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Abstract 

The main work of this thesis was to develop some empirical models that could be used to estimate the 

viscosity in drilling operations. The reason for this is due to the fact that oil companies spends a lot of 

money to make sure that the drilling fluid has the right value of density and viscosity. It is important to 

control the density because its maintains the downhole pressure and wellbore stability. Likewise, it is 

crucial to maintain the viscosity of the drilling fluid at a desired level for transportation of drilling 

cuttings and hole cleaning.    

In drilling operations, the viscosity in the drilling fluid changes for each circulation so the viscosity value 

need to be updated back to the reference value. This can be done by adding additives to the drilling 

fluid. To decide the amount of additives that is needed, viscosity blending mechanisms is used.  The 

blending methods that can be used to mix drilling fluids will be discussed in Chapter 2. In this thesis, 

there has been developed some classifiers that will sort the viscosity into three regions; low viscous, 

medium viscous and high viscous. By using classifiers, it would be easier for the mud engineers to know 

which additive that needs to be added. 

The different models that were used to estimate the viscosity in this thesis were Fuzzy Logic model, 

Feedforward Artificial Neural Network model (ANN), Feedback Artificial Neural Network model and 

Support Vector Regression (SVR). The performance analysis of these models were done using simulation 

study and experimental study. Based on the simulation study, Sugeno type-1 Fuzzy Logic model, 

feedforward ANN model and SVR gives very good estimations compared to the feedback ANN models. 

For the experimental study, the experiments were done in the Venturi-rig in University College of 

Southeast Norway, Porsgrunn. The experimental results were very similar to the simulation results, 

where the three models; Sugeno type-1 Fuzzy Logic, feedforward ANN and SVR had comparable 

predictions with some accuracy. Based on the analysis from simulation and experimental study, it seems 

that the empirical models that were developed is capable of estimating the viscosity of non-Newtonian 

drilling fluids.  

In addition to the task description, I and my supervisors have also developed a Matlab toolbox “Dynamic 

Artificial Neural Network for Time Series Analysis and Prediction”. This toolbox was accepted as a paper 

for “The 9th Eurosim Congress on Modelling and Simulation-2016” in Finland. Apart from this, I as a co-
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author manage to get accepted a paper on flowrate measurement of non-Newtonian fluids in the same 

conference.    
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Abbreviation  

HSN Høgskolen i Sørøst-Norge 

SVM Support Vector Machine 

SVR Support Vector Regression 

ANN Artificial Neural Network 

DANN Dynamic Artificial Neural Network 

NN Neural Network 

MSE Mean Squared Error 

MAPE Mean Average Percentage Error 

GUI Graphical User Interface 

RNN Recurrent Neural Network 
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Symbol 

Re Reynolds number 

𝜇 Dynamic viscosity 

𝑣 Velocity 

𝑑 Diameter 

𝜌 Density 

𝜏 Shear stress 

𝛾 Shear rate 

𝑓 Friction factor 

𝑎 Empirical parameter  

𝛽 Empirical parameter 

K Flow consistency 

𝑛′ Flow behavior index 

�̇�𝑤 Wall shear rate 

𝜏𝑤 Wall shear stress 

𝜂 Kinematic viscosity 

𝑥𝑚 Mole fraction 

𝑥𝑣 Volume fraction 

𝑥𝑤 Weight fraction 

𝜖 Empirical parameter 

𝑀 Molecular weight 
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𝐿 Length 

𝑑𝑝 Differential pressure 
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1 Introduction:   

1.1 General background 

The oil companies in these days are facing challenges related to cost and efficiency in drilling 

operations. Oil companies are always looking for possibilities to improve their method in order to pump 

more efficiency and at the same time operates in a safe manner. Some of the factors that is vital for the 

efficiency, is to monitor and control the density and viscosity in the drilling fluid. This challenge may be 

solved by developing control algorithms which can ensure that the drilling fluid that circulates in the 

drilling loop, have a value which is acceptable for both viscosity and density.  

In drilling operations, the drilling fluid is circulated in a closed loop starting from the mud tank into the 

wellbore and back to the mud tank. The mud can be water-based, oil-based or gas-based and is 

circulated during the drilling operation, until the desired depth is reached. During circulation, the 

properties of drilling fluid have significant importance for the safe and efficient drilling operation. The 

viscosity, density, and flow rate or circulating drilling fluid play a vital role, in all drilling operations. [1] 

The goal of this thesis is to get a deeper understanding of how the drilling operation works, the 

importance of the drilling fluids, how to monitor and control density and viscosity, and develop 

empirical models which can be used to estimate the viscosity of non-Newtonian fluids.  

1.2 Structure of the thesis 

This thesis is divided into several chapters where Chapter 2 covers the literate survey of drilling 

functions, non-Newtonian rheology, viscosity measurements and blending mechanisms. Chapter 3 will 

describe the Venturi-rig and the available sensors which will be used for the experimental part.  Chapter 

4 will cover the methods that will be used to develop models. Chapter 5 will be focusing on simulations 

results based on the methods described in chapter 4, and finally Chapter 6 that will discuss the 

experimental results.  
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2 Literature survey on drilling and drilling fluids 
This chapter will give a brief understanding of the fundamentals in drilling operations. It includes topic 

like circulation of drilling fluids, the functions of drilling fluids, rheology of non-Newtonian fluids, 

different methods to measure viscosity for both laminar and turbulent flow, and it will also include the 

methods for viscosity blending mechanism.   

2.1 Circulation of drilling fluid 
In today’s drilling operations, companies are trying to make their operations more efficiency so that 

they can have a bigger profit. One of the main factor for achieving this goal, is to monitor and process 

the drilling fluid. The drilling fluid that is used today is a lot more advanced than the drilling fluid that 

was used back in the old days. In 1901, the drilling fluid was simply made of just water mixed with clay 

cuttings to make the fluid more viscous. Compared to the past, today’s drilling fluid is more complex to 

make and include substances like bentonite, polymers, thinners and barite. Since the goals is to achieve 

optimal performance, the mud engineers are developing methods to reduce the waste of drilling 

additives, to control the extractions of cuttings better and limit the emissions of toxic elements. By 

implementing the methods together with a computer system to monitor the drilling fluid’s properties, 

the drilling expenses can be reduced by 70 percent. [1]   

The process of a drilling fluid loop can be demonstrated as shown in Figure 1. The pump is pumping out 

drilling fluid from the tank and transporting it down to the drill string. The drilling fluid will then carry 

the cuttings from the bottom of the pipe, and into a Solids control system to separate the cuttings and 

small particles from the drilling fluid. The drilling fluid will then go back to the mud tank where it is 

possible to add some additives to maintain the mud properties at a desired level. [2]   

The continuous monitoring of drilling fluid properties like density and viscosity can lead to safe and 

efficient drilling. The density of the drilling fluids is responsible for wellbore stability and viscosity is 

responsible for transportation of drill cuttings. There are two main problems in drilling operations 

regarding wellbore stability; circulation loss and kick. A similar situation occurs frequently in geothermal 

drilling. In geothermal drilling, one of the costly problems is lost circulation that occurs when drilling 

fluid is lost to the formation rather than returning to the surface, preferable intact. The management of 

lost circulation is important and requires the accurate measurement of drilling fluid flow rate both into 

and out the well. This thesis is more concern with viscosity measurement of non-Newtonian fluids and 
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the detail on flow measurement is not included in this thesis. However, we managed to get acceptance 

of the paper on flow measurement in “The 9th Eurosim Congress on Modelling and Simulation-2016”, 

Finland, titled as: “Flowrate Estimation using Ultrasonic Level Sensors using Dynamic Artificial Neural 

Networks with Real Time Recurrent Learning – A Comparative Study of Models and Practical 

Implementation”. The paper is attached in the appendix B.  

 

Figure 1: Circulation of drilling fluid in a drilling operation, which carries the cuttings out  
from the pipe. [2] 

 

2.2 Functions of the drilling fluids 

The drilling fluids that is used in the drilling operations, are designed to handle many important 

functions like transportation of cuttings, management of formation pressures, cooling and lubricating of 

the drilling bit, and ensure stability in the wellbore. Drilling fluids are created differently based on the 

requirements from each wellbore. The mud Engineers that design the drilling fluid need to take rig 

capabilities and environmental concerns into consideration when developing the fluid. The drilling fluid 

should be able to control subsurface pressure, reduce the formation damage as much as possible, 

minimize the loss of drilling fluid, and optimize hole cleaning. [3] 

 

2.2.1 Transportation of cuttings  

During a drilling process, when the drill bit is moving downwards in the pipe, a lot of cuttings will occur. 

These cuttings will eventually stop the drilling if they are not removed. This is due to the fact that the 

drill requires more power to proceed when more and more particles become obstructions. The drilling 

fluid is mixed in a way that when the fluid goes down to the pipe, it is very thin, but when the speed is 
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reduced because of the cuttings, the fluid automatically becomes thicker. It is because of the drilling 

fluid’s ability to change viscosity that it can transport the cuttings from bottom of the pipe. The cuttings 

will be carried to a Solid control system where the cuttings will be removed from the drilling fluid. [2] 

The Solid control system is mainly divided into three steps. When the cuttings arrive to the Solid control 

system, it will go into a shale shaker where the mesh screen will catch the big cuttings and smaller 

particles will continue to the next step. The remaining cuttings will be filtered by a mud cleaner before it 

reaches to the last step where all the fine solids are eliminated. The picture below shows how a Solid 

Control system works. [2] 

 

Figure 2: Solid control system which removes all the cuttings from the drilling fluid  
before it goes back to the mud tank. [2] 

2.2.2 Lubrication and cooling 

As the drilling bit is working, a lot of thermal energy will accumulate due to the frictions that is caused 

by the contact between the drilling bit and the cuttings. The temperature in the drilling bit needs to be 

cool down or else the drill might stop working as expected. This is where the drilling fluid comes into 

the picture. The drilling fluid that are being sent down to the wellbore, is transferring the thermal 

energy from the drilling bit and up to the surface. [3] 

2.2.3 Management of formation pressure 

The drilling fluid plays an important role when it comes to controlling a well. To prevent loss of well 

control, the drilling fluid that is being sent down through the drilling bit will increase the offset in the 

formation pressure. In this way, it is possible to avoid the formation fluids from getting into the 

borehole. It is however, very important to have in mind that the pressure from the drilling fluid must 

not be higher than the fracture pressure, or else the drilling fluid will be lost in the formation. [3]  
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2.2.4 Maintenance of wellbore stability 

To maintain the stability in a wellbore there are some factors that needs to be fulfilled. The density in 

the drilling fluid should always be regulated to control the formation pressure. This is done by 

processing the mud column in such a way that it weighs more than the formation pressure. 

Furthermore, this will also prevent dangerous situation like the wellbore blowing up. [3] 

2.3 Non-Newtonian rheology of drilling fluid 

In the drilling process, the drilling fluids that are used is mostly non-Newtonian fluids. Non-Newtonian 

fluids are liquids that doesn’t follow the law of Sir Isaac Newton. Newton’s law says that the viscosity of 

fluids is dependent on only temperature or pressure. There is however, fluids that operates in a 

different way. These fluids viscosity can change based on other factors like pressure and shear rate and 

is therefore called Non-Newtonian fluids. [4]  

Non-Newtonian fluids reacts differently when a force is applied to them compared to Newtonian fluids. 

While Newtonian fluids shows little reaction when receiving stress, Non-Newtonian fluids reacts 

immediately by changing form. Non-Newtonian fluids can either become more viscous or less viscous 

depending on which substances the fluid was made of. A Non-Newtonian fluid that becomes less 

viscous when receiving stress, is called Shear thinning fluid. On the other hand, fluids that change to a 

more viscous form after collecting stress, is called Shear thickening fluid. Despite the fact that Non-

Newtonian fluid behaves differently when receiving stress, it will go back to their initial state when the 

force is removed. The picture below demonstrates how the viscosity changes for different types of Non-

Newtonian fluids when a force is applied over time. [4]  

 

 

Figure 3: Shows how the viscosity changes over time for  
Rheopectic and Thixotropic fluids. [4] 



                                                                                                                                                                                  

                                                                                                                                                                                                       20 
 

2.3.1 Time-independent fluid 

This subchapter will describe fluids that are time-independent. Fluids that are time independent are not 

dependent on the duration of flow. For time-independent fluid there exist two types; shear-thinning 

and shear-thickening fluid. [5] 

2.3.1.1 Shear-thinning fluid 

These fluids will have their viscosity decreased when the shear rate increases. An example of this can be 

Ketchup. If you want to get out the remaining Ketchup from the bottle, you need to shake the bottle a 

few times so it is possible to squeeze out the ketchup. The purpose behind the shaking, is to apply 

stress to the sauce, so that the viscosity decreases. [4]   

Viscosity can be found using this formula: 

𝜂 =
𝜏

𝛾
 (1) 

 

Where 𝜂 is viscosity, 𝜏 is shear stress and 𝛾 is shear rate. 

 

Figure 4: Ketchup is a shear thinning fluid. [4] 

 

 

Figure 5: For shear thinning fluid, the viscosity decreases 
when the shear rate increase. [4] 
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2.3.1.2 Shear-thickening fluid 

Fluids that increase in viscosity when the shear rate increase, is called Shear-thickening fluids. An 

example of a fluid with this function is oobleck. Before stress is applied, the oobleck is in liquid form, but 

as soon at someone grab it, the form will start to get thicker. [4] 

 

 

Figure 6: Oobleck is a shear thickening fluid. [4] 

 

Figure 7: The viscosity for shear thickening fluids increase 
when the shear rate increase. [4] 

2.3.2 Time-dependent fluid 

This subchapter will describe fluids that are time-dependent. Fluids that are time-dependent are 

dependent on the duration of flow. For time-dependent fluid there exist two types; thixotropic and 

rheopectic fluid. [6] 

2.3.2.1 Thixotropic fluid 

These fluids will unlike the fluids mentioned above, have their viscosity changed over time and not only 

through stress. For thixotropic fluids, the viscosity will decrease as time goes by. An example of this type 

of fluid is honey. If you have a cup with honey and stirs the honey, you will see that the honey start 

changing form from solid to liquid. [4]  
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Figure 8: Honey is a thixotropic fluid. [4] 

 

Figure 9: For thixotropic fluids, the viscosity decrease when it 
receives stress over time. [4] 

  

2.3.2.2 Rheopectic fluid 

Fluids that have their viscosity increased over time when stress is applied, is called Rheopectic fluids. To 

illustrate how these type of fluids behaves, an example with cream will be used.  When the cream is 

getting whipped over some time, the viscosity increase and the cream gets thicker. [4] 

 

Figure 10: Cream is a rheopectic fluid. [4] 

 

Figure 11: Shows how rheopectic fluids viscosity increase 
over time when stress is applied. [4] 

2.4 Viscosity measurement of drilling fluid in different flow conditions  

When measuring viscosity of drilling fluids, there are different measurements methods for different 

fluids types like Non-Newtonian and Newtonian. The choice of method is also dependent on if the flow 

is turbulent or laminar. This subchapter will describe the methods than can be used to measure 

viscosity for different flow conditions.   
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2.4.1 Lab scale viscosity measurement on fluid samples 

This subchapter will describe some lab instruments that can be used to measure the viscosity. Note that 

these instruments don’t measure in real time. For real time viscosity measurements, see under laminar 

and turbulent flow.  

3.4.1.1 Zahn Cup 

A Zahn cup can measure the viscosity by taking the time a fluid uses to flow through the orifice which is 

positioned at the bottom of the cup. The Zahn cup comes in different sizes which support different 

viscosity ranges. There is therefore important to select the right cup when measuring viscosity. Zahn 

cups that is produced by an engineering company called Brookfield have this table that will help the 

user to choose the right cup [7]: 

 

After the time is taken, the user can use the time and the size of the Zahn cup to find the viscosity in a 

conversion table.   

 

Figure 12: Zahn Cup, a lab instrument to measure viscosity.  

 

3.4.1.2 March Funnel 

This instrument is often used to measure the viscosity of drilling mud. The behavior of this device 

almost works like a Zahn Cup, but with this device there is no need for a conversion table. The time 

(seconds) it takes to transfer the fluid from a funnel to fill up the Marsh cup is equals to the amount of 

viscosity (1 second = 1 viscosity). [8] 
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Figure 13: Marsh Funnel instrument 

 

3.4.1.3 Capillary viscometer 

This instrument is very common used to measure viscosity due to its simplicity and low cost [9]. The 

viscosity is found by counting the time it will take for the fluid to flow through the capillary. Since the 

flow time is proportional to the fluid’s kinematic viscosity, it is possible to calculate the viscosity value 

by using a conversion factor. The conversion factor can differ from instruments to instruments, so 

remember to check the conversion number in the instrument’s specification [10]. The picture below 

illustrated how to use a capillary viscometer.  

 

Figure 14: Capillary viscometer 

3.4.1.4 Rotational viscometer 

A viscometer that can find the viscosity for both Newtonian and non-Newtonian fluids. The device is 

calculating the viscosity based on the resistance from an object that is rotating in the fluid. The object 

can for an instance be a spindle that rotates inside the fluid. Viscometers are also common used it other 

Vendors like the Food industry that use rotational viscometer to quality check their food to have a 

viscosity value within an acceptable range. [11]  
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Figure 15: Rotational viscometer 

  

2.4.2 Viscosity measurement in laminar flow 

To determine the viscosity for fluids that moves smoothly or in proper paths, there are some 

instruments that can be used to find the viscosity for both Newtonian and non-Newtonian fluids. These 

instruments can for instance be Ultrasonic Doppler Velocimetry, or Laser Doppler Velocimetry (LDV). By 

using these instruments, it is possible to find the viscosity by dividing shear stress (pressure drop in the 

measurement) with shear rate (the velocity profile from the instrument). [12] 

2.4.2.1 Ultrasonic Doppler Velocimetry 

Ultrasonic Doppler was originally developed for medical purposes, but the technology has later been 

used in other fields such as in fluid dynamics. This sensor can be used to determine the speed in a 

laminar flow by emitting ultrasonic waves which will be reflected and picked up by a receiver. [13] 

 

Figure 16: Ultrasonic Doppler Velocimetry can be used to  
determine the laminar flow.   
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2.4.2.2 Laser Doppler Velocimetry  

This instrument can be used to measure the velocity of a flow with very high accuracy with no need for 

calibration. There is however a downside with this sensor, and that is the cost. The Laser Doppler 

Velocimetry works in a such way that it sends out a laser toward a target, and the reflected radiation 

from the target will determine the velocity. [14] 

 

 

Figure 17: Laser Doppler Velocimetry, an alternative  
to measure laminar flow. 

 

2.4.3 Viscosity measurement in turbulent flow 

When it comes to measure the viscosity for turbulent flow, there exists different methods for 

Newtonian and non-Newtonian fluids. For Newtonian fluids, the viscosity can be determined by using a 

moody chart. Complementary to this, a model developed from Trinh can be used to find the viscosity 

for non-Newtonian fluids. [12] 

2.4.3.1 For Newtonian fluids 

To find the viscosity for Newtonian fluids in turbulent flow, a Moody Chart can be used. One possible 

way of doing this, is illustrated in the steps below [15]: 

1. Find the number for the Pipe Roughness. This can be found in the pipe specification. 

2. Use the Pipe Roughness value in a Moody chart to find the friction factor. 

3. When the friction factor is known, find the Reynolds number from this formula: 

𝑅𝑒 =
16

𝑓
 

(2) 

 

where, 𝑅𝑒 is the Reynolds number and 𝑓 is the friction factor 
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4. Use Reynolds number to find the viscosity: 
 

𝜇 =
𝑑𝑣𝜌

𝑅𝑒
 

 

(2) 

 

where,  
𝜇 = 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 

𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒 

𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑝𝑒 

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 

 

2.4.3.2 For Non-Newtonian fluids 

To find the viscosity for non-Newtonian fluids in turbulent flow, an analytical model developed by Trinh 

can be used. Note that this model can only be used for Power Law fluids. One possible way of doing 

this, is illustrated in steps below [16]:  

1. Find the wall shear rate �̇�𝑤 from this equation: 
 

�̇�𝑤 =

[
 
 
 
 𝛼𝑣2−2𝛽+𝑛′𝛽𝜌1−𝛽𝐾𝛽−18𝛽(1−𝑛′) (

3𝑛′ + 1
4𝑛′ )

𝛽𝑛′

2𝐷𝛽𝑛′

]
 
 
 
 

1
𝑛′

 

 

 

 

(3) 

 

where, 

𝑎 = 𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝛽 = 𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
𝜌 = 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝐾 = 𝑓𝑙𝑜𝑤 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 

𝐷 = 𝑝𝑖𝑝𝑒 𝑑𝑖𝑎𝑚𝑎𝑡𝑒𝑟 

𝑛′ = 𝑓𝑙𝑜𝑤 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 

 

2. Find the wall shear stress 𝜏𝑤 from this equation for pseudoplastic fluid: 
 

𝜏𝑤 = 𝐾�̇�𝑤
𝑛′

 

 

(4) 

 

where, 
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�̇�𝑤 = 𝑤𝑎𝑙𝑙 𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 
𝑛′ = 𝑓𝑙𝑜𝑤 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 

 

3. Calculate the viscosity 𝜇: 
 

𝜇 =
𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒
=

𝜏𝑤

�̇�𝑤
 

 

(5) 

 

2.4.4 “Flow-viz” a new non-invasive viscosity measurement for non-Newtonian fluids  

It seems there has been developed a new non-invasive instrument to measure viscosity for non-

Newtonian fluids for all kinds flow conditions. The product name is “Flow-viz” and was created by Johan 

Wiklund with cooperation with “SP Technical Research Institute of Sweden”.  Their product can do 

measurement in real time non-invasively by using an ultrasound based system. The instrument can 

deliver accurate measurements even through stainless steel pipes. The developers claim that by using 

their product, it is possible to; [17] 

 Measure transient flows with coarse particles. 

 Do consistency measurement without exposing the product. 

 Increase the efficiency and flexibility without sacrificing safety. 

 Monitor the changes in the system in real time. 

 Increase productivity and reduce energy consumption. 

 The time with inaccurate, time-consuming sampling and off-line sample analysis are now a 

history.  

 

Figure 18: "Flow-viz" - an instrument to measure viscosity for non-Newtonian fluids in real time [17] 
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2.5 Viscosity blending mechanism 

This subchapter will describe how to mix drilling fluids by using different methods that has been 

developed over the years since 1905. For each method, there will be some information about if the 

blending methods is for binary or multiply fluids, and also the steps for using the methods. The timeline 

below illustrates some blending mechanism methods that has been evolved from 1905 to 2000.  

 

Figure 19: Timeline of blending methods from 1899-2000 

 

2.5.1 Arrhenius method 

This method is used for binary blending and is known as the ideal binary mixing, because the mixing 

between the fluids doesn’t affect the volume. [18]  

Steps: 

1. Calculate the blend viscosity µ12 from this formula: 

 

𝑙𝑛µ
12

= 𝑥𝑚1𝑙𝑛µ
1
+ 𝑥𝑚2𝑙𝑛µ

2
 

 

(6) 

where, 𝑥𝑚𝑖  (𝑖 = 1,2) is the mole fraction and µ𝑖 (𝑖 = 1,2) is the dynamic viscosity 

 

2.5.2 Bingham’s method 

This model is a binary blending method that is generally not very accurate for viscosities predictions in 

petroleum oil blends, because it was designed for “ideal” solutions. [19] 

Steps: 
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1. Calculate the blend viscosity µ𝟏𝟐 from this formula: 

 

1

µ
12

=
𝑥𝑣1

µ
1

+
𝑥𝑣2

µ
2

 

 

(7) 

where, 𝑥𝑣𝑖 (𝑖 = 1,2) is the volume fraction and µ𝑖 (𝑖 = 1,2) is the dynamic viscosity.  

 

2.5.3 Kendal & Monroe’s method 

This is a binary blending method which use cubic-root average of each fluid to find the blend viscosity 

𝜂12 . The downside of Kendal & Monroe’s method, is that their equation doesn’t give satisfactory 

accuracy.  [18] 

Steps: 

1. Calculate the blend viscosity 𝜂12  from this formula: 
 

𝜂
12
1/3

= 𝑥𝑤1𝜂1
1/3

+ 𝑥𝑤2𝜂2
1/3

  

 

(8) 

where,  𝑥𝑤𝑖 (𝑖 = 1,2)  is the weight fraction and 𝜂𝑖 (𝑖 = 1,2)  is the kinematic viscosity. 

2.5.4 Lederer & Roegiers method 

This is a binary blending method which was independently created by Lederer & Roegiers. Researches 

shows that this method is one of the most accurate equations that use one-parameter. [18] 

Steps: 

1. Calculate the blend viscosity µ12 from this formula: 
 

𝑙𝑛µ
12

=  𝑙𝑛µ
1
+

𝛼𝑥2

𝑥1 + 𝛼𝑥2
(𝑙𝑛µ

2
− 𝑙𝑛µ

1) 

 

(9) 

=
𝑥1

𝑥𝑚1 + 𝛼𝑥2
𝑙𝑛µ

1
+

𝛼𝑥2

𝑥𝑚1 + 𝛼𝑥2
𝑙𝑛µ

2
 (10) 

                                                          

where, 𝑥𝑚𝑖  (𝑖 = 1,2) is the mole fraction and µ𝑖 (𝑖 = 1,2) is the dynamic viscosity, and 𝛼 is the 

empirical parameter for the difference cohesion energy between the mixing components.  
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2.5.5 Grunberg & Nissan’s method 

This method is an extension of the Arrhenius method which include an additional term to describe non-

ideality of a system. Grunberg & Nissan’s method is a binary blending method. [18] 

Steps: 

1. Calculate the blend viscosity µ12 from this formula: 
 

𝑙𝑛µ
12

= 𝑥𝑚1𝑙𝑛µ
1
+ 𝑥𝑚2𝑙𝑛µ

2
+ 𝑎𝑥1𝑥2 

 

(11) 

where, 𝑥𝑚𝑖  (𝑖 = 1,2) is the mole fraction, µ𝑖 (𝑖 = 1,2) is the dynamic viscosity, and 𝑎 is the 

empirical parameter. 

 

2.5.6 Gambill’s method 

Gambill developed a model to estimate the kinematic viscosity of a binary blending. [20]  

Steps: 

1. Calculate the kinematic viscosity 𝜇𝑘 from this equation: 
 

𝜂𝑘

1
3 = 𝑥𝑚𝑎𝜂𝑘𝑎

1
3 + 𝑥𝑚𝑏𝜂𝑘𝑏

1
3  

(12) 

 

where, 

𝜂𝑘 = 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝑥𝑚 = 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

𝑎 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 

𝑏 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2 
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2.5.7 Reid’s method 

This method is for binary blending and defines the kinematic viscosity of a mixture consisting of two 

components. [21]  

Steps: 

1. Calculate the kinematic viscosity 𝜂𝑘  from this formula: 
 

𝑙𝑛𝜂𝑘 = 𝑥𝑚𝐴
3 𝑙𝑛𝜂𝑘𝐴

+ 3𝑥𝑚𝐴
2 𝑋𝐵𝑙𝑛𝑣𝐴𝐵 + 3𝑥𝑚𝐴𝑥𝑚𝐵𝑙𝑛𝑣𝐴𝐵 + 𝑥𝑚𝐵

3 𝑙𝑛𝜂𝑘𝐵
+ 𝑅0 

 

(13) 

where, 

𝑅0 = 𝑥𝑚𝐵
3 𝑙𝑛

𝑀𝐵

𝑀𝐴
+ 3𝑥𝑚𝐴𝑥𝑚𝐵

2 𝑙𝑛
1 +

2𝑀𝐵
𝑀𝐴

3
+ 3𝑥𝑚𝐴

2 𝑋𝐵𝑙𝑛
2 +

𝑀𝐵
𝑀𝐴

3
− 𝑙𝑛𝑥𝑚𝐴 + 𝑥𝐵

𝑀𝐵

𝑀𝐴
 

 

(14) 

 

𝑥𝑚 = 𝑚𝑜𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 

𝑀 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑣𝐴𝐵 , 𝑣𝐵𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑠𝑡 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑚𝑒𝑡ℎ𝑜𝑑 
𝐴 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 

𝐵 = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2 

 

2.5.8 Khan’s method 

Khan developed two empirical models with double logarithm to predict viscosity; one linear and one 

non-linear model. [21]  

Linear: 

𝑙𝑛𝑙𝑛(𝜇) = 𝐶1𝑙𝑛𝑇 + 𝐶2 

 

(15) 

Non-linear: 

𝑙𝑛𝑙𝑛(𝜇) = {1.0 + 𝑏1𝑇 + 𝑏2(𝑏1𝑇)2}𝑒𝑏1𝑇 
 

(16) 

where, 

𝜇 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 [𝑚𝑃𝑎𝑠] 

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[𝐾] 

𝐶 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 

𝑏 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 
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2.5.9 Oswal-Desai’s method 

This is a binary blending method that is built from the Grunberg-Nissan’s method. Compared to 

Grunberg-Nissan’s method, this method adds two additional terms that will improve the accuracy, but 

in return make a more complex model due to the extra parameters. [18] 

Steps: 

1. Calculate the blend viscosity 𝜂12 from this formula: 
 

𝑙𝑛𝜂12 = 𝑥𝑚1𝑙𝑛𝜂1 + 𝑥𝑚2𝑙𝑛𝜂2 + 𝜖𝑥1𝑥2 + 𝐾1𝑥𝑚1𝑥𝑚2(𝑥1 − 𝑥2) + 𝐾2𝑥𝑚1𝑥𝑚2(𝑥𝑚1 − 𝑥𝑚2)
2 

 

(17) 

where,  𝑥𝑖  (𝑖 = 1,2) is the mole fraction, 𝜂𝑖 (𝑖 = 1,2) is the dynamic viscosity, 𝜖 is the parameter 

for empirical interaction, and 𝐾𝑖(𝑖 = 1,2) is the extra parameters. 

 

2.5.10 Refutas method 

This is a binary blending method which are very common used in the petroleum industry. This method 

is known for their double-logarithmic in their equation. [18]  

Steps: 

1. Find the blending index  𝐴𝑖 for each components with this formula: 
 

𝐴𝑖 = 14.534𝑙𝑛[𝑙𝑛(𝜇𝑖 + 0.8)] + 10.975      (𝑖 = 1,2) 

 

(18) 

where, 𝜇𝑖 is the kinematic viscosity 
 

2. Find the average viscosity blending index 𝐴12: 
 

𝐴12 = 𝑥1𝐴1 + 𝑥2𝐴2 (19) 

where, 𝑥𝑖 (𝑖 = 1,2)  is the weight fraction 
 

3. Calculate the blend viscosity 𝜂12: 
 

𝜂
12

= 𝑒𝑥𝑝 [𝑒𝑥𝑝 (
𝐴12 − 10.975

14.534
)] − 0.8 

(20) 
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3 System description for Venturi-rig 

This chapter will describe all the setups and the equipment that can be used for experiments. By 

reading this chapter, the reader will get an overview of how the experimental data explained later in 

chapter 6 was acquired. The Venturi-rig is a test rig that was created in 2013 by a project group 

consisting of machine and automation students at HSN. The project was a cooperation between 

students from HSN and a company named Statoil. The purpose behind this project was to create a rig 

which could be used to test different measurements methods based on fluid circulation in the rig. [22] 

3.1 Overview of the system with P&ID 

The Figure 20 below gives an P&ID of the sensors, actuators connected to the Venturi-rig and tanks. [23]  

Description of a normal circulation process in the rig: 

1. The fluid in Tank 1 will be pumped out through Valve 1, and on the way to the feeding tank, it 

will pass through sensors that will give information to the operators.  

2. The feeding tank is the step where the tank is filled up before the fluid continues to flow through 

the Venturi section which has three level sensors installed. 

3. The fluid flows back to tank 2 and goes back to tank 1 through valve 3.   

 

A more detailed description of how to use the Venturi-rig, is provided in the Appendix C. 
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Figure 20: P&ID diagram of the system. 

Where, 

Sensor Description 

Coriolis 
promass 801 

Three outputs:  

 Viscosity 

 Density 

 Flow 

Coriolis 
promass 63 

Two outputs: 

 Density and flow 

TT  Temperature Transmitter 

FT Flow Transmitter 

PDT Pressure Differential transmitter 

LI Level Indicator 

DT900 Gamma sensor 
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3.2 Functions of the Venturi section 
This 3D picture below was created in AutoCAD where the specifications was taken from a bachelor 

thesis in 2015 at HSN. [23]  

As seen in the picture, there are three level sensors, LT-18, LT-18 and LT-15. It is also possible to adjust 

the position of these sensors. The fluid will in this picture flow from right to left before it goes back to 

the tank. There is also a throat section below level sensor LT-18. This smaller section will cause a 

significant jump which will be registered by sensor LT-18. This information can together with the other 

level sensors, be used to calculate the flow rate. [24]    

 

Figure 21: Venturi section with three level sensors 
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3.3 Sensors used in the Venturi-rig 

The sensors that are available in the Venturi-rig will be specified in this subchapter. The subchapter will 

mainly focus on the range and the accuracy of the sensors.  

3.3.1 Pressure transmitter 

This sensor can be used to measure the pressure of gases, vapours and liquids. [23, 25] 

Specification Picture 

 

 

 

Vendor: Aplisens 

Type: PCE-28 

Range: 0-7 bar 

Accuracy: ±0,1% 
  

 

 

 

3.3.2 Pressure differential transmitter 

This sensor can be used to measure the differential pressure of gases, vapours and liquids. [23, 26] 

Specification Picture 

 

 

 

Vendor: Aplisens 

Type: APRE-2000 

Range: 0-250 mbar 

Accuracy: ±0,1% 
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3.3.3 Temperature transmitter 

This sensor can be used to measure the temperature of gases and liquids. [23, 27] 

Specification Picture 

 

 

 

Vendor: Aplisens 

Type TST41N 

Range 0-100 oC 

Accuracy  ±0,19% 
  

 

 

 

3.3.4 Coriolis flow meter (Promass 63) 

This sensor can be used to measure the mass and volume flow of fluids. It has two analog output which 

is mass flow and density [24]. 

Specification Picture 

 

 

 

 

 

Vendor: Endress & Hausser 

Type: Promass 63 

Range Massflow: 0-1000 l/min 

Density: 900-1600 kg/m3 

Accuracy: Liquid: ±0.10% 

Gas: ±0.50% 
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3.3.5 Coriolis flow meter (Promass 801) 

This sensor can be used to measure density, viscosity and flowrate [27] 

Specification Picture 

 

 

 

 

Vendor: Endress & Hausser 

Type: Promass 801 

Range Massflow: 0-1000 l/min 

Density: 900-1600 kg/m3 

Viscosity: 0-200 cP 

Accuracy: Liquid: ±0.10% 

Gas: ±0.50% 

 

 
 

 

 

 

3.3.6 Ultrasonic level sensor 
This sensor can be used to measure the level of the fluid in the system. [23, 28] 

Specification Picture 

 

 

 

Vendor: Rosemount 

Type 3107 Level 

Range: 0.3-12 m 

Power supply: 12…40 V DC 
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3.3.7 Gamma sensor 

This sensor can be used to measure the density of liquids with high speed. [23, 29] 

Specification Picture 

 

 

 

Vendor: S-TEC 

Type: DT-9300 

Range: 1-1.7 gm/cc 

Accuracy: ±0.2% 

  

 

 

 

3.4 Fluids used in the Venturi-rig 

The fluids that will be used for the experimental part in chapter 6, will be described in this subchapter. 

The two fluids that will be used consists of water, potassium carbonate and xanthan Gum. The table 

below will show the properties of the fluids. [1] 

 

Table 1: The properties of the fluids used in the experiment 

 Fluid 1 Fluid 2 

Density 1160 kg/m3 1428 kg/m3 

pH 11.91 13.68 

Characteristic  Low density 

 High viscosity 

 

 High density 

 High viscosity 

Recipe Water mixed with 

Potassium Carbonate 

and Xanthan gum 

Water mixed with 

Potassium Carbonate 

and Xanthan gum 
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3.5 Empirical model setup 

To determine viscosity, the general equation need shear stress and shear rate. In the Venturi-rig, it is 

not possible to measure shear rate based on the available sensor systems. However, it is possible to 

measure shear stress of incompressible non-Newtonian fluid at any flow regime using the Equation 21, 

where D, L, dp and τ are diameter of pipe, length of pipe, pressure drop in the length L, and shear stress 

respectively. The differential pressure measurement can be determined using differential pressure 

sensor in the Venturi-rig. To develop empirical models, 30 different fluid samples with different density 

and viscosity are used. Therefore, the empirical model consists of density of the fluid and shear stress as 

inputs and viscosity as output.   

𝜏 =
𝐷

4
×

𝑑𝑝

𝐿
 

(21) 

 

                                                                                                       

  



                                                                                                                                                                                  

                                                                                                                                                                                                       42 
 

4 Basics of empirical methods used  

In this thesis, different data models are studied. This chapter will describe the approaches that is used 

to develop data models to estimate the viscosity for non-Newtonian drilling fluid. The methods include 

Fuzzy Logic approach, Artificial Neural Network approach and Support Vector Machine.  

4.1 Fuzzy logic 

Fuzzy logic is a logical tool that can be used to represent arguments that lies between true and false. An 

example of a how fuzzy logic can be used, is to think about a glass of water. Where the traditional 

Boolean logic (0 or 1) can only describe the glass as either empty (0) or full (1), fuzzy logic can in 

addition to the Boolean logic, also determine other possible outcomes like half full (0.5) and almost full. 

A fuzzy logic tool can be thought of as a function that receives inputs and give out an output based on 

the rules and the membership functions that has been specified in the setup of fuzzy logic. [30] 

 

 

Figure 22: A block diagram of a type-1 fuzzy logic system with a complete overview of how it works. [30] 

Figure 22 shows the block diagram of fuzzy logic implementation. It includes fuzzification, inference 

mechanism, rules and defuzzification. Fuzzification is a process of converting crisp inputs into fuzzy 

input sets using suitable membership functions. In Fuzzy Logic, a selection of suitable inference 

mechanism plays a vital role in the output of fuzzy logic model. In general, there are two types of 

inference mechanism; Mamdani inference mechanism and Sugeno inference mechanism. The inference 

mechanism is connected to the rules of fuzzy logic. The rules will govern the implementation of fuzzy 

logics. Finally, defuzzification converts the fuzzy set values to crisp outputs. [30] 

In this thesis, fuzzy logic with Mamdani and Sugeno inference mechanism are studied for viscosity 

estimation. For this study, Matlab fuzzy logic toolbox is used. In addition, type-2 fuzzy logic with Sugeno 

inference mechanism is analyzed for viscosity modeling. In this analysis, the toolbox developed by 

Kumbasar, [31] is used. Figure 23, shows the block diagram of type-2 fuzzy logic system. The only 

difference with type-1 fuzzy logic system is the “type-reducer” block in type-2 fuzzy logic system. In 
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type-2 fuzzy logic system, the membership functions are interval type and need to be reduced during 

defuzzification process using type-reducer [31]. There are several types of type-reducer incorporated in 

the toolbox developed by Kumbasar, [31].   

 

Figure 23: A block diagram of a type-2 fuzzy logic system with a complete overview of how it works. [31] 

 

4.2 Artificial Neural Network  

Artificial Neural Network (ANN) is a pattern recognition method that was inspired by the way human 

brain interacts. A neuron is like a living cell in a human’s brain that receives and processes inputs before 

it generates an output. By creating a lot of neurons, we have a network that can train computers to 

think more like a human. The reason for why it is desired to make the computers operates more like a 

human, is due to the fact that there are tasks that are very simple for humans, but not for computers 

and opposite. A human can for instance easily distinguish between a cat and a dog, while it would be 

more difficult for a computer. [30, 32] 

Before implementing a ANN model, the model has to be trained and validated. Without proper training, 

the model will have inaccuracy in the outputs. There are different types of training algorithm and the 

general process for training the model can be briefly summarized as follows [30]; 

1. The inputs to the model are connected to neurons in the hidden layer, neurons are connected 

to each other in multiple hidden layers and with output layer. Each connection is assigned with a 

synaptic weight, which are the model parameters. A bias can be added to each of the neurons in 

the network. The weights are updated as the model is trained.  

2.  The neurons will combine the weight and the inputs together before it moves on to the 

activation function where the output of the model will be determined. There exist many 



                                                                                                                                                                                  

                                                                                                                                                                                                       44 
 

different types of activation functions, so the selection of an activation functions depends on the 

specification of the application that the model will be used for. Some common activation 

functions are linear function, step function, ramp function and tansigmoid function. 

3. The output from the model are compared with target values and the weights of the network are 

updated based on the error between model output and target value. For each updated weights, 

the error in the model becomes smaller and smaller. This step will be repeated until the error is 

within the threshold that has been specified in the training algorithm.  

4. The trained model is further validated and tested with validation and testing datasets before 

implementing.  

Neural network can be broadly divided into two types; feedforward (static) and feedback (dynamic) 

[30]. These types will be described in the subchapter below.  

4.2.1 Feedforward Artificial Neural Network  

A feedforward neural network uses current inputs and outputs to develop the model [30]. It is used for 

estimation and classification of static applications. The architecture of the network will always move in 

one direction and never backwards as shown in Figure 24. 

 

Figure 24: Architecture of Feedforward Neural Network with two inputs, two neurons and one output. [33] 

In order to implement Feedforward ANN, Matlab Neural Network Toolbox is used in this thesis. In 

Matlab NN toolbox, there are three different types of learning algorithms;  
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a) Levenberg-Marquardt learning algorithm: in this learning algorithm, training stops as the 

validation error increases as compared to the training error. This algorithm is faster in learning, 

but takes more memory. [34] 

b) Bayesian Regularization learning algorithm: in this learning algorithm, training stops as per the 

minimization of adaptive weights. This algorithm is slow, but can give good result for difficult, 

small and noisy datasets. [34] 

c) Scaled Conjugate Gradient learning algorithm: this learning algorithm works similar to Levenberg-

Marquardt learning algorithm, but takes less memory. [34]   

The simulation study and experimental study using Feedforward ANN is discussed in Chapter 5 and 

Chapter 6 respectively.  

4.2.2 Feedback Artificial Neural Network 

A Feedback ANN uses previous inputs and previous outputs to develop the model. It is used to perform 

time-series predictions. Based on the architecture of a network, feedback ANN can either be Partially 

Connected Recurrent Neural Network or a fully connected Neural Network. The difference between 

these two architecture lies in the feedback loops. Partially Neural Network do not have self-feedback 

loops, while Fully Connected Neural Network has it. [35] 

4.2.2.1 Partially Connected Recurrent Neural Network 

To implement Partially Connected Recurrent NN, Matlab NN toolbox is used in this thesis. The 

architecture of Partially Connected Recurrent NN with feedback loops is shown in Figure 25. The 

toolbox has a possibility to use three different kinds of networks.  

a) Non-linear Input- Output network: in this partially connected recurrent NN, different number of 

previous inputs are used to estimate current output.  

b) Non-linear Autoregressive: in this partially connected recurrent NN, different number of previous 

outputs are used to estimate current output. 

c) Non-linear Autoregressive with External Input: in this partially connected recurrent NN, different 

numbers of both previous input and output are used to estimate current output. 

The learning algorithms for all these partially connected recurrent NN are same as that are used in 

feedforward ANN. In this thesis, Non-linear Autoregressive with External Input network is used for the 
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simulation and experimental analysis of partially connected NN. The simulation study and experimental 

study are discussed in Chapter 5 and Chapter 6 respectively. 

 

 

Figure 25: A simple architecture of Partially Connected Recurrent NN with feedback from the hidden neurons. [30] 

4.2.2.2 Fully Connected Recurrent Neural Network 

To make a usage of Fully Connect Recurrent Neural Network, a Matlab toolbox was developed under 

this thesis work. This toolbox was developed as the existing Matlab NN toolbox doesn’t have a 

possibility to use fully connected recurrent NN. A detailed description on how to use this toolbox is 

presented in [35] and is attached in the appendix C. Figure 26 shows the architecture of Fully 

Connected Recurrent NN that is used in the developed toolbox. The simulation study and experimental 

study using Feedforward ANN is discussed in Chapter 5 and Chapter 6 respectively. The developed 

toolbox includes three different types of learning algorithms: 

a) Back Propagation Through Time (BPTT): it is extension of classical gradient-based 

backpropagation algorithm. In this learning algorithm, the feedforward ANN architecture is 

unfolded into feedback ANN with different number of folds. This is an offline learning algorithm. 

It converges faster and can be complex if the number of fold increases. [33, 35] 

b) Real Time Recurrent Learning (RTRL): it is the most accepted online learning algorithm. It is 

simple but converges very slow. [33, 35] 

c) Extended Kalman Filter Learning (EKF): it is an online learning algorithm. It is the fastest 

converging learning algorithm and is complex compared to other learning algorithms. [33, 35]  
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Figure 26: General architecture of Fully Connected Recurrent Neural Network with feedback loops. [35] 

4.3 Support Vector Machine  

Support Vector Machine (SVM) is used in different applications like pattern recognition, classification 

problems, time-series prediction and regression analysis [33]. The basic idea of SVM is to develop a 

mapping between input and output space by transferring the original input space into higher 

dimensional feature space using kernel functions [36]. In this thesis, SVM is used in regression mode as 

Support Vector Regression (SVR) to solve the regression problem. A general architecture of SVR is 

shown in Figure 27. The simulation study and experimental study using Feedforward ANN is discussed in 

Chapter 5 and Chapter 6 respectively.    

 

Figure 27: General architecture of Support Vector Regression method showing input space, feature space and output space.  
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5 Viscosities of sample fluids in empirical models 

In this Chapter, all the simulation results from different methods discussed in Chapter 4 are presented. 

Simulations are performed in Matlab and LabVIEW software. For the development of different data 

models, previously measured dataset is used. The dataset is generated using 30 different drilling fluids 

samples with laboratory viscosity measuring device in Statoil [12]. The dataset consists of shear stress, 

shear rate and viscosity of 30 different samples. Chhantyal, [12] has used shear stress and density as 

inputs and viscosity as outputs for his empirical models. In this work, different empirical models are 

tested for the estimation of viscosity. The evaluation of the developed models is done based on the 

Mean Absolute Percentage Error (MAPE) criterion.  

5.1 Fuzzy logic simulation with fluid samples 

Two different types of fuzzy logic approaches are investigated for viscosity estimation. The classical 

type-1 fuzzy logic with Mamdani and Sugeno inference and type-2 fuzzy logic with Sugeno inference 

mechanism are tested.   

5.1.1 Mamdani Inference Mechanism with Type-1 Fuzzy Logic 

Figure 28 is a block representation of Fuzzy logic model with Mamdani inference mechanism with shear 

stress and density as two inputs, and viscosity as output of the model. Figure 29, Figure 30, and Figure 

31 show the membership plot of each variables in the fuzzy logic model. In this modeling, triangular 

membership function is selected due to its simplicity. Each variables is represented by the linguistic 

variables. The linguistic variables are represented as LL is low-low, L is low, M1 is close to medium, M2 is 

medium, H is high, and HH is high-high. In order to compare between the variables, the values of each 

variable are normalized to [0,1]. Table 2 shows 20 different rules designed for the estimation of 

viscosity based on the shear stress and density measurements in column and rows respectively. The 

rules are generated based on the basic principle of non-Newtonian drilling fluids. Based on these rules, 

the predictions are plotted against the target values as shown in Figure 32. The model prediction using 

the Fuzzy model is capable of identifying the behavior and basic principle of the non-Newtonian fluid. 

However, the accuracy of the model is not acceptable. It is also true that the model can be improved a 

lot by formulating more rules that can cover different cases. Nevertheless, as rules increases the 

complexity of the model increases and might not be applicable to implement in online applications.  In 

fuzzy logic modeling, the better understanding of system, behavior or dynamics of process can lead to 
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better model. It is therefore necessary to spend a lot of time and tune the model to map the inputs and 

output for better model representation. The optimal number, type of membership functions and the 

implementation of suitable rules are biggest challenges while developing fuzzy logic model with 

Mamdani inference mechanism.  

 

Figure 28: A block representation of Fuzzy Logic approach with Mamdani inference mechanism. The model consists of two inputs (Shear 
stress and Density) and one output (Viscosity). 

 

 

Figure 29: The membership function plot in Mamdani type-1 fuzzy logic for shear stress with 6 different linguistic values within the range 
of [0,1].  
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Figure 30: The membership function plot in Mamdani type-1 fuzzy logic for density with 5 different linguistic values within the range of 
[0,1]. 

 

Figure 31: The membership function plot in Mamdani type-1 fuzzy logic for viscosity with 6 different linguistic values within the range of 
[0,1]. 

Table 2: If-then rules of Mamdani type Fuzzy model for viscosity estimations based on shear stress and density measurements. 
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Figure 32: The target vs. prediction plot using the Mamdani type-1 Fuzzy logic model. 

 

 

5.1.2 Mamdani Inference Mechanism with Type-2 Fuzzy Logic 

Type-2 Fuzzy logic uses interval type membership function that has upper limits and lower limits. The 

performance gets better with type-2 fuzzy logic method if the data consist of noise [31]. In this thesis, 

type-2 fuzzy logic with Sugeno inference mechanism is used with an intension to improve the fuzzy logic 

predictions. The open source toolbox provided by Kumbasar, [31] is used to implement type-2 fuzzy 

logic. Figure 33 and Figure 34 show the membership function plot for shear stress and density under 

type-2 fuzzy logic system respectively. The new linguistic values are added constructing an interval for 

each fuzzy sets. The same rules used in type-1 fuzzy logic model were considered in this model. 

However, there was no significant improvement in the model predictions using interval type fuzzy logic 

system. It is due to the fact that, type-2 fuzzy logic system can create a significant impact on fuzzy logic 

modeling with noisy data. In our case, all the calibration dataset are generated using highly accurate 

laboratory measurement system with almost no noise. Similar to type-1 fuzzy logic with Mamdani 

inference mechanism, the toolbox developed by Kumbasar, [31] has same limitations. It is difficult to 
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find the optimal number of membership functions, type of membership functions, optimal rules and 

need a lot of experience and time to tune the model.   

 

Figure 33: The membership function plot in Mamdani type-2 fuzzy logic for shear stress with 6 different interval type linguistic values 
within the range of [0,1]. 

 

 

Figure 34: The membership function plot in Mamdani type-2 fuzzy logic for density with 5 different interval type linguistic values within 
the range of [0,1].  

5.1.3 Sugeno Inference Mechanism with Type-1 Fuzzy Logic 

The calibration data are also used with type-1 fuzzy logic method with Sugeno inference mechanism. In 

Sugeno type-1 fuzzy logic, the output linguistic variables are not fuzzy sets. It is either linear or constant. 

Sugeno type-1 fuzzy logic has an additional feature called Adaptive Neuro-Fuzzy Inference System 

(ANFIS) GUI incorporated in Matlab Fuzzy Logic Toolbox as shown in Figure 35. In ANFIS, it is possible to 

import training data set, checking data set, and testing data set. As data sets are imported, it is possible 

to generate membership functions for each input variables using grid pattern or clustering approach. 

This solves one of the biggest challenges with type-1 Mamdani fuzzy logic. Though a user should define 

the number and type of membership function, the tuning of each membership function is automatically 
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done by ANFIS. Most importantly, it will generate the fuzzy if-then rules automatically as the training is 

completed. This shows that type-1 Sugeno fuzzy logic is much easier to tune an optimal parameters and 

rules as compared to type-1 Mamdani fuzzy logic. However, the limitation with Sugeno type is the 

requirement of datasets. In the cases where dataset is not possible, Mamdani type is better as the 

output of Sugeno type is very difficult to tune manually. Figure 36 shows the ANFIS model structure 

with 7 membership functions for each inputs and 49 automatically generated if-then rules with 

respective outputs. Figure 37 and Figure 38 show the membership function plot for density and shear 

stress with the parameters of membership functions automatically generated using ANFIS GUI.  

As the model is developed, it is tested using testing set. Figure 39 shows the comparison between 

model predictions and target values. It shows that the developed Sugeno type-1 fuzzy logic model is far 

better than Mamdani type-1 fuzzy logic model and is very accurate. Figure 40 shows the calibration 

results for 5 different samples out of 30 samples. The solid lines with different colors represents the test 

data and the characters with same color represents the predictions from the Sugeno type-1 fuzzy logic 

model. The calibration results shows the predictions are highly accurate with a MAPE of 2.45%.  

Based on the simulation study on viscosity prediction using Fuzzy Logic approach, it can be seen that 

Sugeno type-1 fuzzy logic model has the best estimates. Hence, this method is selected to be 

implemented in the Venturi-rig for an experimental analysis, which is discussed under Chapter 6.  

  

Table 3: If-then rules of Sugeno type Fuzzy model for viscosity estimations based on shear stress and density measurements. 
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Figure 35: ANFIS GUI of type-1 Sugeno fuzzy logic with a possibility to import different datasets for automatic tuning of parameters of 
membership functions and automatic generation of if-then fuzzy rules.    

 

Figure 36: The Sugeno ANFIS model structure with two inputs having seven membership functions each and with 49 if-then rules and an 
output.  
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Figure 37: The membership function plot in Sugeno type-1 fuzzy logic for density with 7 different interval type linguistic values within the 
range of [0,1]. 

 

Figure 38: The membership function plot in Sugeno type-1 fuzzy logic for shear stress with 7 different interval type linguistic values within 
the range of [0,1]. 
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Figure 39: The target vs. prediction plot using the Sugeno type-1 fuzzy logic model developed using Matlab Fuzzy Logic toolbox with 
ANFIS. 

 

Figure 40: The calibration results of 5 different test samples using Sugeno type-1 fuzzy logic model with a MAPE of 2.45%. 
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5.2 ANN simulations with fluid samples  

In this section, the simulation results using different types of ANN are discussed. Finally, different model 

based on the simulation results are implemented in the Venturi-rig for a practical implementation.   

5.2.1 Feedforward ANN for simulations 

Feedforward ANN in MATLAB Neural Network toolbox is used to estimate the viscosity of non-

Newtonian fluid. For this, data is uploaded into the toolbox and is divided into training set (70%), test 

set (15%) and testing set (15%). After several simulations, the optimal number of neurons is selected as 

10 and Bayesian Regularization learning algorithm had best simulation results. Figure 41 shows the 

architecture of finally selected feedforward ANN with 10 hidden neurons, tan-sigmoid activation 

function in hidden layer and linear activation function in output layer.  

Figure 42 shows the performance plot using feedforward ANN. The training stops at epoch 737 with a 

Mean Squared Error (MSE) of 74.95 based on the minimization of adaptive weights while learning. 

Figure 43 and Figure 44 show the regression plot for feedforward ANN with a correlation (R) between 

target and output of different datasets. The correlation values for different datasets are very close to 1, 

meaning that target and output from the model are highly correlated to each other. Finally, an optimal 

model with highest possible correlation is developed from optimal tuning of neurons and learning 

algorithms. Thus obtained model is tested with new testing dataset. Figure 45 shows the target vs. 

prediction plot for the new testing data set using the optimal model. The figure shows that the model 

predictions are close to the required target values. Figure 46 presents the calibration results for five 

different samples out of 30 selected samples. The solid lines in the plot represents the target viscosity 

values for five different samples and the characters represents different predictions for respective 

samples. It can be seen that the developed static feedforward model is capable of determining the 

shear thinning behavior of different visco-plastic fluid samples with MAPE of 8.12%. 
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Figure 41: Feedforward setup that shows the number of inputs, hidden layers, output layer. 

 

 

Figure 42: Performance plot of feedforward ANN, where training stops at epoch 737 with best training performance of 74.95 due to 
validation error check. 
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Figure 43: Regression plot for feedforward ANN with the correlation between target and output for training (R=0.98) and testing datasets 
(R=0.98). 

 

Figure 44: Regression plot for feedforward ANN with the correlation (R=0.98) between target and output for new test data. 
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Figure 45: The target vs. prediction plot using the feedforward ANN model developed using Matlab NN toolbox. 

 

 

 

Figure 46: The calibration results of 5 different test samples using feedforward ANN with a MAPE of 8.12%. 
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5.2.2 Feedback ANN for simulations 

The simulation study is performed to estimate viscosity of non-Newtonian drilling fluid using feedback 

ANN.  

5.2.2.1 Partially Connected RNN for simulations 

For the simulation study of partially connected RNN, dynamic time series tool in Matlab NN toolbox is 

used. Among three different types of partially connected RNN, Nonlinear Autoregressive with External 

input method is selected for the viscosity estimation. Figure 47 shows the block representation of 

partially connected RNN with two main inputs with delays and external input with delays. After several 

simulations, the optimal number of neurons is selected to be 8 and the delay in both input and output is 

optimally selected to be 2. The simulation results showed best results with Scaled Conjugate Gradient 

learning algorithm.  

 

Figure 47: Partially connected RNN setup, which shows the number of inputs, hidden layers, output layer and feedback loops with delays.  

Figure 48 shows the performance plot of partially connected RNN with the best validation performance 

of 41.775 at epoch 28. In this learning algorithm, the validation error is compared with the training 

error. Both validation error and training error keeps on decreasing as learning increases. In case of 

validation error increases though the training error decreases, algorithm will count 6 consecutive 

increments before it stops the training. In the Figure 48, the training is performed for 34 epochs. 

However, the best validation performance is taken from epoch 28 based on the validation check 

criterion in this learning algorithm. The validation check criterion is performed to avoid over-fitting of 

the model.    
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Figure 48: Performance plot of partially connected RNN, where training stops at epoch 28 with best training performance of 41.775 due 
to validation error check. 

Figure 49 shows the regression plot of partially connected RNN for the simulation study of viscosity 

estimation. The regression plot shows that the target values and model predictions are highly 

correlated to each other. Figure 50 shows the autocorrelation error plot for partially connected RNN. It 

is a plot that determines the tuning of a number of neurons. For a specific number of neuron to be 

optimal, the correlation error bars at different lag other than zero lag, should be inside the confidence 

limit as indicated by red dotted lines. In zero lag, the correlation error bar must be maximum for a 

selected neuron to be optimal for that model. 

Figure 51 shows the comparison between target values and model predictions for training set, 

validation set and test set. It also shows the error between target and model predictions in the error 

plot. In the error plot, the difference between the target and model is up to 300 units. This shows that 

the model is not that accurate to be reliable for viscosity estimation. This might be because the density 

input is constant for varying shear rates for typical fluid samples. However, the partially connected RNN 

is a dynamic method that needs a time varying input and output variables.   
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Figure 49: Regression plot for feedback RNN with the correlation between target and output for training (R=0.97), validation (R=0.99) and 
testing datasets (R=0.99). 

 

 

Figure 50: Autocorrelation of error with confidence limit for partially connected RNN.   
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Figure 51: a) The target vs. output plot for training set, validation set and test sets in partially connected ANN. b) The error plot showing 
error between target and output at each samples.  

 

5.2.2.2 Fully Connected RNN for simulations 

To estimate the viscosity of non-Newtonian drilling fluid, fully connected RNN with RTRL learning 

algorithm in the developed toolbox [35] is used. Based on the grid search method available in the 

developed toolbox, the optimal parameters for viscosity estimation are found as in Table 4. Figure 52 

shows the performance plot of fully connected RNN with RTRL learning algorithm. The Mean Squared 

Error (MSE) for the training algorithm decreases significantly to very low value. The state plot in Figure 

53 shows that the state of randomly chosen five different weights of the network. The state plot shows 

that the weight are almost at steady state after 3000 iterations. The regression plot in Figure 54 shows 

that the fully connected RNN with RTRL as a learning algorithm is able to predict the target output with 

the correlation of 84%. The prediction plot in Figure 55 shows that the model is able to track the 

dynamics of non-Newtonian fluid regardless of very high MAPE. This large error in prediction can be 

seen in the error plot as shown in Figure 56. With fully connected RNN the highest error unit has been 

reduced to 80 as compared to the partially connected RNN. However, the error in the estimation is still 
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very large and the reason might be the implementation of constant density measurement in the 

training dataset.  

Table 4: Optimal number of parameters based on the grid search method available in the developed Matlab DANN toolbox. 

Parameter Optimal number  

Number of epochs 3000 

Learning rate 0.1 

Number of previous input 1 

Number of previous output 2 

Number of neurons 9 

 

 

Figure 52: The performance plot for viscosity estimation using fully connected RNN with RTRL learning algorithm.  
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Figure 53: The state plot for viscosity estimation using fully connected RNN with RTRL learning algorithm. 

 

Figure 54: The regression plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with 84% correlation 
between target values and model predictions.  
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Figure 55: The prediction plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with MAPE of 31.91%. 

 

 

Figure 56: The error plot for viscosity estimation using fully connected RNN with RTRL learning algorithm with 80 units of highest error in 
the test samples.  
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5.3 SVM simulations with fluid samples 

Support Vector Machine in regression mode as SVR is used to estimate the viscosity of non-Newtonian 

drilling fluid. For this estimation model, radial basis kernel function with sigma=0.02, punishment factor 

of C=0.53 and error toleration of ϵ=0.001 is used. The optimal tuning of these parameters are done 

based on the method described in [33]. The prediction plot in Figure 57 shows the comparison between 

the target values and the SVR model predictions. The comparison shows that the SVR model is capable 

of predicting the viscosity of non-Newtonian model with high accuracy. The calibration plot in Figure 58 

shows the calibration results of the SVR model for 5 different test samples with MAPE of 2.70%. Based 

on this simulation result, the optimal SVR model is implemented in the Venturi rig for the experiment as 

discussed in Chapter 6.   

 

 

 

Figure 57: The target vs. prediction plot using the Support Vector Regression model.  
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Figure 58: The calibration results of 5 different test samples using Support Vector Regression model with a MAPE of 2.70%. 

5.4 Viscosities of fluid samples - classification into groups  

 The viscosity of drilling fluid changes while drilling and it can affect the rock cutting transportation 

capacity of the drilling fluid. Therefore, it is necessary to measure the viscosity accurately and classify it 

for the further process of additive control.  In this section, different methods are used to classify the 

viscosity of non-Newtonian drilling fluids. For the classification, three different classes are defined as 

LessViscos, Viscos and HighViscos. Based on the classification, respective control action can be 

considered while adjusting the viscosity in additive control section near the mud tank. For example, if 

the current viscosity measurement falls under Viscos class, then there is no need to add any additives. 

Whereas, if the current viscosity measurement falls under LessViscos or HighViscos class then the mud 

engineer must add additives to increase and decrease the viscosity respectively.  

Figure 59, Figure 60 and Figure 61 show the classification of different test samples using Sugeno type-1 

fuzzy logic classifier, feedforward ANN classifier and SVM classifier respectively.  
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Table 5: Different classifier with the classification error. 

Classifier Classification error  

Sugeno type-I fuzzy logic classifier 0.59% (4 out of 668) 

Feedforward ANN classifier 0% 

Support Vector Machine classifier  0.74% (5 out of 668) 

 

 

Figure 59: The classification of viscosity measurement using Sugeno type-1 fuzzy logic classifier with a misclassification percentage of 
0.59%, i.e.  4 samples are misclassified out of 668 test samples. 
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Figure 60: The classification of viscosity measurement using feedforward ANN classifier with a misclassification percentage of 0%, i.e.  no 
samples are misclassified out of 668 test samples. 

 

 

Figure 61: The classification of viscosity measurement using Support Vector Machine classifier with a misclassification percentage of 
0.74%, i.e.  5 samples are misclassified out of 668 test samples. 
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6 Viscosity estimates using different fluids in Venturi-rig 

In this chapter, different data models given in Chapter 5 are implemented in conjunction with 

experiments on the Venturi-rig. For the implementation, two non-Newtonian model-drilling fluids as 

discussed in section 3.4 are used in the experiment. All the data models used in this work has density 

and shear stress as inputs and viscosity as output. In Venturi-rig, it is possible to measure density using 

Coriolis mass flowmeter or Gamma sensor. However, the dataset used for the calibration of model 

assumes constant density for each fluid samples (i.e. incompressible fluid). Therefore, density is kept 

constant with changing flowrate for estimating viscosity of non-Newtonian model-drilling fluids. Shear 

stress is calculated based on the shear stress equation for incompressible non-Newtonian fluids as 

discussed in section 3.5. The differential pressure drop measurements required for shear stress 

calculation is done using differential pressure transmitter in the Venturi-rig. Figure 62 and Figure 63 

shows the differential pressure measurements with different flowrates for Drilling Fluid-1 and Drilling 

Fluid-2 respectively. The differential pressure measurement is very unstable and fluctuates randomly. 

The blue dot shows the averaged differential pressure drop at respective flowrates. The error bar at 

each flowrate shows the standard deviation of the differential pressure drop at that flowrate. It can be 

seen that the standard deviations are almost same throughout the flowrate region for Drilling Fluid-1. 

However, the standard deviations for Drilling Fluid-2 are low at the beginning and increases as flow rate 

increases. The main reason for the fluctuation of differential pressure measurement is the presence of 

bubbles in the drilling fluids. Physically, there exist a lot of bubbles in Drilling Fluid-2 so the differential 

pressure drop measurement fluctuates a lot for this fluid. In the case of Drilling Fluid-1, bubbles are not 

a main problem for fluctuations. Apart from bubbles, the physical placement of differential pressure 

sensor and the vibration in the main flow pipeline affects the differential pressure measurement. The 

differential pressure sensor in the Venturi-rig is not placed correctly. There is mechanical bend near to 

the impulse line that creates a uniform disturbance to the measurement. In the flow loop, the vibration 

of main flowline increases as flowrate increases. This vibration partially affects the impulse line of a 

differential pressure sensor and thus affects the differential pressure measurement. These fluctuations 

in differential pressure drop measurements will eventually generates fluctuations in viscosity 

estimations. 
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Figure 64 and Figure 65 show the viscosity estimations for Drilling Fluid-1 and Drilling Fluid-2 using five 

different data models. In both figures, it can be seen that all the data models are able to predict the 

actual behavior of non-Newtonian shear thinning fluids, i.e. the viscosity estimations are decreasing as 

the flow rate increases. Further, it can be seen that Sugeno type-1 Fuzzy Logic model, Support Vector 

Regression model and feedforward Artificial Neural Network models have similar predictions. It was 

clear from the simulation study that these data models had very small MAPE in the predictions. 

Therefore, it can be concluded that these models are predicting viscosity with some accuracy. The 

range of viscosity predictions for Drilling Fluid-1 and Drilling Fluid-2 are [10, 50] and [30, 100] centipoise 

respectively. Partially connected RNN has low predictions for both fluids and the fully connected RNN 

has unpredictable predictions. In simulation study, these feedback models had very large MAPE and 

were expected to perform worse compared to other three models.  

 

Figure 62: Averaged differential pressure drop measurements for Drilling Fluid-1 with standard deviation at each flowrates. 
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Figure 63: Averaged differential pressure drop measurements for Drilling Fluid-2 with standard deviation at each flowrates. 

 

Figure 64: Comparison of viscosity estimations of Drilling Fluid-1 using different data models at different flowrates. 
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Figure 65: Comparison of viscosity estimations of Drilling Fluid-2 using different data models at different flowrates. 
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7 Conclusions 

In a drilling operation, drilling fluid is circulated continuously in a close loop while drilling. The main 

functions of drilling fluid are the transportation of drilling cuttings, controlling downhole pressure, 

maintain wellbore stability, lubrication and cooling of the drilling bit. During circulation, the continuous 

monitoring of the fluid properties is very important for safe and efficient drilling operations. The two 

most important properties are density and viscosity of the fluid. The density is responsible for 

maintaining downhole pressure and wellbore stability, whereas viscosity of the fluid plays a vital role for 

the transportation of drilling cuttings and hole cleaning.  

In general, drilling fluids are non-Newtonian in nature. In most of the drilling operation, shear thinning 

drilling fluids (i.e. viscosity decreases with increase in shear rate) are used. It is because; the viscosity of 

the fluid should be low when it is pumped down to the borehole with high flowrate and the viscosity of 

the same fluid should be high enough to lift the rock cuttings while flowing upward towards the ground 

level.  

In drilling operation, the viscosity measurement is carried out using laboratory devices in continuous 

interval. In the field, mud engineers use Zahn Cup, March Funnel, Capillary viscometers and Rotational 

viscometers for viscosity measurement. In this thesis, different online viscometers found in literature 

for measuring viscosity of non-Newtonian fluids are discussed in Chapter 2. To point out some of them, 

non-invasive techniques like: Ultrasonic Doppler Velocimetry and Laser Doppler Velocimetry, Flow-viz, 

analytical models like: modified Power Law model for turbulent flow are discussed. Apart from viscosity 

measurement, literature on viscosity blending mechanism is also performed in Chapter 2. The viscosity 

of the fluid changes at each circulation and need to be updated to the reference value. The update is 

based on the current viscosity measurement and the required amount of additives. The require amount 

of additive is decided using viscosity blending mechanism.  

In this thesis, my task is to make different empirical data models to estimate the viscosity of non-

Newtonian fluids at different flowrates. The experiments are performed in the Venturi-rig, available in 

University College of Southeast Norway, Porsgrunn. Mainly, the Venturi-rig consists of sensors like: 

Coriolis mass flowmeter, Gamma sensor, pressure transmitter, pressure differential transmitter, 

temperature transmitter, and ultrasonic level sensors. In the empirical data, the continuous density and 

differential pressure measurements are used as inputs to estimate the viscosity of the model-drilling 
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fluids. Two model-drilling fluids with different density and viscosity is circulated in a close loop and 

different developed empirical models are used for viscosity estimation. Different models used in this 

thesis are Fuzzy Logic model, Feedforward Artificial Neural Network model (ANN), Feedback Artificial 

Neural Network model and Support Vector Regression (SVR) model as discussed in Chapter 4.  

The performance analysis of different developed models are done using simulation study and 

experimental study. These studies show that all the models are capable of predicting the shear thinning 

behavior of non-Newtonian drilling fluids. In simulation study, Sugeno type-1 Fuzzy Logic model, 

feedforward ANN and SVR model show very good estimation of viscosity with low value of Mean 

Absolute Percentage Error (MAPE) as compared to feedback ANN models. Further, Sugeno type-1 Fuzzy 

Logic model, feedforward ANN and Support Vector Machine models as classifiers are developed for the 

classification of viscosity in three different regions. The three regions of viscosity are low viscous region, 

medium viscous region and high viscous region. The developed classifiers are used to classify the 

current viscosity measurement in the correct region and help mud engineers to figure out the type of 

additives to be added during blending mechanism.  

All the models are implemented in Venturi-rig for the estimation of viscosity of two different model-

drilling fluids circulated at different flowrates. The online viscosity estimation shows that the same three 

models; Sugeno type-1 Fuzzy Logic, feedforward ANN and SVR models have similar predictions with 

some accuracy. Whereas, the two feedback ANN models have different and non-uniform viscosity 

predictions for two fluids. 

Based on the simulation and experimental study, it can be seen that the developed empirical models 

are capable of estimating the viscosity of non-Newtonian drilling fluids. During simulation study, a 

Matlab Neural Network toolbox that can be used to simulate fully connected recurrent Neural Network 

is developed and able to publish an article regarding this toolbox. 
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Future work 

The work that has been done in this thesis is only a part of viscosity estimation of non-Newtonian fluid. 

Due to the lack of time, there are some topics that I wished I could cover; 

1. Do survey on different empirical approaches and compare them with the approaches in this 

thesis. Evolutionary Computing seems like an interesting empirical approach that has algorithms 

based on Charles Darwin evolution study. [30]  

2. The more detail study on blending mechanisms, including blending techniques that are used in 

other industries such paint and cement.  

3. Implement a blending mechanism system in the Venturi-rig so it is possible to control the 

viscosity and density automatically. This can be done by having one additional tank with Xanthan 

gum. The control system will then add Xanthan gum if the viscosity is too low and add water if 

the viscosity is too high. 

4. If possible, get an online viscometer to measure the viscosity accurately and compare it with the 

empirical models. In this way, the empirical models will be more accurate and more trustworthy. 

5. Improve the DANN toolbox further; make the GUI better, and implement a faster algorithm to 

find the optimal tuning parameter for learning algorithms used in the DANN toolbox. The 

current optimal method is “grid search” which goes through all possible combination and is 

therefore very slow.  
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Abstract – Accurate estimation of flow in drilling operations at 

inflow and outflow positions can help to increase safety, to 

optimize production and help to save money and man-hours, as 

unnecessary troubleshooting costs at the drilling site can be 

avoided. In this paper, Dynamic Artificial Neural Network 

(DANN) is used to estimate the flow rate of non-Newtonian drilling 

fluids in an open channel Venturi-rig that can be used for outflow 

measurements while determining delta flow, i.e. the difference 

between the flow rates into and out of the well.  This paper 

presents a simple flow estimation method using three 

appropriately positioned transducers above the Venturi channel 

normally available on drilling platforms. The paper addresses 

simulation and experimental studies. Simulation study looks into 

fully connected Recurrent Neural Network (RNN) with three 

different learning algorithms: Back Propagation Through Time 

(BPTT), Real-Time Recurrent Learning (RTRL) and Extended 

Kalman Filter (EKF). The simulation results show that BPTT and 

EKF algorithms converge very quickly as compared to RTRL. 

However, RTRL gives results that are more accurate, is less 

complex and computationally fastest among these three 

algorithms. Hence, in the experimental study RTRL is chosen as 

the learning algorithm for implementing Dynamic Artificial 

Neural Network (DANN) for usage in the Venturi-rig based data 

fusion. In the Venturi-rig, DANN with RTRL learning algorithm 

is compared with previously developed Support Vector 

Regression (SVR) and static ANN models to assess their 

performance in estimating flow rates. The comparisons show that 

the proposed DANN is a most accurate model among three models 

as it uses previous inputs and outputs for the estimation of current 

output. 

Keywords— Drilling operations, open channel Venturi flume, 

non-Newtonian fluid, flow rate estimation, ultrasonic level 

measurements, Recurrent Neural Network, Real-Time Recurrent 

Learning 

List of symbols and abbreviations 

Symbol Quantity 

ANN Artificial Neural Network 
BPTT Back Propagation Through Time 
CFD Computational Fluid Dynamics 
DANN Dynamic Artificial Neural Network 

EKF Extended Kalman Filter 
n Number of folds 
LT Level Transmitter 
MAPE Mean Absolute Percentage Error 
MSE Mean Squared Error 
N Number of neurons 
O Order 
Pb Bottom hole pressure 
Pf Formation pressure 
Pff Formation fracture pressure 
RNN Recurrent Neural Network 
RTRL Real Time Recurrent Learning 
SVR Support Vector Regression 
t time 

 

I. INTRODUCTION 

In drilling operations, the drilling mud is circulated in a 
closed loop starting from the mud tank into the wellbore and 
back to the mud tank. The mud can be water-based, oil-based or 
gas-based and is circulated during the drilling operation, until 
the desired depth is reached. During circulation, the properties 
of drilling mud have significant importance for the safe and 
efficient drilling operation. The viscosity, density, and flow rate 
of circulating mud play a vital role, in all the drilling operations, 
[1]. 

In general, drilling muds are non-Newtonian in nature, and 
the viscosity of the mud along with other rheological properties 
govern the transport of rock cuttings while drilling, [1].  

The density or mud weight is mainly responsible for 
maintaining the pressure in the wellbore. Depending on the 
types of the drilling operation and the reservoir, the wellbore 
pressure or bottom-hole pressure (Pb) is limited within the 
pressure window given by formation pressure (Pf) and formation 
fracture pressure (Pff). If the wellbore pressure is less than the 
formation pressure (Pb < Pf), the formation gasses and fluids will 
flow into the drilling mud, and is called “kick”. The occurrences 
of kick should be detected as early as possible during drilling 
operations. If the early kick detection is ignored or is not 
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detected, it can lead to problems in maintaining the density of 
the mud and in the extreme case, it can result in blow-out of 
hydrocarbons on the rig, e.g. the Deepwater Horizon explosion, 
[2]. In the case of (Pb > Pf), the high pressure circulating fluids 
may enter the formation pores, causing fluid losses. If the 
wellbore pressure is further increased, beyond the formation 
fracture pressure (Pb>Pff), the circulation fluid can fracture the 
formation and cause an increased fluid loss, often called “lost 
circulation”. The fluid loss will decrease the volume of the mud 
in the circulation loop and in the mud tank, and will affect the 
production, [1]. 

A similar situation occurs frequently in geothermal drilling. 
In geothermal drilling, one of the costly problems is lost 
circulation. that occurs when drilling fluid is lost to the 
formation rather than returning to the surface, preferably intact. 
The management of lost circulation is important and requires  
the accurate measurement of drilling fluid flow rate both into 
and out of the well. 

Reliable detection of unusual conditions can allow the use of 
low weight mud, efficient drilling, less formation damage, and 
lead to lower drilling costs. Delta flow method, i.e. the 
difference between flows at inflow and outflow points of the 
circulation mud,  is one of the best methods to detect kick and 
fluid loss, which uses the flow measurements before and after 
the wellbore, [3-8]. The difference in outflow and inflow 
measurements can be used as an indication of unusual 
conditions while drilling. If the flow rate before wellbore is less 
than the flow rate in the return line, then it can be considered as 
an indication of early kick detection. Whereas, if the inflow is 
greater than the outflow, it is an early indication of fluid loss. In 
addition, the flow rate of circulating fluid will determine the 
transportation of rock cuttings. The flow velocity of the 
circulation mud is often maintained higher than the settling 
velocity of the rock cuttings for efficient transportation of 
cuttings.  In addition to the delta flow method, other methods of 
early kick detection are discussed in [8-12].  

In literature [3-8], there are different systems for measuring 
delta flow. For inflow measurement, conventional pump stroke 
counter, rotatory pump speed counter, magnetic flow meter, 
Doppler ultrasonic flow meter or Coriolis mass flowmeter can 
be used. For outflow measurement, magnetic flowmeter, 
Doppler ultrasonic-based flowmeter, standard paddle meter, 
ultrasonic level meter, a prototype rolling float meter or open 
channel Venturi flowmeter can be used. The scenario of inflow 
and outflow measurement is completely different. For example, 
the inflow measurement can be carried out using Coriolis mass 
flow meter, more accurate but an expensive flowmeter. 
However, Coriolis mass flow meter is not suitable for outflow 
measurements as the returning mud contains solid rock cuttings, 
other formation particles, formation fluids and gases. An 
overview of different flowmeters based on reliability and 
accuracy is given in [7]. Based on the analysis in [7], magnetic 
flowmeter or Doppler ultrasonic flowmeter are suitable for 
inflow measurements and prototype rolling float meters for 
outflow measurement. Speers and Gehrig, [4] presents the 
implementation of delta flow method by using magnetic 
flowmeters at inflow and outflow locations. The magnetic 
flowmeter is limited in applications to conductive fluids or to 
only water-based muds. In addition, magnetic flowmeters need 

some additional U-tube design in the return section. For lower 
flow velocity of circulating fluids, the rock cuttings will settle at 
the bottom of this U-tube. These problems are avoided in open 
channel return line, in which efficient rock cutting transportation 
and their easier separation from mud, [5-6].  

This paper presents the outflow measurement based on open 
channel flow with a Venturi section. In an open channel flow, 
the upstream pressure relative to a reference level in the ‘control 
section’ of the loop structure can be used to estimate the flow 
rate, [13]. The control section used in the flow loop is the 
Venturi flume. The flow measurement is based on an extension 
of the application of the well-known Venturi principle, to flow 
of fluid in an open channel, [14]. The constriction in the Venturi 
section results in the transition of flow from subcritical to 
supercritical flow in the vicinity of the throat, [15]. For 
sufficiently long throat, the critical condition occurs in the 
throat, giving the critical depth [16]. The level of the fluid in 
upstream is measured as the critical depth is identified. The level 
can be measured using ultrasonic or RADAR level sensors and 
flow rate can be calculated as a function of measured level.    

To study the possibility of using Venturi flume in estimating 
flow rate, a flow loop (i.e. Venturi rig) is available in University 
College of Southeast Norway (USN), Porsgrunn, Norway. For 
this Venturi rig, the CFD simulation study of open channel flow 
measurement is investigated in [17]. The numerical algorithm 
using Saint Venant equation is presented in [18-19]. However, 
the developed numerical model is not applicable for real-time 
monitoring and controlling purpose due to the high 
computational cost. The study presented in [20] shows the 
successful implementation of static Artificial Neural Network 
(ANN) and Support Vector Regression (SVR) techniques for 
flow measurement in the test loop. The present study is a 
continuation, where, Dynamic Artificial Neural Networks 
(DANN) are investigated and implemented in the software used 
in running, monitoring and controlling the flow loop.   

In the following sections, the simulation study of fully 
connected Recurrent Neural Network (RNN) with three 
different learning algorithms for estimating the flow rate of the 
non-Newtonian liquids is presented. Finally, the experimental 
results of flow rate estimation using RNN, ANN and SVR are 
discussed. 

 

II. Dynamic Artificial Neural Network 

ANN can be of the static or dynamic type. Static ANN or 
feedforward ANN type uses current inputs and current outputs 
whereas, DANN uses current and previous inputs and outputs 
for modeling purpose. Further, DANN can be partially 
connected RNN or fully connected RNN based on the feedback 
loops. Fully connected RNNs have self-feedback loops, and 
partially connected RNNs does not have self-feedback loops, 
[21]. 

The delta flow measurement discussed in Section I is a 
dynamic problem, where the previous information about the 
kick detection and fluid loss is important for the current 
measurement. Therefore, fully connected RNN is used for 
modeling, the estimation of the flow rate being based on the 
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level measurements in the open channel Venturi flow loop. For 
the estimation of the flow rate, three different learning 
algorithms are used.  These algorithms are  presented here 
briefly. 

A. Back Propagation Through Time (BPTT) 

      BPTT is an extension of gradient-based back propagation 
algorithm that is used in static ANN. The idea in BPTT is to 
unfold the RNN architecture into feedforward ANN architecture 
in an arbitrary number of time steps or folds. These folds make 
the error to propagate even further in time, so it is called back 
propagation through time. However, the number of folds are 
usually low to avoid deep network and this approach is called is 
often called truncated BPTT. In general, recurrent weights are 
simply duplicated over the folds while unfolding, [22]. The 
basic BPTT architecture is shown in Fig. . The computational 
complexity of BPTT is of order O(N2) and the storage 
requirement is of order O(nN2), where N being number of 
neurons and n is the arbitrary number of folds. The drawbacks 
of BPTT are; it is an offline learning algorithm and requires 
large memory to store state information at different folds, [23]. 

 

 

Fig. 1: A general architecture for Back Propagation Through Time (BPTT) 
learning algorithm with  ‘N’ number of neurons and  ‘n’ numbers of foldings. 

B. Real Time Recurrent Learning (RTRL) 

RTRL is one of the most used real-time learning algorithms 
for RNN. In RTRL, the gradients at time ‘t’ are computed based 
on the gradients at previous time steps. The gradient information 
is propagated in time, [24-26]. The basic RTRL architecture is 
shown in Fig. . The connections with blue color are the 
additional self-feedback and feedback connections, which is not 
included in static ANN. These additional connections make the 
network get previous input values and output values and 
consider them as additional internal inputs in the current time. 
By doing this, a network can work dynamically. However, 
RTRL algorithm suffers from slow convergence, which is 
typical for all gradient-based algorithms. Mandic and Chambers, 
[25] has presented an RTRL-based learning algorithm with an 
adaptive learning rate that can improve the convergence 
performance. RTRL further suffers from the large 
computational complexity of the order of O(N4) and even 
critically with a storage requirement of the order of O(N3), [23].   

 

Fig. 2: A general architecture for Recurrent Neural Network (RNN) with self-
feedback and feedback loops from neurons. 

C. Extended Kalman Filter Learning (EKF) 

EKF is a recursive algorithm that computes state estimations 
based on the previous state information at the current time, [27]. 
EKF can be used as a supervised on-line learning algorithm to 
determine the weights of an RNN. In EKF learning algorithm, 
the state vector consists of weights and the locally induced 
outputs of each neuron in the network. Regarding convergence 
to a solution, EKF is very fast compared to BPTT and RTRL. 
The order of computational complexity for EKF is same as 
RTRL, O(N4), and the storage requirement increases to the order 
of O(N4) for EKF. The RTRL algorithm is identical to the 
simplified EKF algorithm, and the architecture is the same, [23]. 

III. Experimental Set-up 

 To develop RNN models, model-drilling fluid is circulated 
in the flow loop. The circulated fluid is visco-plastic in nature 
with the fluid properties of density at 1136 kg/m3 and a viscosity 
ranging from 23–180 [centipoise] for the 500–1 [s-1] shear rate. 
Recent study shows that the level measurements at the throat 
(LT-18), the level of the downstream (LT-17) and the level of 
the upstream (LT-15) are highly correlated to flow rate, [20]. 
Therefore, these variables are considered for modeling and are 
given in Table. 1 and some concurrent measurements from these 
three ultrasonic sensors are shown in Fig. 3, along with 
simultaneous measurements of flow from a Coriolis meter. Fig. 
4 shows the open channel section of flow rig with a Venturi 
constriction and three ultrasonic level sensors. All the three 
different levels measured using the ultrasonic sensors are used 
in the three models discussed above. The mass flow 
measurement is performed using Coriolis mass flow meter and 
is considered as a reference for RNN models.  

For the mass flow rate range of 250-500 [kg/min], 1800 data 
samples for each variable are measured. The data samples are 
normalized in the range of (0-1).  Out of 1800 normalized data 
samples, 70%, 15% and 15% of data are selected as training, 
validation, and test sets respectively. 
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Fig. 3: Input and output variables used for developing RNN models. First plot 
shows three level measurements with LT-15, LT-17 and LT-18. Second plot 
shows flowrate measurement using Coriolis mass flowmeter 

 
 

 
 

Fig. 4: a) An open channel with Venturi section and three level sensors, LT-15, 
LT-17 and LT-18, with an arrow showing a flow direction. (b) Extremely 
simplified P&ID for the Venturi-rig flow loop with the measurands used in this 
study, viz. ultrasonic level sensors and FT-Coriolis mass flowmeter. 

TABLE. 1: INPUT AND OUTPUT VARIABLES USED FOR DEVELOPING RNN 

MODELS WITH THE RANGE AND VARIABLE TYPE.  

Variables Range Units Type 

Upstream level measurement 31.2 - 107.5 mm Input 

Level measurement at the throat  28.9 - 78.3 mm Input 

Downstream level measurement 44.3 – 106.6 mm Input 

Mass flow rate 250 - 500 kg/min Output 

 

IV. Results 

This paper presents results from both simulations based on 

the three models and practical implementation of RNN for flow 

rate measurement in an open channel flow loop.  

A. Simulation study 

RNN is implemented using all the three learning algorithms 

discussed in Section II. Table. 2 shows the optimal parameters 

used in the simulations. These optimal parameters are 

determined using grid search method and the optimization is 

done using Mean Absolute Percentage Error (MAPE). Apart 

from these parameters, number of neurons selected is 7, learning 

rate is 0.1 and number of folds for BPTT is 7. 

Fig. 5 shows the comparison of RNN with different 

algorithms. As discussed in Section II, EKF learning algorithm 

can quickly converge to a solution. From Fig. 5 showing the 

MSE, it can be seen that EKF converges well before 20 epochs, 

BPTT converges around 100 epochs, and RTRL takes around 

300 epochs to converge. The converging efficiency of these 

algorithms can be observed using the state parameters, which 

are weights of the neural network. Fig. 6 shows the states of 

some of the weights while training a network. The state 

representation shows that the states in EKF and BPTT 

algorithms go to steady state very quickly. However, RTRL 

needs numerous training epochs for achieving steady states. 

Fig. 7 shows the estimations of different learning algorithms 

with reference to flow measurements from Coriolis mass 

flowmeter. The simulation results show that all the models using 

different learning algorithms are capable of describing the 

dynamics of the reference flow measurements well. RTRL has 

minimum MAPE out of the three models used, as shown in 

Table. 2.   

 

TABLE. 2: OPTIMAL PARAMETERS FOR DIFFERENT LEARNING ALGORITHMS 

Learning 

algorithms  

Epochs Number 

of 

previous 

inputs 

Number 

of 

previous 

outputs 

MAPE 

[%] 

BPTT 200 1 3 2.97 

RTRL 500 4 4 2.55 

EKF 20 4 4 3.70 

(b) 

(a) 
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Fig. 5: Mean Squared Error (MSE) plot for three different learning algorithms 
in RNN. Simulation results. 

 

Fig. 6 Different weights of the network in a state plot illustrating the 
convergence of the learning algorithms. Simulation results. 

 

Fig. 7: Comparison of flow rate estimation of Recurrent Neural Network (RNN) 
with three different learning algorithms with respect to Coriolis mass flow 
measurement as a reference measurement. Simulation results. 

B. Experimental study 

The experimental study involves the implementation of 

simulation study in the Venturi rig. Despite slow convergence, 

RNN with RTRL learning algorithm is selected for its accuracy, 

less complexity, and faster computation. The algorithms for both 

BPTT and EKF have complex architectures and they are 

computationally demanding. This makes RTRL a suitable 

choice for implementing in the Venturi rig for the flow 

estimation. Fig. 8 shows the experimental results obtained using 

model-drilling fluid in the test Venturi rig. The flow rate 

estimation using RNN is compared with the estimation 

previously made using static ANN and SVR. The comparison 

shows that RNN has better performance than other empirical 

models. The MAPE for RNN, ANN and SVR are 5.6%, 8.5%, 

and 7.7% respectively.  
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Fig. 8: Comparison of flow rate estimations of a Dynamic Artificial Neural 

Network with Real Time Recurrent Learning algorithm (MAPE of 5.6%), a static 

Artificial Neural Network model (MAPE of 8.5%) and a Support Vector 

Regression model (MAPE of 7.7%) with respect to the Coriolis mass flow 

measurement as a reference flow measurement. Based on experiments using 

the Venturi-rig. 

For the future work, we will try to improve the sensor 

measurements using suitable signal processing. As shown in 

Fig. 3, the output mass flowrate using Coriolis mass flowmeter 

is less noisy as compared to the three input level measurements. 

Since the model completely depends on the data, we will work 

on online signal processing of level sensor measurements to 

reduce the noise in the measurements. In Fig. 7 and Fig. 8, we 

can see discontinuous peaks in the predictions of all the 

empirical models. By implementing these three models as an 

integral part of the processing algorithms (signal and control), 

we believe that our model can be trained and operated with less 

noisy data resulting in improved predictions.   

V. Conclusion 

One way of having safe and efficient drilling operation is by 

continuously monitoring the properties of drilling mud. Any 

unwanted change in fluid properties can lead to two main 

problems; the influx of formation fluid and circulation fluid loss. 

The delta flow measurement while drilling is one of the best 

methods to detect the early influx or early fluid loss. In this 

paper, we introduced dynamic Artificial Neural Network to 

estimate the flow rate of non-Newtonian drilling fluids in an 

open channel venturi flume, which can be used for outflow 

measurement while determining delta flow. With Recurrent 

Neural Network, we simulated three different learning 

algorithms; Back Propagation Through Time, Real-Time 

Recurrent Learning and Extended Kalman Filter algorithm. The 

simulation results show that BPTT and EKF converge very 

quickly as compared to RTRL algorithms. Whereas, RTRL 

algorithm is more accurate, less complex and computationally 

faster than other two algorithms. So, based on this simulation 

analysis, RNN with RTRL algorithm is selected for the practical 

implementation. In the Venturi rig, RNN model with RTRL is 

implemented along with static ANN and Support Vector 

Regression (SVR) models. The experimental estimations of 

flow rates with respect to reference flow rate using Coriolis mass 

flowmeter show that the estimates based on RNN model has 

higher accuracy compared to ANN and SVR models. This 

improved performnce is due to the fact that RNN contains 

previous inputs and outputs as additional inputs for the 

current time, which are not considered in static ANN and 

SVR models.  

 

Acknowledgment 

The Ministry of Education and Research of the Norwegian 

Government is funding Khim Chhantyal’s PhD studies at 

University College of Southeast Norway (USN). The authors at 

USN appreciate the collaboration with and support from 

STATOIL for the assembly and commissioning of the open 

channel Venturi-rig with the various sensors and control system 

dedicated to the studies related to non-Newtonian fluids. In 

addition, we acknowledge the practical work done by various 

groups of bachelor and master students of USN in conjunction 

with this project. 

 

References 

[1]       R. Caenn, H. C. H. Darley, G. R. Gray, “Composition and properties of 
drilling and completion fluids,” 6th ed., ISBN: 978-0-12-383858-2, 
Waltham, USA: Gulf professional publishing, 2012, p.7-16. 

[2] S. Hauge, K. Øien, “Deepwater Horizon: Lessons learned for the 
Norwegian Petroleum Industry with focus on Technical Aspects,” 
Chemical Engineering transactions, vol. 26, 2012, pp. 621–626. 

[3] L. D. Maus, J. D. Tannich, W. T. Ilfrey, “Instrumentation requirements 
for kick detection in deep water,” in Offshore technology conference, 
Houston, Texas, 1978. 

[4] J. M. Speers, G. F.Gehrig, “Delta flow: an accurate, reliable system for 
detecting kicks and loss of circulation during drilling,” in SPE Drilling 
Engineering, 1987. 

[5] J.J. Orban, K.J. Zanner, A.E. Orban, Anadrill/ Schlumberger, “New 
flowmeters for kick and loss detection druing drilling,” in 62nd Annual 
Technical Conference and Exhibition of the Society of Petroleum 
Engineers, Dallas, 1987. 

[6] J.J. Orban, K.J. Zanner, Anadrill/ Schlumberger, “Accurate flow-out 
measurements for kick detection, actual response to controlled gas 
influxes,” in IADC/SPE Drilling Conference, Dallas, Texas, 1988. 

[7] D. M. Schafer, G. E. Loeppke, D. A. Glowka, D. D. Scott, E. K. Wright, “An 
evaluation of flowmeters for the detection of kicks and lost circulation 
during drilling,” in SPE/IADC drilling conference, New Orleans, 
Louisiana, 1992. 

[8] M. Kamyab, S. R. Shadizadeh, H. Jazayeri-rad, N. Dinarvand, “Early kick 
detection using real time data analysis with dynamic neural network: a 
case study in Iranian oil fields,” in Nigeria annual international 
conference and exhibition, Tinapa-Calabar, Nigeria, 2010.  

[9] I. Mills, D. Reitsma, Z. Tarique, “Simulator and the first field test results 
of an utomated early kick detection system that uses standpipe 
pressure and annular discharge pressure,” in SPEC/IADC managed 
pressure drilling and underbalanced operations conference and 
exhibition, Milan, Italy, 2012. 

[10] T. H. Ali et al., “Automated alarms for smart flowback fingerprinting and 
early kick detection,” in SPE/IADC drilling conference, Amsterdam, 
Netherland, 2013. 

[11] B. Patel, T. Cooper, W. Billings, “The application of advanced gas 
extraction and analysis system complements early kick detection & 
control capabilities of managed pressure drilling system with added HSE 
value,” in SPE/IADC drilling conference, Amsterdam, Netherland, 2013. 

[12] A. K. Vajargah, S. Z. Miska, M. Yu. M. E. Ozbayoglu, R. Majidi, “Feasibility 
study of applying intelligent drill pipe in early detection of gas influx 
during conventional drilling,” in SPE/IADC drilling conference, 
Amsterdam, Netherland, 2013. 

[13] F. M. White, “Fluid mechanics,” WCB McGraw-Hill, 2002, p. 659–708. 

[14] M. Skorpik, “Flow measurement options for pipeline and open channel 
flow,” in 2013 Workshop, Montana association of dam and canal 
systems conference (MADCS). 

[15] F. Frenzel et al., “Industrial flow measurement basics and practice,” ABB 
automation products Gmbh, 2011. 

[16] G. Gerätebau “Equipment for engineering education, intruction manual 
HM 162.51 venturi flume, ” Germany, 2003. 



                                                                                                                                                                                  

                                                                                                                                                                                                       90 
 

[17] C. Berg, M. Anjana, C. E. Agu, C. Khim, F. Mohammadi, “Simulatioin of 
open channel flow for mass flow measurement,” University of South 
East Norway, Norway, 2013. 

[18] C. E. Agu, B. Lie, “Numerical solution of the Saint Venant equation for 
non-Newtonian fluid,” in Proceedings from the 55th conference on 
simulation and modelling (SIMS 55), Aalborg, Denmark, 2014. 

[19] C. E. Agu, B. Lie, “Smart sensors for measuring fluid flow using a venturi 
channel,” in Proceedings from the 55th conference on simulation and 
modelling (SIMS 55), Aalborg, Denmark, 2014.  

[20] K. Chhantyal, H. Viumdal, S. Mylvaganam, G. Elseth, “Ultrasonic level 
sensors for flowmetering of non-Newtonian fluids in open venturi 
channels,” IEEE Sensors Applications Symposium (SAS), Catania, Italy, 
2016. 

[21] E. O. Dijk, “Analysis of Recurrent Neural Networks with application to 
speaker independent phoneme recognition,” University Twente, 
Enschede, The Netherlands, 1999. 

[22] M. Boden, “A guide to Recurrent Neural Network and 
backpropagation,” Halmstad University, Sweden, 2001. 

[23] R. J. Williams, “Some observations on the use of the Extended Kalman 

Filter as a Recurrent Network Learning algorithm,” College of Computer 
Science, Northeastern University, Boston, 1992. 

[24] M. W. Mak, K. W. Ku, Y. L. Lu, “On the improvement of the real time 
recurrent learning algorithm for Recurrent Neural Networks,” in 
Neurocomputing,  vol. 24, Elsevier, 1999, p.13-36.  

[25] D. P. Mandic, J. A. Chambers, “A normalised real time recurrent learning 
algorithm,” in Signal Processing,  vol. 80, Elsevier, 2000, p.1909-1916.  

[26] D. B. Budik, “A resouce efficient localized Recurrent Neural Network 
architecture and learning algorithm,” University of Tennessee, USA, 
2006.  

[27] P. Kim, “Kalman filter for beginners,” ISBN-13:978-1463648350, 
CreateSpace Independent Publishing Platform, 2011.  

  

 

 

  



                                                                                                                                                                                  

                                                                                                                                                                                                       91 
 

Appendix C: Dynamic Neural Network Toolbox - Tutorial 
 

Dynamic Artificial Neural Network (DANN) MATLAB 

Toolbox – Tutorial 
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C.1 How to install the toolbox 

The first step in installing the toolbox is to download the installation file that can be found in 

this link. After downloaded, follow the steps below to complete the installation. 

Steps Picture 

Double click on the 

MATLAB App Installer 

“Dynamic Network”  

 

 

Click on “Install”  

 

 

In Matlab, go to the tab 

“APPS”  

 

 

 

 

Click on the arrow “↓” to 

see more options 

 

 

 

https://drive.google.com/folderview?id=0B-iEO1hrjt-Scl9YdGlvOU5sdHM&usp=drive_web
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Click on “Dynamic 

Network” 

 

 

 

The toolbox is now ready to 

use. 
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C.2 General information 

For first time users, it is recommended to take a look on this section.  

C.2.1 Help 

This section describes how you can get more information if you have some questions or 

problems related to the toolbox. 

C.2.2 Right click: 

If there are some words or expressions in the toolbox that you are not sure about, you can 

right-click on the word to get a pop-up description message. 

Description Picture 

Let say you want to know more about 

what “Learning Rate” is. 

 

 

 

Hover your mouse over the text and 

right click. A textbox with explanation 

will appear.  

 

Do this for all the expression you want 

to know more about. 
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C.2.3 Q&A section:  

For common questions and answers related to the toolbox. You’re are welcome to check out 

the “Help windows”. The instructions below will show how you get to the “Help Window”. 

Descriptions Picture 

At the top left corner, click on “Info” and 

then on “Help” 

 

 

 

The “Help” window will appear and you 

can click on the question that you are 

interested in.  

 

If you can’t find your question, feel free 

to send us an email. Click on the 

question “How can I contact you if I 

have some questions” to get more 

information.  

 

 

 

 

C.3 Functions in DANN toolbox 

All the functions in the toolbox will be specified below. There will be given examples of how to 

use and interpret the results from each functions. 

 

 

 

 

 

C.3.1. How to use DANN 

Description Picture 
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On the Startpage, 

click on “Go to 

FRNN”. 

 

 

 

 

 

 

A new window “RNN” will appear. Follow these procedures. 

 

1. You can choose to keep the default parameters or change it.  

 

2. Select your learning algorithm, and choose if you want to have validation check and 

bias on or not.  
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3. Import the data file. Remember that the imported file must be a Matlab file with the 

variable name “Data”. 

 

4. (Optional) Hit the “Tuning” button to find the optimal parameters based on grid search 

method. 

 

5. Hit the “Train” button to start training the model. 

 

 

C.3.1.1 Tuning (Optional) 

In any implementation of Artificial Neural Network (ANN), tuning of parameters is one of the 

biggest challenges. This DANN MATLAB toolbox provides a facility to tune the parameters 

optimally. 

Description 

 

 

1. Assign lower limit, higher limit and an increment to each parameter  
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2. (Optional), check on “Notification Alarm” if you want the program to play a sound when 

the tuning is finished. 

 

3. Hit the “Tune” button to start tuning with the parameters specified.  

 

4. When the tuning is finished, the optimal parameters will be displayed in this panel. 

 

 

C.3.1.2 Train  

After you finished training your model, the program will show a Plot Menu where you can 

choose the option you want to have a closer look at. The options will be described below. 

Description Picture 

Plot Menu 

The GUI that let the user 

select what to see after the 

training is finished.  
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Performance 

It shows the MSE for 

training data set and 

validation error for each 

epoch. 

 

 

 

 

 

Regression 

It compares the target 

output and model 

prediction in terms of 

squared correlation 

coefficient such that ‘0’ 

meaning not related at all 

and ‘1’ meaning highly 

correlated to each other. 
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Prediction 

It shows the test data and 

model prediction with 

MAPE between them. 

 

 

 

Parameter: 

It shows the states of five 

different randomly chosen 

weights at different 

epochs. The analysis using 

parameter plot is very 

efficient if you are working 

with some system 

identification problems. In 

that case, one can 

visualize how the weights 

change with epochs. The 

steady state values of the 

weights after some 

epochs are the model 

parameters in typical 

system identification 

problems. 
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Error 

It shows the error 

between the target value 

and the model prediction 

for each test samples. 

 

 

 

 

C.3.2 Where is the data saved? 

For each time you train your model, the data is saved in Matlab as a struct variable name “net”. 

If you want to see the data or save it, then follow the steps below. 

Steps Picture 

After your model is trained, a struct  

named “net” is created in the 

workspace.  

 

If you want to save this data so you 

can have a look at this later.  

 

Right-click on “net” and click on 

“Save As…” 
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If you only want to have a look at 

the data, then double click on “net” 

and a new window with all the data 

will appear. 
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C.4 Publication on DANN toolbox 

This paper on DANN toolbox is accepted for EUROSIM 2016, 12-16 September, Oulu, Finland, 

“The 9th Eurosim Congress on Modelling and Simulation”. 

Dynamic Artificial Neural Network (DANN) 

MATLAB Toolbox for Time Series Analysis 

and Prediction  

Khim Chhantyal, Minh Hoang, Håkon Viumdal, Saba Mylvaganam  

University College of Southeast Norway 

Faculty of Technology 

Kjølnes Ring 56, 3918 Porsgrunn, Norway 

 
Abstract – MATLAB® Neural Network (NN) Toolbox can 

handle both static and dynamic neural networks. To use this 

MATLAB® NN Toolbox, in cases where recurrent neural 

networks occur is not straight forward. We present a Dynamic 

Artificial Neural Network (DANN) MATLAB toolbox capable of 

handling fully connected neural networks for time-series analysis 

and predictions. Three different learning algorithms are 

incorporated in the MATLAB DANN toolbox:  Back Propagation 

Through Time (BPTT)  an offline learning algorithm and two 

online learning algorithms; Real Time Recurrent Learning 

(RTRL) and Extended Kalman Filter  (EKF). In contrast to 

existing MATLAB® NN Toolbox, the presented MATLAB DANN 

toolbox has a possibility to perform the optimal tuning of network 

parameters using grid search method. 

Three different cases are used for testing three different 

learning algorithms. The simulation studies confirm that the 

developed MATLAB DANN toolbox can be easily used in time-

series prediction applications successfully. Some of the essential 

features of the learning algorithms are seen in the graphical user 

interfaces discussed in the paper. In addition, installation guide for 

the MATLAB DANN toolbox is also given. 

Keywords— Dynamic Artificial Neural Network (DANN), Back 

Propagation Through Time (BPTT), Real-Time Recurrent Learning 

(RTRL), Extended Kalman Filter (EKF), time series. 

I. INTRODUCTION  

Artificial Neural Networks (ANN) are computational 

models consisting of many neurons in different layers with 

varying degrees of interconnections between them. The 

interconnection have weights assigned to them so that the ANNs 

can be tuned thus enabling them to learn and adapt. Feedforward 

or feedback networks are two broad classifications of ANNs.  

Feedforward ANNs use current inputs and current outputs, 

whereas, feedback ANNs use current and previous inputs and 

outputs. Feedback ANN performs time-series predictions and is 

a dynamic network. This type of network constitutes recurrent 

neural networks (RNN) either partially or fully connected 

depending on the extent of the feedback loops available in the 

network. Fully connected RNNs have interconnected feedback 

loops including self-feedback loops, whereas partially 

connected RNNs do not have self-feedback loops, [1-2]. 

 In an existing MATLAB® Neural Network Toolbox, 

there is a possibility to use feedforward ANN for static 

estimations and partially connected RNN for time-series 

predictions. This paper presents a MATLAB toolbox that can 

perform the empirical modeling using fully connected RNNs 

with three different learning algorithms. The following sections 

present the overview of the developed toolbox and the usage of 

the toolbox in three different practical applications. 

II. OVERVIEW OF TOOLBOX 

The developed Dynamic Artificial Neural Network (DANN) 

toolbox consists of three main user interfaces, which are DANN 

Menu, Parameter Tuning, and Plot Menu. Each window consists 

of different elements as given below. 

A. DANN Main 

  DANN Main is the main window of MATLAB DANN toolbox 

as shown in Fig. 1. In this window, the user can upload the data 

set, divide data sets, select validation check, include bias, select 

learning algorithm, define learning parameters, select the 

number of previous inputs and outputs, and finally train the 

model. 

     1)  Uploading data set: A user needs to upload his/her data 

set to train the model using MATLAB DANN toolbox. The 

format of the data set should be in ‘.mat’ and each column should 
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represent the variables in the model, where the last column is an 

output variable.  

2)  Division of data set: The uploaded data set should be 

divided into a training set, validation set, and testing set. A user 

can choose the percentage of data for training, validation and 

testing. Experience shows that 70% for the training set, 15% for 

both validation and testing works fine for any learning 

algorithms.  

3)  Validation check: A validation check is an option that 

prevents the over-fitting of the network. Over-fitting and under-

fitting are most common problems encountered while dealing 

with data models. Under-fitting can be improved by either 

tuning the learning rate or increasing the number of neurons in 

the network. The concept of over-fitting in MATLAB DANN 

toolbox is similar to the concept used in NN Toolbox in 

MATLAB®, [2]. The main idea is to terminate the RNN before 

the network gets over-fitted. For early stop, Mean Squared Error 

(MSE) for both training and validation is continuously 

monitored. While training a network, learning algorithm builds 

a certain hypothetical model for the network at each epoch.   

 

  

Fig. 9: DANN Menu of MATLAB DANN toolbox with the possibility to upload data, data division, selecting learning algorithms, tuning learning parameters, and 

training the algorithm.  
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The validation data are validated using the hypothetical 

model at that particular epoch. While learning, the value of 

MSE of training and validation data keep on reducing and 

the training of the network gets better with increasing 

epoch. However, the validation error can increase though 

the error for training decreases, which occurs in cases of 

over-fitting. The increase in validation error can be due to 

some randomness in the training process. Therefore, the 

MATLAB DANN toolbox will count six consecutive 

increments in the validation error before it stops the learning 

algorithm.  

When the model is over-fitted, the trained model seems to 

have good performance with training data, but it can have a 

large error while testing with the new data set. In other 

words, the trained model is not a generalized model when it 

is over-fitted. The implementation of validation check is 

presented in Case II in Section III. In case, if the validation 

check is not selected, validation data will be part of the 

training data set. 

4)  Bias: It is an offset value added to the output of the 

neurons. It is often important to include bias in each neuron 

while constructing a neural network model. MATLAB 

DANN toolbox facilitates a choice to include or exclude 

bias terms in the network. 

5)  Learning algorithm: In this toolbox, there are three 

learning algorithms. The user can select any one of these 

algorithms based on the requirements regarding 

complexity, accuracy and application.  

a)  Back Propagation Through Time (BPTT): BPTT 

is an extension of gradient-based backpropagation 

algorithm that is used in feedforward ANN. The idea in 

BPTT is to unfold the RNN architecture into feedforward 

ANN architecture using an arbitrary number of folds. The 

BPTT architecture for the neural network with two neurons 

is shown in Fig. 2. The network with BPTT algorithm is less 

complex compared to other learning algorithms. However, 

the complexity and the memory requirement increase when 

the number of folds increases. [3] 

 

Fig. 2: Architecture for Back Propagation Through Time (BPTT) learning 

algorithm with two neurons and ‘n’ numbers of folding. [4] 

b)  Real Time Recurrent Learning (RTRL): RTRL is one 

of most accepted real-time learning algorithms for RNN. In 

RTRL, the gradients at time ‘t’ are computed using the 

propagation of gradients at previous time steps, [5-7]. The 

underlying RTRL architecture is shown in Fig. 3, where x, 

y, N and d are inputs, outputs, number of neurons and unit 

time delay respectively. Based on the complexity, RTRL is 

the simplest online learning algorithm. However, the 

algorithm converges slowly and requires large memory for 

storage. [3]   

 

Fig. 3: A general architecture for Real Time Recurrent Learning (RTRL) 

and Extended Kalman Filter (EKF) learning algorithms showing self-

feedback and feedback loops within the neurons. 

c)  Extended Kalman Filter Learning (EKF): EKF 

can be used as a supervised on-line learning algorithm to 

tune the weights of RNN. In EKF, the state vector consists 

of weights and the locally induced outputs of each neuron 

in the network. Regarding convergence, EKF is the fastest 

algorithm among the algorithms presented in the MATLAB 

DANN toolbox. The order of computational complexity for 

EKF is the same as for RTRL, and the storage requirement 

is larger for EKF. The general architecture for EKF learning 

is shown in Fig. 3. [3] 

6)  Learning parameters: The parameters of learning 

algorithms such as the number of neurons, learning rate, the 

maximum number of epochs and number of folds are 

discussed in this section.  

a) Number of neurons: The neurons and the 

connections between the neurons are essential features of a 

neural network. The number of neurons plays a vital role in 

the performance of the neural network. Too few neurons 

may not completely describe the dynamics of the system, 

and too many neurons can increase the complexity of the 

network. Therefore, an optimal selection of a number of a 

neuron is one of the most important aspects of neural 

network modeling. In MATLAB DANN toolbox, each 

neuron is associated with the sigmoid function with 

the range [0, 1]. 

b) Learning rate: The learning rate determines the 

rate of learning of gradient-based learning algorithms like 

BPTT and RTRL. The range of learning rate is [0, 1] and 

determines the converging efficiency while learning. The 

very small value of learning rate will slow down the 

learning algorithm and may require a large number of 
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epochs to converge to a solution. Whereas the high value of 

learning rate can converge quickly, but it might have large 

variations and fluctuations in MSE of a training data.   

c) Maximum number of the epoch: In MATLAB 

DANN toolbox, there are two stopping criterions. One of 

them is validation check, which is already discussed. 

Another way of stopping the training is the maximum 

number of epochs. A user can select a maximum number 

of epochs for the training using DANN Menu.  

d) Number of folds: The number of folds is a 

parameter for BPTT learning. The default selection is ‘3’, 

which is the minimum possible value that can be selected 

for a given number of folds.  

7)  Past inputs and outputs: In applications involving 

prediction of time-series, the current output depends on the 

previous inputs and outputs. MATLAB DANN toolbox 

allows a user to select a number of previous inputs and 

previous outputs as additional inputs to find the output at 

the current time. By default, if the values are selected as ‘0’ 

for both input and output, MATLAB DANN toolbox will 

use one previous output from each neuron.  

8)  Additional parameters: In EKF learning algorithm, a 

user must assign three more parameters for learning, which 

are Sigma_U, Sigma_W, and Sigma_O in MATLAB 

DANN toolbox. These parameters are tuning parameters for 

the output of each neuron as a state, weights as a state and 

output of the network respectively. These parameters are 

responsible for Kalman gain calculation for the states (i.e. 

output of neuron and weight) and determine the update of 

the output of each neuron and the weight connections 

between the neurons. As the simulation stops, the 

parameters, weights and other information regarding the 

simulation are saved in the workspace in MATLAB®. 

B.  Parameter Tuning  

In any implementation of ANN, tuning of parameters is 

one of the biggest challenges. The optimal selection of 

network parameters can only lead to a good model. 

Contrary to existing MATLAB® Neural Network Toolbox, 

MATLAB DANN toolbox has a facility to tune the 
parameters optimally. In DANN Main, if you click on 

Tuning button, Parameter Tuning window will open as 

shown in Fig. 4. The optimal tuning is based on the grid 

search method, and optimality is evaluated using Mean 

Absolute Percentage Error (MAPE). In the left panel of the 

window, a user can assign lower limit, higher limit and an 

increment to each parameter and start tuning. At the end of 

the tuning, optimal values of the parameters are displayed 

in the right panel of the window with minimum MAPE. 

Usually, parameter tuning takes a longer time before it 

completes, so MATLAB DANN toolbox provides an option 

to get notification alarm. It is to be noted that a user must 

upload data, select learning algorithm, decide to or not to 

include bias and validation check before starting the tuning 

process. Thus, obtained optimal parameters can be used for 

training the model.   

 

Fig. 4: Parameter Tuning window of MATLAB DANN toolbox that allows 
a user to tune the optimal parameters based on grid search method. 

C.  Plot Menu  

Plot Menu window pops-up when the simulation is 

completed as shown in Fig. 5. It consists of five different 

types of plots, which are performance plot, regression plot, 

prediction plot, parameter plot, and error plot. 

1) Performance plot: It shows the MSE for training 

data set and validation error for each epoch. 

2) Regression plot: It compares the target output and 

model prediction in terms of squared correlation coefficient 

such that ‘0’ meaning not related at all and ‘1’ meaning 

highly correlated to each other.  

3) Prediction plot: It shows the test data and model 

prediction with MAPE between them. 

4) Parameter plot: It shows the states of five different 

randomly chosen weights at different epochs. The analysis 

using parameter plot is very efficient if you are working 

with some system identification problems. In that case, one 

can visualize how the weights change with epochs. The 

steady state values of the weights after some epochs are the 

model parameters in typical system identification problems.  

5) Error plot: It shows the error between the target 

value and the model prediction for each test samples.  
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Fig. 5: Plot Menu of MATLAB DANN toolbox with different plots for the 
analysis of the model.  

D.  Additional information 

The MATLAB DANN toolbox has additional help 

options for the users. A user can get general information in 

Q&A section inside the Help Window. With a right-click in 

any parameter name, action buttons or selection options, a 

prompt help window related to that expression will pop up.  

E.  Installing the MATLAB DANN toolbox 

The first step in installing MATLAB DANN toolbox is 

to download installation file found in this link. Double-click 

in the downloaded installation file will direct to the 

installation process in the MATLAB®. It is recommended 

to have a MATLAB® version 2014 or later.  

III. CASE STUDIES 

In this section, the usage of the MATLAB DANN 

toolbox in three different practical applications is discussed. 

These three different cases use the data set from an 

experimental flow rig, and example data sets from 

MATLAB® Neural Network Toolbox. To give a better 

understanding in analyzing the simulation results, different 

sets of plots are investigated under these cases.  

A. Case I: BPTT learning algorithm for flow measurement 

     In drilling operations, the flow rates of drilling mud at 

inflow and outflow positions can be used to detect kick and 

fluid loss. An open channel flow loop is available at 

University College of Southeast Norway (USN) for the 

study of outflow measurement. The data set with three level 

measurements as inputs and a flow measurement as the 

single output are taken from the flow loop for the analysis 

of BPTT learning algorithm in MATLAB DANN toolbox. 

Fig. 6 and Fig. 7 show the regression plot and prediction 

plot for flow estimation using BPTT learning algorithm in 

the toolbox. The simulation results show that the BPTT 

learning algorithm provided by MATLAB DANN toolbox 

is capable of mapping the inputs and outputs with high 

accuracy.  

 

Fig. 6: The regression plot for flow measurement using BPTT learning 
algorithm, with a correlation of 96% between the target values and the 
model prediction values. Data set from an experimental flow rig at USN. 

 

Fig. 7: The prediction plot for flow measurement using BPTT learning 
algorithm with a MAPE of 3.1 %. Data set from an experimental flow rig 
at USN. 

B. Case II: EKF learning algorithm for temperature             

measurement 

     To analyze the performance of EKF learning algorithm, 

an example data set provided by MATLAB® Neural 

Network Toolbox is used. The data set of a liquid-

saturated steam heat exchanger consists of time-series 

liquid flow rate and liquid outlet temperature, used as 

input and output to the ANN feedback network 

respectively. Fig. 8 and Fig. 9 show the performance plot 

and prediction plot for fully connected RNN with EKF 

learning algorithm. The learning algorithm has an early 

stop at 8 epochs due to the validation check with MSE of 

0.015. The low value of MAPE in prediction plot shows 

that the EKF learning algorithm with validation check is 

able to generalize the model and avoid over-fitting.  
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Fig. 8: The performance plot for temperature measurement using EKF 
learning algorithm. The best validation performance is 0.015351 at 
epoch 8. Data set from MATLAB® Neural Network Toolbox. 

 

Fig. 9: The prediction plot for temperature measurement using EKF 
learning algorithm with a MAPE of 0.9 %. Data set from MATLAB® Neural 
Network Toolbox. 

C. Case III: RTRL learning algorithm for mortality 

prediction 

     Another example data set provided by MATLAB® 

Neural Network Toolbox is used to investigate the 

performance of RTRL learning algorithm. The data set is a 

Pollution mortality data set that consists of eight input 

variables (Temperature, Relative humidity, Carbon 

monoxide, Sulfur dioxide, Nitrogen dioxide, Hydrocarbons, 

Ozone, and Particulates) and total mortality as an output 

variable.  Fig. 10 to Fig. 13 shows the simulation results 

for mortality prediction using RTRL learning algorithm 

using MATLAB DANN toolbox.  

The parameter plot as shown in Fig. 10 shows the states 

of randomly chosen weights of the network. As discussed 

in Section II, it takes longer time for the weights to converge 

to a steady state when using RTRL.  

The regression plot as in Fig. 11 illustrates that the 

predictions using RTRL are highly correlated with the 

target values with a correlation of 92%. The MAPE between 

the predicted values and target values are 2.93% as shown 

in Fig. 12. The error in each sample is shown in the error 

plot in Fig. 13.  

 

Fig. 10: The state plot for mortality time-series prediction using RTRL 
learning algorithm. Data set from MATLAB® Neural Network Toolbox. 

 

Fig. 11: The regression plot for mortality time-series prediction using 
RTRL learning algorithm with 92% correlation between target values and 
model predictions. Data set from MATLAB® Neural Network Toolbox. 
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Fig. 12: The prediction plot for mortality time-series prediction using 
RTRL learning algorithm with MAPE of 2.93%. Data set from MATLAB® 

Neural Network Toolbox. 

 

Fig. 13: The error plot for mortality time-series prediction using RTRL 
learning algorithm with 9 units as the highest error in the test samples. 
Data set from MATLAB® Neural Network Toolbox. 

IV. CONCLUSION 

        The existing MATLAB® Neural Network Toolbox 

has a possibility to use both static and dynamic neural 

networks. However, it is not possible directly use the 

toolbox to fully connected recurrent neural networks.  For 

this reason, this study presents the Dynamic Artificial 

Neural Network MATLAB toolbox that gives an 

opportunity to use the fully connected neural network for 

time-series predictions. The toolbox consists of three 

different learning algorithms, where Back Propagation 

Through Time (BPTT) is an offline learning algorithm, 

Real Time Recurrent Learning (RTRL) and Extended 

Kalman Filter (EKF) learning algorithm are online learning 

algorithms. Main details and guides for installing and using 

the developed toolbox are presented in this paper. 

 To demonstrate the features of the MATLAB DANN 

toolbox, three different practical problems are considered 

using three different learning algorithms. The simulation 

studies presented in this paper show that the developed 

toolbox can be used in applications involving time-series 

predictions. In addition, the developed toolbox has a 

dedicated option for the optimal tuning of parameters. 

 This work is meant for academic use with particular 

focus on the students using the existing MATLAB® Neural 

Network Toolbox. In future, other different learning 

algorithms can be included in the developed toolbox with 

some programming efforts.    
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Appendix D: Picture of the Venturi-rig 
Venturi section 

 

 

Exit of the Venturi section 

 

Overview of the tank 1# 

 

Overview of the tank #2 

 

Mixture to create the fluids 

 

 

Water pipe to clean the tank 
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Tanks for fluid 1 and 2 respectively 

 

Pressure transmitter 

 

Temperature transmitter 

 

 

Coriolis flow meter (Promass 801) 

 

Coriolis flow meter (Promass 63) 

 

Gamma transmitter 
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Pressure differential transmitter 

 

Ultrasonic level transmitter 
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Appendix E: Venturi-rig Tutorial 

 

Venturi-rig Tutorial 

 

 

Khim Chhantyal 

Minh Hoang 

2016 
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E.1 Introduction 

The document is created as a guideline for those who want to run the Venturi-rig for the first 

time. The document covers almost everything that is needed to handle the rig. The Health, 

Safety and Environment (HSE) part of this document is partially taken from a Bachelor’s 

Thesis group, Spring 2015, University College of Southeast Norway. 

E.2 Precautions (HSE) 

Before doing anything on the rig, please read through this HSE section to get information 

about the potentially dangerous situations that may occur, and precautions to protect 

yourself.   

E.2.1 Drilling fluid 

The fluid that is used is a mixture of potassium carbonate, xanthan gum, and water. Under 

normal condition, there should not be any danger related to this fluid. 

E.2.2 Health concerns 

Be careful not to swallow in or get the fluid in your eyes during the experiments. If the 

accident has already happened that you've swallowed some of it, your stomach may be upset 

for a while. If in case, your eyes get in contact with the fluid, irritation may appear, and it is 

highly recommended that you contact a doctor if this doesn’t go away over some time. 

E.2.3 Environmental concerns 

Watch out for leakages when you are working. Spilled fluid should be gathered into a 

deposition if possible. The fluid is not dangerous, and the remains of the fluid should be 

properly cleaned with water. When cleaning, have in mind that the spilled fluid can cause the 

floor to be slippery. 

E.2.4 Safety concerns 

Whenever the rig is running and if there is a possibility of direct contact with the fluid, wear 

safety glasses. If you are going to do some handling with the fluid, for example: changing the 

fluid, making new fluid, cleaning the tank, etc., remember to use gloves and have proper 

clothes. 
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E.3 Running the rig 

This section will explain what kind of preparations that need to be done before you start the 

rig and how to use the software for control purpose. 

E.3.1 Preparation 

Steps Descriptions Pictures 

1 Turn on the power 

 

This switch is on the left side 

of the security cabinet (on the 

first floor). 

 

Make sure the pointer is 

upwards (see picture) 

 

Then click on the blue reset 

button (see picture) 

 

 

 

 

2 Open one of the cover 

 

See picture 

Else, there is a possiblity of 

damaging the tank while 

running the Main-Pump. 
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3 Close the valve 

 

When the valve is closed, the 

switch should be in 90 

degrees with the pipe (see 

picture) 

 

We close this valve because 

we don’t want the flow to go 

back to the tank when running 

it 

 

 

 

E.3.2 Run the program 

Steps Descriptions Pictures 

1 Open the LabVIEW project file 

 

Double-click on “TUCFlow -

Shortcut” on the desktop   

 

2 Open the Main file 

 

Click on “HMI Main.vi” 
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3 Run the program 

 

 

1. Click on the arrow to activate the program. 

2. Click on the button “Run” to start the experiment. 

3. Click on logging button when you want to save data to the database. 

4. Here you can change the set-point of the flowrate. 
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E.3.3 Finished with the experiments? 

Do the following steps 

Steps Descriptions Pictures 

1 Turn of the power 

 

This switch is on the left side of 

the security cabinet (on the 

first floor). 

 

Make sure the pointer is 

pointing left (see picture) 

  

 

2 Close the cover 

 

See picture 

 

We “must” close it. 

 

 

 

 

3 Open the valve 

 

When the valve is opened, the 

switch should be something 

like in the picture. 

 

We open this valve because we 

want the fluids to go back to 

the tank. 
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E.4 Get data from database 

To download data from the database, perform these steps 

Steps Descriptions Picture 

1 Open the database 

program 

 

Double-click on the 

icon “Data logging 

PH-RN37 – 

Shortcut” on the 

desktop 

 

 

2 Select your data and generate file 

 

 

 

1. Select the sensors you want to include in the data file and then click on “Add”. 

2. Select the attributes you want to include in the data file. 

3. Select the timespan of your data. 

4. Generate the data file, here you can choose between 4 options.  
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3 Get the generated 

data file 

 

The generated file 

will be stored in a 

folder called 

“Database 

Program”. Double 

click on the folder 

and pick the 

newest file. 

 

 

 

 

 

E.5 Troubleshooting 

Sometimes there can be problems with running the LabVIEW program. The button will not respond 

or that the rig will not respond to the commands from LabVIEW. If this happens, then do the 

following steps. 

1. Close the LabVIEW program. 

2. Restart the Venturi rig by turning the power off and then on. 

 

Power Off 

 

 
 

Power On 
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Appendix F: How to use Sugeno Anfis 
Steps Screenshots 

Open fuzzy toolbox: 

 

Write “fuzzy” in the 

command window 

 

 

 

Open new FIS file “Sugeno”: 

 

Click on “File” -> “New 

FIS…” -> “Sugeno” 
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A new FIS editor with 

“Sugeno” will appear. 

 

Remember to have at least 

two inputs to make the 

Anfis work.  

 

This can be done by 

clicking on “Edit” –> “Add 

variable” -> “Input”. 

 

 

 

Open ANFIS: 

 

 Click on “Edit” -> “Anfis…” 
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An Anfis Editor will appear  

 

 

Load training and checking 

data: 

 

Check on “training” and  

then click on “Load data”.  

 

Repeat this step again, but 

this time check on 

“checking” and then click 

on “Load Data…” 
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Generate FIS: 

 

Use “Grid partition” and 

click on “Generate FIS…” 

 

 

(We use grid partition 

because this is better than 

Sub. Clustering. More 

details will come soon) 

 

 

 

Train FIS: 

 

Choose: 

 

Optim. Method: “hybrid” 

(hybrid = backpropagation 

& least squre)  

 

Error Tolerance: 0 

(We want to have the error 

small as possible) 

 

Epochs: use the number 

that makes the epoch error 

stable. 

 

Click on “Train Now” 
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Training error: 

 

When clicking on “Train 

now”, an error value will 

show how much the 

estimated value deviate 

from the real value. 

 

 

 

 

Rules are automatically 

created 

 

After you have trained the 

FIS, the rules will be 

created automatically. 

 

 

  



                                                                                                                                                                                  

                                                                                                                                                                                                       126 
 

Export FIS file 

 

The model is now trained 

and can be exported for 

usage. 

 

Click on “File” -> “Export” -

> “To File…” 
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Appendix G: How to use Neural Network Toolbox in Matlab 
Description Screenshot 

Open neural network 

toolbox: 

 

Write “nnstart” in the 

command window 

 

Click on Next 

 

 

Select the input and 

target data (output) 

and click on next. 

 

(You can also load 

example data if you 

don’t have any data 

available) 
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Click on next. 

 

(Here you can choose 

how big the Validation 

and Testing 

percentages should 

be) 

 

 

 

Click on next. 

 

(Here you can also 

specify the number of 

hidden Neurons) 
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Choose training 

algorithm “Levenberg-

Marquardt” and click 

on train. 

 

When finished 

training, click on next. 
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Here you can see an 

overview of the 

training. You can click 

on “Performance” and 

“Regression” to see 

additional information 

about your model.  

 

Close this windows 

when finished. 

 

 

Click on next. 

 

(Here you can do 

some more 

modification if you 

model) 
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Click on next.  

 

 

Click on “Simple 

Script” then on 

“Finish”. 
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Run the script that 

you generated. Hit 

“F5” 

 

 

 

Paste and run this 

code to get out the 

weights. 

%% Input weights 

input_weights=net.iw 

%% Layer bias 

input_bias=net.b(1) 

%% Output weights 

output_weights=net.lw 

%% Output bias 

Output_bias=net.b(2) 

The weights data will 

be shown in the 

Workspace. (See 

picture) 
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NN picture  
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Appendix H: Simulation Code 
This appendix chapter will show all the code that have been used for the simulations in the 

thesis. The simulations were either done with Matlab or LabVIEW.  

H.1 Type -1 Fuzzy logic with Mamdani Inference Mechanism 

Main 
%% Mamdani model for estimating viscosity of fluid. 

clear all; clc; close all; 

data=xlsread('corrected_data'); 

% Density 

rho1= data(:,1);%[kg/m^3] 

% Viscosity 

mu1= data(:,2); % [PaS] 

% Shear rate 

chi1= data(:,3); % [1/s] 

% Shear stress 

tou1= data(:,4);% [Pascal] 

N=length(rho1); 

%% Normalize data 

[rho,rho_min,rho_max]=normalize(rho1); 

[mu,mu_min,mu_max]=normalize(mu1); 

[chi,chi_min,chi_max]=normalize(chi1); 

[tou,tou_min,tou_max]=normalize(tou1); 

  

%% Input and output 

input=[tou,rho];%input 

output=[mu,chi];  

  

%% 

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output); 

training_set=[x_train,y_train(:,1)]; 

checking_set=[x_val,y_val(:,1)]; 

test_set=[x_test,y_test(:,1)]; 

fis=readfis('MamdaniViscosity_different_range'); 

y_prediction1=evalfis(x_test,fis); 

  

%% set back to respective value from normalized value 

mu_test=y_test(:,1); 

chi_test=y_test(:,2); 

y_prediction=((y_prediction1))*(mu_max-mu_min)+mu_min;%DE-Normalizing test 

set 

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%DE-Normalizing test set 

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%DE-Normalizing test set 

e_test=(mu_test-y_prediction)./mu_test;%error with validation set 

test_mse=(sum((abs(e_test)))/length(e_test))*100; 

fprintf('The Mean Absolute Percentage Error in test set is = %f %% 

\n',test_mse); 

figure(1) 

plot (mu_test,'m.'); 

hold on 

plot(y_prediction,'b.') 

hold off 

legend('Actual','Prediction') 

ylabel('Viscosity[mPaS]') 
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Data_division 
function [x_train,y_train,x_val,y_val,x_test,y_test]=data_division(x1,y1) 
%% 2) Division by odd and even row number 
% lets take last data into training set. It is because, if we perform odd 
% and even division and if we consider odd data for training then, we will  
% not cover last data under training data. It means this data will be 

either 
% validation set or in test set. Now, when we will perform FUZZY Logic then 
% we will have a error message that the 'some input is not in range'... it 
% is better to take that data into training while dividing. 
x_end=x1(end,:);y_end=y1(end,:); 
x1=x1(1:end-1,:);y1=y1(1:end-1,:); 
odd_input=x1(1:2:end, 1:1:end); 
even_input=x1(2:2:end, 1:1:end); 
odd_output=y1(1:2:end, 1:1:end); 
even_output=y1(2:2:end, 1:1:end); 
% Initialze training, validation and test sets 
x_train=[];y_train=[];x_test=[];y_test=[]; y_val=[];x_val=[]; 
% Training set 
x_train=[odd_input;x_end]; y_train=[odd_output;y_end]; 
% For validation and test set, divide the even data set further into even 
% and odd 
odd_set_input=even_input(1:2:end, 1:1:end); 
even_set_input=even_input(2:2:end, 1:1:end); 

  
odd_set_output=even_output(1:2:end, 1:1:end); 
even_set_output=even_output(2:2:end, 1:1:end); 
% Additional training set to make the training set 75% of whole data 
x_val=odd_set_input; y_val=odd_set_output; 
x_test=even_set_input; y_test=even_set_output; 
end 

 

Normalize 
function[x_normalized,x_min,x_max]=normalize(x) 
x_min=min(x); 
x_max=max(x); 
x_normalized=(x-x_min)/(x_max-x_min); 
end 

 

H.2 Type-2 Fuzzy logic with Mamdani Inference Mechanism 

%% Type-2 Fuzzy logic model for estimating viscosity of fluid. 

clear all; clc; close all; 

data=xlsread('corrected_data_02_26_2016'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2)./1000; % [PaS] 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 

N=length(rho); 

%% Normalize data 

[rho,rho_min,rho_max]=normalize(rho); 

[mu,mu_min,mu_max]=normalize(mu); 
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[chi,chi_min,chi_max]=normalize(chi); 

[tou,tou_min,tou_max]=normalize(tou); 

  

%% Input and output 

input=[rho,tou];%input 

output=[mu,chi];  

  

%% 

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output); 

training_set=[x_train,y_train(:,1)]; 

checking_set=[x_val,y_val(:,1)]; 

test_set=[x_test,y_test(:,1)]; 

  

%% FIS model  

fis=readt2fis('latest.t2_1fis'); 

for i=1:50 

y_prediction(i)=evalt2(fis,x_test(i,:),1,false); 

end 

  

  

  

%% set back to respective value from normalized value 

mu_test=y_test(:,1); 

chi_test=y_test(:,2); 

y_prediction=(y_prediction)*(mu_max-mu_min)+mu_min;%Normalizing test set 

mu_test=mu_test(1:50); 

chi_test=chi_test(1:50); 

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%Normalizing test set 

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%Normalizing test set 

e_test=(mu_test-y_prediction')./mu_test;%error with validation set 

test_mse=(sum((abs(e_test)))/length(e_test))*100; 

fprintf('The Mean Absolute Percentage Error in test set is = %f %% 

\n',test_mse); 

figure(1) 

clf(1) 

plot (mu_test.*1000,'m.'); 

hold on 

plot(y_prediction.*1000,'b.') 

hold off 

legend('Actual','Prediction') 

ylabel('Viscosity[mPaS]') 

  

 

 

H.3 Type-1 Fuzzy logic with Sugeno Inference Mechanism 

Main 
%% Sugeno ANFIS model for estimating viscosity of fluid. 

clear all; clc; close all; 

data=xlsread('corrected_data_02_26_2016'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2)./1000; % [PaS] 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 
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N=length(rho); 

%% Normalize data 

[rho,rho_min,rho_max]=normalize(rho); 

[mu,mu_min,mu_max]=normalize(mu); 

[chi,chi_min,chi_max]=normalize(chi); 

[tou,tou_min,tou_max]=normalize(tou); 

  

%% Input and output 

input=[rho,tou];%input 

output=[mu,chi];  

  

%% 

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output); 

training_set=[x_train,y_train(:,1)]; 

checking_set=[x_val,y_val(:,1)]; 

test_set=[x_test,y_test(:,1)]; 

%% ANFIS model  

fis=readfis('khim'); 

y_prediction1=evalfis([x_test],fis); 

  

%% set back to respective value from normalized value 

mu_test=y_test(:,1); 

chi_test=y_test(:,2); 

y_prediction=(y_prediction1)*(mu_max-mu_min)+mu_min;%Normalizing test set 

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%Normalizing test set 

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%Normalizing test set 

e_test=(mu_test-y_prediction)./mu_test;%error with validation set 

test_mse=(sum((abs(e_test)))/length(e_test))*100; 

fprintf('The Mean Absolute Percentage Error in test set is = %f %% 

\n',test_mse); 

figure(1) 

plot (mu_test.*1000,'m.'); 

hold on 

plot(y_prediction.*1000,'b.') 

hold off 

legend('Actual','Prediction') 

xlabel('Samples') 

ylabel('Viscosity[cP]') 

title('The Sugeno type fuzzy model prediction vs. target viscosity 

measurement') 

figure(2) 

tou_test=x_test(:,2); 

tou_test=(tou_test)*(tou_max-tou_min)+tou_min;%Normalizing test set 

chi_prediction=tou_test./y_prediction; 

loglog(chi_test,mu_test.*1000,'m'); 

hold on 

loglog(chi_prediction,y_prediction.*1000,':b') 

hold off 

legend('Actual','Prediction') 

ylabel('Viscosity [mPaS]') 

xlabel('Shear rate [1/s]') 

  

%% 

figure(5) 

clf(5) 

y_prediction=y_prediction.*1000;mu_test=mu_test.*1000; 

loglog(chi_test(1:67),mu_test(1:67),'m') 

hold on 

loglog(chi_test(68:135),mu_test(68:135),'k') 

loglog(chi_test(203:270),mu_test(203:270),'c') 

loglog(chi_test(338:404),mu_test(338:404),'g') 
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 loglog(chi_test(405:471),mu_test(405:471),'b') 

 

% predicted 

loglog(chi_prediction(1:67),y_prediction(1:67),'om') 

loglog(chi_prediction(68:135),y_prediction(68:135),'<k') 

loglog(chi_prediction(203:270),y_prediction(203:270),'sc') 

loglog(chi_prediction(338:404),y_prediction(338:404),'^g') 

 loglog(chi_prediction(405:471),y_prediction(405:471),'*b') 

hold off 

legend('Sample-1','Sample-2','Sample-3','Sample-4','Sample-5','PredSample-

1',... 

    'PredSample-2','PredSample-3','PredSample-4','PredSample-5') 

xlabel('Shear rate  [1/s]'); 

ylabel('Viscosity  [cP]'); 

str=sprintf('Calibration of Sugeno type Fuzzy model with MAPE of %.2f %% ', 

test_mse); 

title(str) 

 

Data_division 
function [x_train,y_train,x_val,y_val,x_test,y_test]=data_division(x1,y1) 
%% 2) Division by odd and even row number 
% lets take last data into training set. It is because, if we perform odd 
% and even division and if we consider odd data for training then, we will  
% not cover last data under training data. It means this data will be 

either 
% validation set or in test set. Now, when we will perform FUZZY Logic then 
% we will have a error message that the 'some input is not in range'... it 
% is better to take that data into training while dividing. 
x_end=x1(end,:);y_end=y1(end,:); 
x1=x1(1:end-1,:);y1=y1(1:end-1,:); 
odd_input=x1(1:2:end, 1:1:end); 
even_input=x1(2:2:end, 1:1:end); 
odd_output=y1(1:2:end, 1:1:end); 
even_output=y1(2:2:end, 1:1:end); 
% Initialze training, validation and test sets 
x_train=[];y_train=[];x_test=[];y_test=[]; y_val=[];x_val=[]; 
% Training set 
x_train=[odd_input;x_end]; y_train=[odd_output;y_end]; 
% For validation and test set, divide the even data set further into even 
% and odd 
odd_set_input=even_input(1:2:end, 1:1:end); 
even_set_input=even_input(2:2:end, 1:1:end); 

  
odd_set_output=even_output(1:2:end, 1:1:end); 
even_set_output=even_output(2:2:end, 1:1:end); 
% Additional training set to make the training set 75% of whole data 
x_val=odd_set_input; y_val=odd_set_output; 
x_test=even_set_input; y_test=even_set_output; 
end 
 

Normalize 
function[x_normalized,x_min,x_max]=normalize(x) 
x_min=min(x); 
x_max=max(x); 
x_normalized=(x-x_min)/(x_max-x_min); 
end 
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H.4 Feedforward Artificial Neural Network 

Main 
%% Feedforward model for estimating viscosity of fluid. 

clear all; clc; close all; 

data=xlsread('corrected_data_02_26_2016'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2); % [cP] 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 

N=length(rho); 

  

%% Input and output 

input=[rho,tou];%input 

output=[mu,chi];  

output1=output(:,1); 

%% 

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output); 

training_set=[x_train,y_train(:,1)]; 

checking_set=[x_val,y_val(:,1)]; 

test_set=[x_test,y_test(:,1)]; 

%% ANN model  

y_prediction = StaticNN_Viscosity(x_test'); 

%% set back to respective value from normalized value 

mu_test=y_test(:,1); 

chi_test=y_test(:,2); 

e_test=(mu_test-y_prediction')./mu_test;%error with validation set 

test_mse=(sum((abs(e_test)))/length(e_test))*100; 

fprintf('The Mean Absolute Percentage Error in test set is = %f %% 

\n',test_mse); 

figure(1) 

plot (mu_test,'m.'); 

hold on 

plot(y_prediction','b.') 

hold off 

legend('Actual','Prediction') 

ylabel('Viscosity[mPaS]') 

  

figure(2) 

tou_test=x_test(:,2); 

chi_prediction=tou_test./(y_prediction./1000)'; 

loglog(chi_test,mu_test,'m'); 

hold on 

loglog(chi_prediction,y_prediction,':b') 

hold off 

legend('Actual','Prediction') 

ylabel('Viscosity [mPaS]') 

xlabel('Shear rate [1/s]') 

  

%% 

figure(5) 

clf(5) 
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y_prediction=y_prediction;mu_test=mu_test; 

loglog(chi_test(1:67),mu_test(1:67),'m') 

hold on 

loglog(chi_test(68:135),mu_test(68:135),'k') 

loglog(chi_test(203:270),mu_test(203:270),'c') 

loglog(chi_test(338:404),mu_test(338:404),'g') 

loglog(chi_test(405:471),mu_test(405:471),'b') 

 

% predicted 

loglog(chi_prediction(1:67),y_prediction(1:67),'om') 

loglog(chi_prediction(68:135),y_prediction(68:135),'<k') 

loglog(chi_prediction(203:270),y_prediction(203:270),'sc') 

loglog(chi_prediction(338:404),y_prediction(338:404),'^g') 

loglog(chi_prediction(405:471),y_prediction(405:471),'*b') 

hold off 

legend('Sample-1','Sample-2','Sample-3','Sample-4','Sample-5','PredSample-

1',... 

    'PredSample-2','PredSample-3','PredSample-4','PredSample-5') 

xlabel('Shear rate  [1/s]'); 

ylabel('Viscosity  [mPaS]'); 

title('Calibration of ANFIS model with MAPE of 2.18%')% TITLE 

str=sprintf('Calibration of Feedforward model with MAPE = %f %%', 

test_mse); 

title(str,'fontsize',12) 

 

Data_division 
function [x_train,y_train,x_val,y_val,x_test,y_test]=data_division(x1,y1) 
%% 2) Division by odd and even row number 
% lets take last data into training set. It is because, if we perform odd 
% and even division and if we consider odd data for training then, we will  
% not cover last data under training data. It means this data will be 

either 
% validation set or in test set. Now, when we will perform FUZZY Logic then 
% we will have a error message that the 'some input is not in range'... it 
% is better to take that data into training while dividing. 
x_end=x1(end,:);y_end=y1(end,:); 
x1=x1(1:end-1,:);y1=y1(1:end-1,:); 
odd_input=x1(1:2:end, 1:1:end); 
even_input=x1(2:2:end, 1:1:end); 
odd_output=y1(1:2:end, 1:1:end); 
even_output=y1(2:2:end, 1:1:end); 
% Initialze training, validation and test sets 
x_train=[];y_train=[];x_test=[];y_test=[]; y_val=[];x_val=[]; 
% Training set 
x_train=[odd_input;x_end]; y_train=[odd_output;y_end]; 
% For validation and test set, divide the even data set further into even 
% and odd 
odd_set_input=even_input(1:2:end, 1:1:end); 
even_set_input=even_input(2:2:end, 1:1:end); 
odd_set_output=even_output(1:2:end, 1:1:end); 
even_set_output=even_output(2:2:end, 1:1:end); 
% Additional training set to make the training set 75% of whole data 
x_val=odd_set_input; y_val=odd_set_output; 
x_test=even_set_input; y_test=even_set_output; 
end 
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Normalize 
function[x_normalized,x_min,x_max]=normalize(x) 
x_min=min(x); 
x_max=max(x); 
x_normalized=(x-x_min)/(x_max-x_min); 
end 
 

StaticNN_Viscosity 
function [y1] = StaticNN_Viscosity(x1) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 15-May-2016 

23:40:40. 

%  

% [y1] = myNeuralNetworkFunction(x1) takes these arguments: 

%   x = 2xQ matrix, input #1 

% and returns: 

%   y = 1xQ matrix, output #1 

% where Q is the number of samples. 

  

%#ok<*RPMT0> 

  

  % ===== NEURAL NETWORK CONSTANTS ===== 

   

  % Input 1 

  x1_step1_xoffset = [1140;0.0798]; 

  x1_step1_gain = [0.00429590170976888;0.0994025904315066]; 

  x1_step1_ymin = -1; 

   

  % Layer 1 

  b1 = [-

9.3172800880287507;0.51230188417128175;10.418138949584778;15.78727873324795

2;8.2412698288411192;-14.774319186376818;-

9.7844253717626586;10.104098938503467;-

1.5301441784267593;10.409438118848641]; 

  IW1_1 = [12.692744793354024 2.8383760835224972;9.382923808932647 -

1.2970031450577029;-14.759008126685442 -3.757890968990957;-

0.87137483944994176 15.12014106899902;20.709544166224042 -

10.736128717644821;0.79188703610239031 -13.485107158858796;-

24.406144649494923 11.931854952779378;-13.850890811419378 -

2.9466183315784034;-7.7710365727086792 -4.5164486470010283;-

14.999334033742272 -4.2539485593116293]; 

   

  % Layer 2 

  b2 = 15.111376483085019; 

  LW2_1 = [-3.6690861102969077 0.33191560418552407 9.7789241577555153 

6.9253600414492524 8.1302774598643328 22.914742461211702 8.1452127499401072 

-7.9574518914382821 0.30569935609040971 -5.5308070925461799]; 

   

  % Output 1 

  y1_step1_ymin = -1; 

  y1_step1_gain = 0.00589537478371344; 

  y1_step1_xoffset = 11.901; 

   

  % ===== SIMULATION ======== 

   

  % Dimensions 

  Q = size(x1,2); % samples 
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  % Input 1 

  xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 

   

  % Layer 1 

  a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 

   

  % Layer 2 

  a2 = repmat(b2,1,Q) + LW2_1*a1; 

   

  % Output 1 

  y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = 

mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 

  y = bsxfun(@minus,x,settings_xoffset); 

  y = bsxfun(@times,y,settings_gain); 

  y = bsxfun(@plus,y,settings_ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = 

mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 

  x = bsxfun(@minus,y,settings_ymin); 

  x = bsxfun(@rdivide,x,settings_gain); 

  x = bsxfun(@plus,x,settings_xoffset); 

end 
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H.5 Feedback Artificial Neural Network 

H.5.1 Partially Connected Recurrent Neural Network 

 

 

H.5.1 Fully Connected Recurrent Neural Network 

 

 

 

H.6 Support Vector Machine 

%% Support Vector Regression model for estimating viscosity of fluid. 

clear all; clc; close all; 

%% Parameters of SVR model. 
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epsilon=0.01;% Tips: Keep epsilon small if you are confident about the 

accuracy of your trianing data 

sigma_range=2;% Tips: This is a parameter with Radial Basis function. It 

varies with application. 

C_range=500;% Tips: Keep C big if you are confident about the accuracy of 

your dat 

data=xlsread('corrected_data_02_26_2016'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2)./1000; % [PaS] 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 

N=length(rho); 

%% Normalize data 

[rho,rho_min,rho_max]=normalize(rho); 

[mu,mu_min,mu_max]=normalize(mu); 

[chi,chi_min,chi_max]=normalize(chi); 

[tou,tou_min,tou_max]=normalize(tou); 

  

%% Input and output 

x=[rho,tou];%input 

y=[mu,chi]; %output is only shear rate... viscosity is considered in order 

to track the index of samples 

  

%% 2) Division by odd and even row number 

odd_input=x(1:2:end, 1:1:end); 

even_input=x(2:2:end, 1:1:end); 

odd_output=y(1:2:end, 1:1:end); 

even_output=y(2:2:end, 1:1:end); 

% Initialze training, validation and test sets 

x_train=[];y_train=[];x_val=[];y_val=[];x_test=[];y_test=[];  

% Training set 

x_train=odd_input; y_train=odd_output; 

% For validation and test set, divide the even data set further into even 

% and odd 

odd_set_input=even_input(1:2:end, 1:1:end); 

even_set_input=even_input(2:2:end, 1:1:end); 

  

odd_set_output=even_output(1:2:end, 1:1:end); 

even_set_output=even_output(2:2:end, 1:1:end); 

% Validation set  

x_val=odd_set_input; y_val=odd_set_output; 

% Lets include this validation set into training set  

x_train=[x_train;x_val];y_train=[y_train;y_val];y_train=y_train(:,1); 

% Test set 

x_test=even_set_input;y_test=even_set_output; 

N1=length(x_train); 

%% Find the SVR model parameters 

C_Yun=3*std(y_train) 

%load('kkk_viscosity'); 

k=3; 

%noise_std=sqrt((k)/((k-1)*N1)*sum(kkk_viscosity.^2));% =0.435 

noise_std=0.01 

tou=3; 

epsilon_Yun=tou*noise_std*sqrt(log(N1)/N1) 

sigma_Yun=0.026;% 0.03;0.026 for dataset2 

  

%% Optimal solutions  
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[svr,n_sv]=my_svr(x_train,y_train,epsilon_Yun,sigma_Yun,C_Yun);%Radial 

  

y_prediction=svr.predict(x_test);% svr prediction for input validation set 

  

%% set back to respective value from normalized value 

mu_test=y_test(:,1);chi_test=y_test(:,2); 

e_test=mu_test-y_prediction;%error with validation set 

mse=sum(((e_test).^2))/length(e_test); 

mean_error=mean(abs(e_test));%mse of validation 

relative_error=(mean_error/(max(mu_test)-min(mu_test)))*100; 

fprintf('The relative error in prediction is = %f %% \n',relative_error); 

fprintf('The mse in prediction is = %f\n',mse); 

  

  

y_prediction=(y_prediction)*(mu_max-mu_min)+mu_min;%Normalizing test set 

mu_test=(mu_test)*(mu_max-mu_min)+mu_min;%Normalizing test set 

chi_test=(chi_test)*(chi_max-chi_min)+chi_min;%Normalizing test set 

  

e_test=(mu_test-y_prediction)./mu_test;%error with validation set 

test_mse=(sum((abs(e_test)))/length(e_test))*100; 

fprintf('The Mean Absolute Percentage Error in test set is = %f %% 

\n',test_mse); 

  

figure(1) 

plot (mu_test.*1000,'m.'); 

hold on 

plot(y_prediction.*1000,'b.') 

hold off 

legend('Target','Prediction') 

ylabel('Viscosity[cP]') 

xlabel('Samples') 

title('The SVR viscosity prediction vs. target viscosity measurement') 

figure(2) 

tou_test=x_test(:,2); 

tou_test=(tou_test)*(tou_max-tou_min)+tou_min;%Normalizing test set 

chi_prediction=tou_test./y_prediction; 

loglog(chi_test,mu_test.*1000,'m'); 

hold on 

loglog(chi_prediction,y_prediction.*1000,':b') 

hold off 

legend('Target','Prediction') 

ylabel('Viscosity [cP]') 

xlabel('Shear rate [1/s]') 

  

%% 

figure(5) 

clf(5) 

y_prediction=y_prediction.*1000; 

loglog(chi_test(1:67),y_prediction(1:67),'m') 

hold on 

loglog(chi_test(68:135),y_prediction(68:135),'k') 

loglog(chi_test(203:270),y_prediction(203:270),'c') 

loglog(chi_prediction(338:404),y_prediction(338:404),'g') 

loglog(chi_prediction(405:471),y_prediction(405:471),'b') 

 

% predicted 

loglog(chi_prediction(1:67),y_prediction(1:67),'om') 

loglog(chi_prediction(68:135),y_prediction(68:135),'<k') 

loglog(chi_prediction(203:270),y_prediction(203:270),'sc') 

loglog(chi_prediction(338:404),y_prediction(338:404),'^g') 
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loglog(chi_prediction(405:471),y_prediction(405:471),'*b') 

hold off 

legend('Sample-1','Sample-2','Sample-3','Sample-4','Sample-5','PredSample-

1',... 

    'PredSample-2','PredSample-3','PredSample-4','PredSample-5') 

xlabel('Shear rate  [1/s]'); 

ylabel('Viscosity  [cP]'); 

str=sprintf('Calibration of SVR model with MAPE = %f %%', test_mse); 

title(str) 

 

 

H.7 Classification 

ANN as a classifier 
%% ANN model for estimating viscosity of fluid. 

clear all; clc; close all; 

data=xlsread('corrected_data'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2); % [PaS] 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 

N=length(rho); 

X1=[(chi) (mu)]; 

load index 

Y1=index'; 

%% Examine a scatter plot of the data. 

figure(1) 

gscatter(X1(:,1),X1(:,2),Y1); 

title('{\bf Scatter Diagram of Viscosity Measurements}'); 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

xlabel('{\bf Shear Rate [1/s]}'); 

ylabel('{\bf Viscosity [cP]}'); 

legend('Location','Northeast'); 

%% Taking log of input data 

input=log(X1); 

output=[Y1]; 

%% 

[x_train1,y_train1,x_val,y_val,x_test,y_test]=data_division(input,output); 

x_train=[x_train1;x_val]; 

y_train=[y_train1;y_val]; 

training_set=[x_train,y_train]; 

test_set=[x_test,y_test]; 

  

%% ANN model 

d = 0.01; 

[x1Grid,x2Grid] = meshgrid(min(x_train(:,1)):d:max(x_train(:,1)),... 

    min(x_train(:,2)):d:max(x_train(:,2))); 

xGrid = [x1Grid(:),x2Grid(:)]; 

y_prediction=ANN_Classifier(xGrid'); 

y_prediction_round=round(y_prediction); 

%% 

figure(2) 

% anti-log 

xGrid=exp(xGrid); 
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h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),y_prediction_round,... 

    [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]); 

hold on 

% gscatter(X1(:,1),X1(:,2),Y1); 

title('{\bf Viscosity Classification Regions}'); 

xlabel('{\bf Shear Rate [1/s]}'); 

ylabel('{\bf Viscosity [cP]}'); 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

axis tight 

  

%% Testing a model 

y_prediction1=ANN_Classifier(x_test'); 

y_prediction_test=round(y_prediction1); 

% anti-log 

x_test=exp(x_test); 

% 

h(4:6) = gscatter(x_test(:,1),x_test(:,2),y_prediction_test,... 

    'rgb','ooo',6,[0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]); 

 legend(h(4:6),{%'LessViscos region','Viscos region','HighViscos 

region',... 

%    'Observed LessViscos','Observed Viscos', 'Observed HighViscos',... 

    'Tested LessViscos','Tested Viscos','Tested HighViscos'},... 

    'Location','NorthEast'); 

  

txt1 = '{\bf [LessViscos Region]}'; 

text(5,18,txt1) 

txt2 = '{\bf [Viscos Region]}'; 

text(100,90,txt2) 

txt3 = '{\bf [HighViscos Region]}'; 

text(5,250,txt3) 

hold off 

%% Classification Error 

% Compare the prediction and test data 

count=0; 

for i_comp=1:length(y_prediction_test) 

    if (y_prediction_test(i_comp)~=y_test(i_comp)) 

        count=count+1; 

    else 

    end 

end 

per=count*100/length(y_prediction_test); 

fprintf('The mis-classification percentage is %f %% \n',per); 

 

Sugeno type-1 Fuzzy Logic as a classifier 
%% ANFIS model for estimating viscosity of fluid. 

clear all; clc; close all; 

data=xlsread('corrected_data'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2); % [PaS] 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 

N=length(rho); 

X1=[(chi) (mu)]; 

load index 
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Y1=index'; 

X=X1;Y=Y1; 

%% Input and output 

input=[X];%input 

output=[Y];  

  

% Examine a scatter plot of the data. 

figure(1) 

gscatter(X(:,1),X(:,2),Y); 

title('{\bf Scatter Diagram of Viscosity Measurements}'); 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

xlabel('{\bf Shear Rate [1/s]}'); 

ylabel('{\bf Viscosity [cP]}'); 

legend('Location','Northeast'); 

%% Taking log of input data 

X=log(X); 

input=X; 

%% 

[x_train,y_train,x_val,y_val,x_test,y_test]=data_division(input,output); 

%% 

training_set=[x_train,y_train]; 

checking_set=[x_val,y_val]; 

test_set=[x_test,y_test]; 

 training_set1=[input,output]; 

d = 0.01; 

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),... 

    min(X(:,2)):d:max(X(:,2))); 

xGrid = [x1Grid(:),x2Grid(:)]; 

fis=readfis('Sugeno_Classifier'); 

y_prediction=evalfis([xGrid],fis); 

% Take only those samples that belongs to classes out of three 

for i_index=1:length(y_prediction) 

    if y_prediction(i_index)>0.5 &&y_prediction(i_index)<3.5 

        indexxx(i_index)=i_index; 

        y_output(i_index)=y_prediction(i_index); 

    end 

end 

  

%%    

k = find(indexxx) 

xGrid=xGrid(k,:); 

yy=y_output(k) 

y_prediction_round=round(yy); 

  

%% 

figure(2) 

%% anti-log 

xGrid=exp(xGrid); 

X=exp(X); 

 gscatter(xGrid(:,1),xGrid(:,2),y_prediction_round,... 

    [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]); 

hold on 

gscatter(X(:,1),X(:,2),Y); 

title('{\bf Viscosity Classification Regions}'); 

xlabel('{\bf Shear Rate [1/s]}'); 

ylabel('{\bf Viscosity [cP]}'); 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

legend('HighViscos region','LessViscos region','Viscos region',... 

   'Observed LessViscos','Observed Viscos', 'Observed HighViscos',... 
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    'Location','NorthEast'); 

axis tight 

hold off 

 

 

SVM as a classifier 
clear all; 

clc; 

data=xlsread('corrected_data'); 

% Density 

rho= data(:,1);%[kg/m^3] 

% Viscosity 

mu= data(:,2); % [m PaS] or cP 

% Shear rate 

chi= data(:,3); % [1/s] 

% Shear stress 

tou= data(:,4);% [Pascal] 

N=length(rho); 

input=[(chi) (mu)]; 

load className 

output=className'; 

%% Examine a scatter plot of the data. 

figure(1) 

gscatter(input(:,1),input(:,2),output); 

title('{\bf Scatter Diagram of Viscosity Measurements}'); 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

xlabel('{\bf Shear Rate [1/s]}'); 

ylabel('{\bf Viscosity [cP]}'); 

legend('Location','Northeast'); 

%% 

[x_train1,y_train1,x_val,y_val,x_test,y_test]=data_division(input,output); 

 x_train=[x_train1;x_val]; 

 y_train=[y_train1;y_val]; 

%% Define a class 

SVMModels = cell(3,1); 

classes = unique(y_train); 

rng(1); % For reproducibility 

%% Taking log of input data 

X=log(x_train); 

%% 

for j = 1:numel(classes); 

    indx = strcmp(y_train,classes(j)); % Create binary classes for each 

classifier 

    SVMModels{j} = fitcsvm(X,indx,'ClassNames',[false 

true],'Standardize',true,... 

        'KernelFunction','rbf','BoxConstraint',1); 

end 

d = 0.01; 

[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),... 

    min(X(:,2)):d:max(X(:,2))); 

xGrid = [x1Grid(:),x2Grid(:)]; 

N = size(xGrid,1); 

Scores = zeros(N,numel(classes)); 

  

for j = 1:numel(classes); 

    [~,score] = predict(SVMModels{j},xGrid); 

    Scores(:,j) = score(:,2); % Second column contains positive-class 

scores 
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end 

[~,maxScore] = max(Scores,[],2); 

%% Classification plot 

figure(2) 

%% anti-log 

xGrid=exp(xGrid); 

X=exp(X); 

%% 

h(1:3) = gscatter(xGrid(:,1),xGrid(:,2),maxScore,... 

    [0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]); 

hold on 

title('{\bf Viscosity Classification Regions}'); 

xlabel('{\bf Shear Rate [1/s]}'); 

ylabel('{\bf Viscosity [cP]}'); 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

axis tight 

  

%% Testing a model 

x_test=log(x_test); 

for k = 1:numel(classes); 

    [~,score1] = predict(SVMModels{k},x_test); 

    Scores1(:,k) = score1(:,2); % Second column contains positive-class 

scores 

end 

[~,maxScore1] = max(Scores1,[],2); 

  

%% anti-log 

x_test=exp(x_test); 

%% 

h(4:6) = gscatter(x_test(:,1),x_test(:,2),maxScore1,... 

    'brg','ooo',6,[0.1 0.5 0.5; 0.5 0.1 0.5; 0.5 0.5 0.1]); 

legend(h(4:6),{%'HighViscos region','LessViscos region','Viscos region',... 

   %'Observed LessViscos','Observed Viscos', 'Observed HighViscos',... 

    'Tested LessViscos','Tested HighViscos','Tested Viscos'},...  

    'Location','NorthEast'); 

txt1 = '{\bf [LessViscos Region]}'; 

text(9,18,txt1) 

txt2 = '{\bf [Viscos Region]}'; 

text(100,90,txt2) 

txt3 = '{\bf [HighViscos Region]}'; 

text(3,250,txt3) 

hold off 

%% Classification Error  

y_prediction=cell(length(maxScore1),1); 

for i_test=1:length(maxScore1) 

    if maxScore1(i_test)==1 

        y_prediction(i_test)={'HighViscos'}; 

    elseif  maxScore1(i_test)==2 

        y_prediction(i_test)={'LessViscos'}; 

    elseif  maxScore1(i_test)==3 

        y_prediction(i_test)={'Viscos'}; 

    end 

end 

% Compare the prediction and test data 

count=0; 

for i_comp=1:length(y_prediction) 

    c=strcmp(y_prediction(i_comp),y_test(i_comp)); 

    if c==0 

        count=count+1; 

    else 
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    end 

end 

per=count*100/length(y_prediction); 

fprintf('The mis-classification percentage is %f %% \n',per); 
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Appendix I: Experimental Code 
This appendix chapter will show all the code that have been used for the experiments in the 

thesis. The experiments were either done with Matlab or LabVIEW. 

 

I.1 Type-1 Fuzzy logic with Sugeno inference system 

 

 

ANFIS VI 

 

 

I.2 Feedforward Artificial Neural Network 
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StaticNN_viscosity.m 
function [y1] = StaticNN_Viscosity(x1) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 15-May-2016 

23:40:40. 

%  

% [y1] = myNeuralNetworkFunction(x1) takes these arguments: 

%   x = 2xQ matrix, input #1 

% and returns: 

%   y = 1xQ matrix, output #1 

% where Q is the number of samples. 

  

%#ok<*RPMT0> 

  

  % ===== NEURAL NETWORK CONSTANTS ===== 

   

  % Input 1 

  x1_step1_xoffset = [1140;0.0798]; 

  x1_step1_gain = [0.00429590170976888;0.0994025904315066]; 

  x1_step1_ymin = -1; 

   

  % Layer 1 

  b1 = [-

9.3172800880287507;0.51230188417128175;10.418138949584778;15.78727873324795

2;8.2412698288411192;-14.774319186376818;-

9.7844253717626586;10.104098938503467;-

1.5301441784267593;10.409438118848641]; 

  IW1_1 = [12.692744793354024 2.8383760835224972;9.382923808932647 -

1.2970031450577029;-14.759008126685442 -3.757890968990957;-

0.87137483944994176 15.12014106899902;20.709544166224042 -

10.736128717644821;0.79188703610239031 -13.485107158858796;-

24.406144649494923 11.931854952779378;-13.850890811419378 -

2.9466183315784034;-7.7710365727086792 -4.5164486470010283;-

14.999334033742272 -4.2539485593116293]; 

   

  % Layer 2 

  b2 = 15.111376483085019; 

  LW2_1 = [-3.6690861102969077 0.33191560418552407 9.7789241577555153 

6.9253600414492524 8.1302774598643328 22.914742461211702 8.1452127499401072 

-7.9574518914382821 0.30569935609040971 -5.5308070925461799]; 

   

  % Output 1 

  y1_step1_ymin = -1; 

  y1_step1_gain = 0.00589537478371344; 

  y1_step1_xoffset = 11.901; 

   

  % ===== SIMULATION ======== 

   

  % Dimensions 

  Q = size(x1,2); % samples 

   

  % Input 1 

  xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin); 

   

  % Layer 1 

  a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1); 

   

  % Layer 2 

  a2 = repmat(b2,1,Q) + LW2_1*a1; 
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  % Output 1 

  y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin); 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = 

mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) 

  y = bsxfun(@minus,x,settings_xoffset); 

  y = bsxfun(@times,y,settings_gain); 

  y = bsxfun(@plus,y,settings_ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n) 

  a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = 

mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) 

  x = bsxfun(@minus,y,settings_ymin); 

  x = bsxfun(@rdivide,x,settings_gain); 

  x = bsxfun(@plus,x,settings_xoffset); 

end 
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I.3 Feedback Artificial Neural Network 

I.3.1 Partially Connected Recurrent Neural Network 

 

I.3.2 Fully Connected Recurrent Neural Network 

 

I.4 Support Vector Machine    
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SVR VI 

 


