

University College of Southeast Norway
Faculty of Electrical, IT and Cybernetics

-

Master’s Thesis
Study program: System and Control Engineering

Spring 2016

Minh Hoang

Tuning of viscosity and density of non-Newtonian

fluids through mixing process using multimodal

sensors, sensor fusion and models

 2

University College of Southeast Norway
Faculty of Electrical, IT and Cybernetics
Kjølnes Ring 56, 3918 Porsgrunn, Norway

http://www.usn.no

© 2016 Minh Hoang

This thesis is worth 30 study points

 3

Abstract

The main work of this thesis was to develop some empirical models that could be used to estimate the

viscosity in drilling operations. The reason for this is due to the fact that oil companies spends a lot of

money to make sure that the drilling fluid has the right value of density and viscosity. It is important to

control the density because its maintains the downhole pressure and wellbore stability. Likewise, it is

crucial to maintain the viscosity of the drilling fluid at a desired level for transportation of drilling

cuttings and hole cleaning.

In drilling operations, the viscosity in the drilling fluid changes for each circulation so the viscosity value

need to be updated back to the reference value. This can be done by adding additives to the drilling

fluid. To decide the amount of additives that is needed, viscosity blending mechanisms is used. The

blending methods that can be used to mix drilling fluids will be discussed in Chapter 2. In this thesis,

there has been developed some classifiers that will sort the viscosity into three regions; low viscous,

medium viscous and high viscous. By using classifiers, it would be easier for the mud engineers to know

which additive that needs to be added.

The different models that were used to estimate the viscosity in this thesis were Fuzzy Logic model,

Feedforward Artificial Neural Network model (ANN), Feedback Artificial Neural Network model and

Support Vector Regression (SVR). The performance analysis of these models were done using simulation

study and experimental study. Based on the simulation study, Sugeno type-1 Fuzzy Logic model,

feedforward ANN model and SVR gives very good estimations compared to the feedback ANN models.

For the experimental study, the experiments were done in the Venturi-rig in University College of

Southeast Norway, Porsgrunn. The experimental results were very similar to the simulation results,

where the three models; Sugeno type-1 Fuzzy Logic, feedforward ANN and SVR had comparable

predictions with some accuracy. Based on the analysis from simulation and experimental study, it seems

that the empirical models that were developed is capable of estimating the viscosity of non-Newtonian

drilling fluids.

In addition to the task description, I and my supervisors have also developed a Matlab toolbox “Dynamic

Artificial Neural Network for Time Series Analysis and Prediction”. This toolbox was accepted as a paper

for “The 9th Eurosim Congress on Modelling and Simulation-2016” in Finland. Apart from this, I as a co-

 4

author manage to get accepted a paper on flowrate measurement of non-Newtonian fluids in the same

conference.

 5

Preface

This master thesis indicates that my two years at HSN University College of Southeast Norway is coming

close to an end. It has been a great journey where I have learnt a lot and got the chance to make many

good friends.

For this thesis I want to thanks all my supervisors for giving me advices and motivating me during the

whole semester. It has been many tough days with confusions and little sleep. So I am without a doubt,

sure that without you guys I would never be able to finish this thesis.

First of all, I want to thank my main supervisor Saba Mylvaganam. You have been very supportive and

motivating from day 1. You always make sure that I make some progress every week.

My second thank goes to Khim Chhantyal. You have been the supervisor that I’ve been cooperating

most with. It must have days where you got tired of all my questions, but I’m really thankful that you

always kept your cool and never gave up on me. You are a good supervisor and a great person.

My third thank goes to Håkon Viumdal. Even though we haven’t had so many meetings together, I feel

that in the few meetings we had, you really put efforts and time to help me.

Finally, I want to thank my external partner, Geir Elseth. Your expertise in the field is something that

cannot be learnt through books. It has been a nice experience for me cooperating with you.

 6

Abbreviation

HSN Høgskolen i Sørøst-Norge

SVM Support Vector Machine

SVR Support Vector Regression

ANN Artificial Neural Network

DANN Dynamic Artificial Neural Network

NN Neural Network

MSE Mean Squared Error

MAPE Mean Average Percentage Error

GUI Graphical User Interface

RNN Recurrent Neural Network

 7

Symbol

Re Reynolds number

𝜇 Dynamic viscosity

𝑣 Velocity

𝑑 Diameter

𝜌 Density

𝜏 Shear stress

𝛾 Shear rate

𝑓 Friction factor

𝑎 Empirical parameter

𝛽 Empirical parameter

K Flow consistency

𝑛′ Flow behavior index

�̇�𝑤 Wall shear rate

𝜏𝑤 Wall shear stress

𝜂 Kinematic viscosity

𝑥𝑚 Mole fraction

𝑥𝑣 Volume fraction

𝑥𝑤 Weight fraction

𝜖 Empirical parameter

𝑀 Molecular weight

 8

𝐿 Length

𝑑𝑝 Differential pressure

 9

Table of Contents

1 Introduction: ... 15

1.1 General background .. 15

1.2 Structure of the thesis ... 15

2 Literature survey on drilling and drilling fluids ... 16

2.1 Circulation of drilling fluid ... 16

2.2 Functions of the drilling fluids ... 17

2.2.1 Transportation of cuttings .. 17

2.2.2 Lubrication and cooling .. 18

2.2.3 Management of formation pressure .. 18

2.2.4 Maintenance of wellbore stability .. 19

2.3 Non-Newtonian rheology of drilling fluid .. 19

2.3.1 Time-independent fluid .. 20

2.3.1.1 Shear-thinning fluid ... 20

2.3.1.2 Shear-thickening fluid .. 21

2.3.2 Time-dependent fluid ... 21

2.3.2.1 Thixotropic fluid ... 21

2.3.2.2 Rheopectic fluid ... 22

2.4 Viscosity measurement of drilling fluid in different flow conditions .. 22

2.4.1 Lab scale viscosity measurement on fluid samples .. 23

3.4.1.1 Zahn Cup .. 23

3.4.1.2 March Funnel ... 23

3.4.1.3 Capillary viscometer .. 24

3.4.1.4 Rotational viscometer ... 24

2.4.2 Viscosity measurement in laminar flow ... 25

2.4.2.1 Ultrasonic Doppler Velocimetry .. 25

2.4.2.2 Laser Doppler Velocimetry .. 26

2.4.3 Viscosity measurement in turbulent flow .. 26

2.4.3.1 For Newtonian fluids ... 26

2.4.3.2 For Non-Newtonian fluids ... 27

2.4.4 “Flow-viz” a new non-invasive viscosity measurement for non-Newtonian fluids 28

2.5 Viscosity blending mechanism .. 29

2.5.1 Arrhenius method ... 29

2.5.2 Bingham’s method .. 29

 10

2.5.3 Kendal & Monroe’s method ... 30

2.5.4 Lederer & Roegiers method ... 30

2.5.5 Grunberg & Nissan’s method ... 31

2.5.6 Gambill’s method ... 31

2.5.7 Reid’s method ... 32

2.5.8 Khan’s method .. 32

2.5.9 Oswal-Desai’s method .. 33

2.5.10 Refutas method .. 33

3 System description for Venturi-rig ... 34

3.1 Overview of the system with P&ID .. 34

3.2 Functions of the Venturi section ... 36

3.3 Sensors used in the Venturi-rig ... 37

3.3.1 Pressure transmitter ... 37

3.3.2 Pressure differential transmitter .. 37

3.3.3 Temperature transmitter ... 38

3.3.4 Coriolis flow meter (Promass 63) ... 38

3.3.5 Coriolis flow meter (Promass 801) ... 39

3.3.6 Ultrasonic level sensor.. 39

3.3.7 Gamma sensor .. 40

3.4 Fluids used in the Venturi-rig .. 40

3.5 Empirical model setup ... 41

4 Basics of empirical methods used .. 42

4.1 Fuzzy logic .. 42

4.2 Artificial Neural Network ... 43

4.2.1 Feedforward Artificial Neural Network .. 44

4.2.2 Feedback Artificial Neural Network .. 45

4.2.2.1 Partially Connected Recurrent Neural Network .. 45

4.2.2.2 Fully Connected Recurrent Neural Network ... 46

4.3 Support Vector Machine ... 47

5 Viscosities of sample fluids in empirical models .. 48

5.1 Fuzzy logic simulation with fluid samples.. 48

5.1.1 Mamdani Inference Mechanism with Type-1 Fuzzy Logic ... 48

5.1.2 Mamdani Inference Mechanism with Type-2 Fuzzy Logic ... 51

5.1.3 Sugeno Inference Mechanism with Type-1 Fuzzy Logic ... 52

 11

5.2 ANN simulations with fluid samples .. 57

5.2.1 Feedforward ANN for simulations .. 57

5.2.2 Feedback ANN for simulations ... 61

5.2.2.1 Partially Connected RNN for simulations .. 61

5.2.2.2 Fully Connected RNN for simulations .. 64

5.3 SVM simulations with fluid samples .. 68

5.4 Viscosities of fluid samples - classification into groups ... 69

6 Viscosity estimates using different fluids in Venturi-rig ... 72

7 Conclusions ... 76

Future work ... 78

References ... 79

Appendix A: Project Abstract... 81

Appendix B: Publication of Flowrate Estimating Using Ultrasonic Level ... 82

Appendix C: Dynamic Neural Network Toolbox - Tutorial .. 91

Appendix D: Picture of the Venturi-rig .. 110

Appendix E: Venturi-rig Tutorial .. 113

Appendix F: How to use Sugeno Anfis ... 121

Appendix G: How to use Neural Network Toolbox in Matlab ... 127

Appendix H: Simulation Code .. 134

Appendix I: Experimental Code ... 152

 12

List of figures

Figure 1: Circulation of drilling fluid in a drilling operation, which carries the cuttings out from the pipe 17

Figure 2: Solid control system which removes all the cuttings from the drilling fluid before it goes back to the

mud tank. ... 18

Figure 3: Shows how the viscosity changes over time for Rheopectic and Thixotropic fluids 19

Figure 4: Ketchup is a shear thinning fluid .. 20

Figure 5: For shear thinning fluid, the viscosity decreases when the shear rate increase. 20

Figure 6: Oobleck is a shear thickening fluid. .. 21

Figure 7: The viscosity for shear thickening fluids increase when the shear rate increase. 21

Figure 8: Honey is a thixotropic fluid. .. 22

Figure 9: For thixotropic fluids, the viscosity decrease when it receives stress over time 22

Figure 10: Cream is a rheopectic fluid. .. 22

Figure 11: Shows how rheopectic fluids viscosity increase over time when stress is applied. 22

Figure 12: Zahn Cup, a lab instrument to measure viscosity. ... 23

Figure 13: Marsh Funnel instrument ... 24

Figure 14: Capillary viscometer ... 24

Figure 15: Rotational viscometer .. 25

Figure 16: Ultrasonic Doppler Velocimetry can be used to determine the laminar flow. 25

Figure 17: Laser Doppler Velocimetry, an alternative to measure laminar flow. .. 26

Figure 18: "Flow-viz" - an instrument to measure viscosity for non-Newtonian fluids in real time 28

Figure 19: Timeline of blending methods from 1899-2000 ... 29

Figure 20: P&ID diagram of the system. .. 35

Figure 21: Venturi section with three level sensors .. 36

Figure 22: A block diagram of a type-1 fuzzy logic system with a complete overview of how it works. 42

Figure 23: A block diagram of a type-2 fuzzy logic system with a complete overview of how it works. 43

Figure 24: Architecture of Feedforward Neural Network with two inputs, two neurons and one output. 44

Figure 25: A simple architecture of Partially Connected Recurrent NN with feedback from the hidden neurons.

 ... 46

Figure 26: General architecture of Fully Connected Recurrent Neural Network with feedback loops. 47

Figure 27: General architecture of Support Vector Regression method showing input space, feature space and

output space. ... 47

Figure 28: A block representation of Fuzzy Logic approach with Mamdani inference mechanism. The model

consists of two inputs (Shear stress and Density) and one output (Viscosity). .. 49

Figure 29: The membership function plot in Mamdani type-1 fuzzy logic for shear stress with 6 different

linguistic values within the range of [0,1]. .. 49

Figure 30: The membership function plot in Mamdani type-1 fuzzy logic for density with 5 different linguistic

values within the range of [0,1]. .. 50

Figure 31: The membership function plot in Mamdani type-1 fuzzy logic for viscosity with 6 different linguistic

values within the range of [0,1]. .. 50

Figure 32: The target vs. prediction plot using the Mamdani type-1 Fuzzy logic model. 51

Figure 33: The membership function plot in Mamdani type-2 fuzzy logic for shear stress with 6 different interval

type linguistic values within the range of [0,1]. .. 52

Figure 34: The membership function plot in Mamdani type-2 fuzzy logic for density with 5 different interval type

linguistic values within the range of [0,1]. .. 52

 13

Figure 35: ANFIS GUI of type-1 Sugeno fuzzy logic with a possibility to import different datasets for automatic

tuning of parameters of membership functions and automatic generation of if-then fuzzy rules. 54

Figure 36: The Sugeno ANFIS model structure with two inputs having seven membership functions each and

with 49 if-then rules and an output. ... 54

Figure 37: The membership function plot in Sugeno type-1 fuzzy logic for density with 7 different interval type

linguistic values within the range of [0,1]. .. 55

Figure 38: The membership function plot in Sugeno type-1 fuzzy logic for shear stress with 7 different interval

type linguistic values within the range of [0,1]. .. 55

Figure 39: The target vs. prediction plot using the Sugeno type-1 fuzzy logic model developed using Matlab

Fuzzy Logic toolbox with ANFIS. .. 56

Figure 40: The calibration results of 5 different test samples using Sugeno type-1 fuzzy logic model with a MAPE

of 2.45%. .. 56

Figure 41: Feedforward setup that shows the number of inputs, hidden layers, output layer. 58

Figure 42: Performance plot of feedforward ANN, where training stops at epoch 737 with best training

performance of 74.95 due to validation error check. ... 58

Figure 43: Regression plot for feedforward ANN with the correlation between target and output for training

(R=0.98) and testing datasets (R=0.98). .. 59

Figure 44: Regression plot for feedforward ANN with the correlation (R=0.98) between target and output for

new test data. .. 59

Figure 45: The target vs. prediction plot using the feedforward ANN model developed using Matlab NN toolbox.

 ... 60

Figure 46: The calibration results of 5 different test samples using feedforward ANN with a MAPE of 8.12%. 60

Figure 47: Partially connected RNN setup, which shows the number of inputs, hidden layers, output layer and

feedback loops with delays. .. 61

Figure 48: Performance plot of partially connected RNN, where training stops at epoch 28 with best training

performance of 41.775 due to validation error check. ... 62

Figure 49: Regression plot for feedback RNN with the correlation between target and output for training

(R=0.97), validation (R=0.99) and testing datasets (R=0.99). .. 63

Figure 50: Autocorrelation of error with confidence limit for partially connected RNN. 63

Figure 51: a) The target vs. output plot for training set, validation set and test sets in partially connected ANN. b)

The error plot showing error between target and output at each samples. .. 64

Figure 52: The performance plot for viscosity estimation using fully connected RNN with RTRL learning

algorithm. .. 65

Figure 53: The state plot for viscosity estimation using fully connected RNN with RTRL learning algorithm. 66

Figure 54: The regression plot for viscosity estimation using fully connected RNN with RTRL learning algorithm

with 84% correlation between target values and model predictions. .. 66

Figure 55: The prediction plot for viscosity estimation using fully connected RNN with RTRL learning algorithm

with MAPE of 31.91%. ... 67

Figure 56: The error plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with

80 units of highest error in the test samples. ... 67

Figure 57: The target vs. prediction plot using the Support Vector Regression model. ... 68

Figure 58: The calibration results of 5 different test samples using Support Vector Regression model with a

MAPE of 2.70%. ... 69

Figure 59: The classification of viscosity measurement using Sugeno type-1 fuzzy logic classifier with a

misclassification percentage of 0.59%, i.e. 4 samples are misclassified out of 668 test samples. 70

 14

Figure 60: The classification of viscosity measurement using feedforward ANN classifier with a misclassification

percentage of 0%, i.e. no samples are misclassified out of 668 test samples. .. 71

Figure 61: The classification of viscosity measurement using Support Vector Machine classifier with a

misclassification percentage of 0.74%, i.e. 5 samples are misclassified out of 668 test samples. 71

Figure 62: Averaged differential pressure drop measurements for Drilling Fluid-1 with standard deviation at each

flowrates. ... 73

Figure 63: Averaged differential pressure drop measurements for Drilling Fluid-2 with standard deviation at each

flowrates. ... 74

Figure 64: Comparison of viscosity estimations of Drilling Fluid-1 using different data models at different

flowrates. ... 74

Figure 65: Comparison of viscosity estimations of Drilling Fluid-2 using different data models at different

flowrates. ... 75

 15

1 Introduction:

1.1 General background

The oil companies in these days are facing challenges related to cost and efficiency in drilling

operations. Oil companies are always looking for possibilities to improve their method in order to pump

more efficiency and at the same time operates in a safe manner. Some of the factors that is vital for the

efficiency, is to monitor and control the density and viscosity in the drilling fluid. This challenge may be

solved by developing control algorithms which can ensure that the drilling fluid that circulates in the

drilling loop, have a value which is acceptable for both viscosity and density.

In drilling operations, the drilling fluid is circulated in a closed loop starting from the mud tank into the

wellbore and back to the mud tank. The mud can be water-based, oil-based or gas-based and is

circulated during the drilling operation, until the desired depth is reached. During circulation, the

properties of drilling fluid have significant importance for the safe and efficient drilling operation. The

viscosity, density, and flow rate or circulating drilling fluid play a vital role, in all drilling operations. [1]

The goal of this thesis is to get a deeper understanding of how the drilling operation works, the

importance of the drilling fluids, how to monitor and control density and viscosity, and develop

empirical models which can be used to estimate the viscosity of non-Newtonian fluids.

1.2 Structure of the thesis

This thesis is divided into several chapters where Chapter 2 covers the literate survey of drilling

functions, non-Newtonian rheology, viscosity measurements and blending mechanisms. Chapter 3 will

describe the Venturi-rig and the available sensors which will be used for the experimental part. Chapter

4 will cover the methods that will be used to develop models. Chapter 5 will be focusing on simulations

results based on the methods described in chapter 4, and finally Chapter 6 that will discuss the

experimental results.

 16

2 Literature survey on drilling and drilling fluids
This chapter will give a brief understanding of the fundamentals in drilling operations. It includes topic

like circulation of drilling fluids, the functions of drilling fluids, rheology of non-Newtonian fluids,

different methods to measure viscosity for both laminar and turbulent flow, and it will also include the

methods for viscosity blending mechanism.

2.1 Circulation of drilling fluid
In today’s drilling operations, companies are trying to make their operations more efficiency so that

they can have a bigger profit. One of the main factor for achieving this goal, is to monitor and process

the drilling fluid. The drilling fluid that is used today is a lot more advanced than the drilling fluid that

was used back in the old days. In 1901, the drilling fluid was simply made of just water mixed with clay

cuttings to make the fluid more viscous. Compared to the past, today’s drilling fluid is more complex to

make and include substances like bentonite, polymers, thinners and barite. Since the goals is to achieve

optimal performance, the mud engineers are developing methods to reduce the waste of drilling

additives, to control the extractions of cuttings better and limit the emissions of toxic elements. By

implementing the methods together with a computer system to monitor the drilling fluid’s properties,

the drilling expenses can be reduced by 70 percent. [1]

The process of a drilling fluid loop can be demonstrated as shown in Figure 1. The pump is pumping out

drilling fluid from the tank and transporting it down to the drill string. The drilling fluid will then carry

the cuttings from the bottom of the pipe, and into a Solids control system to separate the cuttings and

small particles from the drilling fluid. The drilling fluid will then go back to the mud tank where it is

possible to add some additives to maintain the mud properties at a desired level. [2]

The continuous monitoring of drilling fluid properties like density and viscosity can lead to safe and

efficient drilling. The density of the drilling fluids is responsible for wellbore stability and viscosity is

responsible for transportation of drill cuttings. There are two main problems in drilling operations

regarding wellbore stability; circulation loss and kick. A similar situation occurs frequently in geothermal

drilling. In geothermal drilling, one of the costly problems is lost circulation that occurs when drilling

fluid is lost to the formation rather than returning to the surface, preferable intact. The management of

lost circulation is important and requires the accurate measurement of drilling fluid flow rate both into

and out the well. This thesis is more concern with viscosity measurement of non-Newtonian fluids and

 17

the detail on flow measurement is not included in this thesis. However, we managed to get acceptance

of the paper on flow measurement in “The 9th Eurosim Congress on Modelling and Simulation-2016”,

Finland, titled as: “Flowrate Estimation using Ultrasonic Level Sensors using Dynamic Artificial Neural

Networks with Real Time Recurrent Learning – A Comparative Study of Models and Practical

Implementation”. The paper is attached in the appendix B.

Figure 1: Circulation of drilling fluid in a drilling operation, which carries the cuttings out
from the pipe. [2]

2.2 Functions of the drilling fluids

The drilling fluids that is used in the drilling operations, are designed to handle many important

functions like transportation of cuttings, management of formation pressures, cooling and lubricating of

the drilling bit, and ensure stability in the wellbore. Drilling fluids are created differently based on the

requirements from each wellbore. The mud Engineers that design the drilling fluid need to take rig

capabilities and environmental concerns into consideration when developing the fluid. The drilling fluid

should be able to control subsurface pressure, reduce the formation damage as much as possible,

minimize the loss of drilling fluid, and optimize hole cleaning. [3]

2.2.1 Transportation of cuttings

During a drilling process, when the drill bit is moving downwards in the pipe, a lot of cuttings will occur.

These cuttings will eventually stop the drilling if they are not removed. This is due to the fact that the

drill requires more power to proceed when more and more particles become obstructions. The drilling

fluid is mixed in a way that when the fluid goes down to the pipe, it is very thin, but when the speed is

 18

reduced because of the cuttings, the fluid automatically becomes thicker. It is because of the drilling

fluid’s ability to change viscosity that it can transport the cuttings from bottom of the pipe. The cuttings

will be carried to a Solid control system where the cuttings will be removed from the drilling fluid. [2]

The Solid control system is mainly divided into three steps. When the cuttings arrive to the Solid control

system, it will go into a shale shaker where the mesh screen will catch the big cuttings and smaller

particles will continue to the next step. The remaining cuttings will be filtered by a mud cleaner before it

reaches to the last step where all the fine solids are eliminated. The picture below shows how a Solid

Control system works. [2]

Figure 2: Solid control system which removes all the cuttings from the drilling fluid
before it goes back to the mud tank. [2]

2.2.2 Lubrication and cooling

As the drilling bit is working, a lot of thermal energy will accumulate due to the frictions that is caused

by the contact between the drilling bit and the cuttings. The temperature in the drilling bit needs to be

cool down or else the drill might stop working as expected. This is where the drilling fluid comes into

the picture. The drilling fluid that are being sent down to the wellbore, is transferring the thermal

energy from the drilling bit and up to the surface. [3]

2.2.3 Management of formation pressure

The drilling fluid plays an important role when it comes to controlling a well. To prevent loss of well

control, the drilling fluid that is being sent down through the drilling bit will increase the offset in the

formation pressure. In this way, it is possible to avoid the formation fluids from getting into the

borehole. It is however, very important to have in mind that the pressure from the drilling fluid must

not be higher than the fracture pressure, or else the drilling fluid will be lost in the formation. [3]

 19

2.2.4 Maintenance of wellbore stability

To maintain the stability in a wellbore there are some factors that needs to be fulfilled. The density in

the drilling fluid should always be regulated to control the formation pressure. This is done by

processing the mud column in such a way that it weighs more than the formation pressure.

Furthermore, this will also prevent dangerous situation like the wellbore blowing up. [3]

2.3 Non-Newtonian rheology of drilling fluid

In the drilling process, the drilling fluids that are used is mostly non-Newtonian fluids. Non-Newtonian

fluids are liquids that doesn’t follow the law of Sir Isaac Newton. Newton’s law says that the viscosity of

fluids is dependent on only temperature or pressure. There is however, fluids that operates in a

different way. These fluids viscosity can change based on other factors like pressure and shear rate and

is therefore called Non-Newtonian fluids. [4]

Non-Newtonian fluids reacts differently when a force is applied to them compared to Newtonian fluids.

While Newtonian fluids shows little reaction when receiving stress, Non-Newtonian fluids reacts

immediately by changing form. Non-Newtonian fluids can either become more viscous or less viscous

depending on which substances the fluid was made of. A Non-Newtonian fluid that becomes less

viscous when receiving stress, is called Shear thinning fluid. On the other hand, fluids that change to a

more viscous form after collecting stress, is called Shear thickening fluid. Despite the fact that Non-

Newtonian fluid behaves differently when receiving stress, it will go back to their initial state when the

force is removed. The picture below demonstrates how the viscosity changes for different types of Non-

Newtonian fluids when a force is applied over time. [4]

Figure 3: Shows how the viscosity changes over time for
Rheopectic and Thixotropic fluids. [4]

 20

2.3.1 Time-independent fluid

This subchapter will describe fluids that are time-independent. Fluids that are time independent are not

dependent on the duration of flow. For time-independent fluid there exist two types; shear-thinning

and shear-thickening fluid. [5]

2.3.1.1 Shear-thinning fluid

These fluids will have their viscosity decreased when the shear rate increases. An example of this can be

Ketchup. If you want to get out the remaining Ketchup from the bottle, you need to shake the bottle a

few times so it is possible to squeeze out the ketchup. The purpose behind the shaking, is to apply

stress to the sauce, so that the viscosity decreases. [4]

Viscosity can be found using this formula:

𝜂 =
𝜏

𝛾
 (1)

Where 𝜂 is viscosity, 𝜏 is shear stress and 𝛾 is shear rate.

Figure 4: Ketchup is a shear thinning fluid. [4]

Figure 5: For shear thinning fluid, the viscosity decreases
when the shear rate increase. [4]

 21

2.3.1.2 Shear-thickening fluid

Fluids that increase in viscosity when the shear rate increase, is called Shear-thickening fluids. An

example of a fluid with this function is oobleck. Before stress is applied, the oobleck is in liquid form, but

as soon at someone grab it, the form will start to get thicker. [4]

Figure 6: Oobleck is a shear thickening fluid. [4]

Figure 7: The viscosity for shear thickening fluids increase
when the shear rate increase. [4]

2.3.2 Time-dependent fluid

This subchapter will describe fluids that are time-dependent. Fluids that are time-dependent are

dependent on the duration of flow. For time-dependent fluid there exist two types; thixotropic and

rheopectic fluid. [6]

2.3.2.1 Thixotropic fluid

These fluids will unlike the fluids mentioned above, have their viscosity changed over time and not only

through stress. For thixotropic fluids, the viscosity will decrease as time goes by. An example of this type

of fluid is honey. If you have a cup with honey and stirs the honey, you will see that the honey start

changing form from solid to liquid. [4]

 22

Figure 8: Honey is a thixotropic fluid. [4]

Figure 9: For thixotropic fluids, the viscosity decrease when it
receives stress over time. [4]

2.3.2.2 Rheopectic fluid

Fluids that have their viscosity increased over time when stress is applied, is called Rheopectic fluids. To

illustrate how these type of fluids behaves, an example with cream will be used. When the cream is

getting whipped over some time, the viscosity increase and the cream gets thicker. [4]

Figure 10: Cream is a rheopectic fluid. [4]

Figure 11: Shows how rheopectic fluids viscosity increase
over time when stress is applied. [4]

2.4 Viscosity measurement of drilling fluid in different flow conditions

When measuring viscosity of drilling fluids, there are different measurements methods for different

fluids types like Non-Newtonian and Newtonian. The choice of method is also dependent on if the flow

is turbulent or laminar. This subchapter will describe the methods than can be used to measure

viscosity for different flow conditions.

 23

2.4.1 Lab scale viscosity measurement on fluid samples

This subchapter will describe some lab instruments that can be used to measure the viscosity. Note that

these instruments don’t measure in real time. For real time viscosity measurements, see under laminar

and turbulent flow.

3.4.1.1 Zahn Cup

A Zahn cup can measure the viscosity by taking the time a fluid uses to flow through the orifice which is

positioned at the bottom of the cup. The Zahn cup comes in different sizes which support different

viscosity ranges. There is therefore important to select the right cup when measuring viscosity. Zahn

cups that is produced by an engineering company called Brookfield have this table that will help the

user to choose the right cup [7]:

After the time is taken, the user can use the time and the size of the Zahn cup to find the viscosity in a

conversion table.

Figure 12: Zahn Cup, a lab instrument to measure viscosity.

3.4.1.2 March Funnel

This instrument is often used to measure the viscosity of drilling mud. The behavior of this device

almost works like a Zahn Cup, but with this device there is no need for a conversion table. The time

(seconds) it takes to transfer the fluid from a funnel to fill up the Marsh cup is equals to the amount of

viscosity (1 second = 1 viscosity). [8]

 24

Figure 13: Marsh Funnel instrument

3.4.1.3 Capillary viscometer

This instrument is very common used to measure viscosity due to its simplicity and low cost [9]. The

viscosity is found by counting the time it will take for the fluid to flow through the capillary. Since the

flow time is proportional to the fluid’s kinematic viscosity, it is possible to calculate the viscosity value

by using a conversion factor. The conversion factor can differ from instruments to instruments, so

remember to check the conversion number in the instrument’s specification [10]. The picture below

illustrated how to use a capillary viscometer.

Figure 14: Capillary viscometer

3.4.1.4 Rotational viscometer

A viscometer that can find the viscosity for both Newtonian and non-Newtonian fluids. The device is

calculating the viscosity based on the resistance from an object that is rotating in the fluid. The object

can for an instance be a spindle that rotates inside the fluid. Viscometers are also common used it other

Vendors like the Food industry that use rotational viscometer to quality check their food to have a

viscosity value within an acceptable range. [11]

 25

Figure 15: Rotational viscometer

2.4.2 Viscosity measurement in laminar flow

To determine the viscosity for fluids that moves smoothly or in proper paths, there are some

instruments that can be used to find the viscosity for both Newtonian and non-Newtonian fluids. These

instruments can for instance be Ultrasonic Doppler Velocimetry, or Laser Doppler Velocimetry (LDV). By

using these instruments, it is possible to find the viscosity by dividing shear stress (pressure drop in the

measurement) with shear rate (the velocity profile from the instrument). [12]

2.4.2.1 Ultrasonic Doppler Velocimetry

Ultrasonic Doppler was originally developed for medical purposes, but the technology has later been

used in other fields such as in fluid dynamics. This sensor can be used to determine the speed in a

laminar flow by emitting ultrasonic waves which will be reflected and picked up by a receiver. [13]

Figure 16: Ultrasonic Doppler Velocimetry can be used to
determine the laminar flow.

 26

2.4.2.2 Laser Doppler Velocimetry

This instrument can be used to measure the velocity of a flow with very high accuracy with no need for

calibration. There is however a downside with this sensor, and that is the cost. The Laser Doppler

Velocimetry works in a such way that it sends out a laser toward a target, and the reflected radiation

from the target will determine the velocity. [14]

Figure 17: Laser Doppler Velocimetry, an alternative
to measure laminar flow.

2.4.3 Viscosity measurement in turbulent flow

When it comes to measure the viscosity for turbulent flow, there exists different methods for

Newtonian and non-Newtonian fluids. For Newtonian fluids, the viscosity can be determined by using a

moody chart. Complementary to this, a model developed from Trinh can be used to find the viscosity

for non-Newtonian fluids. [12]

2.4.3.1 For Newtonian fluids

To find the viscosity for Newtonian fluids in turbulent flow, a Moody Chart can be used. One possible

way of doing this, is illustrated in the steps below [15]:

1. Find the number for the Pipe Roughness. This can be found in the pipe specification.

2. Use the Pipe Roughness value in a Moody chart to find the friction factor.

3. When the friction factor is known, find the Reynolds number from this formula:

𝑅𝑒 =
16

𝑓

(2)

where, 𝑅𝑒 is the Reynolds number and 𝑓 is the friction factor

 27

4. Use Reynolds number to find the viscosity:

𝜇 =
𝑑𝑣𝜌

𝑅𝑒

(2)

where,
𝜇 = 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒

𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑

2.4.3.2 For Non-Newtonian fluids

To find the viscosity for non-Newtonian fluids in turbulent flow, an analytical model developed by Trinh

can be used. Note that this model can only be used for Power Law fluids. One possible way of doing

this, is illustrated in steps below [16]:

1. Find the wall shear rate �̇�𝑤 from this equation:

�̇�𝑤 =

[

 𝛼𝑣2−2𝛽+𝑛′𝛽𝜌1−𝛽𝐾𝛽−18𝛽(1−𝑛′) (

3𝑛′ + 1
4𝑛′)

𝛽𝑛′

2𝐷𝛽𝑛′

]

1
𝑛′

(3)

where,

𝑎 = 𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝛽 = 𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝜌 = 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝐾 = 𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

𝐷 = 𝑝𝑖𝑝𝑒 𝑑𝑖𝑎𝑚𝑎𝑡𝑒𝑟

𝑛′ = 𝑓𝑙𝑜𝑤 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑖𝑛𝑑𝑒𝑥

2. Find the wall shear stress 𝜏𝑤 from this equation for pseudoplastic fluid:

𝜏𝑤 = 𝐾�̇�𝑤
𝑛′

(4)

where,

 28

�̇�𝑤 = 𝑤𝑎𝑙𝑙 𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒
𝑛′ = 𝑓𝑙𝑜𝑤 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑖𝑛𝑑𝑒𝑥

3. Calculate the viscosity 𝜇:

𝜇 =
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒
=

𝜏𝑤

�̇�𝑤

(5)

2.4.4 “Flow-viz” a new non-invasive viscosity measurement for non-Newtonian fluids

It seems there has been developed a new non-invasive instrument to measure viscosity for non-

Newtonian fluids for all kinds flow conditions. The product name is “Flow-viz” and was created by Johan

Wiklund with cooperation with “SP Technical Research Institute of Sweden”. Their product can do

measurement in real time non-invasively by using an ultrasound based system. The instrument can

deliver accurate measurements even through stainless steel pipes. The developers claim that by using

their product, it is possible to; [17]

 Measure transient flows with coarse particles.

 Do consistency measurement without exposing the product.

 Increase the efficiency and flexibility without sacrificing safety.

 Monitor the changes in the system in real time.

 Increase productivity and reduce energy consumption.

 The time with inaccurate, time-consuming sampling and off-line sample analysis are now a

history.

Figure 18: "Flow-viz" - an instrument to measure viscosity for non-Newtonian fluids in real time [17]

 29

2.5 Viscosity blending mechanism

This subchapter will describe how to mix drilling fluids by using different methods that has been

developed over the years since 1905. For each method, there will be some information about if the

blending methods is for binary or multiply fluids, and also the steps for using the methods. The timeline

below illustrates some blending mechanism methods that has been evolved from 1905 to 2000.

Figure 19: Timeline of blending methods from 1899-2000

2.5.1 Arrhenius method

This method is used for binary blending and is known as the ideal binary mixing, because the mixing

between the fluids doesn’t affect the volume. [18]

Steps:

1. Calculate the blend viscosity µ12 from this formula:

𝑙𝑛µ
12

= 𝑥𝑚1𝑙𝑛µ
1
+ 𝑥𝑚2𝑙𝑛µ

2

(6)

where, 𝑥𝑚𝑖 (𝑖 = 1,2) is the mole fraction and µ𝑖 (𝑖 = 1,2) is the dynamic viscosity

2.5.2 Bingham’s method

This model is a binary blending method that is generally not very accurate for viscosities predictions in

petroleum oil blends, because it was designed for “ideal” solutions. [19]

Steps:

 30

1. Calculate the blend viscosity µ𝟏𝟐 from this formula:

1

µ
12

=
𝑥𝑣1

µ
1

+
𝑥𝑣2

µ
2

(7)

where, 𝑥𝑣𝑖 (𝑖 = 1,2) is the volume fraction and µ𝑖 (𝑖 = 1,2) is the dynamic viscosity.

2.5.3 Kendal & Monroe’s method

This is a binary blending method which use cubic-root average of each fluid to find the blend viscosity

𝜂12 . The downside of Kendal & Monroe’s method, is that their equation doesn’t give satisfactory

accuracy. [18]

Steps:

1. Calculate the blend viscosity 𝜂12 from this formula:

𝜂
12
1/3

= 𝑥𝑤1𝜂1
1/3

+ 𝑥𝑤2𝜂2
1/3

(8)

where, 𝑥𝑤𝑖 (𝑖 = 1,2) is the weight fraction and 𝜂𝑖 (𝑖 = 1,2) is the kinematic viscosity.

2.5.4 Lederer & Roegiers method

This is a binary blending method which was independently created by Lederer & Roegiers. Researches

shows that this method is one of the most accurate equations that use one-parameter. [18]

Steps:

1. Calculate the blend viscosity µ12 from this formula:

𝑙𝑛µ
12

= 𝑙𝑛µ
1
+

𝛼𝑥2

𝑥1 + 𝛼𝑥2
(𝑙𝑛µ

2
− 𝑙𝑛µ

1)

(9)

=
𝑥1

𝑥𝑚1 + 𝛼𝑥2
𝑙𝑛µ

1
+

𝛼𝑥2

𝑥𝑚1 + 𝛼𝑥2
𝑙𝑛µ

2
 (10)

where, 𝑥𝑚𝑖 (𝑖 = 1,2) is the mole fraction and µ𝑖 (𝑖 = 1,2) is the dynamic viscosity, and 𝛼 is the

empirical parameter for the difference cohesion energy between the mixing components.

 31

2.5.5 Grunberg & Nissan’s method

This method is an extension of the Arrhenius method which include an additional term to describe non-

ideality of a system. Grunberg & Nissan’s method is a binary blending method. [18]

Steps:

1. Calculate the blend viscosity µ12 from this formula:

𝑙𝑛µ
12

= 𝑥𝑚1𝑙𝑛µ
1
+ 𝑥𝑚2𝑙𝑛µ

2
+ 𝑎𝑥1𝑥2

(11)

where, 𝑥𝑚𝑖 (𝑖 = 1,2) is the mole fraction, µ𝑖 (𝑖 = 1,2) is the dynamic viscosity, and 𝑎 is the

empirical parameter.

2.5.6 Gambill’s method

Gambill developed a model to estimate the kinematic viscosity of a binary blending. [20]

Steps:

1. Calculate the kinematic viscosity 𝜇𝑘 from this equation:

𝜂𝑘

1
3 = 𝑥𝑚𝑎𝜂𝑘𝑎

1
3 + 𝑥𝑚𝑏𝜂𝑘𝑏

1
3

(12)

where,

𝜂𝑘 = 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝑥𝑚 = 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑎 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1

𝑏 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2

 32

2.5.7 Reid’s method

This method is for binary blending and defines the kinematic viscosity of a mixture consisting of two

components. [21]

Steps:

1. Calculate the kinematic viscosity 𝜂𝑘 from this formula:

𝑙𝑛𝜂𝑘 = 𝑥𝑚𝐴
3 𝑙𝑛𝜂𝑘𝐴

+ 3𝑥𝑚𝐴
2 𝑋𝐵𝑙𝑛𝑣𝐴𝐵 + 3𝑥𝑚𝐴𝑥𝑚𝐵𝑙𝑛𝑣𝐴𝐵 + 𝑥𝑚𝐵

3 𝑙𝑛𝜂𝑘𝐵
+ 𝑅0

(13)

where,

𝑅0 = 𝑥𝑚𝐵
3 𝑙𝑛

𝑀𝐵

𝑀𝐴
+ 3𝑥𝑚𝐴𝑥𝑚𝐵

2 𝑙𝑛
1 +

2𝑀𝐵
𝑀𝐴

3
+ 3𝑥𝑚𝐴

2 𝑋𝐵𝑙𝑛
2 +

𝑀𝐵
𝑀𝐴

3
− 𝑙𝑛𝑥𝑚𝐴 + 𝑥𝐵

𝑀𝐵

𝑀𝐴

(14)

𝑥𝑚 = 𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛,

𝑀 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡

𝑣𝐴𝐵 , 𝑣𝐵𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑠𝑡 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑚𝑒𝑡ℎ𝑜𝑑
𝐴 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1

𝐵 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2

2.5.8 Khan’s method

Khan developed two empirical models with double logarithm to predict viscosity; one linear and one

non-linear model. [21]

Linear:

𝑙𝑛𝑙𝑛(𝜇) = 𝐶1𝑙𝑛𝑇 + 𝐶2

(15)

Non-linear:

𝑙𝑛𝑙𝑛(𝜇) = {1.0 + 𝑏1𝑇 + 𝑏2(𝑏1𝑇)2}𝑒𝑏1𝑇

(16)

where,

𝜇 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 [𝑚𝑃𝑎𝑠]

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[𝐾]

𝐶 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

𝑏 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

 33

2.5.9 Oswal-Desai’s method

This is a binary blending method that is built from the Grunberg-Nissan’s method. Compared to

Grunberg-Nissan’s method, this method adds two additional terms that will improve the accuracy, but

in return make a more complex model due to the extra parameters. [18]

Steps:

1. Calculate the blend viscosity 𝜂12 from this formula:

𝑙𝑛𝜂12 = 𝑥𝑚1𝑙𝑛𝜂1 + 𝑥𝑚2𝑙𝑛𝜂2 + 𝜖𝑥1𝑥2 + 𝐾1𝑥𝑚1𝑥𝑚2(𝑥1 − 𝑥2) + 𝐾2𝑥𝑚1𝑥𝑚2(𝑥𝑚1 − 𝑥𝑚2)
2

(17)

where, 𝑥𝑖 (𝑖 = 1,2) is the mole fraction, 𝜂𝑖 (𝑖 = 1,2) is the dynamic viscosity, 𝜖 is the parameter

for empirical interaction, and 𝐾𝑖(𝑖 = 1,2) is the extra parameters.

2.5.10 Refutas method

This is a binary blending method which are very common used in the petroleum industry. This method

is known for their double-logarithmic in their equation. [18]

Steps:

1. Find the blending index 𝐴𝑖 for each components with this formula:

𝐴𝑖 = 14.534𝑙𝑛[𝑙𝑛(𝜇𝑖 + 0.8)] + 10.975 (𝑖 = 1,2)

(18)

where, 𝜇𝑖 is the kinematic viscosity

2. Find the average viscosity blending index 𝐴12:

𝐴12 = 𝑥1𝐴1 + 𝑥2𝐴2 (19)

where, 𝑥𝑖 (𝑖 = 1,2) is the weight fraction

3. Calculate the blend viscosity 𝜂12:

𝜂
12

= 𝑒𝑥𝑝 [𝑒𝑥𝑝 (
𝐴12 − 10.975

14.534
)] − 0.8

(20)

 34

3 System description for Venturi-rig

This chapter will describe all the setups and the equipment that can be used for experiments. By

reading this chapter, the reader will get an overview of how the experimental data explained later in

chapter 6 was acquired. The Venturi-rig is a test rig that was created in 2013 by a project group

consisting of machine and automation students at HSN. The project was a cooperation between

students from HSN and a company named Statoil. The purpose behind this project was to create a rig

which could be used to test different measurements methods based on fluid circulation in the rig. [22]

3.1 Overview of the system with P&ID

The Figure 20 below gives an P&ID of the sensors, actuators connected to the Venturi-rig and tanks. [23]

Description of a normal circulation process in the rig:

1. The fluid in Tank 1 will be pumped out through Valve 1, and on the way to the feeding tank, it

will pass through sensors that will give information to the operators.

2. The feeding tank is the step where the tank is filled up before the fluid continues to flow through

the Venturi section which has three level sensors installed.

3. The fluid flows back to tank 2 and goes back to tank 1 through valve 3.

A more detailed description of how to use the Venturi-rig, is provided in the Appendix C.

 35

Figure 20: P&ID diagram of the system.

Where,

Sensor Description

Coriolis
promass 801

Three outputs:

 Viscosity

 Density

 Flow

Coriolis
promass 63

Two outputs:

 Density and flow

TT Temperature Transmitter

FT Flow Transmitter

PDT Pressure Differential transmitter

LI Level Indicator

DT900 Gamma sensor

 36

3.2 Functions of the Venturi section
This 3D picture below was created in AutoCAD where the specifications was taken from a bachelor

thesis in 2015 at HSN. [23]

As seen in the picture, there are three level sensors, LT-18, LT-18 and LT-15. It is also possible to adjust

the position of these sensors. The fluid will in this picture flow from right to left before it goes back to

the tank. There is also a throat section below level sensor LT-18. This smaller section will cause a

significant jump which will be registered by sensor LT-18. This information can together with the other

level sensors, be used to calculate the flow rate. [24]

Figure 21: Venturi section with three level sensors

 37

3.3 Sensors used in the Venturi-rig

The sensors that are available in the Venturi-rig will be specified in this subchapter. The subchapter will

mainly focus on the range and the accuracy of the sensors.

3.3.1 Pressure transmitter

This sensor can be used to measure the pressure of gases, vapours and liquids. [23, 25]

Specification Picture

Vendor: Aplisens

Type: PCE-28

Range: 0-7 bar

Accuracy: ±0,1%

3.3.2 Pressure differential transmitter

This sensor can be used to measure the differential pressure of gases, vapours and liquids. [23, 26]

Specification Picture

Vendor: Aplisens

Type: APRE-2000

Range: 0-250 mbar

Accuracy: ±0,1%

 38

3.3.3 Temperature transmitter

This sensor can be used to measure the temperature of gases and liquids. [23, 27]

Specification Picture

Vendor: Aplisens

Type TST41N

Range 0-100 oC

Accuracy ±0,19%

3.3.4 Coriolis flow meter (Promass 63)

This sensor can be used to measure the mass and volume flow of fluids. It has two analog output which

is mass flow and density [24].

Specification Picture

Vendor: Endress & Hausser

Type: Promass 63

Range Massflow: 0-1000 l/min

Density: 900-1600 kg/m3

Accuracy: Liquid: ±0.10%

Gas: ±0.50%

 39

3.3.5 Coriolis flow meter (Promass 801)

This sensor can be used to measure density, viscosity and flowrate [27]

Specification Picture

Vendor: Endress & Hausser

Type: Promass 801

Range Massflow: 0-1000 l/min

Density: 900-1600 kg/m3

Viscosity: 0-200 cP

Accuracy: Liquid: ±0.10%

Gas: ±0.50%

3.3.6 Ultrasonic level sensor
This sensor can be used to measure the level of the fluid in the system. [23, 28]

Specification Picture

Vendor: Rosemount

Type 3107 Level

Range: 0.3-12 m

Power supply: 12…40 V DC

 40

3.3.7 Gamma sensor

This sensor can be used to measure the density of liquids with high speed. [23, 29]

Specification Picture

Vendor: S-TEC

Type: DT-9300

Range: 1-1.7 gm/cc

Accuracy: ±0.2%

3.4 Fluids used in the Venturi-rig

The fluids that will be used for the experimental part in chapter 6, will be described in this subchapter.

The two fluids that will be used consists of water, potassium carbonate and xanthan Gum. The table

below will show the properties of the fluids. [1]

Table 1: The properties of the fluids used in the experiment

 Fluid 1 Fluid 2

Density 1160 kg/m3 1428 kg/m3

pH 11.91 13.68

Characteristic Low density

 High viscosity

 High density

 High viscosity

Recipe Water mixed with

Potassium Carbonate

and Xanthan gum

Water mixed with

Potassium Carbonate

and Xanthan gum

 41

3.5 Empirical model setup

To determine viscosity, the general equation need shear stress and shear rate. In the Venturi-rig, it is

not possible to measure shear rate based on the available sensor systems. However, it is possible to

measure shear stress of incompressible non-Newtonian fluid at any flow regime using the Equation 21,

where D, L, dp and τ are diameter of pipe, length of pipe, pressure drop in the length L, and shear stress

respectively. The differential pressure measurement can be determined using differential pressure

sensor in the Venturi-rig. To develop empirical models, 30 different fluid samples with different density

and viscosity are used. Therefore, the empirical model consists of density of the fluid and shear stress as

inputs and viscosity as output.

𝜏 =
𝐷

4
×

𝑑𝑝

𝐿

(21)

 42

4 Basics of empirical methods used

In this thesis, different data models are studied. This chapter will describe the approaches that is used

to develop data models to estimate the viscosity for non-Newtonian drilling fluid. The methods include

Fuzzy Logic approach, Artificial Neural Network approach and Support Vector Machine.

4.1 Fuzzy logic

Fuzzy logic is a logical tool that can be used to represent arguments that lies between true and false. An

example of a how fuzzy logic can be used, is to think about a glass of water. Where the traditional

Boolean logic (0 or 1) can only describe the glass as either empty (0) or full (1), fuzzy logic can in

addition to the Boolean logic, also determine other possible outcomes like half full (0.5) and almost full.

A fuzzy logic tool can be thought of as a function that receives inputs and give out an output based on

the rules and the membership functions that has been specified in the setup of fuzzy logic. [30]

Figure 22: A block diagram of a type-1 fuzzy logic system with a complete overview of how it works. [30]

Figure 22 shows the block diagram of fuzzy logic implementation. It includes fuzzification, inference

mechanism, rules and defuzzification. Fuzzification is a process of converting crisp inputs into fuzzy

input sets using suitable membership functions. In Fuzzy Logic, a selection of suitable inference

mechanism plays a vital role in the output of fuzzy logic model. In general, there are two types of

inference mechanism; Mamdani inference mechanism and Sugeno inference mechanism. The inference

mechanism is connected to the rules of fuzzy logic. The rules will govern the implementation of fuzzy

logics. Finally, defuzzification converts the fuzzy set values to crisp outputs. [30]

In this thesis, fuzzy logic with Mamdani and Sugeno inference mechanism are studied for viscosity

estimation. For this study, Matlab fuzzy logic toolbox is used. In addition, type-2 fuzzy logic with Sugeno

inference mechanism is analyzed for viscosity modeling. In this analysis, the toolbox developed by

Kumbasar, [31] is used. Figure 23, shows the block diagram of type-2 fuzzy logic system. The only

difference with type-1 fuzzy logic system is the “type-reducer” block in type-2 fuzzy logic system. In

 43

type-2 fuzzy logic system, the membership functions are interval type and need to be reduced during

defuzzification process using type-reducer [31]. There are several types of type-reducer incorporated in

the toolbox developed by Kumbasar, [31].

Figure 23: A block diagram of a type-2 fuzzy logic system with a complete overview of how it works. [31]

4.2 Artificial Neural Network

Artificial Neural Network (ANN) is a pattern recognition method that was inspired by the way human

brain interacts. A neuron is like a living cell in a human’s brain that receives and processes inputs before

it generates an output. By creating a lot of neurons, we have a network that can train computers to

think more like a human. The reason for why it is desired to make the computers operates more like a

human, is due to the fact that there are tasks that are very simple for humans, but not for computers

and opposite. A human can for instance easily distinguish between a cat and a dog, while it would be

more difficult for a computer. [30, 32]

Before implementing a ANN model, the model has to be trained and validated. Without proper training,

the model will have inaccuracy in the outputs. There are different types of training algorithm and the

general process for training the model can be briefly summarized as follows [30];

1. The inputs to the model are connected to neurons in the hidden layer, neurons are connected

to each other in multiple hidden layers and with output layer. Each connection is assigned with a

synaptic weight, which are the model parameters. A bias can be added to each of the neurons in

the network. The weights are updated as the model is trained.

2. The neurons will combine the weight and the inputs together before it moves on to the

activation function where the output of the model will be determined. There exist many

 44

different types of activation functions, so the selection of an activation functions depends on the

specification of the application that the model will be used for. Some common activation

functions are linear function, step function, ramp function and tansigmoid function.

3. The output from the model are compared with target values and the weights of the network are

updated based on the error between model output and target value. For each updated weights,

the error in the model becomes smaller and smaller. This step will be repeated until the error is

within the threshold that has been specified in the training algorithm.

4. The trained model is further validated and tested with validation and testing datasets before

implementing.

Neural network can be broadly divided into two types; feedforward (static) and feedback (dynamic)

[30]. These types will be described in the subchapter below.

4.2.1 Feedforward Artificial Neural Network

A feedforward neural network uses current inputs and outputs to develop the model [30]. It is used for

estimation and classification of static applications. The architecture of the network will always move in

one direction and never backwards as shown in Figure 24.

Figure 24: Architecture of Feedforward Neural Network with two inputs, two neurons and one output. [33]

In order to implement Feedforward ANN, Matlab Neural Network Toolbox is used in this thesis. In

Matlab NN toolbox, there are three different types of learning algorithms;

 45

a) Levenberg-Marquardt learning algorithm: in this learning algorithm, training stops as the

validation error increases as compared to the training error. This algorithm is faster in learning,

but takes more memory. [34]

b) Bayesian Regularization learning algorithm: in this learning algorithm, training stops as per the

minimization of adaptive weights. This algorithm is slow, but can give good result for difficult,

small and noisy datasets. [34]

c) Scaled Conjugate Gradient learning algorithm: this learning algorithm works similar to Levenberg-

Marquardt learning algorithm, but takes less memory. [34]

The simulation study and experimental study using Feedforward ANN is discussed in Chapter 5 and

Chapter 6 respectively.

4.2.2 Feedback Artificial Neural Network

A Feedback ANN uses previous inputs and previous outputs to develop the model. It is used to perform

time-series predictions. Based on the architecture of a network, feedback ANN can either be Partially

Connected Recurrent Neural Network or a fully connected Neural Network. The difference between

these two architecture lies in the feedback loops. Partially Neural Network do not have self-feedback

loops, while Fully Connected Neural Network has it. [35]

4.2.2.1 Partially Connected Recurrent Neural Network

To implement Partially Connected Recurrent NN, Matlab NN toolbox is used in this thesis. The

architecture of Partially Connected Recurrent NN with feedback loops is shown in Figure 25. The

toolbox has a possibility to use three different kinds of networks.

a) Non-linear Input- Output network: in this partially connected recurrent NN, different number of

previous inputs are used to estimate current output.

b) Non-linear Autoregressive: in this partially connected recurrent NN, different number of previous

outputs are used to estimate current output.

c) Non-linear Autoregressive with External Input: in this partially connected recurrent NN, different

numbers of both previous input and output are used to estimate current output.

The learning algorithms for all these partially connected recurrent NN are same as that are used in

feedforward ANN. In this thesis, Non-linear Autoregressive with External Input network is used for the

 46

simulation and experimental analysis of partially connected NN. The simulation study and experimental

study are discussed in Chapter 5 and Chapter 6 respectively.

Figure 25: A simple architecture of Partially Connected Recurrent NN with feedback from the hidden neurons. [30]

4.2.2.2 Fully Connected Recurrent Neural Network

To make a usage of Fully Connect Recurrent Neural Network, a Matlab toolbox was developed under

this thesis work. This toolbox was developed as the existing Matlab NN toolbox doesn’t have a

possibility to use fully connected recurrent NN. A detailed description on how to use this toolbox is

presented in [35] and is attached in the appendix C. Figure 26 shows the architecture of Fully

Connected Recurrent NN that is used in the developed toolbox. The simulation study and experimental

study using Feedforward ANN is discussed in Chapter 5 and Chapter 6 respectively. The developed

toolbox includes three different types of learning algorithms:

a) Back Propagation Through Time (BPTT): it is extension of classical gradient-based

backpropagation algorithm. In this learning algorithm, the feedforward ANN architecture is

unfolded into feedback ANN with different number of folds. This is an offline learning algorithm.

It converges faster and can be complex if the number of fold increases. [33, 35]

b) Real Time Recurrent Learning (RTRL): it is the most accepted online learning algorithm. It is

simple but converges very slow. [33, 35]

c) Extended Kalman Filter Learning (EKF): it is an online learning algorithm. It is the fastest

converging learning algorithm and is complex compared to other learning algorithms. [33, 35]

 47

Figure 26: General architecture of Fully Connected Recurrent Neural Network with feedback loops. [35]

4.3 Support Vector Machine

Support Vector Machine (SVM) is used in different applications like pattern recognition, classification

problems, time-series prediction and regression analysis [33]. The basic idea of SVM is to develop a

mapping between input and output space by transferring the original input space into higher

dimensional feature space using kernel functions [36]. In this thesis, SVM is used in regression mode as

Support Vector Regression (SVR) to solve the regression problem. A general architecture of SVR is

shown in Figure 27. The simulation study and experimental study using Feedforward ANN is discussed in

Chapter 5 and Chapter 6 respectively.

Figure 27: General architecture of Support Vector Regression method showing input space, feature space and output space.

 48

5 Viscosities of sample fluids in empirical models

In this Chapter, all the simulation results from different methods discussed in Chapter 4 are presented.

Simulations are performed in Matlab and LabVIEW software. For the development of different data

models, previously measured dataset is used. The dataset is generated using 30 different drilling fluids

samples with laboratory viscosity measuring device in Statoil [12]. The dataset consists of shear stress,

shear rate and viscosity of 30 different samples. Chhantyal, [12] has used shear stress and density as

inputs and viscosity as outputs for his empirical models. In this work, different empirical models are

tested for the estimation of viscosity. The evaluation of the developed models is done based on the

Mean Absolute Percentage Error (MAPE) criterion.

5.1 Fuzzy logic simulation with fluid samples

Two different types of fuzzy logic approaches are investigated for viscosity estimation. The classical

type-1 fuzzy logic with Mamdani and Sugeno inference and type-2 fuzzy logic with Sugeno inference

mechanism are tested.

5.1.1 Mamdani Inference Mechanism with Type-1 Fuzzy Logic

Figure 28 is a block representation of Fuzzy logic model with Mamdani inference mechanism with shear

stress and density as two inputs, and viscosity as output of the model. Figure 29, Figure 30, and Figure

31 show the membership plot of each variables in the fuzzy logic model. In this modeling, triangular

membership function is selected due to its simplicity. Each variables is represented by the linguistic

variables. The linguistic variables are represented as LL is low-low, L is low, M1 is close to medium, M2 is

medium, H is high, and HH is high-high. In order to compare between the variables, the values of each

variable are normalized to [0,1]. Table 2 shows 20 different rules designed for the estimation of

viscosity based on the shear stress and density measurements in column and rows respectively. The

rules are generated based on the basic principle of non-Newtonian drilling fluids. Based on these rules,

the predictions are plotted against the target values as shown in Figure 32. The model prediction using

the Fuzzy model is capable of identifying the behavior and basic principle of the non-Newtonian fluid.

However, the accuracy of the model is not acceptable. It is also true that the model can be improved a

lot by formulating more rules that can cover different cases. Nevertheless, as rules increases the

complexity of the model increases and might not be applicable to implement in online applications. In

fuzzy logic modeling, the better understanding of system, behavior or dynamics of process can lead to

 49

better model. It is therefore necessary to spend a lot of time and tune the model to map the inputs and

output for better model representation. The optimal number, type of membership functions and the

implementation of suitable rules are biggest challenges while developing fuzzy logic model with

Mamdani inference mechanism.

Figure 28: A block representation of Fuzzy Logic approach with Mamdani inference mechanism. The model consists of two inputs (Shear
stress and Density) and one output (Viscosity).

Figure 29: The membership function plot in Mamdani type-1 fuzzy logic for shear stress with 6 different linguistic values within the range
of [0,1].

 50

Figure 30: The membership function plot in Mamdani type-1 fuzzy logic for density with 5 different linguistic values within the range of
[0,1].

Figure 31: The membership function plot in Mamdani type-1 fuzzy logic for viscosity with 6 different linguistic values within the range of
[0,1].

Table 2: If-then rules of Mamdani type Fuzzy model for viscosity estimations based on shear stress and density measurements.

 51

Figure 32: The target vs. prediction plot using the Mamdani type-1 Fuzzy logic model.

5.1.2 Mamdani Inference Mechanism with Type-2 Fuzzy Logic

Type-2 Fuzzy logic uses interval type membership function that has upper limits and lower limits. The

performance gets better with type-2 fuzzy logic method if the data consist of noise [31]. In this thesis,

type-2 fuzzy logic with Sugeno inference mechanism is used with an intension to improve the fuzzy logic

predictions. The open source toolbox provided by Kumbasar, [31] is used to implement type-2 fuzzy

logic. Figure 33 and Figure 34 show the membership function plot for shear stress and density under

type-2 fuzzy logic system respectively. The new linguistic values are added constructing an interval for

each fuzzy sets. The same rules used in type-1 fuzzy logic model were considered in this model.

However, there was no significant improvement in the model predictions using interval type fuzzy logic

system. It is due to the fact that, type-2 fuzzy logic system can create a significant impact on fuzzy logic

modeling with noisy data. In our case, all the calibration dataset are generated using highly accurate

laboratory measurement system with almost no noise. Similar to type-1 fuzzy logic with Mamdani

inference mechanism, the toolbox developed by Kumbasar, [31] has same limitations. It is difficult to

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Samples

V
is

c
o
s
it
y
[c

P
]

Viscosity Estimation using Mamdani Fuzzy Inference Mechanism

Actual

Prediction

 52

find the optimal number of membership functions, type of membership functions, optimal rules and

need a lot of experience and time to tune the model.

Figure 33: The membership function plot in Mamdani type-2 fuzzy logic for shear stress with 6 different interval type linguistic values
within the range of [0,1].

Figure 34: The membership function plot in Mamdani type-2 fuzzy logic for density with 5 different interval type linguistic values within
the range of [0,1].

5.1.3 Sugeno Inference Mechanism with Type-1 Fuzzy Logic

The calibration data are also used with type-1 fuzzy logic method with Sugeno inference mechanism. In

Sugeno type-1 fuzzy logic, the output linguistic variables are not fuzzy sets. It is either linear or constant.

Sugeno type-1 fuzzy logic has an additional feature called Adaptive Neuro-Fuzzy Inference System

(ANFIS) GUI incorporated in Matlab Fuzzy Logic Toolbox as shown in Figure 35. In ANFIS, it is possible to

import training data set, checking data set, and testing data set. As data sets are imported, it is possible

to generate membership functions for each input variables using grid pattern or clustering approach.

This solves one of the biggest challenges with type-1 Mamdani fuzzy logic. Though a user should define

the number and type of membership function, the tuning of each membership function is automatically

 53

done by ANFIS. Most importantly, it will generate the fuzzy if-then rules automatically as the training is

completed. This shows that type-1 Sugeno fuzzy logic is much easier to tune an optimal parameters and

rules as compared to type-1 Mamdani fuzzy logic. However, the limitation with Sugeno type is the

requirement of datasets. In the cases where dataset is not possible, Mamdani type is better as the

output of Sugeno type is very difficult to tune manually. Figure 36 shows the ANFIS model structure

with 7 membership functions for each inputs and 49 automatically generated if-then rules with

respective outputs. Figure 37 and Figure 38 show the membership function plot for density and shear

stress with the parameters of membership functions automatically generated using ANFIS GUI.

As the model is developed, it is tested using testing set. Figure 39 shows the comparison between

model predictions and target values. It shows that the developed Sugeno type-1 fuzzy logic model is far

better than Mamdani type-1 fuzzy logic model and is very accurate. Figure 40 shows the calibration

results for 5 different samples out of 30 samples. The solid lines with different colors represents the test

data and the characters with same color represents the predictions from the Sugeno type-1 fuzzy logic

model. The calibration results shows the predictions are highly accurate with a MAPE of 2.45%.

Based on the simulation study on viscosity prediction using Fuzzy Logic approach, it can be seen that

Sugeno type-1 fuzzy logic model has the best estimates. Hence, this method is selected to be

implemented in the Venturi-rig for an experimental analysis, which is discussed under Chapter 6.

Table 3: If-then rules of Sugeno type Fuzzy model for viscosity estimations based on shear stress and density measurements.

 54

Figure 35: ANFIS GUI of type-1 Sugeno fuzzy logic with a possibility to import different datasets for automatic tuning of parameters of
membership functions and automatic generation of if-then fuzzy rules.

Figure 36: The Sugeno ANFIS model structure with two inputs having seven membership functions each and with 49 if-then rules and an
output.

 55

Figure 37: The membership function plot in Sugeno type-1 fuzzy logic for density with 7 different interval type linguistic values within the
range of [0,1].

Figure 38: The membership function plot in Sugeno type-1 fuzzy logic for shear stress with 7 different interval type linguistic values within
the range of [0,1].

 56

Figure 39: The target vs. prediction plot using the Sugeno type-1 fuzzy logic model developed using Matlab Fuzzy Logic toolbox with
ANFIS.

Figure 40: The calibration results of 5 different test samples using Sugeno type-1 fuzzy logic model with a MAPE of 2.45%.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Samples

V
is

co
si

ty
[c

P
]

The Sugeno type fuzzy model prediction vs. target viscosity measurement

Actual

Prediction

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Shear rate [1/s]

V
is

c
o
s
it
y

[c
P

]

Calibration of Sugeno type Fuzzy model with MAPE of 2.45 %

Sample-1

Sample-2

Sample-3

Sample-4

Sample-5

PredSample-1

PredSample-2

PredSample-3

PredSample-4

PredSample-5

 57

5.2 ANN simulations with fluid samples

In this section, the simulation results using different types of ANN are discussed. Finally, different model

based on the simulation results are implemented in the Venturi-rig for a practical implementation.

5.2.1 Feedforward ANN for simulations

Feedforward ANN in MATLAB Neural Network toolbox is used to estimate the viscosity of non-

Newtonian fluid. For this, data is uploaded into the toolbox and is divided into training set (70%), test

set (15%) and testing set (15%). After several simulations, the optimal number of neurons is selected as

10 and Bayesian Regularization learning algorithm had best simulation results. Figure 41 shows the

architecture of finally selected feedforward ANN with 10 hidden neurons, tan-sigmoid activation

function in hidden layer and linear activation function in output layer.

Figure 42 shows the performance plot using feedforward ANN. The training stops at epoch 737 with a

Mean Squared Error (MSE) of 74.95 based on the minimization of adaptive weights while learning.

Figure 43 and Figure 44 show the regression plot for feedforward ANN with a correlation (R) between

target and output of different datasets. The correlation values for different datasets are very close to 1,

meaning that target and output from the model are highly correlated to each other. Finally, an optimal

model with highest possible correlation is developed from optimal tuning of neurons and learning

algorithms. Thus obtained model is tested with new testing dataset. Figure 45 shows the target vs.

prediction plot for the new testing data set using the optimal model. The figure shows that the model

predictions are close to the required target values. Figure 46 presents the calibration results for five

different samples out of 30 selected samples. The solid lines in the plot represents the target viscosity

values for five different samples and the characters represents different predictions for respective

samples. It can be seen that the developed static feedforward model is capable of determining the

shear thinning behavior of different visco-plastic fluid samples with MAPE of 8.12%.

 58

Figure 41: Feedforward setup that shows the number of inputs, hidden layers, output layer.

Figure 42: Performance plot of feedforward ANN, where training stops at epoch 737 with best training performance of 74.95 due to
validation error check.

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

10
5

Best Training Performance is 74.9543 at epoch 737

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

833 Epochs

Train

Test

Best

 59

Figure 43: Regression plot for feedforward ANN with the correlation between target and output for training (R=0.98) and testing datasets
(R=0.98).

Figure 44: Regression plot for feedforward ANN with the correlation (R=0.98) between target and output for new test data.

50 100 150 200 250 300

50

100

150

200

250

300

Target

O
ut

pu
t ~

=
1*

Ta
rg

et
 +

 -0
.0

23

: R=0.98907

Data

Fit

Y = T

 60

Figure 45: The target vs. prediction plot using the feedforward ANN model developed using Matlab NN toolbox.

Figure 46: The calibration results of 5 different test samples using feedforward ANN with a MAPE of 8.12%.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Samples

V
is

co
si

ty
[c

P
]

The Feedforward ANN viscosity prediction vs. target viscosity measurement

Target

Prediction

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Shear rate [1/s]

V
is

co
si

ty

[c
P

]

Calibration of Feedforward ANN model with MAPE = 8.117127 %

Sample-1

Sample-2

Sample-3

Sample-4

Sample-5

PredSample-1

PredSample-2

PredSample-3

PredSample-4

PredSample-5

 61

5.2.2 Feedback ANN for simulations

The simulation study is performed to estimate viscosity of non-Newtonian drilling fluid using feedback

ANN.

5.2.2.1 Partially Connected RNN for simulations

For the simulation study of partially connected RNN, dynamic time series tool in Matlab NN toolbox is

used. Among three different types of partially connected RNN, Nonlinear Autoregressive with External

input method is selected for the viscosity estimation. Figure 47 shows the block representation of

partially connected RNN with two main inputs with delays and external input with delays. After several

simulations, the optimal number of neurons is selected to be 8 and the delay in both input and output is

optimally selected to be 2. The simulation results showed best results with Scaled Conjugate Gradient

learning algorithm.

Figure 47: Partially connected RNN setup, which shows the number of inputs, hidden layers, output layer and feedback loops with delays.

Figure 48 shows the performance plot of partially connected RNN with the best validation performance

of 41.775 at epoch 28. In this learning algorithm, the validation error is compared with the training

error. Both validation error and training error keeps on decreasing as learning increases. In case of

validation error increases though the training error decreases, algorithm will count 6 consecutive

increments before it stops the training. In the Figure 48, the training is performed for 34 epochs.

However, the best validation performance is taken from epoch 28 based on the validation check

criterion in this learning algorithm. The validation check criterion is performed to avoid over-fitting of

the model.

 62

Figure 48: Performance plot of partially connected RNN, where training stops at epoch 28 with best training performance of 41.775 due
to validation error check.

Figure 49 shows the regression plot of partially connected RNN for the simulation study of viscosity

estimation. The regression plot shows that the target values and model predictions are highly

correlated to each other. Figure 50 shows the autocorrelation error plot for partially connected RNN. It

is a plot that determines the tuning of a number of neurons. For a specific number of neuron to be

optimal, the correlation error bars at different lag other than zero lag, should be inside the confidence

limit as indicated by red dotted lines. In zero lag, the correlation error bar must be maximum for a

selected neuron to be optimal for that model.

Figure 51 shows the comparison between target values and model predictions for training set,

validation set and test set. It also shows the error between target and model predictions in the error

plot. In the error plot, the difference between the target and model is up to 300 units. This shows that

the model is not that accurate to be reliable for viscosity estimation. This might be because the density

input is constant for varying shear rates for typical fluid samples. However, the partially connected RNN

is a dynamic method that needs a time varying input and output variables.

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Best Validation Performance is 41.775 at epoch 28

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

34 Epochs

Train

Validation

Test

Best

 63

Figure 49: Regression plot for feedback RNN with the correlation between target and output for training (R=0.97), validation (R=0.99) and
testing datasets (R=0.99).

Figure 50: Autocorrelation of error with confidence limit for partially connected RNN.

0 100 200 300

0

50

100

150

200

250

300

350

Target

O
u

tp
u

t
~

=
 0

.9
5

*T
a

rg
e

t
+

 3
.6

Training: R=0.97003

Data

Fit

Y = T

0 100 200 300

0

50

100

150

200

250

300

Target

O
u

tp
u

t
~

=
 0

.9
6

*T
a

rg
e

t
+

 2
.3

Validation: R=0.99473

Data

Fit

Y = T

0 100 200 300

0

50

100

150

200

250

300

Target

O
u

tp
u

t
~

=
 0

.9
4

*T
a

rg
e

t
+

 3
.2

Test: R=0.99459

Data

Fit

Y = T

0 100 200 300

0

50

100

150

200

250

300

350

Target

O
u

tp
u

t
~

=
 0

.9
5

*T
a

rg
e

t
+

 3
.3

All: R=0.97795

Data

Fit

Y = T

-20 -15 -10 -5 0 5 10 15 20
-20

0

20

40

60

80

100

120

140

160

Autocorrelation of Error 1

C
o

rr
e

la
ti

o
n

Lag

Correlations

Zero Correlation

Confidence Limit

 64

Figure 51: a) The target vs. output plot for training set, validation set and test sets in partially connected ANN. b) The error plot showing
error between target and output at each samples.

5.2.2.2 Fully Connected RNN for simulations

To estimate the viscosity of non-Newtonian drilling fluid, fully connected RNN with RTRL learning

algorithm in the developed toolbox [35] is used. Based on the grid search method available in the

developed toolbox, the optimal parameters for viscosity estimation are found as in Table 4. Figure 52

shows the performance plot of fully connected RNN with RTRL learning algorithm. The Mean Squared

Error (MSE) for the training algorithm decreases significantly to very low value. The state plot in Figure

53 shows that the state of randomly chosen five different weights of the network. The state plot shows

that the weight are almost at steady state after 3000 iterations. The regression plot in Figure 54 shows

that the fully connected RNN with RTRL as a learning algorithm is able to predict the target output with

the correlation of 84%. The prediction plot in Figure 55 shows that the model is able to track the

dynamics of non-Newtonian fluid regardless of very high MAPE. This large error in prediction can be

seen in the error plot as shown in Figure 56. With fully connected RNN the highest error unit has been

reduced to 80 as compared to the partially connected RNN. However, the error in the estimation is still

 65

very large and the reason might be the implementation of constant density measurement in the

training dataset.

Table 4: Optimal number of parameters based on the grid search method available in the developed Matlab DANN toolbox.

Parameter Optimal number

Number of epochs 3000

Learning rate 0.1

Number of previous input 1

Number of previous output 2

Number of neurons 9

Figure 52: The performance plot for viscosity estimation using fully connected RNN with RTRL learning algorithm.

0 500 1000 1500 2000 2500 3000
10

-3

10
-2

10
-1

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(m
se

)

Epochs

Mean Squared Error

 66

Figure 53: The state plot for viscosity estimation using fully connected RNN with RTRL learning algorithm.

Figure 54: The regression plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with 84% correlation
between target values and model predictions.

0 500 1000 1500 2000 2500 3000
-25

-20

-15

-10

-5

0

5

10

15

W
ei

g
h

ts

Epochs

State plot for RTRL

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

O
u

tp
u

t
=

 1
.0

0
 *

 T
a
rg

e
t

+
 2

.9
8

Target

Test: R = 0.845127

Data

Y=T

Fit

 67

Figure 55: The prediction plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with MAPE of 31.91%.

Figure 56: The error plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with 80 units of highest error in
the test samples.

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

Samples

O
u

tp
u

t

Actual vs predicted with MAPE of 31.91 %

Actual

Prediction

0 50 100 150 200 250 300 350 400 450
-80

-60

-40

-20

0

20

40

60

80

Error plot

Samples

E
rr

o
r

 68

5.3 SVM simulations with fluid samples

Support Vector Machine in regression mode as SVR is used to estimate the viscosity of non-Newtonian

drilling fluid. For this estimation model, radial basis kernel function with sigma=0.02, punishment factor

of C=0.53 and error toleration of ϵ=0.001 is used. The optimal tuning of these parameters are done

based on the method described in [33]. The prediction plot in Figure 57 shows the comparison between

the target values and the SVR model predictions. The comparison shows that the SVR model is capable

of predicting the viscosity of non-Newtonian model with high accuracy. The calibration plot in Figure 58

shows the calibration results of the SVR model for 5 different test samples with MAPE of 2.70%. Based

on this simulation result, the optimal SVR model is implemented in the Venturi rig for the experiment as

discussed in Chapter 6.

Figure 57: The target vs. prediction plot using the Support Vector Regression model.

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

Samples

V
is

c
o
s
it
y
[c

P
]

The SVR viscosity prediction vs. target viscosity measurement

Target

Prediction

 69

Figure 58: The calibration results of 5 different test samples using Support Vector Regression model with a MAPE of 2.70%.

5.4 Viscosities of fluid samples - classification into groups

 The viscosity of drilling fluid changes while drilling and it can affect the rock cutting transportation

capacity of the drilling fluid. Therefore, it is necessary to measure the viscosity accurately and classify it

for the further process of additive control. In this section, different methods are used to classify the

viscosity of non-Newtonian drilling fluids. For the classification, three different classes are defined as

LessViscos, Viscos and HighViscos. Based on the classification, respective control action can be

considered while adjusting the viscosity in additive control section near the mud tank. For example, if

the current viscosity measurement falls under Viscos class, then there is no need to add any additives.

Whereas, if the current viscosity measurement falls under LessViscos or HighViscos class then the mud

engineer must add additives to increase and decrease the viscosity respectively.

Figure 59, Figure 60 and Figure 61 show the classification of different test samples using Sugeno type-1

fuzzy logic classifier, feedforward ANN classifier and SVM classifier respectively.

10
0

10
1

10
2

10
3

10
1

10
2

10
3

Shear rate [1/s]

V
is

c
o
s
it
y

[c
P

]

Calibration of SVR model with MAPE = 2.709819 %

Sample-1

Sample-2

Sample-3

Sample-4

Sample-5

PredSample-1

PredSample-2

PredSample-3

PredSample-4

PredSample-5

 70

Table 5: Different classifier with the classification error.

Classifier Classification error

Sugeno type-I fuzzy logic classifier 0.59% (4 out of 668)

Feedforward ANN classifier 0%

Support Vector Machine classifier 0.74% (5 out of 668)

Figure 59: The classification of viscosity measurement using Sugeno type-1 fuzzy logic classifier with a misclassification percentage of
0.59%, i.e. 4 samples are misclassified out of 668 test samples.

 71

Figure 60: The classification of viscosity measurement using feedforward ANN classifier with a misclassification percentage of 0%, i.e. no
samples are misclassified out of 668 test samples.

Figure 61: The classification of viscosity measurement using Support Vector Machine classifier with a misclassification percentage of
0.74%, i.e. 5 samples are misclassified out of 668 test samples.

 72

6 Viscosity estimates using different fluids in Venturi-rig

In this chapter, different data models given in Chapter 5 are implemented in conjunction with

experiments on the Venturi-rig. For the implementation, two non-Newtonian model-drilling fluids as

discussed in section 3.4 are used in the experiment. All the data models used in this work has density

and shear stress as inputs and viscosity as output. In Venturi-rig, it is possible to measure density using

Coriolis mass flowmeter or Gamma sensor. However, the dataset used for the calibration of model

assumes constant density for each fluid samples (i.e. incompressible fluid). Therefore, density is kept

constant with changing flowrate for estimating viscosity of non-Newtonian model-drilling fluids. Shear

stress is calculated based on the shear stress equation for incompressible non-Newtonian fluids as

discussed in section 3.5. The differential pressure drop measurements required for shear stress

calculation is done using differential pressure transmitter in the Venturi-rig. Figure 62 and Figure 63

shows the differential pressure measurements with different flowrates for Drilling Fluid-1 and Drilling

Fluid-2 respectively. The differential pressure measurement is very unstable and fluctuates randomly.

The blue dot shows the averaged differential pressure drop at respective flowrates. The error bar at

each flowrate shows the standard deviation of the differential pressure drop at that flowrate. It can be

seen that the standard deviations are almost same throughout the flowrate region for Drilling Fluid-1.

However, the standard deviations for Drilling Fluid-2 are low at the beginning and increases as flow rate

increases. The main reason for the fluctuation of differential pressure measurement is the presence of

bubbles in the drilling fluids. Physically, there exist a lot of bubbles in Drilling Fluid-2 so the differential

pressure drop measurement fluctuates a lot for this fluid. In the case of Drilling Fluid-1, bubbles are not

a main problem for fluctuations. Apart from bubbles, the physical placement of differential pressure

sensor and the vibration in the main flow pipeline affects the differential pressure measurement. The

differential pressure sensor in the Venturi-rig is not placed correctly. There is mechanical bend near to

the impulse line that creates a uniform disturbance to the measurement. In the flow loop, the vibration

of main flowline increases as flowrate increases. This vibration partially affects the impulse line of a

differential pressure sensor and thus affects the differential pressure measurement. These fluctuations

in differential pressure drop measurements will eventually generates fluctuations in viscosity

estimations.

 73

Figure 64 and Figure 65 show the viscosity estimations for Drilling Fluid-1 and Drilling Fluid-2 using five

different data models. In both figures, it can be seen that all the data models are able to predict the

actual behavior of non-Newtonian shear thinning fluids, i.e. the viscosity estimations are decreasing as

the flow rate increases. Further, it can be seen that Sugeno type-1 Fuzzy Logic model, Support Vector

Regression model and feedforward Artificial Neural Network models have similar predictions. It was

clear from the simulation study that these data models had very small MAPE in the predictions.

Therefore, it can be concluded that these models are predicting viscosity with some accuracy. The

range of viscosity predictions for Drilling Fluid-1 and Drilling Fluid-2 are [10, 50] and [30, 100] centipoise

respectively. Partially connected RNN has low predictions for both fluids and the fully connected RNN

has unpredictable predictions. In simulation study, these feedback models had very large MAPE and

were expected to perform worse compared to other three models.

Figure 62: Averaged differential pressure drop measurements for Drilling Fluid-1 with standard deviation at each flowrates.

200 250 300 350 400 450 500 550
4

6

8

10

12

14

16
Differential pressure drop measurement for Driling Fluid-1

Flowrate [kg/min]

D
if
fe

re
n
ti
a
l
p
re

s
s
u
re

 d
ro

p
 w

it
h
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
[m

b
a
r]

 74

Figure 63: Averaged differential pressure drop measurements for Drilling Fluid-2 with standard deviation at each flowrates.

Figure 64: Comparison of viscosity estimations of Drilling Fluid-1 using different data models at different flowrates.

250 300 350 400 450 500
5

6

7

8

9

10

11

12

13
Differential pressure drop measurement for Driling Fluid-2

Flowrate [kg/min]

D
if
fe

re
n
ti
a
l
p
re

s
s
u
re

 d
ro

p
 w

it
h
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
[m

b
a
r]

0 100 200 300 400 500 600
10

20

30

40

50

60

70

80

90

Samples

V
is

c
o
s
it
y
 [

c
P

]

Comparison of viscosity estimations of Drilling Fluid-1 at different flowrates

Sugeno type-1 FL

SVR

Feedforward ANN

Partially Connected RNN

Fully Connected RNN

 75

Figure 65: Comparison of viscosity estimations of Drilling Fluid-2 using different data models at different flowrates.

0 50 100 150 200 250 300 350
20

40

60

80

100

120

140

160

Samples

V
is

c
o
s
it
y
 [

c
P

]

Comparison of viscosity estimations of Drilling Fluid-2 at different flowrates

Sugeno type-1 FL

SVR

Feedforward ANN

Partially Connected RNN

Fully Connected RNN

 76

7 Conclusions

In a drilling operation, drilling fluid is circulated continuously in a close loop while drilling. The main

functions of drilling fluid are the transportation of drilling cuttings, controlling downhole pressure,

maintain wellbore stability, lubrication and cooling of the drilling bit. During circulation, the continuous

monitoring of the fluid properties is very important for safe and efficient drilling operations. The two

most important properties are density and viscosity of the fluid. The density is responsible for

maintaining downhole pressure and wellbore stability, whereas viscosity of the fluid plays a vital role for

the transportation of drilling cuttings and hole cleaning.

In general, drilling fluids are non-Newtonian in nature. In most of the drilling operation, shear thinning

drilling fluids (i.e. viscosity decreases with increase in shear rate) are used. It is because; the viscosity of

the fluid should be low when it is pumped down to the borehole with high flowrate and the viscosity of

the same fluid should be high enough to lift the rock cuttings while flowing upward towards the ground

level.

In drilling operation, the viscosity measurement is carried out using laboratory devices in continuous

interval. In the field, mud engineers use Zahn Cup, March Funnel, Capillary viscometers and Rotational

viscometers for viscosity measurement. In this thesis, different online viscometers found in literature

for measuring viscosity of non-Newtonian fluids are discussed in Chapter 2. To point out some of them,

non-invasive techniques like: Ultrasonic Doppler Velocimetry and Laser Doppler Velocimetry, Flow-viz,

analytical models like: modified Power Law model for turbulent flow are discussed. Apart from viscosity

measurement, literature on viscosity blending mechanism is also performed in Chapter 2. The viscosity

of the fluid changes at each circulation and need to be updated to the reference value. The update is

based on the current viscosity measurement and the required amount of additives. The require amount

of additive is decided using viscosity blending mechanism.

In this thesis, my task is to make different empirical data models to estimate the viscosity of non-

Newtonian fluids at different flowrates. The experiments are performed in the Venturi-rig, available in

University College of Southeast Norway, Porsgrunn. Mainly, the Venturi-rig consists of sensors like:

Coriolis mass flowmeter, Gamma sensor, pressure transmitter, pressure differential transmitter,

temperature transmitter, and ultrasonic level sensors. In the empirical data, the continuous density and

differential pressure measurements are used as inputs to estimate the viscosity of the model-drilling

 77

fluids. Two model-drilling fluids with different density and viscosity is circulated in a close loop and

different developed empirical models are used for viscosity estimation. Different models used in this

thesis are Fuzzy Logic model, Feedforward Artificial Neural Network model (ANN), Feedback Artificial

Neural Network model and Support Vector Regression (SVR) model as discussed in Chapter 4.

The performance analysis of different developed models are done using simulation study and

experimental study. These studies show that all the models are capable of predicting the shear thinning

behavior of non-Newtonian drilling fluids. In simulation study, Sugeno type-1 Fuzzy Logic model,

feedforward ANN and SVR model show very good estimation of viscosity with low value of Mean

Absolute Percentage Error (MAPE) as compared to feedback ANN models. Further, Sugeno type-1 Fuzzy

Logic model, feedforward ANN and Support Vector Machine models as classifiers are developed for the

classification of viscosity in three different regions. The three regions of viscosity are low viscous region,

medium viscous region and high viscous region. The developed classifiers are used to classify the

current viscosity measurement in the correct region and help mud engineers to figure out the type of

additives to be added during blending mechanism.

All the models are implemented in Venturi-rig for the estimation of viscosity of two different model-

drilling fluids circulated at different flowrates. The online viscosity estimation shows that the same three

models; Sugeno type-1 Fuzzy Logic, feedforward ANN and SVR models have similar predictions with

some accuracy. Whereas, the two feedback ANN models have different and non-uniform viscosity

predictions for two fluids.

Based on the simulation and experimental study, it can be seen that the developed empirical models

are capable of estimating the viscosity of non-Newtonian drilling fluids. During simulation study, a

Matlab Neural Network toolbox that can be used to simulate fully connected recurrent Neural Network

is developed and able to publish an article regarding this toolbox.

 78

Future work

The work that has been done in this thesis is only a part of viscosity estimation of non-Newtonian fluid.

Due to the lack of time, there are some topics that I wished I could cover;

1. Do survey on different empirical approaches and compare them with the approaches in this

thesis. Evolutionary Computing seems like an interesting empirical approach that has algorithms

based on Charles Darwin evolution study. [30]

2. The more detail study on blending mechanisms, including blending techniques that are used in

other industries such paint and cement.

3. Implement a blending mechanism system in the Venturi-rig so it is possible to control the

viscosity and density automatically. This can be done by having one additional tank with Xanthan

gum. The control system will then add Xanthan gum if the viscosity is too low and add water if

the viscosity is too high.

4. If possible, get an online viscometer to measure the viscosity accurately and compare it with the

empirical models. In this way, the empirical models will be more accurate and more trustworthy.

5. Improve the DANN toolbox further; make the GUI better, and implement a faster algorithm to

find the optimal tuning parameter for learning algorithms used in the DANN toolbox. The

current optimal method is “grid search” which goes through all possible combination and is

therefore very slow.

 79

References
1. Caenn, R., H.C.H. Darley, and G.R. Gray, Composition and Properties of Drilling and Completion Fluids. 6

ed. 2011, ISBN: 978-0-12-383858-2
2. Geehan, T. and A. McKee. Drilling Mud: Monitoring and Managing It. 2015; Available from:

http://www.slb.com/~/media/Files/resources/oilfield_review/ors89/jul89/4_drilling_mud.pdf.
3. Schlumberger. Oilfield Review Spring. 2013; Available from:

http://www.slb.com/resources/oilfield_review/~/media/Files/resources/oilfield_review/ors13/spr13/d
efining_fluids.ashx.

4. Sciencelearning. Non-Newtonian fluids. 2010; Available from: http://sciencelearn.org.nz/Science-
Stories/Strange-Liquids/Non-Newtonian-fluids.

5. Collyer, A.A., Time independent fluids. 2016, IOPscience.
6. Collyer, A.A., Time dependent fluids. 2016, IOPscience.
7. Brookfield. Dip Viscosity cups, Zahn Type. 2016; Available from:

http://www.viscometers.org/PDF/Manuals/laboratory/Zahn_Cup_M09-407.pdf.
8. Glossary, O. Marsh Funnel. 2016; Available from:

http://www.glossary.oilfield.slb.com/Terms/m/marsh_funnel.aspx.
9. Chhabra, R.P. and J.F. Richardson, NON-NEWTONIAN FLOW AND APPLIED RHEOLOGY. 2 ed. 2008, ISBN:

978-0-7506-8532-0
10. Robinson, G. What is a Capillary Viscometer. 2016; Available from: http://www.wisegeek.com/what-is-

a-capillary-viscometer.htm.
11. Elcometer. Rotational Viscometer. 2016; Available from:

http://www.tecmos.com/carga/empresas/archivos/7dd1730c32c4bae7b973aaeeff7e9279.pdf.
12. Chhantyal, K., et al., Estimating Viscosity of non-Newtonian Fluids using Support Vector Regression

Method. 2015.
13. Signal-processing. Background of Ultrasonic Doppler Velocimetry. 2016; Available from:

http://www.signal-processing.com/intro_udv.html.
14. Velocimetry. LDV - Laser Doppler Velocimetry. 2016; Available from:

http://velocimetry.net/ldv_principles.htm.
15. Carlsen, L.A. and G. Nygaard, Utilizing Instrumented Stand Pipe for Monitoring Drilling Fluid Dynamics

for Improving Automated Drilling Operations. 2012.
16. Trinh, K.T., The wall shear rate in non-Newtonian turbulent pipe flow. 2010. Available from:

https://arxiv.org/ftp/arxiv/papers/1009/1009.3299.pdf.
17. Wiklund, J., Flow-Viz, A new non-invasive, in-line fluid characterization system for non-Newtonian

industrial fluids. 2016, SP Technical Research Institute of Sweden.
18. Zhmud, B., Viscosity Blending Equations. Lube-Tech 2014; Available from: http://www.lube-

media.com/documents/contribute/Lube-Tech093-ViscosityBlendingEquations.pdf.
19. Nelson, M.H.R.W.L., Viscosity Blending Relationships of Heavy Petroleum Oils. 1948.
20. Neutrium, Estimating the viscosity of mixtures. 2016. Available from:

https://neutrium.net/fluid_flow/estimating-the-viscosity-of-mixtures/.
21. Al-Besharah, J.M., et al., Prediction of the viscosity of lubricating oil blends. 1989.
22. Gundersen, E., et al., Open channel mud flow. 2013.
23. Glittum, S., et al., Expansion of test facility for flow measurement on drilling fluid. 2015.
24. Berg, C., et al. Model-based drilling fluid flow rate estimation using Venturi flume. 2015.
25. Aplisens. SMART PRESSURE TRANSMITTER PCE-28.SMART. 2015; Available from:

http://www.aplisens.com/dodatkowe_aplikacje_advertnet/pdf/produkty/PC-28Smart.pdf.
26. Aplisens. SMART DIFFERENTIAL PRESSURE TRANSMITTER APRE-2000. 2015; Available from:

http://www.aplisens.com/dodatkowe_aplikacje_advertnet/pdf/produkty/APR-2000.pdf.
27. Hauser, E. RTD Thermometer omnigrad TST41N. 2015; Available from:

https://portal.endress.com/wa001/dla/5000000/5566/000/00/TI232ten_1198.pdf.

http://www.slb.com/~/media/Files/resources/oilfield_review/ors89/jul89/4_drilling_mud.pdf
http://www.slb.com/resources/oilfield_review/~/media/Files/resources/oilfield_review/ors13/spr13/defining_fluids.ashx
http://www.slb.com/resources/oilfield_review/~/media/Files/resources/oilfield_review/ors13/spr13/defining_fluids.ashx
http://sciencelearn.org.nz/Science-Stories/Strange-Liquids/Non-Newtonian-fluids
http://sciencelearn.org.nz/Science-Stories/Strange-Liquids/Non-Newtonian-fluids
http://www.viscometers.org/PDF/Manuals/laboratory/Zahn_Cup_M09-407.pdf
http://www.glossary.oilfield.slb.com/Terms/m/marsh_funnel.aspx
http://www.wisegeek.com/what-is-a-capillary-viscometer.htm
http://www.wisegeek.com/what-is-a-capillary-viscometer.htm
http://www.tecmos.com/carga/empresas/archivos/7dd1730c32c4bae7b973aaeeff7e9279.pdf
http://www.signal-processing.com/intro_udv.html
http://velocimetry.net/ldv_principles.htm
https://arxiv.org/ftp/arxiv/papers/1009/1009.3299.pdf
http://www.lube-media.com/documents/contribute/Lube-Tech093-ViscosityBlendingEquations.pdf
http://www.lube-media.com/documents/contribute/Lube-Tech093-ViscosityBlendingEquations.pdf
https://neutrium.net/fluid_flow/estimating-the-viscosity-of-mixtures/
http://www.aplisens.com/dodatkowe_aplikacje_advertnet/pdf/produkty/PC-28Smart.pdf
http://www.aplisens.com/dodatkowe_aplikacje_advertnet/pdf/produkty/APR-2000.pdf
https://portal.endress.com/wa001/dla/5000000/5566/000/00/TI232ten_1198.pdf

 80

28. Rosemount. Rosemount Ultrasonic 3107 Level and 3108 Flow Transmitters. 2015; Available from:
http://www2.emersonprocess.com/siteadmincenter/pm%20rosemount%20documents/00825-0200-
4840.pdf.

29. S-TEC. Installation, Operation & Maintenance Manual Density Transmitter DT-9300. 2016.
30. Adeli, N.S.H., COMPUTATIONAL INTELLIGENE, Synergies of fuzzy logic, neural networks and evolutionary

computing. 2013, ISBN: 9781118337844
31. Kumbasar, A.T.T., An Open Source Matlab/Simulink Toolbox for Interval Type-2 Fuzzy Logic Systems.

2015.
32. Shiffman, D. Neural Networks. 2016; Available from: http://natureofcode.com/book/chapter-10-neural-

networks/.
33. Chhantyal, K., et al., Ultrasonic Level Sensors for Flowmetering of non-Newtonian Fluids in Open Venturi

Channels. 2016.
34. Demuth, H. and B. Beale. Neural Network Toolbox User's Guide Copyright. 2004; Available from:

http://www.image.ece.ntua.gr/courses_static/nn/matlab/nnet.pdf.
35. Chhantyal, K., et al., Dynamic Artificial Neural Network (DANN) MATLAB Toolbox for Time Series Analysis

and Prediction. 2016.
36. Haykin, S., Neural Networks and Learning Machines. 2009.

http://www2.emersonprocess.com/siteadmincenter/pm%20rosemount%20documents/00825-0200-4840.pdf
http://www2.emersonprocess.com/siteadmincenter/pm%20rosemount%20documents/00825-0200-4840.pdf
http://natureofcode.com/book/chapter-10-neural-networks/
http://natureofcode.com/book/chapter-10-neural-networks/
http://www.image.ece.ntua.gr/courses_static/nn/matlab/nnet.pdf

 81

Appendix A: Project Abstract and Project Description

MASTER’S THESIS, COURSE CODE FMH606

Student: Minh Hoang

Thesis title: Tuning of viscosity and density of non-Newtonian fluids through mixing process using

multimodal sensors, sensor fusion and models

Signature: .

Number of pages: 156

Keywords: Non-Newtonian Drilling fluid, Viscosity blending mechanism, Venturi-rig, Time-series

measurements, Fuzzy Logic, Neural Network, Support Vector Machine

Supervisor: Saba Mylvaganam Sign.: .

2nd supervisor: Khim Chhantyal Sign.: .

3nd supervisor: Håkon Viumdal Sign.: .

Censor: Sign.: .

External partner: Geir Elseth Sign.: .

Availability: Open

Archive approval (supervisor signature): Sign: . Date:

Abstract:

The different models that were used to estimate the viscosity in this thesis were Fuzzy Logic model, Feedforward Artificial Neural Network

model (ANN), Feedback Artificial Neural Network model and Support Vector Regression (SVR). The performance analysis of these models

were done using simulation study and experimental study. Based on the simulation study, Sugeno type-1 Fuzzy Logic model, feedforward

ANN model and SVR gives very good estimations compared to the feedback ANN models. For the experimental study, the experiments

were done in the Venturi-rig in University College of Southeast Norway, Porsgrunn. The results were very similar to the simulation results,

where the three models; Sugeno type-1 Fuzzy Logic, feedforward ANN and SVR had comparable predictions with some accuracy. Based on

the analysis from simulation and experimental study, it seems that the empirical models that were developed is capable of estimating the

viscosity of non-Newtonian drilling fluids.

University College of Southeast Norway accepts no responsibility for results and conclusions presented in this report.

 82

 83

 84

Appendix B: Publication of Flowrate Estimating Using Ultrasonic Level

Flowrate Estimation using Ultrasonic Level

Sensors using Dynamic Artificial Neural Networks

with Real Time Recurrent Learning – A Comparative

Study of Models and Practical Implementation

Khim Chhantyal, Håkon Viumdal, Minh Hoang,

Saba Mylvaganam,

University College of Southeast Norway

Faculty of Technology

Kjølnes Ring 56, 3918 Porsgrunn, Norway

Geir Elseth

Statoil

Hydrovegen 55, Porsgrunn, Norway

Abstract – Accurate estimation of flow in drilling operations at

inflow and outflow positions can help to increase safety, to

optimize production and help to save money and man-hours, as

unnecessary troubleshooting costs at the drilling site can be

avoided. In this paper, Dynamic Artificial Neural Network

(DANN) is used to estimate the flow rate of non-Newtonian drilling

fluids in an open channel Venturi-rig that can be used for outflow

measurements while determining delta flow, i.e. the difference

between the flow rates into and out of the well. This paper

presents a simple flow estimation method using three

appropriately positioned transducers above the Venturi channel

normally available on drilling platforms. The paper addresses

simulation and experimental studies. Simulation study looks into

fully connected Recurrent Neural Network (RNN) with three

different learning algorithms: Back Propagation Through Time

(BPTT), Real-Time Recurrent Learning (RTRL) and Extended

Kalman Filter (EKF). The simulation results show that BPTT and

EKF algorithms converge very quickly as compared to RTRL.

However, RTRL gives results that are more accurate, is less

complex and computationally fastest among these three

algorithms. Hence, in the experimental study RTRL is chosen as

the learning algorithm for implementing Dynamic Artificial

Neural Network (DANN) for usage in the Venturi-rig based data

fusion. In the Venturi-rig, DANN with RTRL learning algorithm

is compared with previously developed Support Vector

Regression (SVR) and static ANN models to assess their

performance in estimating flow rates. The comparisons show that

the proposed DANN is a most accurate model among three models

as it uses previous inputs and outputs for the estimation of current

output.

Keywords— Drilling operations, open channel Venturi flume,

non-Newtonian fluid, flow rate estimation, ultrasonic level

measurements, Recurrent Neural Network, Real-Time Recurrent

Learning

List of symbols and abbreviations

Symbol Quantity

ANN Artificial Neural Network
BPTT Back Propagation Through Time
CFD Computational Fluid Dynamics
DANN Dynamic Artificial Neural Network

EKF Extended Kalman Filter
n Number of folds
LT Level Transmitter
MAPE Mean Absolute Percentage Error
MSE Mean Squared Error
N Number of neurons
O Order
Pb Bottom hole pressure
Pf Formation pressure
Pff Formation fracture pressure
RNN Recurrent Neural Network
RTRL Real Time Recurrent Learning
SVR Support Vector Regression
t time

I. INTRODUCTION

In drilling operations, the drilling mud is circulated in a
closed loop starting from the mud tank into the wellbore and
back to the mud tank. The mud can be water-based, oil-based or
gas-based and is circulated during the drilling operation, until
the desired depth is reached. During circulation, the properties
of drilling mud have significant importance for the safe and
efficient drilling operation. The viscosity, density, and flow rate
of circulating mud play a vital role, in all the drilling operations,
[1].

In general, drilling muds are non-Newtonian in nature, and
the viscosity of the mud along with other rheological properties
govern the transport of rock cuttings while drilling, [1].

The density or mud weight is mainly responsible for
maintaining the pressure in the wellbore. Depending on the
types of the drilling operation and the reservoir, the wellbore
pressure or bottom-hole pressure (Pb) is limited within the
pressure window given by formation pressure (Pf) and formation
fracture pressure (Pff). If the wellbore pressure is less than the
formation pressure (Pb < Pf), the formation gasses and fluids will
flow into the drilling mud, and is called “kick”. The occurrences
of kick should be detected as early as possible during drilling
operations. If the early kick detection is ignored or is not

 85

detected, it can lead to problems in maintaining the density of
the mud and in the extreme case, it can result in blow-out of
hydrocarbons on the rig, e.g. the Deepwater Horizon explosion,
[2]. In the case of (Pb > Pf), the high pressure circulating fluids
may enter the formation pores, causing fluid losses. If the
wellbore pressure is further increased, beyond the formation
fracture pressure (Pb>Pff), the circulation fluid can fracture the
formation and cause an increased fluid loss, often called “lost
circulation”. The fluid loss will decrease the volume of the mud
in the circulation loop and in the mud tank, and will affect the
production, [1].

A similar situation occurs frequently in geothermal drilling.
In geothermal drilling, one of the costly problems is lost
circulation. that occurs when drilling fluid is lost to the
formation rather than returning to the surface, preferably intact.
The management of lost circulation is important and requires
the accurate measurement of drilling fluid flow rate both into
and out of the well.

Reliable detection of unusual conditions can allow the use of
low weight mud, efficient drilling, less formation damage, and
lead to lower drilling costs. Delta flow method, i.e. the
difference between flows at inflow and outflow points of the
circulation mud, is one of the best methods to detect kick and
fluid loss, which uses the flow measurements before and after
the wellbore, [3-8]. The difference in outflow and inflow
measurements can be used as an indication of unusual
conditions while drilling. If the flow rate before wellbore is less
than the flow rate in the return line, then it can be considered as
an indication of early kick detection. Whereas, if the inflow is
greater than the outflow, it is an early indication of fluid loss. In
addition, the flow rate of circulating fluid will determine the
transportation of rock cuttings. The flow velocity of the
circulation mud is often maintained higher than the settling
velocity of the rock cuttings for efficient transportation of
cuttings. In addition to the delta flow method, other methods of
early kick detection are discussed in [8-12].

In literature [3-8], there are different systems for measuring
delta flow. For inflow measurement, conventional pump stroke
counter, rotatory pump speed counter, magnetic flow meter,
Doppler ultrasonic flow meter or Coriolis mass flowmeter can
be used. For outflow measurement, magnetic flowmeter,
Doppler ultrasonic-based flowmeter, standard paddle meter,
ultrasonic level meter, a prototype rolling float meter or open
channel Venturi flowmeter can be used. The scenario of inflow
and outflow measurement is completely different. For example,
the inflow measurement can be carried out using Coriolis mass
flow meter, more accurate but an expensive flowmeter.
However, Coriolis mass flow meter is not suitable for outflow
measurements as the returning mud contains solid rock cuttings,
other formation particles, formation fluids and gases. An
overview of different flowmeters based on reliability and
accuracy is given in [7]. Based on the analysis in [7], magnetic
flowmeter or Doppler ultrasonic flowmeter are suitable for
inflow measurements and prototype rolling float meters for
outflow measurement. Speers and Gehrig, [4] presents the
implementation of delta flow method by using magnetic
flowmeters at inflow and outflow locations. The magnetic
flowmeter is limited in applications to conductive fluids or to
only water-based muds. In addition, magnetic flowmeters need

some additional U-tube design in the return section. For lower
flow velocity of circulating fluids, the rock cuttings will settle at
the bottom of this U-tube. These problems are avoided in open
channel return line, in which efficient rock cutting transportation
and their easier separation from mud, [5-6].

This paper presents the outflow measurement based on open
channel flow with a Venturi section. In an open channel flow,
the upstream pressure relative to a reference level in the ‘control
section’ of the loop structure can be used to estimate the flow
rate, [13]. The control section used in the flow loop is the
Venturi flume. The flow measurement is based on an extension
of the application of the well-known Venturi principle, to flow
of fluid in an open channel, [14]. The constriction in the Venturi
section results in the transition of flow from subcritical to
supercritical flow in the vicinity of the throat, [15]. For
sufficiently long throat, the critical condition occurs in the
throat, giving the critical depth [16]. The level of the fluid in
upstream is measured as the critical depth is identified. The level
can be measured using ultrasonic or RADAR level sensors and
flow rate can be calculated as a function of measured level.

To study the possibility of using Venturi flume in estimating
flow rate, a flow loop (i.e. Venturi rig) is available in University
College of Southeast Norway (USN), Porsgrunn, Norway. For
this Venturi rig, the CFD simulation study of open channel flow
measurement is investigated in [17]. The numerical algorithm
using Saint Venant equation is presented in [18-19]. However,
the developed numerical model is not applicable for real-time
monitoring and controlling purpose due to the high
computational cost. The study presented in [20] shows the
successful implementation of static Artificial Neural Network
(ANN) and Support Vector Regression (SVR) techniques for
flow measurement in the test loop. The present study is a
continuation, where, Dynamic Artificial Neural Networks
(DANN) are investigated and implemented in the software used
in running, monitoring and controlling the flow loop.

In the following sections, the simulation study of fully
connected Recurrent Neural Network (RNN) with three
different learning algorithms for estimating the flow rate of the
non-Newtonian liquids is presented. Finally, the experimental
results of flow rate estimation using RNN, ANN and SVR are
discussed.

II. Dynamic Artificial Neural Network

ANN can be of the static or dynamic type. Static ANN or
feedforward ANN type uses current inputs and current outputs
whereas, DANN uses current and previous inputs and outputs
for modeling purpose. Further, DANN can be partially
connected RNN or fully connected RNN based on the feedback
loops. Fully connected RNNs have self-feedback loops, and
partially connected RNNs does not have self-feedback loops,
[21].

The delta flow measurement discussed in Section I is a
dynamic problem, where the previous information about the
kick detection and fluid loss is important for the current
measurement. Therefore, fully connected RNN is used for
modeling, the estimation of the flow rate being based on the

 86

level measurements in the open channel Venturi flow loop. For
the estimation of the flow rate, three different learning
algorithms are used. These algorithms are presented here
briefly.

A. Back Propagation Through Time (BPTT)

 BPTT is an extension of gradient-based back propagation
algorithm that is used in static ANN. The idea in BPTT is to
unfold the RNN architecture into feedforward ANN architecture
in an arbitrary number of time steps or folds. These folds make
the error to propagate even further in time, so it is called back
propagation through time. However, the number of folds are
usually low to avoid deep network and this approach is called is
often called truncated BPTT. In general, recurrent weights are
simply duplicated over the folds while unfolding, [22]. The
basic BPTT architecture is shown in Fig. . The computational
complexity of BPTT is of order O(N2) and the storage
requirement is of order O(nN2), where N being number of
neurons and n is the arbitrary number of folds. The drawbacks
of BPTT are; it is an offline learning algorithm and requires
large memory to store state information at different folds, [23].

Fig. 1: A general architecture for Back Propagation Through Time (BPTT)
learning algorithm with ‘N’ number of neurons and ‘n’ numbers of foldings.

B. Real Time Recurrent Learning (RTRL)

RTRL is one of the most used real-time learning algorithms
for RNN. In RTRL, the gradients at time ‘t’ are computed based
on the gradients at previous time steps. The gradient information
is propagated in time, [24-26]. The basic RTRL architecture is
shown in Fig. . The connections with blue color are the
additional self-feedback and feedback connections, which is not
included in static ANN. These additional connections make the
network get previous input values and output values and
consider them as additional internal inputs in the current time.
By doing this, a network can work dynamically. However,
RTRL algorithm suffers from slow convergence, which is
typical for all gradient-based algorithms. Mandic and Chambers,
[25] has presented an RTRL-based learning algorithm with an
adaptive learning rate that can improve the convergence
performance. RTRL further suffers from the large
computational complexity of the order of O(N4) and even
critically with a storage requirement of the order of O(N3), [23].

Fig. 2: A general architecture for Recurrent Neural Network (RNN) with self-
feedback and feedback loops from neurons.

C. Extended Kalman Filter Learning (EKF)

EKF is a recursive algorithm that computes state estimations
based on the previous state information at the current time, [27].
EKF can be used as a supervised on-line learning algorithm to
determine the weights of an RNN. In EKF learning algorithm,
the state vector consists of weights and the locally induced
outputs of each neuron in the network. Regarding convergence
to a solution, EKF is very fast compared to BPTT and RTRL.
The order of computational complexity for EKF is same as
RTRL, O(N4), and the storage requirement increases to the order
of O(N4) for EKF. The RTRL algorithm is identical to the
simplified EKF algorithm, and the architecture is the same, [23].

III. Experimental Set-up

 To develop RNN models, model-drilling fluid is circulated
in the flow loop. The circulated fluid is visco-plastic in nature
with the fluid properties of density at 1136 kg/m3 and a viscosity
ranging from 23–180 [centipoise] for the 500–1 [s-1] shear rate.
Recent study shows that the level measurements at the throat
(LT-18), the level of the downstream (LT-17) and the level of
the upstream (LT-15) are highly correlated to flow rate, [20].
Therefore, these variables are considered for modeling and are
given in Table. 1 and some concurrent measurements from these
three ultrasonic sensors are shown in Fig. 3, along with
simultaneous measurements of flow from a Coriolis meter. Fig.
4 shows the open channel section of flow rig with a Venturi
constriction and three ultrasonic level sensors. All the three
different levels measured using the ultrasonic sensors are used
in the three models discussed above. The mass flow
measurement is performed using Coriolis mass flow meter and
is considered as a reference for RNN models.

For the mass flow rate range of 250-500 [kg/min], 1800 data
samples for each variable are measured. The data samples are
normalized in the range of (0-1). Out of 1800 normalized data
samples, 70%, 15% and 15% of data are selected as training,
validation, and test sets respectively.

 87

Fig. 3: Input and output variables used for developing RNN models. First plot
shows three level measurements with LT-15, LT-17 and LT-18. Second plot
shows flowrate measurement using Coriolis mass flowmeter

Fig. 4: a) An open channel with Venturi section and three level sensors, LT-15,
LT-17 and LT-18, with an arrow showing a flow direction. (b) Extremely
simplified P&ID for the Venturi-rig flow loop with the measurands used in this
study, viz. ultrasonic level sensors and FT-Coriolis mass flowmeter.

TABLE. 1: INPUT AND OUTPUT VARIABLES USED FOR DEVELOPING RNN

MODELS WITH THE RANGE AND VARIABLE TYPE.

Variables Range Units Type

Upstream level measurement 31.2 - 107.5 mm Input

Level measurement at the throat 28.9 - 78.3 mm Input

Downstream level measurement 44.3 – 106.6 mm Input

Mass flow rate 250 - 500 kg/min Output

IV. Results

This paper presents results from both simulations based on

the three models and practical implementation of RNN for flow

rate measurement in an open channel flow loop.

A. Simulation study

RNN is implemented using all the three learning algorithms

discussed in Section II. Table. 2 shows the optimal parameters

used in the simulations. These optimal parameters are

determined using grid search method and the optimization is

done using Mean Absolute Percentage Error (MAPE). Apart

from these parameters, number of neurons selected is 7, learning

rate is 0.1 and number of folds for BPTT is 7.

Fig. 5 shows the comparison of RNN with different

algorithms. As discussed in Section II, EKF learning algorithm

can quickly converge to a solution. From Fig. 5 showing the

MSE, it can be seen that EKF converges well before 20 epochs,

BPTT converges around 100 epochs, and RTRL takes around

300 epochs to converge. The converging efficiency of these

algorithms can be observed using the state parameters, which

are weights of the neural network. Fig. 6 shows the states of

some of the weights while training a network. The state

representation shows that the states in EKF and BPTT

algorithms go to steady state very quickly. However, RTRL

needs numerous training epochs for achieving steady states.

Fig. 7 shows the estimations of different learning algorithms

with reference to flow measurements from Coriolis mass

flowmeter. The simulation results show that all the models using

different learning algorithms are capable of describing the

dynamics of the reference flow measurements well. RTRL has

minimum MAPE out of the three models used, as shown in

Table. 2.

TABLE. 2: OPTIMAL PARAMETERS FOR DIFFERENT LEARNING ALGORITHMS

Learning

algorithms

Epochs Number

of

previous

inputs

Number

of

previous

outputs

MAPE

[%]

BPTT 200 1 3 2.97

RTRL 500 4 4 2.55

EKF 20 4 4 3.70

(b)

(a)

 88

Fig. 5: Mean Squared Error (MSE) plot for three different learning algorithms
in RNN. Simulation results.

Fig. 6 Different weights of the network in a state plot illustrating the
convergence of the learning algorithms. Simulation results.

Fig. 7: Comparison of flow rate estimation of Recurrent Neural Network (RNN)
with three different learning algorithms with respect to Coriolis mass flow
measurement as a reference measurement. Simulation results.

B. Experimental study

The experimental study involves the implementation of

simulation study in the Venturi rig. Despite slow convergence,

RNN with RTRL learning algorithm is selected for its accuracy,

less complexity, and faster computation. The algorithms for both

BPTT and EKF have complex architectures and they are

computationally demanding. This makes RTRL a suitable

choice for implementing in the Venturi rig for the flow

estimation. Fig. 8 shows the experimental results obtained using

model-drilling fluid in the test Venturi rig. The flow rate

estimation using RNN is compared with the estimation

previously made using static ANN and SVR. The comparison

shows that RNN has better performance than other empirical

models. The MAPE for RNN, ANN and SVR are 5.6%, 8.5%,

and 7.7% respectively.

0 100 200 300 400 500 600
200

250

300

350

400

450

500

550

600

Samples

F
lo

w
r
a
te

 [
k
g

/m
in

]

Comparison of flowrate estimations with the reference measurements in the Venturi rig

Reference

RNN

SVR

Static ANN

 89

Fig. 8: Comparison of flow rate estimations of a Dynamic Artificial Neural

Network with Real Time Recurrent Learning algorithm (MAPE of 5.6%), a static

Artificial Neural Network model (MAPE of 8.5%) and a Support Vector

Regression model (MAPE of 7.7%) with respect to the Coriolis mass flow

measurement as a reference flow measurement. Based on experiments using

the Venturi-rig.

For the future work, we will try to improve the sensor

measurements using suitable signal processing. As shown in

Fig. 3, the output mass flowrate using Coriolis mass flowmeter

is less noisy as compared to the three input level measurements.

Since the model completely depends on the data, we will work

on online signal processing of level sensor measurements to

reduce the noise in the measurements. In Fig. 7 and Fig. 8, we

can see discontinuous peaks in the predictions of all the

empirical models. By implementing these three models as an

integral part of the processing algorithms (signal and control),

we believe that our model can be trained and operated with less

noisy data resulting in improved predictions.

V. Conclusion

One way of having safe and efficient drilling operation is by

continuously monitoring the properties of drilling mud. Any

unwanted change in fluid properties can lead to two main

problems; the influx of formation fluid and circulation fluid loss.

The delta flow measurement while drilling is one of the best

methods to detect the early influx or early fluid loss. In this

paper, we introduced dynamic Artificial Neural Network to

estimate the flow rate of non-Newtonian drilling fluids in an

open channel venturi flume, which can be used for outflow

measurement while determining delta flow. With Recurrent

Neural Network, we simulated three different learning

algorithms; Back Propagation Through Time, Real-Time

Recurrent Learning and Extended Kalman Filter algorithm. The

simulation results show that BPTT and EKF converge very

quickly as compared to RTRL algorithms. Whereas, RTRL

algorithm is more accurate, less complex and computationally

faster than other two algorithms. So, based on this simulation

analysis, RNN with RTRL algorithm is selected for the practical

implementation. In the Venturi rig, RNN model with RTRL is

implemented along with static ANN and Support Vector

Regression (SVR) models. The experimental estimations of

flow rates with respect to reference flow rate using Coriolis mass

flowmeter show that the estimates based on RNN model has

higher accuracy compared to ANN and SVR models. This

improved performnce is due to the fact that RNN contains

previous inputs and outputs as additional inputs for the

current time, which are not considered in static ANN and

SVR models.

Acknowledgment

The Ministry of Education and Research of the Norwegian

Government is funding Khim Chhantyal’s PhD studies at

University College of Southeast Norway (USN). The authors at

USN appreciate the collaboration with and support from

STATOIL for the assembly and commissioning of the open

channel Venturi-rig with the various sensors and control system

dedicated to the studies related to non-Newtonian fluids. In

addition, we acknowledge the practical work done by various

groups of bachelor and master students of USN in conjunction

with this project.

References

[1] R. Caenn, H. C. H. Darley, G. R. Gray, “Composition and properties of
drilling and completion fluids,” 6th ed., ISBN: 978-0-12-383858-2,
Waltham, USA: Gulf professional publishing, 2012, p.7-16.

[2] S. Hauge, K. Øien, “Deepwater Horizon: Lessons learned for the
Norwegian Petroleum Industry with focus on Technical Aspects,”
Chemical Engineering transactions, vol. 26, 2012, pp. 621–626.

[3] L. D. Maus, J. D. Tannich, W. T. Ilfrey, “Instrumentation requirements
for kick detection in deep water,” in Offshore technology conference,
Houston, Texas, 1978.

[4] J. M. Speers, G. F.Gehrig, “Delta flow: an accurate, reliable system for
detecting kicks and loss of circulation during drilling,” in SPE Drilling
Engineering, 1987.

[5] J.J. Orban, K.J. Zanner, A.E. Orban, Anadrill/ Schlumberger, “New
flowmeters for kick and loss detection druing drilling,” in 62nd Annual
Technical Conference and Exhibition of the Society of Petroleum
Engineers, Dallas, 1987.

[6] J.J. Orban, K.J. Zanner, Anadrill/ Schlumberger, “Accurate flow-out
measurements for kick detection, actual response to controlled gas
influxes,” in IADC/SPE Drilling Conference, Dallas, Texas, 1988.

[7] D. M. Schafer, G. E. Loeppke, D. A. Glowka, D. D. Scott, E. K. Wright, “An
evaluation of flowmeters for the detection of kicks and lost circulation
during drilling,” in SPE/IADC drilling conference, New Orleans,
Louisiana, 1992.

[8] M. Kamyab, S. R. Shadizadeh, H. Jazayeri-rad, N. Dinarvand, “Early kick
detection using real time data analysis with dynamic neural network: a
case study in Iranian oil fields,” in Nigeria annual international
conference and exhibition, Tinapa-Calabar, Nigeria, 2010.

[9] I. Mills, D. Reitsma, Z. Tarique, “Simulator and the first field test results
of an utomated early kick detection system that uses standpipe
pressure and annular discharge pressure,” in SPEC/IADC managed
pressure drilling and underbalanced operations conference and
exhibition, Milan, Italy, 2012.

[10] T. H. Ali et al., “Automated alarms for smart flowback fingerprinting and
early kick detection,” in SPE/IADC drilling conference, Amsterdam,
Netherland, 2013.

[11] B. Patel, T. Cooper, W. Billings, “The application of advanced gas
extraction and analysis system complements early kick detection &
control capabilities of managed pressure drilling system with added HSE
value,” in SPE/IADC drilling conference, Amsterdam, Netherland, 2013.

[12] A. K. Vajargah, S. Z. Miska, M. Yu. M. E. Ozbayoglu, R. Majidi, “Feasibility
study of applying intelligent drill pipe in early detection of gas influx
during conventional drilling,” in SPE/IADC drilling conference,
Amsterdam, Netherland, 2013.

[13] F. M. White, “Fluid mechanics,” WCB McGraw-Hill, 2002, p. 659–708.

[14] M. Skorpik, “Flow measurement options for pipeline and open channel
flow,” in 2013 Workshop, Montana association of dam and canal
systems conference (MADCS).

[15] F. Frenzel et al., “Industrial flow measurement basics and practice,” ABB
automation products Gmbh, 2011.

[16] G. Gerätebau “Equipment for engineering education, intruction manual
HM 162.51 venturi flume, ” Germany, 2003.

 90

[17] C. Berg, M. Anjana, C. E. Agu, C. Khim, F. Mohammadi, “Simulatioin of
open channel flow for mass flow measurement,” University of South
East Norway, Norway, 2013.

[18] C. E. Agu, B. Lie, “Numerical solution of the Saint Venant equation for
non-Newtonian fluid,” in Proceedings from the 55th conference on
simulation and modelling (SIMS 55), Aalborg, Denmark, 2014.

[19] C. E. Agu, B. Lie, “Smart sensors for measuring fluid flow using a venturi
channel,” in Proceedings from the 55th conference on simulation and
modelling (SIMS 55), Aalborg, Denmark, 2014.

[20] K. Chhantyal, H. Viumdal, S. Mylvaganam, G. Elseth, “Ultrasonic level
sensors for flowmetering of non-Newtonian fluids in open venturi
channels,” IEEE Sensors Applications Symposium (SAS), Catania, Italy,
2016.

[21] E. O. Dijk, “Analysis of Recurrent Neural Networks with application to
speaker independent phoneme recognition,” University Twente,
Enschede, The Netherlands, 1999.

[22] M. Boden, “A guide to Recurrent Neural Network and
backpropagation,” Halmstad University, Sweden, 2001.

[23] R. J. Williams, “Some observations on the use of the Extended Kalman

Filter as a Recurrent Network Learning algorithm,” College of Computer
Science, Northeastern University, Boston, 1992.

[24] M. W. Mak, K. W. Ku, Y. L. Lu, “On the improvement of the real time
recurrent learning algorithm for Recurrent Neural Networks,” in
Neurocomputing, vol. 24, Elsevier, 1999, p.13-36.

[25] D. P. Mandic, J. A. Chambers, “A normalised real time recurrent learning
algorithm,” in Signal Processing, vol. 80, Elsevier, 2000, p.1909-1916.

[26] D. B. Budik, “A resouce efficient localized Recurrent Neural Network
architecture and learning algorithm,” University of Tennessee, USA,
2006.

[27] P. Kim, “Kalman filter for beginners,” ISBN-13:978-1463648350,
CreateSpace Independent Publishing Platform, 2011.

 91

Appendix C: Dynamic Neural Network Toolbox - Tutorial

Dynamic Artificial Neural Network (DANN) MATLAB

Toolbox – Tutorial

Khim Chhantyal

Minh Hoang

2016

 92

C.1 How to install the toolbox

The first step in installing the toolbox is to download the installation file that can be found in

this link. After downloaded, follow the steps below to complete the installation.

Steps Picture

Double click on the

MATLAB App Installer

“Dynamic Network”

Click on “Install”

In Matlab, go to the tab

“APPS”

Click on the arrow “↓” to

see more options

https://drive.google.com/folderview?id=0B-iEO1hrjt-Scl9YdGlvOU5sdHM&usp=drive_web

 93

Click on “Dynamic

Network”

The toolbox is now ready to

use.

 94

C.2 General information

For first time users, it is recommended to take a look on this section.

C.2.1 Help

This section describes how you can get more information if you have some questions or

problems related to the toolbox.

C.2.2 Right click:

If there are some words or expressions in the toolbox that you are not sure about, you can

right-click on the word to get a pop-up description message.

Description Picture

Let say you want to know more about

what “Learning Rate” is.

Hover your mouse over the text and

right click. A textbox with explanation

will appear.

Do this for all the expression you want

to know more about.

 95

C.2.3 Q&A section:

For common questions and answers related to the toolbox. You’re are welcome to check out

the “Help windows”. The instructions below will show how you get to the “Help Window”.

Descriptions Picture

At the top left corner, click on “Info” and

then on “Help”

The “Help” window will appear and you

can click on the question that you are

interested in.

If you can’t find your question, feel free

to send us an email. Click on the

question “How can I contact you if I

have some questions” to get more

information.

C.3 Functions in DANN toolbox

All the functions in the toolbox will be specified below. There will be given examples of how to

use and interpret the results from each functions.

C.3.1. How to use DANN

Description Picture

 96

On the Startpage,

click on “Go to

FRNN”.

A new window “RNN” will appear. Follow these procedures.

1. You can choose to keep the default parameters or change it.

2. Select your learning algorithm, and choose if you want to have validation check and

bias on or not.

 97

3. Import the data file. Remember that the imported file must be a Matlab file with the

variable name “Data”.

4. (Optional) Hit the “Tuning” button to find the optimal parameters based on grid search

method.

5. Hit the “Train” button to start training the model.

C.3.1.1 Tuning (Optional)

In any implementation of Artificial Neural Network (ANN), tuning of parameters is one of the

biggest challenges. This DANN MATLAB toolbox provides a facility to tune the parameters

optimally.

Description

1. Assign lower limit, higher limit and an increment to each parameter

 98

2. (Optional), check on “Notification Alarm” if you want the program to play a sound when

the tuning is finished.

3. Hit the “Tune” button to start tuning with the parameters specified.

4. When the tuning is finished, the optimal parameters will be displayed in this panel.

C.3.1.2 Train

After you finished training your model, the program will show a Plot Menu where you can

choose the option you want to have a closer look at. The options will be described below.

Description Picture

Plot Menu

The GUI that let the user

select what to see after the

training is finished.

 99

Performance

It shows the MSE for

training data set and

validation error for each

epoch.

Regression

It compares the target

output and model

prediction in terms of

squared correlation

coefficient such that ‘0’

meaning not related at all

and ‘1’ meaning highly

correlated to each other.

 100

Prediction

It shows the test data and

model prediction with

MAPE between them.

Parameter:

It shows the states of five

different randomly chosen

weights at different

epochs. The analysis using

parameter plot is very

efficient if you are working

with some system

identification problems. In

that case, one can

visualize how the weights

change with epochs. The

steady state values of the

weights after some

epochs are the model

parameters in typical

system identification

problems.

 101

Error

It shows the error

between the target value

and the model prediction

for each test samples.

C.3.2 Where is the data saved?

For each time you train your model, the data is saved in Matlab as a struct variable name “net”.

If you want to see the data or save it, then follow the steps below.

Steps Picture

After your model is trained, a struct

named “net” is created in the

workspace.

If you want to save this data so you

can have a look at this later.

Right-click on “net” and click on

“Save As…”

 102

If you only want to have a look at

the data, then double click on “net”

and a new window with all the data

will appear.

 103

C.4 Publication on DANN toolbox

This paper on DANN toolbox is accepted for EUROSIM 2016, 12-16 September, Oulu, Finland,

“The 9th Eurosim Congress on Modelling and Simulation”.

Dynamic Artificial Neural Network (DANN)

MATLAB Toolbox for Time Series Analysis

and Prediction

Khim Chhantyal, Minh Hoang, Håkon Viumdal, Saba Mylvaganam

University College of Southeast Norway

Faculty of Technology

Kjølnes Ring 56, 3918 Porsgrunn, Norway

Abstract – MATLAB® Neural Network (NN) Toolbox can

handle both static and dynamic neural networks. To use this

MATLAB® NN Toolbox, in cases where recurrent neural

networks occur is not straight forward. We present a Dynamic

Artificial Neural Network (DANN) MATLAB toolbox capable of

handling fully connected neural networks for time-series analysis

and predictions. Three different learning algorithms are

incorporated in the MATLAB DANN toolbox: Back Propagation

Through Time (BPTT) an offline learning algorithm and two

online learning algorithms; Real Time Recurrent Learning

(RTRL) and Extended Kalman Filter (EKF). In contrast to

existing MATLAB® NN Toolbox, the presented MATLAB DANN

toolbox has a possibility to perform the optimal tuning of network

parameters using grid search method.

Three different cases are used for testing three different

learning algorithms. The simulation studies confirm that the

developed MATLAB DANN toolbox can be easily used in time-

series prediction applications successfully. Some of the essential

features of the learning algorithms are seen in the graphical user

interfaces discussed in the paper. In addition, installation guide for

the MATLAB DANN toolbox is also given.

Keywords— Dynamic Artificial Neural Network (DANN), Back

Propagation Through Time (BPTT), Real-Time Recurrent Learning

(RTRL), Extended Kalman Filter (EKF), time series.

I. INTRODUCTION

Artificial Neural Networks (ANN) are computational

models consisting of many neurons in different layers with

varying degrees of interconnections between them. The

interconnection have weights assigned to them so that the ANNs

can be tuned thus enabling them to learn and adapt. Feedforward

or feedback networks are two broad classifications of ANNs.

Feedforward ANNs use current inputs and current outputs,

whereas, feedback ANNs use current and previous inputs and

outputs. Feedback ANN performs time-series predictions and is

a dynamic network. This type of network constitutes recurrent

neural networks (RNN) either partially or fully connected

depending on the extent of the feedback loops available in the

network. Fully connected RNNs have interconnected feedback

loops including self-feedback loops, whereas partially

connected RNNs do not have self-feedback loops, [1-2].

 In an existing MATLAB® Neural Network Toolbox,

there is a possibility to use feedforward ANN for static

estimations and partially connected RNN for time-series

predictions. This paper presents a MATLAB toolbox that can

perform the empirical modeling using fully connected RNNs

with three different learning algorithms. The following sections

present the overview of the developed toolbox and the usage of

the toolbox in three different practical applications.

II. OVERVIEW OF TOOLBOX

The developed Dynamic Artificial Neural Network (DANN)

toolbox consists of three main user interfaces, which are DANN

Menu, Parameter Tuning, and Plot Menu. Each window consists

of different elements as given below.

A. DANN Main

 DANN Main is the main window of MATLAB DANN toolbox

as shown in Fig. 1. In this window, the user can upload the data

set, divide data sets, select validation check, include bias, select

learning algorithm, define learning parameters, select the

number of previous inputs and outputs, and finally train the

model.

 1) Uploading data set: A user needs to upload his/her data

set to train the model using MATLAB DANN toolbox. The

format of the data set should be in ‘.mat’ and each column should

 104

represent the variables in the model, where the last column is an

output variable.

2) Division of data set: The uploaded data set should be

divided into a training set, validation set, and testing set. A user

can choose the percentage of data for training, validation and

testing. Experience shows that 70% for the training set, 15% for

both validation and testing works fine for any learning

algorithms.

3) Validation check: A validation check is an option that

prevents the over-fitting of the network. Over-fitting and under-

fitting are most common problems encountered while dealing

with data models. Under-fitting can be improved by either

tuning the learning rate or increasing the number of neurons in

the network. The concept of over-fitting in MATLAB DANN

toolbox is similar to the concept used in NN Toolbox in

MATLAB®, [2]. The main idea is to terminate the RNN before

the network gets over-fitted. For early stop, Mean Squared Error

(MSE) for both training and validation is continuously

monitored. While training a network, learning algorithm builds

a certain hypothetical model for the network at each epoch.

Fig. 9: DANN Menu of MATLAB DANN toolbox with the possibility to upload data, data division, selecting learning algorithms, tuning learning parameters, and

training the algorithm.

 105

The validation data are validated using the hypothetical

model at that particular epoch. While learning, the value of

MSE of training and validation data keep on reducing and

the training of the network gets better with increasing

epoch. However, the validation error can increase though

the error for training decreases, which occurs in cases of

over-fitting. The increase in validation error can be due to

some randomness in the training process. Therefore, the

MATLAB DANN toolbox will count six consecutive

increments in the validation error before it stops the learning

algorithm.

When the model is over-fitted, the trained model seems to

have good performance with training data, but it can have a

large error while testing with the new data set. In other

words, the trained model is not a generalized model when it

is over-fitted. The implementation of validation check is

presented in Case II in Section III. In case, if the validation

check is not selected, validation data will be part of the

training data set.

4) Bias: It is an offset value added to the output of the

neurons. It is often important to include bias in each neuron

while constructing a neural network model. MATLAB

DANN toolbox facilitates a choice to include or exclude

bias terms in the network.

5) Learning algorithm: In this toolbox, there are three

learning algorithms. The user can select any one of these

algorithms based on the requirements regarding

complexity, accuracy and application.

a) Back Propagation Through Time (BPTT): BPTT

is an extension of gradient-based backpropagation

algorithm that is used in feedforward ANN. The idea in

BPTT is to unfold the RNN architecture into feedforward

ANN architecture using an arbitrary number of folds. The

BPTT architecture for the neural network with two neurons

is shown in Fig. 2. The network with BPTT algorithm is less

complex compared to other learning algorithms. However,

the complexity and the memory requirement increase when

the number of folds increases. [3]

Fig. 2: Architecture for Back Propagation Through Time (BPTT) learning

algorithm with two neurons and ‘n’ numbers of folding. [4]

b) Real Time Recurrent Learning (RTRL): RTRL is one

of most accepted real-time learning algorithms for RNN. In

RTRL, the gradients at time ‘t’ are computed using the

propagation of gradients at previous time steps, [5-7]. The

underlying RTRL architecture is shown in Fig. 3, where x,

y, N and d are inputs, outputs, number of neurons and unit

time delay respectively. Based on the complexity, RTRL is

the simplest online learning algorithm. However, the

algorithm converges slowly and requires large memory for

storage. [3]

Fig. 3: A general architecture for Real Time Recurrent Learning (RTRL)

and Extended Kalman Filter (EKF) learning algorithms showing self-

feedback and feedback loops within the neurons.

c) Extended Kalman Filter Learning (EKF): EKF

can be used as a supervised on-line learning algorithm to

tune the weights of RNN. In EKF, the state vector consists

of weights and the locally induced outputs of each neuron

in the network. Regarding convergence, EKF is the fastest

algorithm among the algorithms presented in the MATLAB

DANN toolbox. The order of computational complexity for

EKF is the same as for RTRL, and the storage requirement

is larger for EKF. The general architecture for EKF learning

is shown in Fig. 3. [3]

6) Learning parameters: The parameters of learning

algorithms such as the number of neurons, learning rate, the

maximum number of epochs and number of folds are

discussed in this section.

a) Number of neurons: The neurons and the

connections between the neurons are essential features of a

neural network. The number of neurons plays a vital role in

the performance of the neural network. Too few neurons

may not completely describe the dynamics of the system,

and too many neurons can increase the complexity of the

network. Therefore, an optimal selection of a number of a

neuron is one of the most important aspects of neural

network modeling. In MATLAB DANN toolbox, each

neuron is associated with the sigmoid function with

the range [0, 1].

b) Learning rate: The learning rate determines the

rate of learning of gradient-based learning algorithms like

BPTT and RTRL. The range of learning rate is [0, 1] and

determines the converging efficiency while learning. The

very small value of learning rate will slow down the

learning algorithm and may require a large number of

 106

epochs to converge to a solution. Whereas the high value of

learning rate can converge quickly, but it might have large

variations and fluctuations in MSE of a training data.

c) Maximum number of the epoch: In MATLAB

DANN toolbox, there are two stopping criterions. One of

them is validation check, which is already discussed.

Another way of stopping the training is the maximum

number of epochs. A user can select a maximum number

of epochs for the training using DANN Menu.

d) Number of folds: The number of folds is a

parameter for BPTT learning. The default selection is ‘3’,

which is the minimum possible value that can be selected

for a given number of folds.

7) Past inputs and outputs: In applications involving

prediction of time-series, the current output depends on the

previous inputs and outputs. MATLAB DANN toolbox

allows a user to select a number of previous inputs and

previous outputs as additional inputs to find the output at

the current time. By default, if the values are selected as ‘0’

for both input and output, MATLAB DANN toolbox will

use one previous output from each neuron.

8) Additional parameters: In EKF learning algorithm, a

user must assign three more parameters for learning, which

are Sigma_U, Sigma_W, and Sigma_O in MATLAB

DANN toolbox. These parameters are tuning parameters for

the output of each neuron as a state, weights as a state and

output of the network respectively. These parameters are

responsible for Kalman gain calculation for the states (i.e.

output of neuron and weight) and determine the update of

the output of each neuron and the weight connections

between the neurons. As the simulation stops, the

parameters, weights and other information regarding the

simulation are saved in the workspace in MATLAB®.

B. Parameter Tuning

In any implementation of ANN, tuning of parameters is

one of the biggest challenges. The optimal selection of

network parameters can only lead to a good model.

Contrary to existing MATLAB® Neural Network Toolbox,

MATLAB DANN toolbox has a facility to tune the
parameters optimally. In DANN Main, if you click on

Tuning button, Parameter Tuning window will open as

shown in Fig. 4. The optimal tuning is based on the grid

search method, and optimality is evaluated using Mean

Absolute Percentage Error (MAPE). In the left panel of the

window, a user can assign lower limit, higher limit and an

increment to each parameter and start tuning. At the end of

the tuning, optimal values of the parameters are displayed

in the right panel of the window with minimum MAPE.

Usually, parameter tuning takes a longer time before it

completes, so MATLAB DANN toolbox provides an option

to get notification alarm. It is to be noted that a user must

upload data, select learning algorithm, decide to or not to

include bias and validation check before starting the tuning

process. Thus, obtained optimal parameters can be used for

training the model.

Fig. 4: Parameter Tuning window of MATLAB DANN toolbox that allows
a user to tune the optimal parameters based on grid search method.

C. Plot Menu

Plot Menu window pops-up when the simulation is

completed as shown in Fig. 5. It consists of five different

types of plots, which are performance plot, regression plot,

prediction plot, parameter plot, and error plot.

1) Performance plot: It shows the MSE for training

data set and validation error for each epoch.

2) Regression plot: It compares the target output and

model prediction in terms of squared correlation coefficient

such that ‘0’ meaning not related at all and ‘1’ meaning

highly correlated to each other.

3) Prediction plot: It shows the test data and model

prediction with MAPE between them.

4) Parameter plot: It shows the states of five different

randomly chosen weights at different epochs. The analysis

using parameter plot is very efficient if you are working

with some system identification problems. In that case, one

can visualize how the weights change with epochs. The

steady state values of the weights after some epochs are the

model parameters in typical system identification problems.

5) Error plot: It shows the error between the target

value and the model prediction for each test samples.

 107

Fig. 5: Plot Menu of MATLAB DANN toolbox with different plots for the
analysis of the model.

D. Additional information

The MATLAB DANN toolbox has additional help

options for the users. A user can get general information in

Q&A section inside the Help Window. With a right-click in

any parameter name, action buttons or selection options, a

prompt help window related to that expression will pop up.

E. Installing the MATLAB DANN toolbox

The first step in installing MATLAB DANN toolbox is

to download installation file found in this link. Double-click

in the downloaded installation file will direct to the

installation process in the MATLAB®. It is recommended

to have a MATLAB® version 2014 or later.

III. CASE STUDIES

In this section, the usage of the MATLAB DANN

toolbox in three different practical applications is discussed.

These three different cases use the data set from an

experimental flow rig, and example data sets from

MATLAB® Neural Network Toolbox. To give a better

understanding in analyzing the simulation results, different

sets of plots are investigated under these cases.

A. Case I: BPTT learning algorithm for flow measurement

 In drilling operations, the flow rates of drilling mud at

inflow and outflow positions can be used to detect kick and

fluid loss. An open channel flow loop is available at

University College of Southeast Norway (USN) for the

study of outflow measurement. The data set with three level

measurements as inputs and a flow measurement as the

single output are taken from the flow loop for the analysis

of BPTT learning algorithm in MATLAB DANN toolbox.

Fig. 6 and Fig. 7 show the regression plot and prediction

plot for flow estimation using BPTT learning algorithm in

the toolbox. The simulation results show that the BPTT

learning algorithm provided by MATLAB DANN toolbox

is capable of mapping the inputs and outputs with high

accuracy.

Fig. 6: The regression plot for flow measurement using BPTT learning
algorithm, with a correlation of 96% between the target values and the
model prediction values. Data set from an experimental flow rig at USN.

Fig. 7: The prediction plot for flow measurement using BPTT learning
algorithm with a MAPE of 3.1 %. Data set from an experimental flow rig
at USN.

B. Case II: EKF learning algorithm for temperature

measurement

 To analyze the performance of EKF learning algorithm,

an example data set provided by MATLAB® Neural

Network Toolbox is used. The data set of a liquid-

saturated steam heat exchanger consists of time-series

liquid flow rate and liquid outlet temperature, used as

input and output to the ANN feedback network

respectively. Fig. 8 and Fig. 9 show the performance plot

and prediction plot for fully connected RNN with EKF

learning algorithm. The learning algorithm has an early

stop at 8 epochs due to the validation check with MSE of

0.015. The low value of MAPE in prediction plot shows

that the EKF learning algorithm with validation check is

able to generalize the model and avoid over-fitting.

200 250 300 350 400 450 500 550
200

250

300

350

400

450

500

550

O
u

tp
u

t
=

 1
.0

1
1
7
1
4
 *

 T
a
rg

e
t

+
 -

5
.1

3
1
2
6
3

Target

Test: R = 0.969100

Data

Y=T

Fit

0 50 100 150 200 250 300
200

250

300

350

400

450

500

550

Samples

O
u

tp
u

t
Actual vs predicted with MAPE of 3.105923

Actual

Prediction

https://drive.google.com/open?id=0B-iEO1hrjt-Scl9YdGlvOU5sdHM

 108

Fig. 8: The performance plot for temperature measurement using EKF
learning algorithm. The best validation performance is 0.015351 at
epoch 8. Data set from MATLAB® Neural Network Toolbox.

Fig. 9: The prediction plot for temperature measurement using EKF
learning algorithm with a MAPE of 0.9 %. Data set from MATLAB® Neural
Network Toolbox.

C. Case III: RTRL learning algorithm for mortality

prediction

 Another example data set provided by MATLAB®

Neural Network Toolbox is used to investigate the

performance of RTRL learning algorithm. The data set is a

Pollution mortality data set that consists of eight input

variables (Temperature, Relative humidity, Carbon

monoxide, Sulfur dioxide, Nitrogen dioxide, Hydrocarbons,

Ozone, and Particulates) and total mortality as an output

variable. Fig. 10 to Fig. 13 shows the simulation results

for mortality prediction using RTRL learning algorithm

using MATLAB DANN toolbox.

The parameter plot as shown in Fig. 10 shows the states

of randomly chosen weights of the network. As discussed

in Section II, it takes longer time for the weights to converge

to a steady state when using RTRL.

The regression plot as in Fig. 11 illustrates that the

predictions using RTRL are highly correlated with the

target values with a correlation of 92%. The MAPE between

the predicted values and target values are 2.93% as shown

in Fig. 12. The error in each sample is shown in the error

plot in Fig. 13.

Fig. 10: The state plot for mortality time-series prediction using RTRL
learning algorithm. Data set from MATLAB® Neural Network Toolbox.

Fig. 11: The regression plot for mortality time-series prediction using
RTRL learning algorithm with 92% correlation between target values and
model predictions. Data set from MATLAB® Neural Network Toolbox.

0 2 4 6 8 10 12 14
10

-3

10
-2

10
-1

10
0

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
(m

s
e
)

Epochs

Best Validation Performance is 0.015351 at epoch 8

mse-training

mse-validation

Best

0 100 200 300 400 500 600
93

94

95

96

97

98

99

100

101

Samples

O
u

tp
u

t

Actual vs predicted with MAPE of 0.904270

Actual

Prediction

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

-1.5

-1

-0.5

0

0.5

1

W
e
ig

h
ts

Epochs

State plot for RTRL

70 80 90 100 110 120 130
70

80

90

100

110

120

130

O
u

tp
u

t
=

 0
.9

0
7
9
8
5
 *

 T
a
rg

e
t

+
 9

.0
4
2
5
2
9

Target

Test: R = 0.924619

Data

Y=T

Fit

 109

Fig. 12: The prediction plot for mortality time-series prediction using
RTRL learning algorithm with MAPE of 2.93%. Data set from MATLAB®

Neural Network Toolbox.

Fig. 13: The error plot for mortality time-series prediction using RTRL
learning algorithm with 9 units as the highest error in the test samples.
Data set from MATLAB® Neural Network Toolbox.

IV. CONCLUSION

 The existing MATLAB® Neural Network Toolbox

has a possibility to use both static and dynamic neural

networks. However, it is not possible directly use the

toolbox to fully connected recurrent neural networks. For

this reason, this study presents the Dynamic Artificial

Neural Network MATLAB toolbox that gives an

opportunity to use the fully connected neural network for

time-series predictions. The toolbox consists of three

different learning algorithms, where Back Propagation

Through Time (BPTT) is an offline learning algorithm,

Real Time Recurrent Learning (RTRL) and Extended

Kalman Filter (EKF) learning algorithm are online learning

algorithms. Main details and guides for installing and using

the developed toolbox are presented in this paper.

 To demonstrate the features of the MATLAB DANN

toolbox, three different practical problems are considered

using three different learning algorithms. The simulation

studies presented in this paper show that the developed

toolbox can be used in applications involving time-series

predictions. In addition, the developed toolbox has a

dedicated option for the optimal tuning of parameters.

 This work is meant for academic use with particular

focus on the students using the existing MATLAB® Neural

Network Toolbox. In future, other different learning

algorithms can be included in the developed toolbox with

some programming efforts.

 ACKNOWLEDGMENT

 The Ministry of Education and Research of the

Norwegian Government is funding Khim Chhantyal’s PhD

studies at University College of Southeast Norway (USN).

The authors at USN appreciate the collaboration with and

support from STATOIL for the rig used in the current

studies for generation of time series of flow rates.

V. REFERENCES

[1] E. O. Dijk, “Analysis of Recurrent Neural Networks with

application to speaker independent phoneme recognition,” University

Twente, Enschede, The Netherlands, 1999.

[2] D. Howard, B. Mark, “Neural Network Toolbox User's Guide

© Copyright,” The MathWorks, Inc., 2004.

[3] R. J. Williams, “Some observations on the use of the Extended

Kalman Filter as a Recurrent Network Learning algorithm,” College of

Computer Science, Northeastern University, Boston, 1992.

[4] S. Haykin, “Neural Networks and Learning Machines,” 3rd ed.,

ISBN: 978-0-13-147139-9, Upper Saddle River, New Jersey 07458,:

Pearson Education, Inc., 2009, p.808.

[5] M. W. Mak, K. W. Ku, Y. L. Lu, “On the improvement of the

real time recurrent learning algorithm for Recurrent Neural Networks,” in

Neurocomputing, vol. 24, Elsevier, 1999, p.13-36.

[6] D. P. Mandic, J. A. Chambers, “A normalised real-time

recurrent learning algorithm,” in Signal Processing, vol. 80, Elsevier,

2000, p.1909-1916.

[7] D. B. Budik, “A resource efficient localized Recurrent Neural

Network architecture and learning algorithm,” University of Tennessee,

USA, 2006.

0 10 20 30 40 50 60 70 80
70

80

90

100

110

120

130

Samples

O
u

tp
u

t

Actual vs predicted with MAPE of 2.931501

Actual

Prediction

0 10 20 30 40 50 60 70 80
-10

-8

-6

-4

-2

0

2

4

6

Error plot

Samples

E
rr

o
r

 110

Appendix D: Picture of the Venturi-rig
Venturi section

Exit of the Venturi section

Overview of the tank 1#

Overview of the tank #2

Mixture to create the fluids

Water pipe to clean the tank

 111

Tanks for fluid 1 and 2 respectively

Pressure transmitter

Temperature transmitter

Coriolis flow meter (Promass 801)

Coriolis flow meter (Promass 63)

Gamma transmitter

 112

Pressure differential transmitter

Ultrasonic level transmitter

 113

Appendix E: Venturi-rig Tutorial

Venturi-rig Tutorial

Khim Chhantyal

Minh Hoang

2016

 114

E.1 Introduction

The document is created as a guideline for those who want to run the Venturi-rig for the first

time. The document covers almost everything that is needed to handle the rig. The Health,

Safety and Environment (HSE) part of this document is partially taken from a Bachelor’s

Thesis group, Spring 2015, University College of Southeast Norway.

E.2 Precautions (HSE)

Before doing anything on the rig, please read through this HSE section to get information

about the potentially dangerous situations that may occur, and precautions to protect

yourself.

E.2.1 Drilling fluid

The fluid that is used is a mixture of potassium carbonate, xanthan gum, and water. Under

normal condition, there should not be any danger related to this fluid.

E.2.2 Health concerns

Be careful not to swallow in or get the fluid in your eyes during the experiments. If the

accident has already happened that you've swallowed some of it, your stomach may be upset

for a while. If in case, your eyes get in contact with the fluid, irritation may appear, and it is

highly recommended that you contact a doctor if this doesn’t go away over some time.

E.2.3 Environmental concerns

Watch out for leakages when you are working. Spilled fluid should be gathered into a

deposition if possible. The fluid is not dangerous, and the remains of the fluid should be

properly cleaned with water. When cleaning, have in mind that the spilled fluid can cause the

floor to be slippery.

E.2.4 Safety concerns

Whenever the rig is running and if there is a possibility of direct contact with the fluid, wear

safety glasses. If you are going to do some handling with the fluid, for example: changing the

fluid, making new fluid, cleaning the tank, etc., remember to use gloves and have proper

clothes.

 115

E.3 Running the rig

This section will explain what kind of preparations that need to be done before you start the

rig and how to use the software for control purpose.

E.3.1 Preparation

Steps Descriptions Pictures

1 Turn on the power

This switch is on the left side

of the security cabinet (on the

first floor).

Make sure the pointer is

upwards (see picture)

Then click on the blue reset

button (see picture)

2 Open one of the cover

See picture

Else, there is a possiblity of

damaging the tank while

running the Main-Pump.

 116

3 Close the valve

When the valve is closed, the

switch should be in 90

degrees with the pipe (see

picture)

We close this valve because

we don’t want the flow to go

back to the tank when running

it

E.3.2 Run the program

Steps Descriptions Pictures

1 Open the LabVIEW project file

Double-click on “TUCFlow -

Shortcut” on the desktop

2 Open the Main file

Click on “HMI Main.vi”

 117

3 Run the program

1. Click on the arrow to activate the program.

2. Click on the button “Run” to start the experiment.

3. Click on logging button when you want to save data to the database.

4. Here you can change the set-point of the flowrate.

 118

E.3.3 Finished with the experiments?

Do the following steps

Steps Descriptions Pictures

1 Turn of the power

This switch is on the left side of

the security cabinet (on the

first floor).

Make sure the pointer is

pointing left (see picture)

2 Close the cover

See picture

We “must” close it.

3 Open the valve

When the valve is opened, the

switch should be something

like in the picture.

We open this valve because we

want the fluids to go back to

the tank.

 119

E.4 Get data from database

To download data from the database, perform these steps

Steps Descriptions Picture

1 Open the database

program

Double-click on the

icon “Data logging

PH-RN37 –

Shortcut” on the

desktop

2 Select your data and generate file

1. Select the sensors you want to include in the data file and then click on “Add”.

2. Select the attributes you want to include in the data file.

3. Select the timespan of your data.

4. Generate the data file, here you can choose between 4 options.

 120

3 Get the generated

data file

The generated file

will be stored in a

folder called

“Database

Program”. Double

click on the folder

and pick the

newest file.

E.5 Troubleshooting

Sometimes there can be problems with running the LabVIEW program. The button will not respond

or that the rig will not respond to the commands from LabVIEW. If this happens, then do the

following steps.

1. Close the LabVIEW program.

2. Restart the Venturi rig by turning the power off and then on.

Power Off

Power On

 121

Appendix F: How to use Sugeno Anfis
Steps Screenshots

Open fuzzy toolbox:

Write “fuzzy” in the

command window

Open new FIS file “Sugeno”:

Click on “File” -> “New

FIS…” -> “Sugeno”

 122

A new FIS editor with

“Sugeno” will appear.

Remember to have at least

two inputs to make the

Anfis work.

This can be done by

clicking on “Edit” –> “Add

variable” -> “Input”.

Open ANFIS:

 Click on “Edit” -> “Anfis…”

 123

An Anfis Editor will appear

Load training and checking

data:

Check on “training” and

then click on “Load data”.

Repeat this step again, but

this time check on

“checking” and then click

on “Load Data…”

 124

Generate FIS:

Use “Grid partition” and

click on “Generate FIS…”

(We use grid partition

because this is better than

Sub. Clustering. More

details will come soon)

Train FIS:

Choose:

Optim. Method: “hybrid”

(hybrid = backpropagation

& least squre)

Error Tolerance: 0

(We want to have the error

small as possible)

Epochs: use the number

that makes the epoch error

stable.

Click on “Train Now”

 125

Training error:

When clicking on “Train

now”, an error value will

show how much the

estimated value deviate

from the real value.

Rules are automatically

created

After you have trained the

FIS, the rules will be

created automatically.

 126

Export FIS file

The model is now trained

and can be exported for

usage.

Click on “File” -> “Export” -

> “To File…”

 127

Appendix G: How to use Neural Network Toolbox in Matlab
Description Screenshot

Open neural network

toolbox:

Write “nnstart” in the

command window

Click on Next

Select the input and

target data (output)

and click on next.

(You can also load

example data if you

don’t have any data

available)

 128

Click on next.

(Here you can choose

how big the Validation

and Testing

percentages should

be)

Click on next.

(Here you can also

specify the number of

hidden Neurons)

 129

Choose training

algorithm “Levenberg-

Marquardt” and click

on train.

When finished

training, click on next.

 130

Here you can see an

overview of the

training. You can click

on “Performance” and

“Regression” to see

additional information

about your model.

Close this windows

when finished.

Click on next.

(Here you can do

some more

modification if you

model)

 131

Click on next.

Click on “Simple

Script” then on

“Finish”.

 132

Run the script that

you generated. Hit

“F5”

Paste and run this

code to get out the

weights.

%% Input weights

input_weights=net.iw

%% Layer bias

input_bias=net.b(1)

%% Output weights

output_weights=net.lw

%% Output bias

Output_bias=net.b(2)

The weights data will

be shown in the

Workspace. (See

picture)

 133

NN picture

 134

Appendix H: Simulation Code
This appendix chapter will show all the code that have been used for the simulations in the

thesis. The simulations were either done with Matlab or LabVIEW.

H.1 Type -1 Fuzzy logic with Mamdani Inference Mechanism

Main
%% Mamdani model for estimating viscosity of fluid.

clear all; clc; close all;

data=xlsread('corrected_data');

% Density

rho1= data(:,1);%[kg/m^3]

% Viscosity

mu1= data(:,2); % [PaS]

% Shear rate

chi1= data(:,3); % [1/s]

% Shear stress

tou1= data(:,4);% [Pascal]

N=length(rho1);

%% Normalize data

[rho,rho_min,rho_max]=normalize(rho1);

[mu,mu_min,mu_max]=normalize(mu1);

[chi,chi_min,chi_max]=normalize(chi1);

[tou,tou_min,tou_max]=normalize(tou1);

%% Input and output

input=[tou,rho];%input

output=[mu,chi];

%%

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output);

training_set=[x_train,y_train(:,1)];

checking_set=[x_val,y_val(:,1)];

test_set=[x_test,y_test(:,1)];

fis=readfis('MamdaniViscosity_different_range');

y_prediction1=evalfis(x_test,fis);

%% set back to respective value from normalized value

mu_test=y_test(:,1);

chi_test=y_test(:,2);

y_prediction=((y_prediction1))*(mu_max-mu_min)+mu_min;%DE-Normalizing test

set

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%DE-Normalizing test set

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%DE-Normalizing test set

e_test=(mu_test-y_prediction)./mu_test;%error with validation set

test_mse=(sum((abs(e_test)))/length(e_test))*100;

fprintf('The Mean Absolute Percentage Error in test set is = %f %%

\n',test_mse);

figure(1)

plot (mu_test,'m.');

hold on

plot(y_prediction,'b.')

hold off

legend('Actual','Prediction')

ylabel('Viscosity[mPaS]')

 135

Data_division
function [x_train,y_train,x_val,y_val,x_test,y_test]=data_division(x1,y1)
%% 2) Division by odd and even row number
% lets take last data into training set. It is because, if we perform odd
% and even division and if we consider odd data for training then, we will
% not cover last data under training data. It means this data will be

either
% validation set or in test set. Now, when we will perform FUZZY Logic then
% we will have a error message that the 'some input is not in range'... it
% is better to take that data into training while dividing.
x_end=x1(end,:);y_end=y1(end,:);
x1=x1(1:end-1,:);y1=y1(1:end-1,:);
odd_input=x1(1:2:end, 1:1:end);
even_input=x1(2:2:end, 1:1:end);
odd_output=y1(1:2:end, 1:1:end);
even_output=y1(2:2:end, 1:1:end);
% Initialze training, validation and test sets
x_train=[];y_train=[];x_test=[];y_test=[]; y_val=[];x_val=[];
% Training set
x_train=[odd_input;x_end]; y_train=[odd_output;y_end];
% For validation and test set, divide the even data set further into even
% and odd
odd_set_input=even_input(1:2:end, 1:1:end);
even_set_input=even_input(2:2:end, 1:1:end);

odd_set_output=even_output(1:2:end, 1:1:end);
even_set_output=even_output(2:2:end, 1:1:end);
% Additional training set to make the training set 75% of whole data
x_val=odd_set_input; y_val=odd_set_output;
x_test=even_set_input; y_test=even_set_output;
end

Normalize
function[x_normalized,x_min,x_max]=normalize(x)
x_min=min(x);
x_max=max(x);
x_normalized=(x-x_min)/(x_max-x_min);
end

H.2 Type-2 Fuzzy logic with Mamdani Inference Mechanism

%% Type-2 Fuzzy logic model for estimating viscosity of fluid.

clear all; clc; close all;

data=xlsread('corrected_data_02_26_2016');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2)./1000; % [PaS]

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

N=length(rho);

%% Normalize data

[rho,rho_min,rho_max]=normalize(rho);

[mu,mu_min,mu_max]=normalize(mu);

 136

[chi,chi_min,chi_max]=normalize(chi);

[tou,tou_min,tou_max]=normalize(tou);

%% Input and output

input=[rho,tou];%input

output=[mu,chi];

%%

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output);

training_set=[x_train,y_train(:,1)];

checking_set=[x_val,y_val(:,1)];

test_set=[x_test,y_test(:,1)];

%% FIS model

fis=readt2fis('latest.t2_1fis');

for i=1:50

y_prediction(i)=evalt2(fis,x_test(i,:),1,false);

end

%% set back to respective value from normalized value

mu_test=y_test(:,1);

chi_test=y_test(:,2);

y_prediction=(y_prediction)*(mu_max-mu_min)+mu_min;%Normalizing test set

mu_test=mu_test(1:50);

chi_test=chi_test(1:50);

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%Normalizing test set

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%Normalizing test set

e_test=(mu_test-y_prediction')./mu_test;%error with validation set

test_mse=(sum((abs(e_test)))/length(e_test))*100;

fprintf('The Mean Absolute Percentage Error in test set is = %f %%

\n',test_mse);

figure(1)

clf(1)

plot (mu_test.*1000,'m.');

hold on

plot(y_prediction.*1000,'b.')

hold off

legend('Actual','Prediction')

ylabel('Viscosity[mPaS]')

H.3 Type-1 Fuzzy logic with Sugeno Inference Mechanism

Main
%% Sugeno ANFIS model for estimating viscosity of fluid.

clear all; clc; close all;

data=xlsread('corrected_data_02_26_2016');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2)./1000; % [PaS]

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

 137

N=length(rho);

%% Normalize data

[rho,rho_min,rho_max]=normalize(rho);

[mu,mu_min,mu_max]=normalize(mu);

[chi,chi_min,chi_max]=normalize(chi);

[tou,tou_min,tou_max]=normalize(tou);

%% Input and output

input=[rho,tou];%input

output=[mu,chi];

%%

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output);

training_set=[x_train,y_train(:,1)];

checking_set=[x_val,y_val(:,1)];

test_set=[x_test,y_test(:,1)];

%% ANFIS model

fis=readfis('khim');

y_prediction1=evalfis([x_test],fis);

%% set back to respective value from normalized value

mu_test=y_test(:,1);

chi_test=y_test(:,2);

y_prediction=(y_prediction1)*(mu_max-mu_min)+mu_min;%Normalizing test set

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%Normalizing test set

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%Normalizing test set

e_test=(mu_test-y_prediction)./mu_test;%error with validation set

test_mse=(sum((abs(e_test)))/length(e_test))*100;

fprintf('The Mean Absolute Percentage Error in test set is = %f %%

\n',test_mse);

figure(1)

plot (mu_test.*1000,'m.');

hold on

plot(y_prediction.*1000,'b.')

hold off

legend('Actual','Prediction')

xlabel('Samples')

ylabel('Viscosity[cP]')

title('The Sugeno type fuzzy model prediction vs. target viscosity

measurement')

figure(2)

tou_test=x_test(:,2);

tou_test=(tou_test)*(tou_max-tou_min)+tou_min;%Normalizing test set

chi_prediction=tou_test./y_prediction;

loglog(chi_test,mu_test.*1000,'m');

hold on

loglog(chi_prediction,y_prediction.*1000,':b')

hold off

legend('Actual','Prediction')

ylabel('Viscosity [mPaS]')

xlabel('Shear rate [1/s]')

%%

figure(5)

clf(5)

y_prediction=y_prediction.*1000;mu_test=mu_test.*1000;

loglog(chi_test(1:67),mu_test(1:67),'m')

hold on

loglog(chi_test(68:135),mu_test(68:135),'k')

loglog(chi_test(203:270),mu_test(203:270),'c')

loglog(chi_test(338:404),mu_test(338:404),'g')

 138

 loglog(chi_test(405:471),mu_test(405:471),'b')

% predicted

loglog(chi_prediction(1:67),y_prediction(1:67),'om')

loglog(chi_prediction(68:135),y_prediction(68:135),'<k')

loglog(chi_prediction(203:270),y_prediction(203:270),'sc')

loglog(chi_prediction(338:404),y_prediction(338:404),'^g')

 loglog(chi_prediction(405:471),y_prediction(405:471),'*b')

hold off

legend('Sample-1','Sample-2','Sample-3','Sample-4','Sample-5','PredSample-

1',...

 'PredSample-2','PredSample-3','PredSample-4','PredSample-5')

xlabel('Shear rate [1/s]');

ylabel('Viscosity [cP]');

str=sprintf('Calibration of Sugeno type Fuzzy model with MAPE of %.2f %% ',

test_mse);

title(str)

Data_division
function [x_train,y_train,x_val,y_val,x_test,y_test]=data_division(x1,y1)
%% 2) Division by odd and even row number
% lets take last data into training set. It is because, if we perform odd
% and even division and if we consider odd data for training then, we will
% not cover last data under training data. It means this data will be

either
% validation set or in test set. Now, when we will perform FUZZY Logic then
% we will have a error message that the 'some input is not in range'... it
% is better to take that data into training while dividing.
x_end=x1(end,:);y_end=y1(end,:);
x1=x1(1:end-1,:);y1=y1(1:end-1,:);
odd_input=x1(1:2:end, 1:1:end);
even_input=x1(2:2:end, 1:1:end);
odd_output=y1(1:2:end, 1:1:end);
even_output=y1(2:2:end, 1:1:end);
% Initialze training, validation and test sets
x_train=[];y_train=[];x_test=[];y_test=[]; y_val=[];x_val=[];
% Training set
x_train=[odd_input;x_end]; y_train=[odd_output;y_end];
% For validation and test set, divide the even data set further into even
% and odd
odd_set_input=even_input(1:2:end, 1:1:end);
even_set_input=even_input(2:2:end, 1:1:end);

odd_set_output=even_output(1:2:end, 1:1:end);
even_set_output=even_output(2:2:end, 1:1:end);
% Additional training set to make the training set 75% of whole data
x_val=odd_set_input; y_val=odd_set_output;
x_test=even_set_input; y_test=even_set_output;
end

Normalize
function[x_normalized,x_min,x_max]=normalize(x)
x_min=min(x);
x_max=max(x);
x_normalized=(x-x_min)/(x_max-x_min);
end

 139

H.4 Feedforward Artificial Neural Network

Main
%% Feedforward model for estimating viscosity of fluid.

clear all; clc; close all;

data=xlsread('corrected_data_02_26_2016');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2); % [cP]

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

N=length(rho);

%% Input and output

input=[rho,tou];%input

output=[mu,chi];

output1=output(:,1);

%%

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output);

training_set=[x_train,y_train(:,1)];

checking_set=[x_val,y_val(:,1)];

test_set=[x_test,y_test(:,1)];

%% ANN model

y_prediction = StaticNN_Viscosity(x_test');

%% set back to respective value from normalized value

mu_test=y_test(:,1);

chi_test=y_test(:,2);

e_test=(mu_test-y_prediction')./mu_test;%error with validation set

test_mse=(sum((abs(e_test)))/length(e_test))*100;

fprintf('The Mean Absolute Percentage Error in test set is = %f %%

\n',test_mse);

figure(1)

plot (mu_test,'m.');

hold on

plot(y_prediction','b.')

hold off

legend('Actual','Prediction')

ylabel('Viscosity[mPaS]')

figure(2)

tou_test=x_test(:,2);

chi_prediction=tou_test./(y_prediction./1000)';

loglog(chi_test,mu_test,'m');

hold on

loglog(chi_prediction,y_prediction,':b')

hold off

legend('Actual','Prediction')

ylabel('Viscosity [mPaS]')

xlabel('Shear rate [1/s]')

%%

figure(5)

clf(5)

 140

y_prediction=y_prediction;mu_test=mu_test;

loglog(chi_test(1:67),mu_test(1:67),'m')

hold on

loglog(chi_test(68:135),mu_test(68:135),'k')

loglog(chi_test(203:270),mu_test(203:270),'c')

loglog(chi_test(338:404),mu_test(338:404),'g')

loglog(chi_test(405:471),mu_test(405:471),'b')

% predicted

loglog(chi_prediction(1:67),y_prediction(1:67),'om')

loglog(chi_prediction(68:135),y_prediction(68:135),'<k')

loglog(chi_prediction(203:270),y_prediction(203:270),'sc')

loglog(chi_prediction(338:404),y_prediction(338:404),'^g')

loglog(chi_prediction(405:471),y_prediction(405:471),'*b')

hold off

legend('Sample-1','Sample-2','Sample-3','Sample-4','Sample-5','PredSample-

1',...

 'PredSample-2','PredSample-3','PredSample-4','PredSample-5')

xlabel('Shear rate [1/s]');

ylabel('Viscosity [mPaS]');

title('Calibration of ANFIS model with MAPE of 2.18%')% TITLE

str=sprintf('Calibration of Feedforward model with MAPE = %f %%',

test_mse);

title(str,'fontsize',12)

Data_division
function [x_train,y_train,x_val,y_val,x_test,y_test]=data_division(x1,y1)
%% 2) Division by odd and even row number
% lets take last data into training set. It is because, if we perform odd
% and even division and if we consider odd data for training then, we will
% not cover last data under training data. It means this data will be

either
% validation set or in test set. Now, when we will perform FUZZY Logic then
% we will have a error message that the 'some input is not in range'... it
% is better to take that data into training while dividing.
x_end=x1(end,:);y_end=y1(end,:);
x1=x1(1:end-1,:);y1=y1(1:end-1,:);
odd_input=x1(1:2:end, 1:1:end);
even_input=x1(2:2:end, 1:1:end);
odd_output=y1(1:2:end, 1:1:end);
even_output=y1(2:2:end, 1:1:end);
% Initialze training, validation and test sets
x_train=[];y_train=[];x_test=[];y_test=[]; y_val=[];x_val=[];
% Training set
x_train=[odd_input;x_end]; y_train=[odd_output;y_end];
% For validation and test set, divide the even data set further into even
% and odd
odd_set_input=even_input(1:2:end, 1:1:end);
even_set_input=even_input(2:2:end, 1:1:end);
odd_set_output=even_output(1:2:end, 1:1:end);
even_set_output=even_output(2:2:end, 1:1:end);
% Additional training set to make the training set 75% of whole data
x_val=odd_set_input; y_val=odd_set_output;
x_test=even_set_input; y_test=even_set_output;
end

 141

Normalize
function[x_normalized,x_min,x_max]=normalize(x)
x_min=min(x);
x_max=max(x);
x_normalized=(x-x_min)/(x_max-x_min);
end

StaticNN_Viscosity
function [y1] = StaticNN_Viscosity(x1)

%MYNEURALNETWORKFUNCTION neural network simulation function.

%

% Generated by Neural Network Toolbox function genFunction, 15-May-2016

23:40:40.

%

% [y1] = myNeuralNetworkFunction(x1) takes these arguments:

% x = 2xQ matrix, input #1

% and returns:

% y = 1xQ matrix, output #1

% where Q is the number of samples.

%#ok<*RPMT0>

 % ===== NEURAL NETWORK CONSTANTS =====

 % Input 1

 x1_step1_xoffset = [1140;0.0798];

 x1_step1_gain = [0.00429590170976888;0.0994025904315066];

 x1_step1_ymin = -1;

 % Layer 1

 b1 = [-

9.3172800880287507;0.51230188417128175;10.418138949584778;15.78727873324795

2;8.2412698288411192;-14.774319186376818;-

9.7844253717626586;10.104098938503467;-

1.5301441784267593;10.409438118848641];

 IW1_1 = [12.692744793354024 2.8383760835224972;9.382923808932647 -

1.2970031450577029;-14.759008126685442 -3.757890968990957;-

0.87137483944994176 15.12014106899902;20.709544166224042 -

10.736128717644821;0.79188703610239031 -13.485107158858796;-

24.406144649494923 11.931854952779378;-13.850890811419378 -

2.9466183315784034;-7.7710365727086792 -4.5164486470010283;-

14.999334033742272 -4.2539485593116293];

 % Layer 2

 b2 = 15.111376483085019;

 LW2_1 = [-3.6690861102969077 0.33191560418552407 9.7789241577555153

6.9253600414492524 8.1302774598643328 22.914742461211702 8.1452127499401072

-7.9574518914382821 0.30569935609040971 -5.5308070925461799];

 % Output 1

 y1_step1_ymin = -1;

 y1_step1_gain = 0.00589537478371344;

 y1_step1_xoffset = 11.901;

 % ===== SIMULATION ========

 % Dimensions

 Q = size(x1,2); % samples

 142

 % Input 1

 xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

 % Layer 1

 a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

 % Layer 2

 a2 = repmat(b2,1,Q) + LW2_1*a1;

 % Output 1

 y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);

end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function

function y =

mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)

 y = bsxfun(@minus,x,settings_xoffset);

 y = bsxfun(@times,y,settings_gain);

 y = bsxfun(@plus,y,settings_ymin);

end

% Sigmoid Symmetric Transfer Function

function a = tansig_apply(n)

 a = 2 ./ (1 + exp(-2*n)) - 1;

end

% Map Minimum and Maximum Output Reverse-Processing Function

function x =

mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)

 x = bsxfun(@minus,y,settings_ymin);

 x = bsxfun(@rdivide,x,settings_gain);

 x = bsxfun(@plus,x,settings_xoffset);

end

 143

H.5 Feedback Artificial Neural Network

H.5.1 Partially Connected Recurrent Neural Network

H.5.1 Fully Connected Recurrent Neural Network

H.6 Support Vector Machine

%% Support Vector Regression model for estimating viscosity of fluid.

clear all; clc; close all;

%% Parameters of SVR model.

 144

epsilon=0.01;% Tips: Keep epsilon small if you are confident about the

accuracy of your trianing data

sigma_range=2;% Tips: This is a parameter with Radial Basis function. It

varies with application.

C_range=500;% Tips: Keep C big if you are confident about the accuracy of

your dat

data=xlsread('corrected_data_02_26_2016');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2)./1000; % [PaS]

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

N=length(rho);

%% Normalize data

[rho,rho_min,rho_max]=normalize(rho);

[mu,mu_min,mu_max]=normalize(mu);

[chi,chi_min,chi_max]=normalize(chi);

[tou,tou_min,tou_max]=normalize(tou);

%% Input and output

x=[rho,tou];%input

y=[mu,chi]; %output is only shear rate... viscosity is considered in order

to track the index of samples

%% 2) Division by odd and even row number

odd_input=x(1:2:end, 1:1:end);

even_input=x(2:2:end, 1:1:end);

odd_output=y(1:2:end, 1:1:end);

even_output=y(2:2:end, 1:1:end);

% Initialze training, validation and test sets

x_train=[];y_train=[];x_val=[];y_val=[];x_test=[];y_test=[];

% Training set

x_train=odd_input; y_train=odd_output;

% For validation and test set, divide the even data set further into even

% and odd

odd_set_input=even_input(1:2:end, 1:1:end);

even_set_input=even_input(2:2:end, 1:1:end);

odd_set_output=even_output(1:2:end, 1:1:end);

even_set_output=even_output(2:2:end, 1:1:end);

% Validation set

x_val=odd_set_input; y_val=odd_set_output;

% Lets include this validation set into training set

x_train=[x_train;x_val];y_train=[y_train;y_val];y_train=y_train(:,1);

% Test set

x_test=even_set_input;y_test=even_set_output;

N1=length(x_train);

%% Find the SVR model parameters

C_Yun=3*std(y_train)

%load('kkk_viscosity');

k=3;

%noise_std=sqrt((k)/((k-1)*N1)*sum(kkk_viscosity.^2));% =0.435

noise_std=0.01

tou=3;

epsilon_Yun=tou*noise_std*sqrt(log(N1)/N1)

sigma_Yun=0.026;% 0.03;0.026 for dataset2

%% Optimal solutions

 145

[svr,n_sv]=my_svr(x_train,y_train,epsilon_Yun,sigma_Yun,C_Yun);%Radial

y_prediction=svr.predict(x_test);% svr prediction for input validation set

%% set back to respective value from normalized value

mu_test=y_test(:,1);chi_test=y_test(:,2);

e_test=mu_test-y_prediction;%error with validation set

mse=sum(((e_test).^2))/length(e_test);

mean_error=mean(abs(e_test));%mse of validation

relative_error=(mean_error/(max(mu_test)-min(mu_test)))*100;

fprintf('The relative error in prediction is = %f %% \n',relative_error);

fprintf('The mse in prediction is = %f\n',mse);

y_prediction=(y_prediction)*(mu_max-mu_min)+mu_min;%Normalizing test set

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%Normalizing test set

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%Normalizing test set

e_test=(mu_test-y_prediction)./mu_test;%error with validation set

test_mse=(sum((abs(e_test)))/length(e_test))*100;

fprintf('The Mean Absolute Percentage Error in test set is = %f %%

\n',test_mse);

figure(1)

plot (mu_test.*1000,'m.');

hold on

plot(y_prediction.*1000,'b.')

hold off

legend('Target','Prediction')

ylabel('Viscosity[cP]')

xlabel('Samples')

title('The SVR viscosity prediction vs. target viscosity measurement')

figure(2)

tou_test=x_test(:,2);

tou_test=(tou_test)*(tou_max-tou_min)+tou_min;%Normalizing test set

chi_prediction=tou_test./y_prediction;

loglog(chi_test,mu_test.*1000,'m');

hold on

loglog(chi_prediction,y_prediction.*1000,':b')

hold off

legend('Target','Prediction')

ylabel('Viscosity [cP]')

xlabel('Shear rate [1/s]')

%%

figure(5)

clf(5)

y_prediction=y_prediction.*1000;

loglog(chi_test(1:67),y_prediction(1:67),'m')

hold on

loglog(chi_test(68:135),y_prediction(68:135),'k')

loglog(chi_test(203:270),y_prediction(203:270),'c')

loglog(chi_prediction(338:404),y_prediction(338:404),'g')

loglog(chi_prediction(405:471),y_prediction(405:471),'b')

% predicted

loglog(chi_prediction(1:67),y_prediction(1:67),'om')

loglog(chi_prediction(68:135),y_prediction(68:135),'<k')

loglog(chi_prediction(203:270),y_prediction(203:270),'sc')

loglog(chi_prediction(338:404),y_prediction(338:404),'^g')

 146

loglog(chi_prediction(405:471),y_prediction(405:471),'*b')

hold off

legend('Sample-1','Sample-2','Sample-3','Sample-4','Sample-5','PredSample-

1',...

 'PredSample-2','PredSample-3','PredSample-4','PredSample-5')

xlabel('Shear rate [1/s]');

ylabel('Viscosity [cP]');

str=sprintf('Calibration of SVR model with MAPE = %f %%', test_mse);

title(str)

H.7 Classification

ANN as a classifier
%% ANN model for estimating viscosity of fluid.

clear all; clc; close all;

data=xlsread('corrected_data');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2); % [PaS]

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

N=length(rho);

X1=[(chi) (mu)];

load index

Y1=index';

%% Examine a scatter plot of the data.

figure(1)

gscatter(X1(:,1),X1(:,2),Y1);

title('{\bf Scatter Diagram of Viscosity Measurements}');

set(gca,'xscale','log')

set(gca,'yscale','log')

xlabel('{\bf Shear Rate [1/s]}');

ylabel('{\bf Viscosity [cP]}');

legend('Location','Northeast');

%% Taking log of input data

input=log(X1);

output=[Y1];

%%

[x_train1,y_train1,x_val,y_val,x_test,y_test]=data_division(input,output);

x_train=[x_train1;x_val];

y_train=[y_train1;y_val];

training_set=[x_train,y_train];

test_set=[x_test,y_test];

%% ANN model

d = 0.01;

[x1Grid,x2Grid] = meshgrid(min(x_train(:,1)):d:max(x_train(:,1)),...

 min(x_train(:,2)):d:max(x_train(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

y_prediction=ANN_Classifier(xGrid');

y_prediction_round=round(y_prediction);

%%

figure(2)

% anti-log

xGrid=exp(xGrid);

 147

h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),y_prediction_round,...

 [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);

hold on

% gscatter(X1(:,1),X1(:,2),Y1);

title('{\bf Viscosity Classification Regions}');

xlabel('{\bf Shear Rate [1/s]}');

ylabel('{\bf Viscosity [cP]}');

set(gca,'xscale','log')

set(gca,'yscale','log')

axis tight

%% Testing a model

y_prediction1=ANN_Classifier(x_test');

y_prediction_test=round(y_prediction1);

% anti-log

x_test=exp(x_test);

%

h(4:6) = gscatter(x_test(:,1),x_test(:,2),y_prediction_test,...

 'rgb','ooo',6,[0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);

 legend(h(4:6),{%'LessViscos region','Viscos region','HighViscos

region',...

% 'Observed LessViscos','Observed Viscos', 'Observed HighViscos',...

 'Tested LessViscos','Tested Viscos','Tested HighViscos'},...

 'Location','NorthEast');

txt1 = '{\bf [LessViscos Region]}';

text(5,18,txt1)

txt2 = '{\bf [Viscos Region]}';

text(100,90,txt2)

txt3 = '{\bf [HighViscos Region]}';

text(5,250,txt3)

hold off

%% Classification Error

% Compare the prediction and test data

count=0;

for i_comp=1:length(y_prediction_test)

 if (y_prediction_test(i_comp)~=y_test(i_comp))

 count=count+1;

 else

 end

end

per=count*100/length(y_prediction_test);

fprintf('The mis-classification percentage is %f %% \n',per);

Sugeno type-1 Fuzzy Logic as a classifier
%% ANFIS model for estimating viscosity of fluid.

clear all; clc; close all;

data=xlsread('corrected_data');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2); % [PaS]

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

N=length(rho);

X1=[(chi) (mu)];

load index

 148

Y1=index';

X=X1;Y=Y1;

%% Input and output

input=[X];%input

output=[Y];

% Examine a scatter plot of the data.

figure(1)

gscatter(X(:,1),X(:,2),Y);

title('{\bf Scatter Diagram of Viscosity Measurements}');

set(gca,'xscale','log')

set(gca,'yscale','log')

xlabel('{\bf Shear Rate [1/s]}');

ylabel('{\bf Viscosity [cP]}');

legend('Location','Northeast');

%% Taking log of input data

X=log(X);

input=X;

%%

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output);

%%

training_set=[x_train,y_train];

checking_set=[x_val,y_val];

test_set=[x_test,y_test];

 training_set1=[input,output];

d = 0.01;

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...

 min(X(:,2)):d:max(X(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

fis=readfis('Sugeno_Classifier');

y_prediction=evalfis([xGrid],fis);

% Take only those samples that belongs to classes out of three

for i_index=1:length(y_prediction)

 if y_prediction(i_index)>0.5 &&y_prediction(i_index)<3.5

 indexxx(i_index)=i_index;

 y_output(i_index)=y_prediction(i_index);

 end

end

%%

k = find(indexxx)

xGrid=xGrid(k,:);

yy=y_output(k)

y_prediction_round=round(yy);

%%

figure(2)

%% anti-log

xGrid=exp(xGrid);

X=exp(X);

 gscatter(xGrid(:,1),xGrid(:,2),y_prediction_round,...

 [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);

hold on

gscatter(X(:,1),X(:,2),Y);

title('{\bf Viscosity Classification Regions}');

xlabel('{\bf Shear Rate [1/s]}');

ylabel('{\bf Viscosity [cP]}');

set(gca,'xscale','log')

set(gca,'yscale','log')

legend('HighViscos region','LessViscos region','Viscos region',...

 'Observed LessViscos','Observed Viscos', 'Observed HighViscos',...

 149

 'Location','NorthEast');

axis tight

hold off

SVM as a classifier
clear all;

clc;

data=xlsread('corrected_data');

% Density

rho= data(:,1);%[kg/m^3]

% Viscosity

mu= data(:,2); % [m PaS] or cP

% Shear rate

chi= data(:,3); % [1/s]

% Shear stress

tou= data(:,4);% [Pascal]

N=length(rho);

input=[(chi) (mu)];

load className

output=className';

%% Examine a scatter plot of the data.

figure(1)

gscatter(input(:,1),input(:,2),output);

title('{\bf Scatter Diagram of Viscosity Measurements}');

set(gca,'xscale','log')

set(gca,'yscale','log')

xlabel('{\bf Shear Rate [1/s]}');

ylabel('{\bf Viscosity [cP]}');

legend('Location','Northeast');

%%

[x_train1,y_train1,x_val,y_val,x_test,y_test]=data_division(input,output);

 x_train=[x_train1;x_val];

 y_train=[y_train1;y_val];

%% Define a class

SVMModels = cell(3,1);

classes = unique(y_train);

rng(1); % For reproducibility

%% Taking log of input data

X=log(x_train);

%%

for j = 1:numel(classes);

 indx = strcmp(y_train,classes(j)); % Create binary classes for each

classifier

 SVMModels{j} = fitcsvm(X,indx,'ClassNames',[false

true],'Standardize',true,...

 'KernelFunction','rbf','BoxConstraint',1);

end

d = 0.01;

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...

 min(X(:,2)):d:max(X(:,2)));

xGrid = [x1Grid(:),x2Grid(:)];

N = size(xGrid,1);

Scores = zeros(N,numel(classes));

for j = 1:numel(classes);

 [~,score] = predict(SVMModels{j},xGrid);

 Scores(:,j) = score(:,2); % Second column contains positive-class

scores

 150

end

[~,maxScore] = max(Scores,[],2);

%% Classification plot

figure(2)

%% anti-log

xGrid=exp(xGrid);

X=exp(X);

%%

h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,...

 [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);

hold on

title('{\bf Viscosity Classification Regions}');

xlabel('{\bf Shear Rate [1/s]}');

ylabel('{\bf Viscosity [cP]}');

set(gca,'xscale','log')

set(gca,'yscale','log')

axis tight

%% Testing a model

x_test=log(x_test);

for k = 1:numel(classes);

 [~,score1] = predict(SVMModels{k},x_test);

 Scores1(:,k) = score1(:,2); % Second column contains positive-class

scores

end

[~,maxScore1] = max(Scores1,[],2);

%% anti-log

x_test=exp(x_test);

%%

h(4:6) = gscatter(x_test(:,1),x_test(:,2),maxScore1,...

 'brg','ooo',6,[0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]);

legend(h(4:6),{%'HighViscos region','LessViscos region','Viscos region',...

 %'Observed LessViscos','Observed Viscos', 'Observed HighViscos',...

 'Tested LessViscos','Tested HighViscos','Tested Viscos'},...

 'Location','NorthEast');

txt1 = '{\bf [LessViscos Region]}';

text(9,18,txt1)

txt2 = '{\bf [Viscos Region]}';

text(100,90,txt2)

txt3 = '{\bf [HighViscos Region]}';

text(3,250,txt3)

hold off

%% Classification Error

y_prediction=cell(length(maxScore1),1);

for i_test=1:length(maxScore1)

 if maxScore1(i_test)==1

 y_prediction(i_test)={'HighViscos'};

 elseif maxScore1(i_test)==2

 y_prediction(i_test)={'LessViscos'};

 elseif maxScore1(i_test)==3

 y_prediction(i_test)={'Viscos'};

 end

end

% Compare the prediction and test data

count=0;

for i_comp=1:length(y_prediction)

 c=strcmp(y_prediction(i_comp),y_test(i_comp));

 if c==0

 count=count+1;

 else

 151

 end

end

per=count*100/length(y_prediction);

fprintf('The mis-classification percentage is %f %% \n',per);

 152

Appendix I: Experimental Code
This appendix chapter will show all the code that have been used for the experiments in the

thesis. The experiments were either done with Matlab or LabVIEW.

I.1 Type-1 Fuzzy logic with Sugeno inference system

ANFIS VI

I.2 Feedforward Artificial Neural Network

 153

StaticNN_viscosity.m
function [y1] = StaticNN_Viscosity(x1)

%MYNEURALNETWORKFUNCTION neural network simulation function.

%

% Generated by Neural Network Toolbox function genFunction, 15-May-2016

23:40:40.

%

% [y1] = myNeuralNetworkFunction(x1) takes these arguments:

% x = 2xQ matrix, input #1

% and returns:

% y = 1xQ matrix, output #1

% where Q is the number of samples.

%#ok<*RPMT0>

 % ===== NEURAL NETWORK CONSTANTS =====

 % Input 1

 x1_step1_xoffset = [1140;0.0798];

 x1_step1_gain = [0.00429590170976888;0.0994025904315066];

 x1_step1_ymin = -1;

 % Layer 1

 b1 = [-

9.3172800880287507;0.51230188417128175;10.418138949584778;15.78727873324795

2;8.2412698288411192;-14.774319186376818;-

9.7844253717626586;10.104098938503467;-

1.5301441784267593;10.409438118848641];

 IW1_1 = [12.692744793354024 2.8383760835224972;9.382923808932647 -

1.2970031450577029;-14.759008126685442 -3.757890968990957;-

0.87137483944994176 15.12014106899902;20.709544166224042 -

10.736128717644821;0.79188703610239031 -13.485107158858796;-

24.406144649494923 11.931854952779378;-13.850890811419378 -

2.9466183315784034;-7.7710365727086792 -4.5164486470010283;-

14.999334033742272 -4.2539485593116293];

 % Layer 2

 b2 = 15.111376483085019;

 LW2_1 = [-3.6690861102969077 0.33191560418552407 9.7789241577555153

6.9253600414492524 8.1302774598643328 22.914742461211702 8.1452127499401072

-7.9574518914382821 0.30569935609040971 -5.5308070925461799];

 % Output 1

 y1_step1_ymin = -1;

 y1_step1_gain = 0.00589537478371344;

 y1_step1_xoffset = 11.901;

 % ===== SIMULATION ========

 % Dimensions

 Q = size(x1,2); % samples

 % Input 1

 xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);

 % Layer 1

 a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);

 % Layer 2

 a2 = repmat(b2,1,Q) + LW2_1*a1;

 154

 % Output 1

 y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);

end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function

function y =

mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)

 y = bsxfun(@minus,x,settings_xoffset);

 y = bsxfun(@times,y,settings_gain);

 y = bsxfun(@plus,y,settings_ymin);

end

% Sigmoid Symmetric Transfer Function

function a = tansig_apply(n)

 a = 2 ./ (1 + exp(-2*n)) - 1;

end

% Map Minimum and Maximum Output Reverse-Processing Function

function x =

mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)

 x = bsxfun(@minus,y,settings_ymin);

 x = bsxfun(@rdivide,x,settings_gain);

 x = bsxfun(@plus,x,settings_xoffset);

end

 155

I.3 Feedback Artificial Neural Network

I.3.1 Partially Connected Recurrent Neural Network

I.3.2 Fully Connected Recurrent Neural Network

I.4 Support Vector Machine

 156

SVR VI

