 39.0 and mh
p

6.0
max

 when  = 0.1285

and  =1.5. Since the average fountain height of the experiment was not provided by

Engebretsen, ph cannot be compared directly. However, if it is assumed that the fountain

heights after initial height would be the values between the initial height and the maximum

height, then the heights from the integral model seem to give a good result with a small error.

4.6.3.3 Void fraction

Void fraction is also calculated using  = 0.1285 and  =1.5. The result is shown in Figure

4.27. Compared to the CFD simulation, the result of the integral model matches the

experimental data well.

Figure 4.27: Void fraction

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0E+00 1.0E-01 2.0E-01 3.0E-01 4.0E-01 5.0E-01

h
ei

gh
t[

m
]

void fraction[-]

experiment

integral model

simulation

5 Additional validations

53

5 Additional validations
To test the validity of the CFD model and the integral model further, additional validations are

done with the varied sizes of depth and flow rate. There are some experiments done with respect

to the subsea blowout. Fanneløp’s experiment(1980)[15] seems to provide more detailed

experimental data, especially regarding plume width compared to Engebretsen’s experiment.

Milgram’s experiment(1983)[16] was done in a bigger scale of a basin. Also, it provides

velocity measurement at higher flow rate than Engebretsen’s experiment.

CFD model and the integral model are investigated comparing with the experimental data from

both experiments above. The same set-ups are implemented as used in chapter 4, except for the

size of geometry and flow rate.

5.1 Milgram’s experiment

The experiment was done in a basin of the size of 50m depth at the air flow rates of 24 sNl / ,

118 sNl / , 283 sNl / and 590 sNl / . Since bigger basin size and higher flow rate are of interest,

only the data of the flow rate of 590 sNl / is compared.

The integral model was tuned by determining the coefficients that show the best fits for

velocity, void fraction and plume width respectively. Using  =2 seems to show good

agreement for each outcome variables. However, it is observed that each outcome is more

sensitive to the value  . The  values that give the best fit are differently set for each

outcome.

5.1.1 Velocity

The result of the CFD model is observed to give a good result with some deviation from the

experimental data. It could be due to the dissolution of the air into water. Since the basin of

Milgram’s experiment is larger than the basin that was used in Engebretsen’s experiment,

which would have caused a longer stay time of gas in the water. it is assumed that if the model

includes dissolution effect, it could give a better result.

 = 0.175 is determined in the integral model. It seems to show good agreement. As same as

the CFD model, gas dissolution is not included in the integral model. The velocity is shown in

Figure 5.1.

5 Additional validations

54

Figure 5.1: Velocity

5.1.2 Void fraction & Plume width

The CFD model give considerable deviation in void fraction. It could have been caused by gas

dissolution for both models. The best fit of the void fraction from the integral model is found

at  = 0.25. The comparison of void fraction is shown in Figure 5.2.

In the CFD model, it was not clear to define the plume width. The plume width is measured by

measuring the distance from the center of the plume to the point where void fraction is below

1e-02. The best fit of the plume width from the integral model is found at  = 0.13 as shown

in Figure 5.3.

Figure 5.2: Void fraction

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3

h
ei

gh
t[

m
]

Velocity[m/s]

Experiment
Simulation
Integral model, α=0.175

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02

h
ei

gh
t[

m
]

void fraction[-]

experiment
simulation
integral model , α=0.25

5 Additional validations

55

Figure 5.3: Plume width

5.2 Fanneløp’s experiment

The experiment was done in a basin of the size of 10m depth at the air flow rates of 5 sNl / ,

10 sNl / , 15 sNl / and 22 sNl / . Velocity profiles and void fraction profiles were obtained at

6 depths in the center of the basin. The readings of the result were averaged over 10 min

during the experiment.

The CFD model is set to measure time sampled data at every second. Due to the difficulties of

measuring plume width in CFD model as described in 5.1.2, it is decided not to investigate

plume width.

The integral model was tuned to the coefficients of  = 0.12 and  =1 based on the

experimental data of flow rate of 5 sNl / .

5.2.1 Velocity

The result of the CFD model is slightly underpredicted except that it shows slightly

overpredicted result at the flow rate of 22Nl/s.

The integral model slightly overpredicts the velocity at every flow rate.

Velocity from both the CFD model and the integral model show good agreement. The biggest

deviation from the integral model is observed at the highest flow rate of 22 sNl / . It is due to

the model tuned based on 5 sNl / . The results are shown in Figure 5.4~5.7.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 2 4 6 8 10 12 14 16

h
ei

gh
t[

m
]

b[m]

experiment

simulation

integral model, α=0.13

5 Additional validations

56

Figure 5.4: Velocity at the flow rate of 5Nl/s

Figure 5.5: Velocity at the flow rate of 10Nl/s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

h
ei

gh
t[

m
]

experiment

simulation

integral model

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

h
ei

gh
t[

m
]

experiment

simulation

integral model

5 Additional validations

57

Figure 5.6: Velocity at the flow rate of 15Nl/s

Figure 5.7: Velocity at the flow rate of 22Nl/s

5.2.2 Void fraction

While the integral model shows good agreement in void fraction at every flow rate, the CFD

model result in considerable deviation at higher flow rate. The results are shown in Figure

5.8~5.11.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

h
ei

gh
t[

m
]

experiment

simulation

integral model

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

h
ei

gh
t[

m
]

experiment

simulation

integral model

5 Additional validations

58

Figure 5.8: Void fraction at the flow rate of 5Nl/s

Figure 5.9: Void fraction at the flow rate of 10Nl/s

0

1

2

3

4

5

6

7

8

9

10

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02

h
ei

gh
t[

m
]

void fraction[-]

experiment

simulation

integral model

0

1

2

3

4

5

6

7

8

9

10

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02

h
ei

gh
t[

m
]

void fraction[-]

experiment

simulation

integral model

5 Additional validations

59

Figure 5.10: Void fraction at the flow rate of 15Nl/s

Figure 5.11: Void fraction at the flow rate of 22Nl/s

0

1

2

3

4

5

6

7

8

9

10

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02

h
ei

gh
t[

m
]

void fraction[-]

experiment

simulation

integral model

0

1

2

3

4

5

6

7

8

9

10

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02

h
ei

gh
t[

m
]

void fraction[-]

experiment

simulation

integral model

6 OpenFoam simulation

60

6 OpenFoam simulation
OpenFoam is a C++ based free CFD software. In this chapter, the outcome of the simulation

done in OpenFoam will be presented.

To find a properly coupled solver(Eulerian-Lagrangian), different extended versions of

OpenFoam were attempted. And OpenFoam v16.06+ that was developed by ESI Group

contains the coupled solver.

In the following, mainly the solver will be introduced along with the result. Other set-ups

such as initial conditions, constants, schemes etc. are attached in Appendix C~E.

6.1 Solver

MPPICInterFoam is the solver in which MPPICFoam and InterFoam are combined. InterFoam

is the solver for VOF and MPPICFoam is the solver for DPM with a colliding particle cloud.

MPPICInterFoam comprises files in a hierarchical structure as shown in Figure 6.1.

.C and .H are the extension for source file and header file respectively.

Figure 6.1: Structure of MPPICInterFoam

M
P

P
IC

In
te

rF
o

am

CompressibleTwoPhaseMi
xtureTurbulceModels

CompressibleTwoPhaseMi
xtureTurbulenceModels.C

alphaEqn.h

alphaEqnSubCycle.H

continuityErrs.H

correctPhi.H

createFields.H

MPPICInterFoam.C

pEqn.H

UEqn.H

6 OpenFoam simulation

61

6.2 Result

Figure 6.2 shows a plume rising, however, the fountain of significant height is not observed

during the simulation.

Figure 6.3 shows the velocity profiles.

The outcome of the simulation is not satisfying. One of the possible causes is that rectangular

patch injection was implemented instead of cone injection due to the explosion of courant

number during simulation. Another possible cause is the implementation of colliding particles.

Lastly, when the solver was modified by me, a few functions were implemented by modifying

the code and compiling the solver since the raw solver does not include necessary functions for

the simulation. errors might have been caused possibly in this process. However, allowing for

all the possible causes mentioned above, the velocity profiles were largely underpredicted

compared to the experimental data as shown in Figure 6.3. In addition, almost invisible change

in the water surface cannot be explained enough by those possible causes above. This issue

seemed to be caused not by possible wrong set-ups but solver.

Figure 6.2: Plume

6 OpenFoam simulation

62

Figure 6.3: Velocity

The developer of OpenFoam 1606+, Sergio Ferraris mentioned on this issue that “The particles

interact with the fluid (the phase there are in), but there is an extra small force on particles that

avoids the particles to cross the interface. This force is only applied when the particle is near

the interface only. Then, if the interface is affected by the particles momentum, this model will

not have the desired effect.” In short, the solver is not perfectly coupled.

In the Ueqn.h file, it is found that a source term is missing transferring from particles. To fix

this problem, Mainly, the source term from particles should be added in momentum at line 46

in the file as described below.

 28 if (pimple.momentumPredictor())

 29 {

 30 solve

 31 (

 32 UEqn

 33 ==

 34 fvc::reconstruct

 35 (

 36 phicForces/rAUcf

 37 +

 38 (

 39 fvc::interpolate

 40 (

 41 mixture.sigmaK()

 42)*fvc::snGrad(alpha1)

 43 - ghf*fvc::snGrad(rho)

 44 - fvc::snGrad(p_rgh)

 45) * mesh.magSf()

 46)+Momentum from particle

 47);

 48

 49 fvOptions.correct(U);

 50 }

0

0.5

1

1.5

2

2.5

3

0 0.5 1

ve
lo

ci
ty

[m
/s

]

Radial position[m]

Experiment at 1.75m
Experiment at 3.80m
openfoam at 1.75m
openfoam at 3.8m

7 Conclusion

63

7 Conclusion
The main object of this thesis was originally to validate the transient subsea gas plume model

named ‘Rising cap model’ by comparing its outcome to CFD model and vice versa. However,

Rising cap model’s main outcome is mass flux through the water surface and does not represent

underwater physics. In the meantime, the CFD model which is used in this thesis was validated

based on underwater velocity. In addition, the Gaussian profile assumption of surface flux in

Rising cap model seems to be against the real phenomena on the surface. Therefore, it was

decided not to use Rising cap model, instead Friedl’s integral model which is steady-state

plume model was introduced. Friedl’s model also includes Gaussian profile, but the model

accounts for the underwater physics.

The main idea of the CFD model that was proposed by Cloete is to couple Lagrangian

description and Eulerian description in two-way coupling. The model includes the change of

bubble’s size and density and the drag accounting for bubble’s shape. Cone injection with

Random walk model is implemented to account for turbulent dispersion of bubbles.

The CFD model seems to predict underwater blowout well in terms of velocity. For more

accurate prediction of the velocity, damping effect at the surface needs to be implemented [14]

and dissolution of water also needs to be included depending on bubble stay time of gas.

However, in terms of fountain prediction, more improvement seems to be needed.

Drag in the CFD model seems to be a factor that could affect plume physics as presented. The

result by different drags shows that the drag laws including bubble’s shape show better

agreement than the ones without including bubble’s shape in general.

The CFD model shows generally good agreement under different conditions such as different

depth and flow rate of releasing gas. However, still to validate this model more realistically,

more experimental data is necessary with higher flow rate of the gas and larger depth as well.

As a feedback of the CFD simulation done in this thesis, since it is available to measure

particles void fraction when time sampling is set, maybe longer simulation should have been

implemented to measure more accurate results of void fraction and plume width in steady state.

In the integral model, tuning of coefficients is necessary under different conditions.

Appropriate tunings show good agreement. However, to determine the appropriate coefficients,

it also needs further experiments as same as the CFD model does, with high flow rate of gas

release and larger depth, which is more realistic subsea blowout condition.

Since Friedl’s integral model uses Gaussian profile as same as most of integral plume models

use, the model does not account for flow’s reflection at the water surface. Modeling the area

near the surface separately including reflection phenomena could be a way to improve the

integral model.

Integral model is computationally cheaper and more effective in comparison to CFD model.

OpenFoam model was attempted, however, due to lack of time the model is not completed.

Relatively new solver named ‘MPPICInterFoam’ is used. The solver is not exactly 2 way-

coupled. It needs to be modified by inserting source term transferring from particles. In

addition, the explosion of courant number while a cone injection is implemented needs to be

investigated.

 References

64

References
[1] G. Taylor, "The action of a surface current used as a breakwater," in Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

1955, pp. 466-478.

[2] S. Cloete, J. E. Olsen, and P. Skjetne, "CFD modeling of plume and free surface

behavior resulting from a sub-sea gas release," Applied Ocean Research, vol. 31, pp.

220-225, 2009.

[3] T. Engebretsen, T. Northug, K. Sjøen, and T. Fanneløp, "Surface flow and gas

dispersion from a subsea release of natural gas," in The Seventh International

Offshore and Polar Engineering Conference, 1997.

[4] M. J. Friedl and T. K. Fanneløp, "Bubble plumes and their interaction with the water

surface," Applied Ocean Research, vol. 22, pp. 119-128, 4// 2000.

[5] A. Fluent, "Theory Guide and User's Guide," Ansys Inc, USA, 2015.

[6] R. Clift, J. R. Grace, and M. E. Weber, Bubbles, drops, and particles: Courier

Corporation, 2005.

[7] J. Xia, T. Ahokainen, and L. Holappa, "Analysis of flows in a ladle with gas‐stirred

melt," Scandinavian journal of metallurgy, vol. 30, pp. 69-76, 2001.

[8] T. Z. Harmathy, "Velocity of large drops and bubbles in media of infinite or restricted

extent," AIChE Journal, vol. 6, pp. 281-288, 1960.

[9] M. Bakli, "Evaluation of Gas and Oil Dispersion during Subsea Blowouts," Institutt

for energi-og prosessteknikk, 2014.

[10] S. V. Patankar and D. B. Spalding, "A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows," International journal of

heat and mass transfer, vol. 15, pp. 1787-1806, 1972.

[11] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid

dynamics: the finite volume method: Pearson Education, 2007.

[12] R. I. Issa, "Solution of the implicitly discretised fluid flow equations by operator-

splitting," J. Comput. Phys., vol. 62, pp. 40-65, 1986.

[13] H. Laux and S. T. Johansen, "A CFD analysis of the air entrainment rate due to a

plunging steel jet combining mathematical models for dispersed and separated

multiphase flows," Fluid Flow Phenomena in Metal Processing, 1999.

[14] Q. Q. Pan, J. E. Olsen, S. T. Johansen, M. Reed, and L. R. Sætran, "CFD Study of

Surface Flow and Gas Dispersion From a Subsea Gas Release," in ASME 2014 33rd

International Conference on Ocean, Offshore and Arctic Engineering, 2014, pp.

V007T12A032-V007T12A032.

[15] T. Fannelop and K. Sjoen, "Hydrodynamics of underwater blowouts," in 18th

Aerospace Sciences Meeting, 1980, p. 219.

[16] J. Milgram, "Mean flow in round bubble plumes," Journal of Fluid Mechanics, vol.

133, pp. 345-376, 1983.

65

66

 Appendices

67

Appendices
Appendix A-1 < Spherical drag >

Range of Re
1a 2a 3 a

0<Re<0.1 0 24 0

0.1<Re<1 3.690 22.73 0.0903

1<Re<10 1.222 29.1667 -3.8889

10<Re<100 0.6167 46.50 -116.67

100<Re<1000 0.3644 98.33 -2778

1000<Re<5000 0.357 148.62 -47500

5000<Re<10000 0.46 -490.546 578700

10000Re 0.5191 -1662.5 5416700

Appendix A-2 <Modified sphere drag >

Range of Re Correlation

Re<0.1

Re

24

16

3
DC

0.01<Re20  )05.082.0(Re1315.01
Re

24 w

DC 

20Re260  6305.0Re1935.01
Re

24
DC

260Re1500 21558.01242.16435.110 ww

DC 

43 102.1Re105.1 
32 1049.09295.05558.24571.210 www

DC 

44 104.4Re102.1 
20636.06370.09181.110 ww

DC 

54 1038.3Re104.4 
21546.05809.13390.410 ww

DC 

55 104Re1038.3  wCD 3.578.29 

65 10Re104  49.01.0  wCD

 Appendices

68

Re106 

Re

108
19.0

4
DC

(Relog10w)

 Appendices

69

Appendix B-1

%% Integral plume model-MJ Fridedl

% Author: Kim Taewook

% Linkedin : https://www.linkedin.com/in/taewook-kim/

% GITHUB : github.com/Kimtaewookcode

% Email : kimtaewook87@gmail.com

% Based on

% http://www.sciencedirect.com/science/article/pii/S014111879900022X

clear

close all

clc

g = 9.81;%gravity[m/s2]

rho_w=998;%density of water[kg/s]

m_release=0.02695;%0.01838;%0.00625;%0.71milgram%0.208;%mass rate[kg/s]

phi=3.14;%phi

p0=101325;%atmopheric pressure[pa]

rho_g0=1.225;%density of releasing gas[kg/m3]

vs=0.35;%slip velocity[m/s]

h=10;%height of the water surface

hp=10.33;

x1 = 0;%centerline

hoff=0;%h offset

z0=1.75;%z value where you want to know about profile at

%coefficients%

alpha=0.12;%0.13;%0.1285;entrainment coefficient

gam=1;%1.5;

beta=0.39;%0.5;theoretical value%0.39;experimental value : for a loss-free

rise;1for instantneous

lambda=0.8;

%%calculation in x(radial) direction%%

vs1=vs*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(-

1/3);

s1=(1+lambda^2)*vs1;

z1=z0/(h+hp);

z2=h/(h+hp);

v1=((25/12)^(1/3))*(z1^(-1/3))*(1+11*z1/39+511/2*(z1/39)^2)-

s1*7/22*(1+345/343*z1/13+86175/11662*(z1/13)^2)+(s1^2)*13/121*(12/25)^(1/3)

(z1^(1/2))(1-59489/1436*z1/39-2825583625/23347324*(z1/39)^2);

v2=((25/12)^(1/3))*(z2^(-1/3))*(1+11*z2/39+511/2*(z2/39)^2)-

s1*7/22*(1+345/343*z2/13+86175/11662*(z2/13)^2)+(s1^2)*13/121*(12/25)^(1/3)

(z2^(1/2))(1-59489/1436*z2/39-2825583625/23347324*(z2/39)^2);

v=v1*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(1/3);

vh=v2*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(1/3);

b1=3/5*z1*(1-z1/13-7*(z1/13)^2)+s1*3/110*((12/25)^(1/3))*(z1^(4/3))*(1-

1046/49*z1/39-227726/833*(z1/39)^2)-

(s1^2)*48/15121*((25/12)^(1/3))*(z1^(5/3))*(1-

34663/9408*z1+225707803/240143904*z1^2);

b2=3/5*z2*(1-z2/13-7*(z2/13)^2)+s1*3/110*((12/25)^(1/3))*(z2^(4/3))*(1-

1046/49*z2/39-227726/833*(z2/39)^2)-

(s1^2)*48/15121*((25/12)^(1/3))*(z2^(5/3))*(1-

34663/9408*z2+225707803/240143904*z2^2);

b=b1*(2*alpha*(h+hp));%plume width at z0

bh=b2*(2*alpha*(h+hp));%plume width at the surface

x = [0 : 0.01: 200];%x range- need to be set

y=v*exp(-(x.^2)/(b^2));%velocity at z0

yh=vh*exp(-(x1^2)/(b^2));%velocity at the surface

hf=beta*gam*(yh.^2)/g;%the peak of fountain profile

 Appendices

70

hr=hf*exp(-(x.^2)/(bh^2))-hoff;%fountain profile

void_1=1/(1-z1)/((b1^2)*(v1+s1));

void1=void_1*((((1+lambda^2)^2)*gam*(m_release/rho_g0)^2)/((phi^2)*(lambda^

2)*(2^5)*(alpha^4)*((h+hp)^5)*g))^(1/3);

voidr=void1*exp(-(x.^2)/((lambda^2)*(b.^2)));%void fraction profile at z0

void_2=1/(1-z2)/((b2^2)*(v2+s1));

void2=void_2*((((1+lambda^2)^2)*gam*(m_release/rho_g0)^2)/((phi^2)*(lambda^

2)*(2^5)*(alpha^4)*((h+hp)^5)*g))^(1/3);

voidh=void2*exp(-(x.^2)/((lambda^2)*(b^2)));%void fraction profile at the

surface

mflux_surf=voidh*yh*rho_g0;%mass flux per unit area at the surface

plot(x, y, '.-')

xlim([0 4])

title(['velocity at z=',num2str(z0)]);

xlabel('radial position[m]');

ylabel('velocity[m/s]');

figure;plot(x, hr, '.-')

xlim([0 4])

title('fountain ');

xlabel('radial position[m]');

ylabel('z[m]');

figure;plot(x, voidr, '.-')

xlim([0 4])

title(['void fraction at z=',num2str(z0)]);

xlabel('radial position[m]');

ylabel('voidfraction');

figure;plot(x, mflux_surf, '.-')

xlim([0 4])

title(['mass flux at the surface']);

xlabel('radial position[m]');

ylabel('massflux[kg/s/m2]');

%%%calculation in z direction%%

initial=0;%z start

last=h;%z end

dz=0.01;%delta z

n=(last-initial)/dz;%the number of data

zarr=zeros(n,1);% n x 1 array for z

i=1;

for z=initial:dz:last

zarr(i)=z;

z1=z/(h+hp);

vs1=vs*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(-

1/3);

s1=(1+lambda^2)*vs1;

v1_z=((25/12)^(1/3))*(z1.^(-1/3))*(1+11*z1/39+511/2*(z1/39).^2)-

s1*7/22*(1+345/343*z1/13+86175/11662*(z1/13).^2)+(s1^2)*13/121*(12/25)^(1/3

)*(z1.^(1/2))*(1-59489/1436*z1/39-2825583625/23347324*(z1/39).^2);

v_z=v1_z*((g*m_release*(lambda^2+1))/((h+hp)*phi*gam*rho_g0*2*alpha^2))^(1/

3);

b1_z=3/5*z1*(1-z1/13-7*(z1/13)^2)+s1*3/110*((12/25)^(1/3))*(z1^(4/3))*(1-

1046/49*z1/39-227726/833*(z1/39)^2)-

(s1^2)*48/15121*((25/12)^(1/3))*(z1^(5/3))*(1-

34663/9408*z1+225707803/240143904*z1^2);

 Appendices

71

b_z=b1_z*(2*alpha*(h+hp));

bz(i,1)=b_z;%designate br's 'i' th value

veloarr_z(i,1)=v_z*exp(-(x1^2)/(b_z^2));%designate veloarr's 'i' th value

void1_z=1/(1-z1)/((b1_z.^2)*(v1_z+s1));

void_z=void1_z*((((1+lambda^2)^2)*gam*(m_release/rho_g0)^2)/((phi^2)*(lambd

a^2)*(2^5)*(alpha^4)*((h+hp)^5)*g))^(1/3);

voidz(i,1)=void_z*exp(-(x1^2)/((lambda^2)*(b_z^2)));%designate voidr's 'i'

th value

 i=i+1;

end

figure;plot(bz,zarr, '.-')

ylim([0 h])

title('plume width');

ylabel('z position[m]');

xlabel('width[m]');

figure;plot(veloarr_z,zarr,'.-')

xlim([0 4])

ylim([0 h])

title('velocity at the centerline ');

ylabel('z position[m]');

xlabel('velocity[m/s]');

figure;plot(voidz,zarr, '.-')

xlim([0 0.06])

ylim([0 h])

title('voidfraction at the centerline');

ylabel('z position[m]');

xlabel('voidfraction');

instantneous_maximum_fountain=3.1*hf;

instantneous_average_fountain=2*hf;

 Appendices

72

Appendix B-2

%Central differencing scheme,1-D convection-diffusion steady state, no

source but only boundary

%condition

%Author : Taewook Kim

%LINKEDIN : www.linkedin.com/in/kimtw

%GITHUB : github.com/Kimtaewookcode

%Email : kimtaewook87@gmail.com

%Ref:"An introduction to Computational Fluid Dynamics:HKversteeg and

%WMalalasekera example 5.1

%%%%%%%%

clear

clc

clf

L=1;%[m] length of geometry

%rho=1;%[kg/m3]

ksi=0.1;%[kg/ms]

u=2.5;%[m/s]%2.5;

ngrid=20;%numberof grid%20,5

dx=L/ngrid;%delta x

F=2.5;%coefficient

D=ksi/dx;%coefficient

phi0=1;%boundary condition at x=0

phil=0;%boundary condition at x=L

%%%%%%%%

array=zeros(ngrid);

bound=zeros(ngrid,1);

%%%%%%%%%

for i=1:ngrid

 if i==1

 aw=0;

 ae=D-F/2;

 sp=-(2*D+F);

 ap=aw+ae-sp;

 su=-sp*phi0;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 elseif i<ngrid

 aw=D+F/2;

 ae=D-F/2;

 sp=0;

 ap=aw+ae-sp;

 su=0;%no source

 array(i,i-1)=-aw;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 else

 aw=D+F/2;

 ae=0;

 sp=-(2*D-F);

 ap=aw+ae-sp;

 su=-sp*phil;

 array(i,i-1)=-aw;

 Appendices

73

 array(i,i)=ap;

 bound(i,1)=su;

 end

end

 phi=array\bound;

 xarr=zeros(ngrid,1);

 for j=1:ngrid

 xarr(j,1)=dx/2+dx*(j-1);

 end

 %%%%%%%analytical

 dx1=dx/10;

 x1=[0:dx1:L];

 anaphi=1+(1-exp(25*x1))/(7.20*10^10);

 plot(xarr,phi,'x',x1,anaphi,'-')

 ylim([0 1.5])

 Appendices

74

Appendix B-3

%Upwind scheme,1-D convection-diffusion steady state, no source but only

boundary

%condition

%Author : Taewook Kim

%LINKEDIN : www.linkedin.com/in/kimtw

%GITHUB : github.com/Kimtaewookcode

%Email : kimtaewook87@gmail.com

%Ref:"An introduction to Computational Fluid Dynamics:HKversteeg and

%WMalalasekera example 5.2

%%%%%%%%

clear

clc

clf

L=1;%[m] length of geometry

%rho=1;%[kg/m3]

ksi=0.1;%[kg/ms]

u=2.5;%[m/s]%2.5;

ngrid=20;%numberof grid%20,5

dx=L/ngrid;%delta x

F=2.5;%coefficient

D=ksi/dx;%coefficient

phi0=1;%boundary condition at x=0

phil=0;%boundary condition at x=L

%%%%%%%%

array=zeros(ngrid);

bound=zeros(ngrid,1);

%%%%%%%%%

for i=1:ngrid

 if i==1

 aw=0;

 ae=D;

 sp=-(2*D+F);

 ap=aw+ae-sp;

 su=-sp*phi0;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 elseif i<ngrid

 aw=D+F;

 ae=D;

 sp=0;

 ap=aw+ae-sp;

 su=0;%no source

 array(i,i-1)=-aw;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 else

 aw=D+F;

 ae=0;

 sp=-(2*D);

 ap=aw+ae-sp;

 su=-sp*phil;

 array(i,i-1)=-aw;

 Appendices

75

 array(i,i)=ap;

 bound(i,1)=su;

 end

end

 phi=array\bound;

 xarr=zeros(ngrid,1);

 for j=1:ngrid

 xarr(j,1)=dx/2+dx*(j-1);

 end

 %%%%%%%analytical

 dx1=dx/10;

 x1=[0:dx1:L];

 anaphi=1+(1-exp(25*x1))/(7.20*10^10);

 plot(xarr,phi,'x',x1,anaphi,'-')

 Appendices

76

Appendix B-4

%Second order upwind scheme,1-D convection-diffusion steady state, no

source but only boundary

%condition

%Author : Taewook Kim

%LINKEDIN : www.linkedin.com/in/kimtw

%GITHUB : github.com/Kimtaewookcode

%Email : kimtaewook87@gmail.com

%Ref:"Lars Davidson: Numerical Methods for Turbulent Flow chapter5

%%%%%%%%

clear

clc

clf

L=1;%[m] length of geometry

%rho=1;%[kg/m3]

ksi=0.1;%[kg/ms]

u=2.5;%[m/s]%2.5;

ngrid=20;%numberof grid%20,5

dx=L/ngrid;%delta x

F=2.5;%coefficient

D=ksi/dx;%coefficient

phi0=1;%boundary condition at x=0

phil=0;%boundary condition at x=L

%%%%%%%%

array=zeros(ngrid);

bound=zeros(ngrid,1);

%%%%%%%%%

for i=1:ngrid

 if i==1

 aw=0;

 ae=D;

 ap=3/2*F+3*D;

 su=(3/2*F+2*D)*phi0;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 elseif i==2

 aw=D+2*F;

 ae=D;

 ap=3/2*F+2*D;

 su=-F/2*phi0;%no source

 array(i,i-1)=-aw;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 elseif i<ngrid

 aw=D+2*F;

 ae=D;

 ap=3/2*F+2*D;

 aww=-F/2;

 su=0;%no source

 array(i,i-2)=-aww;

 array(i,i-1)=-aw;

 array(i,i)=ap;

 array(i,i+1)=-ae;

 bound(i,1)=su;

 Appendices

77

 else

 aw=D+2*F;

 ae=0;

 ap=3/2*F+3*D;

 aww=-F/2;

 su=2*D*phil;

 array(i,i-2)=-aww;

 array(i,i-1)=-aw;

 array(i,i)=ap;

 bound(i,1)=su;

 end

end

 phi=array\bound;

 xarr=zeros(ngrid,1);

 for j=1:ngrid

 xarr(j,1)=dx/2+dx*(j-1);

 end

 %%%%%%%analytical

 dx1=dx/10;

 x1=[0:dx1:L];

 anaphi=1+(1-exp(25*x1))/(7.20*10^10);

 plot(xarr,phi,'x',x1,anaphi,'-')

 Appendices

78

Appendix B-5

%SIMPLE algorithm,2-D nozzle steady state,

%Author : Taewook Kim

%LINKEDIN : www.linkedin.com/in/kimtw

%GITHUB : github.com/Kimtaewookcode

%Email : kimtaewook87@gmail.com

%Ref:"An introduction to Computational Fluid Dynamics:HKversteeg and

%WMalalasekera example 6.2

%%%%%%%%

clear all

clc

clf

rho=1;%density

L=2;%length of geometry

nnode=5;%numberof node

nnodev=nnode-1;%number of cell

dx=L/nnodev;%delta x, uniform

AA=0.5;%Area at A

AE=0.1;%Area at E

iteration=100;%numberof maximum iteration

tor=10e-05;%maximum sum of residual

und=0.8;%underrelaxation factor

xdarrp=zeros(1,nnode);%matrix of distance for pressure points

for i=1:nnode

xdarrp(1,i)=-dx+dx*i;%matrix of x distances for pressure points

end

Axp=zeros(1,nnode);%Areas of xdarrp

Axp=0.5-(AA-AE)/L*xdarrp;

xdarrv=zeros(1,nnodev);%matrix of x distances for velocity points

for i=1:nnodev

xdarrv(1,i)=xdarrp(1,i)+dx/2;

end

Axv=0.5-(AA-AE)/L*xdarrv;%matrix of areas of velocity points

p0=10;%pressure at the inlet[pa]

pE=0;%pressure at the outlet

mdot=1;%[kg/s]

u_ini=mdot/rho./Axv;

%%%%psuedo initial velocity

u_ini_p=mdot/rho./Axp;

p_ini=p0-p0/L*xdarrp;%%%%p guess-linear guess

d=zeros(1,nnodev);%parameter that is used for pressure corrector

%%%%%

array=zeros(nnodev);

bound=zeros(nnodev,1);

residuals=zeros(1,nnodev);

%%%%%

for j=1:iteration

for i=1:nnodev

 if i==1

 Fw=rho*u_ini_p(1,i)*Axp(1,i);

 Fe=rho*(u_ini(1,i)+u_ini(1,i+1))/2*Axp(1,i+1);

 aW=0;

 aE=0;

 aP=Fe+Fw*0.5*(Axv(1,i)/Axp(1,i))^2;

 Su=(p0-p_ini(1,i+1))*Axv(1,i)+Fw*Axv(1,i)/Axp(1,i)*u_ini(1,i);%u_ini

is the velocity at previous iteration

 d(1,i)=Axv(1,i)/aP;

 Appendices

79

 array(i,i)=aP;

 array(i,i+1)=-aE;

 bound(i,1)=Su;

 residuals(1,i)=abs(aP*u_ini(1,i)-Su);

 elseif i<nnodev

 Fw=rho*(u_ini(1,i-1)+u_ini(1,i))/2*Axp(1,i);

 Fe=rho*(u_ini(1,i)+u_ini(1,i+1))/2*Axp(1,i+1);

 aW=Fw;

 aE=0;

 aP=aW+aE+(Fe-Fw);

 Su=(p_ini(1,i)-p_ini(1,i+1))*Axv(1,i);

 d(1,i)=Axv(1,i)/aP;

 array(i,i-1)=-aW;

 array(i,i)=aP;

 array(i,i+1)=-aE;

 bound(i,1)=Su;

 residuals(1,i)=abs(aP*u_ini(1,i)-aW*u_ini(1,i-1)-Su);

 else

 Fw=rho*(u_ini(1,i-1)+u_ini(1,i))/2*Axp(1,i);

 Fe=mdot;

 aW=Fw;

 aE=0;

 aP=aW+aE+(Fe-Fw);

 Su=(p_ini(1,i)-p_ini(1,i+1))*Axv(1,i);

 d(1,i)=Axv(1,i)/aP;

 array(i,i-1)=-aW;

 array(i,i)=aP;

 bound(i,1)=Su;

 residuals(1,i)=abs(aP*u_ini(1,i)-aW*u_ini(1,i-1)-Su);

 end

end

 u=array\bound;%%%%new velocity%%%%%

 %%%%pressure corrector

 arrayp=zeros(nnode-2,nnode);

 boundp=zeros(nnode-2,1);

 for i=2:nnode-1

 aW=rho*d(1,i-1)*Axv(1,i-1);

 aE=rho*d(1,i)*Axv(1,i);

 Fw=rho*u(i-1)*Axv(1,i-1);

 Fe=rho*u(i)*Axv(1,i);

 aP=aW+aE;

 b=Fw-Fe;

 arrayp(i-1,i-1)=-aW;

 arrayp(i-1,i)=aP;

 arrayp(i-1,i+1)=-aE;

 boundp(i-1,1)=b;

 end

arrayp(:,[1,nnode])=0;%pressure correction at the first node and last node

is 0

pcorr=arrayp\boundp;%%correction pressure

p=p_ini+pcorr';%%corrected pressure

for i=1:nnodev

 Appendices

80

 u(i,1)=u(i,1)+d(1,i)*(pcorr(i,1)-pcorr(i+1,1));%corrected velocity

end

p(1,1)=p0-0.5*rho*(u(1,1)*Axv(1,1)/Axp(1,1))^2;%corrcted pressure at the

first node

%underrelaxation

u_ini=u'*und+u_ini*(1-und);

p_ini=p*und+p_ini*(1-und);

%%%%%%%

mdot=rho*u_ini(1,1)*Axv(1,1);

u_ini_p=mdot/rho./Axp;%u_ini_p updated

resi=sum(residuals(:));%sume of residuals

if resi<tor

 disp(j)

 break%simulation stops when resi is smaller than tor, and shows

iterations

end

end

disp(mdot)

xber= [0 : 0.01: 2];

Aber=0.5-(0.5-0.1)/L*xber;

mreal=((2*(p0-0)*(rho*AE)^2)/rho)^0.5;

preal=p0-(0.5*rho*mreal^2)./((rho*Aber).^2);

vreal=mreal./Aber/rho;

%plot(xdarrv,mdot,'x-',xdarrv,mreal,'.-')

plot(xdarrp,p_ini,'x-',xber,preal,'.-')

xlim([0 2])

figure;plot(xdarrv,u_ini,'x-',xber,vreal,'.-')

xlim([0 2])

 Appendices

81

Appendix B-6

%% 2D cone injection with random walk model

% Random walk model's isotropic behavior is applied in a cone injection.

% The injection describes the cone injection that is used in CFD model

% (ANSYS Fluent)

% Author: Kim Taewook

% Linkedin : https://www.linkedin.com/in/taewook-kim/

% GITHUB : github.com/Kimtaewookcode

% Email : kimtaewook87@gmail.com

clear

clf

clc

hold on;

steps = 100;

timestep=0.01;%s

trials=10;

x=zeros(trials, steps);

y=zeros(trials, steps);

J=0;

swirl=0;%0.3;%m/s

coneangle=13;%degree

conev=1.87;%m/s

xconev=conev*cosd(coneangle);

yconev=conev*sind(coneangle);

k=0.5;

k2=sqrt(k*2/3);

for t = 1:trials

for i=1:(steps-1)

J=rand;

if J<0.25

%x(t,i+1)=x(t,i)+(-k2*timestep);

%y(t,i+1)=y(t,i)+(k2*timestep);

x(t,i+1)=x(t,i)+(-k2+xconev)*timestep;

y(t,i+1)=y(t,i)+(k2+yconev)*timestep;

elseif J<0.5

%x(t,i+1)=x(t,i)+(k2*timestep);

%y(t,i+1)=y(t,i)+(k2*timestep);

x(t,i+1)=x(t,i)+(k2+xconev)*timestep;

y(t,i+1)=y(t,i)+(k2+yconev)*timestep;

elseif J<0.75

%x(t,i+1)=x(t,i)+(-k2*timestep);

%y(t,i+1)=y(t,i)+(-k2*timestep);

x(t,i+1)=x(t,i)+(-k2+xconev)*timestep;

y(t,i+1)=y(t,i)+(-k2+yconev)*timestep;

else

%x(t,i+1)=x(t,i)+(k2*timestep);

%y(t,i+1)=y(t,i)+(-k2*timestep);

x(t,i+1)=x(t,i)+(k2+xconev)*timestep;

y(t,i+1)=y(t,i)+(-k2+yconev)*timestep;

end

end

 Appendices

82

coneangle=coneangle-2.6;

xconev=conev*cosd(coneangle);

yconev=conev*sind(coneangle);

plot(x(t,:),y(t,:),'Color', [rand rand rand])

plot(x(t,100),y(t,100), 'ko')

%xlim([0 0.05])

%ylim([-0.05 0.05])

xlim([0 2])

ylim([-0.45 0.45])

end

%title('trajectories by instantaneous velocity(random walk) ');

title('trajectories by mean velocity+instantaneous velocity(random walk)

');

xlabel('X Displacement[m]');

ylabel('Y Displacement[m]');

 Appendices

83

Appendix B-7

/* MODIFIED SPHERICAL DRAG (REF:Clift R., Grace J.R., Weber M.E. Bubbles,

Drops, and Particl P112)

ANSYS Fluent UDF

AUTHOR : KIMTAEWOOK

LINKEDIN : www.linkedin.com/in/kimtw

GITHUB : github.com/Kimtaewookcode

Email : kimtaewook87@gmail.com

*/

#include "udf.h"

DEFINE_DPM_DRAG(particle_drag_force, Re, p)

{

 real w, drag_force;

 if (Re < 0.01)

 {

 drag_force=9/64*Re+18.0;

 return (drag_force);

 }

 else if (Re < 20.0)

 {

 w = log10(Re);

 drag_force = 18.0 + 2.367*pow(Re,0.82-0.05*w) ;

 return (drag_force);

 }

 else if (Re < 260.0)

 {

 drag_force = 18.0 + 3.483*pow(Re,0.6305) ;

 return (drag_force);

 }

 else if (Re < 1500.0)

 {

 w = log10(Re);

 drag_force = 44.0048*pow(Re,-1.1242+0.1588*w) ;

 }

 else if (Re < 12000.0)

 {

 w = log10(Re);

 drag_force = 0.003491*3/4*pow(Re,3.5558-0.9295*w+0.1049*pow(w,2)) ;

 }

 else if (Re < 44000.0)

 {

 w = log10(Re);

 drag_force = 0.01207*3/4*pow(Re,1.6370-0.0636*w) ;

 }

 else if (Re < 338000.0)

 {

 w = log10(Re);

 drag_force = 0.00004581*3/4*pow(Re,2.5809-0.1546*w) ;

 }

 else if (Re < 400000.0)

 {

 w = log10(Re);

 drag_force = 3/4*pow(Re,29.78-5.3*w) ;

 }

 Appendices

84

 else if (Re < 1000000.0)

 {

 w = log10(Re);

 drag_force = 3/4*pow(Re,0.1*w-0.49) ;

 }

 else

 {

 w = log10(Re);

 drag_force = 3/4*(0.19*Re-80000) ;

 }

}

 Appendices

85

Appendix B-8

/* TOMIYAMA'S DRAG

provided by ANSYS CUSTOMER PORTAL

*/

#include "udf.h"

#define drag_surface_tension 0.072 /* N/m */

real

calc_cap_drag(real Re)

{

return 72./ Re;

}

real

calc_sphere_drag(real Re)

{

return 24.*(1.+0.15*pow(Re,0.687))/Re;

}

real

calc_ellipse_drag(Tracked_Particle *p)

{

cphase_state_t *c = &(p->cphase); /* cell information at particle

location*/

real drag;

real Eo;

Eo = 9.81*(c->rho - P_RHO(p)) * SQR(P_DIAM(p)) / drag_surface_tension;

drag = 8./3. * Eo / (Eo + 4.);

return drag;

}

DEFINE_DPM_DRAG(particle_drag_tomiyama,Re,p)

{

real drag_coef;

real CD_sphere,CD_cap,CD_ellipse;

CD_cap = calc_cap_drag(Re);

CD_sphere = calc_sphere_drag(Re);

CD_ellipse = calc_ellipse_drag(p);

drag_coef = MAX(MIN(CD_sphere,CD_cap),CD_ellipse);

return (18.*drag_coef*Re/24.);

}

 Appendices

86

Appendix C<Boundary condition-OpenFoam>

Appendix C-1< Alpha.water>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object alpha.water;

}

// *

* //

dimensions [0 0 0 0 0 0 0];

internalField nonuniform List<scalar>

939360

(0

0

0

.

.

.

.

1

1

1

1

)

;

boundaryField

{

 outlet

 {

 type inletOutlet;

 inletValue uniform 0;

 value uniform 0;

 }

 wall

 {

 type zeroGradient;

 }

 inlet

 {

 type uniformFixedValue;

 uniformValue constant 1;

 value uniform 1;

 }

}

 Appendices

87

//

//

 Appendices

88

Appendix C-2< epsilon>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object epsilon;

}

// *

* //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 0.001;

boundaryField

{

 inlet

 {

 type fixedValue;

 value $internalField;

 }

 outlet

 {

 type inletOutlet;

 inletValue $internalField;

 value $internalField;

 }

 wall

 {

 type epsilonWallFunction;

 value $internalField;

 }

}

//

//

 Appendices

89

Appendix C-3< k>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object k;

}

// *

* //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 1e-3;

boundaryField

{

 inlet

 {

 type fixedValue;

 value $internalField;

 }

 outlet

 {

 type inletOutlet;

 inletValue $internalField;

 value $internalField;

 }

 wall

 {

 type kqRWallFunction;

 value $internalField;

 }

}

//

//

 Appendices

90

Appendix C-4< nut>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 location "0";

 object nut;

}

// *

* //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

 inlet

 {

 type calculated;

 value uniform 0;

 }

 outlet

 {

 type calculated;

 value uniform 0;

 }

 wall

 {

 type nutkWallFunction;

 value uniform 0;

 }

}

//

//

 Appendices

91

Appendix C-5< p_rgh>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p_rgh;

}

// *

* //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 inlet

 {

 type fixedFluxPressure;

 value uniform 0;

 }

 outlet

 {

 type prghTotalPressure;

 p0 uniform 0;

 value uniform 0;

 }

 wall

 {

 type fixedFluxPressure;

 value uniform 0;

 }

}

// *

* //

 Appendices

92

Appendix C-6< Uair>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format binary;

 class volVectorField;

 object Uair;

}

// *

* //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 inlet

 {

 type uniformFixedValue;

 uniformValue table

 (

 (0 (0 0 1.868))

 (20 (0 0 1.868))

);

 }

 outlet

 {

 type pressureInletOutletVelocity;

 value $internalField;

 inletValue $internalField;

 }

 wall

 {

 type fixedValue;

 value uniform (0 0 0);

 }

}

//

//

 Appendices

93

Appendix D<Constant-OpenFoam>

Appendix D-1<g>

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class uniformDimensionedVectorField;

 location "constant";

 object g;

}

// *

* //

dimensions [0 1 -2 0 0 0 0];

value (0 0 -9.81);

//

//

 Appendices

94

Appendix D-2< particleProperties >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object particleProperties;

}

// *

* //

solution

{

 active true;

 coupled true;

 transient yes;

 cellValueSourceCorrection no;

 maxCo 0.3;

 interpolationSchemes

 {

 rho cell;

 U cellPoint;

 mu cell;

 gradAlpha cellPoint;

 }

 averagingMethod dual;

 integrationSchemes

 {

 U Euler;

 }

 sourceTerms

 {

 schemes

 {

 U semiImplicit 0.8;

 }

 }

}

constantProperties

{

 rho0 1.225;//changed

 alphaMax 0.9;//needtobechanged

}

subModels

 Appendices

95

{

 particleForces

 {

 sphereDrag;

 //WenYuDrag

 //{

 // alphac alphac;

 //}

 gravity;

 interface

 {

 C -10;

 alphaName alpha.water;

 }

 }

 injectionModels

 {

 model1

 {

 type patchInjection;

 massTotal 0.416e1;

 SOI 0;

 parcelBasisType fixed;//mass;

 nParticle 1;

 patchName inlet;

 duration 20;

 parcelsPerSecond 1e3;//1e5;

 U0 (0 0 1.868);//changed

 flowRateProfile constant 1;

 sizeDistribution

 {

 type RosinRammler;

 RosinRammlerDistribution

 {

 minValue 0.0018;

 maxValue 0.0847;

 d 0.0054;//droplet diameter that has the

largest probability

 n 3.5;//from fluent

 }

 }

 }

 }

 dispersionModel stochasticDispersionRAS;//none;addedlibrary and

recompiled

 patchInteractionModel localInteraction;

 localInteractionCoeffs

 {

 patches

 (

 wall

 {

 type rebound;

 e 0.95;

 mu 0.09;

 }

 //base

 Appendices

96

 //{

 // type rebound;

 // e 0.95;

 // mu 0.09;

 //}

 inlet

 {

 type escape;

 }

 outlet

 {

 type escape;

 }

);

 }

 heatTransferModel none;

 surfaceFilmModel none;

 packingModel implicit;

 explicitCoeffs

 {

 particleStressModel

 {

 type HarrisCrighton;

 alphaPacked 0.6;

 pSolid 10.0;

 beta 2.0;

 eps 1.0e-7;

 }

 correctionLimitingMethod

 {

 type absolute;

 e 0.9;

 }

 }

 implicitCoeffs

 {

 alphaMin 0.001;

 rhoMin 1.0;

 applyGravity false;

 applyLimiting false;

 particleStressModel

 {

 type HarrisCrighton;

 alphaPacked 0.9;

 pSolid 5.0;

 beta 2.0;

 eps 1.0e-2;

 }

 }

 dampingModel relaxation;

 relaxationCoeffs

 {

 timeScaleModel

 {

 Appendices

97

 type nonEquilibrium;

 alphaPacked 0.7;

 e 0.8;

 }

 }

 isotropyModel stochastic;

 stochasticCoeffs

 {

 timeScaleModel

 {

 type isotropic;

 alphaPacked 0.7;

 e 0.8;

 }

 }

 stochasticCollisionModel none;

 radiation off;

}

cloudFunctions

[1]

//

//

 Appendices

98

Appendix D-3< transportProperties >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object transportProperties;

}

// *

* //

phases (water air);

water

{

 transportModel Newtonian;

 nu nu [0 2 -1 0 0 0 0] 1e-06;

 rho rho [1 -3 0 0 0 0 0] 1000;

 CrossPowerLawCoeffs

 {

 nu0 nu0 [0 2 -1 0 0 0 0] 1e-06;

 nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

 m m [0 0 1 0 0 0 0] 1;

 n n [0 0 0 0 0 0 0] 0;

 }

 BirdCarreauCoeffs

 {

 nu0 nu0 [0 2 -1 0 0 0 0] 0.0142515;

 nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

 k k [0 0 1 0 0 0 0] 99.6;

 n n [0 0 0 0 0 0 0] 0.1003;

 }

}

air

{

 transportModel Newtonian;

 nu nu [0 2 -1 0 0 0 0] 1.48e-05;

 rho rho [1 -3 0 0 0 0 0] 1.225;//1;

 CrossPowerLawCoeffs

 {

 nu0 nu0 [0 2 -1 0 0 0 0] 1e-06;

 nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

 m m [0 0 1 0 0 0 0] 1;

 n n [0 0 0 0 0 0 0] 0;

 }

 BirdCarreauCoeffs

 {

 nu0 nu0 [0 2 -1 0 0 0 0] 0.0142515;

 Appendices

99

 nuInf nuInf [0 2 -1 0 0 0 0] 1e-06;

 k k [0 0 1 0 0 0 0] 99.6;

 n n [0 0 0 0 0 0 0] 0.1003;

 }

}

sigma sigma [1 0 -2 0 0 0 0] 0.07;

//

//

 Appendices

100

Appendix D-4< turbulenceProperties >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "constant";

 object turbulenceProperties;

}

// *

* //

simulationType RAS;

RAS

{

 RASModel kEpsilon;

 turbulence on;

 printCoeffs on;

}

//

//

 Appendices

101

Appendix E<system-OpenFoam>

Appendix E-1< controlDict >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// *

* //

application MPPICInterFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 20.0;

deltaT 0.01;

writeControl timeStep;//adjustableRunTime;

writeInterval 50;//1;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;//uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep off;

maxCo 1.0;

maxAlphaCo 1.0;

maxDeltaT 0.05;

 Appendices

102

functions

{

 // minMax

 //{

 // type fieldMinMax;

 // functionObjectLibs ("libfieldFunctionObjects.so");

 // outputControl timeStep; //outputTime;

 // fields (U);

 // }

}

//

//

 Appendices

103

Appendix E-2< createPatchDict >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object createPatchDict;

}

// *

* //

pointSync false;

// Patches to create.

patches

(

 {

 // Name of new patch

 name inlet;

 // Type of new patch

 patchInfo

 {

 type patch;

 }

 // How to construct: either from 'patches' or 'set'

 constructFrom set;

 // If constructFrom = set : name of faceSet

 set inlet;

 }

);

//

//

 Appendices

104

Appendix E-3< decomposeParDict >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object decomposeParDict;

}

// *

* //

numberOfSubdomains 4;

method hierarchical;

hierarchicalCoeffs

{

 n (1 1 4);

 delta 0.001;

 order xyz;

}

//

//

 Appendices

105

Appendix E-4< fvSchemes >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSchemes;

}

// *

* //

ddtSchemes

{

 default Euler;

}

gradSchemes

{

 default Gauss linear;

}

divSchemes

{

 default none;

 div(rhoPhi,U) Gauss limitedLinearV 1;//Gauss upwind;

 div(phi,alpha) Gauss vanLeer;

 div(phirb,alpha) Gauss linear;

 div(alphaRhoPhic,k) Gauss upwind;

 div(alphaRhoPhic,epsilon) Gauss upwind;

 div((((alphac*rho)*nuEff)*dev2(T(grad(U))))) Gauss linear;

 div(phiGByA,kinematicCloud:alpha) Gauss linear;

}

laplacianSchemes

{

 default Gauss linear corrected;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

fluxRequired

 Appendices

106

{

 default no;

 p_rgh;

 pcorr;

 alpha.water;

}

//

//

 Appendices

107

Appendix E-5< fvSolution >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object fvSolution;

}

// *

* //

solvers

{

 "alpha.water.*"

 {

 nAlphaCorr 2;

 nAlphaSubCycles 2;

 cAlpha 1;

 MULESCorr yes;

 nLimiterIter 2;

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-7;//1e-7;

 relTol 0;

 maxIter 1000;

 }

 pcorr

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-5;

 relTol 0;

 }

 p_rgh

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-07;

 relTol 0.05;

 }

 p_rghFinal

 {

 $p_rgh;

 relTol 0;

 Appendices

108

 }

 "(U|k|epsilon).*"

 {

 solver smoothSolver;

 smoother symGaussSeidel;

 tolerance 1e-06;

 relTol 0;

 }

 kinematicCloud:alpha

 {

 solver GAMG;

 tolerance 1e-05;

 relTol 0.1;

 smoother GaussSeidel;

 cacheAgglomeration true;

 nCellsInCoarsestLevel 10;

 agglomerator faceAreaPair;

 mergeLevels 1;

 }

}

PIMPLE

{

 momentumPredictor no;

 nOuterCorrectors 1;

 nCorrectors 3;

 nNonOrthogonalCorrectors 0;

}

relaxationFactors

{

 equations

 {

 ".*" 1;

 }

}

//

//

 Appendices

109

Appendix E-6< setFieldsDict >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object setFieldsDict;

}

// *

* //

defaultFieldValues

(

 volScalarFieldValue alpha.water 0

);

regions

(

 boxToCell

 {

 box (-4.5 -3.5 0) (4.5 3.5 6.67);

 fieldValues

 (

 volScalarFieldValue alpha.water 1

);

 }

);

//

//

 Appendices

110

Appendix E-7< topoSetDict >

/*--------------------------------*- C++ -*--------------------------------

--*\

| ========= | |

| \\ / F ield | OpenFoam: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1606+ |

| \\ / A nd | Web: www.OpenFoam.com |

| \\/ M anipulation | |

*---

--*/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object topoSetDict;

}

// *

* //

actions

(

 {

 name inlet;

 type faceSet;

 action new;

 source boxToFace;

 sourceInfo

 {

 box (-0.17 -0.17 -0.03)(0.17 0.17 0.001);

 }

 }

 {

 name inletZone;

 type faceZoneSet;

 action new;

 source setToFaceZone;

 sourceInfo

 {

 faceSet inlet;

 }

 }

);

//

//

