
www.usn.no

FMH606 Master's Thesis 2017
Industrial IT and Automaࢢon

Discrete Events Modelling of a Person
Behaviour at Home

Badreddine Cherradi

Faculty of Technology, Natural Sciences and Mariࢢme Sciences
Campus Porsgrunn

http://www.usn.no

www.usn.no

Course: FMH606 Master’s Thesis 2017
Title: Discrete Events Modelling of a Person Behaviour at Home

Pages: 76
Keywords: Behaviour Modelling, Elderly, Routine, Agents, Fuzzy Logic

Student: Badreddine Cherradi
Supervisor: Carlos F. Pfeiffer

External partner:
Availability: Open

Approved for archiving:
(Carlos F. Pfeiffer)

Summary:
Modeling human behaviour remains a challenge for both computing sciences and the human-
ities. In this context, we worked on a routine simulation program and a human behaviour
analysis program. The simulation is based on the definition of an activity as the combin-
ation of several states (Position, Room, Level of activity, etc.). The addition of the time
dimension makes it possible to decide a behaviour. A simulator allows us to fill a data-
base corresponding to one that would been established by means of cameras and sensors.
The analysis program then uses an EventHandler to allow a system of Agents to analyze
the behaviours that are introduced into the database by the simulator. Once the data are
collected by these Agents, fuzzy logic and exponential distribution are used to establish a
judgment on the normality of a behaviour. Several routines were generated using the sim-
ulator to populate the database in order to test the analysis program. The alarms output
were those expected based on the behaviours input. In the long term, our study represents
a step towards providing a powerful tool for the assistance of elderly people living alone.

The University College of Southeast Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no

Preface

This master thesis has been written to fulfill the graduation requirements of the Master
degree in Industrial Engineering Sciences at the Institut Supérieur Industriel De Bruxelles
(ISIB). It was carried out in the ERASMUS program at the University College of South-
east Norway (HSN) from February to June 2017.

This thesis follows the path of Carlos F. Pfeiffer and Nils-Olav Skeie’s research project on
modelling human behaviour for smart houses. The theoretical aspect that mingles with
computer codes is essential for me. Through this work, I have tried to maintain a certain
balance between “what is ideal” and “what is realistic”.

I hope you enjoy your reading.

Porsgrunn, 14th May 2017

Badreddine Cherradi

5

6

Contents

Preface 5

Contents 8
List of Figures . 10
List of Tables . 11

1 Introducࢢon 15
1.1 Project Description . 16
1.2 Document structure . 19

2 Theoreࢢcal background 21
2.1 Related Work . 21

2.1.1 Hidden Markov Models . 21
2.1.2 Fuzzy Logic . 22
2.1.3 Frequent Pattern Mining . 23
2.1.4 Recurrent Neural Network . 23

2.2 Stochastic methods for discrete events modelling 24
2.2.1 Hidden Markov Models . 24
2.2.2 Agent . 27
2.2.3 Fuzzy Logic . 30

3 Methodology 33
3.1 Introduction . 33
3.2 Development Process . 33
3.3 States . 34
3.4 Simulating a morning routine . 35

3.4.1 Activity and Behavior . 35
3.4.2 Database . 36
3.4.3 Timer . 36
3.4.4 Codification . 39
3.4.5 Variation in the routine . 39
3.4.6 Cache database . 41

3.5 Analysis . 42
3.5.1 Introduction . 42
3.5.2 User Interface . 42

7

Contents

3.5.3 EventHandler . 43
3.5.4 Agents . 45
3.5.5 Classification . 51

4 Results 53
4.1 Testing module . 53
4.2 Situation 1 : Normal routine . 55
4.3 Situation 2 : Irrelevant behaviour time . 56
4.4 Situation 3 : Abnormal behaviour time . 57

5 Future work 59
5.1 User-friendly routine adding system . 59
5.2 Sequences analysis . 60
5.3 Frequency of behaviour occurrence . 62

6 Conclusion 63

References 65

Appendices 69

8

List of Figures

1.1 Monitoring system architecture . 17
1.2 Example of a situation . 17
1.3 Example of a database . 18

2.1 Parameters of a HMM . 25
2.2 Graphical model of HMM . 25
2.3 Trellis diagram for the Viterbi algorithm 26
2.4 Schematic diagram of a simple reactive Agent 27
2.5 Schematic diagram of a BDI Agent. 28
2.6 Agent interaction with the environment . 30
2.7 Fuzzy Inference . 32

3.1 Comparison of Waterfall and Scrum . 33
3.2 States’ values . 34
3.3 Simple routine . 35
3.4 C# code for the routine . 35
3.5 Table Activity . 36
3.6 UI of the Simulator . 36
3.7 Behaviour switch . 37
3.8 Day switch . 37
3.9 Flowchart of the routine code . 38
3.10 Codification of the state Position . 39
3.11 Behaviour transition . 39
3.12 Modified routine . 40
3.13 Database Cache . 41
3.14 UI of the analysis program . 42
3.15 C# code of the lists implementation . 43
3.16 C# of the delegates implementation . 44
3.17 Plot of the exponential survival function 48
3.18 C# code to use the survival function . 49
3.19 Plot of the membership functions . 52
3.20 Fuzzy rules . 52

4.1 State indicator of the simulator on the analysis program 53
4.2 C# testing code . 54

9

List of Figures

4.3 UI Testing module . 54
4.4 Result of the first test . 55
4.5 Rules’ Fire Strenght (Agent 1) . 55
4.6 Rules’ Fire Strenght (Agent 2) . 55
4.7 Result of the second test . 56
4.8 C# code of the routine variation . 57
4.9 Result of the third test . 57

5.1 Analysis program architecture . 59
5.2 CodeBook . 60
5.3 C# code for the HMM implementation . 61

10

List of Tables

2.1 Zadeh MIN/MAX set of operators . 31

3.1 Example 1 of collected values . 49
3.2 Example 2 of collected values . 49

4.1 Input and output testing values . 54

5.1 Likelihood of generated samples . 61

11

12

Nomenclature

Symbol Explanation

ADLs Activities of Daily Living
SVMs Support vector machines
RNN Recurrent neural network
BDI Beliefs, Desire and Intention
MAS Multi-Agent System
RNG Random Number Generator
CSP Cryptographic service provider
DBMS Database management system
GPL General Public License
CRUD Create, read, update, and delete
UI User interface
GUI Graphical user interface
AOP Agent-oriented programming
SOA Service-oriented architecture
ACL Agent Communication Language
JADE Java Agent Development Framework
SOAP Simple Object Access Protocol
REST Representational State Transfer
WSDL Web Services Description Language
FUSION@ Flexible User and ServIces Oriented multi-ageNt Architecture
CSV Comma-separated values

13

14

1 Introducࢢon

The study of human behaviour has always been a major concern for scientists and great
thinkers since antiquity. The History of Psychoanalysis, examining what lies beneath the
surface of human behaviour, begins with the work of Sigmund Freud in the early 19th
century. Behaviorism founded by John Broadus Watson in 1913 scientifically study the
behaviour of living organisms and their relations with the environment. The fundamental
proposition of behaviourism is that any behaviour is the result of learning [1].

At the same time that behaviourists focus their research on learning behaviours, etholo-
gists, scientists who study animals in their natural environments, start to take an interest
in instinct. They consider that behaviour is instinctive when it is innate [2]. Behaviorists
objected this idea and presumed instinct is only prenatal learning. For example, chicks
recognizing from their birth the call of their mother is due to the fact that, already in
the egg, chicks become familiar with the voice of their mother. A wide array of human
behaviour are based on an instinctual nature that are involuntary such as breathing or
primitive reflexes in newborn [3]. A modern definition of instinct might be: a largely
inheritable and unalterable tendency of an organism to make a complex and specific re-
sponse to environmental stimuli without involving reason [4].

Psychoanalytic theories have introduced a dynamic conception of mental life. They have
made it possible to consider the symptom of an illness as a function of past history
considering the successions of different situations and their possible reappearance. The
cognitivist current, coming from work on logic and mathematics and the development
of computer sciences, aims to develop machines that have the ability to virtually reason
like a human brain. It considers the brain as similar as a computer working by pro-
cessing information and communicating with the environment by manipulating different
symbols.

A human collects and stores information from the environment. He analyzes this informa-
tion and then takes it into account in his decision-making process [5]. Another important
part of the consistency between a computer and a human brain is the concept of memory.
In 1984, Douglas L. Hintzman developed an episodic memory model called MINERVA 2.
This project was an attempt to simulate the process by which memory can generate ab-
stract representations from unmatched and contextualized experiences. The model makes
it possible to apply frequency judgment which mean the capability of judging if an item
is “old” or “new” based on the frequency of it’s appearance in the memory [6].

15

1 Introduction

With the recent technological breakthroughs in helping people, there is an increasing
amount of research on human behaviour in the field of artificial intelligence. The emer-
gence of artificial intelligence seeking to reconstitute human intelligence within digital
systems, enabled the developing of simulation tools that allows the traceability of phe-
nomena, reiteration of actions and key moments. Moreover, the possibility of studying
non-existent cases allows us to make the unpredictable aspect of the human behaviour
appear within a digital model [7].

Human behaviour is characterized by a large number of internal and external interactions
with the environment. Based on these interactions, humans do not always make rational
decisions [8]. However, human behaviour can be described by human routines which
can be simply defined as a sequence of actions regularly followed [9]. Routines can be
seen as different actions performed in particular situations that caused those actions.
Capturing routines from a human everyday life would allow us to partially model a system
representing human behaviour[10].

In order to build a model of human’s routine, a necessary first step is the gathering of
all the information needed. Informations such as images, movement data, temperature
and humidity are acquired through cameras and sensors. These informations can be
analyzed to predict the position, state or activity of a person. The key challenge here
is the extracting of a routine pattern from a big dataset of informations. An important
aspect in this study is the routine variations that is part of the routine behaviour. Several
questions have to be answered such as : When does the routine begin? When does it stop?
Is there a variation in the routine we are analyzing?

Commercial system as Care Innovations[11] propose a system called QuietCare’s that
uses multiple sensors located in different places such as doors, refrigerators, etc. The
datas collected from these sensors are used in the their QuietCare’s algorithm that learns
activity patterns and provides alerts to caregivers when an abnormal situation occurs.

1.1 Project Descripࢢon

Aging people living alone are more vulnerable to accidents and may not be able to ask
for assistance. We consider that to be able to live independently at home, a person must
complete Activities of Daily Living (ADLs). Monitoring the completion of the ADLs
would allow us, with the help of an adequate human behaviour model, to be notified of a
change of behaviour or an abnormal situation[12]. The application we will be focusing on is
part of a research project led by Carlos F. Pfeiffer, Veralia Gabriela Sánchez and Nils-Olav
Skeie[13]. The system they propose is an automatic non-invasive monitoring system of the
behaviour of a person living alone. Currently, a prototype system is under construction
at the University College of Southeast Norway. Figure 1.1 shows the monitoring system
architecture of the main project.

16

1.1 Project Description

Figure 1.1: Monitoring system architecture

A three room apartment lab is equipped with sensors and cameras that acquire position
and calculate activity levels [13]. Figure 1.2 shows an example of a commonplace situation
in this three room apartement: A person enters his home at noon and directly goes to
the bathroom. To reach the bathroom, he has to pass through the main hall and the
bedroom.

Bathroom
Bedroom

Main hall
Sensor

The sensor detects the entrance in the Main Hall The sensor detects the entrance in the Bedroom
The sensor detects the entrance in the Bathroom

The sensor detects a presence in front of the sink

Figure 1.2: Example of a situation

First of all, we must define the Person Status which is characterized by a time stamp,
the room (Hall, Bedroom, Bathroom and Unknown) where the person is and his/her
position (Standing, Lying, Sitting and Unknown). More states are defined such as the
Room Status, the Room section state and the External Status. All these states at a given
time define the state of the system. Second, we define an Activity as a set of system states.
The combination of different states are mapped to an activity. Furthermore, we express

17

1 Introduction

a Simple behaviour as a single activity that lasted a certain period of time. Finally, a
Complex behaviour is used to describe a sequence of simple behaviours.

We will implement a system simulator that populates a database in order to test different
behaviour modelling techniques. The database will be populated by data that a sensor
could provide. Those data will be then mapped into discrete state variables. Let us
consider that we only populate the database with the room where the person is located,
the position and the time. Then a possible database would be created as shown in
Figure 1.3.

ROOM POSITION TIME

 Hall Standing 2017-02-11
 12 : 27 : 00
 Hall Standing 2017-02-11
 12 : 27 : 15

Bedroom Standing 2017-02-11
 12 : 27 : 30
Bathroom Standing 2017-02-11
 12 : 27 : 45
Bathroom Standing 2017-02-11
 12 : 28 : 00
Bathroom Standing 2017-02-11
 12 : 28 : 15

 Unknown Unknown 2017-02-11
 12 : 26 : 45

Activity
Simple behavior

Complex behavior

Figure 1.3: Example of a database

In order to build a model for behaviour analysis and classification, a preprocessing step is
needed. We will then manipulate these data using different statistical tools and stochastic
methods and then proceed to the behaviour classifying step and create an alert system.

18

1.2 Document structure

1.2 Document structure

This thesis is organized as follows:

• The Theoretical background chapter presents a literature review in order to evaluate
previous research on the human behaviour in a smart house topic. Then, some
theory about stochastic method for discrete events modelling is given.

• The Methodology chapter outlines methods we used to develop our simulator and
analysis program.

• The Result chapter presents findings of different situations by testing our analysis
program.

• The Future work chapter describes possible improvements to the continuity of the
project.

• The Conclusion chapter sums up the development of this work and the achievement
made.

19

20

2 Theoreࢢcal background

2.1 Related Work

Researchers have reviewed a wide range of methods to model human behaviour. Their
approaches differ by the type of sensors used and which kind of data is collected. They
choose which pattern is recognized and propose a method to train a model that will use the
recognized pattern in order to predict the behaviour of an individual. We will describe in
this section four papers that we selected for their relevance and methodological differences
dealing with ADLs recognition in a smart house.

2.1.1 Hidden Markov Models

Detecting Human Behavior Models From Multimodal Observation in a Smart Home [14]

The experiments described in this paper take place in a room equipped with microphone
arrays and video cameras. A 3-D real-time robust tracking system is able to detect and
track objects in these video images captured from the cameras. Different postures can
be detected using support vector machines (SVMs). To optimize the recognition of the
posture, the number of classes has been reduced by the author. The basic postures
detected are “standing”, “lying down” and “sitting”. The main goal of the SVM is to
find the hyperplane that separate the different classes. Classification is simply done by
determining on which side of the hyperplane is the vector we are testing. The author uses
a “one-against-one” classification meaning that the testing data are compared with two
classes and the score of the winning one is incremented. We associate the testing data
to the class with the highest score. In addition to postures, the author uses properties
as speed and interaction distance to object in the room to determine additional classes.
These classes are considered as “individual roles”. From the individual roles, ambient
sound and speech different situation are considered: siesta, individual work, introduction,
aperitif, presentation and game. Hidden Markov Models are used to learn these different
situations. The Baum–Welch algorithm is used to find the unknown parameters of the
Hidden Markov Models. The Viterbi algorithm is then used to find the most likely state
sequences and their probabilities for a given observation sequence. Several recordings
were done involving up to two persons. The offline situation (only involving classification
from learned situations) have led to good results. Finally, the author conducted series of

21

2 Theoretical background

detection of situations within the long recordings. The author highlights the fact that the
transitions between situations need to be correctly detected.

2.1.2 Fuzzy Logic

Human Activities of Daily Living Recognition Using Fuzzy Logic For Elderly Home Mon-
itoring [15]

Fuzzy Logic is the decision module of the activities of daily living’s recognition system
described in this paper. Fuzzy Logic is used to map knowledge onto fuzzy relationships
to avoid manipulating complex probabilistic tools. The author motivates the use of fuzzy
logic using two main reasons. First, the imprecision and imperfection of the data collected
by the different sensors and second, the well-known utility in pattern recognition. The
values of the linguistic variables used in this paper for the application of fuzzy logic
are adjectives and adverbs of language. Numerical scale of length are replaced by fuzzy
labels as “very small”, “small”, “medium”, “large” and “extra large”. Fuzzy logic is very
useful to describe syntactic data (well-defined format), numerical and contextual data
or conceptual data. Fuzzy c-mean algorithm and fuzzy ISODATA[16] algorithm can be
used to do clustering. The author mentions the fact that the design of a “discriminator”
would be done to produce a fuzzy partition in order to describe the data. Fuzzy logic
reflects human reasoning and human language. The first step of the fuzzy logic is called
“fuzzification”. A numerical input is translated into a fuzzy variable. Using a triangular
membership function this fuzzy variable gets a membership degree to a fuzzy set. The
inference system build up fuzzy logic rules. A fuzzy rule has the following structure: “IF
linguistic variable IS input fuzzy variable (AND/OR) … then linguistic variable is output
fuzzy variable.” The last step of the fuzzy logic system is the defuzzyfication which is
the translation of the output fuzzy variable generated by the fuzzy rule into a real value.
The author used sound to define fuzzy sets as for example “object sound” composed by
“chair”, “table” and “step foot”. The input activity is described by four fuzzy sets that are
“immobile”, “rest”, “normal” and “agitation”. The output activity is described by sets as
“Sleeping”, “Getting up”, etc. The next step is the use of a domain expert knowledge of
the activities with the aim of obtaining fuzzy rules. The author and his team developed a
software that allows the writing of fuzzy rules and the configuration of the defuzzyfication
method. At the end, several tests were realized and rules were added when a detection
was missed.

22

2.1 Related Work

2.1.3 Frequent Pa�ern Mining

A Frequent Pattern Mining Approach for ADLs Recognition in Smart Environments [17]

In this paper, an approach based on frequent pattern mining to recognize ADLs is pro-
posed. A pattern mining has as purpose the explanation of how individuals of event
sequences behave. In this case, events corresponds to the states of the sensors in the
room. A sequence is an ordered list of events that can be written as e1, e2, …, em (where
m is the number of events). An event correspond to a sensor state and is associated with
a time-stamp Frequent pattern mining allows us to discover patterns called episodes. An
episode is composed of events with almost similar timestamps. The frequency of an epis-
ode is defined by how often this episode occurs in an event sequence. A first parsing of
all the sequences in the dataset D is done by using the Apriori algorithm. The extracted
frequent episodes are then mapped with activity models. Considering that human per-
form activities in a hierarchically structure, the author decomposed the activities in task,
subtasks and elementary tasks that cannot be decomposed. An activity can be described
by different episodes composed with the same events but in different order. The author
compared his approach with the Hidden Markov Model. The results obtained with the
Frequent Pattern Mining Approach were better than those obtained using the Hidden
Markov Model. The author pointed to the fact that the activities associated to a great
number of sensor are recognized with higher accuracy.

2.1.4 Recurrent Neural Network

Recurrent Neural Network for Human Activity Recognition in Smart Home [18]

In this article, recurrent neural network (RNN) is used for human activities recognition.
The research project CASAS smart home project is led at the Washington State Univer-
sity. The first step consisted in providing training data to the algorithm. The sensors
collected 10 activities as for example “Bed to toilet”, “Breakfast” or “Dinner”. The data
collected are completed with the date, time, sensor ID, sensor value and a label. The
recurrent neural network used is made of three layers: an input layer, a hidden layer
and an output layer. The recurrent neural network algorithm aims to minimize the error
function by modifying weight coefficients. The neurons used in the input layer, hidden
layer and output layer were 6, 10 and 10 respectively. Finally, the results obtained by
the RNN looked better compared to those obtained by the HMM and the naïve Bayes
classifier.

23

2 Theoretical background

2.2 Stochasࢢc methods for discrete events modelling

In this section we will describe different stochastic methods to model activities in order
to be used to model human behaviour. Stochastic process is defined as a collection of
random variables [19]. Random variables refers to a number depending on the result of
a random experiment. One of the simplest stochastic processes is the Bernoulli process.
Bernoulli process is described as a sequence of independent and identically distributed
random variables. Each random variable takes the value 1 with probability p. The value
0 is then taken with probability 1− p [20]. The reason we consider a stochastic method
is due to the fact that in our case a cause do not always induce the same result. Let us
take for example an elderly person who has as a morning routine that consists on getting
up at a time T1 +∆t1 and take his breakfast at a time T2 +∆t2. Each day we record those
times where ∆t1 and ∆t2 change. These small fluctuations make the results not certain.
We decided to only consider discrete events in our application. This decision is fully
consistent with the information provided by majority of the sensors. This is part of the
preprocessing step in order to transform the sensor data to discrete values.

2.2.1 Hidden Markov Models

A hidden Markov model [21] considers a system which has as parameters N distinct states
S = {S1, S2, …, SN}. Those states generate a set of M external observations O = {O1, O2,
…, OM}. As time goes by, the system undergoes a change of state. This change is made
according to the set of probabilities of each different state. The next state of the system
is determined by the set of transition probabilities together with the current state. Let us
consider that Xt is the state of the system at a given time t. We can define the transition
probabilities A = {ai j} as

ai j = P(Xt+1 = S j|Xt = Si) (2.1)

An important comment to bear in mind is that the transition probabilities remain constant
over time. These probabilities do not change according to the parameter t. When the
transition is completed, an output is produced based on a set of output probabilities. We
can define the output probabilities B = {bi j} as

b j(k) = P(Ok|Xt = S j)k ∈ [1,M] (2.2)

Figure 2.1 illustrates the dependencies between the probabilistic parameters of a HMM.
We consider the random variables Xt which is the hidden state and the random variable
Y(t) is the observation at a time t. We will consider in our case that X(t) ∈ {X1,X2}
and Y (t) ∈ {y1,y2,y3}. The variables ai j are the state transition probabilities and bi j the
output probabilities [22].

24

2.2 Stochastic methods for discrete events modelling

X1 X2

y1 y2 y3

b11 b12

b13

b21

b22

b23

a12

a21

Figure 2.1: Parameters of a HMM

Hidden Markov Models responds generally to 3 problems. The first one is the evaluation
problem which corresponds to the determination of the probability that a particular se-
quence of symbols is produced by a particular model. For this purpose, we can use the
forward algorithm or the backwards algorithm. The forward algorithm predicts the state
in the future, given current observations. The backwards algorithm updates predictions
about states in the past, given more recent observations [23]. Let us take as example
a Hidden Markov Model composed of two possible states S1 and S2 and three possible
observations y1, y2 and y3. We can use the forward algorithm to predict what is the
posterior probability of X3 given the observations up to time t = 3.

X1 X2 X3

y1 y2 y3

P(X1)
P(S1) P(S2)

P(X3|y1:3)
P(S2)P(S1)

Figure 2.2: Graphical model of HMM

25

2 Theoretical background

The second problem is the decoding which corresponds to the determination of the most
likely sequence of states that produced a given sequence of observations. The Viterbi
algorithm is used for this problem. The Viterbi[24] algorithm can be seen as a path-
finding problem where the probability of a state is the probability of the most likely path
to that state. Figure 2.1 shows an example of a trellis diagram for the Viterbi algorithm
is shown below.

S1
Init

S1 S1

S2 S2 S2

t=1
y1

t=2
 y2

t=3
 y3

Figure 2.3: Trellis diagram for the Viterbi algorithm

The last problem is the training problem which is finding the model that best fits the
data, given a HMM structure and a set of sequences of observations and states. The
Baum-Welch[25] algorithm is an iterative algorithm which estimate the parameters (the
start probabilities, transition probabilities and emission probabilities) of the model we
want to find. One iteration is done by calculating forward probabilities and the backward
probabilities with the forward algorithm and the backward algorithm. We then calculate
the contributions of the current sequence to the transitions of the model and the con-
tributions of the current sequence to the emission probabilities of the model. Finally we
calculate the new model parameters.

26

2.2 Stochastic methods for discrete events modelling

2.2.2 Agent

We define an Agent as a physical or virtual entity that is able to perceive in a limited way
its environment and act on it. It must be able to perform actions on the environment
and vice versa. An Agent possesses his own resources, skills, services and can potentially
communicate directly with other Agents. It works without direct intervention. Advanced
Agent can be proactive and take initiatives collecting information to improve its future
activity. An Agent is characterized by a set of individual objectives or a survival function.
Taking into account the resources, competences at its disposal and according to its per-
ception and the inputs it receives, an Agent seeks to optimize his survival function[26].

Reacࢢve Agents

Reactive Agents are defined only from stimulus-response rules and allow to model very
precise behaviours. They do not have internal states, historical memory or representation
of their environment and other Agents. They are unable to predict or anticipate what will
happen. A reactive Agent can be seen as a system accomplishing a given task. This system
establishes a relationship between a sensory entity and an output action. This if–then-else
logic is common in computer sciences. First, the Agent find a rule whose conditions match
the inputs. Then it accomplishes the action associated with that rule[27].

Agent

Sensor

Inputs

Rules
Action

Figure 2.4: Schematic diagram of a simple reactive Agent

27

2 Theoretical background

Cogniࢢve Agents

Cognitive Agents have internal states and memory to represent the evolution of their
environment. These Agents are generally described as BDI (Beliefs, Desire and Intention)
Agent.

• Beliefs represent what the Agent knows about his environment.

• Desires represent the objectives the Agent may want to achieve.

• Intentions represent objectives for which the Agent is engaged.

In order to determine which action to perform, the Agent must update its internal states
and knowledge based on the information it receives from its environment. The Agent
operates in an environment populated by other Agents. It may be in a situation of
social dependence on one or other Agents. By responding to events coming from the
environment, the Agent updates his state of knowledge and adjust, in a filter function, its
intentions according to its current beliefs and desires[28]. Figure 2.5 shows a description
of this process.

Agent
Sensor

Inputs

Rules

Action

Knowledge
of the environment

Desires

Beliefs

Filter
Intentions

Environment

Figure 2.5: Schematic diagram of a BDI Agent.

28

2.2 Stochastic methods for discrete events modelling

Mulࢢ-Agent System

A Multi-Agent System (MAS) is a system made of a set of objects located in an en-
vironment. These passive objects can be perceived, created, destroyed and modified by
particular objects representing the active entities of the system (Agents). A set of rela-
tions and operations allow Agents to perceive, produce and manipulate passive objects.
An Agent is unable to store all information from the environment. However, it can inter-
act with other Agents in its neighborhood to explore the environment. Each Agent has
local knowledge, but it remains accessible to inspection by other Agents[26].

The notion of interaction in MAS is very important. It is defined as any form of action
within the MAS that has the effect of changing the behaviour of another Agent. An
interaction can occur between Agents or between Agents and the environment. A reactive
Agent within a MAS will pursue an individual goal. It will not use his resources to interact
with others Agents. Conversely, a Cognitive Agent will participate in the satisfaction of
the overall goal of the system while pursuing an individual goal. It will spend part of its
time cooperating with other Agents [29].

MAS monitoring simple behaviours

In order to implement a MAS in our application, we must first define the system that
will be monitored by our Agents. Within our application, we have a series of activities
that occur at specific times. We defined this as a simple behaviour. Over time, these
behaviours repeat. We are then in a position to ask ourselves several questions :

• Of which activity is the behaviour composed?

• How long does the behaviour usually take to finish ?

• Knowing the history of this behaviour, what is the probability that it is still occur-
ring?

• Which behaviours should precede and follow it?

• Knowing the history of this behaviour, does it often change in duration?

• Does the previous behaviour tend to change in duration that makes this behaviour
shifts in time?

The main objective of our Agents is to retrieve as much information from the environment
to answer these questions and alert us if there is an abnormal situation. For simple
questions, a simple reactive Agent can collect information from the environment and
answer. For more complex questions that involve the history of several behaviours at
once, the collaboration of several Cognitive Agents is required. Figure 2.6 shows an
example of the Agents interaction.

29

2 Theoretical background

Behavior
1

Behavior
2

Behavior
3

t1start t1end

t2start t2end

t3start t3end

Activity 1

Information about this activity
E.g. «This activity occurs in average n time during the day»

Database

Real-time

Agent
A1

Agent
A2

Durations

Information about the time shift of behavior 3
E.g. «Knowing that behavior 1 and behavior 2 are taking longer this 2 last days,

behavior 3 may start at x»

Figure 2.6: Agent interaction with the environment

2.2.3 Fuzzy Logic

Modern fuzzy logic is an extension of Boolean logic. It was developed by Lotfi Zadeh[30]
in the mid-1960s. Fuzzy logic is aimed at resolving problems in which imprecise data
must be used. Thanks to the Fuzzy Logic, we can consider qualitative values rather than
quantitative values. By defining Linguistic Variables instead of numerical variables, it is
possible to use Fuzzy Rules simulating the process of human reasoning. However, even if
words are less precise than numbers, they are more suitable in several cases[31]:

• The data available is perception-based;

• The problem has a tolerance for imprecision which can lead to a simple, robust and
less costly;

• Words are more expressive than numbers in some problems.

30

2.2 Stochastic methods for discrete events modelling

Fuzzy set

First, it is important to define the Fuzzy set concept[32]. In a conventional subset, the
belonging of a given value to the subset is defined as true (1) or false (0). In classical set
theory, an element belongs to a subset or it does not. In the case of Fuzzy subsets, the
value can be between 0 and 1. This represents the uncertainty that exists in reality. The
fact that an element belongs to a set only on a certain extent represent the membership
degree to this set. Concepts such as being old or young, whether cold or hot, are good
examples of diffuse statements where fuzzy logic can be applied.

Linguisࢢc Variables

Linguistic Variable can be compared to an algebraic variable. Linguistic Variable takes
words as values. It possess a term set which correspond to the set of values the Linguistic
Variable can take. The values in the term set are fuzzy variable. For instance, a Linguistic
Variable with the label “Distance” can have the following term set :

T = {Far, Distant, Nearby, Close}

Fuzzy Rules

Fuzzy rules are used to generate an output. These rules are constructed by simply using
an If-Then structure with the Linguistic Variables. A fuzzy rule in the context of a change
of speed as a function of distance will, for example, have the following structure:

“IF DistanceIn IS Nearby THEN SpeedOut IS Slow”

FuzzySet Operaࢢons

To manipulate FuzzySets easily, the operators of classical set theory were redefined to
adapt them to membership functions of fuzzy logic allowing values strictly between 0 and
1. Lets take for example µA and µB as membership functions for the FuzzySets A and
B. We present in Table 2.1 the Zadeh MIN/MAX set of operators :

Union (OR): µA∪B(x) Intersection (AND): µA∩B(x) Complement (NOT): µA(x)
max{µA(x),µB(x)} min{µA(x),µB(x)} 1 - µA(x)

Table 2.1: Zadeh MIN/MAX set of operators

31

2 Theoretical background

Fuzzy inference systems (Mamdani)

Fuzzy inference methods can be classified as direct or indirect methods. Mamdani’s
method[33] is one of the most common used direct method. Let us consider, for example,
the LV1 and LV2 Linguistic Variables as inputs and LV3 as outputs. We can create two
fuzzy rules. The first one using a “OR” fuzzy operator while the second one uses a “AND”
fuzzy operator. Figure 2.7 present a detail description of the inference process.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

LV1

Membership
degree

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

LV1

Membership
degree

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

LV2

Membership
degree

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

LV2

Membership
degree

Numerical input
 0.28

Numerical input
 0.7

Rules 1

Rule 2

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

LV3

Membership
degree

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

LV3

Membership
degree

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

Rule
Strength

AND

OR
MAX

MIN

Output distribution

Figure 2.7: Fuzzy Inference

When fuzzifying the first part of the antecedent of Rule 1, we obtain the membership
degree of LV1 while we obtain a zero value for the membership degree of LV2. We apply
an OR operation, taking the maximum of both memberships degree. The same process is
performed for Rule 2 except that the AND operator makes us take the minimum of both
memberships degree. Then, we combine the outputs using the most maximum aggregation
operator to obtain the ouput distribution.

Finally, the “defuzzification” step allow us to move from the output distribution to a
single final decision. The two main methods of defuzzification are the mean method of
maxima and the method of the center of mass.

32

3 Methodology

3.1 Introducࢢon

This chapter is made of three different sections. The first one corresponds to the Sim-
ulation of a routine. In this part, we discuss the construction of the main classes of
code, database and thread timer used. In the Analysis section, we explain the resources
used to analyze the behaviours generated by the simulator. Additionally, this second
section explains the main paradigms that inspired us to create our own approach. The
last section outlines the results of three different situations. Then the analysis program
will be evaluated in each tested situation. We used C# as the programming language to
constitute the simulator and the analysis program.

3.2 Development Process

Scrum[34] is the main management framework we used for the development of our soft-
wares. Scrum has an incremental approach that allows us to implement a software piece
by piece. Each part of the developed software is functional and exploitable. Scrum’s
iterative process means that for each part we go trough the same development phases.
Figure 3.3 shows the difference between the traditional Waterfall approach and Scrum.

Waterfall Scrum
Requirements

Design

Code

Integration/Testing

Deployement

Requirements
Design

Code
Integration/Testing

Evaluation
Iteration 1

Requirements
Design

Code
Integration/Testing

Evaluation
Iteration 2

Continue
Figure 3.1: Comparison of Waterfall and Scrum

33

3 Methodology

Being alone, an adaptation of this process was made. To properly implement an effective
Scrum methodology, we need a Scrum team. In the context of this work, we had the
role of the development team and the Scrum Master (buffer between the team and the
exterior). My supervisor Carlos F. Pfeiffer was the Product Owner ensuring that the
developer delivers value to the project.

The software development progress is done through a series of ”sprints”, in our case
iterations of 1 to 2 weeks at the most. During a sprint, daily scrum (small planning
meeting to allows developers to make a coordination point) are made. In our case, we did
not need to coordinate the work.

The requirements were clearly defined. The elements to be implemented are grouped
under the name of ”Product Backlog”. The Product Owner describes the prioritized item
to be implemented. In our case, this correspond to the main meetings with the supervisor
to determine the main idea to implement.

3.3 States

By using the system definitions of Carlos F. Pfeiffer’s[13] research project on human be-
haviour, we have established a first class named Human(see appendix 2 for the Human
class code). Instances of this class have attributes named position, room, loa and room-
section respectively of type Position, Room, Loa and Roomsection that are enumerations.
An enumeration type is used to define a set of named states that may be assigned to a
variable. The value that each enumerator can take is presented in Figure 3.2.

Position Room LOA RoomSection
Undefined
Bedroom

Livingroom
Bathroom
Kitchen
None

Undefined
Lying
Sitting

Standing
None

Undefined
Low

Medium
High
None

Undefined
Door
Chair
Bed
Sink
Toilet
None

Figure 3.2: States’ values

34

3.4 Simulating a morning routine

3.4 Simulaࢢng a morning rouࢢne

3.4.1 Acࢢvity and Behavior

An activity is built by combining different states. Take for example a person sleep-
ing, a possible combination would be Lying, Bedroom, Low and Bed. By adding the time
component to this activity, a behaviour is formed within precise duration. For our simula-
tion, we use a cryptographic Random Number Generator (RNG) using the cryptographic
service provider (CSP) to generate a random Integer between a minimum value and a
maximum value. It should be noted that a person can wake up at different time. For
example, the average sleep time of an elderly person is between 7 and 8 hours[35]. For
timing constraint, one minute of real life activity will correspond to one second in the
simulator which will allow us to quickly have enough data to analyze. The beginning of
the routine is shown in Figure 3.3.

1. Lying, Bedroom, Low, Bed

2. Standing, Bedroom, Medium, Door

3. Standing, Livingroom, Medium, Door

 Activity Time [s]
[400 ; 430]

[2 ; 4]

[2 ; 4]

Figure 3.3: Simple routine

First, we implement a completely fixed routine with no change of behaviour. The only
variable component are the durations. Figure 3.3 shows how a behaviour is implemented
within the simulation in C#.

Instance
of the class
Human

Integer
between
2 and 4

Figure 3.4: C# code for the routine

35

3 Methodology

3.4.2 Database

We use XAMPP, a free Apache distribution containing MariaDB. MariaDB is a database
management system (DBMS) published under the General Public License (GPL) license.
It is a forked version of the well known MySQL. We use phpMyAdmin, a free software
tool written in PHP, for the administration of the database over the Web.

To connect C# with our database, we use MySql Connect/NET. This also allows us to
carry out the basic functions of persistent storage that are create, read, update, and delete
(CRUD) as well as more complex queries(see appendix 3 for the Data insertion code).

The “Activtity” table is the main table in the database. It contains the raw data represent-
ing what could be retrieved from sensors. This table is composed of the fields representing
the states described earlier. It also includes a field with a special timestamp which cor-
respond to the exact insertion time of the activity. Figure 3.5 shows rows of the table
Activity.

Figure 3.5: Table Activity

3.4.3 Timer

Windows.Forms.Timer is a Windows object. It uses Timer tick event that is invoked
directly into the user interface (UI) thread. To have a quick simulation and to be able to
test pertinent situations, we decided to use a timer that executes a method on a thread
pool thread at specified intervals.

The simulator is designed in such a way that it can be started and stopped at any time.
The user interface lets you choose how many days to add to the database. Figure 3.5
shows the UI of the program.

Figure 3.6: UI of the Simulator

36

3.4 Simulating a morning routine

If the database is not empty, the simulator will match the date of the new entry to the
date of the last one in the database incremented by one day. As mentioned previously, a
random time is generated for each behaviour. This random behaviour’s time is different
each day. The simulator checks if a behaviour is still running using a behaviour tick counter
and compares it to the random behaviour’s time generated. When these two counters are
equal, the simulator switches to the next behaviour in the routine to be inserted in the
database. Figure 3.7 shows the behaviour switch in the database.

The simulator switches and
populates the database with
the next behavior

Behavior tick counter
=

Random behavior's time

Figure 3.7: Behaviour switch

The morning routine has a defined number of behaviours. It reviews the progress in the
routine using a number of behaviour counter. When the number of behaviour counter
reaches the same number of behaviour contained in the routine, the simulator increments
by one day the date that will be associated with the behaviours of the routine to follow.
When the number of days to be inserted in the database is reached, the simulator disables
the timer. Figure 3.8 shows the day switch in the database.

The simulator switches to
the next day

Number of behavior
counter

=
Number of behavior

in the routine

Figure 3.8: Day switch

Figure 3.9 shows a flowchart of the implemented algorithm. The startup step represents
the interaction of the user with the user interface to start filling the database. The
algorithm comes to an end when the database has been filled in for the number of days
requested by the user(see appendix 4 for the Timer code).

37

3 Methodology

Figure 3.9: Flowchart of the routine code

38

3.4 Simulating a morning routine

3.4.4 Codificaࢢon

To ensure an easy analysis, we decided to translate the behaviours into numerical codes.
A very easy way to implement this was to use the enum types previously explained. The
first enumerator has by default the value zero. Each successive enumerator is incremented
by one. Knowing that we have defined the different states as enum type, it is then very
easy to constitute a code from a combination of states. Figure 3.10 shows the codification
of the state Position.

Position
0
1
2
3
4

Undefined
Lying
Sitting

Standing
None

Figure 3.10: Codification of the state Position

With this codification, the behaviour “Lying, Bedroom, Low, Bed” can be transformed for
example into “1 1 1 3”. Obviously, if a coding system is set up on the simulator side, then
a decoding system must also be implemented(see appendix 5 for the coding and decoding
code).

3.4.5 Variaࢢon in the rouࢢne

The purpose of this part of the simulator is to create behavioural variations in the routine.
A possible implementation is to insert new behaviours between fixed and expected ones in
the routine to simulate abnormalities. However, physical and spatial constraints must be
taken into account. Considering the room where the person is located at a specific time,
the next behaviour is constrained spatially according to the configuration of the rooms.
Figure 3.11 shows the possible transitions for the configuration showed on Figure 1.2.

LIVING
ROOM

BEDROOM BATHROOM

Lying
Sitting

Standing

Lying
Sitting

Standing

Sitting
Standing

Figure 3.11: Behaviour transition

39

3 Methodology

For example, if a person is in the bathroom, he has to go through the bedroom to reach the
kitchen. Moreover, certain transitions and combinations of behaviours are very unlikely,
such as moving from the behaviour “Lying Bedroom Low Bed” to “Lying Bathroom High
Toilet”.

We implemented this with two List called “NextPossibleRoom” and “NextPossiblePosi-
tion”. Each time a new behaviour is in progress, these lists are updated. The first list
containing the possible rooms for the next behaviour is simply updated according to the
current room in which the person is located. The second list containing the possible po-
sitions for the next behaviour is updated according to the chamber selected in the first
list. Indeed, in a situation of a morning routine during the week, it would be unlikely
that the person switches from a behaviour “Bedroom Lying Low Bed” to “Livingroom
Lying High Couch” behaviour even if the transition of behaviour and state combinations
are acceptable.

It is important to understand that the utility of this variation in behaviour within the
simulator is essential for the rest of the project. By imagining certain cases of abnormal
behaviour to be inserted in our routine, this allows to create material to be analyzed
later. We have created two routines. The first one is classic and repeats itself without
any real change in behaviour. The second is simply a duplicate except for the addition of
abnormal behaviour as described above. Figure 3.12 shows the possible transitions.

1. Lying, Bedroom, Low, Bed

2. Standing, Bathroom, Medium, Toilet

3 Lying, Bedroom, Low, Bed

4. Standing, Bedroom, Medium, Door

5. Standing, Livingroom, Medium, Door

 Activity Time
[200 ; 220]

[10 ; 20]

[200 ; 210]

[2 ; 4]

[2 ; 4]

Next possible room
Bedroom
Bathroom
Livingroom

Next possible position

Next possible roomsection

Next possible level of
activity

Figure 3.12: Modified routine

40

3.4 Simulating a morning routine

3.4.6 Cache database

So far, we have simulated the data that sensors could provide us. In this section, we
will process this information to match our definition of the system. It is therefore a
matter of detecting the different activities and then delimiting the observable behaviours
in the database. This task may seem paradoxical since we have scripted the routine. It
is still essential to create a tool that can handle data from a raw data database. We have
implemented a method that lists all the different activities and detects the beginning
and the end of a behaviour. In addition, if the behaviour has been repeated during the
routine, a number corresponding to its position in the routine is assigned to this behaviour.
Figure 3.13 shows the cache database.

Figure 3.13: Database Cache

41

3 Methodology

3.5 Analysis

3.5.1 Introducࢢon

This section is devoted to the description of the behaviour analysis software. This software
must meet several requirements. It must be able to detect a new entry in the database.
The program must then retrieve all the information related to this new entry. It must
include a part that bridges the gap between data reception and analysis tools.

Our first step in this chapter will be the description of the user interface. The analysis
program goes hand in hand with the simulator. It is based on the same definition of the
system. This program must be able to analyze specific situations and requires targeting
behaviours that interest us. The user interface must therefore be able to meet these
expectations. We will then examine the EventHandler system used to manage received
inputs in the database. Finally, we will review the Multi-Agent System implemented.

3.5.2 User Interface

Figure 3.14 shows the user interface of the behaviour analysis software. The first element
that the user discovers is the “New Agent” button. By clicking this button, an Agent is
created to follow a specific behaviour. The user is able to know thanks to the “Simula-
tion state” at any time whether the simulator is running and therefore if the database
is being populated. On the middle part of the program, the user finds 4 listboxes (Sys-
tem.Windows.Forms.Listbox) that contain the values of the different states that define
the activities and behaviours of a person to be analyzed in the definition of our system.

Figure 3.14: UI of the analysis program

42

3.5 Analysis

These lists are created by directly retrieving the information from the Human class. Fig-
ure 3.15 shows how its implemented in C#.

Enumerator Position
from the class
Human

Listbox
of the
Position status

Figure 3.15: C# code of the lists implementation

If other states are added within the Human class, it is then very easy to add a corres-
ponding listbox in the analysis program. The selection of a value in each list will compose
the state set corresponding to the behaviour to be analyzed by an Agent.

When the “New Agent” button is pressed, a new instance of the Human class is created,
retrieving the selected state combination from the listboxes. It follows the call to a
constructor of the Agent class that accepts as parameter an instance of the Human class
and an integer representing an identifier for the Agent. Once the Agent is created, it is
placed in a list of Agents. This list is indicated on the GUI (graphical user interface) in
a listbox placed at the bottom left. Each line visible in this listbox actually represents
an Agent. We have redefined the “ToString()” method of the Agent class to display the
behaviour that the Agent is supposed to check.

The bottom right part of the program displays the results obtained by the Agents at the
end of the simulation.

3.5.3 EventHandler

An event[36] in C# is a way to provide notifications to its clients when interesting hap-
penings occur on an object. They provide to the objects a notification of changes of state
that can be useful for the clients of these objects. They are an important building block
for creating classes that can be reused in many different programs.

EventHandler is often use when dealing with a with a GUI. In our case, we use an
Eventhandler to react to a new database entry. When the simulator is running, it adds
entries to the database. This addition of input will constitute an event for our analysis
program. In order to set up an EventHandler, one must understand the concept of
delegates.

Delegates are variables that point to a method. A delegate will define a method signature.
This way, we can point to any method that respects this signature.

43

3 Methodology

An EventHandler is a delegate with a special signature. The generic declaration of an
Eventhandler is shown below:

public delegate void MyEventHandler (object sender, MyEventArgs e);

It takes as first parameter an “object sender” which corresponds to the object that fired
the event. The second parameter MyEventArgs e contains data that can be used when
managing the event. In our case we have created our own specialized EventArgs. This is
done by deriving from the EventArgs class :

public class ActivityEventArgs : EventArgs
{

public Activity Activity { get; set; }
}

We have implemented in the analysis program a first EventHandler named NewActiv-
ityEventHandler to manage new entries in the database. The second EventHandler En-
dActivityEventHandler manages the end of the simulation and delivers the results obtained
by the Agents.

We have build a publisher-subscriber model. The publisher contains the definition of the
event and the delegate. Figure 3.16 shows the declaration of the EventHandler and the
delegate objects referenced using the key word event.

Figure 3.16: C# of the delegates implementation

The subscriber accepts the event and provides an event handler. To attach our EventHand-
ler to the event, we use the addition assignment operator. The following example shows
an EventHandler method named OnNewActitivy from the Agent class that matches the
signature for the EventHandler delegate. The method subscribes to the NewActivity event
:

NewActivity += lsAgent.Last().OnNewActitivy;

44

3.5 Analysis

3.5.4 Agents

In order to implement Agents, there is a programming paradigm called Agent-oriented
programming (AOP). It is also possible to use a Service-oriented architecture (SOA).
In this work, we have chosen an alternative option. We will, however, review the main
characteristics of these paradigms and show how we endeavor to draw inspiration from
them in the design of our object oriented Agent class.

Agent-oriented programming

AOP was proposed by Yoav Shoham[37] in 1993 as a new paradigm of programming. In
this paradigm, Agents are the central elements, in the same way that objects are centered
for object-oriented languages. Each Agent is associated with a set of skills and in the
AOP, we assume that several Agents will interact. Shoham proposed a programming
language called AGENT0 as a demonstration of this paradigm.

The mental notions (Beliefs, Desire and Intention) that characterize the Agents appear
in the language itself. Agents can be seen as objects with a state that defines the associ-
ated mental notions. Messages between objects are replaced by messages between Agents.
These messages are modeled from the theory of speech acts, which focuses on communic-
ation actions such as informing, asking, offering, accepting and rejecting. Based on the
knowledge they have, Agents have the freedom to decide whether or not they will perform
the action specified in the message.

In order to write a program in AGENT0[38], one must first define the initial beliefs and
the abilities of the Agents of the program. Then, the implementation of the rules of
obligation are necessary to define the behaviour of each Agent. These rules represent the
key to this Agent-oriented language and indicate the limiting conditions under which an
Agent assumes a certain obligation.

The AGENT0 language interpreter will execute the following control loop for each Agent:

• Read messages received;

• Update beliefs based on these messages;

• Determine obligations by applying the rules of obligation (if the conditions are
validated);

• Perform current obligations;

• End.

45

3 Methodology

The FIPA[39] is a standards-setting organization that promotes the interoperability of
applications, services and IT equipment. The most widely used FIPA standard is an ACL
(Agent Communication Language) standard . JADE (Java Agent Development Frame-
work) is a software development framework for the developing of multi-Agent systems
conforming to FIPA standards which is currently the most used platform for research
purpose.

An interesting feature of JADE[40] is that the Agent platform can be split on several
hosts. Only one Java Virtual Machine is executed on each host. Agents are implemented
as one Java thread and Java events are used for communication between Agents on the
same host.

Service-oriented architecture

A service-oriented architecture is based on a set of simple services. We can define a service
as a stand-alone component that provides functionality to other applications. These
services can be seen as an encapsulated function in a component that can be queried with
parameters in order to get responses from it. The services can communicate with each
other through buses called Web Service. A Web Service is a web technologies interface
protocol allowing the communication and the exchange of data between services. These
exchanges can be synchronous or asynchronous. There are two main families of Web
Services:

• Simple Object Access Protocol (SOAP)

• Representational State Transfer (REST)

SOAP is an application protocol that consists of two parts. The first part corresponds
to an envelope containing information about the message and its routing. The second
corresponds to a data model with the specification of its format. A client communicates
with a server trough different exchanges. First, the server exposes its descriptor named
Web Services Description Language (WSDL). The WSDL is an XML-based interface
definition language that describes the input parameters of the service, the format and
type of the data returned. Then, the client retrieves the descriptor to understand the
data that can be sent. Finally, the server receives the request from the client to send a
response.

REST is a service-oriented architecture and not a protocol. The client and server work
independently. Calls between entities are not dependent on a context held on the server.
A call to consume a service with different parameters returns a response in different format
(JSon, stream, an image). The queries are written in an URI form with HTTP requests
(GET, POST, PUT and DELETE).

46

3.5 Analysis

An example of using SOA to design a MAS is Flexible User and ServIces Oriented multi-
ageNt Architecture (FUSION@). The architecture they propose is described as a new
and easier method of building distributed multi-Agent systems. The functionalities of the
system are not directly integrated into the Agents. They are modeled as services which
are invoked by Agents acting as controllers.

Our approach

We have implemented a class named Agent. When instantiating the Agent class, the
created object is assigned a state combination. It is possible to consider that a state
is not indispensable in the combination to be checked. This state will be “Undefined”
represented by the symbol “?”. This allows for example the combination “Bedroom ?
Low ?” to be checked by an Agent. The “Bedroom Sitting Low Bed” or “Bedroom Lying
Low Door” combinations will both be acceptable to this Agent.

As explained previously, the “OnNewActivity” EventHandler informs the Agent of a new
database entry. The Agent object then receives the combination of states from the data-
base and compares it to the one it owns. If the combination matches, the Agent object
begins its analysis job consisting on retrieving information from the cache database and
determining the average time of the behaviour that it analyzes. A key element here is
the decoding process. We must consider a state as optional. One way to do this is to use
the percentage symbol that represents zero, one, or multiple characters in an SQL query
next to a LIKE operator:

SELECT * FROM ‘tbbehaviour‘ WHERE ‘Behavior‘ LIKE “1%1%”

The Agent starts its internal clock and only stops it once the analyzed behaviour is no
longer the one the EventHandler notifies. The Agent records the behaviour time in a
list. Each time the behaviour reappears in the current routine, a new time is added
to the list. When the simulation is complete and the database is no longer populated,
the “OnEndActivity” EventHandler notifies the Agent. Since we calculate the mean
duration of the behaviour in the course of this routine, we are able to use an exponential
distribution, as explained in details in the following section.

Survival analysis - Exponenࢢal Distribuࢢon

Survival analysis is the estimation of the probability of an event over time, depending
on elements influencing the estimate. The expected event is called “death”. Survival
analysis will help us to calculate the survival probability at least a certain time “t” from
a referential instant.

47

3 Methodology

Let T be a random variable representing the waiting time until the occurrence of an event.
The exponential law is commonly used to represent the lifetime of components for which
it is assumed that the failure rate λ is constant over time. The Function of distribution
of the exponential law is F (t) and represents the proportion of components that breaks
down before time t.

F(t) = P(X ≤ t) = 1− e−λ t (3.1)

We can then define the Survival function S(t). It is the probability that the event of
interest “T” occurs after a delay greater than “t”.

S(t) = 1−F(t) = P(T > t) = e−λ t (3.2)

This distribution is called the exponential distribution with parameter λ and the mean
is equal to 1/λ . Figure 3.18 shows the plot of the exponential survival function with the
parameter λ equal to 5.

Figure 3.17: Plot of the exponential survival function

We used Accord.NET which is a .NET framework for machine learning, computer vision,
statistics and general scientific computing. Figure 3.18 shows an example of how the
Survival function is implemented using Accord.NET in C#.

Using this exponential law, we determine for an active behaviour, compared to the average
time it has taken in the past, whether it is likely to stop or not. When it stops, this
survival value is stored. Finally, with the two probability values obtained, we can already
evaluate whether a behaviour is likely to be abnormal or not. The first value is the direct
probability that is retrieved as soon as the behaviour comes to an end in the routine. The
second value corresponds to the mean of the set of probabilities collected which indicates
the predictability of the behaviour.

48

3.5 Analysis

Figure 3.18: C# code to use the survival function

Table 3.1 shows an example of the value that the Agent object collects. The first column
refers to the routine, the other columns corresponds to all the parameters collected of an
analyzed behaviour during this routine.

Routine Time
t

Survival Function
S(t)

Mean Time
1/λ

1 30 1 30
2 28 0,97 29
3 29 1 29
4 31 0,95 29,5
5 29 0,98 29,4
6 30 0,98 29,5
7 15 0,66 27,43

Table 3.1: Example 1 of collected values

It can be seen here that until the seventh routine the time taken by the behaviour is con-
stant. Consequently, the mean time and the survival probability is only slightly modified
during the routines. The mean of the probability column is 0.93, which indicates that
this behaviour generally takes always the same time to complete.

Routine Time
t

Survival Function
S(t)

Mean Time
1/λ

1 12 1 12
2 20 0,88 16
3 10 0,87 14
4 35 0,68 19,25
5 29 0,87 21,2
6 50 0,44 26
7 15 0,73 24,43

Table 3.2: Example 2 of collected values

49

3 Methodology

Table 3.2 takes on more various time values, implying a more unpredictable ending time
for a behaviour. The average of the probability column is 0.78. This clearly indicates a
time-related behavioural unpredictability compared to the first example.

We understand from these two examples that we must consider the different survival
probabilities over the duration of the existence of a behaviour. Indeed, the simple com-
parison of the time taken on a given moment with the average time taken by the behaviour
analyzed is not relevant enough.

50

3.5 Analysis

3.5.5 Classificaࢢon

Once a certain amount of information was collected on the state of behaviour, we had
to find a way to evaluate whether the behaviour could be considered normal or not. We
considered the use of Fuzzy Logic with the framework Aforge.Net. AForge.NET is an
open source C# framework in the fields of Artificial Intelligence.

We have implemented a method getOutputFuzzy that takes as parameter the survival
probability as well as the average survival probability of a behaviour. This method returns
an output value allowing to decide whether an alert should be made. First of all, it
was important to define the different fuzzy subsets. We defined the sets lvProbIn and
AvgProbIn as Linguistic Variables representing respectively the survival probability and
the average survival probability of a behaviour. These sets are composed of the subsets
Bad, Normal and Good.

A “fuzzy” database can then be created by adding the Linguistic Variables. To evaluate
a response based on Linguistic Variables, rules must be established. These rules are very
similar to human language and are composed of causes that produce a consequence. These
causes are our linguistic input variables whereas the consequence is the output language
variable. Using this database and a set of fuzzy rules, we can create a fuzzy inference
system.

First, the system maps numerical values to Linguistic Values with a membership degree
to subsets. Then, it calculates the firing strength rules using the membership degree of the
different Linguistic Values inputs to evaluate their output. The numerical output value is
finally obtained by using the defuzzification method applied to a fuzzy output language
variable.

The form of the membership function is chosen according to the problem posed. In our
case, we chose the Trapezoidal model for the survival probability variables. This way,
the judgment will be more human. We use three points to construct the shape known as
triangular fuzzy number. For the FuzzySet “Normal” we have initialized a new instance
of the TrapezoidalFunction class :

public TrapezoidalFunction(float m1,float m2,float m3)

The parameters m1, m2 and m3 are the three points used to construct our membership
function. m1 is the value where the degree of membership starts to raise. m2 is the value
where the degree of membership reaches the maximum value and starts to fall, while m3
is the value where the degree of membership reaches the minimum value.

For the FuzzySets “Bad” and “Good”, we used a parameter of type TrapezoidalFunc-
tion.EdgeType. If the value of this parameter is Left, the trapezoid has the right edge
open. Conversely, if the value is Right, the trapezoid leaves the left edge open.

51

3 Methodology

Figure 3.19 graphically shows the shape of the membership functions corresponding to
the fuzzy variables defined above. We note that the membership function of the survival
probability, average survival probability and alert output are the same. These functions
will only be represented graphically once.

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0,0

0,2

0,4

0,6

0,8

1,0

Probability
of survival

Membership
degree

Bad Normal Good

Figure 3.19: Plot of the membership functions

The last step is writing fuzzy rules. Figure 3.20 shows how the rules are implemented in
C# using the Aforge.Net framework.

Figure 3.20: Fuzzy rules

If we consider rule 9, we see that it verifies “AvgProbIn” with a linguistic value corres-
ponding to “bad”, or in other words the mean of the survival probabilities is very low.
This suggests that the mean time of the behaviour analyzed is highly variable. Further-
more, even with a low survival probability at a given time, this behaviour is so irregular
that creating an alert is not required(see appendix 6 for the classification code).

52

4 Results

4.1 Tesࢢng module

There are several points to test to ensure that the analysis program is functional. The
simulator and the database are considered to be functional and unchanged.

The first point to test is the automatic detection of the state of the simulation and hence
a new potential input to the database. The input of this test therefore corresponds to
the start of the simulator and the output must correspond to the state indicator of the
simulator on the analysis program going green. Figure 4.1 shows the state indicator of
the simulator on the analysis program.

Figure 4.1: State indicator of the simulator on the analysis program

We have implemented a testing module which allows to easily see the results of the
classification tool without having to simulate an entire routine. Figure 4.6 shows the C#
code for the testing purpose. The testing method allows to directly test the classification
tool on input values placed as parameters.

53

4 Results

Figure 4.2: C# testing code

Using the explanations and considerations of the section “Survival analysis” and “Clas-
sification”, we implemented this module to allows us to test the limit values of inputs
(survival probabilities and average survival probabilities) of which we know the output
(alert level). Table 4.1 shows the pertinent input and output testing values.

Survival probability Average survival probability Alert level
1 1 No alert
1 0.1 No alert

0.1 1 Alert
0.5 0.5 Small alert

Table 4.1: Input and output testing values

Figure 4.3 shows the UI testing module and the alert output.

Figure 4.3: UI Testing module

54

4.2 Situation 1 : Normal routine

4.2 Situaࢢon 1 : Normal rouࢢne

Once the simulator and the analysis tool were functional, it was necessary to create
interesting situations to carry out different tests. We used for this first test a very simple
routine where times of behaviours are not very variable. This ensures that the analysis
program does not generate an alert as described in Figure 4.4.

Figure 4.4: Result of the first test

We can see that the Agents collected the different times and survival probabilities of
the behaviours. The calculation of the alert value was then calculated in order to assess
whether an alert was necessary. Figure 4.5 and Figure 4.6 show the Fire Strenght values
of the different fuzzy rules and behaviours analyzed by Agent 1 and 2.

Figure 4.5: Rules’ Fire Strenght (Agent 1) Figure 4.6: Rules’ Fire Strenght (Agent 2)

It also appears that Agent 1 has the highest value of fire strength. Rule 5 can be applied
as follow:

IS.NewRule(”Rule 5”, ”IF ProbIn IS Normal AND AvgProbIn IS Normal THEN alert
IS Good”);

55

4 Results

It can be seen that the numerical survival probability (0.72) gave a linguistic value cor-
responding to “normal” for the Linguistic Variable “ProbIn”.

This test showed that the analysis program manages situations where there is no abnormal
behaviour.

4.3 Situaࢢon 2 : Irrelevant behaviour meࢢ

We use a second situation to test the analysis programs when it faces a behaviour whit
changing duration. Let us consider, for example, the behaviour “Sitting Bathroom Low
Undefined” with a very large time range. Figure 4.7 shows the result from the analysis
program.

Figure 4.7: Result of the second test

The survival probability is very low given the difference between the time taken on the
instant and the mean time. However, as the average survival probability of this behaviour
is not very high, there is only a simple notification and not an alert.

56

4.4 Situation 3 : Abnormal behaviour time

4.4 Situaࢢon 3 : Abnormal behaviour meࢢ

The last situation is divided into two parts. The first part we implemented plays out when
a routine has been installed. Then we introduced a particular routine of a day where one
of the detected behaviours takes much longer than expected. Figure 4.9 shows the C#
code for the two part of this situation.

Two weeks routine One day

Figure 4.8: C# code of the routine variation

Figure 4.9 shows the result from the analysis program. We observe that the survival
probability displayed is round off to zero. Indeed, given that the mean time of this
behaviour was 2 minutes and that the average survival probability behaviour is considered
“normal” in the fuzzy logic, it is clear that an alert must be made.

Figure 4.9: Result of the third test

57

58

5 Future work

In this part of the thesis, we will discuss possible improvements and potential additions
to the simulators and the analysis program. These improvements must be added without
causing a redesign of the already established architecture. Figure 5.1 shows the actual
architecture of the simulator and analysis program.

Agent
Behavior 1

B1

new entry
in the DB Database

Simulator
Behaviour

1
Behaviour

2
Behaviour

3

Agent
Behavior 2Agent

Behavior 3

EventHandler
Time

Average Time
Survival probability

Average survival probability
Fuzzy Rules

Alert output

Analysis program

Figure 5.1: Analysis program architecture

5.1 User-friendly rouࢢne adding system

The current simulator is not intended for use by anyone. In order to add or modify a
routine, one must be able to understand C# code. In addition, a recompilation of the
program is required. From a test perspective, this is not a problem. However, if we

59

5 Future work

start using the simulator more intensively, we must find a more suitable solution for the
addition of a customized routine.

A possible solution would be to insert the routine into a CSV (Comma-separated values)
file that will then be read by the simulator.

5.2 Sequences analysis

During this work, we have analyzed each behaviour in isolation from the others. However,
these behaviours succeed one another after another during a routine. It is this succession
that creates complex behaviours. The most widely used tool to analyze these complex
behaviours is HMM that we described in the beginning of this thesis.

Due to the architecture of the system, this tool should be included as an add-on to the
Agents. This should in no way modify the current behaviour of the Agents or interfered
with the other analysis tools. The idea would be to implement an Agent apart from
other Agents that analyze simple behaviours. This Agent will intervene when a series of
behaviour will have ended in the routine analyzed. It will then collect all the information
from other Agents.

Consider, for example, a complex behaviour named CBH. CBH is composed of behaviours
BH1, BH2 and BH3. There are several elements to consider when analyzing CBH. First,
we can ask ourselves the question: is the total time taken by CBH “normal” ? This
question must be answered in the first place without taking into account it the individual
times of the behaviours composing CBH are “normal”. The mean times and survival
probabilities can be used as in the analysis of simple behaviours. Secondly, it is a question
of analyzing the order in the sequence of CBH. Indeed, the order “BH1, BH2, BH3”
does not have the same probability of appearing in the routine as the order “BH2, BH1,
BH3”. It is here that the use of HMM is interesting. We suggest using the Accord.NET
Framework for the implementation of HMM. We started to implement it.

Figure 5.2: CodeBook

60

5.2 Sequences analysis

Figure 5.2 shows how we can implement a set of sequences of behaviours in C#. In
the future, it would be preferable for these sequences to be directly extracted from the
database. The interest here is not to go into details. For this reason, we will limit ourselves
to a simple description of the code showed in Figure 5.3.

Figure 5.3: C# code for the HMM implementation

Firstly, a codebook is constructed by transforming the set of sequence of behaviours to
sequence of integer labels using the codification codebook. Then, we create the training
data for the model by specifying a forward topology and the number of states. The model
is then created using the topology and the symbols from the codebook. Finally, with the
help of the Baum–Welch algorithm, we estimate the model parameters that maximize the
probability of observable sequences.

To test the algorithm we have the possibility to generate a sequence from the model and
then evaluate its likelihood. Table 5.1 shows the likelihood of three different generated
sample. We can observe that the last generated sequence is less likely to appear then the
two others.

Generated sample Likelihood
1113 3121 3221 1113 1113 -1,5
1113 3121 3221 3221 1113 -1,79
3121 3121 3221 1113 3221 -3,99

Table 5.1: Likelihood of generated samples

The idea here would be to add this analysis functionality to the Agent that deals with
complex behaviours. This Agent would receive the behaviours order in the sequence from
the other Agents. Then, using a model that would be updated with each new routine,
the Agent should estimate whether the sequence analyzed was probable or is subject to
an alert.

61

5 Future work

5.3 Frequency of behaviour occurrence

Another line of thought we might pursue is the analysis of the frequency of appearance
of behaviours. We had already very briefly discussed this subject in Section 3.3.6. This
frequency analysis must be carried out on the entire database. This will allow to add a
parameter that will value or not the relevance of a behaviour. Behaviors with a limited
number of states will be more frequent. The more states are added to a behaviour, the
greater the probability that a combination of states is almost impossible. Imagine, a
sensor related to the use of the shower. The behaviour “Lying Bedroom [...] Shower” is
very unlikely or that means that there is a problem.

62

6 Conclusion

The interest in smart houses is gradually increasing . At the same time, the monitor-
ing of elderly population living alone presents a unique challenge for machine learning
algorithms. Worldwide, researchers are seeking to develop smart houses technologies to
collect pertinent data on a person living alone, which is used for early detection of abnor-
mal behaviours. In this Master Thesis project, we bring an essential algorithmic piece to
a data based architecture to build a monitoring system for smart houses currently under
development at the University College of South East Norway.

In this study, we presented the complexity of human behaviour analysis in the literature
review. By analyzing the different methods of modelling human behaviour such as the
use of HMM, SVM, RNN and Fuzzy Logic, we were able to construct our own approach
to the problem.

The first major step in this work was the development of a routine simulator. The
task of this simulator is to populate a database with entries that simulates data that
could be provided by sensors. A preprocessing step then maps these data into discrete
state variables. Using the system definitions of Carlos F. Pfeiffer’s[13], we built the
foundations of our algorithmic logic on a C# class defining the states (Position, Room,
Loa and Roomsection) of a monitored person. This simulator is able to create behavioural
routines relevant to analyze.

The main tool we implemented during this work is the analysis program. We have struc-
tured this tool into a part of information retrieval and a part of processing. An effective
way of being warned about a new activity is provided by EventHandlers. Once the inform-
ation was retrieved from the database, we decided to implement a MAS-type architecture
to process it. The advantage of using an Agent logic is the flexibility to add analysis meth-
ods. We used an exponential distribution to access the survival probabilities of behaviours
analyzed on the fly on the database. By coupling these probabilities with Fuzzy Logic as
a classification method, we were able to generate an alert depending on the normality of
the behaviour.

The simulator and the analysis program are promising because of their complementarity
in the construction and analysis of relevant situations. The architecture of the analysis
program is designed for the addition of analysis tools such as those mentioned in the
Future Work chapter (HMM and frequency analysis).

63

6 Conclusion

In conclusion, our work contributes significantly to the understanding of mechanisms
associated with behaviour analysis. Our study should lead to the construction of a powerful
tool for the assistance of elderly people living alone. To this end, and as part of the work
at the University College of South East Norway, this project represents a short-term hope
for an effective and realistic solution.

64

References

[1] Histoire de la psychologie. Fort-de-France, Martinique. url: http://www.univ-
ag.fr/modules/module_documents/get- document/default/UFR_Medecine/
PACES_cours_UE17/Histoire_de_la_psychologie1.pdf.

[2] Richard W Burkhardt. Patterns of behavior: Konrad Lorenz, Niko Tinbergen, and
the founding of ethology. University of Chicago Press, 2005.

[3] Lygia Olhweiler, Alexandre Rodrigues da Silva and Newra Tellechea Rotta. “Prim-
itive reflex in premature healthy newborns during the first year”. In: Arquivos de
neuro-psiquiatria 63.2A (2005), pp. 294–297.

[4] ”Instinct.” Merriam-Webster.com. dictionary on the Internet. 2017. url: https:
//www.merriam-webster.com/dictionary/instinct..

[5] Psychologie générale: Les grands courants de la psychologie. webpage on the In-
ternet. Paris, 2017. url: http://ass1.forum-actif.eu/t121-psychologie-
generale-les-grands-courants-de-la-psychologie.

[6] Douglas L. Hintzman. “MINERVA 2: A simulation model of human memory”. In:
Behavior Research Methods, Instruments, & Computers 16.2 (1984), pp. 96–101.
issn: 1532-5970. doi: 10.3758/BF03202365. url: http://dx.doi.org/10.3758/
BF03202365.

[7] Stephane Daviet. “Etude du comportement humain grâce à la simulation multi-
agents et aux méthodes de fouille de données temporelles”. Theses. Université de
Nantes, Mar. 2009. url: https://tel.archives-ouvertes.fr/tel-00482642.

[8] Felix Putze. “Cognitive Modeling: Human Behavior Modeling”. 2012.
[9] Oxford Dictionaries. dictionary on the Internet. 2017. url: https://en.oxforddictionaries.

com/definition/us/routine.
[10] Nikola Banovic et al. “Modeling and Understanding Human Routine Behavior”. In:

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
CHI ’16. Santa Clara, California, USA: ACM, 2016, pp. 248–260. isbn: 978-1-4503-
3362-7. doi: 10.1145/2858036.2858557. url: http://doi.acm.org/10.1145/
2858036.2858557.

[11] Care Innovationns. webpage on the Internet. 2017. url: www.careinnovations.
com.

65

http://www.univ-ag.fr/modules/module_documents/get-document/default/UFR_Medecine/PACES_cours_UE17/Histoire_de_la_psychologie1.pdf
http://www.univ-ag.fr/modules/module_documents/get-document/default/UFR_Medecine/PACES_cours_UE17/Histoire_de_la_psychologie1.pdf
http://www.univ-ag.fr/modules/module_documents/get-document/default/UFR_Medecine/PACES_cours_UE17/Histoire_de_la_psychologie1.pdf
https://www.merriam-webster.com/dictionary/instinct.
https://www.merriam-webster.com/dictionary/instinct.
http://ass1.forum-actif.eu/t121-psychologie-generale-les-grands-courants-de-la-psychologie
http://ass1.forum-actif.eu/t121-psychologie-generale-les-grands-courants-de-la-psychologie
https://doi.org/10.3758/BF03202365
http://dx.doi.org/10.3758/BF03202365
http://dx.doi.org/10.3758/BF03202365
https://tel.archives-ouvertes.fr/tel-00482642
https://en.oxforddictionaries.com/definition/us/routine
https://en.oxforddictionaries.com/definition/us/routine
https://doi.org/10.1145/2858036.2858557
http://doi.acm.org/10.1145/2858036.2858557
http://doi.acm.org/10.1145/2858036.2858557
www.careinnovations.com
www.careinnovations.com

References

[12] Diane J. Cook, Narayanan C. Krishnan and Parisa Rashidi. “Activity Discovery
and Activity Recognition: A New Partnership”. In: IEEE Trans. Cybern. 43 (2013),
pp. 820–823.

[13] Carlos F Pfeiffer, Veralia Gabriela Sánchez and Nils-Olav Skeie. “A Discrete Event
Oriented Framework for a Smart House Behavior Monitor System”. In: Intelligent
Environments (IE), 2016 12th International Conference on. IEEE. 2016, pp. 119–
123.

[14] Oliver Brdiczka et al. “Detecting Human Behavior Models From Multimodal Ob-
servation in a Smart Home”. In: IEEE Trans. Automation Science and Engineering
6 (2009), pp. 588–597.

[15] Hamid Medjahed et al. “Human activities of daily living recognition using fuzzy
logic for elderly home monitoring”. In: Fuzzy Systems, 2009. FUZZ-IEEE 2009.
IEEE International Conference on. IEEE. 2009, pp. 2001–2006.

[16] James C Bezdek. “A convergence theorem for the fuzzy ISODATA clustering al-
gorithms”. In: IEEE transactions on pattern analysis and machine intelligence 1
(1980), pp. 1–8.

[17] Belkacem Chikhaoui, Shengrui Wang and Hélène Pigot. “A frequent pattern min-
ing approach for ADLs recognition in smart environments”. In: Advanced Inform-
ation Networking and Applications (AINA), 2011 IEEE International Conference
on. IEEE. 2011, pp. 248–255.

[18] Hongqing Fang, Hao Si and Long Chen. “Recurrent neural network for human
activity recognition in smart home”. In: Proceedings of 2013 Chinese Intelligent
Automation Conference. Springer. 2013, pp. 341–348.

[19] Joseph K Blitzstein and Jessica Hwang. Introduction to probability. CRC Press,
2014.

[20] I. Florescu. Probability and Stochastic Processes. Wiley, 2014. isbn: 9781118593134.
url: https://books.google.no/books?id=Kdq6BQAAQBAJ.

[21] Phil Blunsom. “Hidden markov models”. In: Lecture notes, August 15 (2004), pp. 18–
19.

[22] Lawrence R Rabiner. “A tutorial on hidden Markov models and selected applications
in speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.

[23] Brandon Malone. “Hidden Markov Models and Gene Prediction”. In: (2014).
[24] H-L Lou. “Implementing the Viterbi algorithm”. In: IEEE signal processing magazine

12.5 (1995), pp. 42–52.
[25] Paul M Baggenstoss. “A modified Baum-Welch algorithm for hidden Markov mod-

els with multiple observation spaces”. In: IEEE Transactions on speech and audio
processing 9.4 (2001), pp. 411–416.

66

https://books.google.no/books?id=Kdq6BQAAQBAJ

References

[26] Mehdi Dastani and Leendert van der Torre. “A classification of cognitive agents”.
In: Procs. of Cogsci’02 (2002), pp. 256–261.

[27] Igor Agbossou. “Modélisation et simulation multi-agents de la dynamique urbaine :
application à la mobilité résidentielle”. Theses. Université de Franche-Comté, Nov.
2007. url: https://tel.archives-ouvertes.fr/tel-00924741.

[28] Stuart Russell, Peter Norvig and Artificial Intelligence. “A modern approach”. In:
Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs 25 (1995), p. 27.

[29] Alexandra Degeest. Intelligence Artificielle : Systèmes Multi-Agents. Isib, 2017.
[30] Lotfi A Zadeh. “Fuzzy logic= computing with words”. In: IEEE transactions on

fuzzy systems 4.2 (1996), pp. 103–111.
[31] Lotfi A Zadeh. “Fuzzy logic systems: Origin, concepts, and trends”. In: Computer

Science Division Department of EECS UC Berkeley (2004).
[32] Raul Rojas. “Fuzzy Logic”. In: Neural networks. Springer, 1996, pp. 289–310.
[33] Ebrahim H Mamdani and Sedrak Assilian. “An experiment in linguistic synthesis

with a fuzzy logic controller”. In: International journal of man-machine studies 7.1
(1975), pp. 1–13.

[34] L. Rising and N. S. Janoff. “The Scrum software development process for small
teams”. In: IEEE Software 17.4 (July 2000), pp. 26–32. issn: 0740-7459. doi: 10.
1109/52.854065.

[35] National Sleep Foundation. webpage on the Internet. 2017. url: https://sleepfoundation.
org/.

[36] Events Tutorial (C#). webpage on the Internet. 2017. url: https://msdn.microsoft.
com/en-us/library/aa645739(v=vs.71).aspx.

[37] Yoav Shoham. “Agent-oriented programming”. In: Artificial intelligence 60.1 (1993),
pp. 51–92.

[38] Yoav Shoham. “AGENT0: A Simple Agent Language and Its Interpreter.” In: AAAI.
Vol. 91. 1991, p. 704.

[39] Foundation for Intelligent Physical Agents. Specifications. webpage on the Internet.
2017. url: http://www.fipa.org.

[40] Fabio Bellifemine, Agostino Poggi and Giovanni Rimassa. “JADE–A FIPA-compliant
agent framework”. In: Proceedings of PAAM. Vol. 99. 97-108. London. 1999, p. 33.

[41] K. Viard et al. “An Event-Based Approach for Discovering Activities of Daily Living
by Hidden Markov Models”. In: 2016 15th International Conference on Ubiquitous
Computing and Communications and 2016 International Symposium on Cyberspace
and Security (IUCC-CSS). Dec. 2016, pp. 85–92. doi: 10.1109/IUCC-CSS.2016.
020.

67

https://tel.archives-ouvertes.fr/tel-00924741
https://doi.org/10.1109/52.854065
https://doi.org/10.1109/52.854065
https://sleepfoundation.org/
https://sleepfoundation.org/
https://msdn.microsoft.com/en-us/library/aa645739(v=vs.71).aspx
https://msdn.microsoft.com/en-us/library/aa645739(v=vs.71).aspx
http://www.fipa.org
https://doi.org/10.1109/IUCC-CSS.2016.020
https://doi.org/10.1109/IUCC-CSS.2016.020

References

[42] Enric Junqué de Fortuny. “Detecting patterns in human behaviour and operational-
ization of predictive models”. Theses. Universiteit Antwerpen, Faculteit Toegepaste
Economische Wetenschappen, 2014.

[43] S.V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. Wiley, 2008.
isbn: 9780470740163. url: https://books.google.no/books?id=vVgLv0ed3cgC.

68

https://books.google.no/books?id=vVgLv0ed3cgC

Appendices

Appendix 1: Project task description
Appendix 2: Class Human
Appendix 3: Data insertion code
Appendix 4: Timer code
Appendix 5: Coding and decoding code
Appendix 6: Classification code

69

Appendix 1: Project task description

70

71

Appendix 2: Class Human

Appendix 3: Data insertion code

72

Appendix 4: Timer code

73

Appendix 5: Coding and decoding code

74

Appendix 6: Classification code

75

76

	Discrete Events Modelling of a Person Behaviour at Home
	Summary

	Preface
	Contents
	List of Figures
	List of Tables

	Introduction
	Project Description
	Document structure

	Theoretical background
	Related Work
	Hidden Markov Models
	Fuzzy Logic
	Frequent Pattern Mining
	Recurrent Neural Network

	Stochastic methods for discrete events modelling
	Hidden Markov Models
	Agent
	Fuzzy Logic

	Methodology
	Introduction
	Development Process
	States
	Simulating a morning routine
	Activity and Behavior
	Database
	Timer
	Codification
	Variation in the routine
	Cache database

	Analysis
	Introduction
	User Interface
	EventHandler
	Agents
	Classification

	Results
	Testing module
	Situation 1 : Normal routine
	Situation 2 : Irrelevant behaviour time
	Situation 3 : Abnormal behaviour time

	Future work
	User-friendly routine adding system
	Sequences analysis
	Frequency of behaviour occurrence

	Conclusion
	References
	Appendices

