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Abstract

The revolution of Internet of Things (IoT), Industrial Internet of Things (IIoT) and Industry 4.0 is
approaching with new market opportunities for all kinds of smart devices. This thesis was about
building such a device, an open source hardware and software alternative to industrial Program-
mable Logic Controller (PLC). The idea was to prove the concepts by building a prototype with a
solid foundation that includes the best suiting communication protocol available (OPC-UA) and
a modular functionality for ease of repair and customisation. The challenges were appropriate
choices of open source hardware and software along with making sure that interactions between
different parts of hardware were possible. That includes the communication protocols between
modules and extensive programming needed in various programming languages. Several tests
were then needed to validate the required communication speed and reliability requirements.

The prototype was developed with Open Platform Communications - Unified Architecture (OPC-
UA) server module and four input/output (I/O) modules which include digital in, digital out,
analog in and analog out. Raspberry Pi 2 was chosen as the System on Chip (SoC) hardware
capable of running on Linux and hosting the OPC-UA server while Arduino Leonardo micro-
controllers were chosen for the I/O modules. The OPC-UA server on the SoC hardware was
programmed in Node.js on Linux while all I/O microcontrollers were programmed in a subset
of C/C++. OPC-UA client in LabVIEW was developed for the majority of experiments while
Matlab was used for data analysis.

The concept of building an open source PLC prototype was proven and its capabilities tested.
The prototype proved to be stable in long time runs with no software/hardware crash on record.
The communication speed from sensor to client (read) and client to actuator (write) was meas-
ured in LabVIEW with an average of under 10 ms. Only open source hardware and software
was used, except for Raspberry Pi SoC OPC-UA server module which is not defined as an open
source hardware by strictest definition. Modular I/O functionality was successfully implemen-
ted on a I2C communication bus. The prototype shows potential for practical use and is ready
for further development with emphasis on pin protections and upgrading I/O modules to indus-
trialized standards for sensors and actuators.

Keywords: Prototyping, OPC-UA, Arduino, Raspberry Pi, I2C, PLC, Node.js, Open Source.
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CLI Command Line Interface
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DA Data Access
DAC Digital to Analog Converter
DC Direct Current
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PLC Programmable Logic Controller
PWM Pulse Width Modulation
SCADA Supervisory Control And Data Acquisition
SD Secure Digital
SOA Service Orientated Architecture
SoC System on Chip
SPI Serial Peripheral Interface
TCP/IP Transmission Control Protocol / Internet Protocol
USB Universal Serial Bus
Wi-Fi Trademark for wireless standard IEEE 802.11x
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Chapter 1

Introduction

Programmable Logic Controllers (PLC) have been used in the industry for sensory measure-
ments and actuator control since the 1960’s when it replaced the older technology of hardwired
relay logic [1]. In simple terms the PLC measures sensory equipment in a process and then
uses that information in a specific logic to control actuators in the process. New opportunities
for PLC’s and similar equipment are emerging with constant technology improvements and re-
duced costs in embedded devices, communication technologies, sensor networks and Internet
protocols. Those opportunities offer improved information flow between devices, making them
smarter in decision-making with added knowledge from other devices [2].

These new technology trends that mark the next transition to new types of PLC’s are the Internet
of Thing (IoT), Industrial Internet of Things (IIoT) and Industry 4.0 where devices communicate
information between each other on larger scale through the Internet. These concepts are often
talked about interchangeably as they are built on the same foundation but their definitions are
different. IoT represents all kinds of consumer devices like wearable technologies, smart refri-
gerators and other home appliances that share data over the Internet. IIoT is defined the same
way but for industrial applications. Industry 4.0 is a similar concept as IIoT that origins from the
German government and identifies with the fourth industrial revolution, it is specifically focused
on the manufacturing industry [3].

There are great advantages of IIoT over a traditional process network in the form of smarter
decision making for individual devices. Those devices are smarter because they are able to
operate with more information than before which helps them to make better decisions. These
information can come from a database residing off-site, vendors, other factory, stock market or
any other information available over the Internet that are beneficial to the device in place. Larger
networks of processes can share information between them which can be analysed until patterns
are found. Those patterns can then be used to predict, for example, wear and tear of components
and devices in the process. The use of extra structured and unstructured data collection between
processes has been called Big Data, which is enabled by IoT related technologies [4].

Most industry leaders and PLC vendors are preparing for IoT, IIoT, Industry 4.0 and Big Data.
IBM, Intel, Cisco, GE, RTI and Rockwell Automation are among many vendors that are cur-
rently developing IIoT enabled technologies [5]. There are various markets that are affected by
this technology including manufacturing, transportation, medical, home automation and many
more.

The challenge for IoT related technologies are that it only supports first five layers in the Open
Systems Interconnection (OSI) reference model which is a conceptual blueprint of how inform-
ation is transmitted between any two points in a network [6]. That opens up questions about
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security and problems with vendor dependence which is defined at the application layer (layer
7) on the OSI model. Vendors need to use the same standards on layer 7 to be able to talk to
each other. The communication protocol "Open Platform Communications Unified Architec-
ture" (OPC-UA) has been identified as one of the enablers for IoT and IIoT technologies [7]. It
resides completely on application level in the OSI model and is vendor independent [8, p. 350].
The security is built into the standard and offers data encryption, message signing and use of
certificates for verification. It is only restricted to Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) enabled devices which are already expected to be supported by IoT equipment
[8, pp. 346-350]. OPC-UA is therefore considered a good communication protocol for the next
generation of PLC devices. Note that Modbus TCP has been mentioned as a competitor to OPC-
UA for the Industry 4.0 communication standard but this thesis will focus on OPC-UA [9].

The open source and prototyping community has made it possible for individuals and small
teams to develop electronic devices without belonging to large corporations. That means that
building prototypes has never been more accessible and is now possible with minimal efforts.
Sparkfun Electronics and Adafruit Industries are examples of open source and prototyping com-
munities that have large Forums where people can share information and learn from each other.
Open source is not only related to software but also hardware. Open source hardware means that
the hardware design is made public and anyone can make, modify, sell and distribute it. Open
source software means that the source code is made publicly available and anyone can make,
modify, sell and distribute it. Using an open source software and hardware can be beneficial to
companies as it shortens development time, is cheaper and more secure. It shortens development
time by allowing modifications to already built up software while shorter development time can
lead to less overall cost. Security can be even more secure with open source because of the sheer
manpower shared between the community when testing and fixing the code [10].

There are products available using parts of the desired functionality of IIoT enabled, open source,
OPC-UA based and modular PLC. Both Siemens and Rockwell Automation are examples of
vendors that sell embedded OPC- UA servers for their automation products which makes them
IIoT compatible. Their products are however not open source. There are nevertheless open
source projects with fully functional and certified PLC devices that were built upon open source
microcontroller technology but lack an OPC-UA server, for example the Controllino and Indus-
truino [11],[12]. Open source OPC-UA library built for Linux has been in development and
tested on SoC platforms supporting Linux, but not in an open source PLC device [13]. The
market therefore seems to lack a device that has all these functions in one package, that is IoT
enabled, open source PLC with modular I/O and layer 7 support on the OSI model (OPC-UA).
Modular I/O functionality is a part of most commercial PLC devices. It makes sure that the
amount of inputs and outputs needed for each specific project is customisable and it will be easy
to replace in case of failure. There has not, at the author best knowledge, been implemented
an open source hardware/software PLC with inbuilt OPC-UA server and replaceable modular
input/output (I/O) cards. The combination of IoT enabled PLC prototype with an open source
OPC-UA server and modular approach where I/O cards can be stacked up as needed are the key
concepts that add value to this project compared to other open source projects that are already
out there.

This project is about using open source and prototyping resources to design and build a pro-
totype of such a device and testing it for reliability and communication speed. The prototype is
divided into modules, one power module that converts 230 V/Alternating Current (AC) to suit-
able Direct Current (DC), one OPC-UA server module that includes the Linux operation system
and processing power and lastly four I/O modules. The four I/O modules include Digital In (DI),
Digital Out (DO), Analog In (AI) and Analog Out (AO) with four ports each. The prototype will
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be built to be ready for early beta testing which means that it is ready for tests carried out by
someone unconnected with the development process. The software for testing the prototype will
be developed and a test plan document will be created that lists the testing procedures. The pro-
totype will be tested thoroughly for communication speed and reliability. The communication
speed is very important and is desired to be at least under 100 ms for reading sensors and writing
to actuators. The reliability of the prototype hardware will be tested as well as the communica-
tion reliability and long term run reliability. The finished prototype should be a general purpose
IoT PLC device that is easy to build upon and modify because of its open source nature.

In a report written in Accenture in 2015 it is estimated that OPC-UA in junction with IIoT
could add $14.2 trillion to the worlds economy over the next 15 years [14, p. 5]. The motivation
for this prototype is therefore not only academic but also highly relevant for the industry.
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Chapter 2

System overview

The design strategy of the prototype was influenced by the current PLC design on the market,
the open source community and by looking at the best industrialised communication protocols
available (see Chapter 1). Simple overview of a LabVIEW OPC-UA client that is connected
to the prototype with all key hardware components listed from 1-6 can be seen on Figure 2.1.
Communication bus connects the I/O modules to the OPC-UA server module, a LabVIEW OPC-
UA client then connects to the OPC-UA server over a network.

Figure 2.1: Overview of the PLC prototype setup with an OPC-UA LabVIEW client connected
through a network. There are four different I/O cards that are connected with a communication
bus to the OPC-UA server module. Each I/O has four ports.

All six hardware modules are within the boundary of the prototype. The hardware is carefully
chosen to meet price, capabilities, interconnectivity and developed in a modular fashion. The
exchangeable modular feature makes sure that the prototype can be customised for each project,
depending on the amount and types of I/O cards needed. The modules are divided into standard
modules and non-standard modules. Standard module means that it is not customised between
projects and can be exchanged with no extra programming or change in software. The non-
standard module has the main software that can vary between projects and therefore cannot
simply be replaced without uploading the projects custom software again. The standard parts
are the I/O modules and the power supply module, the only module that is customised for each
project is the OPC-UA server module. Note that the OPC-UA server resides in the field devices,
e.g. PLC’s, IoT/IIoT devices and even sensors. Clients then read and write data from and to the
servers, e.g. PC or a smartphone.

5
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A Personal Computer (PC) running LabVIEW OPC-UA client on Windows 8.1 was used to test
the prototype. The OPC-UA server is programmed on Linux on the OPC-UA server module. The
I/O modules communicate to OPC-UA server module while controlling actuators and reading
sensors. See Figure 2.2 for graphical presentation of connections between devices and key
software.

Figure 2.2: Graphical presentation of connections and key software between PC, prototype and
process.

2.1 Requirements

There were necessary requirements defined that need to be fulfilled for the prototype to be prac-
tical in use. It should prove to be reliable in a longtime test-run, which is defined here as at least
10 days with no restarts or other failures. The prototype is supposed to be on beta stage after the
completion of this thesis which means another person, not involved in the development, should
be able to test it. That means that the prototype needs to have hardware shutdown and a start
button. It also means that it has to be configured with services to automatically run the soft-
ware on start-up. Indication lights for server running and successful power off will be included.
There should be four I/O modules developed that operate on 0-5 V. Those I/O modules include
digital in, digital out, analog in and analog out. Other I/O modules can be developed in future
work but at this time it was considered important to develop these four standard ones. Software
that is running on Secure Digital (SD) card can get corrupted if the hardware is not shut down
correctly. A power off test will be applied to check whether the SD card, hosting the software
on the prototype, will be corrupted.

Figure 2.3: Overview of the measurement setup while logging the communication speed. There
are four speed measurements; read, write, roundtrip and server to/from client.

It is recommended to observe Figure 2.3 for overview of the communication speed requirements
and how the measurement setup is structured. LabVIEW OPC-UA client is used for measuring



2.1. REQUIREMENTS 7

the read, write and roundtrip communication time while the UaExpert OPC-UA client is used
for measuring the communication speed between OPC-UA server and OPC-UA client. UaEx-
pert is a full-featured OPC UA client that is developed by Unified Automation. A free version
with OPC UA Performance Plugin was used in this thesis [15]. The communication speed has
to be fast enough to respond to quick changes in certain processes, that is defined here as at least
under 100 ms. The exact communication speed needs to be measured precisely for both reading
sensors and writing to actuators. The read time means the time from sensor and to OPC-UA
client while the write time means the time from OPC-UA client to an actuator. The round time
is also measured which means the round trip from OPC-UA client to actuator and back from
sensor to OPC-UA client. The read and write time between OPC-UA server and OPC-UA cli-
ent, exclusively, is measured as well. That way all the most important communication speed
capabilities of the prototype is known. The difference between communication speed from vari-
ous encryption settings and message signing has to be measured. That way it is known whether
and how much encryption affects the communication speed.

The communication reliability is important because a wrong value can damage equipment that
the prototype is controlling. It can also result in wrong values in the data logged. There should
be an error detection on the communication bus between I/O modules and OPC-UA server mod-
ule. That means that a communication protocol needs to be developed that fits the need of the
prototype. The prototype should be tested for communication reliability between I/O modules
and OPC-UA module by measuring the error frequency on the communication bus. The choice
of hardware and software should be open source (see definition of open source in Section 1).

Collection of requirements:

• The read and write communication speed has to be under 100 ms, roundtrip communica-
tion speed should be under 200ms

• Communication speed between OPC-UA server and OPC-UA client should be known and
be under 100ms

• Communication speed with various encryption and message signing should be measured

• The prototype should be reliable enough to function in long time runs, at least over 10
days in a single run

• Test the SD card for corruption when there is a power loss in the system

• Open source hardware and software

• Hardware shutdown and start button

• Prototype should be configured with automatic start-up services in case of a power loss
and restarting the device

• Modular I/O design, interconnected on a communication bus

• Communication protocol with error detection between all I/O modules and OPC-UA
server over the communication bus, measure the error frequency

• Four different I/O modules that are digital in, digital out, analog in and analog out

• Industrial grade communication protocol with IoT capabilities, OSI layer 7 support and
inbuilt security (OPC-UA)
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2.2 Modular design

Figure 2.4 shows a more detailed overview of the different modules types and connections. All
I/O modules and the OPC-UA server module are connected together through the communication
bus. The power module supplies power to all modules. There are four ports indicated on each
I/O module that can be connected to various types of sensors and actuators within 0-5 V.

Figure 2.4: Detailed overview of the modular design with the four I/O modules types, showing
four ports and connection with sensors and actuators. The OPC-UA server is connected with an
Ethernet port to the desired network.

The four main types of I/O modules designed for the prototype include the following:

1. Digital in module with 4 inputs ports which receives 0-5 V

2. Digital out module with 4 outputs ports which supplies 0-5 V

3. Analog in module with 4 inputs ports which receives 0-5 V

4. Analog out module with 4 outputs ports which supplies 0-5 V

These four modules are defined as standard modules and should be able to be stacked in any
combination whether one of them is only needed, many of the same type or all of them in vari-
ous combinations. They are interchangeable and do not require extra customisation between
different projects which makes them easy to replace in the case of a hardware failure. Note that
while many sensors and actuators use 0-10 V and 4-20 mA it is the proof of concept that matters
in this thesis and relatively easy to adapt the 0-5 V to 0-10 V or 4-20 mA later on.

The power module is responsible for supplying power to all components and modules in the
prototype. It is defined as one of the standard modules and can be replaced without requiring
extra customisation between different projects. Note that this power module was chosen for the
amount of devices in the prototype, if other I/O modules are added it could mean other require-
ments for the power module.

The OPC-UA server module is defined as a non-standard module because it has all the cus-
tom software inside that can change between different projects. It needs to be configured for
the amount of I/O modules in use and their types. All variables needed that are registered in the
OPC-UA server need to be known and configured.
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2.3 Communication protocol

The PLC prototype must be able to connect securely to various types of OPC-UA clients, e.g.
Supervisory Control And Data Acquisition (SCADA) systems, Human Machine Interface (HMI)
and IoT/IIoT devices. In industrial process and IoT/IIoT environments it is important that a
secure, reliable and platform independent communication protocol is chosen. The OPC-UA
protocol is open source, inbuilt security and support on OSI layer 7. It is considered one of
the IIoT enabler for its security capabilities and multi-platform interoperability where different
information technology systems and software applications can exchange data [7]. OPC-UA is
therefore considered the best communication protocol for this system. Figure 2.5 shows example
of clients connection to the PLC device via the OPC-UA protocol.

Figure 2.5: Example of clients connection to the PLC device via OPC-UA. It shows connections
to different types of clients ranging from a smart-phone client to PC clients with both wireless
and Ethernet connections.

2.4 Open source hardware and software

There are many advantages from designing the prototype with open source hardware and soft-
ware (see open source definition in Chapter 1). First of all is the advantage of knowing the
hardware and software thoroughly. The software is not restricted in any way and that means the
ability to know the software on all layers. The open software makes sure that it is highly ad-
justable to modifications for different application purposes. When the hardware is open source it
means that there is no vendor dependency and possible to modify the publicly available design to
build custom hardware. The time saved by building software and hardware on pre-built libraries
and software with open hardware design instead of building it from ground up can be enormous.
With less time the cost is also considerably lower with less salary fees and fewer developers
needed.

When both the hardware and software is open source it is possible to make an actual product
from a prototype. It means no extra cost and royalties from 3rd party copyrighted solutions
that could be needed for the project. After a prototype is realized it can be sent to production
lines and sold under the developers brand. The open source and prototyping community is large,
active and is of great help when developing innovating prototyping technology.
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2.5 Use cases

To underline both the functionality and potential of this prototype two use cases are presented.
Those use cases are made up and only presented to show how this device can be used instead
of commercial PLC and possibly be easier in setup, more adaptable and much cheaper. This
prototype can obviously be used in an industrial environment to read and control simple outputs
and inputs, but it has much more potential for more specific projects. Those use cases will
therefore not resemble a simple control or sensory reading in process environment but rather in
use cases where conventional PLC units are less suitable.

2.5.1 Use case 1: Temperature and humidity monitoring in an office building

Let’s assume that an office department wants to monitor the temperature and humidity at twelve
places on one large office floor. They want to get all the values to a computer where the values
are monitored and logged down for further analysis. In addition they want to have the option of
showing the data on four information displays around the office. See Figure 2.6 for the office
overview with PLC devices, display monitors and data logging clients.

Figure 2.6: Overview of the office floor, showing the twelve PLC units, four information displays
and one data logging server.

Solution:

Hardware: Set up the OPC-UA server module with one AI I/O and connect it to a commer-
cial temperature and humidity sensor.

Software: Upload the default OPC-UA server program on to the server module and set it up
for only one AI module. Set up the server to connect to the office Wi-Fi. Upload the default AI
program to the AI module.
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Installation: Distribute the devices around the office space and simply connect them to power.

Now all devices are communicating via Wi-Fi as OPC-UA servers and are easily accessible from
any OPC-UA clients that are connected to the same Wi-Fi or over the Internet, independent of
operating platform. The need for port configuration on the Router is needed for access outside
the local network. That means that client connections for monitoring and server connections for
logging and collecting data are simple, customisable and approachable. While estimating the
cost, time and ease of installation it is logical to conclude that the prototype is better suited for
this use case than using commercial PLC solutions.
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2.5.2 Use case 2: Sensors monitoring and actuators control for the elderly to pro-
long their stay at own home

If the elderly are able to stay in their home longer before moving to a retirement home a mutual
benefits arrives for both the government and the elderly. The benefit for the elderly is simply be-
ing able to take care of themselves longer and the government will be able to save some money.
Let’s assume that many factors will drive this project but only the monitoring and security part
will be relevant for this use case. Let’s also assume that Internet connection is available to all
the residents involved in this project.

Moisture sensors can be used to make sure that there will not be a water damage because of
running water not being turned off. The sensors will be placed where there is running water
in the apartment. Light sensors will be used to get data from the resident whether he is able
to remember turning off the light. Hinge sensor will be placed on the main door to see if the
resident has isolated him self and not went out or gotten visitors. Heat sensor will be placed
near the stove to see whether the resident forgot to turn the stove off. A power shutdown relay
will then be connected to the monitoring system and therefore adds the ability to manually or
automatically shut it down. Motion sensors can be placed around the apartment for security to
see whether the resident has been able to move around the apartment. Panic buttons are then
strategically placed around the apartment for the residents if they feel like they are in danger of
some sort. See Figure 2.7 for overview of the apartment with sensors and actuators strategically
placed at appropriate positions.

Figure 2.7: Overview of the senior citizen home floor plan, showing the position of all relevant
sensors and actuators. It is a use case that let’s senior citizens prolong their stay at their own
home.
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Solution:

Hardware: Set up the OPC-UA server modules with appropriate number of I/O modules for
different types of sensor or actuators required.

Software: Upload the default OPC-UA server program on to the server module and set it up
for the appropriate number of I/O modules. Set up the server to connect to the apartment Wi-Fi.
Upload the default I/O programs to the modules.

Installation: Distribute the devices strategically around the apartment and connect to power.
Set up the router with port-forwarding or similar solution for outer connection.

Now all devices are communicating via Wi-Fi as OPC-UA servers and are easily accessible from
any OPC-UA clients that are connected to specific port on the apartment router, independent of
operating platform. It allows, for example, a security company to monitor and control everything
through the Internet. That means that all client connections for monitoring and server connection
for data logging are simple, customisable and approachable. The same applies to this use-case
as the previous one where cost, time and ease of installation conclude that the prototype is better
suited than using commercial PLC solutions.
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Chapter 3

Literature survey

3.1 Programmable Logic Controllers (PLC)

Programmable Logic Controllers have been called "the workhorse of industrial automation".
They were introduced into the automation industry in the 1960’s and went on to replace the older
technology of the original hardwired relay logic. PLC had advantage over the older hardwired
relay logic because of its small form factor that could replace hundreds of relays. It was also
much easier for modifications or upgrades because PLC are programmable and no physical
changes are needed for changed logic [1]. The simplest picture of the functionality of a PLC
can be seen on Figure 3.1 where the PLC measures the sensory equipment in a process and then
uses that information in a specific logic to control actuators in the process.

Figure 3.1: Basic description of a PLC functionality. It measures sensory devices from a process,
processes the sensory information, then it controls devices in the process [16, p. 4].

In a market research study, done in 2015, it was estimated that with the slowing economic devel-
opment and large number of PLC equipment reaching their life-cycle that the PLC market has
largely become a replacement one. The customers are more frequently making their purchase
decision based on the software capabilities and services instead of basing it on the hardware.
The market has therefore evolved to push automation suppliers to evolve or lose market share
[17]. That opens up some market opportunities where the capabilities of an open source hard-
ware and software in junction with the prototyping community can offer a range of applications
for production. The open source community gives individuals and small teams the ability to
design and produce a commercial product instead of the power of prototyping only being in the
hands of larger corporations.

The revolution of IoT/IIoT and Industry 4.0 is behind the corner where devices previously not
connected to the Internet are being connected. That opens up opportunities for PLC with exten-
ded software and services capabilities both on the industrial and consumer market. The change
from older processes to IoT/IIoT and Industry 4.0 technologies have great advantages in form
of more information and smarter PLC devices. By having more information available the PLC

15
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devices will be able to take smarter decisions. Even though Industry 4.0 was initially a Ger-
man government initiative it’s ideology and strategy has been adopted in other countries as well.
The European Union (EU) published a briefing in September 2015 that states its supports with
Industry 4.0 through its industrial policy and does so with research and infrastructure funding
[18]. The goal for Industry 4.0 is not to integrate the IT world to the process but rather to make
machines more effective and easier to maintain[9].

IoT/IIoT and Industry 4.0 however only support layer 1-5 on the OSI model which means that
the application layer 7 is missing. Some vendors build their own standards on the application
layer which makes their devices not able to talk together between different vendors. Vendor in-
dependency is important that needs a communication protocol between those PLC devices that
supports the OSI model layer 7. That is where OPC-UA comes in as a great vendor independent
protocol that supports the application layer 7 in the OSI model. Vendors are constantly trying to
adapt to the change in process technologies. Vendors that currently support OPC-UA servers in
some of their PLC’s are, for example, Siemens and Rockwell Automation.

3.2 Open Platform Communications (OPC)

OPC is about interoperability and standardisation for secure and reliable information exchange
between all kinds of devices and services [19]. In this section the aspects of the old OPC stand-
ard versus the new OPC-UA standard are discussed as well as important parts of the OPC-UA
protocol that is relevant to this thesis. The OPC Foundation manages a global organisation where
vendors and its users collaborate to create data transfer standards that are secure, reliable, vendor
independent and multi-platform. They create and maintain the specifications, offer certification
testing to make sure of compliance with specifications and to collaborate with industry leaders
[20].

OPC classic was released in 1996 and was the forerunner of OPC-UA [21]. OPC was pressured
to evolve because of the dependency of Microsoft platform in OPC classic, security issues with
Component Object Model (COM)/Distributed Component Object Model (DCOM) and problem
with firewall configuration. OPC-UA was then released in 2008 and is now using cross-platform
Service Orientated Architecture (SOA) instead of COM/DCOM [22]. See Figure 3.3 for a graph-
ical representation of the cross-platform communication between OPC-UA clients and servers
of different platform types. It has all the functionality of the older OPC classic specification and
is backward compatible [23]. The Alarms and Events (AE), Data Access (DA) and Historical
Data Access (HDA) servers in OPC classic have been simplified into one Unified Architecture
that simplifies the integration significantly (see Figure 3.2).

The OPC Foundation announced, in April 2016, that the OPC-UA specifications have been
made open source and publicly available. That was done to help eliminating roadblocks to the
adoption of the OPC-UA technology [24]. The older DCOM specification, that allows COM
components to work over a network, is considered firewall unfriendly because of it dynamically
assigning TCP port to each executable process that uses DCOM objects [25]. It is not possible
to configure dynamically changing ports to a firewall. If the firewall can not be configured and is
turned off it makes the computer insecure and vulnerable to hackers and viruses. OPC-UA uses
one or few static ports that can be configured in the firewall which makes the computer more
secure.
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Figure 3.2: Unified Arcitecture sim-
plification of DA, AE and HDA. It
simplifies field integration and com-
munication network [26, p. 11].

Figure 3.3: Shows OPC-UA platform interoperabil-
ity where different operating systems and program-
ming languages are able to communicate with each
other [26, p:18].

In current times, with many OPC-UA solutions available, users are wondering when and if
they should migrate their current OPC classic processes to OPC-UA. The new specifications
overcome DCOM problems that makes OPC products more secure. It can therefore be beneficial
in many processes to migrate to OPC-UA and is safe to assume that OPC UA will one day replace
OPC classic [27].
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3.2.1 OPC-UA

OPC-UA is a communication protocol that aims to achieve interoperability between all kinds
of devices and services. The ability of embedding OPC-UA servers into microcontrollers offer
range of possibilities and cuts out extra equipment for translating proprietary protocols to OPC
classic. The support from vendors is extensive and has resulted in over 35.000 different OPC
products from more than 4.200 suppliers [28]. When using OPC-UA in embedded hardware it
can significantly reduce the complexity of the information exchange as seen on Figure 3.4.

Figure 3.4: Overview of how the move from OPC classic to OPC-UA in embedded hardware
can simplify the overhead. It shows that the complexity level can decrease which results in a
more reliable system and simpler implementation. The older standalone servers are now inbuilt
into the embedded devices in OPC-UA with no need for proprietary protocols [29].

OPC-UA is considered one of the enablers for IoT, IIoT and industrial 4.0[7], mainly for its
ability to add support for the application layer 7 in the OSI model. It enables devices that are not
traditionally connected to the Internet to connect safely and communicate within one, vendor
independent and scale-able communication standard. These technologies are considered one
of the most important drivers of the digital growth. Because of the service-orientated architec-
ture and its inbuilt security it provides different devices of all platforms and sizes to exchange
information securely and reliably [30].
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3.2.2 Security

OPC-UA security involves authentication and authorisation, encryption of data and data-integrity
via signatures. The most basic picture of the security of OPC-UA communication can be seen
on Figure 3.5. It is recommended as side-note for the upcoming sections.

Figure 3.5: OPC UA security architecture in and between client and server, including user au-
thentication and secure channel with encryption[31, p. 12] .

Authentication and authorisation

The session can be created on the application layer with three different authentication meth-
ods: Anonymous, user name/password and certifications. There are many certification standards
available, X.509 is one of them and is specified as the certification method used in OPC-UA. An-
onymous authentication is not recommended for security reasons. User name and password is
configured in the server and the client is trusted if he has the right credentials. Using X.509
certification for authentication is recommended because it only allows clients that are specific-
ally trusted by the server to connect. It tackles the security danger of a stolen user name and
password. X.509 authentication technology consists of sets of private and public keys. The
public keys are placed into certificate for distribution while the private key is protected. The
authorisation of the read/write access level is also granted on the application layer depending on
the clients purpose in the system. It is configured in the server for each individual user [32].

Confidentiality, integrity and application authentication

The confidentiality is configured on the communication layer and is done by encrypting the
message. The security policies come in four configurations:

• None - Lowest security, no encryption

• Basic128Rsa15 - Medium security (128 bits), requires a Public Key Infrastructure (PKI)

• Basic256 - Medium to high security needs (256 bits), requires a PKI

• Basic256Sha256 - High security needs (256 bits), requires a PKI [33]
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Note that security policies are expected to expire with time because of increasing computer pro-
cessing capabilities. National Institute of Standards and Technology (NIST) recommends that
keys with length under 2048 with security police Basic128Rsa15 and Basic256 should be up-
graded in 2010 and that the policy should be deprecated in 2012 unless keys are over 2048 in
length. Basic256Sha256 has no published end dates at the time of this thesis [33]. The integrity
of the information is important for the receiver to receive the same message as the sender sent
and that is done by having an unique identifier between messages.

The application authentication needs more detailed sequence diagram to show better overview of
the security-architecture communication (see Figure 3.6). It shows how the client does endpoint
request to the server and gets response from the server about its security and policies config-
urations. It also sends its server certificate to the client. The client then validates the server
certificate by contacting Certificate Authority (CA). The client then asks the server for a secure
channel and sends its certificate and private key which is encrypted with the server’s public key.
The server then validates the certificate with the CA. The secure channel is then opened between
the client and server.

Figure 3.6: Sequence diagram of determining if an Application Instance Certificate is Trusted
[32, p. 88].



Chapter 4

System description

In this chapter the choice of hardware components are justified and the selected hardware ex-
plained. The assembly of the prototype hardware is described and schematics are shown. The
main software that is developed for the prototype is explained as well as the structure of the
communication protocol between I/O modules and OPC-UA server module.

4.1 Hardware

Microcontrollers were considered the best choice for the I/O modules as they are cheap, reliable
and designed for I/O applications. A System on Chip (SOC) hardware was chosen as the OPC-
UA server module because of its capability of running Linux. Note that the choices of hardware
do not necessary represents the best possible choices for a final product but are merely the best
prototyping hardware to prove the concept. Only after the prototype shows a good potential for
a product it is upgraded to hardware that represent better choices for mass production.

The process of choosing both the microcontroller and SoC for the prototype was done with
these key features in mind:

1. Amount of support and size of online community

2. Open source hardware and software

3. Price

4. Extensible software and hardware add on

5. Communication Bus support

4.1.1 Choice of SoC for OPC-UA server module

There is a wide range of SoC hardware available and comparison of few of them can be observed
in Table 4.1. The most important deciding factors were the amount of support, size of the
online community as well as the open source nature of the hardware. The amount of support is
crucial so that there is not the need to "reinvent the wheel" for every problem, that shortens the
development time. The Raspberry Pi 2 had slight edge in comparison but the amount of support
and price was the deciding factor. Note that Raspberry Pi is not an open source hardware by
strictest definitions, even though it is often labeled as an open source. It is mainly because of
the Advanced RISC Machines (ARM) architecture processor from Broadcom that is at the heart
of the Raspberry Pi. It means that if someone wants to develop the board further it is necessary
to contact, get permission and buy those ARM processors from Broadcom. Many other aspects
of the Raspberry Pi are of open source nature and are publicly available. Note that the OPC-
UA server is developed on Linux and can easily be ported to other hardware platforms that
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also support Linux. It means that it is easy to replace the SoC hardware if a new and better
suited hardware, supporting Linux, will be available in the future. The closest competitor was
the Beaglebone, it has fully open source hardware but it is expensive and lacking in support
compared to Raspberry Pi [34]. The prototype does not need more powerful hardware than the
Raspberry Pi 2 has to offer. The more power and extra features in the more expensive hardware
platforms were therefore not necessary because the OPC-UA module is only supposed to run
one, relatively light, OPC-UA server. Raspberry Pi is one of the most popular SoC hardware
and has been sold in over 8 million units world-wide as of 29. February 2016, which is exactly 4
years after its release [35]. It has been directed towards educators, beginners and advance users,
and has resulted in large support community containing tutorials and other helpful material. It is
also notable that Raspberry Pi is currently used as a teaching tool in many courses in University
Collage of Southeast Norway.

Table 4.1: Comparison between different types of SoC hardware with most important require-
ments listed. Note that pricing differs between sites and the hardware has different components,
it therefore has arbitrary score. The community support was estimated by the amount of posts in
the last 30 days and on the total posts available. Hardware and software support was determined
by the available additions listed at the vendor’s home sites.

SOC board Open Source
Hardware

Open Source
Software

Community
Support Price Hardware/Software

Addition Support
Communication

Bus support
Beaglebone Yes Yes Medium Very High Medium SPI / I2C
Banana Pi Yes Yes Medium Low Medium SPI / I2C
Arduino Yún Yes No High Very High Very High SPI / I2C

Raspberry Pi 2 Yes
Not by strictest

standards Very High Low Very High SPI / I2C

Intel Edison No No Medium High Low SPI / I2C

4.1.2 Choice of microcontroller for I/O modules

The choice of microcontroller for the prototype was more straight-forward because the most
popular ones for prototyping are almost all built upon the Arduino platform. Before Arduino
the prototyping community was using other platforms like PIC processors but they were mostly
considered for advanced users. Just like the Raspberry Pi the Arduino was made for educators
and prototyping for beginners in mind. It has built a large community and support throughout
the years since its launch in 2005 [36]. As of 2013, Arduino has registered over 700.000 official
boards but it is estimated that there is one derivative or clone of Arduino platform per every offi-
cial one [37]. Arduino is also used in many courses as a teaching platform for microcontrollers
in University Collage of Southeast Norway. The most popular board is the Arduino UNO but
for this project the Arduino Leonardo was chosen because it was the cheapest, full size Ardu-
ino board. Arduino Leonardo has completely open source hardware and software with publicly
available schematic and reference design [38].

4.1.3 Choice of communication protocol between SoC and I/O modules

Arduino and Raspberry Pi 2 support both Serial Peripheral Interface (SPI) bus and Inter-Integrated
Circuit (I2C) bus. The communication bus that connects the I/O modules (Arduino) to the OPC-
UA server module (Raspberry Pi) needs to handle multi-master connections. The reason for the
multi-master requirement is that both the Arduino I/O modules and the Raspberry Pi have to be
able to initiate communication. The SPI bus is only single master and therefore not suitable for
this project. I2C was therefore chosen as the best suited communication protocol. See Figure 4.1
for overview of the I2C bus connections between the SoC hardware (OPC-UA server module)
and the microcontrollers (I/O modules).
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Figure 4.1: Overview of the I2C BUS connections between the SoC hardware (OPC-UA server
module) and the microcontrollers (I/O modules). All hardware modules need to support the I2C
protocol.

I2C was developed in 1982 and originally designed to connect CPU to peripherals chips in TV
sets. It is a multi-master/multi-slave bus that only requires two wires. The two wire signals are
SDA (serial data) and SCLK (serial clock). Any number of slaves and masters can be connected
to the two lines. Only one device is defined as the Bus Master at a given time while all the
others are defined as the Bus Slaves. The Bus Master is defined as the device that initiates the
data transfer on the bus. It does that by issuing a "start" condition on the bus, all devices listen
on and then the Bus Master sends the "address" of the device it wants to communicate with as
well as the read or write command. Then all devices will compare the "address" to their address
and simply wait until the Bus Master issues a "stop" condition. The device that has the same
address will respond. Only then will the Bus Master start sending the "data" to the slave device.
After it has finished sending the data the Bus Master will issue a "stop" condition. Because
of the I2C bus ability to listen and write to the wires simultaneously there are no collisions or
conflicts. The device trying to connect will simply wait and try again. All I2C devices must have
a 7 bit address inbuilt. That results in 128 different I2C devices possible for connection to the
Raspberry Pi server, but that is considered more than enough for this prototype [39].

4.1.4 System on chip module for OPC-UA server (Raspberry Pi 2)

Rasperry Pi 2 was chosen as the SoC hardware module that runs the OPC-UA server, (see se-
lection reasoning in Section 4.1.2). It runs on Linux and has support for I2C bus for connection
to the microcontroller modules. It connects to a network via Ethernet port but wireless dongles
can be bought for little money as an addition. See Figure 4.2 for the Raspberry Pi 2 hardware
overview.

Figure 4.2: Raspberry Pi 2 System on Chip module with Linux. Notes on most important ports
used in this project.
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The Raspberry Pi foundation has also introduced a new $5 mini version of the Raspberry Pi,
named Raspberry Pi Zero. The OPC-UA server can easily be ported over to the Raspberry Pi
Zero which makes the form factor smaller and price more appealing. In the midst of this thesis
the Raspberry Pi foundation also released the Raspberry Pi 3 which is more powerful than its
predecessors and has inbuilt wireless 802.11n and Bluetooth 4.0 capabilities.

Real Time Clock (RTC) addition

A real time clock is not included in the Raspberry Pi hardware and therefore an external one was
added. The purpose is to make sure that the actual time and date is known at all times. When
Raspberry Pi restarts it loses the date and time settings until it connects to the Internet again.
Even though the prototype is aimed at IoT capabilities it is still important that the server knows
the time if the Internet access is down after a restart or else the logs will have wrong time stamps
until the Internet access is regained again. The Raspberry Pi Foundation justifies the absence
of RTC in Raspberry Pi because of added expense in massive production. Mainly since it adds
to the size of the board, needs battery and extra components [40]. The real time clock module
DS1307 was chosen as it can connect to Raspberry Pi via I2C [41]. See Figure 4.3 for hardware
overview of the RTC module.

Figure 4.3: Real Time Clock (RTC) of type DS1307 connected to Raspberry Pi via I2C.

4.1.5 Microcontroller I/O module (Arduino Leonardo)

Arduino Leonardo microcontroller was chosen for all four I/O modules (see selection reasoning
in Section 4.1.1). It is designed for I/O applications and has both open source hardware and
software. See Figure 4.4 for Arduino hardware overview.

Figure 4.4: Arduino Leonardo microcontroller with notes on most important ports used in this
project.

The Arduino hardware is capable of serving all types of signals (DI, DO, AI, AO) in one module.
In this project however, only one Arduino is used per signal type, it is required for the modular
solution. The total current from all the I/O pins is listed as 200 mA maximum but for any single
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I/O pin the maximum is 40 mA [42]. The different I/O settings and capabilities for DI, DO, AI
and AO are listed separately in the sections below.

Digital in/out capabilities

The digital pins can both be configured as digital in and digital out, it is defined in the program
that is uploaded to the Arduino.

• The digital in I/O module can receive signals, 0 V or 5 V to all four inputs and registers
them as LOW or HIGH.

• The digital out I/O module can output signals, either 0 V for LOW or 5 V for HIGH on
all four outputs.

Analog in capabilities

The analog in I/O module can receive signal from 0-5 V on all four inputs. It registers the signal
through a 10-bit analog to digital converter and maps the input from 0-5 V as integer values
between 0 and 1023. The resolution is therefore 5 V / 1024 units or 0.0049 V (4.9 mV) per unit.
It takes about 100 microseconds (0.0001 s) to read an analog input, so the maximum reading
rate can be up to 10.000 times per second [43].

Analog out capabilities (additional DAC)

Arduino Leonardo only has Pulse Width Modulation (PWM) instead of "true" Digital to Analog
Converter (DAC), see Figure 4.5 for graph of how PWM output dictates the average analog
voltage. Arduino Leonardo only has the ability to produce digital signals, either 0 V (LOW) or 5
V (HIGH). It can however change the states between LOW and HIGH very fast, up to frequency
of 16 MHz. Duty cycle is the amount of time the signal is on, the state changes happen so fast
that the average signal output can be manipulated between 0-5 V with changing the duty cycle.
When the duty cycle is, for example, 20% it supplies 1 V and when it is 80% it supplies 4 V.
The duty cycle basically dictates a net average voltage output [44].

Figure 4.5: Graph of the pulse width modulation showing how the duty cycle dictates the voltage
strength [45].

For this project a true analog signal is needed because a lot of actuators use analog signals and
will not work with PWM, e.g. proportion control valves. The analog out module therefore needs
additional DAC device to be able to output true analog out signal. The additional DAC device,
MCP4725, was added to the analog out module and controlled via I2C. It is low-power, single
channel and 12-bit digital to analog converter [46]. In this project it was powered by 12 V power
supply that was regulated to 5 V to make sure the power to the DAC was consistent.
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Note that the requirement was four analog out ports but there are only two used in this project. It
was not because of limitation but because of the hardware availability of the DAC module, only
two were available. See Figure 4.6 for overview of the DAC device.

Figure 4.6: Digital to Analog Converter (DAC), connected to and controlled by the Arduino
analog out module via I2C.

4.1.6 Power supply

There are two switching power supplies used for the prototype, one is 5 V DC / 10 W while
the other one is 12 V DC / 7 W. They are both connected to 230 V AC. Figure 4.7 shows both
power supplies and their connection points. Note that both power supplies have LOW voltage
LED indicator which helped confirming that the power needed for each component was enough.

Figure 4.7: Power supply from Carlo Gavazzi in both 10 W/12 V and 7 W/5 V variation. 12 V
for Arduino I/O and DAC, 5 V for Raspberry Pi 2 and real time clock.

Power supply (5 V)

The Raspberry Pi is connected to the 5 V power supply. Raspberry Pi then powers the real time
clock, two LED’s and the I2C bus. The power requirement for Raspberry Pi is recommended at
5 V and 1.8 A for demanding use, which is 9 W and leaves 1 W left from the 5 V power supply.
The low voltage LED indicator has never indicated lack of power even under max load. See
Figure 4.8 for the power connection overview.

Figure 4.8: 5 V and 10 W power supply from Carlo Gavazzi, powering one Raspberry Pi 2
module and then a real time clock and two LED’s powered from the Raspberry Pi.

Power supply (12 V)

All four Arduino modules are powered by the 12 V power supply. The 12 V are also connected to
a voltage regulator that maintains 5 V to the DAC modules, see Figure 4.9 for power connection
overview. Arduino power requirement is 7-12 V but the ampere needed is relative to the number
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of I/O used and at what settings. The low voltage LED indicator never indicated lack of power
even under max load with all I/O in use and two DAC’s at 5 V output.

Figure 4.9: 12 V and 7 W power supply from Carlo Gavazzi, powering four Arduino modules
and two DAC modules.

4.1.7 Hardware assembly

The final assembly of the prototype can bee seen on Figure 4.10. Table 4.2 lists the pin con-
nections on the I/O modules and is intended for reference with the wiring diagram on Figure
4.11 where all hardware modules and smaller components are shown. Note that all hardware
on Figure 4.11 is within the prototype housing. Button one is for shutdown of the Raspberry
Pi while button two is for starting the Raspberry Pi up. When initiating shutdown, a red LED
indicates that the power off is successful. When restarting the Raspberry Pi, a green LED will
indicate when the OPC-UA server is running. A voltage regulator takes in 12 V and regulates it
down to 5 V for a stable voltage for the two DAC’s. Table

(a) Enclosed prototype

(b) Inside the prototype

Figure 4.10: The final assembly of the prototype in industrial grade housing with all inputs and
outputs. (a) shows the enclosed prototype and (b) shows the inside of the prototype
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Table 4.2: Pin connections on the Arduino I/O modules and the Raspberry Pi OPC-UA module
are listed, including digital in, digital out, analog in and analog out

Arduino
Digital in
Module

Pin
Arduino

Digital out
Module

Pin
Arduino

Analog in
Module

Pin
Arduino

Analog out
Module

Pin

Raspberry Pi
OPC-UA

Server
Module

Pin

Port 1 4 Port 1 4 Port 1 A0 12 V Vin
Shutdown

Button GPIO 19

Port 2 7 Port 2 5 Port 2 A1 I2C bus SDA Start Button SCL
Port 3 8 Port 3 6 Port 3 A2 I2C bus SCL Green LED GPIO 5
Port 4 12 Port 4 9 Port 4 A3 - Ground Red LED 4
12 V Vin 12 V Vin 12 V Vin 5 V Vin
I2C bus SDA I2C bus SDA I2C bus SDA I2C bus SDA
I2C bus SCL I2C bus SCL I2C bus SCL I2C bus SCL
- Ground - Ground - Ground - Ground

Figure 4.11: Schematic overview of the whole system with all connections, including Raspberry
Pi 2 module, four Arduino Leonardo I/O, 5 V and 12 V power supply, real time clock and two
DAC’s.
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4.2 Software

Figure 4.12: Overview of the software used on PC and the prototype. LabVIEW and UaExpert
OPC-UA clients were used on PC, Node.js on Linux for Raspberry Pi and Arduino Integrated
Development Environment (IDE) on Arduino hardware.

The choice of hardware did narrow the programming tools down, see Figure 4.12 for software
overview of the system. Raspberry Pi hardware runs on Linux while Arduino hardware runs on
software developed in Arduino IDE based on C/C++. Both Linux and Arduino IDE are known
for being open source. Note that both LabVIEW and UaExpert OPC-UA clients used were not
open source but were considered the best ones for troubleshooting and testing the device. There
is however an open source OPC-UA client available that was briefly tested with the prototype
and is being developed within the NodeOPC software project, it is built on javascript and Node.js
[13]. It did not possess as powerful tools for testing the prototype as LabVIEW and UaExpert
does.

4.2.1 Communication protocol between Raspberry Pi and Arduino modules

For this section it is recommended to observe Figure 4.2 in Section 4.1.3 for overview of the
I2C connections between modules. The communication between Raspberry Pi and Arduino I/O
modules occurs on the I2C bus. Data sent over the I2C bus is not guarantied to arrive at destina-
tion in its original form. Even a single incorrect bit can make the information useless and greatly
affect the quality of the data. To help notice errors in the data a checksum error detection was
implemented.

The communications between the Raspberry Pi and Arduino I/O modules gets pretty complex
because of the amount of information and options it has to include. It was determined that the
data string had to include the Source Device ID, Device ID, which port, special command, mes-
sage length in bytes, message and the checksum. For that reason, a communication protocol
was designed that suited this project. The protocol was built with the possibility of expansion
in mind for future iterations of the prototype. The message string has length of 8 bytes and a
special command byte was also designed into the protocol for expansion benefits. See Figure
4.13 that shows the data string, name and the size of each slot.
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Figure 4.13: The developed communication protocol on the I2C bus between Raspberry Pi and
Arduino I/O modules, showing the protocol details. The remainder of the sum, divided by 64 is
the calculated checksum.

The data may have different requirements whether it is received on Arduino I/O end or the
Raspberry Pi end. It is nevertheless important to simplify things by having only one universal
protocol for both ways.

• Source Device ID - [1 byte]: The device sending the data will sign this byte with its ID.
The destination module needs to verify the source device ID, both for identification and
security.

• Device ID - [1 byte]: The ID of the device on the receiving end. It is signed by the device
sending the data and can be used by the receiving device to check whether the data was
intended for it or not.

• Port - [1 byte]: What input / output port is being communicated with, 1-4 for this project.

• Command - [1 byte]: This byte offers special commands to be sent to the receiving
device. Can be used for expansion of the protocol.

• Length - [1 byte]: This is the decimal length of the message, for easier data manipulation
in the I/O modules.

• Message - [8 bytes]: The message has length of 8 bytes. Note that it is not used in the
fashion of High/Low bytes. For now, each byte is supposed to be used as one integer from
0-9 when sending a number message, that means that it can transmit and receive integer
between 0 - 99.999.999. The High/Low byte could be considered more efficient but at this
stage of the prototype it is more important that the message is simpler for troubleshooting
purposes.

• Checksum - [1 byte]: It is the remainder of the sum of all other bytes converted to
ASCII. The destination device will then calculate the checksum again for all bytes except
the checksum byte and compare to the original checksum byte.

The checksum is calculated on the sender’s end and then calculated again at the receiving end
and compared. If they are not exactly the same then the last valid value is used.

4.2.2 Raspberry Pi

See Section 4.1.1 for the reasoning of choosing Raspberry Pi as an OPC-UA server module and
Section 4.1.4 for overview of the Raspberry Pi hardware. By choosing the Raspberry Pi hard-
ware it narrowed the choice of operating system to Linux or Windows 10 IoT core. Linux is
open source and was therefore chosen as the operating system for Raspberry Pi OPC-UA server.
In next sections the settings and software running on Raspberry Pi will be listed and explained.
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For reference in next sections see Figure 4.14 for a simple flow diagram showing the function-
ality of the Raspberry Pi from start-up and until the OPC-UA server has begun running.

When the Raspberry Pi is powered up, it boots up to Linux and then gets the date and time
from a hardware real time clock. Crontab is a system daemon which is similar to Windows Ser-
vices and is configure to run at Linux startup. Crontab then starts up a Command Line Interface
(CLI) tool called Forever. Forever then starts up the OPC-UA server and constantly checks if it
is running or not. If the OPC-UA server is not running, then Forever starts it up again. That way
it is made sure that the OPC-UA server is always running.

Figure 4.14: Simple flow diagram of the software functionality on the Linux operating system
on Raspberry Pi. It shows how it uses the installed Crontab to automatically start Forever that
runs the OPC-UA server and keeps it running, even in the case of server crash.

Real time clock (RTC)

See Section 4.1.4 for the hardware overview of the RTC and reasoning for its addition. To set up
the DS1307 external RTC it is necessary to enable the I2C bus in the system settings in Linux.
Adafruit has a tutorial that was used to set the Raspberry Pi to read from the added RTC [47].
Now instead of the Raspberry Pi looking to the web for date/time reference it will set it self to
the real time clock that was added.

Crontab start up services

Even though the Forever tool keeps the server script alive at all times it does not automatically
run at start-up when the Raspberry Pi restarts. The Crontab is a system deamon, that is similar to
Windows Services but on Linux. It includes a text file with a list of commands meant to be run at
specific times [48]. Crontab was used in this project to include the Forever CLI tool at start-up.
When Forever CLI starts it automatically runs the OPC-UA server and keeps it running.
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Forever Command Line Interface (CLI) tool

Forever is a simple CLI tool for ensuring that a given script runs continuously (forever). There
are two ways of using the tool: Using it programmatically or use it by itself through the command
line [49]. In this project it is used through the command line and it makes sure that the OPC-UA
server script is always running, in case of a software crash it will start the script up again.

OPC-UA server

OPC-UA is an open source specification that enables software developers to develop OPC-UA
applications. Those applications can then be verified by the OPC Foundation, it is a quality
stamp that makes sure that all the specifications were correctly applied. While OPC-UA is an
open source specification it’s applications are not necessary free nor open source.

There are a lot of software developers and vendors that are developing and selling OPC-UA
software but there are open source developments of OPC-UA available. One such was chosen
for this project, it is named NodeOPCUA and is an OPC-UA stack fully written in javascript and
Node.js [13]. Note that a protocol stack is a set of network protocol layers that work together,
based on the OSI model. The asynchronous nature of the Node.js programming language is
considered a strong point when considering the communication speed. It makes it a good choice
for server based applications.

The OPC-UA code can be seen in Code A.1 in Appendix A.3.1. It has 17 variables, for all
I/O ports and information from the performance of the Raspberry Pi. The information from
Raspberry Pi is gathered to monitor the performance of the processor, memory usage and the
overall runtime while the OPC-UA server is running. It can be useful to see how the Raspberry
Pi hardware handles the OPC-UA server on full load.

Variables used in the OPC-UA server:

• Digital in 1-4 (four variables for each port)

• Digital out 1-4 (four variables for each port)

• Analog in 1-4 (four variables for each port)

• Analog out 1-2 (two variables for each port)

• Raspberry Pi up time in hours

• Raspberry Pi CPU average load for last 15min

• Raspberry Pi CPU Percent of memory used

The OPC-UA server needs to communicate to the General Purpose Input Output (GPIO) pins on
the Raspberry Pi for turning LED’s ON/OFF for "OPC-server ON" and "successful shutdown."
It also has to be able to communicate with the I/O modules over the I2C bus, see Figure 4.11
in Section 4.1.7 for the wiring overview. The following libraries were used in Node.js for the
OPC-UA server, all installed through the npm package manager for JavaScript [50].

• "node-opcua" is the OPC-UA library needed for the server [51].

• "os" library is for accessing the CPU, Memory and Run time information from Raspberry
Pi [52].

• "i2c" is the Library for communication over the I2C bus [53].
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• "sys" library is for directly accessing the command line for shutting down the Raspberry
Pi.

• "onoff" library is for accessing the GPIO pins on the Raspberry Pi for indication of the
red LED for power and the green LED for server running [54].

4.2.3 Arduino

See Section 4.1.2 for the reasoning of choosing Arduino as a microcontroller and Section 4.1.5
for overview of the Arduino hardware. The programming language for Arduino is called Ardu-
ino IDE, it is merely a subset of the C/C++ language [55]. The I/O modules are responsible for
reading sensors and control actuators. They receive or send data through I2C bus to Raspberry
Pi. The programming differs in some way between all I/O modules but the digital in and ana-
log in share the same structure as well as digital out and analog out. See Figure 4.15 for flow
diagram of both programming procedures for reference in next sections. Note that the event
functionality is built into the I2C library

(a) Digital in and analog in (b) Digital out and analog out

Figure 4.15: Flow diagram for the Arduino communicating with OPC-UA server. (a) shows
Arduino collecting sensor data and sending it to OPC-UA server. (b) shows Arduino receiving
data from OPC-UA server and outputs to actuators.

Digital in

The digital in module reads the input ports, either LOW or HIGH (0 or 1). It only reads the ports
when it receives a request from the OPC-UA server with byte indicating port ID. That means
that the Arduino is not constantly reading the input ports unless it is told to do so, that saves
power and resources in the microcontroller. When it receives a request from the OPC-UA server
it checks if the DeviceID is valid, reads the specific input port and calculates the checksum error.
It then builds the custom protocol string as described in Section 4.2.1 and sends the data to
OPC-UA server. See Code A.2 for reference in Appendix A.3.2.
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Analog in

The analog in module has the same functionality as the digital in module but instead of register-
ing only LOW/HIGH (0 or 1) it registers the Analog to Digital Converter (ADC) value between
0-1023. See Code A.3 for reference in Appendix A.3.3.

Digital out

The digital out module delivers signals, either 0 V for LOW or 5 V for HIGH. It only changes
the output signal when the OPC-UA server requests the state change for the specific port. The
Arduino receives the data string from the OPC-UA server and reads the information. There is a
device ID check in the beginning of the code and it does not allow any changes until the right
device ID is confirmed. It calculates the checksum error and compares it to the checksum value
sent from the OPC-UA server. If the checksum error value and the calculations are equal it
changes the state of the output pin as requested. See Code A.4 for reference in Appendix A.3.4.

Analog out

The analog out module has the same functionality as the digital out module but instead of out-
putting only LOW/HIGH signal it outputs analog signal through external DAC device. The DAC
is 12 bit which means that the value is controlled from the integer range of 0-4095 which then
correspond to 0-5 V. An external library is needed for control and is available from the DAC
manufacturer [56]. See Code A.5 for reference in Appendix A.3.5.

Measurement Arduino

Figure 4.16: Overview of the connection setup of the measurement Arduino when measuring
the communication speed. It measures the time between state changes from the digital output
from the prototype. The timing information from the measurement Arduino are logged down
through terminal program via Universal Serial Bus (USB) on a PC.

It was important for the requirements to measure the exact read and write communication speed
from OPC-UA client to sensors and actuators. To be able to fulfill that requirement it was ne-
cessary to use an additional Arduino which has the sole purpose to measure the communication
speed, see connections overview on Figure 4.16. The OPC-UA client on the PC is configured
to change states as fast as possible on a single digital out port. The measurement Arduino then
times the communication speed on that specific port. It measures the exact time it takes for the
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OPC-UA digital output to change its pin state from LOW to HIGH. That way it was possible to
measure the timing from a client to the actuator, see simple flow diagram on Figure 4.17. See
the Code A.6 for reference in Appendix A.3.6.

Figure 4.17: Simple flow diagram of the Arduino measurement programming. It starts timing
when the pin is registered as LOW (0 V) and stops the time when it is changed to HIGH (5 V),
then it registers the timing value to serial. See the Code A.6 for reference in Appendix A.3.6.

The measurement Arduino was also used to calculate and log the frequency of the checksum
error from OPC-UA server, over to digital out and analog out modules through the I2C bus, see
Figure 4.18 for the connection overview. Note that Figure 4.18 only shows the measurement
setup for the digital out module, the exact same setup was used for the analog out module. The
checksum is calculated and sent with the data string trough the I2C bus to the digital out module.
The checksum error is calculated again at the digital out module and both of them are compared.
If they are not equal it means that there is a checksum error detected and then a short pulse is
sent to the measurement Arduino. The measurement Arduino will then register the pulse and
send the information to the OPC-UA client.

Figure 4.18: Overview of the connection setup of the measurement Arduino when it measures
the frequency of checksum error. When checksum error is detected the digital out module sends
out a pulse. The timing information from the measurement Arduino are then logged down
through USB on a PC.
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Both the digital out and analog out programs had to be modified to output a HIGH signal to a
selected pin for 50 ms (pulse) whenever there was a checksum error. That way it was possible
to register the checksum error over the I2C bus without using the serial on the I/O modules.
The reason for not simply using the serial on the I/O modules to log the checksum errors was
that whenever the I/O modules were connected via USB it interfered and resulted in excessive
checksum errors. Possible reason for this behavior was that while the Arduino I/O module is
connected to PC it receives 5 V that in some way interferes with the I2C bus. See the modified
analog out Code A.7 for reference in Appendix A.3.7. See the modified digital out Code A.8 for
reference in Appendix A.3.8

4.2.4 LabVIEW OPC-UA client

Overview of the LabVIEW OPC-UA client connection to the prototype can be seen on Figure
2.2 in Section 2. To be able to do experiments with the system it was necessary to have an OPC-
UA client that is highly customisable. An OPC-UA client was therefore developed in LabVIEW
on a Windows PC. It was configured to access all 17 variables defined in the OPC-UA server.
It was mainly used for reading and writing to the OPC-UA server to verify that all I/O modules
were working properly on all input and output ports. The client was implemented with a logging
option that was used for logging all variables. The LabVIEW client has the option of adjusting
how often per second it would read/write the data from the OPC-UA server, that was done for
experimenting with how fast it could read/write the data. Setting the loop to the fastest settings
made the processing power of the OPC-UA server the bottleneck in the system and therefore
was a good way to test it at full load. See the LabVIEW code on Figure A.1 for reference
in Appendix A.3.10. See the front-panel Graphical User Interface (GUI) on Figure A.2 for
reference in Appendix A.3.10.
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Prototype test plan

Figure 5.1: Overview of the Programmable Logic Controller (PLC) prototype with all three
test-rigs presented and connection to a Personal Computer (PC) running Open Platform Com-
munications Unified Architecture (OPC-UA) client via Ethernet.

This section is about the procedure of testing the prototype, see Figure 5.1 for an overview of
the actual prototype with all test rigs connected to it and connection to the LabVIEW OPC-
UA client. Note that "test-rig" in this context means the physical breadboards and components
used plug into the prototype for testing. A printable version of the test plan, called a "test plan
document" can be seen in Appendix A.3.10. It is a structured collection from this chapter and
intended as instructions for a technician to carry out the tests and note down the results. The
prototype schematics can be seen in Figure 4.11 in Section 4.1.7. The tests are intended to make
sure that all four types of input and output modules (DI, DO, AI, AO) are working correctly.
These tests can be programmed through a OPC-UA client of choice but in this thesis a OPC-UA
client in LabVIEW was used. A test plan document can be seen in Appendix A.3.10, it is a
printable version of the test plan addressed in this chapter.

37



38 CHAPTER 5. PROTOTYPE TEST PLAN

5.1 Digital in and digital out

Both the digital in module and digital out module are tested together. Digital in module is tested
with the outputs from digital out module. The software flow diagram can be seen on Figure
5.2 where the testing of one input port and one output port is shown. The functionality is then
extended for four input and output ports.

Figure 5.2: Simple flow diagram of the software that is responsible for testing digital in and di-
gital out modules. It shows state change for one output pin and one input pin which is compared
on the display. The program can then be extended for four pins.

The test-rig and test-program Graphical User Interface (GUI) can be seen on Figure 5.3. The four
input ports are tested with the output ports by pressing a corresponding button on the LabVIEW
test program. If the digital output port is working correctly, then corresponding digital in port
will respond with a green LED. If, for example, DO1 is LOW (0) and then turned to HIGH (1)
then DI1 port should indicate the value 1 with a green LED. If DI1 will not respond to a change
in DO1 then the test failed.

(a) Test-rig. (b) LabVIEW GUI.

Figure 5.3: Test-rig where digital in ports are tested with digital out ports in LabVIEW. HIGH
and LOW signals are outputted and checked whether corresponding signals appear on the inputs.
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5.2 Analog in

The software flow diagram can be seen on Figure 5.4 where ADC value is measured and conver-
ted to voltages. The specific voltage is then compared to predetermined range that is considered
acceptable.

Figure 5.4: Simple flow diagram of the software that is responsible for testing AI modules. It
acquires the ADC value, converts it to voltage and compares it to the specific, allowed range.
This program is then extended to four ports.

The test-trig and test-program GUI can be seen on on Figure 5.5. The test-rig has 5 V supplied
that is divided with four 1 kΩ resistors which results in 1 V, 2 V, 3 V and 4 V to the corresponding
ports 1, 2, 3 and 4. The LabVIEW program approves with a green LED if the readings are within
0.05 V from the correct values, else the test fails.

(a) Test-rig. (b) LabVIEW GUI.

Figure 5.5: Test-rig for making sure the analog in module is reading the correct voltages, it reads
4 V, 3 V, 2 V and 1 V on the relative ports.
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5.3 Analog out

The software flow diagram can be seen on Figure 5.6 where user sets specific voltage to a DAC.
The voltage is then measured with a multimeter and compared to predetermined range that is
considered acceptable.

Figure 5.6: Simple flow diagram of the software that is responsible for testing AO modules. The
user sets the output voltage and then measures the output with a multimeter and compare.

The test-rig and test-program GUI can be seen on Figure 5.7. It makes sure that the analog out
module is working properly. The multimeter is needed to measure the voltage drop over the 1
KΩ resistors and compare it to the output command in the LabVIEW test program.

(a) Test-rig. (b) LabVIEW GUI.

Figure 5.7: Test-rig for making sure the analog out module is outputting the correct voltages.
The multimeter is used to check the voltage drop over the resistors and then compared to the
controlled output.
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5.4 Test plan check list

On Table 5.1 is the check list that is supposed to be complementary to the test applications for
a technician to fill out when testing the prototype. It was filled out for demonstration purposes
by the author but an unfilled one is available with the test plan document in Appendix A.3.10.
The LabVIEW test client is used for testing all I/O modules by giving commands to outputs or
reading the inputs. Digital out ports are supposed to be changed from LOW to HIGH and it
should then register both on the green LED’s for each output and on values in the GUI. Digital
in ports should be monitored at the same time as digital out and it should register the changed
state from LOW to HIGH. Analog out should be measured with a multimeter while the output
is changed from 0 V, 2.5 V and 5 V. Analog in is supposed to read 1 V, 2 V, 3 V and 4 V on
corresponding ports. The check list is supposed to be filled out "Passed" or "Not Passed" to
indicate whether the test failed or passed.

Table 5.1: Prototype test plan check list that is used with test applications. It is intended for a
technician to fill in as a check list. This particular list was filled out for demonstration purposes
by the author. The unfilled check list is available in the test plan document in Appendix A.3.10.

Modules Ports Description Passed Not
Passed Comments

Digital out Set ports output from LOW to HIGH
- 1 Output should change states 3

- 2 - 3

- 3 - 3

- 4 - 3

Digital in Register states from digital out
- 1 Input should change states 3

- 2 - 3

- 3 - 3

- 4 - 3

Analog out Set voltage to 0 V
- 1 Multimeter reads the voltage set within ±0.05V 3

- 2 - 3

- 3 - 3 No DAC on port 3
- 4 - 3 No DAC on port 4
- Set voltage to 2.5 V
- 1 Multimeter reads the voltage set within ±0.05V 3

- 2 - 3

- 3 - 3 No DAC on port 3
- 4 - 3 No DAC on port 4
- Set voltage to 5 V
- 1 Multimeter reads the voltage set within ±0.05V 3

- 2 - 3

- 3 - 3 No DAC on port 3
- 4 - 3 No DAC on port 4
Analog in Set up the analog in test-rig with 5 V supply
- 1 Should Register 1V within ±0.05V 3

- 2 Should Register 2V within ±0.05V 3

- 3 Should Register 3V within ±0.05V 3

- 4 Should Register 4V within ±0.05V 3
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Chapter 6

Results and discussion

6.1 Results overview

This section lists a short overview of content in the results chapter. Sections are indicated with
bold text while contents are enumerated in correct order. First four sections are directly linked
to the requirements while the section "additional results" is not.

Communication speed performance
The communication speed is measured at:

1. OPC-UA client to OPC-UA server with different encryption and message signing settings
(read and write)

2. Round time from OPC-UA client to actuator and then back from sensor to OPC-UA client

3. From sensor to OPC-UA client (read)

4. From OPC-UA client to actuator (write)

Communication reliability

1. The amount of checksum error from Arduino I/O module to Raspberry Pi OPC-UA server
on the I2C bus (digital in and analog in)

2. The amount of checksum error from Raspberry Pi OPC-UA server to Arduino I/O module
on the I2C bus (digital out and analog out)

Hardware reliability

1. Prototype reliability at long term run

2. Prototype reliability at power cut-off

Other results

1. Choice of hardware and software

2. Open source status of hardware and software

3. Status of the prototype ability for standalone capabilities (buttons, services, LED)

4. Modular design and I/O modules types

5. OPC-UA communication integration and custom communication protocol on I2C bus

Additional results

1. Raspberry Pi performance monitoring (CPU and memory)

2. Unsuspected behavior on analog in ports
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6.2 Communication speed performance

Figure 6.1: Overview of the communications, blue arrows indicate the communication way and
the purple box shows the prototype boundaries.

On Figure 6.1 is the overview of the communication between the hardware components. It is
important to understand the communication overview before continuing to next sections as it
will be used for clarification in the sections to come. The blue arrows point to the direction of
communication and are later marked green to indicate which communication way is being used.
The hardware that is communicating with each other is also marked green for clarification. The
hardware responsible of collecting the data is indicated with a purple box.

6.2.1 OPC-UA server to OPC-UA client communication speed

Figure 6.2: Overview of the measurement setup for the communication between the UaExpert
client and OPC-UA server.

The communication between client and server offer a range of security settings which include
message security mode and security policy. The communication speed results from different
kinds of encryption and message signing will help to understand the amount of drawback in
longer communication time for the added security. On Figure 6.2 is an overview of the measure-
ment setup where the client in this case is the UaExpert from Unified Automation. It times the
read and write communications between OPC-UA server and client with a OPC UA perform-
ance plugin.

UaExpert client was configured to read and write to OPC-UA server as fast as it could for
10 minutes, setting the sampling interval to zero. That means that the speed of communica-
tion starts to depend on the hardware processing power used for the OPC-UA server module. It
logged down the milliseconds it took to read and write each variable. The measurements results
can be seen in Table 6.1 where different settings of encryption and message signing result in
higher communication time. With no security policy and no message security mode the read
speed was on average 6.12 ms while the write speed was slightly lower with average of 6.38
ms. Adding signed communication resulted in 11-12% slower speed for both read and write.
Adding signed message mode with Basic128Rsa15 encryption resulted in 56-57% slower speed
for both read and write. Adding signed message mode with Basic256 encryption resulted in
57-58% slower speed for both read and write. See Table 6.2 the added time in milliseconds for
each settings variation on both read and write.
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Table 6.1: Communication performance from UaExpert client to OPC-UA server with compar-
ison between different signing and encryption settings.

Security Policy / Message Security Mode Read [ms] Write [ms]
None / None 6.12 6.38
Basic128Rsa15 / Signed 6.84 7.1
Basic256 / Signed 6.81 7.14
Basic128Rsa15 / Signed&Encryption 9.57 9.99
Basic256 / Signed&Encrypted 9.63 10.02

Table 6.2: The amount of milliseconds per settings that are added to the communications.

Write Basic128Rsa15 /
Signed

Basic128Rsa15 /
Signed&Encryption

Basic256 /
Signed

Basic256 /
Signed&Encrypted

Added time to 6.12 ms 0.72 ms 3.45 ms 0.69 ms 3.51 ms

Read Basic128Rsa15 /
Signed

Basic128Rsa15 /
Signed&Encryption

Basic256 /
Signed

Basic256 /
Signed&Encrypted

Added time to 6.38 ms 0.72 ms 3.61 ms 0.76 ms 3.62 ms

Discussion

Prosys presented OPC-UA performance results measured on an older version of Raspberry Pi
which is about twice as slow as the newer Raspberry Pi 2 used in this thesis. The results from
Prosys will be compared to the results in this thesis for comparison. Prosys measured that adding
encryption to a method call resulted in time addition of about 3.9 ms which was little bit higher
than the average of 3.53 ms measured in the prototype [57]. That was expected because of
the faster hardware on the Raspberry Pi 2. Note that details of the Prosys experiment setup
is not fully known and therefore this comparison is to be taken as such. The requirement of
communication speed under 100 ms between OPC-UA client and OPC-UA server module was
met and resulted in average of 9.63 ms for read and 10.02 ms for write.

6.2.2 Round trip communication speed

Figure 6.3: Overview of the measurement setup for the communication from LabVIEW client
out and back in to the same LabVIEW client.

The round trip communication speed was measured by a LabVIEW client. On Figure 6.3 is the
measurement setup with green arrows showing the communication way which begins and ends
with the LabVIEW client. The LabVIEW client sends out a signal to DO/AO, it is received in
DI/AI and travels back to the LabVIEW client. The round trip was then timed in the LabVIEW
client while trying to write and read as fast as possible. The measurement setup was running for
about 20 min and the data was then analyzed in Matlab. The OPC-UA security settings were
Basic128Rsa15 / Not Signed. The round-trip resulted in average of 19.14 ms for digital out to
digital in. The round-trip for analog out to analog in resulted in slightly slower time of 20.00
ms.
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6.2.3 Write time communication speed

Figure 6.4: Overview of the measurement setup for the communication from LabVIEW client
out to a measurement Arduino.

The total time from the LabVIEW client to an actuator was measured with the measurement
Arduino, described in Section 4.2.3. It was used to time the pin state change from HIGH (5 V)
to LOW (0 V). On Figure 6.4 is the measurement setup with the green arrows showing the com-
munication way which begins at the LabVIEW client and ends with the measurement Arduino.
The measurement setup was running for about 20 minutes with security settings Basic128Rsa15
/ Not Signed. It resulted in a measured write time of 7.89 ms for analog out and slightly slower
write speed of 8.13 ms with digital out.

6.2.4 Read time communication speed

Figure 6.5: Overview of the read time communication way from Sensor to client.

The time was known from the round-trip and the write time to the actuator. That knowledge was
used to calculate the time for the read time. On Figure 6.5 is the setup with the green arrows
showing the communication way which begins at the sensor and ends with the LabVIEW client.
The read time for digital in resulted in 11.01 ms while the analog in resulted in slightly higher
communication speed of 12.11 ms.

6.2.5 Comparison

The communication comparison was collected and interpreted in Table 6.3. It shows that the
write time is faster than the read time and digital is slightly faster at both writing and reading
than the analog.

Table 6.3: Communication performance from LabVIEW client

Module Round Trip [ms] LabVIEW to Module Output
(Write time) [ms]

Module Input to LabVIEW
(Read time) [ms]

Digital 19.14 8.13 11.01
Analog 20 7.89 12.11
Average 19.57 8.01 11.56
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Another test was done through the LabVIEW client where read calls of all 17 variables defined
in the OPC-UA server were plotted over a time span of 18 hours. They were read at maximum
speed with full load on the system. For 311.862 sample points the average call was 11.89 ms
while the max call time was 45.92 ms, see Figure 6.6 for plotted results.

Figure 6.6: Graph of 311.862 sample points over the time-span of 18 hours. This was logged
in the LabVIEW OPC-UA client in a full load on the system where the data was read/written as
fast as possible.

6.2.6 Discussion

The round time measured from the OPC-UA performance evaluation from Prosys was 20 ms
with no security and no message signing and about 31 ms with security settings Basic128Rsa15
/ Not Signed [57]. Prosys used an older Raspberry Pi platform which has about half the power of
the Raspberry Pi 2 used in the thesis. When comparing the results of the 19.57 ms average round
trip time in the prototype it is clear that the extra processing power in Raspberry Pi 2 shortens the
communication speed. Especially considering the 19.57 ms round trip in the prototype has the
security settings Basic128Rsa15 / Not Signed which is more comparable with the 31 ms round
trip measurement observed from Prosys. Note that details of the Prosys experiment setup is not
fully known and therefore this comparison is to be taken as such.

The read time was on average 11.56 ms while the write time was 8.01 ms. When plotting
the read time from 17 variables on full load it resulted in 11.89 ms which is little more than the
11.56 ms when only reading one variable as fast as possible. The requirement for communic-
ation speed of under 200 ms for roundtrip and under 100 ms for write was met and was about
8-10 times faster than the required speed.
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6.3 Communication reliability

To make sure that the communication is reliable from the OPC-UA server to its I/O modules it
is important to measure the error percentage from the checksum error detection.

6.3.1 Digital in and analog in

The digital in and analog in readings come from the Arduino modules to the OPC-UA server.
That means that the checksum detection and error logging is done in the OPC-UA server. See
Figure 6.7 for an overview of the measurement setup.

Figure 6.7: Overview of the measurement setup for the checksum error from Arduino module to
OPC-UA server.

The Raspberry Pi logged for 28.5 hours to a text file whenever error was detected. The average
checksum error was 0.054%. Error percentage for all ports can be seen on Table 6.4.

Table 6.4: Total DI and AI samples and checksum errors collected from the OPC-UA server.

I/O Port Total Samples Total Errors Error Percentage [%]
Analog In 1 641145 337 0.053

- 2 646498 376 0.058
- 3 646531 304 0.047
- 4 644718 325 0.050

Digital In 1 643167 354 0.055
- 2 646423 378 0.058
- 3 642281 354 0.055
- 4 645605 344 0.053

Sum 5156368 2772
Average 0.054 %

It was interesting to see whether the errors were occurring at the same time at all ports due to
a global interference or only at one port at a time. Global interference from unforeseen factors
could be troubleshooted through a data analysis and comparison between error logs.

On Figure 6.8 is a graphical representation of errors from all four ports of AI collected for
over 10 hours. The errors are plotted in percentages since last error was detected, e.g. if two
errors occur in a row then the error percentage is 100%. There are four subplots for each analog
input pin and when they are compared to each other a pattern between errors can be observed.
It does not seem to show grouping of errors and therefore implies that the error is randomly
distributed.
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Figure 6.8: Graphical presentation in Matlab of the DI checksum errors and how they appear
over time. The y-axis shows the percentage of errors since last error was detected, e.g. if two
errors occur in a row it results in error percentage of 100%.

The errors from all four DI ports, collected for over 10 hours, can be seen graphed on Figure
6.9. The same conclusion can be derived from the error grouping on the digital in ports, that it
does not seem to show grouping of errors and implies that the error is randomly distributed.

Figure 6.9: Graphical presentation in Matlab of the DI and AI checksum errors and how they
appear over time. The y-axis shows the percentage of errors since last error was detected, e.g. if
two errors occur in a row it results in error percentage of 100%.

Discussion

With the errors averaging of 0.054% means that there is 1 error per 1.852 readings. When error
is detected the module responsible will register the last valid value instead. The errors do not
seem to group at all ports at certain times on the modules. It therefore seems that the errors are
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randomly distributed over all ports.

When the Arduino modules were connected via USB to PC while logging then the errors were
averaging about 0.5% instead of 0.054%. That means that about 10 times more errors occur
with the USB connected than disconnected. The reason for that behavior is unclear but it is
likely connected to the extra power it gets from the USB that creates interfering in the I2C bus.

6.3.2 Digital out and analog out

The digital out and analog out commands come from the OPC-UA server to the Arduino. That
means that the Arduino module is doing the checksum comparison to find errors in the bit string.
To log the detected errors a terminal program was used for communication with the Arduino via
serial. When an error occurred a string with the error percentage was sent over the serial to the
terminal program and logged down. See Figure 6.10 an overview of the measurement setup.

Figure 6.10: Overview of the measurement setup for the checksum error from OPC-UA server
to Arduino actuator modules

It came clear early in the measurement process, when compering to DI and AI, that the error
was higher than expected. It was similar to a problem encountered previously when logging the
AI and DI errors while the Arduino modules where connected via USB. An extra measurement
Arduino was used for measuring errors to counter the conflicting measurement way with the
USB serial connection (see Section 4.2.3 for the measurement Arduino details). The program
on the AO and DO modules was edited to output a signal on port 1 if an error was detected.
The extra measurement Arduino was then used to measure and log the time when a signal was
outputted from the AO and DO modules. The difference between error percentage with both
measurement techniques, taken over period of 30 minutes, can be seen on Table 6.5.

Table 6.5: Total DO and AO checksum errors collected both through serial and through another
measurement Arduino.

I/O Port Error With Serial [%] Error Without Serial [%]
Analog out 1-2 0.419 0.139
Digital out 1-4 0.382 0.138

Average 0.401 0.139

Discussion

It was possible to switch measurement technique by using additional Arduino for measuring the
pin state change, timing and logging down. That way the serial monitoring could be avoided
that produced about 2.9 times additional errors in the system. The errors on the DO and AO
were more frequent than with AI and DI. The errors did average 0.139% for DO and AO and are
therefore more than twice as frequent as the AI and DI.
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6.4 Hardware reliability

6.4.1 Long term run

The prototype was more or less running for the last 2 months of the project for various tests
and debugging purposes. It’s longest, non-interrupted run, was 13 days with the OPC-UA client
constantly writing and reading data with full load on the OPC-UA server. It did not crash after
those 13 days but it had to be manually shutdown since it was to be used for other experiments.
The prototype did, in fact, not crash or restart itself in any tests during the project. It is therefore
safe to say that the prototype does seem reliable and meets long time run requirement of 10
days in a row without restarting. Longer test runs are however needed in future work to test its
reliability further on.

6.4.2 Prototype power cut-off test

Figure 6.11: Overview of the experiment setup for the power cut-off test. Arduino controls a
relay that is connected to a 230V power hub. The prototype is then connected to the power hub.
The Arduino cuts the power for 1 minute every four minutes.

This experiment was done to test both the reliability of the SD memory card and other hardware
components in the prototype. SD cards can end up corrupted when writing to it at the same mo-
ment when sudden power off occurs. There have numerous post been written on the Raspberry
Pi Foundation forum about corruption of SD cards, it was therefore interesting to see whether
it would affect the prototype. The Raspberry Pi Foundation does have instructions of how to
avoid SD corruption where they recommend not overclocking the hardware, buy a genuine SD
card, make sure that the power to the Raspberry Pi does not fall under 4.75 V and finally use a
high quality USB cable [58]. All these point from the Raspberry Pi Foundation were applied to
the prototype. The experiment setup can be seen on Figure 6.11 where an Arduino is used to
control a rely that is connected to a power hub. The Arduino is programmed to cut the power
completely and instantly to the prototype for 1 minute, it then turns the power on for 4 minutes.
The LabVIEW OPC-UA client was then used to count how often it lost the connection to the
prototype. See graph on Figure 6.12 with the prototype run time and average restart time over
a 20 minute period. The prototype took about 47 seconds on average to restart it self including
booting the OPC-UA server up. The maximum time it took to restart and boot up the OPC-UA
server was about 54 s while the minimum time was about 35 s. That shows that the restart time
does vary and is not predictable. After 355 successful restarts after a power cut-off, over the time
span of 29.5 hours, the experiment was stopped with the SD card and all hardware intact. The
experiment resulted in no SD card corruption or hardware damage and shows the prototype re-
silience to power cut-off situations. See the Arduino Code A.9 for the power cut-off experiment
in Appendix.
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Figure 6.12: Graph of the prototype run time and the average restart time. It was logged down
in the LabVIEW OPC-UA client while the power cut-off test was running.

6.5 Other results

The choice of hardware modules ended with Raspberry Pi 2 SoC for OPC-UA server module
and Arduino Leonardo microcontrollers for I/O modules. Arduino is open source hardware and
software by strictest definitions, with all schematics and software publicly available. Raspberry
Pi 2 is, however, not an open source hardware by strictest definitions but was still chosen for
its community support and favorable price. It runs on Linux which is an open source operating
system. That means, for future work, that the open source OPC-UA server software that was
developed on Raspberry Pi 2 can be ported to other SoC platforms running on Linux. The pro-
totype was successfully built up to a beta stage where it is ready for further test in the hands of
a person not involved in the development of the prototype.

The prototype was programmed with services that keep the OPC-UA server running after re-
start. Hardware shutdown and start buttons were successfully implemented. The requirement
for modular design was met with the Arduino I/O modules connected to the Raspberry Pi OPC-
UA server module via I2C. The OPC-UA module supports up to 128 I/O modules on the I2C
bus. Four standard I/O modules were designed which included digital in, digital out, analog in
and analog out. All I/O modules have 4 ports except the analog out module that has 2 ports. The
reason being that it only had PMW instead of a real ADC and that required two additional DAC
devices in addition to the analog out module. Only two DAC’s were available to the author at
the time of the thesis but adding two more should not be a problem.

A global communication protocol was successfully implemented for all communications between
OPC-UA server module and all four I/O modules. A checksum error detection was integrated
into the communication protocol which was used to filter out errors in the information string on
the I2C bus.

An open source OPC-UA server was successfully developed on Linux, running on Raspberry
Pi 2. The OPC-UA server contained 17 variables that could be accessed via OPC-UA clients.
LabVIEW OPC-UA client and UaExpert OPC-UA clients were used successfully for testing the
prototype.
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6.6 Additional results

The Raspberry Pi memory and CPU was monitored while the prototype was running at full load
for 18 hours. It was interesting to see how the hardware was handling the prototype at full
capacity. The amount of processing power the Raspberry Pi needs to handle under full load is
observed in the graph on Figure 6.13. It shows that the average CPU usage is 57.61%. The
memory usage was on average at 60%. That is the usage on full load and therefore seems that
Raspberry Pi 2 hardware is fully capable of running the OPC-UA server.

Figure 6.13: Graph of 311.863 sample points of CPU usage over the time-span of 18 hours.
This was logged in the LabVIEW OPC-UA client in a full load on the system where the data
was read/written as fast as possible.

When plotting all the analog in readings together for over 18 hours it was observed that at two
occasions the readings looked to have leaked over (see graph on Figure 6.14). That could be
because of hardware error in the Arduino in module or it could be that it is a value that passes
through the checksum error detection. The readings also look like they fall over time on all four
ports. These things need to be investigated further. Note that there was no leakage observed
from the digital in module.

Figure 6.14: Graph of 311.863 sample points of all four analog inputs over the time-span of 18
hours. This was logged in the LabVIEW OPC-UA client in a full load on the system where the
data was read/written as fast as possible.



54 CHAPTER 6. RESULTS AND DISCUSSION

6.7 Future work

6.7.1 Necessary improvements on the current prototype

The prototype is functional as it is but lacks proper input and output safety circuits to be robust
enough for the industry. The safety circuit should protect the input and output pins from sudden
surge of voltage and/or current.

6.7.2 Future extensions to the system

The current I/O modules only support AI, AO, DI and DO which are limited to 0-5 V. It is there-
fore recommended to develop more I/O modules that can handle different equipment that needs,
for example, 4-20 mA or 0-10 V.

Because the Raspberry Pi 2 is only part open source it is recommended to scan the market
for better suited SoC that is open source in the strictest sense. The minimum requirements are
that it supports Linux and I2C bus. The migration of the OPC-UA server to another Linux device
should be relatively simple.
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Conclusion

The revolution of IoT, IIoT and Industry 4.0 is approaching with support from vendors like
Siemens and Rockwell Automation, governments like Germany for Industry 4.0 and economic-
political unions like the European Union [3],[18] . Raspberry Pi Foundation, Arduino, Sparkfun
Electronics and Adafruit Industries host large open source communities that are involved with
the current IoT/IIoT technologies and offer support to creators both in hardware and software.

IoT/IIOT and Industry 4.0 lacks support on the OSI application layer, it is therefore not vendor
independent unless it has a unified communication protocol with it. The open source OPC-UA
communication protocol was therefore chosen for its inbuilt security measures and support on
the application layer. Raspberry Pi 2 was chosen as hardware for the OPC-UA server module
and Arduino Leonardo for I/O modules. Raspberry Pi is not open source hardware by strictest
definitions while Arduino has fully open source hardware and software. There were four I/O
modules developed: Digital in, digital out, analog in and analog out. There were two additions
needed for lack of components in the hardware. Real Time Clock (RTC) for the Raspberry Pi 2
and DAC device for Arduino analog out module.

The OPC-UA server on Raspberry Pi 2 was programmed with the open source OPC-UA software
NodeOPCUA. It is based on the programming language Node.js and programmed on the Linux
based Raspian Operating System [13]. All I/O modules were programmed in the open source
Arduino IDE. An OPC-UA client was programmed in LabVIEW for testing the prototype. A
free version of the UaExpert OPC-UA client program from Unified Automation was also used
for certain tests [15].

A modular and OPC-UA based prototype was built with all functionalities defined in require-
ments with one exception where the analog out module has only two ports instead of four. All
software running on the prototype is open source. The communication speed and reliability was
measured. A test plan document with listed procedures was created for testing the prototype. A
protocol with checksum error detection was developed for communication reliability between
the OPC-UA server module and I/O modules. The prototype proved to have reliable commu-
nication and has been stable in longtime runs with no software/hardware crash on record. The
communication speed from sensor to client (read) and client to actuator (write) was measured
in LabVIEW with an average of less than 10 ms. That shows that the prototype can be used in
projects that require fast response time.

The prototype did prove the concepts of building an open source hardware and software altern-
ative to a commercial PLC. The prototype is currently limited to four I/O modules that operate
from 0-5 V. Adapting the prototype by building circuits and functionality for I/O protections and
different industrial standards would be a logical step in future iterations.
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A.3 Code

A.3.1 OPC-UA server Node.js code

Code A.1: OPC-UA server code that is written in Node.js and runs on Linux in Raspberry Pi
hardware.

1 /*
2 * Created by Sturla on 20/01/16.
3 * Last updated 25/04/16.
4 */
5
6
7 var fs = require('fs');
8 //Require the node-opcua library
9 var opcua = require("node-opcua");

10 //Require the os library for accessing the Raspberry Pi OS information
11 var os = require("os");
12
13 //Require I2C library
14 var i2c = require('i2c');
15 var address = 0x18;
16
17 // Require sys and child_process for restarting with a button
18 var sys = require('sys')
19 var exec = require('child_process').exec;
20
21 // Require GPIO library for the buttons and LEDs
22 var Gpio = require('onoff').Gpio;
23
24 ledON = new Gpio(5,'out'); //Green LED
25 ledOFF = new Gpio(6,'out'); //Red LED
26
27 buttonShutdown = new Gpio(19, 'in', 'both'); //Initializing the input on port 19
28
29 // Set counter so that the button wont recognize pressing
30 // until the button is pressed for a moment
31 var counterShutdown=0;
32
33 // For shutdown the Rpi with a button
34 buttonShutdown.watch(function(err, value) {
35 if (counterShutdown>2)
36 {
37 ledON.writeSync(0); //Set green LED off
38 ledOFF.writeSync(1); //Set red light on
39 function puts(error, stdout, stderr) { sys.puts(stdout) }
40 exec("sudo shutdown -h now", puts);
41 counterShutdown=0;
42 }
43 ++counterShutdown;
44 });
45
46 ledON.writeSync(1); //Set green LED on
47 ledOFF.writeSync(0); //Set red LED off
48
49 //Set addresses for all the i2c devices used
50 var Arduino_Analog_IN = new i2c(address, {device: '/dev/i2c-1'});
51 Arduino_Analog_IN.setAddress(0x5);
52
53 var Arduino_Digital_IN = new i2c(address, {device: '/dev/i2c-1'});
54 Arduino_Digital_IN.setAddress(0x6);
55



64 APPENDIX A. APPENDIX

56 var Arduino_Digital_OUT = new i2c(address, {device: '/dev/i2c-1'});
57 Arduino_Digital_OUT.setAddress(0x7);
58
59 var Arduino_Analog_OUT = new i2c(address, {device: '/dev/i2c-1'});
60 Arduino_Analog_OUT.setAddress(0x8);
61
62 //Set variables used
63 var Digital_IN_1=0;
64 var Digital_IN_2=0;
65 var Digital_IN_3=0;
66 var Digital_IN_4=0;
67
68 var Digital_OUT_1="0";
69 var Digital_OUT_2="0";
70 var Digital_OUT_3="0";
71 var Digital_OUT_4="0";
72
73 var Analog_IN_1=0;
74 var Analog_IN_2=0;
75 var Analog_IN_3=0;
76 var Analog_IN_4=0;
77
78 var Analog_OUT_1="0";
79 var Analog_OUT_2="0";
80 var AO1protoVector=[14];
81 var AO2protoVector=[14];
82 var AO1Checksum;
83 var AO2Checksum;
84
85 var DO1protoVector=[14];
86 var DO2protoVector=[14];
87 var DO3protoVector=[14];
88 var DO4protoVector=[14];
89 var DO1Checksum;
90 var DO2Checksum;
91 var DO3Checksum;
92 var DO4Checksum;
93
94 var counterDI1=0;
95 var counterDI2=0;
96 var counterDI3=0;
97 var counterDI4=0;
98
99 var counterAI1=0;

100 var counterAI2=0;
101 var counterAI3=0;
102 var counterAI4=0;
103
104 var scan;
105
106 /*
107 To set username and password, need to change in "/home/pi/MyOPCUAserver/node_modules/

node-opcua/lib/server/opcua_server.js":
108 options.allowAnonymous = ( options.allowAnonymous === undefined) ? true : options.

allowAnonymous;
109 to
110 options.allowAnonymous = false; //( options.allowAnonymous === undefined) ? true :

options.allowAnonymous;
111 Then the anonymouse login is not longer available
112 */
113 var userManager = {
114 isValidUser: function (userName, password) {
115
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116 if (userName === "user1" && password === "password1") {
117 return true;
118 }
119 if (userName === "user2" && password === "password2") {
120 return true;
121 }
122 return false;
123 }
124 }
125
126 //Set the path for the certificates
127 var path = require("path");
128 var server_certificate_file = path.join("/home/pi/node_modules/node-opcua/

certificates/server_selfsigned_cert_1024.pem");
129 var server_certificate_privatekey_file = path.join("/home/pi/node_modules/node-opcua/

certificates/server_key_1024.pem");
130
131 var get_fully_qualified_domain_name = opcua.get_fully_qualified_domain_name;
132 var makeApplicationUrn = opcua.makeApplicationUrn;
133
134 // Create an instance of OPCUAServer
135 var server = new opcua.OPCUAServer({
136 port: 4840, // the port of the listening socket of the server
137 //resourcePath: "UA/MyLittleServer", // this path will be added to the endpoint

resource name
138 buildInfo : {
139 productName: "NodeOPCUA",
140 buildNumber: "1006",
141 buildDate: new Date(2016,3,10)
142 },
143 certificateFile: server_certificate_file,
144 privateKeyFile: server_certificate_privatekey_file,
145
146 serverInfo: {
147 applicationUri: makeApplicationUrn(get_fully_qualified_domain_name(), "

NodeOPCUA-Server"),
148 productUri: "NodeOPCUA-Server",
149 applicationName: {text: "NodeOPCUA" ,locale:"en"},
150 gatewayServerUri: null,
151 discoveryProfileUri: null,
152 discoveryUrls: []
153 },
154
155 allowAnonymouse: false, // Seems to have no affect
156 userManager: userManager, // Set userManager variable to the server settings
157 isAuditing: true
158 });
159
160
161
162 function post_initialize() {
163 console.log("initialized");
164
165 function construct_my_address_space(server) {
166
167 var addressSpace = server.engine.addressSpace;
168
169 // Declare new objects, basically just folders for variables to be separated

by
170 //Declare a new object, info from the Raspberry Pi 2
171 var Rpi_info = addressSpace.addObject({
172 organizedBy: addressSpace.rootFolder.objects,
173 browseName: "Rpi_info"
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174 });
175 // declare a new object, Digital in
176 var Digital_in = addressSpace.addObject({
177 organizedBy: addressSpace.rootFolder.objects,
178 browseName: "Digital_in"
179 });
180 // declare a new object, Digital out
181 var Digital_out = addressSpace.addObject({
182 organizedBy: addressSpace.rootFolder.objects,
183 browseName: "Digital_out"
184 });
185 // declare a new object, Analog in
186 var Analog_in = addressSpace.addObject({
187 organizedBy: addressSpace.rootFolder.objects,
188 browseName: "Analog_in"
189 });
190 // declare a new object, Analog out
191 var Analog_out = addressSpace.addObject({
192 organizedBy: addressSpace.rootFolder.objects,
193 browseName: "Analog_out"
194 });
195
196 //------------Collections of Checksum Calculation Functions---------------

BEGIN
197
198 //Scan the I2C addresses (good to observe if there are problems with the

server)
199 scan = Arduino_Analog_IN.scan(function(err, data) {
200 // result contains an array of addresses
201 });
202
203 //Sums up the values in an array, from ASCII (number plus 48)
204 function sumArray(array) {
205 for (
206 var
207 index = 0, // The iterator
208 length = array.length, // Cache the array length
209 sum = 0; // The total amount
210 index < length; // The "for"-loop condition
211
212 sum += getNum(array[index++]) // Add number on each iteration
213 );
214
215 return sum;
216 }
217
218 //Checks if the value is a number and returns 0 in ASCII if NaN (48+number is

ASCII value)
219 function getNum(val) {
220 if (isNaN(val)) {
221 return 48;
222 }
223 return val+48;
224 }
225
226 //Function for sum up array strings
227 function sumArrayStr(array) {
228 for (
229 var
230 index = 0, //The iterator
231 length = array.length, //Cache the array length
232 sum = 0; //The total amount
233 index < length; //The "for"-loop condition
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234
235 sum += getNum(parseInt(array[index++])) //Add number on each iteration
236 );
237
238 return sum;
239 }
240
241 //Function for extracting data from the buffer from Digital IN
242 function CheckSumDI(buffer) {
243 var JSONstring = JSON.stringify(buffer); //Create JSON string from buffer
244 //Extract the data part from the string
245 var n1 = JSONstring.indexOf("[");
246 var n2 = JSONstring.lastIndexOf("]");
247 var ByteString = JSONstring.substr(n1+1,(n2-n1)-1);
248 //Extract all the messagebytes and the Checksum from Arduino
249 var Messagebyte1 = ByteString.split(",")[4];
250 var Messagebyte2 = ByteString.split(",")[5];
251 var Messagebyte3 = ByteString.split(",")[6];
252 var Messagebyte4 = ByteString.split(",")[7];
253 var Messagebyte5 = ByteString.split(",")[8];
254 var Messagebyte6 = ByteString.split(",")[9];
255 var Messagebyte7 = ByteString.split(",")[10];
256 var Messagebyte8 = ByteString.split(",")[11];
257 var MessageLength = ByteString.split(",")[12];
258 var ChecksumSlave = ByteString.split(",")[13];
259 //Sum all parts in the array except the checksum at the end of the

bytestring
260 var DI1allArray = ByteString.split(",");
261 DI1allArray.splice(13,1);
262 for (
263 var
264 index = 0, // The iterator
265 length = DI1allArray.length, // Cache the array length
266 sum = 0; // The total amount
267 index < length; // The "for"-loop condition
268
269 sum += getNum(parseInt(DI1allArray[index++])) // Add number on each

iteration
270 );
271 var ChecksumRemainder = sum % 64; //Take the remainder of the sum
272 return [Messagebyte1,Messagebyte2,Messagebyte3,Messagebyte4,Messagebyte5,

Messagebyte6,Messagebyte7,Messagebyte8,MessageLength,
ChecksumRemainder,ChecksumSlave,];

273 }
274
275 //Compares the checksum from slave to the calculated checksum, returns 1 for

true and 0 for false
276 function ChecksumComparison(Cs1,Cs2) {
277 if (Cs1 == Cs2)
278 {
279 var TrueFalse = 1;
280 }
281 else if (Cs1 != Cs2)
282 {
283 var TrueFalse = 0;
284 }
285 return TrueFalse;
286 }
287
288 //Get the right length of value from the array, using the length byte
289 function GetValue(DataVector) {
290 var Value;
291 if (DataVector[8]==1)
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292 {
293 //var Value = DataVector[0];
294 Value = DataVector[0];
295 }
296 else if (DataVector[8]==2)
297 {
298 //var Value = DataVector[0].concat(DataVector[1]);
299 Value = DataVector[0]+DataVector[1];
300 }
301 else if (DataVector[8]==3)
302 {
303 //var Value = DataVector[0].concat(DataVector[1],DataVector[2]);
304 Value = DataVector[0]+DataVector[1]+DataVector[2];
305 }
306 else if (DataVector[8]==4)
307 {
308 //var Value = DataVector[0].concat(DataVector[1],DataVector[2],

DataVector[3]);
309 Value = DataVector[0]+DataVector[1]+DataVector[2]+DataVector[3];
310 }
311 return Value;
312 }
313 //------------Collections of Checksum Calculation Functions---------------END
314
315 //------------Add variables---------------Begin
316 //Note that the text that is commented out in this part is relevant to the

measurements and logging
317 //of the checksum errors.
318
319 // Add variables to the address space
320 addressSpace.addVariable({
321 componentOf: Digital_in,
322 browseName: "Digital_IN_1",
323 dataType: "Float",
324 value: {
325 get: function () {
326 Arduino_Digital_IN.readBytes(1,14, function(err,DI1) {
327 var DataVectorDI1 = CheckSumDI(DI1); //Get data from buffer
328 var IsPacketloss = ChecksumComparison(DataVectorDI1[9],

DataVectorDI1[10]); //Is packetloss
329 //console.log(DI1);
330 //console.log(DataVectorDI1);
331 //console.log(IsPacketloss);
332 if (IsPacketloss == 1) //If no packet loss then
333 {
334 Digital_IN_1 = DataVectorDI1[0];
335 //console.log("CheckSum Passed!");
336 //console.log(Digital_IN_1);
337 counterDI1 +=1;
338 }
339 /*
340 if (IsPacketloss == 0) //If packet loss then
341 {
342 //console.log("Packet loss!");
343 console.log("DI1: ",1/counterDI1);
344
345 fs.appendFile('DigitalIN1.txt',[1/counterDI1 + '\n'] ,

function (err) {
346 if (err) throw err;
347 //console.log('It\'s saved! in same location.');
348 });
349 counterDI1=0;
350 }
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351 */
352 });
353 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Digital_IN_1 });
354 }
355 }
356 });
357
358 addressSpace.addVariable({
359 componentOf: Digital_in,
360 browseName: "Digital_IN_2",
361 dataType: "Float",
362 value: {
363 get: function () {
364 Arduino_Digital_IN.readBytes(2,14, function(err,DI2) {
365 var DataVectorDI2 = CheckSumDI(DI2); //Get data from buffer
366 var IsPacketloss = ChecksumComparison(DataVectorDI2[9],

DataVectorDI2[10]); //Is packetloss
367 //console.log(DataVectorDI2);
368 //console.log(IsPacketloss);
369 //console.log(DI2);
370 if (IsPacketloss == 1) //If no packet loss then
371 {
372 Digital_IN_2 = DataVectorDI2[0];
373 //console.log("CheckSum Passed!");
374 //console.log(Digital_IN_2);
375 counterDI2 +=1;
376 }
377 /*
378 if (IsPacketloss == 0) //If packet loss then
379 {
380 //console.log("Packet loss!");
381 console.log("DI2: ",1/counterDI2);
382
383 fs.appendFile('DigitalIN2.txt',[1/counterDI2 + '\n'] ,

function (err) {
384 if (err) throw err;
385 //console.log('It\'s saved! in same location.');
386 });
387 counterDI2=0;
388 }
389 */
390 });
391 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Digital_IN_2 });
392 }
393 }
394 });
395
396 addressSpace.addVariable({
397 componentOf: Digital_in,
398 browseName: "Digital_IN_3",
399 dataType: "Float",
400 value: {
401 get: function () {
402 Arduino_Digital_IN.readBytes(3,14, function(err,DI3) {
403 var DataVectorDI3 = CheckSumDI(DI3); //Get data from buffer
404 var IsPacketloss = ChecksumComparison(DataVectorDI3[9],

DataVectorDI3[10]); //Is packetloss
405 //console.log(DataVectorDI3);
406 //console.log(IsPacketloss);
407 //console.log(DI3);
408 if (IsPacketloss == 1) //If no packet loss then
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409 {
410 Digital_IN_3 = DataVectorDI3[0];
411 //console.log("CheckSum Passed!");
412 //console.log(Digital_IN_3);
413 counterDI3 +=1;
414 }
415 /*
416 if (IsPacketloss == 0) //If packet loss then
417 {
418 //console.log("Packet loss!");
419 console.log("DI3: ",1/counterDI3);
420
421 fs.appendFile('DigitalIN3.txt',[1/counterDI3 + '\n'] ,

function (err) {
422 if (err) throw err;
423 //console.log('It\'s saved! in same location.');
424 });
425 counterDI3=0;
426 }
427 */
428
429 });
430 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Digital_IN_3});
431 }
432 }
433 });
434
435 addressSpace.addVariable({
436 componentOf: Digital_in,
437 browseName: "Digital_IN_4",
438 dataType: "Float",
439 value: {
440 get: function () {
441 Arduino_Digital_IN.readBytes(4,14, function(err,DI4) {
442 var DataVectorDI4 = CheckSumDI(DI4); //Get data from buffer
443 var IsPacketloss = ChecksumComparison(DataVectorDI4[9],

DataVectorDI4[10]); //Is packetloss
444 //console.log(DataVectorDI4);
445 //console.log(IsPacketloss);
446 //console.log(DI4);
447 if (IsPacketloss == 1) //If no packet loss then
448 {
449 Digital_IN_4 = DataVectorDI4[0];
450 //console.log("CheckSum Passed!");
451 //console.log(Digital_IN_4);
452 counterDI4 +=1;
453 }
454 /*
455 if (IsPacketloss == 0) //If packet loss then
456 {
457 //console.log("Packet loss!");
458 console.log("DI4: ",1/counterDI4);
459
460 fs.appendFile('DigitalIN4.txt',[1/counterDI4 + '\n'] ,

function (err) {
461 if (err) throw err;
462 //console.log('It\'s saved! in same location.');
463 });
464 counterDI4=0;
465 }
466 */
467 });
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468 return new opcua.Variant({dataType: opcua.DataType.Float, value:
Digital_IN_4 });

469 }
470 }
471 });
472
473 addressSpace.addVariable({
474 componentOf: Digital_out,
475 nodeId: "ns=1;b=1020DA",
476 browseName: "Digital_OUT_1",
477 dataType: "String",
478 value: {
479 get: function () {
480 return new opcua.Variant({dataType: opcua.DataType.String, value:

Digital_OUT_1 });
481 },
482 set: function (variant) {
483
484 //Set the protocol vector
485 DO1protoVector=[1,2,1,0,parseInt(variant.value.substring(0,1)),

parseInt(variant.value.substring(1,2)),parseInt(variant.value
.substring(2,3)),parseInt(variant.value.substring(3,4)),
parseInt(variant.value.substring(4,5)),parseInt(variant.value
.substring(5,6)),parseInt(variant.value.substring(6,7)),
parseInt(variant.value.substring(7,8)),variant.value.length];

486 //Sum up the protocol vector (Checksum)
487 DO1Checksum = sumArray(DO1protoVector);
488 //Add the remainder to the end of the protocol vector
489 DO1protoVector.push(DO1Checksum % 64);
490
491 //console.log("Push sum : ", DO1protoVector);
492 //console.log("Checksum remainder: ", DO1Checksum % 64);
493 //console.log("Checksum: ", DO1Checksum);
494 //Write to the Arduino
495 //Arduino_Digital_OUT.write(DO1protoVector, function(err) {

console.log("New Digital out 1 value is: ",variant.value); })
;

496 Arduino_Digital_OUT.write(DO1protoVector, function(err) { });
497 Digital_OUT_1=variant.value;
498 return opcua.StatusCodes.Good;
499 }
500 }
501 });
502
503 addressSpace.addVariable({
504 componentOf: Digital_out,
505 nodeId: "ns=2;b=1020DB",
506 browseName: "Digital_OUT_2",
507 dataType: "String",
508 value: {
509 get: function () {
510 return new opcua.Variant({dataType: opcua.DataType.String, value:

Digital_OUT_2 });
511 },
512 set: function (variant) {
513 //Set the protocol vector
514 DO2protoVector=[1,2,2,0,parseInt(variant.value.substring(0,1)),

parseInt(variant.value.substring(1,2)),parseInt(variant.value
.substring(2,3)),parseInt(variant.value.substring(3,4)),
parseInt(variant.value.substring(4,5)),parseInt(variant.value
.substring(5,6)),parseInt(variant.value.substring(6,7)),
parseInt(variant.value.substring(7,8)),variant.value.length];

515 //Sum up the protocol vector (Checksum)
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516 DO2Checksum = sumArray(DO2protoVector);
517 //Add the remainder to the end of the protocol vector
518 DO2protoVector.push(DO2Checksum % 64);
519
520 //console.log("Push sum : ", DO2protoVector);
521 //console.log("Checksum remainder: ", DO2Checksum % 64);
522 //console.log("Checksum: ", DO2Checksum);
523 //Write to the Arduino
524 //Arduino_Digital_OUT.write(DO2protoVector, function(err) {

console.log("New Digital out 2 value is: ",variant.value);
});

525 Arduino_Digital_OUT.write(DO2protoVector, function(err) { });
526 Digital_OUT_2=variant.value;
527 return opcua.StatusCodes.Good;
528 }
529 }
530 });
531
532 addressSpace.addVariable({
533 componentOf: Digital_out,
534 nodeId: "ns=3;b=1020DC",
535 browseName: "Digital_OUT_3",
536 dataType: "String",
537 value: {
538 get: function () {
539 return new opcua.Variant({dataType: opcua.DataType.String, value:

Digital_OUT_3 });
540 },
541 set: function (variant) {
542 //Set the protocol vector
543 DO3protoVector=[1,2,3,0,parseInt(variant.value.substring(0,1)),

parseInt(variant.value.substring(1,2)),parseInt(variant.value
.substring(2,3)),parseInt(variant.value.substring(3,4)),
parseInt(variant.value.substring(4,5)),parseInt(variant.value
.substring(5,6)),parseInt(variant.value.substring(6,7)),
parseInt(variant.value.substring(7,8)),variant.value.length];

544 //Sum up the protocol vector (Checksum)
545 DO3Checksum = sumArray(DO3protoVector);
546 //Add the remainder to the end of the protocol vector
547 DO3protoVector.push(DO3Checksum % 64);
548
549 //console.log("Push sum : ", DO3protoVector);
550 //console.log("Checksum remainder: ", DO3Checksum % 64);
551 //console.log("Checksum: ", DO3Checksum);
552 //Write to the Arduino
553 //Arduino_Digital_OUT.write(DO3protoVector, function(err) {

console.log("New Digital out 3 value is: ",variant.value); })
;

554 Arduino_Digital_OUT.write(DO3protoVector, function(err) { });
555 Digital_OUT_3=variant.value;
556 return opcua.StatusCodes.Good;
557 }
558 }
559 });
560
561 addressSpace.addVariable({
562
563 componentOf: Digital_out,
564 nodeId: "ns=4;b=1020DD",
565 browseName: "Digital_OUT_4",
566 dataType: "String",
567 value: {
568 get: function () {
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569 return new opcua.Variant({dataType: opcua.DataType.String, value:
Digital_OUT_4 });

570 },
571 set: function (variant) {
572 //Set the protocol vector
573 DO4protoVector=[1,2,4,0,parseInt(variant.value.substring(0,1)),

parseInt(variant.value.substring(1,2)),parseInt(variant.value
.substring(2,3)),parseInt(variant.value.substring(3,4)),
parseInt(variant.value.substring(4,5)),parseInt(variant.value
.substring(5,6)),parseInt(variant.value.substring(6,7)),
parseInt(variant.value.substring(7,8)),variant.value.length];

574 //Sum up the protocol vector (Checksum)
575 DO4Checksum = sumArray(DO4protoVector);
576 //Add the remainder to the end of the protocol vector
577 DO4protoVector.push(DO4Checksum % 64);
578
579 //console.log("Push sum : ", DO4protoVector);
580 //console.log("Checksum remainder: ", DO4Checksum % 64);
581 //console.log("Checksum: ", DO4Checksum);
582 //Write to the Arduino
583 //Arduino_Digital_OUT.write(DO4protoVector, function(err) {

console.log("New Digital out 4 value is: ",variant.value); })
;

584 Arduino_Digital_OUT.write(DO4protoVector, function(err) { });
585 Digital_OUT_4=variant.value;
586 return opcua.StatusCodes.Good;
587 }
588 }
589 });
590
591 addressSpace.addVariable({
592 componentOf: Analog_in,
593 browseName: "Analog_IN_1",
594 //dataType: "Double",
595 dataType: "Float",
596 value: {
597 get: function () {
598 Arduino_Analog_IN.readBytes(1,14, function(err,AI1) {
599
600 var DataVectorAI1 = CheckSumDI(AI1); //Get data from buffer
601 var IsPacketloss = ChecksumComparison(DataVectorAI1[9],

DataVectorAI1[10]); //Is packetloss
602 //console.log("Datavector: ", DataVectorAI1);
603 //console.log("Packet loss: ", IsPacketloss);
604 //console.log(AI1);
605 //console.log(scan);
606 if (IsPacketloss == 1) //If no packet loss then
607 {
608 Analog_IN_1 = GetValue(DataVectorAI1);
609 //console.log("CheckSum Passed!");
610 //console.log(Analog_IN_1);
611 counterAI1 +=1;
612 }
613 /*
614 if (IsPacketloss == 0) //If packet loss then
615 {
616 //console.log("Packet loss!");
617 console.log("AI1: ",1/counterAI1);
618
619 fs.appendFile('AnalogIN1.txt',[1/counterAI1 + '\n'] ,

function (err) {
620 if (err) throw err;
621 //console.log('It\'s saved! in same location.');
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622 });
623 counterAI1=0;
624 }
625 */
626 });
627 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Analog_IN_1 });
628 }
629 }
630 });
631
632 addressSpace.addVariable({
633 componentOf: Analog_in,
634 browseName: "Analog_IN_2",
635 //dataType: "Double",
636 dataType: "Float",
637 value: {
638 get: function () {
639 Arduino_Analog_IN.readBytes(2,14, function(err,AI2) {
640 var DataVectorAI2 = CheckSumDI(AI2); //Get data from buffer
641 var IsPacketloss = ChecksumComparison(DataVectorAI2[9],

DataVectorAI2[10]); //Is packetloss
642 //console.log("Datavector: ", DataVectorAI2);
643 //console.log("Packet loss: ", IsPacketloss);
644 //console.log(AI2);
645 if (IsPacketloss == 1) //If no packet loss then
646 {
647 Analog_IN_2 = GetValue(DataVectorAI2);
648 //console.log("CheckSum Passed!");
649 //console.log(Analog_IN_2);
650 counterAI2 +=1;
651 }
652 /*
653 if (IsPacketloss == 0) //If packet loss then
654 {
655 //console.log("Packet loss!");
656 console.log("AI2: ",1/counterAI2);
657
658 fs.appendFile('AnalogIN2.txt',[1/counterAI2 + '\n'] ,

function (err) {
659 if (err) throw err;
660 //console.log('It\'s saved! in same location.');
661 });
662 counterAI2=0;
663 }
664 */
665 });
666 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Analog_IN_2 });
667 }
668 }
669 });
670
671 addressSpace.addVariable({
672 componentOf: Analog_in,
673 browseName: "Analog_IN_3",
674 //dataType: "Double",
675 dataType: "Float",
676 value: {
677 get: function () {
678 Arduino_Analog_IN.readBytes(3,14, function(err,AI3) {
679 var DataVectorAI3 = CheckSumDI(AI3); //Get data from buffer
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680 var IsPacketloss = ChecksumComparison(DataVectorAI3[9],
DataVectorAI3[10]); //Is packetloss

681 //console.log("Datavector: ", DataVectorAI3);
682 //console.log("Packet loss: ", IsPacketloss);
683 //console.log(AI3);
684 if (IsPacketloss == 1) //If no packet loss then
685 {
686 Analog_IN_3 = GetValue(DataVectorAI3);
687 //console.log("CheckSum Passed!");
688 //console.log(Analog_IN_3);
689 counterAI3 +=1;
690 }
691 /*
692 if (IsPacketloss == 0) //If packet loss then
693 {
694 //console.log("Packet loss!");
695 console.log("AI3: ",1 / counterAI3);
696
697 fs.appendFile('AnalogIN3.txt', [1 / counterAI3 + '\n'],

function (err) {
698 if (err) throw err;
699 //console.log('It\'s saved! in same location.');
700 });
701 counterAI3 = 0;
702 }
703 */
704 });
705 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Analog_IN_3 });
706 }
707 }
708 });
709
710 addressSpace.addVariable({
711 componentOf: Analog_in,
712 browseName: "Analog_IN_4",
713 //dataType: "Double",
714 dataType: "Float",
715 value: {
716 get: function () {
717 Arduino_Analog_IN.readBytes(4,14, function(err,AI4) {
718 var DataVectorAI4 = CheckSumDI(AI4); //Get data from buffer
719 var IsPacketloss = ChecksumComparison(DataVectorAI4[9],

DataVectorAI4[10]); //Is packetloss
720 //console.log("Datavector: ", DataVectorAI4);
721 //console.log("Packet loss: ", IsPacketloss);
722 //console.log(AI4);
723 if (IsPacketloss == 1) //If no packet loss then
724 {
725 Analog_IN_4 = GetValue(DataVectorAI4);
726 //console.log("CheckSum Passed!");
727 //console.log(Analog_IN_4);
728 counterAI4 +=1;
729 }
730 /*
731 if (IsPacketloss == 0) //If packet loss then
732 {
733 //console.log("Packet loss!");
734 console.log("AI4: ",1 / counterAI4);
735
736 fs.appendFile('AnalogIN4.txt', [1 / counterAI4 + '\n'],

function (err) {
737 if (err) throw err;
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738 //console.log('It\'s saved! in same location.');
739 });
740 counterAI4 = 0;
741 }
742 */
743 });
744 return new opcua.Variant({dataType: opcua.DataType.Float, value:

Analog_IN_4 });
745 }
746 }
747 });
748
749 addressSpace.addVariable({
750 componentOf: Analog_out,
751 nodeId: "ns=5;b=1020AA",
752 browseName: "Analog_OUT_1",
753 dataType: "String",
754 value: {
755 get: function () {
756 return new opcua.Variant({dataType: opcua.DataType.String, value:

Analog_OUT_1 });
757 },
758 set: function (variant) {
759
760 //Set the protocol vector
761 AO1protoVector=[1,1,1,0,parseInt(variant.value.substring(0,1)),

parseInt(variant.value.substring(1,2)),parseInt(variant.value
.substring(2,3)),parseInt(variant.value.substring(3,4)),
parseInt(variant.value.substring(4,5)),parseInt(variant.value
.substring(5,6)),parseInt(variant.value.substring(6,7)),
parseInt(variant.value.substring(7,8)),variant.value.length];

762 //Sum up the protocol vector (Checksum)
763 AO1Checksum = sumArray(AO1protoVector);
764 //Add the remainder to the end of the protocol vector
765 AO1protoVector.push(AO1Checksum % 64);
766
767 //console.log("Push sum : ", AO1protoVector);
768 //console.log("Checksum remainder: ", AO1Checksum % 64);
769 //console.log("Checksum3: ", AO1Checksum);
770 //Write to the Arduino
771 //Arduino_Analog_OUT.write(AO1protoVector, function(err) { console

.log("New Analog out 1 value is: ",variant.value); });
772 Arduino_Analog_OUT.write(AO1protoVector, function(err) { });
773
774 Analog_OUT_1=variant.value;
775
776 return opcua.StatusCodes.Good;
777 }
778 }
779 });
780
781 addressSpace.addVariable({
782 componentOf: Analog_out,
783 nodeId: "ns=6;b=1020AB",
784 browseName: "Analog_OUT_2",
785 dataType: "String",
786 value: {
787 get: function () {
788 return new opcua.Variant({dataType: opcua.DataType.String, value:

Analog_OUT_2 });
789 },
790 set: function (variant) {
791
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792 //Set the protocol vector
793 AO2protoVector=[1,1,2,0,parseInt(variant.value.substring(0,1)),

parseInt(variant.value.substring(1,2)),parseInt(variant.value
.substring(2,3)),parseInt(variant.value.substring(3,4)),
parseInt(variant.value.substring(4,5)),parseInt(variant.value
.substring(5,6)),parseInt(variant.value.substring(6,7)),
parseInt(variant.value.substring(7,8)),variant.value.length];

794 //Sum up the protocol vector (Checksum)
795 AO2Checksum = sumArray(AO2protoVector);
796 //Add the remainder to the end of the protocol vector
797 AO2protoVector.push(AO2Checksum % 64);
798
799 //console.log("Push sum : ", AO2protoVector);
800 //console.log("Checksum remainder: ", AO2Checksum % 64);
801 //console.log("Checksum3: ", AO2Checksum);
802 //Write to the Arduino
803 //Arduino_Analog_OUT.write(AO2protoVector, function(err) { console

.log("New Analog out 1 value is: ",variant.value); });
804 Arduino_Analog_OUT.write(AO2protoVector, function(err) { });
805
806 Analog_OUT_2=variant.value;
807 return opcua.StatusCodes.Good;
808 }
809 }
810 });
811
812 // Percentage of Memory Used by Rpi
813 server.nodeVariable1 = addressSpace.addVariable({
814 componentOf: Rpi_info,
815 nodeId: "ns=23;b=1020AD",
816 browseName: "Percentage Memory Used",
817 dataType: "Double",
818 minimumSamplingInterval: 1000,
819 value: {
820 get: function () {
821 var percentageMemUsed = 1.0 - (os.freemem() / os.totalmem() );
822 var value = percentageMemUsed * 100;
823 return new opcua.Variant({dataType: opcua.DataType.Double, value:

value});
824 }
825 }
826 });
827
828 // Rpi Up time in hours
829 server.nodeVariable2 = addressSpace.addVariable({
830 componentOf: Rpi_info,
831 nodeId: "ns=24;b=1020AE",
832 browseName: "Up time in hours",
833 dataType: "Double",
834 minimumSamplingInterval: 1000,
835 value: {
836 get: function () {
837 var value = os.uptime()/60/60;
838 return new opcua.Variant({dataType: opcua.DataType.Double, value:

value});
839 }
840 }
841 });
842
843 // CPU load in on 15m
844 server.nodeVariable3 = addressSpace.addVariable({
845 componentOf: Rpi_info,
846 nodeId: "ns=25;b=1020AE",
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847 browseName: "Load Core 15m",
848 dataType: "Double",
849 minimumSamplingInterval: 1000,
850 value: {
851 get: function () {
852 var value = os.loadavg()[2];
853 return new opcua.Variant({dataType: opcua.DataType.Double, value:

value});
854 }
855 }
856 });
857 //------------Add variables---------------END
858 }
859
860 //Construct the address space and start the server
861 construct_my_address_space(server);
862 server.start(function() {
863 console.log("Server is now listening ... ( press CTRL+C to stop)");
864 console.log("port ", server.endpoints[0].port);
865 var endpointUrl = server.endpoints[0].endpointDescriptions()[0].endpointUrl;
866 console.log(" the primary server endpoint url is ", endpointUrl );
867 });
868 }
869 server.initialize(post_initialize);

A.3.2 Arduino digital in code

Code A.2: Digital in code for Arduino I/O module, written in Arduino IDE.
1 / *
2 D i g i t a l In x4
3 C r e a t e d by S t u r l a on 2 0 / 2 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6 # i n c l u d e <Wire . h> / / I n c l u d e wi r e l i b r a r y f o r I2C
7
8 i n t DeviceID = 3 ;
9 / / De f i ne t h e p i n s

10 c o n s t i n t s e n s o r P i n 1 = 4 ;
11 c o n s t i n t s e n s o r P i n 2 = 7 ;
12 c o n s t i n t s e n s o r P i n 3 = 8 ;
13 c o n s t i n t s e n s o r P i n 4 = 1 2 ;
14 / / De f i ne t h e Sen so r Va lues
15 i n t s e n s o r V a l u e 1 = 0 ;
16 i n t s e n s o r V a l u e 2 = 0 ;
17 i n t s e n s o r V a l u e 3 = 0 ;
18 i n t s e n s o r V a l u e 4 = 0 ;
19
20 b y t e p a c k e t [ 1 3 ] ; / / By te s t o be r e c e i v e d
21 i n t sum = 0 ; / / I n i t i a l i z e t h e sum v a r i a b l e
22 b y t e b y t e V e c t o r [ 1 ] ; / / command b y t e from Rpi t o i d e n t i f y which p o r t
23
24 vo id s e t u p ( )
25 {
26 / / De f i ne t h e P i n s used
27 pinMode ( s e n s o r P i n 1 , INPUT ) ;
28 pinMode ( s e n s o r P i n 2 , INPUT ) ;
29 pinMode ( s e n s o r P i n 3 , INPUT ) ;
30 pinMode ( s e n s o r P i n 4 , INPUT ) ;
31 Wire . b e g i n ( 6 ) ; / / S e t t i n g t h i s Arduino t o I2C a d d r e s s 6
32 Wire . onReques t ( r e q u e s t E v e n t ) ; / / Act when r e q u e s t e d
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33 Wire . onRece ive ( r e c e i v e E v e n t ) ; / / Rece ive command b y t e
34 / / S e r i a l . b e g i n ( 9 6 0 0 ) ; / / For debugg ing
35
36 / / B u i l d t h e p r o t o c o l s t r i n g wi th known i n f o r m a t i o n
37 p a c k e t [ 0 ] = 1 ; / / Byte Source Device ID
38 p a c k e t [ 1 ] = 3 ; / / Byte Device ID
39 p a c k e t [ 5 ] = 0 ; / / Byte Command
40 p a c k e t [ 6 ] = 0 ; / / Byte3 Message ( n o t used )
41 p a c k e t [ 7 ] = 0 ; / / Byte4 Message ( n o t used )
42 p a c k e t [ 8 ] = 0 ; / / Byte5 Message ( n o t used )
43 p a c k e t [ 9 ] = 0 ; / / Byte6 Message ( n o t used )
44 p a c k e t [ 1 0 ] = 0 ; / / Byte7 Message ( n o t used )
45 p a c k e t [ 1 1 ] = 0 ; / / Byte8 Message ( n o t used )
46 p a c k e t [ 1 2 ] = 1 ; / / Byte Message l e n g t h
47 }
48
49 vo id loop ( ) / / Main loop
50 {
51
52 }
53
54 vo id r e q u e s t E v e n t ( ) / / Only run on r e q u e s t from Rpi t h r o u g h I2C
55 {
56
57 i f ( b y t e V e c t o r [ 0 ] == 1) / / I f r e q u e s t f o r p o r t 1
58 {
59 s e n s o r V a l u e 1 = d i g i t a l R e a d ( s e n s o r P i n 1 ) ; / / Read p i n on p o r t 1
60 p a c k e t [ 2 ] = 1 ;
61 p a c k e t [ 3 ] = b y t e V e c t o r [ 0 ] ;
62 p a c k e t [ 4 ] = s e n s o r V a l u e 1 ;
63 }
64
65 e l s e i f ( b y t e V e c t o r [ 0 ] == 2) / / I f r e q u e s t f o r p o r t 2
66 {
67 s e n s o r V a l u e 2 = d i g i t a l R e a d ( s e n s o r P i n 2 ) ; / / Read p i n on p o r t 2
68 p a c k e t [ 2 ] = 2 ;
69 p a c k e t [ 3 ] = b y t e V e c t o r [ 0 ] ;
70 p a c k e t [ 4 ] = s e n s o r V a l u e 2 ;
71 }
72
73 e l s e i f ( b y t e V e c t o r [ 0 ] == 3) / / I f r e q u e s t f o r p o r t 3
74 {
75 s e n s o r V a l u e 3 = d i g i t a l R e a d ( s e n s o r P i n 3 ) ; / / Read p i n on p o r t 3
76 p a c k e t [ 2 ] = 3 ;
77 p a c k e t [ 3 ] = b y t e V e c t o r [ 0 ] ;
78 p a c k e t [ 4 ] = s e n s o r V a l u e 3 ;
79 }
80
81 e l s e i f ( b y t e V e c t o r [ 0 ] == 4) / / I f r e q u e s t f o r p o r t 4
82 {
83 s e n s o r V a l u e 4 = d i g i t a l R e a d ( s e n s o r P i n 4 ) ; / / Read p i n on p o r t 4
84 p a c k e t [ 2 ] = 4 ;
85 p a c k e t [ 3 ] = b y t e V e c t o r [ 0 ] ;
86 p a c k e t [ 4 ] = s e n s o r V a l u e 4 ;
87 }
88
89 / / Check sum c a l c u l a t i o n
90 f o r ( i n t i = 0 ; i < 1 3 ; i ++)
91 {
92 sum += p a c k e t [ i ] ;
93 }
94 p a c k e t [ 1 3 ] = ( sum + 624) % 6 4 ; / / Remainder
95 Wire . w r i t e ( packe t , 14) ; / / Send ing t h e b y t e s t r i n g t o Rpi
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96 sum = 0 ; / / R e s e t sum
97 p a c k e t [ 1 3 ] = 0 ; / / R e s e t check sum
98 b y t e V e c t o r [ 0 ] = 0 ; / / R e s e t Source Device ID
99 }

100
101 vo id r e c e i v e E v e n t ( i n t howMany ) / / Rec i eve t h e command b y t e ( which p o r t ) from

Rpi
102 {
103 w h i l e ( Wire . a v a i l a b l e ( ) ) / / While t h e b y t e s keep coming
104 {
105 f o r ( i n t i = 0 ; i < 1 ; i ++) / / Read 1 b y t e s
106 {
107 b y t e b = Wire . r e a d ( ) ; / / Read from Rpi t h r o u g h I2C
108 b y t e V e c t o r [ i ] = b ; / / C o l l e c t b y t e t o b y t e v e c t o r
109 }
110 }
111 }

A.3.3 Arduino analog in code

Code A.3: Analog in code for Arduino, written in Arduino IDE.
1 / *
2 Analog In x4
3 C r e a t e d by S t u r l a on 1 / 3 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6 # i n c l u d e <Wire . h> / / I n c l u d e wi r e l i b r a r y f o r I2C
7
8 i n t DeviceID = 4 ;
9 / / De f i ne t h e p i n s

10 c o n s t i n t s e n s o r P i n 1 = A0 ;
11 c o n s t i n t s e n s o r P i n 2 = A1 ;
12 c o n s t i n t s e n s o r P i n 3 = A2 ;
13 c o n s t i n t s e n s o r P i n 4 = A3 ;
14 / / De f i ne t h e Sen so r Va lues
15 S t r i n g s e n s o r V a l u e 1 ;
16 S t r i n g s e n s o r V a l u e 2 ;
17 S t r i n g s e n s o r V a l u e 3 ;
18 S t r i n g s e n s o r V a l u e 4 ;
19 i n t S t r L e n g t h 1 ;
20 i n t S t r L e n g t h 2 ;
21 i n t S t r L e n g t h 3 ;
22 i n t S t r L e n g t h 4 ;
23
24 b y t e p a c k e t [ 1 3 ] ; / / By te s t o be r e c e i v e d
25 i n t sum ; / / I n i t i a l i z e t h e sum v a r i a b l e
26 b y t e b y t e V e c t o r [ 1 ] ; / / command b y t e from Rpi t o i d e n t i f y which p o r t
27
28 vo id s e t u p ( )
29 {
30 Wire . b e g i n ( 5 ) ; / / S e t t i n g t h i s Arduino t o I2C a d d r e s s 5
31 Wire . onReques t ( r e q u e s t E v e n t ) ; / / Act when r e q u e s t e d
32 Wire . onRece ive ( r e c e i v e E v e n t ) ; / / r e g i s t e r e v e n t
33 / / S e r i a l . b e g i n ( 9 6 0 0 ) ; / / For debugg ing
34 / / B u i l d t h e p r o t o c o l s t r i n g wi th known i n f o r m a t i o n
35 p a c k e t [ 0 ] = 1 ; / / Byte Source Device ID
36 p a c k e t [ 1 ] = 4 ; / / Byte Device ID
37 p a c k e t [ 3 ] = 0 ; / / Byte Command
38 p a c k e t [ 8 ] = 0 ; / / Byte5 Message ( n o t used )
39 p a c k e t [ 9 ] = 0 ; / / Byte6 Message ( n o t used )
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40 p a c k e t [ 1 0 ] = 0 ; / / Byte7 Message ( n o t used )
41 p a c k e t [ 1 1 ] = 0 ; / / Byte8 Message ( n o t used )
42 }
43
44 vo id loop ( ) / / Main loop
45 {
46
47 }
48
49 vo id r e q u e s t E v e n t ( ) / / Only run on r e q u e s t from Rpi t h r o u g h I2C
50 {
51
52 i f ( b y t e V e c t o r [ 0 ] == 1) / / I f r e q u e s t f o r p o r t 1
53 {
54 s e n s o r V a l u e 1 = S t r i n g ( ana logRead ( s e n s o r P i n 1 ) ) ; / / Read p i n on p o r t 1
55 S t r L e n g t h 1 = s e n s o r V a l u e 1 . l e n g t h ( ) ;
56 p a c k e t [ 2 ] = b y t e V e c t o r [ 0 ] ;
57 i f ( S t r L e n g t h 1 == 1) / / I f t h e o u t p u t v a l u e i s 1 d i g i t l ong
58 {
59 p a c k e t [ 4 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
60 p a c k e t [ 5 ] = 0 ;
61 p a c k e t [ 6 ] = 0 ;
62 p a c k e t [ 7 ] = 0 ;
63 }
64 e l s e i f ( S t r L e n g t h 1 == 2) / / I f t h e o u t p u t v a l u e i s 2 d i g i t l ong
65 {
66 p a c k e t [ 4 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
67 p a c k e t [ 5 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
68 p a c k e t [ 6 ] = 0 ;
69 p a c k e t [ 7 ] = 0 ;
70 }
71 e l s e i f ( S t r L e n g t h 1 == 3) / / I f t h e o u t p u t v a l u e i s 3 d i g i t l ong
72 {
73 p a c k e t [ 4 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
74 p a c k e t [ 5 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
75 p a c k e t [ 6 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
76 p a c k e t [ 7 ] = 0 ;
77 }
78 e l s e i f ( S t r L e n g t h 1 == 4) / / I f t h e o u t p u t v a l u e i s 4 d i g i t l ong
79 {
80 p a c k e t [ 4 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
81 p a c k e t [ 5 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
82 p a c k e t [ 6 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
83 p a c k e t [ 7 ] = s e n s o r V a l u e 1 . s u b s t r i n g ( 3 , 4 ) . t o I n t ( ) ;
84 }
85 p a c k e t [ 1 2 ] = S t r L e n g t h 1 ;
86 }
87
88 e l s e i f ( b y t e V e c t o r [ 0 ] == 2) / / I f r e q u e s t f o r p o r t 2
89 {
90 s e n s o r V a l u e 2 = S t r i n g ( ana logRead ( s e n s o r P i n 2 ) ) ; / / Read p i n on p o r t 2
91 S t r L e n g t h 2 = s e n s o r V a l u e 2 . l e n g t h ( ) ;
92 p a c k e t [ 2 ] = b y t e V e c t o r [ 0 ] ;
93 i f ( S t r L e n g t h 2 == 1) / / I f t h e o u t p u t v a l u e i s 1 d i g i t l ong
94 {
95 p a c k e t [ 4 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
96 p a c k e t [ 5 ] = 0 ;
97 p a c k e t [ 6 ] = 0 ;
98 p a c k e t [ 7 ] = 0 ;
99 }

100 e l s e i f ( S t r L e n g t h 2 == 2) / / I f t h e o u t p u t v a l u e i s 2 d i g i t l ong
101 {
102 p a c k e t [ 4 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;



82 APPENDIX A. APPENDIX

103 p a c k e t [ 5 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
104 p a c k e t [ 6 ] = 0 ;
105 p a c k e t [ 7 ] = 0 ;
106 }
107 e l s e i f ( S t r L e n g t h 2 == 3) / / I f t h e o u t p u t v a l u e i s 3 d i g i t l ong
108 {
109 p a c k e t [ 4 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
110 p a c k e t [ 5 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
111 p a c k e t [ 6 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
112 p a c k e t [ 7 ] = 0 ;
113 }
114 e l s e i f ( S t r L e n g t h 2 == 4) / / I f t h e o u t p u t v a l u e i s 4 d i g i t l ong
115 {
116 p a c k e t [ 4 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
117 p a c k e t [ 5 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
118 p a c k e t [ 6 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
119 p a c k e t [ 7 ] = s e n s o r V a l u e 2 . s u b s t r i n g ( 3 , 4 ) . t o I n t ( ) ;
120 }
121 p a c k e t [ 1 2 ] = S t r L e n g t h 2 ;
122 }
123
124 e l s e i f ( b y t e V e c t o r [ 0 ] == 3) / / I f r e q u e s t f o r p o r t 3
125 {
126 s e n s o r V a l u e 3 = S t r i n g ( ana logRead ( s e n s o r P i n 3 ) ) ; / / Read p i n on p o r t 3
127 S t r L e n g t h 3 = s e n s o r V a l u e 3 . l e n g t h ( ) ;
128 p a c k e t [ 2 ] = b y t e V e c t o r [ 0 ] ;
129 i f ( S t r L e n g t h 3 == 1) / / I f t h e o u t p u t v a l u e i s 1 d i g i t l ong
130 {
131 p a c k e t [ 4 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
132 p a c k e t [ 5 ] = 0 ;
133 p a c k e t [ 6 ] = 0 ;
134 p a c k e t [ 7 ] = 0 ;
135 }
136 e l s e i f ( S t r L e n g t h 3 == 2) / / I f t h e o u t p u t v a l u e i s 2 d i g i t l ong
137 {
138 p a c k e t [ 4 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
139 p a c k e t [ 5 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
140 p a c k e t [ 6 ] = 0 ;
141 p a c k e t [ 7 ] = 0 ;
142 }
143 e l s e i f ( S t r L e n g t h 3 == 3) / / I f t h e o u t p u t v a l u e i s 3 d i g i t l ong
144 {
145 p a c k e t [ 4 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
146 p a c k e t [ 5 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
147 p a c k e t [ 6 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
148 p a c k e t [ 7 ] = 0 ;
149 }
150 e l s e i f ( S t r L e n g t h 3 == 4) / / I f t h e o u t p u t v a l u e i s 4 d i g i t l ong
151 {
152 p a c k e t [ 4 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
153 p a c k e t [ 5 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
154 p a c k e t [ 6 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
155 p a c k e t [ 7 ] = s e n s o r V a l u e 3 . s u b s t r i n g ( 3 , 4 ) . t o I n t ( ) ;
156 }
157 p a c k e t [ 1 2 ] = S t r L e n g t h 3 ;
158 }
159
160 e l s e i f ( b y t e V e c t o r [ 0 ] == 4) / / I f r e q u e s t f o r p o r t 4
161 {
162 s e n s o r V a l u e 4 = S t r i n g ( ana logRead ( s e n s o r P i n 4 ) ) ; / / Read p i n on p o r t 4
163 S t r L e n g t h 4 = s e n s o r V a l u e 4 . l e n g t h ( ) ;
164 p a c k e t [ 2 ] = b y t e V e c t o r [ 0 ] ;
165 i f ( S t r L e n g t h 4 == 1) / / I f t h e o u t p u t v a l u e i s 1 d i g i t l ong
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166 {
167 p a c k e t [ 4 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
168 p a c k e t [ 5 ] = 0 ;
169 p a c k e t [ 6 ] = 0 ;
170 p a c k e t [ 7 ] = 0 ;
171 }
172 e l s e i f ( S t r L e n g t h 4 == 2) / / I f t h e o u t p u t v a l u e i s 2 d i g i t l ong
173 {
174 p a c k e t [ 4 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
175 p a c k e t [ 5 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
176 p a c k e t [ 6 ] = 0 ;
177 p a c k e t [ 7 ] = 0 ;
178 }
179 e l s e i f ( S t r L e n g t h 4 == 3) / / I f t h e o u t p u t v a l u e i s 3 d i g i t l ong
180 {
181 p a c k e t [ 4 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
182 p a c k e t [ 5 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
183 p a c k e t [ 6 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
184 p a c k e t [ 7 ] = 0 ;
185 }
186 e l s e i f ( S t r L e n g t h 4 == 4) / / I f t h e o u t p u t v a l u e i s 4 d i g i t l ong
187 {
188 p a c k e t [ 4 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 0 , 1 ) . t o I n t ( ) ;
189 p a c k e t [ 5 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 1 , 2 ) . t o I n t ( ) ;
190 p a c k e t [ 6 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 2 , 3 ) . t o I n t ( ) ;
191 p a c k e t [ 7 ] = s e n s o r V a l u e 4 . s u b s t r i n g ( 3 , 4 ) . t o I n t ( ) ;
192 }
193 p a c k e t [ 1 2 ] = S t r L e n g t h 4 ;
194 }
195
196 / / Check sum c a l c u l a t i o n
197 f o r ( i n t i = 0 ; i < 1 3 ; i ++)
198 {
199 sum += p a c k e t [ i ] ;
200 }
201 p a c k e t [ 1 3 ] = ( sum + 624) % 6 4 ; / / Remainder
202 Wire . w r i t e ( packe t , 14) ; / / Send ing b y t e t h e s t r i n g t o Rpi
203 sum = 0 ; / / R e s e t sum
204 p a c k e t [ 1 3 ] = 0 ; / / R e s e t check sum
205 b y t e V e c t o r [ 0 ] = 0 ; / / R e s e t Source Device ID
206 }
207
208 vo id r e c e i v e E v e n t ( i n t howMany ) / / Rec i eve t h e command b y t e ( which p o r t ) from

Rpi
209 {
210 w h i l e ( Wire . a v a i l a b l e ( ) ) / / While t h e b y t e s keep coming
211 {
212 f o r ( i n t i = 0 ; i < 1 ; i ++) / / Read 1 b y t e s
213 {
214 b y t e b = Wire . r e a d ( ) ; / / Read from Rpi t h r o u g h I2C
215 b y t e V e c t o r [ i ] = b ; / / C o l l e c t b y t e t o b y t e v e c t o r
216 }
217 }
218 }

A.3.4 Arduino digital out code

Code A.4: Digital out code for Arduino I/O module, written in Arduino IDE.
1 / *
2 D i g i t a l Out x4
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3 C r e a t e d by S t u r l a on 2 6 / 2 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6 / / Note t h a t a l l p r i n t i n g t o S e r i a l i n t h i s program i s on ly f o r debugg ing

p u r p o s e s
7
8 # i n c l u d e <Wire . h> / / I n c l u d e wi r e l i b r a r y f o r I2C
9

10 i n t DeviceID = 2 ; / / De f i n e t h e Device ID
11
12 / / De f i ne t h e p i n s
13 c o n s t i n t o u t p u t P i n 1 = 4 ;
14 c o n s t i n t o u t p u t P i n 2 = 5 ;
15 c o n s t i n t o u t p u t P i n 3 = 6 ;
16 c o n s t i n t o u t p u t P i n 4 = 9 ;
17
18 b y t e b y t e V e c t o r [ 1 5 ] ; / / De f i n e t h e b y t e s v e c t o r
19
20 / / De f i ne t h e message s t r i n g s f o r f u r t h e r p r o c e s s i n g
21 S t r i n g MessageByte1 ;
22 S t r i n g MessageByte2 ;
23 S t r i n g MessageByte3 ;
24 S t r i n g MessageByte4 ;
25 S t r i n g MessageByte5 ;
26 S t r i n g MessageByte6 ;
27 S t r i n g MessageByte7 ;
28 S t r i n g MessageByte8 ;
29
30 i n t s ; / / De f i n e t h e check sum
31
32 vo id s e t u p ( )
33 {
34 / / De f i ne t h e P i n s used
35 pinMode ( o u t p u t P i n 1 , OUTPUT) ;
36 pinMode ( o u t p u t P i n 2 , OUTPUT) ;
37 pinMode ( o u t p u t P i n 3 , OUTPUT) ;
38 pinMode ( o u t p u t P i n 4 , OUTPUT) ;
39 Wire . b e g i n ( 7 ) ; / / S e t t i n g t h i s Arduino t o I2C a d d r e s s 7
40 Wire . onRece ive ( r e c e i v e E v e n t ) ; / / Act when r e c i e v i n g
41 S e r i a l . b e g i n ( 9 6 0 0 ) ; / / For debugg ing
42 }
43
44 vo id loop ( ) / / Main loop
45 {
46
47 / / I f t h e r i g h t Device ID i s r e c o g n i z e d
48 i f ( b y t e V e c t o r [ 1 ] == DeviceID )
49 {
50 / / Sum Checksum E r r o r
51 f o r ( i n t i = 0 ; i < 1 3 ; i ++)
52 {
53 s += b y t e V e c t o r [ i ] + 4 8 ;
54 }
55
56 S e r i a l . p r i n t ( " sum = " ) ;
57 S e r i a l . p r i n t l n ( s ) ;
58 s = s % 6 4 ; / / Remainder
59 S e r i a l . p r i n t ( " Checksum = " ) ;
60 S e r i a l . p r i n t l n ( s ) ;
61 S e r i a l . p r i n t l n ( " _______ " ) ;
62 b y t e V e c t o r [ 1 ] = 0 ; / / R e s e t DeviceID
63 }
64
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65 / / Checksum E r r o r D e t e c t i o n , s e n d e r s checksum == t o c a l c u l a t e d checksum
66 i f ( b y t e V e c t o r [ 1 3 ] == s )
67 {
68 S e r i a l . p r i n t l n ( " ooooooooo " ) ;
69 S e r i a l . p r i n t l n ( "No E r r o r D e t e c t e d ! " ) ;
70 S e r i a l . p r i n t l n ( " ooooooooo " ) ;
71 S e r i a l . p r i n t l n ( " " ) ;
72 S e r i a l . p r i n t l n ( " " ) ;
73 S e r i a l . p r i n t l n ( " " ) ;
74 b y t e V e c t o r [ 1 3 ] = 1 ;
75
76 / / Byte 2 i n d i c a t e s which p i n
77 i f ( b y t e V e c t o r [ 2 ] == 1) / / I f O u t p u t P i n 1
78 {
79 i f ( b y t e V e c t o r [ 4 ] == 0) / / I f b y t e = 0 t h e n LOW
80 {
81 d i g i t a l W r i t e ( o u t p u t P i n 1 , LOW) ;
82 }
83 e l s e i f ( b y t e V e c t o r [ 4 ] == 1) / / I f b y t e = 1 t h e n HIGH
84 {
85 d i g i t a l W r i t e ( o u t p u t P i n 1 , HIGH) ;
86 }
87 }
88
89 e l s e i f ( b y t e V e c t o r [ 2 ] == 2) / / I f O u t p u t P i n 2
90 {
91 i f ( b y t e V e c t o r [ 4 ] == 0)
92 {
93 d i g i t a l W r i t e ( o u t p u t P i n 2 , LOW) ;
94 }
95 e l s e i f ( b y t e V e c t o r [ 4 ] == 1)
96 {
97 d i g i t a l W r i t e ( o u t p u t P i n 2 , HIGH) ;
98 }
99 }

100
101 e l s e i f ( b y t e V e c t o r [ 2 ] == 3) / / I f O u t p u t P i n 3
102 {
103 i f ( b y t e V e c t o r [ 4 ] == 0)
104 {
105 d i g i t a l W r i t e ( o u t p u t P i n 3 , LOW) ;
106 }
107 e l s e i f ( b y t e V e c t o r [ 4 ] == 1)
108 {
109 d i g i t a l W r i t e ( o u t p u t P i n 3 , HIGH) ;
110 }
111 }
112
113 e l s e i f ( b y t e V e c t o r [ 2 ] == 4) / / I f O u t p u t P i n 4
114 {
115 i f ( b y t e V e c t o r [ 4 ] == 0)
116 {
117 d i g i t a l W r i t e ( o u t p u t P i n 4 , LOW) ;
118 }
119 e l s e i f ( b y t e V e c t o r [ 4 ] == 1)
120 {
121 d i g i t a l W r i t e ( o u t p u t P i n 4 , HIGH) ;
122 }
123 }
124 }
125 s = 0 ; / / R e s e t check sum
126 }
127
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128 vo id r e c e i v e E v e n t ( i n t howMany ) / / Only run on r e q u e s t from Rpi t h r o u g h I2C
129 {
130 w h i l e ( Wire . a v a i l a b l e ( ) ) / / While t h e b y t e s keep coming
131 {
132 f o r ( i n t i = 0 ; i < 1 5 ; i ++) / / Read 14 b y t e s
133 {
134 b y t e b = Wire . r e a d ( ) ; / / Read from Rpi t h r o u g h I2C
135 b y t e V e c t o r [ i ] = b ; / / C o l l e c t b y t e s t o b y t e v e c t o r
136 }
137 }
138 / * For debugg ing
139 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 0 ] ) ; / / Byte Source Device ID
140 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 ] ) ; / / Byte Device ID
141 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 2 ] ) ; / / Byte P o r t
142 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 3 ] ) ; / / Byte Command
143 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 4 ] ) ; / / Byte1 Message
144 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 5 ] ) ; / / Byte2 Message
145 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 6 ] ) ; / / Byte3 Message
146 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 7 ] ) ; / / Byte4 Message
147 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 8 ] ) ; / / Byte5 Message
148 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 9 ] ) ; / / Byte6 Message
149 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 0 ] ) ; / / Byte7 Message
150 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 1 ] ) ; / / Byte8 Message
151 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 2 ] ) ; / / Byte Message l e n g t h
152 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 3 ] ) ; / / Byte Checksum
153 * /
154 }

A.3.5 Arduino analog out code

Code A.5: Analog OUT code for Arduino, written in Arduino IDE.
1 / *
2 Analog Out x2
3 C r e a t e d by S t u r l a on 6 / 3 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6 / / Note t h a t a l l p r i n t i n g t o S e r i a l i n t h i s program i s on ly f o r debugg ing

p u r p o s e s
7
8 # i n c l u d e <Wire . h> / / I n c l u d e wi r e l i b r a r y f o r I2C
9 # i n c l u d e <Adafruit_MCP4725 . h> / / I n c l u d e MCP4725 -DAC l i b r a r y

10
11 Adafruit_MCP4725 dac ; / / De f i n e Dac 1
12 Adafruit_MCP4725 dac1 ; / / De f i n e Dac 2
13 # d e f i n e MCP4725_ADDR 0x62 / / De f i n e Dac 1 a d d r e s s
14 # d e f i n e MCP4725_ADDR2 0x63 / / De f i n e Dac 2 a d d r e s s
15
16 i n t DeviceID = 1 ; / / De f i n e t h e Device ID
17 b y t e b y t e V e c t o r [ 1 5 ] ; / / De f i n e t h e b y t e s v e c t o r
18 S t r i n g v a l u e ;
19 S t r i n g v a l u e 2 ;
20 i n t m e s s a g e I n t = 0 ;
21
22 / / De f i ne t h e message s t r i n g s f o r f u r t h e r p r o c e s s i n g
23 S t r i n g MessageByte1 ;
24 S t r i n g MessageByte2 ;
25 S t r i n g MessageByte3 ;
26 S t r i n g MessageByte4 ;
27 S t r i n g MessageByte5 ;
28 S t r i n g MessageByte6 ;
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29 S t r i n g MessageByte7 ;
30 S t r i n g MessageByte8 ;
31
32 i n t s ; / / De f i n e t h e Checsum e r r o r
33 i n t v a l u e I n t ;
34 vo id s e t u p ( vo id )
35 {
36 Wire . b e g i n ( 8 ) ; / / S e t t i n g t h i s Arduino t o I2C a d d r e s s 8
37 Wire . onRece ive ( r e c e i v e E v e n t ) ; / / r e g i s t e r e v e n t
38 S e r i a l . b e g i n ( 9 6 0 0 ) ; / / For debugg ing
39 }
40
41 vo id loop ( vo id ) / / Main loop
42 {
43
44 / / I f t h e r i g h t Device ID i s r e c o g n i z e d
45 i f ( b y t e V e c t o r [ 1 ] == DeviceID )
46 {
47 / / Sum Checksum E r r o r
48 f o r ( i n t i = 0 ; i < 1 3 ; i ++)
49 {
50 s += b y t e V e c t o r [ i ] + 4 8 ;
51 }
52
53 S e r i a l . p r i n t ( " sum = " ) ;
54 S e r i a l . p r i n t l n ( s ) ;
55 s = s % 6 4 ; / / Remainder
56 S e r i a l . p r i n t ( " Checksum = " ) ;
57 S e r i a l . p r i n t l n ( s ) ;
58 S e r i a l . p r i n t l n ( " _______ " ) ;
59 b y t e V e c t o r [ 1 ] = 0 ; / / R e s e t DeviceID
60 }
61
62 / / Checksum E r r o r D e t e c t i o n , s e n d e r s checksum == t o c a l c u l a t e d checksum
63 i f ( b y t e V e c t o r [ 1 3 ] == s )
64 {
65 S e r i a l . p r i n t l n ( " ooooooooo " ) ;
66 S e r i a l . p r i n t l n ( "No E r r o r D e t e c t e d ! " ) ;
67 S e r i a l . p r i n t l n ( " ooooooooo " ) ;
68 S e r i a l . p r i n t l n ( " " ) ;
69 S e r i a l . p r i n t l n ( " " ) ;
70 S e r i a l . p r i n t l n ( " " ) ;
71 b y t e V e c t o r [ 1 3 ] = 1 ;
72
73 / / I f t h e i d e n t i f i e r b y t e i s 1 t h e n change o u t p u t f o r Dac 1
74 i f ( b y t e V e c t o r [ 2 ] == 1)
75 {
76 dac . b e g i n (0 x62 ) ; / / DAC one b e g i n
77
78 / / B u i l d t h e b y t e s t r i n g
79 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
80 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
81 MessageByte3 = S t r i n g ( b y t e V e c t o r [ 6 ] ) ;
82 MessageByte4 = S t r i n g ( b y t e V e c t o r [ 7 ] ) ;
83 MessageByte5 = S t r i n g ( b y t e V e c t o r [ 8 ] ) ;
84 MessageByte6 = S t r i n g ( b y t e V e c t o r [ 9 ] ) ;
85 MessageByte7 = S t r i n g ( b y t e V e c t o r [ 1 0 ] ) ;
86 MessageByte8 = S t r i n g ( b y t e V e c t o r [ 1 1 ] ) ;
87
88 i f ( b y t e V e c t o r [ 1 2 ] == 1) / / I f one d i g i t number
89 {
90 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
91 v a l u e = S t r i n g ( MessageByte1 ) ;
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92 }
93 e l s e i f ( b y t e V e c t o r [ 1 2 ] == 2) / / I f two d i g i t number
94 {
95 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
96 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
97 v a l u e = S t r i n g ( MessageByte1 + MessageByte2 ) ;
98 }
99 e l s e i f ( b y t e V e c t o r [ 1 2 ] == 3) / / I f t h r e e d i g i t number

100 {
101 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
102 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
103 MessageByte3 = S t r i n g ( b y t e V e c t o r [ 6 ] ) ;
104 v a l u e = S t r i n g ( MessageByte1 + MessageByte2 + MessageByte3 ) ;
105 }
106 e l s e i f ( b y t e V e c t o r [ 1 2 ] == 4) / / I f f o u r d i g i t number
107 {
108 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
109 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
110 MessageByte3 = S t r i n g ( b y t e V e c t o r [ 6 ] ) ;
111 MessageByte4 = S t r i n g ( b y t e V e c t o r [ 7 ] ) ;
112 v a l u e = S t r i n g ( MessageByte1 + MessageByte2 + MessageByte3 +

MessageByte4 ) ;
113 }
114
115 v a l u e I n t = v a l u e . t o I n t ( ) ;
116
117 i f ( ( v a l u e I n t <= 4095) && ( v a l u e I n t >= 0) ) / / Only a l l o w e d v a l u e s from

0 -4095 (12 b i t )
118 {
119 dac . s e t V o l t a g e ( v a l u e I n t , f a l s e ) ; / / S e t Value t o DAC 1
120 d e l a y ( 1 0 ) ;
121
122 S e r i a l . p r i n t l n ( " Value t o DAC: " + S t r i n g ( v a l u e I n t ) ) ;
123 b y t e V e c t o r [ 2 ] = 0 ; / / R e s e t i d e n t i f i e r
124 v a l u e I n t = 0 ;
125 v a l u e = " " ;
126 }
127 }
128
129 / / I f t h e i d e n t i f i e r b y t e i s 2 t h e n change o u t p u t f o r Dac 2
130 i f ( b y t e V e c t o r [ 2 ] == 2)
131 {
132 dac1 . b e g i n (0 x63 ) ; / / DAC one b e g i n
133
134 / / B u i l d t h e b y t e s t r i n g
135 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
136 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
137 MessageByte3 = S t r i n g ( b y t e V e c t o r [ 6 ] ) ;
138 MessageByte4 = S t r i n g ( b y t e V e c t o r [ 7 ] ) ;
139 MessageByte5 = S t r i n g ( b y t e V e c t o r [ 8 ] ) ;
140 MessageByte6 = S t r i n g ( b y t e V e c t o r [ 9 ] ) ;
141 MessageByte7 = S t r i n g ( b y t e V e c t o r [ 1 0 ] ) ;
142 MessageByte8 = S t r i n g ( b y t e V e c t o r [ 1 1 ] ) ;
143
144 i f ( b y t e V e c t o r [ 1 2 ] == 1) / / I f one d i g i t number
145 {
146 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
147 v a l u e = S t r i n g ( MessageByte1 ) ;
148 }
149 e l s e i f ( b y t e V e c t o r [ 1 2 ] == 2) / / I f two d i g i t number
150 {
151 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
152 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
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153 v a l u e = S t r i n g ( MessageByte1 + MessageByte2 ) ;
154 }
155 e l s e i f ( b y t e V e c t o r [ 1 2 ] == 3) / / I f t h r e e d i g i t number
156 {
157 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
158 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
159 MessageByte3 = S t r i n g ( b y t e V e c t o r [ 6 ] ) ;
160 v a l u e = S t r i n g ( MessageByte1 + MessageByte2 + MessageByte3 ) ;
161 }
162 e l s e i f ( b y t e V e c t o r [ 1 2 ] == 4) / / I f f o u r d i g i t number
163 {
164 MessageByte1 = S t r i n g ( b y t e V e c t o r [ 4 ] ) ;
165 MessageByte2 = S t r i n g ( b y t e V e c t o r [ 5 ] ) ;
166 MessageByte3 = S t r i n g ( b y t e V e c t o r [ 6 ] ) ;
167 MessageByte4 = S t r i n g ( b y t e V e c t o r [ 7 ] ) ;
168 v a l u e = S t r i n g ( MessageByte1 + MessageByte2 + MessageByte3 +

MessageByte4 ) ;
169 }
170
171 v a l u e I n t = v a l u e . t o I n t ( ) ; / / S t r i n g t o I n t
172
173 i f ( ( v a l u e I n t <= 4095) && ( v a l u e I n t >= 0) ) / / Only a l l o w e d v a l u e s from

0 -4095 (12 b i t )
174 {
175 dac1 . s e t V o l t a g e ( v a l u e I n t , f a l s e ) ; / / S e t Value t o DAC 2
176 d e l a y ( 1 0 ) ;
177
178 S e r i a l . p r i n t l n ( " Value t o DAC: " + S t r i n g ( v a l u e I n t ) ) ;
179 b y t e V e c t o r [ 2 ] = 0 ; / / R e s e t i d e n t i f i e r
180 v a l u e I n t = 0 ;
181 v a l u e = " " ;
182 }
183 }
184 }
185 s = 0 ; / / R e s e t check sum
186 }
187
188 vo id r e c e i v e E v e n t ( i n t howMany ) / / Only r e c e i v e on r e q u e s t from Rpi t h r o u g h

I2C
189 {
190 w h i l e ( Wire . a v a i l a b l e ( ) ) / / While t h e b y t e s keep coming
191 {
192 f o r ( i n t i = 0 ; i < 1 5 ; i ++) / / Read 14 b y t e s
193 {
194 b y t e b = Wire . r e a d ( ) ; / / Read from Rpi t h r o u g h I2C
195 b y t e V e c t o r [ i ] = b ; / / C o l l e c t b y t e s t o b y t e v e c t o r
196 }
197 }
198 / * For debugg ing
199 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 0 ] ) ; / / Byte Source Device ID
200 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 ] ) ; / / Byte Device ID
201 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 2 ] ) ; / / Byte P o r t
202 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 3 ] ) ; / / Byte Command
203 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 4 ] ) ; / / Byte1 Message
204 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 5 ] ) ; / / Byte2 Message
205 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 6 ] ) ; / / Byte3 Message
206 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 7 ] ) ; / / Byte4 Message
207 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 8 ] ) ; / / Byte5 Message
208 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 9 ] ) ; / / Byte6 Message
209 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 0 ] ) ; / / Byte7 Message
210 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 1 ] ) ; / / Byte8 Message
211 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 2 ] ) ; / / Byte Message l e n g t h
212 S e r i a l . p r i n t l n ( b y t e V e c t o r [ 1 3 ] ) ; / / Byte Checksum
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213 * /
214 }

A.3.6 Arduino pulse timing measurement code

Code A.6: Measurement code for Arduino that times the duration between pulses received,
written in Arduino IDE.

1 / *
2 For measu r ing p u l s e t i m i n g on p i n 2
3 C r e a t e d by S t u r l a on 5 / 0 4 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6
7 c o n s t i n t MeasurePin = 2 ; / / I n i t i a l i z e t h e i n p u t p i n
8
9 long s t a r t T i m e ; / / The v a l u e r e t u r n e d from m i l l i s when s i g n a l comes i n

10 long d u r a t i o n ; / / V a r i a b l e t o s t o r e t h e d u r a t i o n
11
12 vo id s e t u p ( )
13 {
14 pinMode ( MeasurePin , INPUT ) ;
15 d i g i t a l W r i t e ( MeasurePin , HIGH) ;
16 S e r i a l . b e g i n ( 9 6 0 0 ) ;
17 }
18
19 vo id loop ( ) / / Main loop
20 {
21 i f ( d i g i t a l R e a d ( MeasurePin ) == LOW) / / I f s t a t e change i s LOW
22 {
23 s t a r t T i m e = m i l l i s ( ) ; / / S t a r t t h e t i m e r
24 w h i l e ( d i g i t a l R e a d ( MeasurePin ) == LOW) / / While s t a t e i s LOW
25 {
26 / / w a i t f o r s t a t e change t o HIGH
27 }
28 long d u r a t i o n = m i l l i s ( ) - s t a r t T i m e ; / / S t o r e t h e d u r a t i o n
29 S e r i a l . p r i n t l n ( d u r a t i o n ) ; / / P r i n t d u r a t i o n t o S e r i a l
30 }
31 }

A.3.7 Arduino analog out code to use with the Arduino measurement code (for
checksum error)

Code A.7: Code for Arduino Analog out to use with the Code A.3.6. It is programmed to output
5 V 50 ms pulse from the DAC when there is an checksum error, written in Arduino IDE

1 / *
2 Analog Out x2 , f o r checsum e r r o r measurements
3 C r e a t e d by S t u r l a on 2 0 / 3 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6 # i n c l u d e <Wire . h> / / I n c l u d e wi r e l i b r a r y f o r I2C
7 # i n c l u d e <Adafruit_MCP4725 . h> / / I n c l u d e MCP4725 -DAC l i b r a r y
8
9 Adafruit_MCP4725 dac ; / / De f i n e Dac 1

10 Adafruit_MCP4725 dac1 ; / / De f i n e Dac 2
11 # d e f i n e MCP4725_ADDR 0x62 / / De f i n e Dac 1 a d d r e s s
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12 # d e f i n e MCP4725_ADDR2 0x63 / / De f i n e Dac 2 a d d r e s s
13
14 i n t DeviceID = 1 ;
15 b y t e b y t e V e c t o r [ 1 5 ] ; / / De f i n e t h e b y t e s v e c t o r
16
17 i n t s ; / / De f i n e t h e Checsum e r r o r
18 i n t v a l u e I n t ;
19
20 d ou b l e c o u n t e r 1 = 0 ; / / Counts how many r e q u e s t s have no e r r o r s
21 d ou b l e c o u n t e r 2 = 0 ;
22 i n t CheckSumPassed = 1 ;
23 d ou b l e c h e c k s u m e r r o r p e r c = 0 ;
24 / / d ou b l e c h e c k s u m e r r o r p e r c = 0 ; / / E r r o r p e r c e n t a g e
25 i n t TurnOn = 1 ; / / v a r i a b l e f o r t u r n i n g on o u t p u t p i n (LED)
26
27 vo id s e t u p ( vo id )
28 {
29 Wire . b e g i n ( 8 ) ; / / S e t t i n g t h i s Arduino t o I2C a d d r e s s 8
30 Wire . onRece ive ( r e c e i v e E v e n t ) ; / / r e g i s t e r e v e n t
31 / / S e r i a l . b e g i n ( 9 6 0 0 ) ; / / For debugg ing
32 }
33
34 vo id loop ( vo id ) / / Main loop
35 {
36
37 / / I f t h e r e i s checksum e r r o r
38 i f ( TurnOn == 1)
39 {
40 dac1 . b e g i n (0 x63 ) ;
41 dac1 . s e t V o l t a g e ( 4 0 9 5 , f a l s e ) ; / / S e t DAC t o 5V
42 d e l a y ( 5 0 ) ; / / Le t t h e p u l s e be 50ms
43 dac1 . s e t V o l t a g e ( 0 , f a l s e ) ; / / S e t DAC t o 0V
44 TurnOn = 0 ;
45 / / S e r i a l . p r i n t l n ( c h e c k s u m e r r o r p e r c , 6 ) ;
46 / / S e r i a l . p r i n t l n ( c o u n t e r 1 , 6 ) ;
47 c o u n t e r 1 = 0 ; / / R e s e t c o u n t e r
48 }
49 }
50
51 vo id r e c e i v e E v e n t ( i n t howMany ) / / Only run on r e q u e s t from Rpi t h r o u g h I2C
52 {
53 w h i l e ( Wire . a v a i l a b l e ( ) ) / / While t h e b y t e s keep coming
54 {
55 f o r ( i n t i = 0 ; i < 1 4 ; i ++) / / Read 14 b y t e s
56 {
57 b y t e b = Wire . r e a d ( ) ; / / Read from Rpi t h r o u g h I2C
58 b y t e V e c t o r [ i ] = b ; / / C o l l e c t b y t e s t o b y t e v e c t o r
59 }
60 }
61
62 / / Sum Checksum E r r o r
63 f o r ( i n t i = 0 ; i < 1 3 ; i ++)
64 {
65 s += b y t e V e c t o r [ i ] + 4 8 ;
66 }
67
68 s = s % 6 4 ; / / Remainder
69 c o u n t e r 1 = c o u n t e r 1 + 1 ;
70
71 i f ( ( b y t e V e c t o r [ 1 3 ] != s ) )
72 {
73 c h e c k s u m e r r o r p e r c = 1 / c o u n t e r 1 ;
74 c o u n t e r 2 = c o u n t e r 2 + 1 ;
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75
76 TurnOn = 1 ; / / t u r n on DAC (LED)
77
78 }
79 s = 0 ; / / R e s e t check sum
80 }

A.3.8 Arduino digital out code to use with the Arduino Measurement code (for
checksum error)

Code A.8: Code for Arduino Digital out to use with the Code A.3.6. It programmed to output 5
V 50 ms signal when there is an checksum error, written in Arduino IDE

1 / *
2 D i g i t a l Out x4 , f o r checksum e r r o r measurements
3 C r e a t e d by S t u r l a on 1 0 / 4 / 1 6 .
4 L a s t u p d a t e d 2 5 / 0 4 / 1 6 .
5 * /
6 # i n c l u d e <Wire . h> / / I n c l u d e wi r e l i b r a r y f o r I2C
7
8 i n t DeviceID = 2 ; / / De f i n e t h e Device ID
9

10 / / De f i ne t h e o u t p u t p i n s
11 c o n s t i n t o u t p u t P i n 1 = 4 ;
12 c o n s t i n t o u t p u t P i n 2 = 5 ;
13 c o n s t i n t o u t p u t P i n 3 = 6 ;
14 c o n s t i n t o u t p u t P i n 4 = 9 ;
15 b y t e b y t e V e c t o r [ 1 5 ] ; / / De f i n e t h e b y t e s v e c t o r
16
17 / / De f i ne t h e message s t r i n g s f o r f u r t h e r p r o c e s s i n g
18 S t r i n g MessageByte1 ;
19 S t r i n g MessageByte2 ;
20 S t r i n g MessageByte3 ;
21 S t r i n g MessageByte4 ;
22 S t r i n g MessageByte5 ;
23 S t r i n g MessageByte6 ;
24 S t r i n g MessageByte7 ;
25 S t r i n g MessageByte8 ;
26
27 i n t s ; / / De f i n e t h e Checsum e r r o r
28 i n t v a l u e I n t ;
29
30 d ou b l e c o u n t e r 1 = 0 ; / / Counts how many r e q u e s t s have no e r r o r s
31 d ou b l e c o u n t e r 2 = 0 ;
32 i n t CheckSumPassed = 1 ;
33 / / d ou b l e c h e c k s u m e r r o r p e r c = 0 ; / / E r r o r p e r c e n t a g e
34 i n t TurnOn = 1 ; / / v a r i a b l e f o r t u r n i n g on o u t p u t p i n (LED)
35 i n t c o u n t e r S w i t c h = 0 ; / / f o r s w i t c h i n g o u t p u t p i n on and o f f
36
37 vo id s e t u p ( )
38 {
39 / / De f i ne t h e P i n s used
40 pinMode ( o u t p u t P i n 1 , OUTPUT) ;
41 pinMode ( o u t p u t P i n 2 , OUTPUT) ;
42 pinMode ( o u t p u t P i n 3 , OUTPUT) ;
43 pinMode ( o u t p u t P i n 4 , OUTPUT) ;
44 Wire . b e g i n ( 7 ) ; / / S e t t i n g t h i s Arduino t o I2C a d d r e s s 7
45 Wire . onRece ive ( r e c e i v e E v e n t ) ; / / Act when r e c i e v i n g
46 / / S e r i a l . b e g i n ( 9 6 0 0 ) ; / / For debugg ing
47 }
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48
49 vo id loop ( ) / / Main loop
50 {
51
52 / / I f t h e r e i s checksum e r r o r
53 i f ( TurnOn == 1)
54 {
55 TurnOn = 0 ; / / R e s e t TurnOn
56 c o u n t e r 1 = 0 ; / / R e s e t c o u n t e r 1
57 c o u n t e r S w i t c h = c o u n t e r S w i t c h + 1 ;
58
59 / / I f l a s t t ime i t was LOW t h e n HIGH and v i c e v e r s a
60 i f ( c o u n t e r S w i t c h == 1)
61 {
62 d i g i t a l W r i t e ( o u t p u t P i n 1 , HIGH) ;
63 }
64 i f ( c o u n t e r S w i t c h == 2)
65 {
66 d i g i t a l W r i t e ( o u t p u t P i n 1 , LOW) ;
67 c o u n t e r S w i t c h = 0 ; / / R e s e t c o u n t e r S w i t c h
68 }
69 d e l a y ( 5 0 ) ; / / Le t t h e p u l s e be 50ms
70 }
71 }
72
73 vo id r e c e i v e E v e n t ( i n t howMany ) / / Only r e c e i v e on r e q u e s t from Rpi t h r o u g h

I2C
74 {
75 w h i l e ( Wire . a v a i l a b l e ( ) ) / / While t h e b y t e s keep coming
76 {
77 f o r ( i n t i = 0 ; i < 1 5 ; i ++) / / Read 14 b y t e s
78 {
79 b y t e b = Wire . r e a d ( ) ; / / Read from Rpi t h r o u g h I2C
80 b y t e V e c t o r [ i ] = b ; / / C o l l e c t b y t e s t o b y t e v e c t o r
81 }
82 }
83
84 / / Sum check sum E r r o r
85 f o r ( i n t i = 0 ; i < 1 3 ; i ++)
86 {
87 s += b y t e V e c t o r [ i ] + 4 8 ;
88 }
89 s = s % 6 4 ; / / Remainder
90 c o u n t e r 1 = c o u n t e r 1 + 1 ;
91
92 / / I f t h e r e i s a check sum e r r o r !
93 i f ( ( b y t e V e c t o r [ 1 3 ] != s ) )
94 {
95 / / c h e c k s u m e r r o r p e r c = 1 / c o u n t e r 1 ; / / E r r o r p e r c e n t a g e
96 c o u n t e r 2 = c o u n t e r 2 + 1 ;
97 TurnOn = 1 ; / / t u r n on o u t p u t p i n (LED)
98 }
99 s = 0 ; / / R e s e t check sum

100 }
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A.3.9 Arduino code for power cut-off experiment

Code A.9: Arduino code for the power cut-off experiment that tests the durability of the SD card
in Raspberry Pi 2.

1 / *
2 D i g i t a l Out x4 , f o r checksum e r r o r measurements
3 C r e a t e d by S t u r l a on 3 0 / 4 / 1 6 .
4 L a s t u p d a t e d 1 6 / 0 5 / 1 6 .
5 * /
6
7 / / De f i ne t h e o u t p u t p i n
8 c o n s t i n t o u t p u t P i n 1 = 4 ;
9

10 vo id s e t u p ( )
11 {
12 / / De f i ne P in used
13 pinMode ( o u t p u t P i n 1 , OUTPUT) ;
14 }
15
16 vo id loop ( ) / / Main loop
17 {
18 d i g i t a l W r i t e ( o u t p u t P i n 1 , HIGH) ; / / Turn on (HIGH) f o r 4 min
19 d e l a y (1000*60*4) ;
20 d i g i t a l W r i t e ( o u t p u t P i n 1 , LOW) ; / / Turn o f f (LOW) f o r 1 min
21 d e l a y (1000*60*1) ;
22 }

A.3.10 LabVIEW client code

Figure A.1: Front panel GUI of the LabVIEW OPC-UA client used for testing the prototype.
It shows three main windows that are for controlling AO, reading AI and reading/writing to
DI/DO.
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Figure A.2: LabVIEW OPC-UA client code used for testing the prototype. The case structure
inside the main loop is divided in two parts. First part is where the OPC-UA variables are defined
and the second one is where the variables are logged to a file.
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1 Introduction

Figure 1: Overview of the Programmable Logic Controller (PLC) prototype with all three test-
rigs presented and connection to a Personal Computer (PC) running Open Platform Communic-
ations Unified Architecture (OPC-UA) client via Ethernet.

This test plan document was written for the PLC prototype developed in the Master’s Thesis
"Open source hardware and software alternative to industrial PLC". It was written at University
College of Southeast Norway in spring 2016. This document should be used to test exact hard-
ware copies of the prototype. These tests make sure that modules are wired correctly and that
signals behave accordingly and within margins on all ports. See Figure 1 for overview of the
setup which includes a LabVIEW OPC-UA client on PC running on windows. The LabVIEW
OPC-UA client developed by the author is expected to be used with this test plan. It is connected
to the prototype via Ethernet and three test-rigs are then connected to the ports on the prototype.
The Note that "test-rig" in this context means the physical breadboards and components that
plug into the input/output ports on the prototype.

2 System description

2.1 Prototype hardware and wiring

The system consists of a power module, OPC-UA module and four I/O modules which include
Digital In (DI), Digital Out (DO), Analog In (AI), Analog Out (AO). Table 1 lists the pin con-
nections on the I/O modules and is intended for reference with the wiring diagram on Figure
2 where all hardware modules and smaller components are shown. Note that all hardware on
Figure 2 is within the prototype housing. Wiring diagrams, software structure and test-rig setup
for all test cases are shown in next sections.

Table 1: Pin connections on the Arduino I/O modules are listed, including digital in, digital out,
analog in and analog out

Arduino
Digital in
Module

Pin
Arduino

Digital out
Module

Pin
Arduino

Analog in
Module

Pin
Arduino

Analog out
Module

Pin

Raspberry Pi
OPC-UA

Server
Module

Pin

Port 1 4 Port 1 4 Port 1 A0 12 V Vin
Shutdown

Button GPIO 19

Port 2 7 Port 2 5 Port 2 A1 I2C bus SDA Start Button SCL
Port 3 8 Port 3 6 Port 3 A2 I2C bus SCL Green LED GPIO 5
Port 4 12 Port 4 9 Port 4 A3 - Ground Red LED 4
12 V Vin 12 V Vin 12 V Vin 5 V Vin
I2C bus SDA I2C bus SDA I2C bus SDA I2C bus SDA
I2C bus SCL I2C bus SCL I2C bus SCL I2C bus SCL
- Ground - Ground - Ground - Ground

2
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Figure 2: Schematic overview of the whole system with all connections within the prototype
housing, including Raspberry Pi 2 module, four Arduino Leonardo I/O, 5V and 12V power
supply, real time clock and two DAC’s.

3
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2.2 Test setup for digital in / digital out

Both the digital in module and digital out module are tested together. digital in module is tested
with the outputs from a digital out module. The software flow diagram can be seen on Figure
3 where the testing of one input port and one output port is shown. The functionality is then
extended for four input and output ports.

Figure 3: Simple flow diagram of the software that is responsible for testing digital in and digital
out modules. It shows state change for one output pin and one input pin which is compared on
the display. The program can then be extended for four pins.

The test-rig and test-program Graphical User Interface (GUI) can be seen on Figure 4. The four
input ports are tested with the output ports by pressing a corresponding button on the LabVIEW
test program. If the digital output port is working correctly then corresponding digital in port
will respond with a green LED. If, for example, DO1 is LOW(0) and then turned to HIGH(1)
then DI1 should indicate the value 1 with a green LED. If DI1 will not respond to a change in
DO1 then the test failed.

(a) Test-rig. (b) LabVIEW GUI.

Figure 4: Test-rig where digital in ports are tested with digital out ports in LabVIEW . HIGH and
LOW signals are outputted and checked whether corresponding signals appear on the inputs.

4
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2.3 Test setup for analog in

The software flow diagram can be seen on Figure 5 where the 10-bit Analog to Digital Converter
(ADC) value, which is an integer between 0-1023, is measured and converted to voltages. The
specific voltage is then compared to predetermined range that is considered acceptable.

Figure 5: Simple flow diagram of the software that is responsible for testing AI modules. It
acquires the ADC value, converts it to voltage and compares it to the specific, allowed range.
This program is then extended to four ports.

The test-trig and test-program GUI can be seen on on Figure 6. The test-rig has 5 V supplied that
is divided with four 1 kΩ resistors which results in 1 V, 2 V, 3 V and 4 V to the corresponding
ports 1, 2, 3 and 4. The LabVIEW program approves with a green LED if the readings are within
0.05V from the correct values, else the test fails.

(a) Test-rig. (b) LabVIEW GUI.

Figure 6: Test-rig for making sure the analog in module is reading the correct voltages, it reads
4 V, 3 V, 2 V and 1 V on the relative ports.

5
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2.4 Test setup for analog out

The software flow diagram can be seen on Figure 7 where user sets specific voltage to a DAC.
The voltage is then measured with a multimeter and compared to predetermined range that is
considered acceptable.

Figure 7: Simple flow diagram of the software that is responsible for testing AO modules. The
user sets the output voltage and then measures the output with a multimeter and compare.

The test-rig and test-program GUI can be seen on Figure 8. It makes sure that the analog out
module is working properly. Multimeter is needed to measure the voltage drop over the 1 KΩ
resistors and compare it to the output command in the LabVIEW test program.

(a) Test-rig. (b) LabVIEW GUI.

Figure 8: Test-rig for making sure the analog on module is outputting the correct voltages. Mul-
timeter is used to check the voltage drop over the resistors and then compared to the controlled
output.

6
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2.5 Test plan checklist

Check list on Table 2 is supposed to be filled out by the technician that tests the prototype. It
is expected that this list will be filled out at the same time as the prototype is tested. After
completion the technician should sign the test plan document in Section 3.

Table 2: Prototype Test Plan table that is used with the test applications. It is intended for a
technician to fill in as a check list.

Modules Ports Description Passed Not
Passed Comments

Digital out Set ports output from LOW to HIGH
- 1 Output should change states
- 2 -
- 3 -
- 4 -
Digital in Register states from digital out
- 1 Input should change states
- 2 -
- 3 -
- 4 -
Analog out Set voltage to 0V
- 1 Multimeter reads the voltage set within ±0.05V
- 2 -
- 3 -
- 4 -
- Set voltage to 2.5V
- 1 Multimeter reads the voltage set within ±0.05V
- 2 -
- 3 -
- 4 -
- Set voltage to 5V
- 1 Multimeter reads the voltage set within ±0.05V
- 2 -
- 3 -
- 4 -
Analog in Set up the analog in test-rig with 5V supply
- 1 Should Register 1V within ±0.05V
- 2 Should Register 2V within ±0.05V
- 3 Should Register 3V within ±0.05V
- 4 Should Register 4V within ±0.05V

7
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3 Approval

By signing on this page, the individual listed has approved this test plan.

Name:

Date:

8
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