

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2017

Industrial IT and Automation

Recursive Subspace System Identification

(RSSID) algorithms

Harrison Amaghu Idornigie

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2017

Title: Recursive Subspace System Identification (RSSID) algorithms

Number of pages: 72

Keywords: Recursive Subspace System Identification, Artificial Neural Network, Process

Data, Modeling, Simulations, Identification Methods, Prediction error method.

Student: Harrison Idornigie

Supervisor: David Di Ruscio

External partner: None

Availability: Open

Approved for archiving:

(supervisor signature)

__

Summary:

The goal of system identification is to find mathematical equation that gives approximation

to the actual behavior of real systems. In this thesis, a recursive subspace model

identification algorithm is presented that recursively identifies both linear and nonlinear

systems. Each recursion step consisted of two-stages: first, the innovation form of the

stochastic system was estimated, then the model Matrices was estimated.

Much attention is paid to the computational cost and the performance of the models derived

from the developed identification algorithm and a comparison to existing traditional

methods as well as the neural network algorithm was made using various monte-carlo

simulations on different laboratory data.

It is observed that the proposed algorithm performed better than some traditional methods

in some conditions and was reasonable good on other conditions or process types and is

therefore very reliable.

 Preface

III

Preface
As a requirement for the fulfilment of the Master degree program in Industrial IT and

Automation, this Master thesis on “Recursive Subspace System Identification (RSSID)

algorithms” is written and submitted to University College of southeast Norway in Porsgrunn,

Norway. This thesis report is prepared based on various literature review, experiments and

simulations performed under the supervision of David Di Ruscio.

My sincere appreciation goes to my supervisor Dr. David Di Ruscio for his guidance and

support during the entire period of the thesis work. He was very helpful and always supportive,

providing better suggestions on how to carry out the task during the thesis work.

Special Thanks to God for his infinite grace, mercy, favor and provision of abundant resources.

Finally, Thanks to the university lecturers who have impacted me with the required knowledge

to be able to complete this task. I am also very grateful to my friend Ivan Pirir and my family

for their support in my academic career.

Harrison Amaghu Idornigie.

Porsgrunn, 10.05.2017

 Nomenclature

IV

Nomenclature
SID System Identification

ESSM Extended state space model

SIM Subspace identification methods

SISO Single input Single Output

MIMO Multiple Input Multiple Output

RANN Recursive Artificial Neural Network

DAQ Data acquisition

PRBS Pseudo random binary signals

RPEM Recursive prediction error method

RARX Recursive Auto Regressive with exogenous input

RDSR Recursive Deterministic and Stochastic system identification and Realization

RSSID Recursive system identification

SVD Singular values decomposition

LTIFD Linear time invariant system of a finite order

 Contents

III

Contents

Preface .. III

Nomenclature .. IV

1 .. Introduction ... 5

1.1 Previous work ... 6
1.2 Aim of the thesis. .. 9
1.3 Methods and limitations ... 9
1.4 Thesis outline .. 10

2 .. Background ... 11

2.1 Models .. 11
2.2 Systems Description .. 11

2.2.1 Synthetic noisy data from known model. ... 11
2.2.2 The Quadruple tank process .. 12
2.2.3 The Air heater process ... 14

2.3 Problem description ... 15
2.4 Model Performance analysis ... 16

2.4.1 Validation Analysis ... 16
2.4.2 Optimal Prediction Error .. 17

3 .. Modeling and Identification .. 19

3.1 The Modeling procedure .. 19
3.1.1 Data collection and systemization .. 19
3.1.2 Input signals .. 21

3.2 Data preprocessing .. 22
3.3 Identification methods.. 23

3.3.1 RDSR Algorithm .. 23
3.3.2 Using the System Identification Toolbox ... 28
3.3.3 Neural Network Approach .. 31

3.4 Identified models .. 34
3.4.1 Models and Initial conditions ... 34

3.5 Comparison between RDSR and traditional methods .. 36

4 .. Results ... 38

4.1 Model Performance Analysis ... 38
4.1.1 Synthetic Model ... 39
4.1.2 Quadruple tank .. 42
4.1.3 Air heater .. 45

4.2 Optimal Model Prediction .. 47
4.2.1 Quadruple tank .. 48
4.2.2 Synthetic model .. 49

5 .. Concluding Remarks .. 51

5.1 Conclusion .. 51
5.2 Further works .. 52

References ... 53

Appendices .. 55

 Contents

IV

A.1 Master’s thesis proposal .. 55
A.2 Parameters for Quadruple tank models ... 56
A.3 Parameters for Synthetic models .. 58
A.4 Parameters for Air heater models ... 60
A.5 MATLAB codes ... 62

 1 Introduction

5

1 Introduction
System identification is an attempt to estimate a white, black or grey box model of a dynamic

system based on observing the input-output data from the experiment. Zadeh (1962) defined

system identification as: “... the determination based on input and output, of a system (model)

within a specified class systems (models), to which the system under test is equivalent (in terms

of a criterion)”. (Chinarro, 2014)

Generally, a model tries to emulate the system behavior in a simplified way by choosing only

the most significant system properties. Modeling techniques can therefore be classified as:

• Apriori modeling, white-box or morphological modeling, by making simple

experiments to consider the physical or chemical laws involved.

• Aposteriori modeling or black-box modeling, by building a model based only on data

(data-driven) without having previous knowledge of the system. The model describes

how the outputs depend on the inputs, not how the system actually is, and characterizes

the system dynamics (delays, speed, oscillations, etc.).

• Grey box modeling is a technique used when dynamics of the system’s internal laws

are not entirely known, so it is based on both insight into the system and on

experimental data analysis.

The availability and reliability of the various design techniques of system identification has

helped to expand the application fields beyond the scope of just industrial applications. As a

result, system identification models have been applied in other diverse fields, such as, economy,

environment, biology, psychology, biomedical research, hydrology, and glaciology.

The identification problem requires (L. Ljung, 1994):

1. a set of model structures,

2. a validation criterion and

3. an aim

The validation criteria and model structures will be presented over the course of this thesis.

Some examples of identification aims could be (Chinarro, 2014):

• To design control strategies for a system (e.g., in optimizing an electrical microgrid

operation).

• To analyze the properties of the system (e.g., quantity rates in a medication reaction).

• To forecast the evolution of the system (e.g., future climate prediction according a IPCC

downscaling model)

• To identify hidden factors influencing a system (e.g., sun spots in the karst spring).

• To improve the internal knowledge of the system (e.g., the delay in the aquifer

discharge with respect to precipitation events).

• To identify the interaction between coupled systems (e.g., climate and glaciers).

Since some unknown physical parameters of the dynamic processes are difficult to measure,

identification is therefore needed. The finally obtained model could be in the form of state

space, transfer function or polynomial function. It is therefore necessary to find a suitable

identification algorithm for the parameter identification of the models since these models

sometimes have characteristics of multi-variable and high-order and some parameters may be

time-varying.

 1 Introduction

6

Various available algorithms for recursive implementations of system identification are

presented in this report and studied in some details. Major focus would be placed on a

Recursive DSR (the RDSR method) that was developed in the end of the 90’ies but only

published in an internal report. A comprehensive comparison between the RDSR algorithm

and other algorithms is made based on various monte-carlo simulations.

1.1 Previous work

Over the last few years, various recursive versions of linear subspace identification algorithms

have been presented such as in (I. Goethals, 2004), (M. Lovera, 1998) and (G. Mercere, 2004.).

In (L. Bako, 2009) it is shown that the Hammerstein subspace identification algorithm

presented in (I. Goethals, 2005) can also be transformed into recursive form, allowing for its

use in on-line applications. Recursive subspace model identification (RSMI) has been

developed for decades however, most of RSMIs are only applied for open loop data

In (Jie Hou, 2015), a modified closed-loop PARSIM-E identification method is proposed to

further improve the computational efficiency without sacrificing identification accuracy. The

key idea lies with pruning redundant estimates on coupled parameters associated with the

PARSIM-E identification method. Moreover, the proposed recursive PARSIM-E method can

be used to update the product of the extended observability and controllability matrices for

online parameter estimation.

In (Jie Hou, 2015), it is also stated that the subspace identification method has attracted more

and more attention as a relatively new topic in the field of system identification. Its outstanding

advantage is that the state space model which is equivalent to the original state space model

can be directly estimated by the input and output data. The subspace identification has been

widely used in multivariable systems since it was proposed. Subspace identification methods

(SIMs) have been increasingly explored in the past two decades owing to the uniform

parametrization for multiple-input-multiple-output (MIMO) systems. A number of SIMs, e.g.

CVA (Larimore, 1990), MOESP(Verhaegen M, 1992), and N4SID (P.V. Overschee, 1994),

have been widely recognized for practical applications.

Most of projection based SIMs use singular value decomposition (SVD) to extract the extended

observability matrix. For on-line identification, the computational burden of SVD has become

a notorious problem impeding efficient application of recursive SIMs (RSIMs).

To overcome the drawback, the projection approximation subspace tracking (PAST) and IV-

PAST strategies were adopted to develop RSIMs. However, it was pointed out that although

PAST can be used to reduce computational complexity, the resulting state-space model may

not converge to a constant state-basis. To address the problem, a propagator was proposed to

estimate the plant state directly(G. Mercere, 2006).

In (Xi Chen, 2012), the recursive subspace method for Wiener systems with general

nonlinearity is considered. By the recursive method for the principle component analysis, the

subspace of extended controllability matrix is recursively obtained. Then the matrix

coefficients of the linear subsystem and the nonlinear function are also recursively estimated.

Under rather mild conditions, all estimates are shown to be consistent. A simulation example

is provided justifying the method proposed in the paper.

 1 Introduction

7

In (I. Houtzager, 2009) a subspace model identification algorithm is presented that could

recursively track slowly time-varying linear systems operating both in open loop and closed

loop. Much attention was also paid to the computational cost and tracking performance of their

developed identification algorithm. The computational complexity was reduced by using array

algorithms in solving these linear problems and also exploiting the structures in the vectors

which resulted in a fast implementation of their developed recursive identification algorithm.

Emphasis was made on the effectiveness of the proposed algorithm in comparison with existing

methods with a simulation study on a time-varying closed-loop system.

In (YuePing Jiang, 2009), A recursive subspace identification algorithm was proposed for the

closed-loop stochastic systems in state-space form. Each recursion step consisted of two-

stages: first, the innovation of the stochastic system was estimated by the extended least squares

(ELS) algorithm; then, a basis of the extended observability matrix was estimated by the

stochastic approximation based principal component analysis (SABPCA) method by using the

estimated innovation to replace the true one. The recursively estimated observability matrix

converged to the true one up to a similarity transformation. The performance of the proposed

algorithm was also illustrated via a simulation example.

In (Ping Wu, 2008), a new recursive subspace model identification was proposed which can be

applied under open loop and closed loop data. The key technique of this derivation of the

proposed algorithm was to bring the Vector Auto Regressive with eXogenous input (VARX)

models into RSMI. Numerical studies on a closed loop identification problem showed the

effectiveness of the proposed algorithm.

In (G. Mercere, 2006), the convergence properties of a recently developed recursive subspace

identification algorithm of the MOESP class was investigated. The algorithm operated based

on an extended instrumental variable (EIV) version of the propagator method for signal

subspace estimation. It was proved that, under weak conditions on the input signal and the

identified system, the considered recursive subspace identification algorithm converges to a

consistent estimate of the propagator and of the state space system matrices by extension.

In (Liang Ma, 2016), the parameter estimation problem of ARMAX models for the

Hammerstein systems was considered. The recursive maximum likelihood method, which

could be applied to online identification and occupies small memory capacity, was proposed

to deal with the problem. It was an approximation of the maximum likelihood method. The

parameters of the linear and nonlinear parts of the Hammerstein model and the noise model

could be directly obtained without using the over-parameterization technique. Finally, the

proposed method was applied to a classic Hammerstein ARMAX system and was compared

with RLS method. The research results show the effectiveness of the proposed method.

In (Guillaume Mercere, 2005), the problem of the recursive identification of MIMO state space

models in the framework of subspace methods was considered. Two new algorithms, based on

a recursive formulation of the MOESP identification class, were more precisely developed.

In (Kentaro Kameyama, 2005), a new subspace method for predicting time-invariant/varying

stochastic systems was investigated in the 4SID framework. Using the concept of angle

between past and current subspaces spanned by the extended observability matrices, the future

subspace was predicted by rotating current subspace in the geometrical sense. To treat even

time-varying system, a recursive algorithm was derived for implementation. The proposed

algorithm was tested by simulation experiments.

 1 Introduction

8

The field of neural networks has a history of some five decades but has found solid application

only in the past fifteen years, and the field is still developing rapidly. It is different from the

fields of control systems or optimization where the terminology, basic mathematics, and design

procedures have been firmly established and applied for many years. (Howard Demuth, 2002).

In (Kumpati S. Narendra, 1990), it was demonstrated that neural networks can be used

effectively for the identification and control of nonlinear dynamical systems. The emphasis

was on models for both system identification and control. Static and dynamic back-propagation

methods for the adjustment of parameters were discussed. In the models that were introduced,

both multilayer and recurrent networks are interconnected in novel configurations and therefore

there was a real need to study them in a unified fashion. Simulation results revealed that the

identification and adaptive control schemes suggested were practically feasible. Basic concepts

and definitions were introduced and theoretical questions which should be addressed were also

described.

In (K. J. Hunt, 1992), focus was placed on the promise of artificial neural networks in the realm

of modelling, identification and control of nonlinear systems. The basic ideas and techniques

of artificial neural networks are presented in familiar language and notations to control

engineers. Applications of a variety of Neural architectures in control was also surveyed. They

explored the links between the fields of control science and neural networks in a unified

presentation and identified key areas for future research.

In (Yi Liu, 2010), it was stated that online identification of nonlinear systems is still an

important while difficult task in practice. A simple online identification method called

Selective Recursive Kernel Learning (SRKL) was proposed for multi-input–multi-output

(MIMO) systems with the nonlinear autoregressive with exogenous input form. A two-stage

RKL online identification framework was formulated, where the information contained by a

sample can be introduced into and/or deleted from the model recursively. A sparsification

strategy to restrict the model complexity was then developed to guarantee that all the output

channels of the MIMO model were accurate simultaneously. A novel pruning approach based

on the fast leave-one-out cross-validation criterion was explored to acquire generalization

ability by determining and then deleting the useless information. Consequently, the model

could adaptively adjust its structure to capture the process dynamics. The SRKL method was

applied intensively to several nonlinear systems for multifold identification aims. The obtained

results showed that SRKL was superior to traditional methods in different situations. The

benefits of its accuracy, reliable performance and simplicity of implementation in practice

indicated that the SRKL method is promising for online identification of nonlinear systems.

Importance of Recursive System Identification:

It may sometimes be necessary to estimate a model on line at the same time as the input-output

data is received or you may need the model to make some decision on line, as in adaptive

control, adaptive filtering, or adaptive prediction or it may be necessary to investigate some

possible time variation in the system’s properties during the collection of data. Terms such as

adaptive parameter estimation, recursive identification, sequential estimation, and on-line

algorithms are used for such algorithms. Chapter 11 in (Ljung, 1999) deals with such

algorithms in more detail (Ljung, 2000).

Some common needs or applications of online estimation methods include:

 1 Introduction

9

• Adaptive control — to estimate a plant model which modifies the controller based on

changes in the plant model.

• Online parameter estimation – To estimate the model parameter values at a time step,

recursive algorithms use the current measurements and previous parameter estimates.

• Soft sensing — to generate a measurement value based on the estimated plant model,

and use this measurement for feedback control or fault detection.

• Fault detection — to compare the online plant model with the idealized or reference

plant model to detect a fault (anomaly) in the plant.

• Verification of the experiment-data quality before starting offline estimation — Before

using the measured data for offline estimation, online estimation is sometimes

performed for a few iterations. This online estimation can provide a quick check of

whether the experiment used adequate excitation signals that captured the relevant

system dynamics.

Since the final models identified by the recursive implementations is usually similar to that of

their offline counterpart, the recursive algorithms are therefore efficient in terms of memory

usage. Also, recursive algorithms usually have smaller computational demands. This efficiency

makes them suited for online and embedded applications. See Recursive Algorithms for Online

Parameter Estimation.(Ljung, 2000).

1.2 Aim of the thesis.

The main issues of this report are:

1. To perform a literature review of Recursive Subspace based System Identification

(RSSID) algorithms. Give an overview and work out a comparison with traditional

Recursive System Identification (RSID) methods such as the Recursive Prediction

Error Method (RPEM) and if there are something to gain by using RSSID methods,

identification of system order etc. Possibly also compare RSSID methods with

(recursive) Neural Network methods.

2. To investigate the RDSR algorithm in some details and give a short and detailed

description of the algorithm.

3. To perform simulation experiments and Monte Carlo simulations to investigate the

quality of the parameter estimates.

4. To test on real data from one of our laboratory processes would be of interests. The

quadruple tank process would be a candidate laboratory process.

1.3 Methods and limitations

The models are identified using the System identification and RDSR Toolboxes in MATLAB.

The data measured from the different systems under consideration are divided into two

datasets, one for creating the models and the other for validating the models. Throughout the

thesis, the black-box technique is used.

Recursive identification requires online estimation. Online estimation differs from offline

estimation in the following ways (Ljung, 2000):

 1 Introduction

10

• Model delays — It is easier to estimate model delays in offline estimation but online

estimation provides limited ability to estimate delays. For polynomial model

estimation, you can specify a known value of the input delay (𝑛𝑘).

• Data pre-processing — For offline estimation data pre-processing, it is possible to use

functions such as detrend, retrend, idfilt, and the System Identification app

but for online parameter estimation at the command line, you cannot use pre-processing

tools in System Identification Toolbox™. Pre-processing is implemented according to

the application.

• Resetting of estimation — It is not possible to reset offline estimation but online

estimation lets you reset the estimation at a specific time step during estimation

• Enabling or disabling of estimation — It is not possible to selectively enable or disable

offline estimation but online estimation lets you enable or disable estimation for chosen

time spans.

Online parameter estimation is usually mathematically challenging due to the less information

provided for the estimation procedure compared to the offline procedure. Implementing online

identification is not a push-button approach in the sense that a good domain knowledge is

required as well as extensive simulation testing and careful model design.

1.4 Thesis outline

This thesis report is organized as follows. In chapter 1, a brief introduction, some previous

work done in this field and the general overview of problem considered in this work is

presented.

Chapter 2 gives a brief description of the models and Systems under consideration.

In chapter 3, the various Recursive System Identification approaches to be investigated are

presented giving a brief explanation of the different algorithms and how the measured or

generated data is organized into data matrices which satisfy the models or matrix equations

required for the method. How the system order and the model matrices can be extracted from

the known data matrices is also presented.

Efficient and stable implementations as well as various Monte Carlo simulations and

experimentations are performed and the results are presented and compared with other methods

for performance, stability and accuracy. Results from real world Numerical examples are also

presented in chapter 4.

A summary of the work done is presented in chapter 5 as well as some Concluding remarks

made based on the results from the simulations and experimentations. Some recommendations

for further works also follows in.

 2 Background

11

2 Background
This chapter gives a brief description of the models and Systems under consideration. It starts

with a brief introduction to the system identification procedure and some of the aspects

regarding the various identification approaches. The purpose of this is to explain some of the

choices made during the identification process and to support the assumptions made regarding

which inputs and outputs data are used.

2.1 Models

A model represents a mathematical relationship between a system's input and output variables.

Typically, models of dynamic systems are described by differential or difference equations,

transfer functions, state-space equations, and pole-zero-gain models. A linear model is often

sufficient to accurately describe the system dynamics but if the linear model output does not

adequately reproduce the measured output, a nonlinear model can be used.

Before building a nonlinear model of a system after the system fails the tests for linearity,

transform the input and output variables such that the relationship between the transformed

variables is linear. If the variable transformations that yield a linear relationship between input

and output variables cannot be determined, nonlinear structures can be used.

Dynamic models can be represented both in continuous-time and discrete-time form. In a

dynamic system, the values of the output signals depend on both the present values of its input

signals and on the past behavior or outputs of the system (MathWorks, 2016)

2.2 Systems Description

For this thesis work, the three systems under consideration are:

• Synthetic noisy data.

• The Quadruple tank process.

• The Air heater process.

A brief overview of these processes is presented below.

2.2.1 Synthetic noisy data from known model.

A known MIMO system with 𝑛 = 3 states, 𝑚 = 2 outputs and 𝑟 = 2 inputs is simulated to

generate data for testing the different algorithms to see how close to the known system matrices

the identified matrices from the algorithms can get. It is described by the following state space

model:

[

𝑥1
𝑥2
𝑥3
]

𝑘+1

⏞
𝑥𝑘+1

= [
−1.5 1 0.1
−0.7 0 0.1
0 0 0.85

]

⏞
𝐴

[

𝑥1
𝑥2
𝑥3
]

𝑘

⏞
𝑥𝑘

+ [
0 0
0 1
1 0

]

⏞
𝐵

[
𝑢1
𝑢2
]
𝑘

⏞
𝑢𝑘

+ [
0 0.1
0.1 0
0 0.2

]

⏞
𝐶

[
𝑣1
𝑣2
]
𝑘

⏞
𝑣𝑘

(2.1)

 2 Background

12

[
𝑦1
𝑦2
]
𝑘

⏞
𝑦𝑘

= [
3 0 −0.6
0 1 1

]
⏞

𝐷

[

𝑥1
𝑥2
𝑥3
]

𝑘

⏞
𝑥𝑘

+ [
1 0
0 1

]
⏞

𝐸

[
𝑤1
𝑤2
]
𝑘

⏞
𝑤𝑘

(2.2)

Where the initial state is given by

𝑥𝑘=1 = [0 0 0]
𝑇 (2.3)

A Pseudo Random Binary Signal (PRBS) experiment is performed in each of the two input

variables of the system. The experiment is of length 𝑁 = 2000 discrete time instants or

samples. The experiments in each input channel is made constant over intervals of length 10

samples for input 1 and 20 samples for input 2. This gives the input data matrix

𝑈 = [𝑢1 𝑢2] ∈ ℝ
𝑁×2 (2.4)

The process noise 𝑣𝑘 and the measurement noise 𝑤𝑘 are both white noises with zero mean.

The simulated output 𝑦𝑘
𝑑 of the system is defined as the output of the deterministic part of the

above state space model described as

𝑥𝑘+1
𝑑 = 𝐴𝑥𝑘

𝑑 + 𝐵𝑢𝑘 (2.5)

𝑦𝑘
𝑑 = 𝐷𝑥𝑘

𝑑 + 𝐸𝑢𝑘 (2.6)

The simulation Error:

The simulated error is defined as

𝑒𝑘
𝑑 = 𝑦𝑘 − 𝑦𝑘

𝑑 ∀ 𝑘 = 1,… ,𝑁 (2.7)

The size of the error can be measured by some matrix norm of the covariance matrix of the

error

∆𝑑=
1

𝑁 − 1
∑𝑒𝑘

𝑑(𝑒𝑘
𝑑)
𝑇

𝑁

𝑘=1

=
1

𝑁
(𝐸𝑑)𝑇𝐸𝑑 (2.8)

Where 𝐸𝑑 = 𝑌 − 𝑌𝑑 is an 𝑁×𝑚 matrix of the error at the 𝑁 time instants. After simulating the

model, the modeling error is 4.0594 which shows that it is a reasonably good model.

A good model is a model which results in a small simulated error 𝑒𝑘
𝑑. This is different from the

prediction error 𝑒𝑘 = 𝑦𝑘 − 𝑦̅𝑘 where 𝑦̅𝑘 is the optimal prediction.

2.2.2 The Quadruple tank process

The quadruple tank process is a non-linear process with an experimental setup as seen in Figure

2.1. The non-linear state space model of the tank is derived from mass balances and Bernoulli’s

/ Torricelli’s law. The details of the derivation is not of interest to this report however the

equations below shows the mass balance equations derived for the process (Ruscio, 2012).

 2 Background

13

𝐴1𝑥̇1 = −𝑞1
𝑜𝑢𝑡 + 𝑞3

𝑜𝑢𝑡 + 𝑞1
𝑖𝑛𝑛, (2.9)

𝐴2𝑥̇2 = −𝑞2
𝑜𝑢𝑡 + 𝑞4

𝑜𝑢𝑡 + 𝑞2
𝑖𝑛𝑛, (2.10)

𝐴3𝑥̇3 = −𝑞3
𝑜𝑢𝑡 + 𝑞3

𝑖𝑛𝑛, (2.11)

𝐴4𝑥̇4 = −𝑞4
𝑜𝑢𝑡 + 𝑞4

𝑖𝑛𝑛. (2.12)

The flow 𝑞𝑜𝑢𝑡 out of each tank is modeled using the Bernoulli’s / Torricelli’s law. We can

obtain the flow velocity 𝑣 [
𝑚

𝑠
] by equating the potential energy and Kinetic energy i.e. 𝑚𝑔ℎ =

1

2
𝑚𝑣2 and solving for the velocity 𝑣 = √2𝑔ℎ. We can multiply this with the area, 𝑎 of the

outlet hole of the tank to obtain the volumetric flow-rate, 𝑞 [
𝑚3

𝑠
], out of the tank as 𝑞 = 𝑎𝑣 =

𝑎√2𝑔ℎ = 𝑐√ℎ, i.e. the flow is proportional with the square root of the height where constant

𝑐 = 𝑎√2𝑔.

The flow out of each 𝑖𝑡ℎ tank is therefore given by:

𝑞𝑖
𝑜𝑢𝑡 = 𝑎𝑖𝑣𝑖 = 𝑎𝑖√2𝑔ℎ𝑖 . (2.13)

Figure 2.1: The Quadruple Tank Process

The flow 𝑞1 = 𝑘1𝑢1 from pump 1 can be divided into two paths, the flow 𝑞1
𝑖𝑛𝑛 = 𝛾1𝑘1𝑢1 into

Tank 1 and a flow 𝑞4
𝑖𝑛𝑛 = (1 − 𝛾1)𝑘1𝑢1 to Tank 4 such that the flow from pump 1 is 𝑘1𝑢1 =

𝛾1𝑘1𝑢1 + (1 − 𝛾1)𝑘1𝑢1. Where 𝛾1 is a valve parameter which may be fixed such that 0 < 𝛾1 <
1.

 2 Background

14

Similarly, the flow 𝑞2 = 𝑘2𝑢2 from the second pump can be divided into two, the flow 𝑞2
𝑖𝑛𝑛 =

𝛾2𝑘2𝑢2 into tank 2 and a flow 𝑞3
𝑖𝑛𝑛 = (1 − 𝛾2)𝑘2𝑢2 into Tank 3. Where 0 < 𝛾1 < 1 and 0 <

𝛾2 < 1 are fixed valve parameters.

It is also noteworthy that the system is non-minimum phase when choosing these parameters

such that, 0 < 𝛾1 + 𝛾2 < 1, and the system is minimum phase when, 1 < 𝛾1 + 𝛾2 < 2.

Therefore, a mass balance of the quadruple tank process gives the following state space model

(Ruscio, 2012).

 𝐴1𝑥̇1 = −𝑎1√2𝑔𝑥1 + 𝑎3√2𝑔𝑥3 + 𝛾1𝑘1𝑢1, (2.14)

 𝐴2𝑥̇2 = −𝑎2√2𝑔𝑥2 + 𝑎4√2𝑔𝑥4 + 𝛾2𝑘2𝑢2, (2.15)

𝐴3𝑥̇3 = −𝑎3√2𝑔𝑥3 + (1 − 𝛾2)𝑘2𝑢2, (2.16)

𝐴4𝑥̇4 = −𝑎4√2𝑔𝑥4 + (1 − 𝛾1)𝑘1𝑢1. (2.17)

Where 𝐴𝑖 ∀ 𝑖 = 1,… , 4 is the cross-section area of tank 𝑎𝑖 ∀ 𝑖 = 1,… , 4 is the cross-section

area of the outlet pipe of the tank 𝑖.

The input measurements are taken from the pump control signals 𝑈1 and 𝑈2 while the output

measurements are taken from the levels in Tanks 1 and 2, 𝑌1 and 𝑌2 respectively.

2.2.3 The Air heater process

In cold regions, the rooms are usually very cold and uncomfortable for habitation. To make the

buildings comfortable for living, the air heater is usually used to heat up the environment to

conducive temperatures. One of such systems is analyzed in this report and various system

identification approaches is tested on the system based on input/output data. For control

purposes however, a mathematical model that has proven to describe the dynamic behavior of

the air heater quite well in simulations is as follows (Finn Haugen, 2007):

𝑇𝑜𝑢𝑡 = 𝑇𝑒𝑛𝑣 + 𝑇ℎ𝑒𝑎𝑡 (2.18)

Where:

𝑇𝑒𝑛𝑣: is the environmental (room) temperature.

𝑇ℎ𝑒𝑎𝑡: is the additive contribution to the total temperature 𝑇𝑜𝑢𝑡 due to the heater. 𝑇ℎ𝑒𝑎𝑡 is given

by the following "time-constant with time-delay" differential equation model:

𝜃𝑡 ∗
𝑑(𝑇ℎ𝑒𝑎𝑡)

𝑑𝑡
= − 𝑇ℎ𝑒𝑎𝑡 + 𝐾ℎ ∗ 𝑢(𝑡 − 𝜃𝑑) (2.19)

Where:

 𝜃𝑡 [s] is time-constant.

𝑢 [v] is the control signal to the heater.

𝐾ℎ [K/V] is heater gain (K is Kelvin).

 2 Background

15

𝜃𝑑 [s] is time-delay representing sluggishness of the heater.

For this report, we will not go into much details concerning the model development and the

various model parameters however, it should be noted that the experiments were conducted in

an environment with 𝑇𝑒𝑛𝑣 = 22℃.

The physical structure of the air heater consists of the following items (Finn Haugen, 2007):

• One air fan

• One potentiometer (variable resistance) for manual adjustment of the voltage

controlling the fan speed.

• One electric power cable (for connection to mains outlet, e.g. 220 V)

• Two temperature sensors, type Pt100, with measurement signal converter from

resistance to current.

• One heating element (coil) for electric heating of air. Power (assuming 220 VAC) is

250 W. Heater: The supplied power is controlled by an external voltage signal in the

range [0 V, 5 V] applied to a Pulse Width Modulator (PWM) which

connects/disconnects the mains voltage to the heater.

• One electrical AC-DC converter from 220 VAC to 24 VDC.

• One Pulse-width modulator (PWM). The PWM signal is indicated by a lamp on the lab

station. The PWM device requires 24 VDC power supply, which is produced by the

AC/DC converter.

• Air Tube: The air pipe is made of plastic.

The input measurements are taken from the external control voltage signal to the heating

element represented as 𝑈 in the mathematical model while the output measurement is taken

from the temperature sensor Pt100 represented as 𝑇𝑜𝑢𝑡 in the mathematical model.

2.3 Problem description

As stated earlier, System Identification tries to estimate a model of a system based on observed

input-output data. Several ways to describe a system and to estimate such descriptions exist.

This section gives a brief account of some common approaches (Ljung, 2000).

The procedure to determine a model of a dynamical system from observed input-output data

involves three basic ingredients:

• The input-output data

• A set of candidate models (the model structure)

• A criterion to select a model in the set. (the identification method)

The identification process amounts to repeatedly selecting a model structure, computing the

best model in the structure, and evaluating this model’s properties to see if they are satisfactory

(Ljung, 2000). For recursive implementation, the cycle can be itemized as follows:

1. Design an experiment and collect input-output data from the process to be identified.

 2 Background

16

2. Select and define a model structure which is a set of candidate system types within

which a model is to be found. A set of candidate model structures, are selected based

on some criteria relating to the kind of model needed.

3. Compute the best model parameters in the model structure according to the input-output

data and a given criterion of fit. The model maps the input 𝑢(𝑡) to the output 𝑦(𝑡) which

is usually corrupted by noise or perturbations 𝜀(𝑡).
4. Examine the obtained model’s properties. The verification of the model consists of

finding the vector that best minimizes the error between real data and predicted data:

𝑒(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡).
5. If the model is good enough, then stop; else go back to Step 3 and repeat until

satisfactory results are achieved.

System identification is carried out through stages of preparation, analysis and the identification

as such (selection and optimization).

The analysis procedure tries to obtain the most details inside the system and take as much

useful information from the time series as possible. e.g. finding out if it is a linear system or a

nonlinear system, a time-invariant system or a time-variant system, a single input system or a

multi input-multi output system, a continuous system or a discontinuous system, an open-loop

system or a closed-loop system, etc.

The selection stage is the identification of the most suitable, identifiable model structure. The

final identification stage which follows the most critical procedures of estimation computes the

best model based on the data and a given criterion.

In the validation stage, the developed or identified model is analyzed to measures the ability

of the model to explain the observed data and show how efficient the model is in terms of some

criterion such as the general prediction error (maximum likelihood) or some efficiency criterion

for parametric models. In recursive system identification, the process necessarily has to be

iterative (Chinarro, 2014). This model validation process will be discussed in the next sections

2.4 Model Performance analysis

When a model is made, there is always a trade-off between accuracy and model complexity. A

large model can reproduce a measured output arbitrarily well but we must verify that the model

is relevant for other data that was not used for the estimation but was collected for the same

system. This makes it necessary to analyze the created models.

2.4.1 Validation Analysis

To measure the quality of an identified model, we have to investigate the error by defining

some criteria also known as the performance index such as:

• Goodness of fit in %

• MSE – Mean Squared Error

 2 Background

17

Fit %

Given the measured output y and the predicted or simulated output y. For N number of input-

output pairs the goodness of fit is computed as:

𝑓𝑖𝑡 =

(

 1 −
√∑ (𝑦̂𝑖 − 𝑦𝑖)2

𝑁
𝑖=1

√∑ (𝑦𝑖 −
1
𝑁
∑ 𝑦𝑖
𝑁
𝑖=1)

2
𝑁
𝑖=1)

 ×100 ∀ 𝑖 = 1, … ,𝑁 (2.20)

Mean Squared Error (MSE):

In a recursive sense, the Mean squared error between the measured output and the simulated

output at each observation 𝑜 or sample is defined as

𝑀𝑆𝐸𝑜 =
1

𝑁
∑([𝑦𝑜]𝑡 − [𝑦̂𝑜

𝑑]
𝑡
)
2

 ∀

𝑁

𝑡=1

 𝑜 = 1,… ,𝑚 (2.21)

Where N is the number of observations (samples). This gives a vector of MSE for the 𝑚 output

channels, i.e.

𝑀𝑆𝐸 = [
𝑀𝑆𝐸1
⋮

𝑀𝑆𝐸𝑚

] ∈ ℝ𝑚 (2.22)

The closer to zero the MSE number gets, the better the model becomes.

2.4.2 Optimal Prediction Error

The identified state space model needs to be analyzed to see how well it can perform in future

predictions from unknown data. One of the criteria used in this analysis is presented below.

The prediction Error

The prediction error of the model is computed by first simulating the optimal predictor (the

Kalman filter), i.e.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐾 (𝑦𝑘 − 𝐷𝑥𝑘 − 𝐸𝑢𝑘)⏞
𝑒𝑘

(2.23)

𝑦̅𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 (2.24)

Which gives the prediction error as

𝑒𝑘 = 𝑦𝑘 − 𝑦̅𝑘 ∀ 𝑘 = 1,… ,𝑁 (2.25)

 2 Background

18

The size of this error is measured as the size of the covariance matrix

∆=
1

𝑁 − 1
∑𝑒𝑘𝑒𝑘

𝑇

𝑁

𝑘=1

=
1

𝑁 − 1
𝐸𝑇𝐸 (2.26)

Where 𝐸 = 𝑌 − 𝑌̅ is an 𝑁×𝑚 matrix of the prediction error at the 𝑁 discrete time instants.

This is a true expected estimate of the exact covariance matrix ∆0= 𝐸(𝑒𝑘𝑒𝑘
𝑇).

For systems with multiple outputs, the trace operator can be used (Ruscio, 2014), i.e.

𝑉𝑁 = 𝑡𝑟𝑎𝑐𝑒(∆) (2.27)

Similarly, the size of the simulated error covariance matrix can be measured as

𝑉𝑁
𝑑 = 𝑡𝑟𝑎𝑐𝑒(∆𝑑) (2.28)

Scaled Prediction Error

The scaled prediction error between the measured output and the predicted output is given by

𝑉 =
1

𝑁𝑣𝑎𝑙
∑(𝑦𝑘 − 𝑦̅𝑘)

𝑇(𝑦𝑘 − 𝑦̅𝑘)

𝑁𝑣𝑎𝑙

𝑘=1

 (2.29)

Where 𝑦̅𝑘 is the model predicted output. The closer to zero the value of 𝑉 is, the better the

predictions.

 3 Modeling and Identification

19

3 Modeling and Identification
The aim of this chapter is to present the identified models used for the identification process

and explain how they are obtained. The methods and tools used are described including the

data collection and systemization.

It may be necessary sometimes to estimate a model on line at the same time as the input-output

data is received which leads us to recursive identification.

A typical recursive identification algorithm is given as

𝜃(𝑡) = 𝜃(𝑡 − 1) + 𝐾(𝑡)(𝑦(𝑡) − 𝑦̂(𝑡)) (3.1)

where 𝜃(𝑡) is the parameter estimate at time t, and 𝑦(𝑡) is the observed output at time t.

Moreover, 𝑦̂(𝑡) is a prediction of the value based on observations up to time 𝑡 − 1 and based

on the current model (and possibly also earlier ones) at time 𝑡 − 1. The gain 𝐾(𝑡) determines

how the current prediction error 𝑦(𝑡) − 𝑦̂(𝑡) affects the update of the parameter estimate

(Ljung, 2000). Section 11 in (Ljung, 1999). In the following section, we will look more into

some available recursive identification methods.

3.1 The Modeling procedure

For the identification of a system we need measurement data, a model set, an identification

criterion and the tools to obtain the identified model. The outcome of the identification can be

further fine-tuned by the user by choosing the right model set (model structure and order), this

takes place after the measurements have taken place.

The final model should also be adequate for the intended purpose, which may be simulation,

prediction, diagnostics, controller design or some other goal. For any of these applications it

may be necessary to emphasize the accuracy of the model. The applied input signal has to

assure that these frequencies are indeed excited. (Aarts, 2012).

3.1.1 Data collection and systemization

System identification primarily requires that the data captures the important dynamics of the

system. A good experimental design would ensure that the right variables are measured with

sufficient accuracy and duration to capture the dynamics to be modeled. In general, the

experiment must have the following properties (MathWorks, 2016):

1. Use inputs that excite the system dynamics adequately.

2. Measure data long enough to capture the important time constants.

3. Set up data acquisition system to have good signal-to-noise ratio.

4. Measure data at appropriate sampling intervals or frequency resolution.(Ljung, 2000)

 3 Modeling and Identification

20

The measured data can be divided into two datasets, one for Model validation analysis while

the other can be used for prediction analysis.

For Online Parameter Estimation at the Command Line, the workflow is thus:

1. Choose a model structure for your application.

Ideally, you want the simplest model structure that adequately captures the system

dynamics. There are many structures to select from such as the transfer function, State

space, or non-linear networks but for the thesis work, we focus on the state space

models and therefore we convert the identified polynomial models to the state space

form for the sake of comparison

2. Create an online estimation System object for your model structure by using the

following commands:

recursiveARX — usually SISO or MISO ARX model

The MATLAB syntax for implementing this is:
obj = recursiveARX

You can specify additional object properties such as the recursive estimation algorithm

and initial parameter guesses.

3. Acquire input-output data in real time.

Specify estimation output data, y, as a real scalar, and input data, u, as a real scalar or

vector.

4. Preprocess the estimation data.

Estimation data that contains deficiencies can lead to poor estimation results. Data

deficiencies include drift, offset, missing samples, equilibrium behavior and outliers.

Preprocess the estimation data as needed.

5. Update the parameters of the model using incoming input-output data.

Online estimation algorithms estimate the parameters and states of a model when new

data is available during the operation of the physical system. The System Identification

Toolbox™ software uses linear, extended, and unscented Kalman filter algorithms for

online state estimation. This toolbox, by default, uses recursive prediction error

minimization algorithms for online parameter estimation.

The step command is used to execute the specified recursive algorithm over each

measurement of input-output data. The MATLAB syntax for implementing this is:
[A,B,yhat] = step(obj,y,u)

The output of the step command gives the estimated parameters (A and B), and

estimated model output (yhat), at each set of input-output data.

6. Post-process estimated parameters.

If necessary, its advised to post-process the estimated parameters by using a low-pass

filter to smooth out noisy parameter estimates.

7. Validate the online estimation.

 3 Modeling and Identification

21

This involves performing several performance analyses.

8. Use the estimated parameters for your application.

3.1.2 Input signals

There are various approaches in applying the input signal for dynamic systems such as:

• RGS: Random, Gaussian Signal: discrete white noise with a flat spectrum.

• RBS: Random, Binary Signal.

• PRBS: Pseudo-Random, Binary Signal.

• SINE: sum of harmonic signals (sine functions).

• The Up-Down signal.

However, we will focus on the Pseudo Random Binary input Signals (PRBS) and also we will

examine some criteria for measuring the quality of different experimental design. A great

advantage of these signals is that it is easy to implement in practice and are therefore suitable

for real identification experiments (Ruscio, 2014).

Pseudo-Random, Binary Signals:

This signal can be generated easily by a computer algorithm using 𝑛 shift registers and modulo-

2 addition for a given initial condition (Total number of samples, Total number of intervals,

Minimum sample interval, Maximum sample interval, maximum input amplitude, Minimum

input amplitude) and binary coefficients. The output is a deterministic periodic signal. It is

called “pseudo-random” as it exhibits some properties that approximates a random signal

therefore it is desirable that the signal is a “Maximum length PRBS” which means that the

period of the signal is as large as possible. The Maximum period equals 𝑀 = 2𝑛 − 1 samples

and a PRBS is a maximum length PRBS if the coefficients are chosen correctly (Aarts, 2012).

The binary signal 𝑠(𝑡) generated by this algorithm has output values 0 and 1, however, it can

be transformed into a signal 𝑢(𝑡) shown in Figure 3.1 with amplitude 𝑐 and mean 𝑚 where the

equation of the signal is

𝑢(𝑡) = 𝑚 + 𝑐(−1 + 2𝑠(𝑡)) (3.2)

Figure 3.1: PRBS signal

Assume that an input signal series is given as

 3 Modeling and Identification

22

𝑢𝑘 ∈ ℝ
𝑟 ∀ 1 ≤ 𝑘 ≤ 𝑁 (3.3)

From the input series, we can measure the quality of the input signal by defining the input data

matrix with 𝑛 + 𝑔 block rows and 𝐾 = 𝑁 − 𝑛 − 𝑘 block columns as:

 Known data matrix of input variables

 𝑈𝑘|𝑛+𝑔 ≝

[

𝑢𝑘 𝑢𝑘+1 𝑢𝑘+2 ⋯ 𝑢𝑘+𝐾−1
𝑢𝑘+1 𝑢𝑘+2 𝑢𝑘+3 ⋯ 𝑢𝑘+𝐾
⋮ ⋮ ⋮ ⋱ ⋮

𝑢𝑘+𝑛+𝑔−2 𝑢𝑘+𝑛+𝑔−1 𝑢𝑘+𝑛+𝑔 ⋯ 𝑢𝑘+𝑛+𝐾+𝑔−3
𝑢𝑘+𝑛+𝑔−1 𝑢𝑘+𝑛+𝑔 𝑢𝑘+𝑛+𝑔+1 ⋯ 𝑢𝑘+𝑛+𝐾+𝑔−2]

⏞

∈ ℝ(𝑛+𝑔)𝑟×𝐾 (3.4)

The input signal 𝑢𝑘 is said to be exciting of order n if and only if the matrix 𝑈𝑘|𝑛+𝑔 is non-

singular (Ruscio, 1998). i.e.

𝑟𝑎𝑛𝑘(𝑈𝑘|𝑛+𝑔) = (𝑛 + 𝑔)𝑟 (3.5)

Where 𝑔 is a prescribed model structure parameter with values

𝑔 = {
0 𝑖𝑓 𝐸 = 0𝑚×𝑟
1 𝑖𝑓 𝐸 ≠ 0𝑚×𝑟

 Or if and only if the matrix

𝑃𝑛 =
1

𝐾
𝑈𝑘|𝑛+𝑔𝑈𝑘|𝑛+𝑔

𝑇 ∈ ℝ(𝑛+𝑔)𝑟×(𝑛+𝑔)𝑟 (3.6)

is non-singular.

An optimal input design is an input signal with minimum condition number (cond (𝑈𝑛|𝑛+𝑔) or

cond (𝑃𝑛)) subject to some constraints (Ruscio, 1998).

3.2 Data preprocessing

Estimation data that contains deficiencies can lead to poor estimation results. Data deficiencies

include drift, offset, missing samples, equilibrium behavior, seasonality, and outliers. For

recursive identification, it is difficult to account for trends and missing values due to the data

being collected in the same time as the identification is taking place. This however, makes it

possible for the model to also account for the noise and uncertainties in the data. Some further

data preprocessing that may improve the quality of the online identification procedure includes

checking for the following (Aarts, 2012):

• Delays: Delays may arise from several sources including the measurement equipment

or the ZOH discretization. A known delay can be removed from the data collection

process by compensation but it has to be assured that the delay is not overestimated as

this would result in a-causal models.

• Filtering: Filtering is important before and after data acquisition. If necessary analog

low-pass filters should be used as an anti-aliasing and/or noise filter during the

 3 Modeling and Identification

23

measurement. The cut-off frequency of an (analog) anti-aliasing filters should match

the original sample frequency.

3.3 Identification methods

The 4 methods selected for comparison in this thesis work are described in the following

subsections. These are selected primarily because they can handle multiple input systems as

most of the systems under consideration are MIMO systems:

• Recursive Deterministic and Stochastic system identification and Realization (RDSR)

• Recursive Artificial Neural Network (RANN)

• Recursive Auto Regressive with exogenous input (RARX)

• Recursive Prediction Error Method (RPEM)

3.3.1 RDSR Algorithm

This algorithm is the recursive formulation of the (subspace) implementation of the Combined

Deterministic and Stochastic system identification and Realization (DSR) algorithm presented

in (Ruscio, 2012) which results in the name Recursive DSR (RDSR) algorithm.

This algorithm is based on a “short” sliding window illustrated in Figure 3.2 with input and

output data vectors. The sliding window is considered short because it is much less than a

typical length of time series used in the batch identification method (Ruscio, 1998).

Figure 3.2: The sliding Window

Note that the present time instant in Figure 3.2 is 𝑡 = 𝑘 + 𝐿.

In the DSR algorithm, there are two important horizon parameters 𝐿 and 𝐽 needed by the

algorithm however only 𝐿 is important and necessarily needs to be specified in the RDSR

algorithm.

• 𝐿 is the horizon used to predict the number of states 𝑛 in the system. The system order

is bounded by 1 ≤ 𝑛 ≤ 𝐿𝑚 where 𝑚 is the number of output variables. A rule of thumb

is to choose 𝐿 as small as possible, i.e. so that 𝐿𝑚 is as close to 𝑛 as possible.

• 𝐽 is the past horizon used to define the instruments needed to remove noise from the

data. For most normal noisy process data, we can put 𝐽 = 𝐿 or 𝐽 < 𝐿 for noise free

(deterministic) data.

 3 Modeling and Identification

24

The number of samples in the input data window is 𝐿 + 𝐽 + 𝑔 and the number of samples in

the output data window is 𝐿 + 𝐽 + 1. 𝑔 is a discrete model parameter which is defined based

on the direct input feed-through term (model matrix) 𝐸.

𝑔 = {
0 𝐸 = 0𝑚×𝑟 𝑖. 𝑒. 𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 "𝑝𝑟𝑜𝑝𝑒𝑟"
1 𝐸 𝑖𝑠 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖. 𝑒. 𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 "𝑆𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑝𝑟𝑜𝑝𝑒𝑟"

Let’s take 𝑡 as the present discrete time instant, the array with process data is stored for the

output data window at each sample time as

𝑌𝑡−(𝐿+𝐽)|𝐿+𝐽+1
𝑤 = [

𝑦𝑡−(𝐿+𝐽)
𝑇

⋮
𝑦𝑡
𝑇

] ∈ ℝ(𝐿+𝐽+1)×𝑚 (3.7)

For the input sequence, it is stored as

𝑈𝑡−(𝐿+𝐽)|𝐿+𝐽+𝑔
𝑤 = [

𝑢𝑡−(𝐿+𝐽)
𝑇

⋮
𝑢𝑡+𝑔−1
𝑇

] ∈ ℝ(𝐿+𝐽+𝑔)×𝑟 (3.8)

Where the notations 𝑌𝑡
𝑤 and 𝑈𝑡

𝑤 are used to represent the sliding window data matrices. It

should however be noted that only a few samples are to be stored in the data windows.

Basic Matrix definitions for Subspace method

It is assumed that the process can be described by the following linear, discrete time invariant

state space model (SSM) on innovation form.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐶𝐹𝑣𝑘 (3.9)

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝐹𝑣𝑘 (3.10)

where the integer 𝑘 ≥ 0 is discrete time, 𝑥𝑘 ∈ 𝑅
𝑛 is the state vector, 𝑢𝑘 ∈ 𝑅

𝑟 is the input

vector, 𝑣𝑘 ∈ 𝑅
𝑙 is an external input white noise vector which satisfies 𝐸(𝑣𝑘𝑣𝑘

𝑇)𝑇 = 𝐼 i.e. it

has unit covariance matrix and 𝑦𝑘 ∈ 𝑅
𝑚 is the output vector. 𝐶𝑘 = 𝐶𝐹𝑘𝐹𝑘

−1 is the Kalman gain

matrix.

The constant matrices in the SSM are of appropriate dimensions. A is the state transition matrix,

B is the input matrix, C is the external input matrix, D is the output matrix and E is the direct

input to output matrix and F is the direct external input to output matrix (Ruscio, 1998).

The following assumptions are stated:

• The pair (𝐷, 𝐴) is observable.

• The pair (𝐴, [𝐵 𝐶]) is controllable.

With the assumptions above, the state vector 𝑥𝑘 can be eliminated from (3.9). This results in

the following Extended SSM model:

𝑦𝑘+1|𝐿 = 𝐴̃𝐿𝑦𝑘|𝐿 + 𝐵̃𝐿𝑢𝑘|𝐿+𝑔 + 𝐶̃𝐿𝑣𝑘|𝐿+1 (3.11)

 3 Modeling and Identification

25

Where the terms in the ESSM are given as:

𝐴̃𝐿 =

[

0 𝐼 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 𝐼
𝐴1 𝐴2 ⋯ 𝐴𝐿−1 𝐴𝐿]

 ∈ ℝ𝐿𝑚×𝐿𝑚 (3.12)

𝐵̃𝐿 =

[

0 0 ⋯ 0 0 0
0 0 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0
𝐵0 𝐵1 ⋯ 𝐵𝐿+𝑔−2 𝐵𝐿+𝑔−1 𝐵𝐿+𝑔]

 ∈ ℝ𝐿𝑚×(𝐿+𝑔)𝑟 (3.13)

𝐶̃𝐿 =

[

0 0 ⋯ 0 0 0
0 0 ⋯ 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0
𝐶0 𝐶1 ⋯ 𝐶𝐿−1 𝐶𝐿 𝐶𝐿+1]

 ∈ ℝ𝐿𝑚×(𝐿+1)𝑚 (3.14)

𝑦𝑘|𝐿 = [

𝑦𝑘
𝑦𝑘+1
⋮

𝑦𝑘+𝐿−1

] ∈ ℝ𝐿𝑚 (3.15)

𝑢𝑘|𝐿+𝑔 =

[

𝑢𝑘
𝑢𝑘+1
⋮

𝑢𝑘+𝐿+𝑔−2
𝑢𝑘+𝐿+𝑔−1]

 ∈ ℝ(𝐿+𝑔)𝑚 (3.16)

The extended external input vector 𝑣𝑘|𝐿+1 is defined similarly. The integer 𝐿 which defines the

number of block rows in the extended state vectors must satisfy 𝐿 ≥ 𝐿𝑚𝑖𝑛 where the minimum

number of block rows is defined by

𝐿𝑚𝑖𝑛 ≝ {
𝑛 − 𝑟𝑎𝑛𝑘(𝐷) + 1 𝑤ℎ𝑒𝑛 𝑚 < 𝑛
1 𝑤ℎ𝑒𝑛 𝑚 ≥ 𝑛

 (3.17)

This ESSM (Extended State Space Model) model representation is more suitable for system

Identification because it gives an equation where the states are eliminated therefore the system

model can be recovered directly from the known inputs and outputs data (Ruscio, 1998).

In subspace identification, we want to find the system order 𝑛, the initial state vector 𝑥0 and

matrices in the ESSM (up to within a similarity transformation) 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹.

An essential step is the reconstruction of the (extended) observability matrix 𝑂𝐿 which is

estimated from the column space of a data matrix 𝑍𝑘|𝐿 (see (Ruscio, 2014)) defined as:

𝑍𝑘|𝐿 = 𝑂𝐿𝑋𝑘 ∈ ℝ
𝐿𝑚×𝐾 (3.18)

Where

 3 Modeling and Identification

26

𝑂𝑛 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

] (3.19)

The system order 𝑛 is also identified as the dimension of the column space of 𝑍𝑘|𝐿.

𝑟𝑎𝑛𝑘(𝑍𝑘|𝐿) = dim[𝑅(𝑍𝑘|𝐿)] = 𝑛 (3.20)

Once the rank and the observability matrix are known, it is easy to determine C and A. Output

matrix C equals the top part of this matrix and this result can be used to compute A from the

rest. Furthermore, the states x and the noise contributions can be estimated (Aarts, 2012).

In some cases, it is not desired to identify the direct input to output matrix E. If E is apriori

known to be zero, then usually the other model matrices can be identified with higher accuracy

if E is not estimated. For this reason, define the integer structure parameter 𝑔 as follows

𝑔 ≝ {
1 𝑤ℎ𝑒𝑛 𝐸 ≠ 0𝑚×𝑟
0 𝑤ℎ𝑒𝑛 𝐸 = 0𝑚×𝑟

 (3.21)

Obtaining a good model of your system depends on how well your measured data reflects the

behavior of the system. In practice, both high frequency process disturbances 𝑣𝑘 and

measurement noise 𝑤𝑘 are present and has effect on the output series 𝑦𝑘.(Ruscio, 1998)

Online estimate is needed when the system parameters are time-varying, , in which case the

subspace identification will encounter the problem of large computation complexity. This is

because the subspace identification mainly uses QR decomposition and singular value

decomposition (SVD) of linear algebra, and the calculation complexity of the SVD of the

specific data matrix is great during the identification process. (Ruscio, 2014)

The R-DSR toolbox comes preloaded with several functions as m-files1 to perform the required

computations but only two will be considered to give an overview as to how the algorithm

identifies the system recursively.

i. dsr_upr.m (updates the lower triangular 𝑅 matrix)

This function computes and updates the square lower triangular matrix (𝑅𝑡 ∈
 ℝ𝑛𝑟×𝑛𝑟) from the input data window, the output data window and the previous 𝑅𝑡−1

matrix. It should be noted that the new values for vectors 𝑢𝑡 and 𝑦𝑡 are fed into the data

window in a first-in first-out strategy.

ii. dsr_r2m.m (Transforms the 𝑅𝑡 matrix to State Space model matrices).

This function computes the linear discrete time state space model matrices

(𝐴𝑡 , 𝐵𝑡, 𝐷𝑡, 𝐸𝑡, 𝐶𝑡, 𝐹𝑡) and the initial state vector 𝑥𝑡−(𝐿+𝐽) from the square lower

triangular matrix 𝑅𝑡.

After the first recursion (iteration), an estimate of the state space model matrices can be

obtained but this model is obviously inaccurate due to measurement noise so from a stochastic

1 MATLAB® Scripts

 3 Modeling and Identification

27

point of view, we need an infinite number of samples and recursions in order to identify a

model with consistent and efficient parameter estimates however, from a deterministic point of

view, the number of samples needed is finite. The RDSR algorithm needs at most

𝑁𝑚𝑖𝑛 = 𝐽 + 𝐿 + (𝐿 + 𝑔)𝑟 + 𝑛 (3.22)

samples to properly identify a (deterministic) system therefore, the state space model matrices

should be computed for 𝑡 ≥ 𝑁𝑚𝑖𝑛 when using the recursive identification algorithm (Ruscio,

1998).

The final model, i.e. (𝐴𝑁 , 𝐵𝑁, ...) generated from this RDSR algorithm is identical to the DSR

model, i.e. the model computed from the batch algorithm.

The algorithm can therefore be summarized in the following steps (Ruscio, 2014).

i. Construct the Extended State Space Model from the input/output sequence

ii. Compute the QR decomposition from known data matrices in ESSM

iii. Separate the data into three parts:

a. One part for analyzing and determination of system dynamics i.e. the system

order n and the state equation system matrix 𝐴̃𝐿

𝑅42 = 𝐴̃𝐿𝑅32 (3.23)

b. One part for determination of the deterministic part of the system

𝑅41 − 𝐴̃𝐿𝑅42 = 𝐵̃𝐿𝑅11 (3.24)

c. One part for determination of the stochastic part of the system

𝑅44 = 𝐶̃𝐿𝐸𝐿𝑄4
𝑇 (3.25)

𝑅43 − 𝐴̃𝐿𝑅33 = 𝐶̃𝐿𝐸𝐿𝑄3
𝑇 (3.26)

iv. Extract the system matrices from sub-matrices in R

a. System order: 𝑛 and matrix 𝐷

𝑅32 = [𝑈1 𝑈2] [
𝑆1 0
0 𝑆2

] [
𝑉1
𝑇

𝑉2
𝑇]

⏞

𝑆𝑉𝐷

{

 𝑛 non zero singular values.
𝑂𝐿 = 𝑈1 Extended observability matrix

𝐷 = 𝑂𝐿(1:𝑚, :)
 (3.27)

b. Matrix A

𝑅42 = 𝐴̃𝐿𝑅32 { 𝐴̃𝐿 = 𝑂𝐴(𝑂
𝑇𝑂)−1𝑂𝑇 (3.28)

c. Matrices B and E

𝑅41 − 𝐴̃𝐿𝑅31 = 𝐵̃𝐿𝑅11 → 𝑐𝑠 ([
𝐵
𝐸
]) = 𝑁+𝑐𝑠(𝑅41 − 𝐴̃𝐿𝑅31) (3.29)

d. Matrices C and F

 𝑅44 → 𝐹 and 𝐸(𝜖𝑘𝜖𝑘
𝑇) = 𝐹𝐹𝑇 (3.30)

 3 Modeling and Identification

28

𝑅43 − 𝐴̃𝐿𝑅33 = 𝐶̃𝐿𝐸𝐿𝑄3
𝑇 → 𝐶 (3.31)

The MATLAB® syntax for RDSR (Recursive DSR algorithm) is:

[A,B,D,E,C,F,x,s,R]=rdsr(Y,U,L,g,J,n);

where Y and U of size (𝑁×𝑚) and (𝑁×𝑟) are the given output and input time series data

matrices respectively. 𝑁 is the number of observations and 𝑚 is the number of output variables,

𝑟 is the number of input variables. L is the horizon used to predict the number of states which

is also equal to the number of block rows in the extended observability matrix. g is the model

structure parameter. J is the past horizon used to form instruments used to remove noise. n is

the system order which is equal to the number of states.

On the output side, A, B, D, E, C, F are the State space model matrices. x is the state

vector, 𝑥𝑡−(𝐿+𝐽) for 𝑡 > 𝐿 + 𝐽. s is the array of size (𝑁×𝐿𝑚) of singular values which can be

used for system order decision. R - The parameters in the 𝑅𝑡 matrix of size (𝑛𝑟×𝑛𝑟) is stored

in the tth row in the 𝑅 matrix of size (𝑁 ×(𝑛𝑟 ∗ 𝑛𝑟)) the sizes of the R matrices are presented

in

Table 3.3.1.

Table 3.3.1: Sizes of the R matrices for the three systems under consideration

Process nr

Synthetic Model (MIMO) 20

Quadruple tank (MIMO) 20

Air heater(SISO) 8

3.3.2 Using the System Identification Toolbox

For SISO systems, transfer function models provide a more compact representation of a system.

Although the subspace models for SISO systems can be easily transformed to a transfer

function, the result may be “suboptimal” as seen in the result section of this report. That means

that another model structure may give better results. In this section, the Prediction-Error

identification Methods (PEM) will be discussed that estimate the parameters of models directly

in a transfer function format (Aarts, 2012).

The starting point for the PEM-models is the assumption that the unknown system 𝐺0 can be

represented by a linear time invariant system of a finite order (LTIFD system). The discrete

time input signal 𝑢(𝑡) and output signal 𝑦(𝑡) are measured. The output 𝑦(𝑡) contains the

response of the system on the input signal, plus there is a contribution from an unmeasurable

disturbance 𝑣(𝑡), so we have

 3 Modeling and Identification

29

𝑦(𝑡) = 𝐺0(𝑧)𝑢(𝑡) + 𝑣(𝑡) (3.32)

Where the system is written as a transfer function 𝐺0(𝑧). The disturbance 𝑣(𝑡) can originate

from several sources like measurement noise, effects of non-measured inputs, process

disturbances and non-linearity. This disturbance signal will be represented as a certain noise

model written as

𝑣(𝑡) = 𝐻0(𝑧)𝑒(𝑡) (3.33)

In which 𝑒(𝑡) is a white noise and 𝐻0(𝑧) is a stable minimum phase transfer function. This

leads to the assumed structure of the system

𝑦(𝑡) = 𝐺0(𝑧)𝑢(𝑡) + 𝐻0(𝑧)𝑒(𝑡) (3.34)

It is assumed that the data from the real system can be considered to be generated by a process

model 𝐺0(𝑧) and a noise model 𝐻0(𝑧) as expressed by this equation.

The goal therefore of the system identification method (RPEM) is to determine transfer

functions 𝐺(𝑧) and 𝐻(𝑧) from the measured input and output data in a recursive manner.

As the name of the PEM-models suggest, the prediction error of the model is an important

factor. This prediction error is the difference between the output 𝑦(𝑡) of the system as would

be predicted by the model and the actual measurement. So first we need to know the prediction

of our model (Aarts, 2012).

Model structures

The MATLAB® System Identification Toolbox provides the following functions that

implement all common recursive identification algorithms for the Polynomial Black-Box

Model structures defined in the general input-output form as

𝐴(𝑞)𝑦(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑡 − 𝑛𝑘) +

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑡) (3.35)

Where 𝐴(𝑞), 𝐵(𝑞), 𝐶(𝑞), 𝐷(𝑞) and 𝐹(𝑞) are polynomials with their coefficients ordered by

descending powers. 𝑞 is the time shift operator while 𝑛𝑘 is the delay.

𝐴(𝑧) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + ··· + 𝑎𝑛𝑎 𝑧
−𝑛𝑎 ,

 𝐵(𝑧) = 𝑏1𝑧
−1 + 𝑏2𝑧

−2 + ··· + 𝑏𝑛𝑏 𝑧
−𝑛𝑏 ,

 𝐶(𝑧) = 1 + 𝑐1𝑧
−1 + 𝑐2𝑧

−2 + ··· + 𝑐𝑛𝑐 𝑧
−𝑛𝑐 ,

 𝐷(𝑧) = 1 + 𝑑1𝑧
−1 + 𝑑2𝑧

−2 + ··· + 𝑑𝑛𝑑 𝑧
−𝑛𝑑 ,

𝐹(𝑧) = 1 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2 + ··· + 𝑓𝑛𝑓 𝑧
−𝑛𝑓.

(3.36)

The autoregressive component, A, is common between the measured and noise components.

The polynomials B and F makes up the measured component while the polynomials C and D

makes up the noise component.

 3 Modeling and Identification

30

These are called the idpoly model representations, in MATLAB® they are: rarmax, rarx,

Recursive Box-Jenkins (rbj) models, Recursive Prediction Error Method (rpem) models,

Recursive pseudo-linear regression (rplr) models, and Recursive output error (roe) models.

The details about the different algorithms listed above is beyond the scope of this report, see

(Ljung, 2000) for more details. Table 3.2 shows an overview of the Different available

polynomial model structures, see (Aarts, 2012). They all share the same basic syntax for

MATLAB® implementation:

[thm,yh] = rfcn(z,nn,adm,adg)

Where rfcn specifies the recursive function being used, z contains the output-input data. nn

is the chosen model structure, same as the one for the corresponding offline algorithm. The

arguments adm and adg are optional and they select the adaptation mechanism and adaptation

gain respectively. The output argument thm is a matrix that contains the current models at the

different samples while the output argument yh is a column vector that contains the predicted

values of 𝑦(𝑘), based on past observations and current model.

Table 3.2: Overview of Polynomial model structures

It should be noted that rarx is a recursive variant of arx; similarly, rarmax is the recursive

counterpart of armax and so on. Note also that rarx does not handle multi-output systems,

and rpem does not handle state-space structures. More details can be found in (Ljung, 2000).

RPEM

The Prediction Error method is used to estimate the parameters and the RPEM is the recursive

implementation where the accuracy of the predictions computed for the observed data is

minimized with respect to the parameter vector, 𝜃 the cost function, i.e., a weighted norm of

the prediction error 𝜀𝐹(𝑡, 𝜃).

The general form of the cost function, as described in (Ljung, 1999) is given by:

 3 Modeling and Identification

31

𝑉𝑁(𝜃, 𝑍
𝑁) =

1

𝑁
∑𝑙(𝜀𝐹(𝑡, 𝜃))

𝑁

𝑡=1

 (3.37)

Where 𝑙 is a scalar-valued function, 𝑍𝑁 is a vector containing the measured data and the

prediction error is the difference between the observed and predicted outputs, i.e. 𝜀𝐹(𝑡, 𝜃) =
𝑦(𝑡, 𝜃) − 𝑦̂(𝑡, 𝜃).

In MATLAB® the default choice for 𝑙 is in the quadratic norm: 𝑙(𝜀) =
1

2
𝜀2 which is used in

this study as well, this now makes the cost function to be minimized to be given by:

𝑉𝑁(𝜃, 𝑍
𝑁) =

1

2𝑁
∑𝜀𝐹

2(𝑡, 𝜃)

𝑁

𝑡=1

 (3.38)

And the final parameter estimate is the minimized argument of the function

𝜃𝑁 = argmin(𝑉𝑁(𝜃, 𝑍
𝑁)) (3.39)

These algorithms are also prepared for true on-line applications, where the computed model is

used for some on-line decision. This is accomplished by storing the update information and

information about past data in some presentable form and then using that information as initial

data for the next time step (Ljung, 2000).

3.3.3 Neural Network Approach

Over the past few years, Neural networks have been used to perform complex functions in

various fields of application such as pattern recognition, system identification, classification,

speech, vision and control systems. They can be trained to solve problems that are usually

difficult for conventional computers or human beings.

The training process could be supervised or unsupervised but the supervised training methods

are commonly used, other networks can be obtained from unsupervised training techniques or

from direct design methods. Certain other kinds of linear networks and Hopfield networks can

be designed directly.

In situations where the system has some quite complicated nonlinearities, which cannot be

realized on physical grounds, nonlinear, black-box models could be a solution. Among the

most used models of this character are the Artificial Neural Networks (ANN) (Howard

Demuth, 2002).

Neural networks consist of simple elements operating in parallel. The ideas are inspired by

biological nervous systems. As in nature, the network function is determined largely by the

connections between elements as seen in Figure 3.3 (Howard Demuth, 2002). We can train a

neural network to perform a function by adjusting the values of the connections (weights and

biases) between elements.

 3 Modeling and Identification

32

Figure 3.3: A Simple Neural Network Model

The input 𝑝 is transmitted through a connection that multiplies its strength by the weights 𝑤,

to form the product 𝑤𝑝 added to the bias, 𝑏. You may view the bias as simply being added to

the product 𝑤𝑝 as shown by the summing junction in Figure 3.3 or as shifting the function 𝑓

to the left by an amount 𝑏. The bias is much like a weight, except that it has a constant input.

The transfer function net input 𝑛, is the sum of the weighted input 𝑤𝑝 and the bias 𝑏. This sum

is the argument of the transfer function 𝑓 typically a step function or a sigmoid function, which

takes the argument 𝑛 and produces the output 𝑎. Note that 𝑤 and 𝑏 are both the adjustable

parameters of the neuron.

The central idea of neural networks is that such parameters can be adjusted so that the network

exhibits some desired or interesting behavior. Thus, we can train the network to do a job by

adjusting the weight or bias parameters, or perhaps the network itself will adjust these

parameters to achieve some desired end. See (Howard Demuth, 2002) for more details.

The MATLAB® Neural Network Toolbox contains various functions to help in implementing

the algorithms.

The network can be trained recursively (online) or in a batch. Batch training of a network

proceeds by making weight and bias changes based on an entire set (batch) of input vectors.

For recursive implementation, we use the Incremental training which changes the weights and

biases of a network as needed after presentation of each individual input vector (Sample).

Incremental training is sometimes referred to as “on line” or “adaptive” training. (Howard

Demuth, 2002).

The algorithm has 3 main steps:

1. Network initialization

In this stage, the network to be trained is created. The network used has 10 neurons in

the hidden layer as seen in Figure 3.4 which is usually chosen arbitrarily, the number

of neurons chosen for the input and output layers depends on the number of input

signals in the input vector (P) and target signals in the target vector (T). Predictive

models are used for system identification (or dynamic modelling), in which you build

dynamic models of physical systems. These dynamic models are important for

analysis, simulation, monitoring and control of a variety of systems, including

manufacturing systems, chemical processes, robotics and aerospace systems (Howard

Demuth, 2002).

NARX (Nonlinear autoregressive with external input) networks can be trained to

predict a time series given past values of the same time series, the feedback input, and

 3 Modeling and Identification

33

another time series, called the external or exogenous time series. The models are

represented mathematically as:

𝑦𝑖 = 𝑓 (𝑦𝑖−1, 𝑦𝑖−2, … , 𝑦𝑖−𝑛𝑦 , 𝑢𝑖−1, … , 𝑢𝑖−𝑛𝑢) + 𝑒𝑖, 𝑖 = 1,2, … ,𝑁 (3.40)

Where 𝑢𝑖 and 𝑦𝑖 denotes the scalar inputs and outputs and 𝑒𝑖 are the additive

measurement errors with uncorrelated zero-mean.

The success of NARX models is due both to their capability of capturing nonlinear

dynamics and the availability of identification algorithms with a reasonably good

computational cost.

Note that the output of the NARX network, 𝑦(𝑡), is fed back to the input of the network

(through delays), since 𝑦(𝑡) is a function of 𝑦(𝑡 – 1), 𝑦(𝑡 – 2), . . . , 𝑦(𝑡 – 𝑑). However,

for efficient training this feedback loop can be opened since the true output is available

during the training of the network, you can use the open-loop architecture shown in

Figure 3.4, in which the true output is used instead of feeding back the estimated

output.

This has two advantages. The first being that the input to the feedforward network is

more accurate and secondly, the resulting network has a purely feedforward

architecture, and therefore a more efficient algorithm can be used for training.

Figure 3.4: NARX Neural Network Model with 10 neurons in the hidden layer and 2 samples

time delay.

Classical prediction error approaches for the identification of non-linear polynomial

NARX/NARMAX models often yield unsatisfactory results for long-range prediction or

simulation purposes, mainly due to incorrect or redundant model structure selection as seen in

the results section. The Nonlinear Autoregressive with External (Exogenous) Input (NARX)

models are predictive models and are therefore used in this thesis.

2. Network Training/Adaptation.

The network built in the previous step is trained incrementally using the adapt

function. It is often required to adjust the network learning rate and momentum for

optimal adaptation. Here is the MATLAB® code syntax to train the network net

recursively based on input/target signals P and T.

[net,a,e] = adapt(net,P,T);

 3 Modeling and Identification

34

The output of this function is the trained network net, the output a and the error e.

3. Network Testing

Once the network is adapted, we can perform various model performance testing and

plot its output signal and compare it to the target signal. It is important in this

application to close the NARX model loop as seen in Figure 3.5 before testing on new

inputs.

Figure 3.5: NARX Close loop by feeding the predictions back as one of the inputs.

Batch training is significantly faster and produces smaller errors than incremental training.

3.4 Identified models

Depending on the application of the model, accurate models are required. Having as precise

models as possible might require a large amount of model parameters. Dealing with many

parameters however, increases the model complexity, and thus might lead to prohibitive

computational procedures caused by too large execution times. The main point in selecting

appropriate models involves finding the right trade-off between model simplicity and accuracy

3.4.1 Models and Initial conditions

It is required that the input delays and model orders are provided as part of the initial conditions

to estimate polynomial models. For recursive identification, it is assumed that the model delays

and orders are unknown in advance therefore a guess or estimate is usually provided for the

parameter values and initial parameter covariance matrix

To get initial model orders and delays for the systems, few measurements are taken from which

several ARX or PEM models are estimated with a range of orders and delays and then the

performance of these models are quickly compared. The model orders and delays values that

corresponds to the best model performance is selected and used as an initial guess for further

modeling.

The estimation procedure uses the ARX or PEM model structure, which includes the A and B

polynomials, therefore, only estimates for the 𝑛𝑎, 𝑛𝑏, and 𝑛𝑘 parameters are gotten as seen in

Table 3.3.3. These results can however be used as initial guesses for the corresponding

polynomial orders and input delays in other model structures.(Ljung, 2000).

 3 Modeling and Identification

35

After various attempts and comparisons of the identified PEM and ARX models, estimated

using different guessed orders and delays, it is observed that combinations of na = 1-5 and nb

= 2-4 generally give very good results with little variation in the model performance for the

different combinations of these orders and delays. Higher orders (6-10) improves the

performance with about 5-10% in all cases, but the increase in the model complexity due to the

large number of parameters in the B-polynomials makes this increase insignificant. It is

possible to under-fit (model order is too low) or over-fit (model order is too high) data by

choosing an incorrect model order. Normally, the lowest-order model that adequately captures

your system dynamics is desired. Under-fitting prevents algorithms from finding a good fit to

the model, even if all other estimation settings are good, and there is good excitation of system

dynamics. Over-fitting on the other hand leads to high sensitivity of parameters to the

measurement noise or the choice of input signals It is therefore important that the simplest

model structure that adequately captures the system dynamics is selected as shown in Table

3.3.3.

For the Neural network models, only the number of neurons and time delays are specified

initially. For state space model identification, only the model order 𝑛 is needed which is usually

selected from prior knowledge of the system.

Table 3.3.3: Initial Model Selection

System. Model. Orders. Delays.

Synthetic model RDSR 4 -

RANN 10 Neurons 2 samples

RARX na nb nc nd nf nk

5 [5 5] - - - [0 0]

RPEM 3 [3 3] 3 - - [1 1]

Quadruple tank RDSR 4 -

RANN 10 Neurons 2 samples

RARX na nb nc nd nf nk

5 [5 5] - - - [0 0]

RPEM 2 [2 2] 2 - - [1 1]

Air heater RDSR 2 -

RANN 10 Neurons 2 samples

RARX na nb nc nd nf nk

1 1 - - - 1

 3 Modeling and Identification

36

RPEM 2 2 2 - - 1

It is very important to also check that you have specified appropriate settings for the estimation

algorithm. The forgetting factor algorithm is used in this thesis and the forgetting factor, λ, is

chosen carefully. If λ is too small, the estimation algorithm assumes that the parameter value

is varying quickly with time. Conversely, if λ is too large, the estimation algorithm assumes

that the parameter value does not vary much with time. see (Ljung, 2000)

3.5 Comparison between RDSR and traditional methods

The RDSR method has some advantages and disadvantages compared to the prediction error

method. One of the advantage is that the model structure of a state space system has no need

for explicit definition of the model equations. One only has to select the order of the system

matrix. In addition, the model structure is well suited for MIMO systems. Furthermore, the

numerical and mathematical approach is elegant (robust, reliable) and efficient.

 As the model structure offers little means to apply dedicated model equations, it may appear

that the subspace model is sub-optimal but in many cases, the subspace model may be good

enough for the intended application. (Aarts, 2012).

In general, the state-space model provides a more complete representation of the system,

especially for MIMO systems, than polynomial models because the state-space model is similar

to a first principle model. The identification procedure does not involve nonlinear optimization

so the estimation reaches a solution regardless of the initial guess. Moreover, the parameter

settings for the state-space model are simpler than polynomial models. You need to select only

the order, or the number of states, of the model. The order can come from prior knowledge of

the system. You also can determine the order by analyzing the singular values of the

information matrix.

For MIMO systems, when the model order is high, the algorithm involved in the ARX model

estimation is fast and efficient when the number of data points is very large. The state-space

model estimation with a large number of data points is slow and requires a large amount of

memory. If you must use a state-space model, for example in modern control methods, reduce

the sampling rate of the signal in case the sampling rate is unnecessarily high.

The PEM method involves an iterative, nonlinear optimization in the identification procedure.

This requires excessive computation time, and the minimization can get stuck at a false local

minimum, especially when the order is high and the signal-to-noise ratio is low. However, you

can use these models when the stochastic dynamics are important because they provide more

flexibility for the stochastic dynamics. (ni.com, 2010)

In summary, three major aspects are considered in comparing the RDSR method with the

RPEM method:

1) Parameterizations:

o Classical RPEM approaches need a certain user-specified model

parameterization, so-called canonical forms which could lead to numerically ill-

 3 Modeling and Identification

37

conditioned problems, meaning that the parameters in the canonical form model

is extremely sensitive to small perturbations (Ruscio, 2014).

o RDSR method need no parameterization.

2) Convergence:

o The RPEM approach is iterative. Many hard to deal with problems such as

problems with lack of convergence; no convergence; slow convergence; local

minima; numerical instability;

o RDSR method is non-iterative, there are no problems with convergence and the

method is numerically robust (Ruscio, 2014).

3) Speed:

RDSR method is generally faster than classical RPEM approaches (because the method

is non-iterative).

 4 Results

38

4 Results
In this part of the study, efficient and stable implementations as well as various Monte Carlo

simulations and experimentations are performed and the results are presented and compared

using some basic validation criteria for model performance and accuracy as discussed in

Section 2.4. Each MIMO and SISO model derived using the different algorithms under

consideration are validated separately using the same validation dataset. Results from real

world Numerical examples are also presented and the chapter ends with some

summary/comments on the effects of using each model based on different applications.

After the linear parametric models as well as nonlinear model parameters are estimated, the

model quality can be evaluated by comparing model response to measured response

(MathWorks, 2016):

To perform the comparison, a model is estimated and used to simulate some time varying

output, i.e., calculate the output 𝑦(𝑡) for some given input values to reproduce certain system

behavior as closely as possible and then some performance tests are carried out. The estimated

model can also be used to compute to some level of accuracy a qualified guess of future output

values based on past observations of system's inputs and outputs.

Both simulation and prediction require initial conditions, which correspond to the states of the

model at the beginning of the simulation or prediction.

All the toolboxes and algorithms under consideration in this thesis contains methods for

estimating the initial conditions from available input and output measurements if the initial

conditions are unknown.

4.1 Model Performance Analysis

Simulation means computing the model response using input data and some initial conditions.

For online implementation, the sampling time of the model response is made to match the

sampling time of the input data sequence used for the simulation.

Calculating the simulated output does not take the past and current outputs into consideration,

only the inputs are used to compute the output which corresponds to a prediction horizon 𝑘 =
∞.

Prediction forecasts the model response 𝑘 steps ahead into the future using the current and

past values of measured input and output values. 𝑘 is called the prediction horizon, and

corresponds to predicting output at each sampling time. To predict the model response 𝑘 steps

into the future from the current time 𝑡, the inputs up to time 𝑡 + 𝑘 and outputs up to time 𝑡
should be known.

The prediction abilities of models are usually more relevant than the simulation abilities

especially when the purpose of the modelling is for control.

The polynomial models derived from the RARX and RPEM algorithms are converted to state

space form for the sake of comparison of the derived matrices as presented in the Appendix

section but it seems to be impossible to convert the RANN models to state space due to the

recursive implementation, however, the results from all the systems and the derived models are

presented in the following sections.

 4 Results

39

4.1.1 Synthetic Model

The synthetic model is a very complex and noisy system as explained in section 2.2.1, it is

usually difficult to make accurate models from noisy data. Figure 4.1 shows the input data

sequence sent into the model both for estimation and prediction. It’s a MIMO system with 2

inputs and 2 outputs. The calculated values of the MSE and fit for this system is presented in

Table 4.1 and for simulation, the RDSR and RPEM models produce the models with the least

errors and fits as seen in Figure 4.2 but for prediction, the RPEM model outperforms the other

models with a MSE value of 3.9417 and a fit of 51.09% for the first output 𝑦1 and 82.95% for

the second output 𝑦2 as seen in Figure 4.5. The RDSR model performed relatively well too but

the first output seemed to be noisier than the second output so the noise in the data affected its

performance.

Figure 4.1 Input data for Synthetic model: Left: Estimation input sequence, Right: Prediction

input sequence. The same sequence is used for all algorithms.

Figure 4.2: Performance of the RDSR model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 42.39%) and 𝑦2 (lower, fit: 81.36%) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 43.50%) and 𝑦2 (lower, fit: 81.53%).

 4 Results

40

Figure 4.3: Performance of the RANN model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 42.39%) and 𝑦2 (lower, fit: 81.3654) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 43.50%) and 𝑦2 (lower, fit: 81.52%).

Figure 4.4: Performance of the RARX model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 50.56%) and 𝑦2 (lower, fit: 82.03%) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 50.64%) and 𝑦2 (lower, 82.48%).

 4 Results

41

Figure 4.5: Performance of the RPEM model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 51.31%) and 𝑦2 (lower, fit: 82.57%) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 51.09%) and 𝑦2 (lower, fit: 82.95%).

Table 4.1: Validation analysis and comparison for the Synthetic data, expressed in MSE and

Goodness of fit

Generally, all the models performed very well with the RANN model at the bottom position in

the rank due to the deficiency of not being able to accurately model the noise in the data but its

performance can be improved since the model can always be retrained to get better or worse

performance based on the choice of initial parameters.

The state space model parameters identified for this process by all the algorithms are presented

in Appendix A.3

Type of Output Model MSE Fit (%)

𝑦1 𝑦2

Simulated RDSR 4.0350 42.3938 81.3654

RANN 5.4087 42.1081 80.8608

RARX 4.1892 50.5594 82.0287

RPEM 4.0207 51.3063 82.5787

Predicted RDSR 4.0167 43.5035 81.5255

RANN 5.1533 42.8438 81.4879

RARX 4.0606 50.6399 82.4812

RPEM 3.9417 51.0893 82.9517

 4 Results

42

4.1.2 Quadruple tank

The quadruple tank process represents a nonlinear process as described in section 2.2.2 and it

is a very complex and noisy system. Figure 4.6 shows the input data sequence sent into the

process both for estimation and prediction. It’s a MIMO system with 2 inputs and 2 outputs.

The calculated values of the MSE and fit for this system is presented in Table 4.2 and for

simulation, the RDSR models produce the best models with the least errors and fits as seen in

Figure 4.7. For prediction, the RANN model outperforms the other models with a MSE value

of 14.1287 and a fit of 35.159% for the first output 𝑦1 and 33.237% for the second output 𝑦2

as seen in Figure 4.8Figure 4.5. The RDSR model performed relatively well here too but the

second output produced a negative value of fit which may be an indication of too much

nonlinearity in the process and that affected its performance.

Figure 4.6 Input data for the quadruple tank: Left: Estimation input sequence, Right: Prediction

input sequence. The same sequence is used for all the other algorithms.

Figure 4.7: Performance of the RDSR model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 38.89%) and 𝑦2 (lower, fit: 42.48%) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 7.85%) and 𝑦2 (lower, fit: -4.80%).

 4 Results

43

Figure 4.8: Performance of the RANN model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 1.40%) and 𝑦2 (lower, fit: 24.66%) and Right: Real measurement and

predicted output for output 𝑦1 (upper, fit: 35.15%) and 𝑦2 (lower, fit: 33.24%).

Figure 4.9 Performance of the RARX model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 31.05%) and 𝑦2 (lower, fit: 24.72%) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 0.965) and 𝑦2 (lower, fit: -18.78%).

 4 Results

44

Figure 4.10 Performance of the RPEM model: Left: Real measurement and Simulated output

for output 𝑦1 (upper, fit: 41.06%) and 𝑦2 (lower, fit: 24.90%) and Right: Real measurement

and predicted output for output 𝑦1 (upper, fit: 10.32%) and 𝑦2 (lower, fit: -17.47%).

Table 4.2: Validation analysis for the Quadruple Tank process, expressed in MSE and model

fit

Generally, all the models performed very well with relatively similar MSE values on the

prediction analysis, however, the RANN model was generally more reliable as the other models

were producing negative values for the fit on the second model output 𝑦2.

It is possible that some of the sub optimality in the models could have arisen from poor choice

of initial model parameters.

The state space model parameters identified for this process by all the algorithms are presented

in Appendix A.2

Type of Output Model MSE Fit (%)

𝑦1 𝑦2

Simulated RDSR 5.3492 38.8873 42.4751

RANN 17.8460 1.4042 24.6584

RARX 8.3297 31.0541 24.7231

RPEM 7.6541 41.0677 24.9013

Predicted RDSR 14.2637 7.8548 -4.8086

RANN 14.1287 35.1512 33.237

RARX 17.6388 0.96315 -18.7818

RPEM 16.2890 10.3198 -17.4742

 4 Results

45

4.1.3 Air heater

The air heater process represents a process as described in section 2.2.3. It’s a SISO system.

The calculated values of the MSE and fit for this system is presented in Table 4.3. For

simulation, the RANN models produce the best models with the least errors and best fits as

seen in Figure 4.12. For prediction, the RANN model outperforms the other models with a

MSE value of 2.4755 and a fit of 66.56% for the output. The other models performed relatively

well and in some similar fashion although the RDSR estimated output produced a negative

value of fit.

Figure 4.11 Performance of the RDSR model: Upper Left: Real measurement and Simulated

output, Lower Left: Input sequence for the estimation. Upper Right: Real measurement and

predicted output showing the goodness of fit in %, Lower Right: The input sequence for the

prediction.

Figure 4.12 Performance of the RANN model: Upper Left: Real measurement and Simulated

output, Lower Left: Input sequence for the estimation. Upper Right: Real measurement and

predicted output showing the goodness of fit in %, Lower Right: The input sequence for the

prediction.

 4 Results

46

Figure 4.13 Performance of the RARX model: Upper Left: Real measurement and Simulated

output, Lower Left: Input sequence for the estimation. Upper Right: Real measurement and

predicted output showing the goodness of fit in %, Lower Right: The input sequence for the

prediction.

Figure 4.14 Performance of the RPEM model: Upper Left: Real measurement and Simulated

output, Lower Left: Input sequence for the estimation. Upper Right: Real measurement and

predicted output showing the goodness of fit in %, Lower Right: The input sequence for the

prediction.

 4 Results

47

Table 4.3: Validation analysis for the Air Heater Model, expressed in MSE and model fit

Generally, one can see that all the models performed very well with relatively similar MSE

values on the prediction analysis, however, the RANN model was generally more reliable as

the other models were producing similar values for the fit.

The state space model parameters identified for this process by all the algorithms are presented

in Appendix A.4

4.2 Optimal Model Prediction

The predictions in the above section are based only on the deterministic model

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘, given initial state 𝑥1 (4.1)

𝑦𝑘
𝑑 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 (4.2)

Which is identified based on input and output data. 𝑦𝑘
𝑑 represents the part in the output which

can be described by the deterministic inputs 𝑢𝑘 . It therefore makes sense to assume that a

better model for the output should contain both the stochastic and deterministic parts of the out.

We can often improve model prediction knowing that the optimal Kalman filter prediction, 𝑦𝑘,

is approximately equal to the previous output 𝑦𝑘−1. The method determines both the

deterministic part and the stochastic part of the model.

The algorithm gives exact results in the deterministic case and consistent results when the

system is influenced by noise. For the stochastic part of the system, the system can be presented

in the optimal prediction form with given initial conditions 𝑥0. Assume that a combined

deterministic and stochastic model with some model matrices A,B,D,E and Kalman filter gain

matrix F and a set of input and output validation data are given (Ruscio, 2014). Simulation will

then give us the optimal predictions as follows

Type of Output Model MSE Fit (%)

Simulated RDSR 53.5145 -0.1723

RANN 0.1793 94.2012

RARX 53.3289 0.0015

RPEM 53.3316 0.0010

Predicted RDSR 23.4755 1.1923

RANN 2.6884 66.5630

RARX 23.8394 0.4295

RPEM 23.5706 0.9924

 4 Results

48

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐾(𝑦𝑘 − 𝐷𝑥𝑘 − 𝐸𝑢𝑘) (4.3)

𝑦̅𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 (4.4)

Where 𝐾 = 𝐶𝐹−1, the Kalman filter gain is constructed to minimize the covariance of the

estimated error, the parameter in the Kalman filter is found such that the trace of the matrix

𝐸((𝑦𝑘 − 𝑦̅𝑘)(𝑦𝑘 − 𝑦̅𝑘)
𝑇) is minimized and usually also the prediction error criterion is

minimized. The selection of a good model is based on some validation criteria of the prediction

error criterion

𝑉 = 𝑡𝑟𝑎𝑐𝑒(𝐸((𝑦𝑘 − 𝑦̅𝑘)(𝑦𝑘 − 𝑦̅𝑘)
𝑇)) (4.5)

To simulate the optimal predictor, 𝑧𝑡 can be specified to be zero. 𝐾 ∈ ℝ𝑚×𝑚 is the Kalman

filter gain matrix which is chosen as a diagonal matrix with parameters 0 ≤ 𝑘𝑢 ≤ 1 , ∀ 𝑖 =
1, … ,𝑚 . The following augmented state equation is used.

[
𝑥𝑡+1
𝑧𝑡+1

]
⏞
𝑥̃𝑡+1

= [
𝐴 0

−𝐾𝐷 𝐼𝑚 − 𝐾
]

⏞
𝐴̃𝑡

[
𝑥𝑡
𝑧𝑡
]

⏞
𝑥̃𝑡

+ [
𝐵 0
−𝐾𝐸 𝐾

]
⏞

𝐵̃𝑡

[
𝑢𝑡
𝑦𝑡
]

⏞
𝑢𝑡

(4.6)

𝑦̂𝑡 = [𝐷 𝐼𝑚]⏞
𝐷̃𝑡

[
𝑥𝑡
𝑧𝑡
]

⏞
𝑥̃𝑡

+ [𝐸 0]⏞
𝐸̃𝑡

[
𝑢𝑡
𝑦𝑡
]

⏞
𝑢̃𝑡

(4.7)

4.2.1 Quadruple tank

When both the deterministic and stochastic parts of the system are included in the model, we

get an optimal result as shown in Table 4.4 there is a 99.9% fit and the model predictions

overlap the actual measurement as seen in Figure 4.15. Compared to the other Models, this

optimal prediction produces almost accurate predictions

Table 4.4 Optimal Model performance

Model MSE Fit (%)

𝑦1 𝑦2

RDSR (optimal) 0.0000010945 99.8858 99.9411

RANN 14.1287 35.1512 33.237

 4 Results

49

Figure 4.15: Optimal RDSR prediction: This figure illustrates the effect of using a Kalman

filter for optimal prediction for the quadruple tank. See Figure 4.7 for comparison.

4.2.2 Synthetic model

For the synthetic model, both the deterministic and stochastic parts of the system are included

in the model, we get an optimal result as shown in Table 4.5 there is a recognizable degree of

improvement in the fit and the error is minimized with the model now able to represent some

part of the noise in the system as seen in Figure 4.16.

Table 4.5: Optimal model performance

Model MSE Fit (%)

𝑦1 𝑦2

RDSR (optimal) 3.0917 58.6921 83.4726

RANN 5.1533 42.8438 81.4879

 4 Results

50

Figure 4.16: Optimal RDSR predictions for the synthetic model.

It can be seen from these results that simulation provides a better validation test for the model

than prediction but the prediction ability of any modelling procedure is of more interest

especially in control applications. However, the model validation procedure should be selected

based on how you plan to use the model.

The RDSR method proves to be a stable and reliable algorithm for modelling both linear and

non-linear processes. The speed of implementation is not put into consideration in this

comparison since the implementation is dependent on the availability of input and output data

due to the sampling time.

 5 Concluding Remarks

51

5 Concluding Remarks
The main ideas are highlighted in this chapter. The conclusion for this thesis work is

presented and recommendations for further work is given. The main objective of this work is

to study the use of recursive subspace system identification techniques to estimate system

matrices and then the result of the simulations is compared with that of the traditional

methods as well as the neural network approach. The MATLAB software has been used

throughout this thesis work.

5.1 Conclusion

A comprehensive literature review of the recursive subspace identification algorithm was done

and an overview was presented in the beginning sections of this report as well as a comparison

with the traditional recursive system identification methods available in the MATLAB system

identification and Neural network toolboxes. In comparing the RDSR method with other

methods it was found that

1) Classical RARX and RPEM approaches need a certain user-specified model

parameterization in canonical forms which could lead to numerically ill-conditioned

problems because the parameters in the canonical form model is extremely sensitive to

small perturbations meanwhile the RDSR method need no parameterization.

2) The RARX and RPEM approach is iterative which usually leads to many hard to deal

with problems such as problems with lack of convergence; no convergence; slow

convergence; local minima; numerical instability etc. meanwhile the RDSR method is

non-iterative therefore there are no problems with convergence and the method is

numerically robust

3) RDSR method is generally faster than classical RPEM approaches because the method

is non-iterative.

Next, the RDSR algorithm was investigate in some details and a short and detailed description

of the algorithm was presented in section 3.3.1 of this report. Various simulation experiments

and Monte Carlo simulations performed to investigate the quality of the parameter estimates

from all the chosen algorithms which are the RPEM, RARX, RANN and RDSR methods.

Various tests on real data from two of our laboratory processes – the Air heater and the

quadruple tank process were the candidate laboratory process, also some synthetic data

generated from systems with known matrices showed that the RDSR algorithm is as reliable

as the classical methods and even better in some instances.

Based on the results in chapter 4 as well as the information in other chapters, one can draw the

following conclusions with focus on the predictability of the identified models since that is of

more interest in testing the quality of identified models:

• For the Synthetic model:

The RPEM method performed best (MSE: 3.9417) followed by the RDSR method

(MSE: 4.0167) then the RARX method (MSE: 4.0606) and finally the RANN method

(MSE: 5.1533).

 5 Concluding Remarks

52

• For the quadruple tank:

The RANN method performed best (MSE: 14.1287) followed by the RDSR method

(MSE: 14.2637) then the RPEM method (MSE: 16.2890) and finally the RARX method

(MSE: 17.6388).

• For the Air heater process:

The RANN method performed best (MSE: 2.6884) followed by the RDSR method

(MSE: 23.4755) then the RPEM method (MSE: 23.5706) and finally the RARX method

(MSE: 23.8394).

The optimal RDSR predictions were also implemented and the results compared with that of

the RANN model output. The optimal predictions were achieved using the Kalman filtering

technique and the results were almost as accurate as the raw measurement data with a 99.9%

fit for the quadruple tank and a 58.7% and 83.5% fit for the synthetic data of which this

deficiency was due to too much noisy system. Overall, the predictions were truly optimal.

The RDSR method has proven to be a very reliable and robust algorithm which performed very

well in both MIMO and SISO systems even when the system is very noisy and somewhat

unstable, it was still able to produce very good model matrices which could compete well with

the traditional methods with high industrial standard.

5.2 Further works

The main tasks in this project were fulfilled with reasonably presentable results but it should

be noted that it was a little difficult for the optimal prediction to be implemented for the SISO

air heater process as the results of the implementation was always giving optimal prediction

values up to infinity. Due to time constraints, this issue could not be thoroughly investigated

to find out why the values were so high. Also, the optimal predictions were not implemented

for the other RARX and RPEM methods for comparison. Thus, the following are the

suggestions for further work in this line of study:

• Optimal RPEM and RARX implementation: It will be interesting to be able to

implement optimal predictions for the RPEM and RARX algorithms since these also

are very reliable system identification approaches.

• Neuro fuzzy system identification: An interesting field of study could be the use of

Neuro fuzzy models to identify systems

• Recursive closed loop identification: Most of the simulations performed here are open

loop identifications. I will suggest that entire control loops are identified as well.

• Online Model Validation and stability analysis: the model validation steps were

performed offline after the models have been identified online, so I think it would be

interesting to see models being identified and validated in the same time instant.

 References

53

References

AARTS, R. G. K. M. 2012. System Identification and Parameter Estimation, Enschede,

University of Twente.

CHINARRO, D. 2014. System Engineering Applied to Fuenmayor Karst Aquifer. Springer

Theses, 11-53.

FINN HAUGEN, E. F., RICARDO DUNIA, THOMAS F. EDGAR 2007. Demonstrating

PID Control Principles using an Air Heater and LabVIEW. CACHE News (Computer

Aids for Chemical Engineering).

G. MERCERE, M. L. 2006. CONVERGENCE ANALYSIS OF INSTRUMENTAL

VARIABLE RECURSIVE SUBSPACE IDENTIFICATION ALGORITHMS. 14th

IFAC Symposium on Identification and System Parameter Estimation., 39, 279-284.

G. MERCERE, S. L., AND M. LOVERA. 2004. Recursive subspace identification based on

instrumental

variable unconstrained quadratic optimization. Adaptive Control and Signal Processing,, 18,

771-797.

GUILLAUME MERCERE, S. L., CHRISTIAN VASSEUR. 2005. SEQUENTIAL

CORRELATION BASED PROPAGATOR ALGORITHM FOR RECURSIVE

SUBSPACE IDENTIFICATION. 16th IFAC World Congress, 38, 922-927.

HOWARD DEMUTH, M. B. 2002. Neural Network Toolbox User's Guide, Natick, MA, The

MathWorks, Inc.

I. GOETHALS, K. P., J.A.K. SUYKENS, AND B. DE MOOR. 2005. Identification of

MIMO Hammerstein models using least squares support vector machines.

Automatica, 41, 1263-1272,.

I. GOETHALS, L. M., A. BENVENISTE, AND B. DE MOOR. 2004. Recursive output-only

subspace identification for in-flight flutter monitoring. Proceedings of the 22nd

International Modal Analysis Conference (IMAC-XXII).

I. HOUTZAGER, J. W. V. W., M. VERHAEGEN. 2009. Fast-array Recursive Closed-loop

Subspace Model Identification. 15th IFAC Symposium on System Identification., 42,

96-101.

JIE HOU, F. C., TAO LIU. 2015. Recursive Closed-loop PARSIM-E Subspace

Identification.

K. J. HUNT, D. S., R. ZBIKOWSKI, P. J. GAWTHROP 1992. Neural Networks for Control

Systems - A Survey. International Federation of Automatic Control., 28, 1083-1112.

KENTARO KAMEYAMA, A. O. 2005. RECURSIVE SUBSPACE PREDICTION OF

LINEAR TIME-VARYING STOCHASTIC SYSTEMS. 16th IFAC world Congress.,

38, 916-921.

KUMPATI S. NARENDRA, K. P. 1990. Identification and control of Dynamic Systems

Using Neural Networks. IEEE Transactions of Neural Networks., 1.

 References

54

L. BAKO, G. M., S. LECOEUCHE, AND M. LOVERA. 2009. Recursive subspace

identification of Hammerstein models based on least squares support vector machines.

IET Control Theory & Applications, , 1209-1216.

L. LJUNG, T. G. 1994. Modelling of dynamic systems, Englewood Cliffs, Prentice Hall.

LARIMORE, W. E. 1990. Canonical variate analysis in identification filtering and adaptive

control. Proceedings of the 28th conference on decision and controls, 596-604.

LIANG MA, X. L. 2016. Recursive maximum likelihood method for the identification of

Hammerstein ARMAX system. 40, 6523-6535.

LJUNG, L. 1999. System Identification - Theory for the User., Upper Saddle River, N.J.,

Prentice Hall International.

LJUNG, L. 2000. System Identification Toolbox User's Guide, Natick, The MathWorks Inc,.

M. LOVERA, T. G., AND M. VERHAEGEN. 1998. Recursive subspace identification of

linear and non-linear wiener state space models. Automatica., 36, 1639-1650.

MATHWORKS. 2016. System Identification Overview [Online]. Available:

https://se.mathworks.com/help/ident/gs/about-system-identification.html [Accessed].

NI.COM. 2010. Selecting a model structure in the system identification process [Online].

National Instruments. Available: http://www.ni.com/white-paper/4028/en/#toc4

[Accessed].

P.V. OVERSCHEE, B. D. M. 1994. N4SID: Two subspace algorithms for the identification

of combined deterministic-stochastic system. Automatica., 75-93.

RUSCIO, D. D. 1998. Advanced Process and quality control., Porsgrun, Norway, Telemark

institute of Technology.

RUSCIO, D. D. 2012. System Identification and Optimal Estimation. Exercise 8. Telemark

University College.

RUSCIO, D. D. 2014. Subspace System Identification, Porsgrunn, Norway, Telemark

Institute of Technology.

VERHAEGEN M, D. P. 1992. Subspace model identification part 1. the output-error state-

space model identification class of algorithms. 1187-1210.

XI CHEN, H.-T. F. 2012. Recursive Subspace Method for Wiener Systems Using

Instrumental Variable Techniques. 16th IFAC Symposium on System Identification.,

45, 1508-1513.

YI LIU, H. W., JIANG YU, PING LI. 2010. Selective recursive kernel learning for online

identification of nonlinear systems with NARX form. Journal of Process Control, 20,

181-194.

YUEPING JIANG, H. F. 2009. Recursive Subspace Identification Algorithm for Closed-loop

Stochastic Systems. 15th IFAC Symposium on System Identification., 42, 116-121.

https://se.mathworks.com/help/ident/gs/about-system-identification.html
http://www.ni.com/white-paper/4028/en/#toc4

 Appendices

55

Appendices

A.1 Master’s thesis proposal

 Appendices

56

.

A.2 Parameters for Quadruple tank models

RDSR

 Appendices

57

RARX (MISO)

RPEM (MISO)

 Appendices

58

A.3 Parameters for Synthetic models

RDSR

 Appendices

59

RARX (MISO)

1st output:

2nd output:

RPEM (MISO)

1st output:

2nd output:

 Appendices

60

A.4 Parameters for Air heater models

RDSR

 Appendices

61

RARX

RPEM

 Appendices

62

A.5 MATLAB codes

Code to simulate, plot and compare all algorithms

RDSR implementation:

%% load the data for both identification and prediction
clc, clear;

load('Yid.mat')
load('Uid.mat')

load('U_val.mat')
load('Y_val.mat')

%% %%%%%%%%%%%%% IDENTIFY MODEL WITH DSR TOOLBOX %%%%%
disp('Identify model with RDSR....(wait)')
% initialize dsr parameters
L = 2; J = L; g = 1; ff = 1; n = 4;

y=Yid; u=Uid;

% LOOP RECURSIVELY OVER ALL COLUMNS, INCLUDE ONE COLUMN AT A TIME.
[Ny,ny]=size(y); % Number of y variables ny.
[Nu,nu]=size(u); % Number of u variables nu.
N=min(Ny,Nu); % Number of samples in batch series.
nry=L+1+J; % Samples in output data window

Y^w_t=yt.
nru=L+g+J; % Samples in input data window U^w_t=ut.
nr=nry*ny+nru*nu; % The row and column size for R.
Lam=eye(nr)*ff; % Forgetting factor matrix.
R=zeros(nr); % Start with a square zero R matrix.

at=zeros(N,n*n); % Arrays to hold time varying matrices.
bt=zeros(N,n*nu);
dt=zeros(N,ny*n);
et=zeros(N,ny*nu);
ct=zeros(N,n*ny);
ft=zeros(N,ny*ny);
x0t=zeros(N,n); % Array to hold "initial" states.
Rt=zeros(N,nr*nr); % Array to hold the R_t matrix of size

(nr x nr).
sv=zeros(N,L*ny); % Array to hold singular values.

K=N-(J+L); % # of columns to

update.
for i=1:K
 yt=y(i:i+nry-1,:);
 ut=u(i:i+nru-1,:);
 R=dsr_upr(Lam*R,yt,ut,L,g,J); % update the R

matrix
 if i>=nr

[a_dsr,b_dsr,d_dsr,e_dsr,cf_dsr,f_dsr,x0_dsr]=dsr_r2m(R,yt,ut,L,n,g,J,i+L+J

); % compute model from R
 end
end

 Appendices

63

k_dsr=cf_dsr*inv(f_dsr); % Kalman gain matrix.

% make a state space
m1_dsr=idss(a_dsr,b_dsr,d_dsr,e_dsr,k_dsr,x0_dsr); %,Uid,x0_dsr); %

simulated output

% Validation %%

z1=[Yid Uid]; % combine estimation data

% plot figures
ym_dsr=predict(m1_dsr,z1,inf);
fit = goodnessOfFit(ym_dsr,Yid,'NRMSE')
fitY = fit*100;
fitE = goodnessOfFit(ym_dsr,Yid,'MSE')

figure;
subplot(211), plot([Yid(:,1) ym_dsr(:,1)]);
title('RDSR: Actual and simulated output y1')
legend('Measured',strcat('Estimated (', num2str(fitY(1)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Yid(:,2) ym_dsr(:,2)]);
title('RDSR: Actual and simulated output y2')
legend('Measured',strcat('Estimated (', num2str(fitY(2)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(Uid(:,1)), title('RDSR: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(Uid(:,2)), title('RDSR: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

% Prediction %%

z2 = [Y_val U_val]; % combine new dataset
y1m_dsr=predict(m1_dsr,z2,inf); % simulate the model

fit1 = goodnessOfFit(y1m_dsr,Y_val,'NRMSE') %calculate fit%
fiCt1 = fit1*100;
fitP1 = goodnessOfFit(y1m_dsr,Y_val,'MSE') %calculate MSE

% make plots
figure;
subplot(211), plot([Y_val(:,1) y1m_dsr(:,1)]);
title('RDSR: Actual and simulated output y1')
legend('Measured',strcat('Predicted (', num2str(fiCt1(1)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Y_val(:,2) y1m_dsr(:,2)]);
title('RDSR: Actual and simulated output y2')
legend('Measured',strcat('Predicted (', num2str(fiCt1(2)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(211), plot(U_val(:,1)), title('RDSR: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(212), plot(U_val(:,2)), title('RDSR: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

 Appendices

64

Optimal RDSR:

% Optimal %%

[Yp_dsr,Vpe_dsr,Xp]=opt_pred(a_dsr,b_dsr,d_dsr,e_dsr,k_dsr,Y_val,U_val,x0_d

sr);
Vpe_dsr

fiIt1 = goodnessOfFit(Yp_dsr,Y_val,'NRMSE');
fiIt111 = fiIt1*100

figure;
subplot(211), plot(Y_val(:,1)); hold on;
plot(Yp_dsr(:,1)); hold off
title('RDSR(Optimal): Actual and simulated output y1')
legend('Measured',strcat('Predicted (', num2str(fiIt111(1)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot(Y_val(:,2)); hold on;
plot(Yp_dsr(:,2)); hold off

title('RDSR(Optimal): Actual and simulated output y2')
legend('Measured',strcat('Predicted (', num2str(fiIt111(2)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

Kalman filter:

 function [yp,Vpe,xp] = opt_pred(a,b,d,e,K,Y,U,x0);

[m,n]=size(d); [N,r]=size(U);
% K=cf*inv(f);

%%%% Simulate the optimal predictor %%%%%%%%
% x_{t+1} = (A - K D) x_t + (B - K E) u_t + K y_t
% yp_t = D x_t + E u_t

a1 = a-K*d;
b1 = [b-K*e K];
d1 = d;
e1 = [e,zeros(m,m)];
u1 = [U,Y];
xm=x0;

%Initialize output arrays
y=zeros(N,m); xp=zeros(N,n);

%Simulation loop for evaluation of the states
 for i=1:N
 % store xm in array x for the states
 xp(i,:)=xm';
 % update (integrate) the state vector
 xm = a1*xm + b1*u1(i,:)';
 end

%Compute the outputs
yp=xp*d1'+u1*e1';

 Appendices

65

%% 4. %%% COMPUTE PREDICTION ERROR

%%%
Vpe= (Y-yp)'*(Y-yp); Vpe=Vpe/(max(size(yp))-1); Vpe=trace(Vpe);
end
% END OPT_pred

RANN implementation:
%% %%%%%%%%%%%%%%%%%%%%%%% IDENTIFY MODEL WITH ANN %%%%%%%
disp('Identify model with ANN....(wait)')
%
P=Uid'; T=Yid';
%lr = 0.1;
X=P;

N=length(Uid);

Ai = {[0;0;0;0;0;0;0;0;0;0] [0;0;0;0;0;0;0;0;0;0];-0.628604071828737 -

0.627272617156328};
Ai2 = {[0;0;0;0;0;0;0;0;0;0] [0;0;0;0;0;0;0;0;0;0];0.882471707976993

0.883036639810788};

Xi = {[3.50000000000000;3.80000000000000]

[3.50000000000000;3.80000000000000]};
Xi2 = {[3.50000000000000;3.80000000000000]

[3.50000000000000;3.80000000000000]};

Ym = zeros(2,N);

% Validation %%

% LOOP RECURSIVELY OVER ALL COLUMNS, INCLUDE ONE COLUMN AT A TIME.
for i = 1:N
 % first output
 [Y_pred1,Xf,Af] = myNeuralNetworkFunctionU1(X(1,i),Xi,Ai);
 Xi = Xf;
 Ai = Af;
 Ym(1,i) = Y_pred1;

 %second output
 [Y_pred2,Xf2,Af2] = myNeuralNetworkFunctionU2(X(2,i),Xi2,Ai2);
 Xi2 = Xf2;
 Ai2 = Af2;
 Ym(2,i) = Y_pred2;

end

ym_ann = Ym';
% fit = goodnessOfFit(y,yref,cost_func);

% z1=[Yid Uid];
% ym_dsr=predict(m1_dsr,z1,inf);
fitt = goodnessOfFit(ym_ann,Yid,'NRMSE')
fitt = fitt*100;
fitE = goodnessOfFit(ym_ann,Yid,'MSE')

 Appendices

66

figure;
subplot(211), plot([Yid(:,1) ym_ann(:,1)]);
title('RANN: Actual and simulated output y1')
legend('Measured',strcat('Estimated (', num2str(fitt(1)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Yid(:,2) ym_ann(:,2)]);
title('RANN: Actual and simulated output y2')
legend('Measured',strcat('Estimated (', num2str(fitt(2)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(Uid(:,1)), title('RANN: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(Uid(:,2)), title('RANN: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

% Prediction %%
P=U_val'; T=Y_val';
%lr = 0.1;
X=P;

N=length(U_val);

for i = 1:N

 [Y_pred1,Xf,Af] = myNeuralNetworkFunctionU1(X(:,i),Xi,Ai);
 Xi = Xf;
 Ai = Af;
 Ym(:,i) = Y_pred1;

 [Y_pred2,Xf2,Af2] = myNeuralNetworkFunctionU2(X(:,i),Xi2,Ai2);
 Xi2 = Xf2;
 Ai2 = Af2;
 Ym(2,i) = Y_pred2;
end
y1m_ann = Ym';

% z2 = [Y_val U_val];
% y1m_dsr=predict(m1_dsr,z2,inf);
fitt1 = goodnessOfFit(y1m_ann,Y_val,'NRMSE')
fitt1 = fitt1*100;
fitP1 = goodnessOfFit(y1m_ann,Y_val,'MSE')

figure;
subplot(211), plot([Y_val(:,1) y1m_ann(:,1)]);
title('RANN: Actual and simulated output y1')
legend('Measured',strcat('Predicted (', num2str(fitt1(1)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Y_val(:,2) y1m_ann(:,2)]);
title('RANN: Actual and simulated output y2')
legend('Measured',strcat('Predicted (', num2str(fitt1(2)),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(U_val(:,1)), title('RANN: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(U_val(:,2)), title('RANN: Actual input U2')

 Appendices

67

% xlabel('Samples'); ylabel('Voltage[V]');grid on

RARX implementation:

%% %%%%%%%%%%%%%%%%%%%%%%%% RecursiveARX %%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Identify model with RARX....(wait)')

na = 5;
nb = [5 5];
nk = [0 0];
z1 =[Yid(:,1) Uid];
model1 = arx(z1,[na nb nk]);

arx_obj1 = recursiveARX([na nb nk]);
arx_obj2 = recursiveARX([na nb nk]);

N=length(Uid);
for i = 1:N
 y1 = Yid(i,1);
 y2 = Yid(i,2);

 [A1_rarx,B1_rarx,y1_arx_hat] = step(arx_obj1,y1,Uid(i,:)');
 [A2_rarx,B2_rarx,y2_arx_hat] = step(arx_obj2,y2,Uid(i,:)');

end
% u=u';

% Validation %%
% fit = goodnessOfFit(y,yref,cost_func);
z1_1=[Yid(:,1) Uid];
model1=idss(model1);

% sys1_arx = idpoly(A1_rarx,B1_rarx,[],[],[]);
% ym_arx_1=predict(sys1_arx,z1_1,inf);
ym_arx_1=predict(model1,z1_1,inf);

% figure;
% compare(z1_1,model1,sys1_arx)

fit_1 = goodnessOfFit(ym_arx_1,Yid(:,1),'NRMSE')
fit_1 = fit_1*100;
fitE_1 = goodnessOfFit(ym_arx_1,Yid(:,1),'MSE')

z1_2=[Yid(:,2) Uid];
model2 = arx(z1_2,[na nb nk]);
model2 =idss(model2);
% sys2_arx = idpoly(A2_rarx,B2_rarx,[],[],[]);

% figure;
% compare(z1_2,model2,sys1_arx)

% ym_arx_2=predict(sys2_arx,z1_2,inf);
ym_arx_2=predict(model2,z1_2,inf);

fit_2 = goodnessOfFit(ym_arx_2,Yid(:,2),'NRMSE')
fit_2 = fit_2*100;
fitE_2 = goodnessOfFit(ym_arx_2,Yid(:,2),'MSE')

 Appendices

68

figure;
subplot(211), plot([Yid(:,1) ym_arx_1]);
title('RARX: Actual and simulated output y1')
legend('Measured',strcat('Estimated (', num2str(fit_1),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Yid(:,2) ym_arx_2]);
title('RARX: Actual and simulated output y2')
legend('Measured',strcat('Estimated (', num2str(fit_2),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(Uid(:,1)), title('RARX: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(Uid(:,2)), title('RARX: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

% Prediction %%

z2_1=[Y_val(:,1) U_val];
sys1_arx = idpoly(A1_rarx,B1_rarx,[],[],[]);
% y1m_arx_1=predict(sys1_arx,z2_1,inf);
y1m_arx_1=predict(model1,z2_1,inf);

fit1_1 = goodnessOfFit(y1m_arx_1,Y_val(:,1),'NRMSE')
fit1_1 = fit1_1*100;
fit1P_1 = goodnessOfFit(y1m_arx_1,Y_val(:,1),'MSE')

z2_2=[Y_val(:,2) U_val];
sys2_arx = idpoly(A2_rarx,B2_rarx,[],[],[]);

% y1m_arx_2=predict(sys2_arx,z2_2,inf);
y1m_arx_2=predict(model2,z2_2,inf);

fit1_2 = goodnessOfFit(y1m_arx_2,Y_val(:,2),'NRMSE')
fit1_2 = fit1_2*100;
fit1P_2 = goodnessOfFit(y1m_arx_2,Y_val(:,2),'MSE')

figure;
subplot(211), plot([Y_val(:,1) y1m_arx_1]);
title('RARX: Actual and simulated output y1')
legend('Measured',strcat('Predicted (', num2str(fit1_1),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Y_val(:,2) y1m_arx_2]);
title('RARX: Actual and simulated output y2')
legend('Measured',strcat('Predicted (', num2str(fit1_2),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(U_val(:,1)), title('RARX: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(U_val(:,2)), title('RARX: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

RPEM implementation:

 Appendices

69

%% %%%%%%%%%%%%%%%%%%%%%%% IDENTIFY MODEL WITH RPEM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Identify model with RPEM....(wait)')
data = iddata(Yid,Uid,1);
z1 = [Yid(:,1) Uid];
z2 = [Yid(:,2) Uid];
m1=pem(z1,'best');
M1=idpoly(m1);

mm2=pem(z2,'best');
MM2=idpoly(mm2);
% get(m)
na=0; nb=[3 3]; nc=3; nd=0; nf=[0 0]; nk=[1 1];
nn=[na nb nc nd nf nk];

EstimatedParameters = rpem(z1,nn,'ff',1);
EstimatedParameters2 = rpem(z2,nn,'ff',1);

rpem_time = toc;
p = EstimatedParameters(end,:)
p2 = EstimatedParameters2(end,:)

% 1st output
m1_pem = idpoly([1 p(1:na)],... % A polynomial
 [[zeros(1,nk(1)) p(na+1:na+nb(1))];... % B1 polynomial
 [zeros(1,nk(2)) p(na+nb(1)+1:na+nb(1)+nc)]],... % B2 polynomial [1

p(na+nb(1)+1:na+nb(1)+nc)]) % C polynomial
 [1 p(na+nb(1)+nc+1:na+nb(1)+nc+2)]) % D polynomial
m1_pem.Ts = 1;

% 2nd output
m2_pem = idpoly([1 p2(1:na)],... % A polynomial
 [[zeros(1,nk(1)) p2(na+1:na+nb(1))];... % B1 polynomial
 [zeros(1,nk(2)) p2(na+nb(1)+1:na+nb(1)+nc)]],... % B2 polynomial [1

p(na+nb(1)+1:na+nb(1)+nc)]) % C polynomial
 [1 p2(na+nb(1)+nc+1:na+nb(1)+nc+2)]) % D polynomial
m2_pem.Ts = 1;

% Validation %%
% fit = goodnessOfFit(y,yref,cost_func);
z1_1=[Yid(:,1) Uid];
% ym_pem_1=predict(m1_pem,z1_1,inf);
ym_pem_1=predict(M1,z1_1,inf);

fit_1 = goodnessOfFit(ym_pem_1,Yid(:,1),'NRMSE')
fit_1 = fit_1*100;
fitEE_1 = goodnessOfFit(ym_pem_1,Yid(:,1),'MSE')

z1_2=[Yid(:,2) Uid];
% ym_pem_2=predict(m2_pem,z1_2,inf);
ym_pem_2=predict(MM2,z1_2,inf);

fit_2 = goodnessOfFit(ym_pem_2,Yid(:,2),'NRMSE')
fit_2 = fit_2*100;
fitEE_2 = goodnessOfFit(ym_pem_2,Yid(:,2),'MSE')

figure;
subplot(211), plot([Yid(:,1) ym_pem_1]);

 Appendices

70

title('RPEM: Actual and simulated output y1')
legend('Measured',strcat('Estimated (', num2str(fit_1),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Yid(:,2) ym_pem_2]);
title('RPEM: Actual and simulated output y2')
legend('Measured',strcat('Estimated (', num2str(fit_2),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(Uid(:,1)), title('RPEM: Actual input U1)')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(Uid(:,2)), title('RPEM: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

% Prediction %%

z2_1=[Y_val(:,1) U_val];
% y1m_pem_1=predict(m1_pem,z2_1,inf);
model1=idss(M1)
y1m_pem_1=predict(M1,z2_1,inf);

fit1_1 = goodnessOfFit(y1m_pem_1,Y_val(:,1),'NRMSE')
fit1_1 = fit1_1*100;
fitP1_1 = goodnessOfFit(y1m_pem_1,Y_val(:,1),'MSE')

z2_2=[Y_val(:,2) U_val];
% y1m_pem_2=predict(m2_pem,z2_2,inf);
model2=idss(MM2)
y1m_pem_2=predict(MM2,z2_2,inf);

fit1_2 = goodnessOfFit(y1m_pem_2,Y_val(:,2),'NRMSE')
fit1_2 = fit1_2*100;
fitP1_2 = goodnessOfFit(y1m_pem_2,Y_val(:,2),'MSE')

figure;
subplot(211), plot([Y_val(:,1) y1m_pem_1]);
title('RPEM: Actual and simulated output y1')
legend('Measured',strcat('Predicted (', num2str(fit1_1),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

subplot(212), plot([Y_val(:,2) y1m_pem_2]);
title('RPEM: Actual and simulated output y2')
legend('Measured',strcat('Predicted (', num2str(fit1_2),'%)'));
xlabel('Samples'); ylabel('Level[m]');grid on

% subplot(221), plot(U_val(:,1)), title('RPEM: Actual input U1')
% xlabel('Samples'); ylabel('Voltage[V]'); grid on
%
% subplot(223), plot(U_val(:,2)), title('RPEM: Actual input U2')
% xlabel('Samples'); ylabel('Voltage[V]');grid on

