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Abstract: 

Drilling operations in oil and gas industry are getting more and more advanced and 

complicated. One of the main reasons is that the real time monitoring and control of the 

processes are getting complex in their executions. As the wells constructed are getting 
more complex, it leads to new type of drilling methods with an increase in need of various 
tools and equipment. Therefore now a day’s more and more research work is carried out 

and as a part of these research work, the flow rate estimations using level measurements in 
open channel venturi rigs are evaluated with mud flow applications. 

This study mainly reveals the different approaches that can be used with respect to system 
identification, in order to achieve better flow rate estimator models. Deterministic and 
Stochastic system identification and Realization (DSR) method, Prediction Error Methods 

(PEM), N4SID with PEM method, State Space PEM (SSPEM) method and Neural 
Network approach were mainly discussed and evaluated in this report. The achieved 

models from these approaches were validated with two different sets of experimental data 
so that the reliability of these models were assured.  

However the obtained models estimated the mass flow rate with the flow depth level 

measurements as the input variables. The best estimator model was obtained with N4SID 
algorithm together with the Prediction Error Method. This model only needs the level 

measurements of the flow depth in the open channel venturi. The model validation results 
provided the flow rate estimations with a mean percentage error of 2% and with a Root 
mean Square error of 8kg/min. Therefore further discussions were made with the use of 

this model instead of the Coriolis meter as a real-time flow rate estimator in offshore 
drilling industry. 

University College of Southeast Norway accepts no responsibility for results and conclusions presented in this 

report. 
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Preface 
This thesis is about real-time estimations of mud flow rate in an open channel venturi with 

respect to level measurements based on different approaches in system identifica t ion 

techniques. This project is an extension of the project work carried out during the autumn 

2015 named, Mud flow measurements in open venturi channel (Thanushan Abeywickrama, 

Jeremiah Ejimofor, Minh Hoang, Aderonke OKoro, 2015). The earlier project was 

concluded with obtaining a neural network model with a Mean Square Error of 114.24 

kg2/min2. The validation results of these models were mainly compared with the newly 

obtained models with different system identification methods. The main focus of this thesis 

research is to achieve a precise measurement of drilling mud flow in order to control the 

bottom-hole pressure in a well, which should stay between the formation’s fracture and pore 

pressure. All the presented results in this report were programmed with MATLAB and 

simulated with the same. 

The thesis work is a compulsory part of System and Control master programs at Univeristy 

College of Southeast Norway. The research work is carried out under the close supervis ion 

of Håkon Viumdal (main-supervisor), Saba Mylvaganam (co-supervisor), Khim Chhantya l 

(co-supervisor), David Di Ruscio (co-supervisor) and Geir Elseth (external supervisor) from 

Statoil. I would like to thank all my supervisors for their generosity in helping me to get 

through this project and Statoil for giving this project to USN. 
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1 Introduction 
Drilling operations in oil and gas industry are getting more and more advanced and 

complicated. One of the main reasons is that the real time monitoring and control of the 

processes are getting complex in their executions. As the wells constructed are getting 

more complex, it leads to new type of drilling methods with an increase in need of various 

tools and equipment. Therefore now a day’s more and more research work is carried out on 

improving the drilling operations by improving the sensors and control systems. As a part 

of these research work, the flow rate estimations using level measurements in open channel 

venturi rigs are evaluated with mud flow applications. Considering the flow rate 

measurements in drilling operations, there are many instruments used in measuring the 

drilling mud flow rate. Among them the main standard devices are flow paddle meter and 

Coriolis meter. When considering the paddle wheel flow meters, these devices are 

designed to be inserted inside a pipe fitting or ‘in- line’. The paddle flow meters have a lot 

of limitations when it comes to flow measurements in drilling mud. The main limitation is 

that these meters operates best with clean fluids. However the drilling mud is not a clean 

fluid at all. It has a lot of drill cuttings as well as other particles. Other than the paddle 

wheel flow meters, Coriolis flow meter is widely used in measuring the flow rate of 

drilling mud. The Corilis flow meters are somehow expensive and are in need of frequent 

replacement as of the damages occurred with the drill cuttings that comes with drilling 

mud flow.  

These limitations drives the research work in obtaining estimators for drilling mud flow 

rate in offshore drilling operations. However the concept of estimation of mud flow with 

respect to the level measurements in an open channel venturi is not used frequently used in 

the industry. Therefore there are limited number of research work carried out in this 

scenario. Among these a mechanistic model for mudflow measurements was developed by 

Agu in his thesis (Agu, 2014). The research was done with respect to one dimensional 

Saint Venant equation for open channel flow for non-Newtonian fluids. There are many 

limitations in using this model as a real-time estimator. This mechanistic model needs the 

fluid property parameters before it predicts the flow rate. Fluid consistency index (n), fluid 

behavior index (K) and etc. However the results from this mechanistic model was not able 

to estimate the dynamics of the changes in the flow rate with the time. Therefore the 

mechanistic model was not taken into consideration from here onwards. This point was 

observed in the research carried out by Abeywickrama et al., 2015 in their Master Project. 

In the same project an empirical neural network model was obtained to estimate the 

drilling mud flow rate. This model has 3 input parameters. Two of them are ultrasonic 



 10 

level measurements in the open venturi channel and the last was a density measurement of 

the fluid, measured by a Coriolis sensor. The main drawback in this model is that it needs 

the density measurement which is obtained with the installed Coriolis meter. The main 

objective of obtaining a soft sensor model for flow rate estimations is to get rid of the 

expensive Coriolis equipment. However the comparison of the validation results of this 

neural network model is carried out in this report. Furthermore the idea of using subspace 

system identification methods plays a big role in developing the models for flow rate 

estimations in open channel venturi rigs. This aspect of obtaining a model with these 

subspace methods is mainly concerned in this report. 
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2 Problems/Objectives 
The main goal of this project is to obtain a model to estimate the flow rate with focus on 

the ultrasonic level measurements. The report is structured with 6 main chapters. 

 Experimental procedure (Chapter 3): This chapter mainly describes the 

experimental procedure used in obtaining the experimental data as well as the 

validation data. 

 Methods and model formulation (Chapter 4): This chapter mainly describes the 

theoretical background of different subspace methods used in developing the 

models. 

 Result and analysis (Chapter 5): This chapter mainly describes and discusses about 

the results of the obtained models with respect to the validation data sets. Also at 

the end of this chapter the best model is selected among everything. 

 Conclusion (Chapter 6): This chapter summarizes the work done and the feasibility 

of using the obtained model as an estimator in control systems used in off shore 

drilling operations. 
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3 Experimental Procedure 
The experiments were carried out with the use of the open channel venturi rig at the 

process hall at University College of Southeast Norway. The venturi rig is trapezoidal in its 

shape and consists of three main sections which are the converging section, the upstream 

section and the downstream section. A pump is used to pump the fluid from the reservoir. 

Many different sensors were installed to take different measurements. With respect to the 

task descriptions of this project, the main concern was to take the flow rate measurements 

with a higher priority towards the level measurements. Therefore the following 

measurements were taken into consideration.  

Table 1 Measurements taken from Open channel Venturi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three different data sets were obtained with the experiments. 

Model Calibration Data set – used for calibration of models 

Data set 1 and Data set 2 – used for validation 

These experiments are carried out in a similar manner followed in the previous project 

work presented by Abeywickrama et al., 2015. In both Model Calibration Data set and 

Measurements Units 

Density kgm-3 

Upstream ultrasonic level 

measurement LT15 

mm 

Level measurement at the 

throat section LT17 

mm 

Downstream level 

measurement LT18 

mm 

Differential pressure reading 

PDT 

mbar 

Pump outlet pressure PT bar 

Mass flow rate kg/min 
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Data set 1 used for model validation, the flow rate measurement was varied from 

250kg/min to 550kg/min while keeping a set point flow rate for some specific time. 

Data set 2 was obtained by changing the set point flow rate more frequently. 

 

Figure 3.1 shows the Piping and Instrumentation Diagram of the Venturi rig.  

LT – Ultrasonic level transmitters 

FT – Coriolis meter 

PT – Pressure transmitter 

TT – Temperature transmitter 

PDT – Differential pressure transmitter  

Figure 3.1 P&ID diagram of the Venturi rig 
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The experiments were conducted with two fluids which are water and fluid 1. The 

properties and characteristics of the fluids are given in the Table 2. 

Table 2 Fluid properties 

 

 

 

 

 

 

 

 

 

 

 Water Fluid 1 

Density 1000 𝑘𝑔/𝑚3  1165 𝑘𝑔/𝑚3  

pH 7 11.91 

Characteristic Low density & low 

viscosity 

Low density & high 

viscosity 

Recipe  Potassium Carbonate 

and Xanthan Gum 

mixed with water 
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4 Methods and model formulation 
In this chapter we will briefly discuss about the methods used in the formulation of models 

for flow rate estimations in the open channel venturi.  

4.1 Principal Component Analysis (PCA) 
PCA is considered as the decomposition of the initial raw data matrix (X), into an 

important structure part and a noise section.  

𝑋 = 𝑇𝑃𝑇 + 𝐸 = 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝑁𝑜𝑖𝑠𝑒 

The main objective of PCA is to represent the initial raw data which is in the form of p 

number of original variables, into a new coordinate space which consists of Principal 

Components (PCs). In this manner there’s an advantage as we can drop the noisy higher 

order principal components. This ultimately transforms the original coordinate system to a 

more relevant coordinate system with principal components (Esbensen, 2010). The 

selection of relevant number of principal components is depended on the calculation 

method of PCs. In this report there are two different methods used to carry out the 

Principal Component Analysis, which are Singular Value Decomposition (SVD) method 

and the Non-linear Iterative Projections by Alternating Least Squares (NIPALS) method. 

The choice of appropriate number of PCs provides a comfortable way to break a data 

matrix into simple and meaningful pieces.  

4.2 Deterministic and Stochastic system identification 
and Realization (DSR) method 

The DSR algorithm is mainly focused on writing an Extended State Space Model (ESSM). 

Therefore the elimination of unknown states is carried out from the problem. The extended 

state space model indicates the relationship between the state space model matrices and the 

known data matrices. Therefore the DSR algorithm has no problems with unknown initial 

values and unknown states. After obtaining the state space model matrices from the 

extended state space model, the DSR algorithm determines the stochastic part of the model 

(innovations covariance matrix and the Markov parameters) from a projection of known 

data matrices. This estimation is done without any recursive procedure on the non-linear 

matrix equations like the Riccati Equation. (Ruscio, Subspace System Identification, 1995) 
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The DSR method is mainly based on a linear discrete time invariant state space model and 

the algorithm obtains the system order (n) and the matrices (A, B, D, E, CF, and F) in the 

following model form. 

The following is a brief description about the MATLAB function for DSR which is used in 

estimating the flow rate in the open venturi channel. 

[𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐶𝐹, 𝐹,𝑥0] = 𝑑𝑠𝑟(𝑌, 𝑈, 𝐿) 

Y is an N by m matrix with output observations. 

U is an N by r matrix with input observations. 

L is an integer specifying the future horizon that is used for predicting the system order. 

Choice of L should be L>0 where the assumed system order satisfy 𝑛 ≤ 𝐿𝑚 where L = 1 is 

the default value. (Ruscio, An introduction to MATrix LABoratory, 2006)  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐶𝑒𝑘 

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝑒𝑘 

𝑘 ≥ 0 is the discrete time. 

𝑥 ∈ 𝑅𝑛 is the state vector. Initial value is 𝑥0. 

 𝑦 ∈ 𝑅𝑚 is the output of the system. 

𝑢 ∈ 𝑅𝑟 is the system input. 

𝑒 ∈ 𝑅𝑚 is the unknown innovations process of white noise. 

A - State transition matrix. 

B – External input matrix. 

C – Kalman gain matrix. 

D – Output matrix 

E – Direct control input to output matrix.  

𝐶 = 𝐶𝐹. 𝐹−1 is the Kalman filter gain matrix. 

𝐸(𝑒𝑡𝑒𝑡
𝑇) = 𝐹𝐹𝑇  is the innovations noise covariance matrix. 

Furthermore an assumption is made as the pair (D, A) is an observable pair. More 

explanations regarding the formulation of the DSR algorithm can be found in (Ruscio, 

Subspace System Identification, 1995). 
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4.3 Prediction Error Methods (PEM) 
Following will be an overview of prediction error methods. 

Given below is the state space model on innovations form. 

𝑥̅𝑘+1 = 𝐴 𝑥̅𝑘 + 𝐵𝑢𝑘 + 𝐾𝑒𝑘 

𝑦𝑘 = 𝐷 𝑥̅𝑘 + 𝐸𝑢𝑘 + 𝑒𝑘  

 𝑦̅𝑘 = 𝐷 𝑥̅𝑘 + 𝐸𝑢𝑘  

∆ = 𝐸(𝑒𝑘𝑒𝑘
𝑇) is the covariance matrix. 

 𝑥̅1 is the initial state predicted. The model is now parameterized so that the parameters in 

A, B, K, D, E, x1 are organized to a vector 𝜃 which is a parameter vector. The goal is to 

find out the best 𝜃 vector from the known input output matrices which are Y and U.  

Define the Prediction Error as  

𝜖𝑘(𝜃) = 𝑦𝑘 −  𝑦̅𝑘(𝜃) .  

A better model results in a small prediction error. More explanations on prediction error 

methods can be found in (Ruscio, Model Predictive Control and optimization, 2001). 

In MATLAB, PEM is using numerical optimization in minimizing the cost function and a 

weighted norm of the PE which can be considered as the following for scalars. 

𝑉𝑁 (𝐺, 𝐻) = ∑ 𝑒2(𝑡)

𝑁

𝑡=1

 

𝑒(𝑡) is the difference of measured and predicted output from the model. If we consider a 

linear model the error can be considered as follows. 

𝑒(𝑡) = 𝐻−1(𝑞)[𝑦(𝑡) − 𝐺(𝑞)𝑢(𝑡)] 

Here 𝑒(𝑡) is the vector and 𝑉𝑁 (𝐺, 𝐻) is a scalar. G and H are the respective transfer 

functions in rational form. N indicates the cost function is of the number of data samples. 

This becomes more precise for higher values of N. (MathWorks, MathWorks, 2006) 

Furthermore when considering about the subspace approach in identifying the state space 

models with Prediction error methods it has the following steps. Estimate the k step ahead 

with the use of least square algorithm. Then select the state vector from the achieved 

results and ultimately estimate the state space matrices with the states and least squares 

method. (Ljung, 2009) 
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4.3.1 State Space Prediction Error Method (SS-PEM) 
Algorithm 

This algorithm was developed by David Di Ruscio in 2001. (Ruscio, Model Predictive 

Control and optimization, 2001). This toolbox is used in appropriate with the DSR toolbox 

which is described earlier.  

Initial parameter vector 𝜃1 is calculated by DSR algorithm to calculate initial state space 

Kalman Filter model which provides (A, B, D, E, K, x1) matrices as indicated by the 

model in section 4.3. Then the model is converted to observability canonical form by DSR 

function ss2cf.m. 

The minimizing parameter vector is computed with the function fminunc.m.  

[A, B, D, E, K, x1] = sspem(Y, U, n) 

The system order n should be known before running this algorithm. The solution for this is 

to run the DSR algorithm and estimate the system order by that. The identified model is 

then represented as an observability canonical form. Further details on this algorithm can 

be found in (Ruscio, Model Predictive Control and optimization, 2001).  

4.3.2 Discrete-time state-space model using N4SID 

N4SID is a numerical algorithm used for subspace state space system identification. This is 

highly useful for higher order multivariable systems. It is mentioned that with N4SID 

algorithm most of the a-priori parameterization problems can be overcome. As in SS-PEM 

algorithm the order of the system is essential and this can be achieved by DSR algorithm 

initially. N4SID algorithm is non-iterative, with no involvement in non-linear optimization. 

Usually typical iterative algorithms suffer from no guaranteed convergence, sensitivity to 

initial estimates and local minima of the objective. Furthermore when using N4SID 

algorithms there is no variation between zero and non-zero initial states (Overschee, 1992). 

System Identification toolbox in MATLAB provides the N4SID algorithm which estimates 

an n order state space model using the given observed input and output data. (MathWorks, 

n4sid, 2016) 

SYS = n4sid (data, n) 

SYS is a state space model with identifiable parameters (idss model), and it is a discrete 

time model with no specific sample time and element of state disturbance. (MathWorks, 

idss, 2016) 
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The following model is represented by SYS. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡) 

A, B, C, D are state space matrices.  

K is the disturbance matrix.  

u(t) is the input observations and y(t) is the output observations. 

x(t) is the state vector of n states and e(t) is disturbance. (MathWorks, n4sid, 2016) 
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5 Results and analysis 
This chapter will mainly discuss about the obtained results from different system 

identification approaches. 

5.1 Principle Component Analysis (PCA) 
First of all a Principal Component Analysis was carried out with respect to the Model 

Calibration Data set to find out the most important variables with respect to the Mass Flow, 

which is considered as the output variable in all the models from here onwards. The other 

variables were taken as input variables, which are level measurements (LT15, LT17, and 

LT18), differential pressure measurement (PDT) and outlet pressure of the pump (PT). The 

PCA showed the importance of the input variables to the output variable, with respect to 

each principal component. The PCA was done with two different methods which are 

Singular Value Decomposition (SVD) technique and the NIPALS technique. 

5.1.1 Singular Value Decomposition (SVD) calculation 

results 

 

 

 

 

 

 

 

 

 

 

 
A MATLAB program was used to obtain the singular values of the data set. The results 

obtained with are shown as following. The Model Calibration Data set was centered and 

scaled before the analysis.  

 

 

 

Figure 5.1 PCA variable loadings obtained with SVD 
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Singular Values = 

 141.8312 

   77.0870 

   65.5450 

   46.1205 

   16.3910 

   12.7009 

    8.0784 

 

With respect to the above obtained singular values the number of components used for 

PCA is only four. The reason why is that it seems like the singular values after 46.1205 do 

not express a higher quantitative value with respect to the first four. Therefore the 

following Loading Vector was obtained. 

 

Loading vector with density = 

 PC1 PC2 PC3       PC4 

Mass Flow  0.4774   -0.0273    0.0009   -0.1532 

LT15     0.4664   -0.0798    0.1165   -0.1899 

LT17     0.4704   -0.1587    0.0370   -0.1009 

LT18     0.4685   -0.1239   -0.0538   -0.0968 

PDT    0.1298    0.3531   -0.9188    0.0190 

PT       0.3114    0.4360    0.2304    0.8120 

Density      0.0017    0.7985    0.2912   -0.5110 

 

According to Figure 5.1 and the loading vector values obtained by the MATLAB program, 

with respect to the most important principal component which is PC1 we can clearly see 

that LT15 LT17 and LT18 are highly correlated with the Mass Flow. According to our data 

sets, Density of the fluid is not related to Mass Flow at all. Therefore from here onwards 

these three level measurements are considered as inputs and for Mass Flow estimation 

model formations. This fact is further proved with NIPLAS algorithm calculations in the 

following Figure 5.2. 
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5.1.2 NIPALS calculation results 

 

 

 

 

 

 

 

 

 

 

The same Model Calibration Data set was fed to Unscrambler software to carry out a PCA 

with NIPALS algorithm. The same loading values were obtained as it was in SVD. 

Therefore the results from the SVD calculations are validated with the NIPALS 

calculations. 

LT15, LT17 and LT18 level measurements were the selected as input variables for 

obtaining the models further. 

5.1.3 Noise reduction of the Input Data 

This was carried out with the use of the singular values and loading vector values obtained 

with SVD. New set of singular values are obtained only with the selected inputs LT15, 

LT17 and LT18. The data set was only centered. The scaling was not done as all the inputs 

are level measurements and all the measurements are in millimeters. 

 

Singular Values = 

   1.0e+03 * 

 

    1.5072 

    0.2298 

    0.1624 

 

Figure 5.2 PCA variable loadings obtained with NIPALS 
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Looking at the above set of singular values we can clearly see that only one singular value 

which relates to the 1st PC is enough to obtain the new principal component vector space. 

Therefore the following loading vector is obtained with respect to the first principal 

component. 

Loading vector = 

    0.5967 

    0.5987 

    0.5344 

With these calculations the new input signals (noise reduced) were obtained with respect to 

the 1st PC. The effect of noise reduction can be clearly seen in the following Figure 5.3. 

From here onwards the following input and output data matrices will be used to obtain the 

models. 

Input U = [LT15, LT17, LT18] 

Output Y = [Mass Flow] 
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Figure 5.3 Comparison of Original and Noise reduced input 
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5.2 DSR Model 

5.2.1 Model obtained with the Model Calibration dataset 

5.2.1.1  Without Noise reduction of the Inputs 

The following DSR model was obtained with the raw data from the Model Calibration 

dataset. The inputs were not treated with singular value decomposition method to reduce 

the noise. 

The obtained model was a first order one with L =1 (where L is the number of block rows). 

The error values of the above estimation is shown as follows. 

Figure 5.4 illustrates the time response of the following discrete time linear system. 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = 0.9905, B = [-0.0450    0.0346   -0.0245], D = -1, E = [0.6587    1.1774    0.3302] 

Mean Error Percentage =    6.6315 %. RMSE =   30.4191 (kg/min) 

With respect to Figure 5.4 we can clearly see that the calibrated model estimation is having 

a trend line approach compared to the experimental results. The original dynamics of the 

Mass flow rate are not well tracked by the model. However the model was validated with 

the two new data sets as follows. 
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Figure 5.4 Estimation results from DSR Model (Raw data) 

Water Fluid 1 
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5.2.1.1.1 Validation of Model with Data set 1 

 

 

 

 

 

 

 

 

Mean error Percentage =    18.6130%. RMSE =   83.2397 (kg/min) 

5.2.1.1.2 Validation of Model with Data set 2 

 

 

 

 

 

 

 

 

 

 Mean error Percentage =    17.0416%. RMSE =   54.6456 (kg/min)  

With respect to the validation results obtained, Figure 5.5 and Figure 5.6 shows that the 

DSR model obtained with raw input data doesn’t provide a good model. Therefore the 

noise reduction of the input variables were carried out with singular value decomposition 

technique. 

Figure 5.5 Validation results from DSR Model (Raw data) with Data set 1 

Figure 5.6 Validation results from DSR Model (Raw data) with Data set 2 
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5.2.1.2  With Noise reduction of the Inputs 

The following DSR model was obtained with the singular value decomposed input 

variables from the Model Calibration dataset. The inputs were treated with singular value 

decomposition with respect to the 1st principal component to reduce the noise. 

The obtained model was a first order one with L =1 (where L is the number of block rows). 

The error values of the above estimation is shown as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 illustrates the time response of the following discrete time linear system. 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = 0.9684, B = [1.0e+12 *   -2.8098    1.9969    0.8998], D = -1 

E = [1.0e+12 *   -2.5239   -2.0408    5.1045] 

Mean error percentage =    2.4940%. RMSE =   13.1398 (kg/min) 

With respect to Figure 5.7 we can clearly see that the calibrated model estimation is have 

less a trend line approach compared to the 1st DSR model obtained earlier. The original 

dynamics of the Mass flow rate are somewhat well tracked by the model. However this 

model was also validated with the two new data sets as follows. 

Figure 5.7 Estimation results from DSR Model (SVD noise reduces data) 
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5.2.1.2.1 Validation of Model with Data set 1 

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

Mean error percentage =    7.6032e+13%. RMSE =   2.7366e+14 (kg/min) 

5.2.1.2.2 Validation of Model with Data set 2 

 

 

 

 
 
 

 
 

 
 
 

 
 

Mean error percentage =    9.7714e+13 %. RMSE =   3.1814e+14 (kg/min) 

With respect to the validation results obtained, Figure 5.8 and Figure 5.9 shows that the 

DSR model obtained with noise reduced inputs doesn’t provide a good model (concerning 

the error values).  

 

Figure 5.8 Validation results from DSR Model (SVD noise reduced data) with Data set 1 

Figure 5.9 Validation results from DSR Model (SVD noise reduced data) with Data set 2 
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5.3 SSPEM Model 

5.3.1 Model obtained with the Model Calibration dataset 

5.3.1.1 Without Noise reduction of the Inputs 

The following SSPEM model was obtained with the raw data from the Model Calibration 

dataset. The inputs were not treated with singular value decomposition method to reduce 

the noise. This is a second order discrete time state space model. The error values of the 

model estimation is shown as follows. 

 

 

 

 

 

 

 

 

Figure 5.10 illustrates the time response of the following discrete time linear system. 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = [0    1.0000;    0.1075    0.8802]  

B = [-0.1551   -0.2242   -0.1593;    0.0531   -0.0286    0.0785] 

D = [1 0] , E = [1.0070    1.7299    0.6920] 

Mean_error_percentage =   5.3968%. RMSE =   26.4535 (kg/min) 

With respect to Figure 5.10 we can clearly see that the calibrated model estimation is 

having a minor trend line approach compared to the experimental results. The original 

dynamics of the Mass flow rate are not that well tracked by the model. The obtained 

SSPEM model was validated with the two new data sets as follows. 
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Figure 5.10 Estimation results from SSPEM Model (Raw data) 
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5.3.1.1.1 Validation of Model with Data set 1 

 

 

 
 

 
 

 
 

 
 

 

Mean error percentage =   21.7515%. RMSE =   99.4608 (kg/min) 

5.3.1.1.2 Validation of Model with Data set 2 

 

 

 

 
 

 

 
 

 
 

 
 

 

Mean error percentage =   12.4483%. RMSE =   41.0635 (kg/min) 

With respect to the validation results obtained, Figure 5.11 and Figure 5.12 shows that the 

SSPEM model obtained with raw data inputs doesn’t provide a good model (concerning 

the error values).  

Figure 5.11 Validation results from SSPEM Model (Raw data) with Data set1 

Figure 5.12 Validation results from SSPEM Model (Raw data) with Data set2 
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5.3.1.2  With Noise reduction of the Inputs 

The following SSPEM model was obtained with the singular value decomposed input 

variables from the Model Calibration dataset. The inputs were treated with singular value 

decomposition with respect to the 1st principal component to reduce the noise. This is also 

a third order discrete time state space model. The error values of the model estimation is 

shown as follows. 

 

 

 

 
 

 

 
 

 
 

 

Figure 5.13 illustrates the time response of the following discrete time linear system. 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = [0    1.0000         0;   0         0    1.0000;   -0.3523    0.2247    1.1186] 

B = [1.0e+11 *   -0.9703    0.7328    0.2624;   -0.0265    0.0200    0.0072;    1.0636   -

0.8032   -0.2876] 

D = [1     0     0] 

E = [0.0000    2.1120    0.0000] 

Mean error percentage =   2.8508%. RMSE =   16.4539 (kg/min) 

With respect to Figure 5.13 we can see that the calibrated model estimation is have a lesser 

trend line approach compared to the 1st SSPEM model obtained earlier. The original 

dynamics of the Mass flow rate are somewhat well tracked by the model. However this 

model was also validated with the two new data sets as follows. 

  

Figure 5.13 Estimation results from SSPEM Model (SVD noise reduces data) 
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5.3.1.2.1 Validation of Model with data set 1 

 

 

 

 

 

 

 

 

Mean error percentage =   1.2285e+13%. RMSE =   4.5192e+13 (kg/min) 

5.3.1.2.2 Validation of Model with data set 2 

 

 
 

 
 

 
 

 
 

 

 
 

Mean error percentage =   1.7174e+13%. RMSE =   5.6342e+13 (kg/min) 

With respect to the validation results obtained, Figure 5.14 and Figure 5.15 shows that the 

SSPEM model obtained with noise reduced inputs doesn’t provide a good model (with 

concern to the error values).  

 

Figure 5.14 Validation results from SSPEM Model (SVD noise reduced data) with Data set 1 

Figure 5.15 Validation results from SSPEM Model (SVD noise reduced data) with Data set 2 
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5.4 Model with Discrete-time state-space model using 
N4SID and PEM 

5.4.1 Model obtained with the calibration dataset 

5.4.1.1  Without Noise reduction of the Inputs 

The following model was obtained with the use of N4SID algorithm and PEM in 

MATLAB system identification toolbox, with the raw data from the Model Calibration 

dataset. The inputs were not treated with singular value decomposition method to reduce 

the noise. This is a second order discrete time state space model.  

Figure 5.16 illustrates the time response comparison of three different scenarios. Which are 

the original experimental data, PEM results and N4SID results. 

The time response of the following discrete time linear system is simulated with the 

obtained A, B, D and E matrices from the N4SID algorithm. 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = [0.9542    0.0111;    0.0027    0.9577]  

B = 0.0000    0.0004   -0.0000;    0.0002   -0.0015    0.0009] 

D = [1.0e+03 *    1.6648    0.1180] , E = [0 0 0] 

Figure 5.16 Estimation results and response comparison from N4SID & PEM Models 

(Raw data) 
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Figure 5.17 was obtained as the time response simulation of the second order discrete time 

state space model with the above system’s state space matrices (A, B, D & E). The error 

values of the model estimation is shown as follows. 

Mean error percentage =   2.3464 %. RMSE =   12.7317 (kg/min) 

With respect to Figure 5.17 we can see that the calibrated model estimation is having the 

least trend line approach compared to the all the models obtained up to now. The original 

dynamics of the Mass flow rate are greatly tracked by the model estimations. Let’s validate 

this model with the two new data sets. 

5.4.1.1.1 Validation of Model with data set 1 

 

 

 

 

 

 

 

 

Mean error percentage =   22.7785%. RMSE =   95.5065 (kg/min) 
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Figure 5.17 Estimated simulation results from N4SID Model (Raw Data) 

Figure 5.18 Validation results from N4SIDModel (Raw data) with Data set 1 
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5.4.1.1.2 Validation of Model with data set 2 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 

Mean error percentage =   2.0472%. RMSE =   8.0770 (kg/min) 

With respect to the validation results obtained, Figure 5.18 and Figure 5.19 shows that the 

N4SID model obtained with raw data inputs provides a fairly good model (concerning the 

error values).  The mean error percentage of the model validation with respect to Data set 2 

is almost 2% and the root mean square error value (RMSE) is around 8.077 kg/min. When 

considering the dynamics of the model validation the N4SID model proves better model 

dynamics. This is vivid when looking at Figure 5.19. This model can be taken into 

consideration for further analysis. However the model validation didn’t work well with the 

Data set 1. The reasons can be that the variations of the set point, which is the Mass Flow, 

is too frequently changed and the height levels measured with the ultrasonic sensors might 

not be in the equilibrium state. Therefore there can be a small problem with the 

experimental Data set 1.  

Figure 5.19 Validation results from N4SIDModel (Raw data) with Data set 2 
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5.4.1.2  With Noise reduction of the Inputs 

The following model was obtained with the use of N4SID algorithm and PEM in 

MATLAB system identification toolbox, with the singular value decomposed input 

variables from the Model Calibration dataset. The inputs were treated with singular value 

decomposition with respect to the 1st principal component to reduce the noise. This is a 

second order discrete time state space model.  

Figure 5.20 illustrates the time response comparison of three different scenarios. Which are 

the original experimental data, PEM results and N4SID results. 

The time response of the following discrete time linear system is simulated with the 

obtained A, B, D and E matrices from the N4SID algorithm. 

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = [0.9371    0.1501;    0.1427    0.2123]  

B = [0.0167    0.0878   -0.1835;    -0.0835   -0.4406    0.9213] 

D = [1.0e+03 *    1.2053    0.2491] , E = [0 0 0] 

 

 

Figure 5.20 Estimation results and response comparison from N4SID & PEM Models 

(SVD noise reduced data) 
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 Figure 5.17 was obtained as the time response simulation of the second order discrete time 

state space model with the above system’s state space matrices (A, B, D & E). The error 

values of the model estimation is shown as follows. 

 

 

 

 

 

 

 

 

 

Mean error percentage =   2.4171%. RMSE =   12.8742 (kg/min) 

With respect to Figure 5.21 we can see that the calibrated model estimation is having a 

similar approach compared to the N4SID model results obtained with the raw input data. 

The original dynamics of the Mass flow rate are also well tracked by the model 

estimations. Let’s validate this model with the two new data sets. 

5.4.1.2.1 Validation of Model with data set 1 

 

 

 

 

 

 

 

Mean error percentage =   20.5631%. RMSE =   86.5930 (kg/min) 

Figure 5.21 Estimated simulation results from N4SID Model (SVD noise reduced data) 

Figure 5.22 Validation results from N4SIDModel (SVD noise reduced data) with Data set 1 
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5.4.1.2.2 Validation of Model with data set 2 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

Mean error percentage =   2.3047%. RMSE =   9.2318 (kg/min) 

With respect to the validation results obtained, Figure 5.22 and Figure 5.23 shows that the 

N4SID model obtained with noise reduced inputs also provides a fairly good model just 

like the model obtained by N4SID earlier with the raw data inputs. The mean error 

percentage of the model validation with respect to Data set 2 is almost 2.3% which is a bit 

higher that the earlier N4SID model and the root mean square error value (RMSE) is 

around 9.23 kg/min which is also a bit higher. When considering the dynamics of the 

model validation, this N4SID model is not that well tracking the dynamics compared to the 

previous N4SID model. This is vivid when looking at Figure 5.19. However this model can 

also be taken into consideration for further analysis.  

However this model validation also didn’t work well with the Data set 1. The same reasons 

can be mentioned as it was for the 1st N4SID model.  

Figure 5.23 Validation results from N4SIDModel (SVD noise reduced data) with Data set 2 
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5.5 Neural Network (NN) Model  
The following NN model was extracted from the previous work carried out by (Thanushan 

Abeywickrama, Jeremiah Ejimofor, Minh Hoang, Aderonke OKoro, 2015). The inputs of 

the NN model are [Density LT15 LT17] and the output is the Flow rate. The number of 

neurons in the hidden layer of the NN model was 13. The test performance error of the 

obtained best NN model is 114.24 which is the mean square error Abeywickrama et al., 

2015. The RMSE value is 10.61 kg/min. We will now validate this model also with the 

respect to the two new data sets and compare the results with the obtained subspace 

models. 

5.5.1 NN Model obtained with the Model Calibration dataset 

 

 

 

 

 

 

 

 

 

 

Mean error percentage =   2.0420%. RMSE =   10.6112 (kg/min) 

According to (Thanushan Abeywickrama, Jeremiah Ejimofor, Minh Hoang, Aderonke 

OKoro, 2015) the NN model proves with better estimations for dynamic changes in the 

Mass flow rate. This is clear with reference to Figure 5.24. The mean error percentage of 

the calibrated model is around 2%.  

Figure 5.24 NN model prediction results for Water and Fluid 1(Model 1). Number of input 

variables = 3. Number of hidden layer neurons = 13. 
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5.5.1.1 Validation of NN Model with data set 1 

 

 

 

 

 

 

 

 

 

 

Mean error percentage =   17.1851%. RMSE =   27.3284 (kg/min) 

5.5.1.2 Validation of NN Model with data set 2 

 

 

 

 

 

 

 

 

 

Mean error percentage =   7.8212%. RMSE =   27.3284 (kg/min) 

With respect to the validation results obtained, Figure 5.25 and Figure 5.26 shows that the 

earlier obtained NN model with raw input data doesn’t provide a good model (concerning 

the error values).  However according to Figure 5.25 we can see that the dynamic changes 

in the Mass flow rate are somewhat tracked with respect to Data set1. But the Mean error 

percentage of this validation is around 17% which is quite high. 

Figure 5.25 Validation results from NN Model (Raw data) with Data set 1 

Figure 5.26 Validation results from NN Model (Raw data) with Data set 2 
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5.6 Selection of the best model 
Concerning the results obtained with the two validation data sets it seems like Data set 2 

has proven some proper results with the calibrated models. Therefore from here onwards 

the model comparisons will be done with respect to the validation results obtained with 

Data set 1. 

Table 3 Summary of estimation and validation results of the obtained models. 

 

No 

 
Model 

Model Calibration Data 
set 

Data set 1 (Validation set) 

Mean 

Percentage 
Error (%) 

RMSE 

(kg/min) 

Mean 

Percentage 
Error (%) 

RMSE 

(kg/min) 

1 DSR Model (Raw Data) 6.6315 30.4191 17.0416 54.6456 

2 DSR Model (Noise 

reduced data) 

2.4940 13.1398 9.7714e+13 3.1814e+14 

3 SSPEM Model (Raw 
Data) 

5.3968 26.4535 12.4483 41.0635 

4 SSPEM Model (Noise 
reduced data) 

2.8508 16.4539 1.7174e+13 5.6342e+13 

5 N4SID Model (Raw Data) 2.3464  12.7317 2.0472 8.0770 

6 N4SID Model ((Noise 

reduced data)) 

2.4171 12.8742 2.3047 9.2318 

7 NN Model (Raw data) 2.0420 10.6112 7.8212 27.3284 

 
Table 3 presents the summary of all the models obtained earlier in this chapter. We can 

clearly see that the subspace models obtained with N4SID algorithm have proven with 

good Mean Percentage errors as well as the RMSE values.  

However from the two N4SID models model number 5 has the best validation results with 

a 2 % mean error percentage and with an RMSE value of 8 kg/min. 

With respect to the validation results obtained, Figure 5.19 shows that the N4SID model 

obtained with raw data inputs provides the best model (concerning the error values).  When 

considering the dynamics of the model validation this model provides the best dynamics 

with respect to the changes in the Mass flow rate. 

Following is the respective discrete time linear model for the best N4SID model.  

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 

𝑦𝑡 = 𝐷𝑥𝑡 + 𝐸𝑢𝑡 

A = [0.9542    0.0111;    0.0027    0.9577]  

B = 0.0000    0.0004   -0.0000;    0.0002   -0.0015    0.0009] D = [1.0e+03 *    1.6648    

0.1180]  
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6 Conclusion 
This report mainly explains the formation of models for flow rate estimations in an open 

channel venturi, with the use of subspace system identification methods. Several 

approaches were discussed which are Deterministic and Stochastic system identification 

and Realization (DSR) approach, State Space Prediction Error Methods with combining 

the N4SID subspace realization method in system identification toolbox in MATLAB. 

However the models were obtained from the experimental results that were achieved with 

2 different fluids on the Venturi channel at University of Southeast Norway. The mass 

flow rate range was 250kg/min to 550kg/min.  

 With the use of singular value decomposition technique and the Principal component 

analysis method it was found out that the density of the fluid has really less correlation 

with the Mass flow rate, and mainly the level measurements highly correlates with the 

Mass flow. Therefore the density was not taken as an input variable. However the 

experiments were carried out with two different fluids which are water with a density of 

1000kg/m3 and Fluid 1 with a density around 1160 kg/m3.  

After obtaining the subspace models, each of the models were validated with two sets of 

different data which were taken by two separate experiments. More on the Neural Network 

model which was obtained in Abeywickrama et al., 2015 was also taken into consideration 

and this model was also validated with the same data sets. With comparison of the mean 

percentage error values and the root mean square error values from the validation results of 

all the models it can be concluded that the model obtained with the N4SID subspace 

algorithm together with the Prediction error methods is the best model. The mean 

percentage error of this model was around 2% and the RMSE value was around 8kg/min 

which was in the span of 250kg/min to 550kg/min.  

Considering the estimation capability of the selected best model we can clearly see that this 

model can be used as a flow estimator in a control system used for off shore drilling 

operations. Another reason is that the model doesn’t need the density of the fluid. 

Therefore there’s no need of a Coriolis meter or advanced density measurement techniques 

to measure the density. Earlier with respect to the NN model obtained in Abeywickrama et 

al., 2015 the density measurement has played a crucial role in estimating the flow rate. But 

now it’s not a matter. With the N4SID model the flow rate can be measured only with the 

height measurements with a 2% mean percentage error, irrespective of the properties of the 

fluids flowing inside the venturi channel.  
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Moving another advantage of the obtained N4SID subspace model is that it can be used for 

real time flow rate estimations without any problem. The reason is that it takes around 0.01 

seconds to estimate a flow rate value. The sampling time of the ultrasonic flow 

measurements is 2 seconds. Therefore there are no issues in replacing this model as a flow 

rate estimator in a control system used for off shore drilling operations. 
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Appendices 

Appendix 1 – Task Description 
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Appendix 2 - MATLAB program for centering of Data 
function [Y1_1,X1_1,X2_2] = my_centering_calc(a,c,n) 
%clear all 

%clc 
load('Water&Fluid1.mat'); 
%load('Jerry_water.mat') 

  
b=1; 
%a = 4700; %302; %152; %2450; numel(LT15); 
if n==1||n==2 
X1_1 = zeros(a,6); 
X2_2 = zeros(a,3); 
Y1_1 = zeros(a,1); 

end 

  
%%Without Scaling data 
if n==0 
Y1_1 = Mass_Flow(b:a); 
X1_1 = [LT15(b:a) LT17(b:a) LT18(b:a) PDT(b:a) PT(b:a) Density(b:a)]; 
X2_2 = [LT15(b:a) LT17(b:a) LT18(b:a)]; 
end  

  

for i=1:a/c 
   p = ((i-1)*c+1); 
   q = i*c; 

    
   if n==1 
   %%With Scaling and centering data 
   %X1_1(p:q,:) =  [(LT15(p:q)-mean(LT15(p:q)))/std(LT15(p:q)) 

(LT17(p:q)-mean(LT17(p:q)))/std(LT17(p:q)) (LT18(p:q)-

mean(LT18(p:q)))/std(LT18(p:q)) (PDT(p:q)-mean(PDT(p:q)))/std(PDT(p:q)) 

(PT(p:q)-mean(PT(p:q)))/std(PT(p:q)) (Density(p:q)-

mean(Density(p:q)))/std(Density(p:q))]; 
   X2_2(p:q,:) =  [(LT15(p:q)-mean(LT15(p:q)))/std(LT15(p:q)) (LT17(p:q)-

mean(LT17(p:q)))/std(LT17(p:q)) (LT18(p:q)-

mean(LT18(p:q)))/std(LT18(p:q)) ]; 
   Y1_1(p:q,:) =  (Mass_Flow(p:q)-

mean(Mass_Flow(p:q)))/std(Mass_Flow(p:q)); 
   else if n==2 
   %%With centering data 
   Y1_1(p:q,:) = (Mass_Flow(p:q)-mean(Mass_Flow(p:q))); 

%  X1_1(p:q,:) = [(LT15(p:q)-mean(LT15(p:q))) (LT17(p:q)-mean(LT17(p:q))) 

(LT18(p:q)-mean(LT18(p:q))) (PDT(p:q)-mean(PDT(p:q))) (PT(p:q)-

mean(PT(p:q))) (Density(p:q)-mean(Density(p:q)))]; 
   X2_2(p:q,:) = [(LT15(p:q)-mean(LT15(p:q))) (LT17(p:q)-mean(LT17(p:q))) 

(LT18(p:q)-mean(LT18(p:q))) ]; 
       end 
   end 
end 

  
end 

 

Appendix 3 - MATLAB program for DSR method 
clear all 
%clc 
load('Water&Fluid1.mat'); 
%load('Jerry_water.mat') 
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b=1; 
a = 4712; %302; %152; %2450; numel(LT15); 

  

  
%%Without Scaling data 
Y = Mass_Flow(b:a); 

 
%centering and scaling with c number of blocks, n=1 scaling and centering 
[Y1,X1,X2]= my_centering_calc(a,a,0); 

  
%[B1,U1_1,S1_1,V1_1,T1,P1]=mypcr(Y,[Y1 X1],2); 
%regression_coefficients_with_density = B1 
%Loading_vector_with_density = P1 

  
%[B2,U1_2,S1_2,V1_2,T2,P2]=mypcr(Y,[Y X2],2); 
[B2,U1_2,S1_2,V1_2,T2,P2]=mypcr(Y,X2,2); 

%regression_coefficients = B2 
Loading_vector = P2 

  

  
Final = U1_2*S1_2*V1_2'; 
%Theoritical solution 
%X2 = [Final(:,2)+mean(LT15) Final(:,3)+mean(LT17) 

Final(:,4)+mean(LT18)]; 
%Y1 = Final(:,1)+mean(Mass_Flow); 

  
%To be realistic 
%X2 = [Final(:,1)+mean(LT15) Final(:,2)+mean(LT17) 

Final(:,3)+mean(LT18)]; 
%Y1 = Final(:,1)+mean(Mass_Flow); 

  

  
%[A,B,D,E,CF,F,x0]=dsr(Y,X2,1); 
%[y,x] = dsrsim(A,B,D,E,X2,x0); 
%t = 1:1:numel(Y); 
%plot(t,Y,t,y) 

  

  
[A,B,D,E,CF,F,x0]=dsr(Y,X2,1);  
%L =5, a = 152, centering c = 2 
%L=1 a =4712 centering c = 0 
[y,x] = dsrsim(A,B,D,E,X2,x0); 
t = 1:1:numel(y); 
plot(t,Y,t,y) 

xlabel('Samples') 
ylabel('Flowrate(kg/min)') 
legend('Experiment', 'Estimation') 
grid on 
my_Err_Perc(Y,y) 
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Appendix 4 – MATLAB program for N4SID and 
SSPEM method 

clear all 
load('Water&Fluid1.mat'); 
%load('Data_29_10_2015_2fluids_shuffle.mat') 
a = 4712; %302; %152; %2450; numel(LT15); 

  
%%Without Scaling data 
Y = Mass_Flow(1:a); 

 
[Y1,X1,X2]= my_centering_calc(a,a,2); 

  
%[B1,U1_1,S1_1,V1_1,T1,P1]=mypcr(Y,[Y1 X1],2); 
%regression_coefficients_with_density = B1 
%Loading_vector_with_density = P1 

  
%[B2,U1_2,S1_2,V1_2,T2,P2]=mypcr(Y,[Y1 X2],2); 
[B2,U1_2,S1_2,V1_2,T2,P2]=mypcr(Y,[X2],2); 
%regression_coefficients = B2 
Loading_vector = P2 

  
Final = U1_2*S1_2*V1_2'; 
%X2 = [Final(:,2)+mean(LT15) Final(:,3)+mean(LT17) 

Final(:,4)+mean(LT18)]; 
X2 = [Final(:,1)+mean(LT15) Final(:,2)+mean(LT17) Final(:,3)+mean(LT18)]; 
Y1 = Final(:,1)+mean(Mass_Flow); 

  
X2 = [LT15 LT17 LT18]; 
Original = iddata(Y,X2,2); 
opt = n4sidOptions('Focus','simulation'); 
N4SID_Result = n4sid(Original,2,opt); 

  
PEM_Result = pem(Original,N4SID_Result); 
compare(Original,PEM_Result,N4SID_Result); 

  

[A,B,D,E,k,x0]=th2ss(PEM_Result); 
[y,x] = dsrsim(A,B,D,E,X2,x0); 
t = 1:1:numel(y); 
plot(t,Y,t,y) 
xlabel('Samples') 
ylabel('Flowrate(kg/min)') 
legend('Experiment', 'Estimation') 

  
grid on 
my_Err_Perc(Y,y) 

  
%[A1,B1,D1,E1,K1,x01,V,th_0,th]=sspem(Y,X2,3); 
%[y1,x1] = dsrsim(A1,B1,D1,E1,X2,x01); 
%t = 1:1:numel(y1); 
%plot(t,Y,t,y1) 
%xlabel('Samples') 
%ylabel('Flowrate(kg/min)') 
%legend('Experiment', 'Estimation') 
%grid on 

%my_Err_Perc(Y,y1) 
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Appendix 5 – MATLAB program for error calculations 
function [] = my_Err_Perc(Y,y) 
error_perc = zeros(numel(Y),1); 

  
for i = 1:numel(Y) 
   error_perc(i) = abs((y(i)-Y(i))/Y(i))*100; 

    
end 

  
mean_error_percentage = mean(error_perc) 
RMSE = sqrt(mean((Y-y).^2)) 
end 

Appendix 6 – DSR and SSPEM algorithm 
These two algorithms were developed by David Ruscio (Ruscio, Subspace System 

Identification, 1995)in his research work (Ruscio, Model Predictive Control and 

optimization, 2001). The MATLAB toolboxes for these two algorithms can be obtained by 

referring to the following website. 

http://www-pors.hit.no/tf/fag/sce2206/framdriftsplan.html  

 

  

http://www-pors.hit.no/tf/fag/sce2206/framdriftsplan.html
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Appendix 7 – MATLAB program for Neural Network 
model 
 

This program was obtained from the previous research work carried out by (Thanushan 

Abeywickrama, Jeremiah Ejimofor, Minh Hoang, Aderonke OKoro, 2015). 

clear all; 
clc; 
load('Cal_Val_Test.mat'); 
x1 = Density'; 
%x2 = PDT'; 
x3 = LT15'; 
x4 = LT17'; 
%x5 = LT18'; 
%x6 = PT'; 
Out = Mass_Flow'; 

  
t = 1:1:numel(Out); 
Cal_Error = zeros(); 
Val_Error = zeros(); 
Test_Error = zeros(); 

  
Min_Max = [ 
           minmax(x1); 
           %minmax(x2); 
           minmax(x3); 
           minmax(x4); 
           %minmax(x5); 
           %minmax(x6); 
           ]; 
Inputs = [ 
          x1; 
          %x2; 
          x3; 
          x4; 
          %x5; 
          %x6; 
          ]; 

  
[trainInd,valInd,testInd] = divideblock(numel(Density),0.6,0.2,0.2); 
mse_init = mean(var(Out(:,trainInd))); 

  
for i=1:1:20 
    net =  newff(Min_Max,[i,1],{'tansig' 'purelin'}, 'trainlm'); 

     
    net.divideFcn = 'divideblock'; 
    net.divideParam.trainRatio = 0.6; 
    net.divideParam.valRatio = 0.2; 
    net.divideParam.testRatio = 0.2; 

         
    net.trainParam.lr = 0.3; 

    net.trainParam.goal = 0.01*mse_init; 
    net.trainParam.epochs = 1000; 
    net.trainParam.show = 25; 
    net.trainParam.time = inf; 
    net.trainParam.min_grad = 1e-10; 
    net.trainParam.max_fail = 1000; 

  
    [net , tr] = train(net,Inputs,Out); 
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    T_t(i) = i; 
    Cal_Error(i) = sqrt(tr.best_perf); 
    Val_Error(i) = sqrt(tr.best_vperf); 
    Test_Error(i) = sqrt(tr.best_tperf); 

     
    clear [net , tr]; 

     
end 

  
subplot(2,1,1); 
plot(T_t,Cal_Error,T_t,Val_Error,T_t,Test_Error); 
title('Error vs No. of Neurons') 
legend('Cal','Val','Test') 

  
[C,Neurons_C] = min(Cal_Error) 

[V,Neurons_V] = min(Val_Error) 
[T,Neurons_T] = min(Test_Error) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
net =  newff(Min_Max,[Neurons_T,1],{'tansig' 'purelin'}, 'trainlm'); 

  
net.divideFcn = 'divideblock'; 
net.divideParam.trainRatio = 0.6; 

net.divideParam.valRatio = 0.2; 
net.divideParam.testRatio = 0.2; 

  
net.trainParam.lr = 0.3; 
net.trainParam.goal = 0.01*mse_init; 
net.trainParam.epochs = 1000; 
net.trainParam.show = 25; 
net.trainParam.time = inf; 
net.trainParam.min_grad = 1e-10; 
net.trainParam.max_fail = 1000; 

  
[net , tr] = train(net,Inputs,Out); 

  
subplot(2,1,2); 
Test = net([ 
            x1(:,tr.testInd); 
            %x2(:,tr.testInd); 
            x3(:,tr.testInd); 
            x4(:,tr.testInd); 

            %x5(:,tr.testInd); 
            %x6(:,tr.testInd); 
            ]); 

  
Test_Err_mse = tr.best_tperf 
Test_Err_normal = sum(abs(Out(:,tr.testInd)-Test))/numel(Test) 

  
t1 = 0:1:(numel(Test)-1); 
plot(t1,Out(:,tr.testInd),t1,Test); 

legend('Experimental Data','NN Model Prediction') 
xlabel('Sample') 
ylabel('Flowrate[kg/min]') 
title('Neural Network Model Prediction Results for Water and Fluid 1') 
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Appendix 8 – MATLAB program for validating the NN 
Model 

% a = 305; 
% a = 2040; 
% Density = zeros(a,1); 
% for i = 1:a 
% Density(i) = 1016; 
% end 

  
Test = net([ 
            Density'; 
            %x2(:,tr.testInd); 
            LT15'; 
            LT17'; 
            %x5(:,tr.testInd); 
            %x6(:,tr.testInd); 
            ]); 

  

  
Y = Mass_Flow; 
y = Test; 
error_perc = zeros(numel(Y),1); 

  
for i = 1:numel(Y) 
   error_perc(i) = abs((y(i)-Y(i))/Y(i))*100;   
end 

  
mean_error_percentage = mean(error_perc) 
RMSE = sqrt(mean((Y-y').^2)) 

  
t1 = 0:1:(numel(Test)-1); 
plot(t1,Mass_Flow,t1,Test); 
legend('Experimental Data','NN Model Validation') 
xlabel('Sample') 
ylabel('Flowrate[kg/min]') 
title('Neural Network Model Validation Results') 

 

Appendix 9 – MATLAB program for simulation of 
discrete-time linear systems 

This program was developed by David Ruscio in his research work (Ruscio, Subspace 

System Identification, 1995). 

 
function [y,x] = dsrsim(a,b,d,e,u,x0); 
%DSRSIM Simulation of discrete-time linear systems. 
%       Y=DSRSIM(A,B,D,E,U) 
%       Y=DSRSIM(A,B,D,E,U,x0) 
%    PURPOSE: 
%    Simulate the time response of the discrete system: 
% 
%               x_{t+1} = Ax_t + Bu_t 
%               y_t     = Dx_t + Eu_t 
% 
%    ON INPUT: 
%    A,B,D,E - Discrete dynamic model matrices. 
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%    U         Matrix U must have as many columns as there are inputs, u.  
%              Each row of U corresponds to a new time point, a (N x r) 

matrix 
%              where r is the number of inputs. 
%    x0      - Optional initial state vector. x0 is a (n x 1) vector 

where 
%              n is the number of states.  
%    ON OUTPUT: 
%    Y       - Matrix Y with system outputs, i.e. a (N x m) matrix where 

m is 
%              the number of output variables. 
%              When invoked with left hand arguments, 
%              Y = DSRSIM(A,B,D,E,U) or Y=DSRSIM(A,B,D,E,U,x0) 
%    X       - Matrix X with system states, i.e. a (N x n) matrix 
%              When invoked with left hand arguments, 
%              [Y,X] = DSRSIM(A,B,D,E,U) or [Y,X]=DSRSIM(A,B,D,E,U,x0) 
%              returns the output and state time history in the  

%              matrices Y and X. 
%------------------------------------------------------------------------

--- 

  
% WRITTEN TO BE USED AS SUPPLEMENT TO THE DSR IDENTIFICATION ALGORITHM 
% DATE: 26. august 1996 

  
%1. 
[N,r]=size(u); [m,n]=size(d); 

  
%2. Define the initial state vector 
if nargin == 5 
 xm=zeros(n,1); 
else 
 xm=x0; 
end 

  
%3. Initialize output arrays 
y=zeros(N,m); x=zeros(N,n); 

  
%4. Simulation loop for evaluation of the states 
for i=1:N 
% store xm in array x for the states 
  x(i,:)=xm'; 

  
% update (integrate) the state vector 
  xm = a*xm + b*u(i,:)'; 

  

end 

  
%5.  Compute the outputs outside the loop for increased speed 
y=x*d'+u*e'; 
% 
% END DSRSIM 
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Appendix 10 - MATLAB program for SVD and PCA 
function [B,U1,S1,V1,T,P]=mypcr(Y,X,im); 

  

[N1,nr]=size(X); [N2,nm]=size(Y); N=max(N1,N2); 
X=X(1:N,:);  
Y=Y(1:N,:); 

  
if im == 1        
 XX = X'*X; 
 Y  = X'*Y; 
 [U S V]=svd(XX); 
else                
 [U S V]=svd(X); 
end 

  

  
si=diag(S(1:nr,1:nr)) 
r=nr; 
prompt = 'Number of principal components ?'; 
r = input(prompt); 

  
end 

 



 54 

References 
Agu, C. (2014). Model based estimation of drilling mud flow using aVenturi channel. 

Porsgrunn: Telemark Univeristy College. 

Esbensen, K. H. (2010). Multivariate Data Analysis - in practice. Esbjerg: CAMO. 

Ljung, L. (2009). System Identification theory for the User. Sweden : Prentice Hall PTR. 

MathWorks. (2006). MathWorks. Retrieved from mathworks.coml: 

http://se.mathworks.com/help/ident/ref/pem.html 

MathWorks. (2016). idss. Retrieved from mathworks.com: 

se.mathworks.com/help/ident/ref/idss.html 

MathWorks. (2016). n4sid. Retrieved from mathworks.com: 

http://se.mathworks.com/help/ident/ref/n4sid.html 

Overschee, P. V. (1992). N4SID : Subspace Algorithms for the Identification of Combined 

Deterministic-Stochastic Systems. Belgium: Research Associate of the Belgian 

National Fund for Scientic. 

Ruscio, D. D. (1995). Subspace System Identification. Porsgrunn, Norway: Telemark 

Institute of Technology. 

Ruscio, D. D. (2001). Model Predictive Control and optimization. Porsgrunn: Telemark 

University College. 

Ruscio, D. D. (2006). An introduction to MATrix LABoratory. Porsgrunn: Telemark 

University College. 

Thanushan Abeywickrama, Jeremiah Ejimofor, Minh Hoang, Aderonke OKoro. (2015). 

Mud Flow Measurements in Open Venturi Channel. Porsgrunn: Telemark 

University College. 

 


