
Master Thesis 2016 

 

 

 

Candidate: Achema Hosea Egbubu (142773)  

 

 

Title: Monitoring 50/60Hz Grid Coupling – A Study             

  In Conjunction with Wind-Energy Feed to   

  Main Grids 

 

 

 

 

 

 

 

 

 

 

 



0  CONTENTS ii 

 

   
Telemark University College    University of Applied Sc.  
Faculty of Technology           Faculty Technology, Wihelmshaven 

M.Sc. Programme          Master Thesis 

MASTER’S THESIS, COURSE CODE FMH606 

Student:  Achema Hosea Egbunu 

Thesis title:  Monitoring 50/60Hz Grid Coupling – A Study in Conjunction  

With Wind Energy Feed to Main Grids   

Signature:   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Number of pages:  <#> 

Keywords:   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     

Supervisor:   Helge Lorenzen  Sign.: . . . . . . . . . . . . . . . . . . . . . . . 

2
nd

 Supervisor:  Prof. Josef Timmerberg Sign.: . . . . . . . . . . . . . . . . . . . . . . . . 

3
rd

 Supervisor:  Saba Mylvaganam   Sign.: . . . . . . . . . . . . . . . . . . . . . . . . 

Censor:   <name>   Sign.: . . . . . . . . . . . . . . . . . . . . . . . . 

External partner:  Wobben Research & Dev. Sign.:  . . . . . . . . . . . . . . . . . . . . . . . . 

Availability:   <Open/Secret> 

Archive approval (supervisor signature):   Sign.:  . . . . . . . . . . . . . . . . . . . . . . . . 

       Date :  . . . . . . . . . . . . . . . . . . . . . . . . 

Abstract: 

This master thesis is about investigating and comparing findings for different voltage 

control strategies for the 60Hz grid connection using microcontroller (Arduino). The P-

Control, PI-Control, PID control and Open loop control were designed, implemented 

and their behavior based on setpoint jumps, active power jumps and reactive power 

jumps, etc were investigated and compared. Different hardware for measurements and 

varying the excitation current for the 60Hz machine were designed, built, tested and 

implemented for this project. 



0  CONTENTS iii 

 

A comprehensive interface for monitoring and control (Man Machine Interface) for the 

user was also developed and implemented using web server. This interface is a powerful 

tool providing advance access to different control strategies, online hardware 

calibration, data logging and debugging tool.   

Different software was also used during the project for simulation and data analysis.  

Telemark University College accepts no responsibility for results and conclusions presented in this 

report. 

 

 

 

 

  



0  CONTENTS iv 

 

CONTENTS 

Contents ______________________________________________________________ 4 

List of figures __________________________________________________________ 9 

List of tables__________________________________________________________ 13 

1 Introduction _______________________________________________________ 1 

1.1 Perculiarity of this project ________________________________________ 1 

1.2 Challenge description ___________________________________________ 2 

1.3 Brief literature review ___________________________________________ 3 

2 Environment_______________________________________________________ 4 

2.1 Small scale electric power grid ____________________________________ 4 

2.2 Frequency transformer unit _______________________________________ 5 

3 Preliminary and basics _______________________________________________ 8 

3.1 Platform used (Arduino) _________________________________________ 8 

3.2 General Arduino Software Architecture _____________________________ 9 

3.3 Com Port ____________________________________________________ 10 

3.4 Data Acquisition Input __________________________________________ 11 

3.4.1 Use of Library Function _______________________________________ 11 

3.5 Application Communication And Mass Storage of Data _______________ 12 

4 Approaches to get an actual value _____________________________________ 13 

5 pulse width modulation (pwm) _______________________________________ 15 

5.1 duty cycle ____________________________________________________ 15 

5.2 pwm frequency _______________________________________________ 16 

6 Timer Interrupt ____________________________________________________ 17 

6.1 Timer0 ______________________________________________________ 17 

6.2 Timer0 Control Registers________________________________________ 18 

6.3 Interrupt Frequency ____________________________________________ 21 

6.4 CTC Interrupt Mode ___________________________________________ 22 

6.5 ADC (Analog to digital conversion) Interrupt Vector __________________ 23 



0  CONTENTS v 

 

7 Excitation Power Electronic _________________________________________ 26 

7.1 Simulation Of PWM For Inductive Load ___________________________ 28 

8 Resistive Voltage Divider Measurement Approach _______________________ 31 

8.1 Measurement Electronic ________________________________________ 32 

8.2 Signal Conditioning (Voltage Divider Hardware) _____________________ 33 

8.3 Hardware Calibration ___________________________________________ 35 

8.4 Measurement and Scaling for Voltage Setpoint ______________________ 36 

8.5 Effects of Removing DC-Offset In The  Computation _________________ 42 

8.6 Accessing The 3P Generator Through RS232 ________________________ 43 

9 Implementation For Preliminary Investigations __________________________ 46 

9.1 Data Aquisition _______________________________________________ 46 

9.2 PC Based Measurement System __________________________________ 46 

9.3 Transformers and Operational Amplifier-Circuits For Signal Conditioning_ 47 

9.4 Channelwise Board With External ADC Harware And OP-Circuits For Signal 

Conditioning _______________________________________________________ 47 

9.5 Resistive Voltage Divider With Offset Generation and AC Analysis In Time 

Domain With Arduino ADC Interrupt Vector ______________________________ 48 

9.6 Comparison Of First Findings ____________________________________ 48 

10 Description of the solution finally used _________________________________ 50 

10.1 Software implementation ________________________________________ 50 

10.1.1 Architecture and globally overview ____________________________ 50 

10.2 Data Management _____________________________________________ 51 

10.3 ADC conversation and multiplexer ________________________________ 53 

10.4 Compute Actual Value__________________________________________ 57 

10.5 Control algorithms _____________________________________________ 57 

10.5.2 Function that writes control signal to PWM Output Pin ____________ 61 

10.5.3 Open loop control _________________________________________ 61 

10.5.4 P-control_________________________________________________ 62 

10.5.5 PI-control ________________________________________________ 66 



0  CONTENTS vi 

 

10.5.6 PID control _______________________________________________ 70 

10.5.7 Fuzzy logic Control ________________________________________ 75 

10.5.8 DoControl Funtion _________________________________________ 75 

10.6 Scaling Voltage Setpoint to Analog Value __________________________ 78 

10.7 Data logging __________________________________________________ 79 

10.8 Webserver (Human machine interface) _____________________________ 83 

10.8.1 Website logic _____________________________________________ 83 

10.8.2 Analyze request ___________________________________________ 89 

10.8.3 Kinds of answering ________________________________________ 90 

10.8.4 Html- pages ______________________________________________ 91 

10.8.5 Heptic in monitoring and control ______________________________ 95 

11 Commissioning and Testing _________________________________________ 97 

11.1 Open loop control _____________________________________________ 97 

11.1.1 Fundamental, Boundaries and Characteristics ____________________ 98 

11.2 PID-Control (P, PI & PID) ______________________________________ 98 

11.2.1 Adjustment of the Controller Coefficients_______________________ 98 

11.2.2 Findings on Setpoint Jumps _________________________________ 101 

11.2.3 Findings on Active Power Jumps (Resistive load) _______________ 103 

11.2.4 Findings on Positive Reactive Power Jumps (Inductive load) ______ 107 

11.2.5 Findings on Negative Reactive Power Jumps (Capacitive load) _____ 110 

11.2.6 Connection with wind turbine _______________________________ 118 

12 Interpretation of Findings __________________________________________ 122 

13 Conclusion ______________________________________________________ 123 

14 References ______________________________________________________ 124 

15 Appendices______________________________________________________ 126 

15.1 Appendix 1:  Thesis Topic Description ____________________________ 129 

15.2 APPENDIX 2: Excitation Electronic Circuit________________________ 131 

15.3 Appendix 3: Measurement Electronic _____________________________ 133 



0  CONTENTS vii 

 

15.4 Appendix 4: Program Code for Calibrating Measurement Electronic 

(MATLAB Code) __________________________________________________ 135 

15.5 Appendix 5: Determine the Non-Linear Behaviour for the Measurement 

Electronic (MATLAB Code) __________________________________________ 136 

15.6 Appendix 6: RS232 Hardware circuit _____________________________ 136 

15.7 Appendix 7: Investigating AnalogRead() Function Execution Time _____ 137 

15.8 Appendix 8: Main Program Code ________________________________ 137 

15.9 Appendix 9: Code for ADC_ISR (Sampling Data from Analog Pins) ____ 147 

15.10 Appendix 10: Code for Computing Actual Values of RST ___________ 149 

15.11 Appendix 11: Codes for P, PI,  PID control, ‘ChangeDuty()’  and 

‘DoControl()’ Functions _____________________________________________ 150 

15.12 Appendix 12: Codes for ‘OpenWriteLogFile()’ ,  ‘CloseLogFile()’,  

‘Uploadcsv()’ Functions _____________________________________________ 154 

15.13 Appendix 13: Code for the Web Server and its subfunctions _________ 157 

15.14 Appendix 14: HTML Files ___________________________________ 162 

15.14.1 HTML Main Design-Filename: Main0.htm ____________________ 162 

15.14.2 HTML Title design-Filename: Title.htm _______________________ 164 

15.14.3 HTML Standard menu-Filename: index.htm____________________ 165 

15.14.4 HTML Setpoint-filename: SetPts.htm _________________________ 166 

15.14.5 HTML Standard menu design-Filename: Menu0.htm _____________ 168 

15.14.6 HTML Logging design-Filename: Menu1.htm __________________ 170 

15.14.7 HTML Service menu design-Filename: Menu3.htm ______________ 171 

15.14.8 HTML System status-Filename: Arrays.htm ____________________ 172 

15.14.9 HTML Control- Filename: pid.htm ___________________________ 186 

15.14.10 HTML Hardware offset-Filename: HWadj150.htm ____________ 189 

15.14.11 HTML Hardware offset Actual-Filename: FrRST0.htm _________ 190 

15.15 Appendix 15: Adjustment of the Controller Coefficients ____________ 192 

15.15.1 P Controller Coefficient: Kp ________________________________ 192 

15.15.2 PI Controller Coefficient: Ki ________________________________ 197 

15.15.3 PID Controller Coefficient: Kd ______________________________ 204 



0   viii 

 

15.16 Appendix 16: Measurement Analysis ___________________________ 210 

15.16.1 Setpoint Jumps MATLAB CODE ____________________________ 210 

15.16.2 Active power jumps for P Control ____________________________ 215 

15.16.3 Active power jumps for PI Control ___________________________ 215 

15.16.4 MATLAB Code for Active, Reactive and Negative Reactive power 

jumps 215 

15.16.5 Appendix 17: Wind Turbine Data Analysis ____________________ 217 

15.17 Appendix 18:  User  Guide ___________________________________ 218 

15.17.1 Handling Instruction ______________________________________ 218 

15.17.2 Technical and Service Documentation ________________________ 219 

15.17.3 hardware used ___________________________________________ 220 

15.17.4 software used ____________________________________________ 221 

 

  



0  LIST OF FIGURES ix 

 

LIST OF FIGURES 

Figure 2-1: Overview of the Process. ............................................................................4 

Figure 2-2: Small Scale Power Grid Connected to the Output of the 60Hz Machine. .....5 

Figure 2-3: Mechanically Coupled 50/60Hz Machine (Frequency Transformer Units) 

Connected to the Power Grid. .......................................................................................6 

Figure 2-4: IT Patch Pannel where the Data Communication Ports from the Machine 

Power Cabinet (Power Grid) is Connected. ...................................................................7 

Figure 3-1: Arduino Ethernet Board (CONRAD 2016). .................................................9 

Figure 3-2: Arduino Integrated Development Environment (IDE) (Arduino 2016). ...... 10 

Figure 5-1: PWM Signal. ............................................................................................ 15 

Figure 6-1: Execution Time for AnalogRead() Function .............................................. 23 

Figure 7-1: An Overview of an IGBT Working Principle. ............................................ 26 

Figure 7-2: Connection Overview for the 60Hz Machine with the Excitation Board. ... 27 

Figure 7-3: Excitation Board for the 60Hz Machine Designed By Helge and Built By 

Me ............................................................................................................................... 30 

Figure 8-1: One of the Single Phases of the Measurement Electronic for Downscaling 

the Nominal Phase Voltage of the three Phase 50/60Hz Generator .............................. 31 

Figure 8-2: Measurement Approach for the Phase Voltage of the 50/60Hz Generator . 32 

Figure 8-3: Measurement Electronic Board Mounted in the Power Cabinet with 

Arduino Board Connected At the Back. ....................................................................... 33 

Figure 8-4: Measurement Electronic Showing Non-Linearity after 200VDC ............... 37 

Figure 8-5: The three Phase Voltage for the Generator. .............................................. 38 

Figure 8-6: Scaling to Find the Measure for the Voltage Setpoint for the 50/60Hz 

Synchronous  Generator. ............................................................................................. 39 

Figure 8-7: Ethernet Cable (CAT 5) Design For the Communication Between RS232 

and the Arduino Ethernet 6 Pin Serial Programming Header. ..................................... 44 

Figure 8-8: RS232 to Serial Communication Hardware Connected with its Cable and 

Arduino Ethernet. ........................................................................................................ 44 

Figure 9-1: Comparison of the Measurements Obtained from Different Approaches. .. 49 

Figure 10-1: Program Overview. ................................................................................ 50 



0  LIST OF FIGURES x 

 

Figure 10-2: Program Structure for the Main. ............................................................. 52 

Figure 10-3: Global Byte Array Index Definition and and their Respective Content 

Meaning ...................................................................................................................... 53 

Figure 10-4: Program Sequence for the ADC_ISR Function........................................ 54 

Figure 10-5:  program Sequence for the Computing Actual Value of RST function (i.e.: 

ComputeActualValue()). .............................................................................................. 57 

Figure 10-6: Prgram Flow for the Function that Writes Control Signal to PWM Output 

Pin. ............................................................................................................................. 61 

Figure 10-7: The Structure of the P Controller Function. ............................................ 62 

Figure 10-8: The Program Flow for the P Controller Function. .................................. 64 

Figure 10-9: Hardware Connections for Testing the P Controller. .............................. 65 

Figure 10-10: Testing the P Controller Before Implementing on the 60Hz Machine. ... 65 

Figure 10-11: The Structure of the PI Controller Function. ......................................... 66 

Figure 10-12: Program Flow for the PI Controller Function Implemented In this 

Project. ....................................................................................................................... 68 

Figure 10-13: Hardware Connections for Testing the PI Controller. ........................... 69 

Figure 10-14: Testing the PI Controller Before Implementing on the 60Hz Machine. .. 70 

Figure 10-15: The Structure of the PID Control Implemented in this Project............... 70 

Figure 10-16: Program Flow for the PID Controller Function Implemented In this 

Project. ....................................................................................................................... 73 

Figure 10-17: Hardware Connections for Testing the PID Controller. ........................ 74 

Figure 10-18: Testing the PID Controller Before Implementing on the 60Hz Machine 75 

Figure 10-19: Program Flow for the 'DoControl()' Function....................................... 77 

Figure 10-20: Data Logging Program Flow Sequence. ............................................... 82 

Figure 10-21: Program Flow Sequence for the CloseLogFile Function ....................... 82 

Figure 10-22: The Webserver Welcome Page and its Service Menu. ............................ 83 

Figure 10-23: Logic Design for the Webserver (HMI). ................................................ 85 

Figure 10-24: Design for the Symbolic Name Representation of the Global Byte (gBIdx) 

Implemented in the Webserver ..................................................................................... 86 



0  LIST OF FIGURES xi 

 

Figure 10-25: Design for the Symbolic Name Representation of the Global Interger 

(gIIdx) Implemented in the Webserver. ........................................................................ 87 

Figure 10-26: Design for the Symbolic Name Representation of the Global Long 

(gLIdx) Implemented in the Webserver. ....................................................................... 87 

Figure 10-27: The Program Flow Sequence for the Webserver Implemented in this 

Project. ....................................................................................................................... 88 

Figure 10-28: Request String from the Client (Web Browser) to the Webserver 

(Arduino)..................................................................................................................... 89 

Figure 10-29: Welcome Page for the 60Hz Machine.................................................... 92 

Figure 10-30: Page for the Open Loop and Close Loop Setpoint for the 60Hz Machine.

 .................................................................................................................................... 92 

Figure 10-31: Data Logging Page for the 60Hz Machine. ........................................... 93 

Figure 10-32: Service Page for the Control of  60Hz Machine..................................... 93 

Figure 10-33: Service Status Page for the 60Hz Machine. ........................................... 94 

Figure 10-34: PID Control (P, PI & PID) Page for the Control of the 60Hz Machine. 94 

Figure 10-35: Hardware Offset Calibration Page for the 60Hz Machine Measureement 

Electronic. ................................................................................................................... 95 

Figure 11-1: Open Loop Control for Duty Cycle of 60................................................. 98 

Figure 11-2: Oscillation Observed when the Division Factor 'a' was Set to 23 at 220V 

Setpoint. ...................................................................................................................... 99 

Figure 11-3: Positive Setpoint Jump (209V - 231V) Based on Active Power (Resistive 

Load) at 4A for P Controller. .................................................................................... 102 

Figure 11-4: Positive Setpoint Jump (209V - 231V) Based on Active Power (Resistive 

Load) at 4A for PI Controller. ................................................................................... 102 

Figure 11-5: Positive Setpoint Jump (209V - 231V) Based on Active Power (Resistive 

Load) at 4A for PID Controller. ................................................................................ 103 

Figure 11-6: The P Controller Behaviour When the Active Power Jumps (Resistive 

Load) of 4A was Switched on at t = 1.406s (                     ). ........ 104 

Figure 11-7: The PI Controller Behaviour When the Active Power Jumps (Resistive 

Load) of 4A was Switched on at t = 1.541s (                        ). . 105 

Figure 11-8: The PID Controller Behaviour When the Active Power Jumps (Resistive 

Load) of 4A was Switched on at t = 1.34s (                          ) 106 



0  LIST OF FIGURES xii 

 

Figure 11-9: The P Controller Behaviour When a Positve Reactive Power Jumps 

(Inductive Load) of 4A was Switched on at t = 1.8s (                     ).

 .................................................................................................................................. 107 

Figure 11-10: The PI Control Behaviour When a Positve Reactive Power Jumps 

(Inductive Load) of 4A was Switched on at t = 5.127s (                   

    ). ................................................................................................................... 108 

Figure 11-11: The PID Control Behaviour When a Positve Reactive Power Jumps 

(Inductive Load) of 4A was Switched on at t = 1.597s (                   

      ). ............................................................................................................... 109 

Figure 11-12: The Open Loop Control Behaviour When a Positve Reactive Power 

Jumps (Inductive Load) of 4A was Switched on at t = 1.761s. .................................... 110 

Figure 11-13: The P Controller Behaviour When a Negative Reactive Power Jumps 

(Capacitive Load) of 4A was Switched on at t = 1.87s (                    

 ). ............................................................................................................................. 111 

Figure 11-14: The PI Controller Behaviour When a Negative Reactive Power Jumps 

(Capacitive Load) of 4A was Switched on at t = 5.485s (               

        ). ........................................................................................................... 112 

Figure 11-15: The PID Controller Behaviour When a Negative Reactive Power Jumps 

(Capacitive Load) of 4A was Switched on at t = 1.178s (               

        ). ........................................................................................................... 113 

Figure 11-16: The Open Loop Control Behaviour When a Negative Reactive Power 

Jumps (Capacitive Load) of 4A was Switched on at t = 1.359s. ................................. 114 

Figure 11-17: Connection of the Wind Turbine to  the 60Hz Grid with Variable Load.

 .................................................................................................................................. 118 

Figure 11-18: Phase Voltage (Phase-Neutral) Measured at Point A of the Machine 

when the Wind Turbine is  Conneted  to the 60Hz Grid .............................................. 119 

Figure 11-19: Voltage Space Phasor and its Filtered Value Measured at Point A of the 

Machine when the Wind Turbine is  Conneted  to the 60Hz Grid. .............................. 119 

Figure 11-20: Phase Current for RST Measured at Point A of the Machine when the 

Wind Turbine is  Conneted  to the 60Hz Grid. ........................................................... 120 

Figure 11-21: Current Space Phasor for RST and it Filtered Value Measured at Point A 

of the Machine when the Wind Turbine is  Conneted  to the 60Hz Grid. ..................... 120 

Figure 11-22: Power Flow and its Filtered Value Measured at Point A of the Machine 

when the Wind Turbine is  Conneted  to the 60Hz Grid. ............................................. 121 



0  LIST OF TABLES xiii 

 

LIST OF TABLES 

Table 4-1: Simulation Result with Different Rectifier Circuits Using LTspike Software14 

Table 5-1: Default PWM Pins for Different Timers, the PWM Base Frequency for the 

Pins and the Prescaler Values (Wikispaces 2016), (Atmel 2015).................................. 16 

Table 6-1: Control Registers for Timer0 (Atmel 2015). ................................................ 18 

Table 6-2: TCCR0A - Timer/Counter0 Control Register A (Atmel 2015). ..................... 18 

Table 6-3: TCCR0B - Timer/Counter0 Control Register B (Atmel 2015). ..................... 19 

Table 6-4: OCR0A -  Output Compare Register A (Atmel 2015). ................................. 19 

Table 6-5: OCR0B -  Output Compare Register B (Atmel 2015). ................................. 19 

Table 6-6: TCNT0 - Timer/Counter Register (Atmel 2015). ......................................... 19 

Table 6-7: Timer/Counter Interrupt Mask Register (Atmel 2015). ................................ 19 

Table 6-8: Timer0 Interrupt Modes (Atmel 2015) ........................................................ 20 

Table 6-9: Clock Select Bit Description and their Corresponding Prescaler Values 

(Atmel 2015)................................................................................................................ 21 

Table 6-10: Timer0 Control Register Settings for Timer Interrupt Implemented in the 

Project (Atmel 2015). .................................................................................................. 22 

Table 6-11: TCCR0A Settings for the Timer0 used in the Project (Atmel 2015)............ 22 

Table 6-12: TCCR0B Settings for the Timer0 used in the Project (Atmel 2009)............ 23 

Table 6-13: ADCSRA Control Register (Atmel 2015)................................................... 24 

Table 6-14: ADMUX Register (Atmel 2015). ............................................................... 24 

Table 7-1: Simulation Results for Slow / Rapid Discharging of Current for the 60Hz 

Excitation Board. The Circuit Diagram for the Simulation was Designed By Helge For 

the Project. .................................................................................................................. 29 

Table 8-1: Definintion of Various Variables Used for the Voltage Divider of the 

Measurement Electronic .............................................................................................. 31 

Table 8-2: Signal Conditioning of the Measurement Electronic. .................................. 34 

Table 8-3: AC output voltage of the Voltage Divider and the Corresponding Arduino  

Analog  Value .............................................................................................................. 35 

Table 8-4: Measurement Data From the Measurement Electronic. .............................. 36 

Table 8-5: Measurement Data Use for Scaling. ........................................................... 38 



0  LIST OF TABLES xiv 

 

Table 8-6: Effects of Removing the DC-Offset by Software. ......................................... 42 

Table 10-1: Different Contents of the gArByte[idxCmd] with their Corresponding 

definitions and Description .......................................................................................... 80 

Table 10-2: Different Contents of the gArByte[idxlogSemaphore] with their 

Corresponding definitions and Description ................................................................. 80 

Table 10-3: Request Sent by the User from the Web to the Webserver.......................... 89 

Table 11-1: Systematic Steps Determine    for the P Controller............................... 100 

Table 11-2: Brief Summary of the Findings. .............................................................. 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1  INTRODUCTION 1 

 

1 INTRODUCTION 

This master thesis was created in collaboration between the University of Southeast 

Norway, the Jade University of Applied Sciences and its industrial cooperation partner 

Wobben Research and Development, which is a company within Germany’s greatest 

group of Wind Energy-Converter-Manufacturer. This thesis is based on small scale 

energy systems operated for research purpose. The system is to be upgraded to improve 

possibilities for experiments especially with 60Hz grids. To get the 60Hz frequency 

stable grid, two mechanically coupled synchronous machines are used. The task is to 

stabilize the voltage of the 60Hz grid connection by identifying measuarands involved, 

investigate the different characteristic values for variables of three phase power systems 

(e.g. rms values, space phasors, and fundamental amplitude estimation), use sensor data 

fusion (e.g. voltage or current sensors) to get higher level information like active and 

reactive power as an input for the control strategies, implement different control 

strategies (e.g. P, PI, PID and Fuzzy logic) to stabilize the voltage using sensor data, use 

microcontroller system (Arduino) and MATLAB for the investigations and systematic 

comparison of the findings for different data acquisition and control strategies. 

1.1 PERCULIARITY OF THIS PROJECT 

The master project is not isolated but is to be seen as part of a complex overall project. 

This leads to special constraints and boundary conditions: 

 The timely completion had to be guaranteed because of firmly agreed use of the 

results. 

 The application projects make very high demands in terms of functionality, feel 

and reliability. 

 In addition to providing functionality it is an important goal of the project to 

prepare aspiring engineers and junior engineers to meet the specific needs in a 

research company. The project staff should be qualified diversified as far as 

possible within the project and gain experience in team work on major projects. 

For these reasons, the procedure in project processing is as follows: 



1  INTRODUCTION 2 

 

 Under the direction and responsibility of an experienced engineer, primary 

options were discussed to divide the overall project into subtasks. 

 The project leader created a work frame and a professional proposed solution for 

each of the required tasks, at least as a fallback position.  

 Each entrant was challenged to deal, at least fundamentally, with each part of 

Aspect  

 Each entrant was challenged to pursue his own solutions for one or more 

subtasks.  

 The resulting parallel partial solutions (hard- and software as well) were 

compared in the group, findings, pros and cons of different approaches were 

discussed. The most reliable parts were combined into an overall solution. 

 For building hardware, the team was supported by technicians and skilled 

workers from the workshop.  

1.2 CHALLENGE DESCRIPTION 

 Enable testing of control strategies for wind energy converter in a 60Hz Grids 

 Implement and Test different kinds of voltage control strategies. 

 Open loop control with variable setpoint 

 Closed loop control  

 P, PI and PID with variable setpoint and online adjustable parameters 

 Fuzzy-Control with  replaceable characteristic 

 Create all required documents 

 Meet adadditional task specifications 

o Haptic requirements 

o Safety requirements 

 

 



1  INTRODUCTION 3 

 

1.3 BRIEF LITERATURE REVIEW 

Voltage control is the ability to maintain a constant, uniform voltage under normal 

operating conditions when subjected to any disturbance (Kundur 1994). It is an 

important aspect of power system for securing a reliable system operation (Mousavi 

2011). Voltage control is an integral part of the power system stability. To maintain the 

output voltage of the 60Hz three phase synchronous machine, the excitation current of 

the machine is controlled. There are various causes of voltage instability for the three 

phase sysnchronous machine connected to the grid. The change in load connected to the 

grid (Machine output), the disturbances between the machine and the load, distance 

between the source (machine) and the load, low source voltage and an adverse load 

characteristics (Manohar 2012). The change in voltage is directly related to change in 

load (Manohar 2012). As the load increases the output voltage droped or decreases. 

Voltage control can also be considered interms of system faults (on grid) and loss of 

load (Manohar 2012). The ability of the control system to maintain a constant voltage 

under these conditions is considered as voltage control. The voltage control service is 

usually provided from the machines and constomers within the controlled areas 

(Mousavi 2011). According to (Mousavi 2011) synchronous machines are considered as 

one of the backbones for voltage control, easy to control and less expensive. In order to 

have the desired voltage control for the 60Hz machine there is need to compare 

different voltage strategies available that can be used on the machine to enable proper 

choice based on the findings. 

 

 

 

 

 

 

 

 



2  ENVIRONMENT 4 

 

2 ENVIRONMENT 

The environment consists of: 

 Mechanically coupled 50/60Hz three phase synchronous machines 

 Small scale electric power grid connected to the output of the 60Hz machine 

 The wind energy converters  

 And the research lab 

The overview of the process is shown in Figure 2-1. 

 

Figure 2-1: Overview of the Process. 

 

2.1 SMALL SCALE ELECTRIC POWER GRID 

Figure 2-2 shows the small scale electric power grid for the project. The output of the 

three phase 60Hz sysnchronous generator is feed to the grid. 

 

50Hz Machine 60Hz Machine Small Scale Grid

Measurement 
Electronic

Arduino
Exc. Power 
Electronic

Comm. Point 
of Coupling

Machine



2  ENVIRONMENT 5 

 

 

Figure 2-2: Small Scale Power Grid Connected to the Output of the 60Hz Machine. 

2.2 FREQUENCY TRANSFORMER UNIT 

The whole machine system is referred to as the frequency transformer unit because it 

transforms 50Hz frequency to 60Hz and vise versa. The power can be made to flow in 

either direction. The set consists of two mechanically coupled synchronous machines 

and a power cabinet (Grid) in the basement as shown in Figure 2-3. 



2  ENVIRONMENT 6 

 

 

Figure 2-3: Mechanically Coupled 50/60Hz Machine (Frequency Transformer Units) 

Connected to the Power Grid. 

As shown in the Figure 2-3, is a machine set of: 

 Mechanically coupled synchronous machines. One machine is connected to 

the 50Hz, the other to the 60Hz grid.  

 The frequency ratio is guaranteed by transmission (gear) ratio. 

o After a start sequence the 50Hz machine is directly connected to the 

lab-supply and has its own control for ramping up, which is out of 

scope in this project. 

 The 60Hz machine is used as point of common coupling for the 60Hz 

experimental grid. The machine is generously sized to get in combination with a 

control of the excitation current a slack. The word “slack” is used in electrical 

power engineering for a voltage node, which voltage level may be viewed at as 

independent of load.  

 The 60Hz machine has an additional winding as the source for the excitation 

current which is to be controlled. 

 

 



2  ENVIRONMENT 7 

 

Power Cabinet serves  

 To receive all electronic and electromechanical components. It is connected via cable to 

the machine set and to other equipments in the laboratory through terminals. 

 In addition it contains two outlets for data communication which leads to the IT-

patch field of the lab. 

 

Figure 2-4: IT Patch Pannel where the Data Communication Ports from the Machine 

Power Cabinet (Power Grid) is Connected.  

 

 

 

 

 

 

 

 

 



3  PRELIMINARY AND BASICS 8 

 

3 PRELIMINARY AND BASICS 

This section describes the basic platform (Arduino), Arduino software architecture, the 

com port, data acquisition, application communication and mass storage of data used for 

the project implmentation.  

3.1 PLATFORM USED (ARDUINO) 

To the learning curve of the team members a development platform for the electronic 

control system known as Arduino was uniformly established. Arduino based on the 

definition from Arduino.cc,  

“Arduino is an open-source prototyping platform based on easy-to-use hardware and 

software. Arduino boards are able to read inputs - light on a sensor, a finger on a 

button, or a Twitter message - and turn it into an output - activating a motor, turning on 

an LED, publishing something online. You can tell your board what to do by sending a 

set of instructions to the microcontroller on the board. To do so you use the Arduino 

programming language (based on Wiring), and the Arduino Software (IDE), based on 

Processing….” [https://www.arduino.cc/en/Guide/Introduction]. 

Throughout this thesis, it was hopeful clear that even very demanding projects can be 

realized with Arduino. Many things can be realized through simple calls of comfortable 

software libraries. But this is not enough when it comes to meet the higher demands and 

to be able to really exploit the potential of this platform.  

Figure 3-1 shows the basic parts of Arduino board. 

 

 

 

 

 

 

 

 



3  PRELIMINARY AND BASICS 9 

 

 

 

 

 

 

Figure 3-1: Arduino Ethernet Board (CONRAD 2016). 

A lot of information for the hardware, IDE (Integrated Development Environment) and 

software libraries can be found starting at www.arduino.cc and in addition in many 

relevant forums. 

The following description of ARDUINO features is limited to project-relevant aspects. 

3.2 GENERAL ARDUINO SOFTWARE ARCHITECTURE 

The basic structure of Arduino program is very simple. After switching on or reset, an 

initialization is first executed. Once this is completed, the loop function is called. This is 

unlimited repeated in accordance to the general concept.  Custom Functions can be 

programmed and called up both in the setup-and the endless main loop function. 

In addition, there is an option to assign functions to be called directly on hardware level 

when specific events occur. After finishing such a function, it is automatically returned 

to the position in main program where this was interrupted. This happens unnoticed 

6pin 

programming 

Serial Header 

PWM/Digital 

 I/O Pins: (2-9) 

SD Card 

Slot 

Analog 

pins 

Ethernet Port 

ATmega328 

Microcontroller 

Power Supply port 

3.3 & 5V DC 

Output pins 

GND 

16MHz Crystal 

Oscillator 

http://www.arduino.cc/


3  PRELIMINARY AND BASICS 10 

 

from the perspective of the main program. In this project are timer interrupt and an 

interrupt after completion of AD conversion which is of central importance. 

This interrupt technique is a powerful tool from which this project extensive use is 

made. This allows the execution of commands, while passing time, which is needed by 

other parts of the controller or peripheral subsystems, for example in the conversion of 

analog values. The general Arduino software architecture is shown in Figure 3-2. 

 

Figure 3-2: Arduino Integrated Development Environment (IDE) (Arduino 2016). 

3.3 COM PORT 

All Arduinos have at least one serial port. In this project it is used only for the 

transmission of the compiled program from the IDE controller and for simple issues in 

the first steps. For practical applications, the more powerful, but more complex to 

program Ethernet interface is used later. 

Main 

loop 

Display 

board and 

serial port 

Tool for 

opening 

serial 

monitor 

Menus 

bar 
Toolbar 

Initialization 

Setup 



3  PRELIMINARY AND BASICS 11 

 

3.4 DATA ACQUISITION INPUT 

 In addition to the digital inputs, Arduino also has analog inputs. These are used 

in this project for getting an actual value.  

 The actual AD conversion is done with a single controller internal converter.  

 In order to realize a plurality of analog inputs this is preceded by a multiplexer. 

The conversion time is about 104us and can be reduced due to the registers of 

the controller in bit manipulations by direct limits; however, this has to be 

reckoned with by negative influence of resolution and / or accuracy. 

 Another challenge arises when using the multiplexer. After changing the 

channel, a certain time is required to stabilize the voltage at the input of the 

converter at the level of the selected input channel. 

 Select the channel, performing the conversion and reading of the sampled value 

is reduced to a single command when using the library function (analogRead()), 

but this simplification is to be paid with a high price: Massive loss of 

performance!  

3.4.1 USE OF LIBRARY FUNCTION 

 Syntax of the library function: analogRead(pin). 

Action sequence of the library function: 

 Set MUX to chosen analog input pin 

 Start conversation 

 Wait for the conversation to be done by the ADC-hardware. So the processor 

waits for about 104µs.  

 Read conversation output registers to fetch data 

 Combine bytes to a 16 bit integer result 

 Put result to the stack and returned value to the function call. 

 For the first read analog value after changing the input channel there is a big 

impact from the voltage level at the previous used input pin, because 

conversation is started immediately after the multiplexer has been switched. For 



3  PRELIMINARY AND BASICS 12 

 

this reason, it is recommended to discard the first converted value after a 

channel change and to repeat the call (Atmel 2015). 

 Assumes only the lowest system clock of 16MHz, this corresponds  

                

Assuming only the lowest system clock of 16MHz, this corresponds to 1664 

clock cycles. The repeated call, which is needed for the sequential query of all 

analog pins cost another 104µs (or another 1664 clock cycles). Since a “RISK” 

processor (as used for Arduino)  usually require only a single clock cycle for the 

execution of a command  it could execute 3200 commands, rather than waiting 

for that time elapse.  

 A further disadvantage is that the sample moment between the channels is not 

only single but double conversion time due to the facts that the first sampled 

channel has to be discarded to get the input voltage of the AD stable.  

3.5 APPLICATION COMMUNICATION AND MASS STORAGE OF 

DATA 

For Supervisory Control and Data Acquisition (data logging), some Arduino can be 

supplemented by so-called shields to an Ethernet interface. Also there are ARDUINO 

versions with on-board integrated Ethernet hardware. For access from OSI-Application 

layer a library is available. This can be extended by use of a library with very basic 

functions for web-applications. A web server based on this basic functionality is part 

this project and used for all application communication and opened up some additional 

debug and service options. 

Due to the 2k Byte extremely limited random access memory, it is neither suitable for a 

comfortable web interface nor for data logging. In comparison, the capacity of a modern 

SD card is nearly unlimited; however, the access speeds are orders of magnitude less.  

Therefore all mass data as html-encoded web pages are outsourced to the SD card. To 

keep the option of showing updated content of variables in the GUI a parser was 

implemented to replace specially code fragments with values of content from the RAM. 



4  APPROACHES TO GET AN ACTUAL VALUE 13 

 

4 APPROACHES TO GET AN ACTUAL VALUE 

The main objective of the project is to control the excitation current of the synchronous 

machine in order to vary its terminal voltage (Output voltage). More specifically the 

amplitude of all three phases or one of these corresponding alternatives to determined 

the replacement value for the measure of the three phases. Therefore, it has to be seen 

that  

 the ADC of  the Arduino can handle unipolar signals  

in the range of 0V  to a maximum of 5V,  

 while the output of the generator is three phase AC system with amplitudes  of  

o 2230ˆ  VUPP
between the outer conductors or 

o 
3

2
230ˆ  VU PN from each outer conductor to neutral 

A variety of approaches has been envisaged. A small selection only briefly sketched 

with pros and cons, or just enumerated in the form of bullet points.  Some approaches 

have been addressed and pursued separately from individual team members.  

 One obvious way is to buy ready made RMS terminals. 

(Proven, readily available components = Low development risk) 

o Directly detectable output  

Protection for personnel and electronics by protective separation 

o But high conversion delay (about 100 to 200ms) 

Comparatively large design 

high financial cost, starting at about 250 € per channel 

o Suitability for fast control is limited with this option. 

 With one, or a set of small transformers is also an option for voltage scaling and 

reliable separation, however, this can only be used in closets selection of transfer  

ratios, and particularly for small transformers a no linear transfer function may 

results which is detrimental for direct evaluation for the measure of the three 

phases. 

 A capacitive divider would have advantages in terms of power dissipation, but 

was rejected due to the large component tolerances. 



5  PULSE WIDTH MODULATION (PWM) 14 

 

 A resistive divider directly connected to the Arduino inputs without galvanic 

isolation was also proposed, developed, tested and proved satisfactory. 

Although, potential separation must be issued with free option to measure either 

the interlinked voltage or the phase voltage. 

For further treatment of signals different rectifier circuits were simulated using spike 

software Table 4-1. 

Table 4-1: Simulation Result with Different Rectifier Circuits Using LTspike Software 

  

B2 rectifier schematic: Clearly visible are two negative effects. A slowly change of 

mean and the remaining ripple. For the time constant, a compromise must be 

chosen, since the influence on the two effects is diametrical. 

  

B6 rectifier schematic: In this circuit the ripple is significantly lower at similar time 

constant. Reducing the time constant to the principle of conditional inertia and the 

ripple occurs again clearly. 

 

 

D1

D

D2

D

R1

10k

C1

1µV1

SINE(0 180 60 0.1)

D3
D

D4

D

R2

270k

D
C

_
o

u
t

.tran 0.3
0ms 3 0ms 60m s 90m s 12 0ms 150m s 18 0ms 210m s 240m s 270m s 300m s

-0.4V

0.0V

0.4V

0.8V

1.2V

1.6V

2.0V

2.4V

2.8V

3.2V

3.6V

4.0V

4.4V

4.8V
V(dc_ out)

D1

D

D2

D

R1

8k

C1

1µ

SINE(0 180 60 0.1 0 0 6)

V1

D4

D

D5

D
R2

270k

D3

D

D6

D

SINE(0 180 60 0.1 0 240 6)

V2

R3

270k

SINE(0 180 60 0.1 0 120 6)

V3

R4

270k

D
C

_
o

u
t

.tran 0.3

0 m s 3 0 m s 6 0 m s 9 0 m s 1 2 0 m s 1 5 0 m s 1 8 0 m s 2 1 0 m s 2 4 0 m s 2 7 0 m s 3 0 0 m s

0 . 0 V

0 . 5 V

1 . 0 V

1 . 5 V

2 . 0 V

2 . 5 V

3 . 0 V

3 . 5 V

4 . 0 V

4 . 5 V

5 . 0 V
V ( D C _ o u t , N 0 0 7 )



5  PULSE WIDTH MODULATION (PWM) 15 

 

5 PULSE WIDTH MODULATION (PWM) 

PWM is a method of obtaining analog results by digital means (Arduino 2016).  

 

Figure 5-1: PWM Signal. 

As shown in Figure 5-1 the duration the signal is ON is known as pulse width. To 

obtain different analog values the pulse width is changed or modulated (Arduino 2016). 

Varying the pulse width, the average voltage is varied and this process is used to control 

power electronics.  

5.1 DUTY CYCLE 

As shown in Figure 5-1, the duty cycle is the percentage of ON time for one period 

(Wikipedia 2016). It is obtained from how long it takes for the pulse to be on and this is 

used to calculate the voltage. From the Figure 5-1,  

                                     

            
     
 

                                    

             
  

        
                         

To get the required voltage: 

         
          

   
                                 

 

ON

OFF

t0 t1 t2 t3

Signal



5  PULSE WIDTH MODULATION (PWM) 16 

 

In this project, Arduino is used and the peak voltage from the PWM output pins is 5V. 

Therefore, as the duty cycle is varied (percentage ON) the output voltage for switching 

the power electronic (IGBT) is also varid resulting in varying the current. 

5.2 PWM FREQUENCY 

PWM frequency determine the switching frequency for the power electronic 

components (IGBT) used for the excitation board. To control the switching frequency, 

the PWM frequency needs to be controlled using prescaler. This gives full control of the 

switching frequency for the power electronic components (e.g: IGBT) used. Increasing 

the switching frequency reduces the ripples and decrease the size of the filters used, 

however, this also has a drawback due to switching losses. Arduino PWM pin 3 is used 

in this project which is assigned by default to timer2, therefore, to vary the PWM 

frequency on the pin Timer2 control register B is used (TCCR2B). As shown in Table 

5-1 the PWM base frequency for pin 3 and pin 11 is 31250Hz, this is divided by 

different prescaler values shown in the table to obtain the disired PWM frequency. 

Table 5-1: Default PWM Pins for Different Timers, the PWM Base Frequency for the 

Pins and the Prescaler Values (Wikispaces 2016), (Atmel 2015). 

 Arduino 

PWM 

Pins 

Arduino 

PWM 

Pins 

PWM 

Base 

Frequency 

(Hz) 

Prescalers 

values 

 

 

 

 

          

     
                 

         
 

Timer0 5 6 62500 1 

Timer1 9 10 31250 8 

Timer2 3 11 31250 64 

    256 

    1024 



6  TIMER INTERRUPT 17 

 

6 TIMER INTERRUPT 

An interrupt is a signal transmitted to the process by the hardware or software to 

indicates an event that requires immediate attention. It causes an interruption of the 

execution of the current code perform by the process to attends to the high priority 

condition (Wikipedia 2016). The timer interrrupts enables a task to be performed at 

every specific timed intervals irrespctive of what is going on in the code. The idea 

behind using a timer interrupt in this project is to enable sampling of the three phase 

voltage signals (R, S, T) from the Arduino analog inputs at a defined specific intervals. 

Arduino has onboard crystal oscillator that oscillates at 16MHz on which all timing is 

based on as shown in Figure 3-1. 

In this project, Arduino Uno, Arduino Ethernet and Leonardo are used and these are  

based on ATmega 168A/328P (Arduino 2016) with three interrupt timers. 

 Timer0  

 Timer1 

 Timer2 (Atmel 2015) 

Each of these timers can exist in three different modes in addition to timer1 which has 

additional interrupt capture event (Atmel 2015). In this project, only timer0 is used and 

the discussion will be based on that. To enable full control of the timing for the 

sampling of the data and other control strategies timer0 interrupt was developed with 

different control register settings without using any library that acts like a black box.   

6.1 TIMER0  

Timer0 is an 8-bit Timer/Counter Control Register (TCCR0) with Output Compare 

Registers (OCR0A and OCR0B) that enables accurate program execution timing (Atmel 

2015). It has three interrupt vectors: 

 Timer/Counter0 Compare Match A 

 Timer/Counter0 Compare Match B 

 Timer/Counter0 Overflow 



6  TIMER INTERRUPT 18 

 

6.2 TIMER0 CONTROL REGISTERS 

The timer0 has two control registers, two output compare registers, Timer Counter and 

interrupt mask register. Each of these are 8-bit registers which determine the different 

modes of operation for the interrupt, how often the interrupt is called and enabled. The 

control registers are briefly described in Table 6-1. 

Table 6-1: Control Registers for Timer0 (Atmel 2015). 

Registers Brief Description 

TCCR0A  

(Timer/Counter0 Control Register A) 

Determine different modes for the interrupt. 

 

TCCR0B  

(Timer/Counter0 Control Register B) 

Determine different modes for the interrupt 

 

OCR0A 

 (Output Compare Register0 A)  

 

Use for compare match when Timer/Counter0 

Compare Match A interrupt vector is used 

OCR0B  

(Output Compare Register0 B) 

Use for compare match when Timer/Counter0 

Compare Match B interrupt vector is used 

TCNT0  

(Timer CouNT0) 

Timer counter for Timer0 

TISM0 It enables the interrupt for Timer0 

Each contents of the registers in Table 6-1 are respectively shown in Table 6-2 to Table 

6-7. 

Table 6-2: TCCR0A - Timer/Counter0 Control Register A (Atmel 2015). 

7 6 5 4 3 2 1 0 

COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00 



6  TIMER INTERRUPT 19 

 

COM0A – Compare Output Mode for Timer0 channel A: Its settings determing whether 

the Output Compare pin (OC0A) channel A is set, clear or toggled (Atmel 2015). 

COM0B – Compare Output Mode for Timer0 channel B: Its settings determing whether 

the Output Compare pin (OC0B) channel B is set, clear or toggled (Atmel 2015). 

WGM0 – Wave Generation Mode for Timer0: Its setting determine the interrupt mode 

(Atmel 2015). 

Table 6-3: TCCR0B - Timer/Counter0 Control Register B (Atmel 2015). 

7 6 5 4 3 2 1 0 

FOC0A FOC0B - - WGM02 CS02 CS01 CS00 

FOC0A/B – Force Output Compare for Timer0 channel A: Its settings is determined by 

COM0A/B (Atmel 2015). 

CS – Clock Select: It determine the clock source to be used by the Timer/Counter by 

division by prescaler (Atmel 2015).   

Table 6-4: OCR0A -  Output Compare Register A (Atmel 2015). 

7 6 5 4 3 2 1 0 

OCR0A(7:0) 

Table 6-5: OCR0B -  Output Compare Register B (Atmel 2015). 

7 6 5 4 3 2 1 0 

OCR0B(7:0) 

Table 6-6: TCNT0 - Timer/Counter Register (Atmel 2015). 

7 6 5 4 3 2 1 0 

Table 6-7: Timer/Counter Interrupt Mask Register (Atmel 2015). 

7 6 5 4 3 2 1 0 

- - - - - OCIE0B OCIE0A TOIE0 



6  TIMER INTERRUPT 20 

 

 OCIE0A – Timer/Counter0 Output Compare Match A Interrupt Enable: Setting 

the bit to 1 enables the interrupt vector for Timer/Counter0 Compare Match A 

(Atmel 2015). 

 OCIE0B – Timer/Counter0 Output Compare Match B Interrupt Enable: Setting 

the bit to 1 enables the interrupt vector for Timer/Counter0 Compare Match B 

(Atmel 2015). 

 TOIE0 – Timer/Counter0 Overflow Interrupt Enable: Setting the bit to 1 enables 

the interrupt vector for Timer/Counter0 Overflow (Atmel 2015). 

The timer0 can operates in different interrupt modes determined by the Wave 

Generation Mode (WGM) settings in the TCCR0A or TCCR0B Register as shown in 

Table 6-8 (Atmel 2015).  

Table 6-8: Timer0 Interrupt Modes (Atmel 2015) 

Timer0 Interrupt Modes WGM0 Settings Brief dDscription 

Normal Mode 0 Counter counts up to max (0xFF: 

255) and resets to 0 

CTC 

(Clear Timer on Compare 

Match) 

2 The output of the counter 

(TCNT) is continously compared 

with the Output Compare 

Register (OCRA or OCRB). A 

match is used to generate an 

interrupt. 

Fast PWM 3 (when TOP is 

defined as 0xFF)  

7 (For OCR0A) 

The PWM that goes as fast as the 

clock will allow. Not 

synchronized with the timing 

clock. 

Phase Correct PWM 1 (when TOP is 

defined as 0xFF)  

5 (For OCR0A) 

PWM that is synchronized so that 

it is symmetric with respect to the 

timing clock 



6  TIMER INTERRUPT 21 

 

6.3 INTERRUPT FREQUENCY 

In this project, timer0 interrupt is used to start the ADC conversion for the three analog 

channels connected to the three phases of the three phase generator at a fixed interval. 

How often the interrupt is called (Int. frequency) is determined by equation 5. 

               
               

             
  

          

             
                    

       
               

                 
    

          

                  
               

where: 

                 - is the frequency of the crystal oscillator (16MHz) for Arduino 

board. 

  - is the prescaler: 1, 8, 64, 256 and 1024 (Atmel 2015). 

To control the sampling frequency, the timer0 interrupt frequency needs to be 

controlled. As shown in (5) the interrupt frequency depends on the value of the 

prescaler (P) and OCR0A. And the value of the prescaler (P) chosen is dependent on 

the clock select (CS0n) from the TCCR0B Register. The harware automatically 

determine which value of the prescaler based on the Clock Select (CS02:0) bit set to 1 

in the TCCR0B. Table 6-9 shows clock select bits and the corresponding division by 

prescaler that would be selected by the hardware.  

Table 6-9: Clock Select Bit Description and their Corresponding Prescaler Values 

(Atmel 2015). 

Bit CS02 CS01 CS00 Prescaler Value 

0 0 0 0 No clock source 

1 0 0 1 1  (No prescaling) 

2 0 1 0 8   

3 0 1 1 64  



6  TIMER INTERRUPT 22 

 

4 1 0 0 256 

5 1 0 1 1024 

6 1 1 0 External clock source on T0 pin on falling edge 

7 1 1 1 External clock source on T0 pin on rising edge 

  For 60Hz generator project, the timer0 interrupt operates on CTC mode which is 

briefly described below. 

6.4 CTC INTERRUPT MODE  

In CTC (Clear Timer on Compare Match) the Timer Counter (TCNT0) counts from 

zero up and compare with the values in the OCR0A, if the value in the OCR0A matches 

the Timer Counter value, an interrupt is triggered. The interrupt frequency used in this 

project is 1KHz. This is obtained from equation (1) by setting the OCR0A to 255 and 

prescaler (P) to 64 (i.e: setting CS00 = 1 and CS01 = 1 in TCCR0B Register).  The 

settings use for the CTC mode and frequency setting is shown in Table 6-10 to Table 

6-12. 

Table 6-10: Timer0 Control Register Settings for Timer Interrupt Implemented in the 

Project (Atmel 2015). 

CTC Mode OCR0A CS02 CS01 CS00 This results 

in prescaler 

of 

WGM01 = 1 255 0 1 1 64 

Table 6-11: TCCR0A Settings for the Timer0 used in the Project (Atmel 2015). 

COM0A1 COM0A0 COM0B1 COM0B0 - - WGM01 WGM00 

0 0 0 0 - - 1 0 

TCCR0A = 2. 



6  TIMER INTERRUPT 23 

 

Table 6-12: TCCR0B Settings for the Timer0 used in the Project (Atmel 2009). 

FOC0A FOC0B - - WGM02 CS02 CS01 CS00 

0 0 0 0 0 0 1 1 

TCCR0B = 3. 

TIMSK = 2. 

6.5 ADC (ANALOG TO DIGITAL CONVERSION) INTERRUPT VECTOR 

From the findings shown in Figure 6-1 it takes about 104 to 116us to read an analog 

values from Arduino analog pin using the anaolgRead() function. Based on this 

findings, to read the three analog channels connected to the three phases generator will 

required 312 to 348us and this would limit usability for fast control. The code for the 

findings is shown in Appendix 7. 

 

Figure 6-1: Execution Time for AnalogRead() Function 

Based on this findings, ADC interrupt was developed to overcome this challenge.  

The ideas behind ADC is that the Arduino hardware has the ability to start an ADC 

conversion with less time and then trigger an interrupt when the conversion is complete. 

This implies that other tasks can be executed simultaneously while the conversion is 

ongoing and when the conversion is complete the analog value is fetched from the ADC 

Register (Sweeney 2012) before the next conversion is started.  

To realize this, the various control registers for the ADC were set as shown in Table 

6-13 and Table 6-14. 



6  TIMER INTERRUPT 24 

 

Table 6-13: ADCSRA Control Register (Atmel 2015). 

7 6 5 4 3 2 1 0 

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 

1 1 (by Timer0 ISR) 0 0 1 1 1 1 

 

 ADEN – ADC Enable bit: Sets to 1 to enable ADC and 0 to disable the ADC. 

 ADSC - ADC Start Converstion bit: Set to 1 to start ADC conversation and reset 

to 0 when the conversation is ready. 

 ADATE – ADC Auto trigger Enable (Not used for the project): Auto start the 

conversation. 

 ADIF - ADC Interrupt Flag: Sets to 1 when the conversion is complete and 0 

otherwise. 

 ADPS2:0 – ADC Prescaler bit: Sets all the bits to 1 for 128 ADC prescaler 

value (default ADC prescaler is 128). Therefore, the ADCSRA register is set to 

ADCSRA = 207. 

Table 6-14: ADMUX Register (Atmel 2015). 

7 6 5 4 3 2 1 0 

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 

0 1 0 0 0 0 0 0 

 

 REFS1/REFS0 – Voltage Reference Selection bit for ADC. 

 REFS0: Set to 1 for AVCC (5V) reference voltage. 

 ADLAR – ADC Left Adjust Result: Set to 1 to left adjust and 0 to right adjust. 

Arduino has 10-bit resolution and will required 16-bit register to store the analog 

values. The ADLAR bit determine if 8-bit or 16-bit register is needed. 

Therefore, set ADLAR to 0 (16-bit register) (Atmel 2015).  



6  TIMER INTERRUPT 25 

 

 MUX4:0 – ADC Multiplexer channels: Set to 1 to change the analog channel. This is 

set manually in the ADC ISR vector.   Therefore the ADMUX Register is set to: 

ADMUX = 64 (With subsequent changing of the MUX channel in the ADC ISR). 

Once the conversation is completed, the ADC Interrrupt Flag (ADIF) is set to 1 to 

trigger the ADC interrupt and the converted values fetched from the ADC ISR (Atmel 

2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7  EXCITATION POWER ELECTRONIC 26 

 

7 EXCITATION POWER ELECTRONIC 

The excitation power electronic used to used vary the excitation current of the machine 

consists of: 

 IGBT (Insulated Gate Bipolar Transistor) 

 Gate driver 

 Diode  

 Resistor 

 Bipolar capacitor. 

A IGBT is an insulated gate transistor designed for fast switching (Wikipedia 2016). 

They are fast switches with high voltage and current capabilities commonly used when 

fast switching is required. When voltage is applied to the gate G, It allows current to 

flow when switch on (On state)  and stops the current flows when switch off 

(Futureelectronics 2016). It works by applying voltage to the gate and combines the 

characteristic of MOSFET (Metal Oxide Semiconductor Field Effect) with high current 

and low saturation capability of BJT (Bipolar Junction Transistor) (Wikipedia 2016). 

The switching process of IGBT is similar to that of MOSFET and the working principle 

is shown in Figure 7-1. It works like a variable resistor controlled by the gate voltage 

for switching high current. It is associated with Collector (Vcc), the Gate (G) and the  

Emitter (E).  

 

Figure 7-1: An Overview of an IGBT Working Principle. 

E 

i 



7  EXCITATION POWER ELECTRONIC 27 

 

As the voltage is applied between the Gate (G) and the Emitter, current is allowed to 

flow between the collector (Vcc) and the emitter (E). 

Depending on the voltage applied between the Gate and the Emitter, the resistance 

between the Vcc and the E varies. when the applied voltage at the gate decreases, the 

resistance between the Vcc and the E increases blocking the current from flowing 

between the Vcc and the E. As the applied voltage at the gate is increased, the resistance 

between the Vcc and E decreases allowing current to flow. 

For the 50/60Hz synchronous machine, the excitation current is varied to change the 

output voltage. The excitation winding consists of a coil as shown in  

Figure 7-2. The inductance L shown in the figure represent the excitation winding. The 

G, R, S, T represent the machine and its phase to phase output voltages at the clamp. 

The Zener diode D and resistor Rr are used to protect the IGBT from over voltage and 

current during switching off. 

 

Figure 7-2: Connection Overview for the 60Hz Machine with the Excitation Board. 

Gate 

Vo 

D 

E 

Rr 

PWM Signnal 



7  EXCITATION POWER ELECTRONIC 28 

 

As the input voltage (PWM Signal) to the gate is varied, the current through the coil (L) 

to the E is varied also. At the moment the voltage is applied to the gate, the impedance 

between the Vcc and E decreases in proportion to the gate voltage, the current through 

through the coil to E increases with increase in the gate voltage causing the voltage 

between the Vcc and and E to decrease. When the gate voltage is off, the IGBT opens, 

the high current in the coil leads to high voltage (Vo) at the input of the IGBT. To 

protect the IGBT from the high voltage, the Zener diode D opens in reverse direction 

and the current through it leads to a voltage drop across the resistor Rr which charges 

the gate capacitor at the gate input of the IGBT. This Zener diode ensures a constant 

voltage Vo at the input of the transistor and a linear drop in current when the gate 

voltage is off. As the current through the excitation coil L changes the output voltages 

(R, S, T) of the 50/60Hz machine G changes and this process is used for the control of 

the output voltage of the machine.  

7.1 SIMULATION OF PWM FOR INDUCTIVE LOAD 

The circuit diagram for the Excitation board in Appendix 2 was designed by Helge 

Lorenzen for the project. The simulation of the circuit is shown in Table 7-1.  

When switching inductive loads, circuitry arrangements for the protection of the 

transistor must be taken. Without any protection circuit the voltage over inductance 

increases rapidly over all limits, which destroys the transistor immediately. Therefore it 

is common recommended to add Freewheeling diode, often in series with a damping 

resistor for less slowly drecrease of the current through the coil. The voltage over the 

damping resistor leads to an increase of voltage stress, depending on its value and the 

current in the switch off moment (Helge 2016). The function of decrease stays 

exponential. However, the circuit uses can withstand voltage of the transistor rarely, and 

not during the whole discharging process. More effective is the discharging with a 

circuit as shown in Table 7-1. 

 

 

 



7  EXCITATION POWER ELECTRONIC 29 

 

Table 7-1: Simulation Results for Slow / Rapid Discharging of Current for the 60Hz 

Excitation Board. The Circuit Diagram for the Simulation was Designed By 

Helge For the Project. 

 

Freewheeling diode for inductive load, here without damping resistor.  

Advantage: Minimal voltage stress for the transistor 

Disadvantage: The slowly exponential decay of load current 

  

Collector voltage cutoff circuit,  

Advantages: Rapid excitation reduction. Adjustable voltage stress for the transistor 

(note the collector voltage doubled but safely limited) 

Disadvantages: At the same PWM frequency greater riple so that the PWM 

frequency should be increased as long the increase of losses is exceptable. 

Both options were considered as assembly variants for the project. Figure 7-3 shows the 

picture for the excitation board. The board was designed by Helge Lorenzen for the 

project. 

L1

0.2

Q1

NPN
Rser=1

V1

100V

PWL(0 0 1m 5 10m 5 10.01m 0)

V2
R1

1k

D1

D

.tran 0 0.050 0 1e-6

0 m s 5 m s 1 0 m s 1 5 m s 2 0 m s 2 5 m s 3 0 m s 3 5 m s 4 0 m s 4 5 m s 5 0 m s

0 V

1 0 V

2 0 V

3 0 V

4 0 V

5 0 V

6 0 V

7 0 V

8 0 V

9 0 V

1 0 0 V

1 1 0 V

1 2 0 V

- 4 0 m A

0 m A

4 0 m A

8 0 m A

1 2 0 m A

1 6 0 m A

2 0 0 m A

2 4 0 m A

2 8 0 m A

3 2 0 m A

3 6 0 m A

4 0 0 m A

4 4 0 m A
V ( n 0 0 3 ) I ( L 1 )

L1

0.2

Q1

NPN
Rser=1

V1

100V

PWL(0 0 1m 5 10m 5 10.01m 0)

V2
R1

1k

D1

1N5378B

D2

D

D3

1N5378B UCE

.tran 0 0.05 0 1e-6

0 m s 5 m s 1 0 m s 1 5 m s 2 0 m s 2 5 m s 3 0 m s 3 5 m s 4 0 m s 4 5 m s 5 0 m s

0 V

2 0 V

4 0 V

6 0 V

8 0 V

1 0 0 V

1 2 0 V

1 4 0 V

1 6 0 V

1 8 0 V

2 0 0 V

2 2 0 V

2 4 0 V

- 4 0 m A

0 m A

4 0 m A

8 0 m A

1 2 0 m A

1 6 0 m A

2 0 0 m A

2 4 0 m A

2 8 0 m A

3 2 0 m A

3 6 0 m A

4 0 0 m A

4 4 0 m A
V ( u c e ) I ( L 1 )



7  EXCITATION POWER ELECTRONIC 30 

 

 

Figure 7-3: Excitation Board for the 60Hz Machine Designed By Helge and Built By 

Me 

The values for the various components used for the excitation board are shown in 

Appendix 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 31 

 

8 RESISTIVE VOLTAGE DIVIDER MEASUREMENT 

APPROACH 

The measurement electronic consists of three voltage dividers each connected to the 

three phases of the 60Hz synchronous machine for downscaling the phase voltage. For 

simplicity, only one of the voltage dividers for the three phases is considered in Figure 

8-1. The various parameters in the figure are defined in Table 8-1.  

 

Figure 8-1: One of the Single Phases of the Measurement Electronic for Downscaling 

the Nominal Phase Voltage of the three Phase 50/60Hz Generator 

Table 8-1: Definintion of Various Variables Used for the Voltage Divider of the 

Measurement Electronic 

V1 V2 V3 V4 

Input to Arduino 

Analog Pin from 

the voltage divider 

DC Offset added to 

the V3 

Output of the 

voltage divider in 

AC 

Input to the 

Measurement 

Electronic from 3P 

Generator  

 

Each of the offset output V1 from the divider are feed into Arduino analog pins (A0, A1 

and A2) to be sampled by Arduino ADC. Figure 8-2shows the connection to the 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 32 

 

Arduino analog pins. In the figure each of the three voltage dividers (representing R, S, 

T) from the measurement electronic are connected to the analog inputs of the Arduino. 

 

Figure 8-2: Measurement Approach for the Phase Voltage of the 50/60Hz Generator 

8.1 MEASUREMENT ELECTRONIC 

The measurement electronic and the PCB were designed by Helge Lorenzen for this 

project. The circuit  diagram and the PCD are shown in Appendix 3. Figure 8-3 shows 

the hardware photo mounted on the power cabinet.  

 

 

Connector

R

S

T 3 x 1 Phase of 
Measurement 

electronic



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 33 

 

 

Figure 8-3: Measurement Electronic Board Mounted in the Power Cabinet with 

Arduino Board Connected At the Back. 

8.2 SIGNAL CONDITIONING (VOLTAGE DIVIDER HARDWARE) 

From the voltage divider shown V3 is obtained as shown in equation 7. 

 

 

    
  

      
    

 

 
                                        

Where  

         ,  

                                                           

 

 
 
      

  
                                     

Therefore, the ratio  

R1 

R2 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 34 

 

  
      

  
  
  

 
 

   
                     

This implies that    will be 1% of the total sum of the resistors (      ) and    will 

be 99% of the total sum of the resistors in the divider circuit. 

The    and the DCOffset (not shown in the figure) consist of variable resistors 

(potentiometers) for adjusting the amplitude of   (ac) and DCOffset values to 2.5Vac 

and +2.5Vdc respectively and this is shown in the circuit diagram in Appendix 3. 

The resistor values and other components used are stored in the SD Card attached to the 

cover of this report.  

For the signal conditioning of the masurement electronic the values in Table 8-2 were 

adopted for the voltage divider of the measurement electronic. The DCOffset is 

included in the hardware design for the measurement electronic. 

Table 8-2: Signal Conditioning of the Measurement Electronic. 

 Value  

(Arduino 

Analog 

value) 

Value – 512 V1 

(V2 + 

V3) 

V2 

(Constant) 

V3 

(V4/K) 

V4 

Max. 

Value 

1023 511 5V 2.5V +2.5V +268V 

Value at 0 512 0 2.5V 

(peak-to-

peak) 

2.5V 0V 0V 

Min. 

Value 

0 -512 0V 2.5V -2.5V -268 

 

Table 8-2 shows the expected Analog values from Arduino based on the input voltage 

V1 from the measurement electronic. The V3 (2.5Vac) is offset by the DCOffset value 

of +2.5V and this is implemented in the measurement hardware because Arduino analog 

pins can only measure a positive voltage from 0-5V. As a result, to measure the 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 35 

 

negative value of AC voltage, the following scalings in Table 8-3 were implemented in 

the hardware. 

Table 8-3: AC output voltage of the Voltage Divider and the Corresponding Arduino  

Analog  Value 

Arduino Analog Value V3 (Vac) 

1023 +2.5Vac 

512 0 

0 -2.5Vac 

8.3 HARDWARE CALIBRATION  

The Matlab program of Appendix 4 was developed and used for the calibration of the 

hardware. The DC voltage was used for the calibration with the following steps: 

 Connect the three outputs (V1) of the measurement electronic to Arduino 

Analog pins.  

 Connect the three inputs of the measurement electronic to  DC voltage and set 

the voltage to 0V.  

 Observe the analog values from Arduino  and tune the DCOffset potentiometer 

until the analog value is 512. 

 Set the DC voltage to +268V, measure the corresponding analog values for R, S, 

T and input the values into Matlab code in Appendix 6 in the variable 

‚RSTRawAnalogVal ‘ for the positive measure of voltage. 

 Set the DC voltage to -268V and input the corresponding analog values into the 

Matlab code in the variable ‚RSTRawAnalogVal ‘ for the negative measure of 

voltage. 

 Set the variable ‚DCInVoltage‘ to 268 volts in the Matlab code and run the 

Matlab script. Observe the ‚VoltperDigit‘ (the Gain). The VoltperDigit  for the 

three phases should be the same and should be close to 1: 0.9371; 0.9371; 

0.9371. If  the VoltperDigit for any of the phases is less, adjust the 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 36 

 

corresponding potentiometer for the amplitude (V3) for the phase and observe 

the gain. Repeat the process until all the gains (VoltperDigit) are equal and close 

to one. 

8.4 MEASUREMENT AND SCALING FOR VOLTAGE SETPOINT 

The data in Table 8-4 is obtained from the measurement electronic to find the behaviour 

of the measurement device to the input voltage in order to determine the range for the 

linearity of teh measurement device. 

Table 8-4: Measurement Data From the Measurement Electronic. 

DC 

Voltage 

-

300 

-

250 

-

200 

-

150 

-

100 

-50 0 50 100 150 200 250 300 

R 
 

16 

 

27 74 182 292 401 512 625 734 842 951 992 1004 

S 
 

16 

 

27 74 182 292 401 512 625 734 842 951 992 1004 

T 
 

16 

 

27 74 182 292 401 512 625 734 842 951 992 1004 

The data from Table 8-4 were ploted using Matlab in Appendix 5 to obtain the plot in 

Figure 8-4.  From the plot, it was seen that the measurement device shows linearity 

behaviour in the range: -200V to 200Vdc after which nonlinear behaviour sets in. The 

nonlinear behaviour observed resulted from the diodes and capacitors implemented at 

the of the voltage dividers to protect Arduino analog input from over voltage (spikes). 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 37 

 

 

Figure 8-4: Measurement Electronic Showing Non-Linearity after 200VDC 

For the sinusoidal, symmetrical and time-invariant system, the 3 phase is shown in 

Figure 8-5. 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 38 

 

 

Figure 8-5: The three Phase Voltage for the Generator. 

Table 8-5: Measurement Data Use for Scaling. 

 Value (Arduino)  V2 (Constant) V3 (V4/K) V4 

Max Value 951 +2.5V 2.5V 200V 

Value at 0 512 +2.5V 0V 0V 

Min. Value 74 +2.5V -2.5V -200V 

 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 39 

 

 

Figure 8-6: Scaling to Find the Measure for the Voltage Setpoint for the 50/60Hz 

Synchronous  Generator. 

In Table 8-5 and Figure 8-6 it could be seen that: 

  
        

        
   

        

        
   

    

    
                                           

            
       

 
     

   

    
                                   

            
       

   
                                              

Where               is the instantaneous voltage for each of the 3 phases R, S, T.  

        is evaluted and obtained in equation 14, 15 and 16. 

Figure 8-6 shows the phasor representation of R, S, T. The amplitude for each phases is 

denoted as    for a sinusoidal, symmetrical and time-invariant system.  

From the figure         for each of the phases is calculated and used in equation 3. 

Resolve each phases R, S, T to the horizontal and vertical axis of Figure 8-6 in order to 

find the intantaneous voltage         for each phases:  

 

200 -439
74

439

512

951
200

T

S

R0

60

60

V0ltage
ADC 

Value

Axis 1 Axis 2

YY

X

X

-Y

-X
512



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 40 

 

Amplitude    is given as: 

   
     

  
                                                                        

Where    is the phase – to – phase voltage output voltage of the 50/60Hz synchronous 

generator. 

For phase R: 

               
     

  
                                            

                                                                           

For phase S:  

                        
  

 
 

   
     

  
   
  

 
             

                                                                     

For phase T:  

                       
  

 
 

  
     

  
 
  

 
 

                                                                 

Where  

       

           
  

 
  

          
  

 
 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 41 

 

                                                   

Substituting equation 14, 15, and 16 into 12 for each phases: 

For phase R: 

                                                                      

For phase S: 

             
        

   
                       

For phase T: 

            
        

   
                       

   is the phase to phase voltage setpoint for the three phase generator specified by the 

user from the Graphical User Interface (GUI). This    specified by the user is 

converted in the program to the corresponding analog values for the three phases using 

equation 17,18, 19 and then to  analog setpoint in equation 20 for the controller. 

From equation 17, 18, and 19, the setpoint for the controller will be: 

                                                                     

where  

                     
       

   
             

In equation 20, the DC-Offset for the three phases implemented in the measurement 

hardware is removed from the setpoint. This is because the DC-Offset is also removed 

in the computation for the measured value of RST in the program.  

To display the output measurement from Arduino to GUI in voltage (phase-to-phase) 

reverse calculation is required as shown in equation 21 - 23. 

        
   

   
                               

    
  

  
                                                 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 42 

 

                                                     

Where    is the phase-to-phase voltage for each phases and           is the analog 

value for each phases ffrom the Arduino analog pins. 

8.5 EFFECTS OF REMOVING DC-OFFSET IN THE  

COMPUTATION 

The idea behind removing the DCOffset in the computation is that: 

 When the voltage from the 3 phase system is 0V the corresponding measure for 

the 3 phases will also be 0. The computation for the measured value of the three 

phases implemented in the sketch (program) is shown in equation 24. 

                                            

 When the voltage from the synchronous generator is maximum 200V, the 

corresponding measured will be 1,926,771. 

 When the voltage is -200V, the analog value will be 0 and the corresponding 

measure will be: -        ) as shown in Table 8-6.  

Table 8-6: Effects of Removing the DC-Offset by Software. 

 200V 0V -200V 

Analog Values Assume: R = S =T =951 (Max voltage) 512 0 

Measured value                              0 -           

 

For a sinusoidal symmetrical time invariant three phase system this is not a problem as 

the three phases cannot be negative at the same time at any time instance due to the 

rotation of the angle and if they ar negative is just for that moment. But for a non three 

phase system for example DC voltage, if the three inputs to Arduino analog pins 

becomes negative, this will result to a negative measure of  -           If the setpoint  

voltage    (in this case: DC peak voltage) is positive, the controller function will 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 43 

 

always experience an offset (error) of            when compare the setpoint with the 

‚measured value‘ and it will try to eliminates this error but will not be able, resulting 

into saturation of the control signal.  

 Therefore to use this project for all kinds of voltages (DC, phase voltage: 

phase-Neural, or phase-to-phase voltage: Line-to-Line) , the DC-Offset 

should be set to zero from the HMI in the System status (DCOffset = 0).  

8.6 ACCESSING THE 3P GENERATOR THROUGH RS232 

To overcome the challenge of debugging and uploading of sketch (Arduino program) 

without having to go to the 60Hz machine installed at the basement, RS232 to Serial 

communication hardware for the 6 pin serial programming header communication for 

Arduino Ethernet was designed by Helge Lorenzen. The circuit for the hardware is 

shown in Appendix 6. To realize this, an Ethernet cable (CAT 5) was used. The cable 

design is shown in Figure 8-7, the hardware and its connections with the cable and 

Arduino is shown in Figure 8-8.  

The cable is only valid for Arduino Ethernet and any other Arduino products with 6 pin 

serial programming header for communication. The cable configuration and design in 

Figure 8-7 is also stored in the SD Card in a folder with filename: Excitation Electronic 

Documents. 

 



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 44 

 

 

Figure 8-7: Ethernet Cable (CAT 5) Design For the Communication Between RS232 

and the Arduino Ethernet 6 Pin Serial Programming Header. 

 

 

Figure 8-8: RS232 to Serial Communication Hardware Connected with its Cable and 

Arduino Ethernet. 

 

Adapter
(Level Shifter

Inverter)

Arduino Ethernet

G
N

D
(1

)

R
X(

4)

TX
(5

)

+5
V

(3
)

D
TR

(6
) 

(R
es

et
)

R
J4

5
 p

lu
g

SubD9
female

(5)GND

(2) RX

(3) TX

(7) RTS

R
J4

5
 s

o
ck

e
t

R
J4

5
 s

o
ck

e
t

R
J4

5
 p

lu
g

Patchpanel
connection

8+shield

GND(1)

RX(6)

GND(3)

GND(5)

Reset(4)

TX(2)

power

N
o

t u
se

d(
2

)

customized
cable for
Adapter

customized
cable for

Service-PC

Conncect Shield to ground
RJ45 pins to colors may differ, 
important is that the pins 
corresponds for the pair.
Blue: 4
Blue/white:5
Green: 2
Green/white: 1
Orange:6
Orange/white: 3
Brown: 8
Brown/white: 7

eth

6 pin serial 
programming Header 

Cable used: CAT5 Ethener 
Cable



8  RESISTIVE VOLTAGE DIVIDER MEASUREMENT APPROACH 45 

 

To communicate with the 60Hz generator via the cable, connect the labtop to the RS232 

port or via RS232 to USB cable and launch a terminal program ‚Hterm‘ to enable the 

connection to the serial port through the cable. This can be download from the link: 

http://www.circuitlake.com/serial-terminal-program-hterm.html  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.circuitlake.com/serial-terminal-program-hterm.html


9  IMPLEMENTATION FOR PRELIMINARY INVESTIGATIONS 46 

 

9 IMPLEMENTATION FOR PRELIMINARY 

INVESTIGATIONS  

Preliminary investigations and comparison of measurement data by team members were 

carried out using different measurement approaches. The team members are: 

 Helge Lorenzen   - Project Manager 

 Achema Egbunu  - Master Student 

 Tim Hanekamp  - Wobben Research and Development staff 

 Christian Fellensiek - Wobben Research and Development staff 

9.1 DATA AQUISITION 

Different measurement approaches were assigned to the team members under the 

supervision of Helge Lorenzen.  

 Helge Lorenzen - PC Based measurment system for the Lab.  

 Achema Egbunu - Resistive Voltage Divider with DCOffset and ADC  

Interrupt Vector 

 Tim Hanekamp -  Channelwise board with external ADC harware  

and op-circuits for signal conditioning. 

 Christian Fellensiek - Transformers and op-circuits for signal  

Conditioning. 

9.2 PC BASED MEASUREMENT SYSTEM 

The PC based measurement system for the laboratory is a high quality data aquisition 

system for sampling data in the lab. This was used in order to compare its measurement 

with others. The measurement data obtained from this were plotted using MATLAB 

shown in Figure 9-1. In the figure, the first plot represnts the measurements from the 

PC based measurement system carried out by the Project Manager, Mr. Helge Lorenzen.  



9  IMPLEMENTATION FOR PRELIMINARY INVESTIGATIONS 47 

 

9.3 TRANSFORMERS AND OPERATIONAL AMPLIFIER-CIRCUITS 

FOR SIGNAL CONDITIONING 

In this approach the phase voltage is step down to 24Vac and some operational 

amplifiers to further scale the voltage to the Arduino input recommended voltage (0-

5V). The disadvantage with this approach is that loss of non-linearity may be expected. 

The measurement obtained with this approach was not pleasing, hence, result could not 

be use for comparison. 

9.4 CHANNELWISE BOARD WITH EXTERNAL ADC HARWARE 

AND OP-CIRCUITS FOR SIGNAL CONDITIONING 

This approach consists of three resistive voltage divider each contained in different 

boards (i.e. one resitive divider for one PCB) with external ADC. Each  resistive voltage 

divider is connected to the each of the three phases of the 60Hz machine to scale the 

voltage to recommended input voltage for the external ADCs. The three external ADCs 

each connected to the output of the divider simultaneously sample the three phase of the 

machine, buffered the values into one of the ADC and finally transfer the data from the 

buffered ADC to Arduino via clocking. The advantage with this approach is that the  

three phases of the machine are sampled at the same time without any delay between the 

channels, hence less ripple is expected. The disadvantage is that it is more expensive 

and occupies more space due to three boards used for each phases of the machine. 

The measurement data obtained from this were plotted using MATLAB shown in 

Figure 9-1. In the figure, the second plot represnts the measurements from this approach 

carried out by the Tim Hanekamp. 



9  IMPLEMENTATION FOR PRELIMINARY INVESTIGATIONS 48 

 

9.5 RESISTIVE VOLTAGE DIVIDER WITH OFFSET GENERATION 

AND AC ANALYSIS IN TIME DOMAIN WITH ARDUINO ADC 

INTERRUPT VECTOR 

This approach consists of three resistive voltage dividers connected to each of the 

phases of the machine to scale the voltage to the recommended input voltage of the 

Arduino analog pins (0-5V). The three voltage dividers are implemented on one board 

with DC-Offset. Because Arduino has only one ADC to sample data from multiple 

analog channels, a delay between each channel is expected. To minimze this, ADC 

interrupt vector was developed to sample the data from the analog pins (A0 –A2) 

connected to each output of the three resistive voltage divders. The measurements were 

carried out from zero duty cycle (Machine PWM) to the maximum duty cycle of the 

machine (Max. Capacity of the Machine) in order to observe the behaviour of 

measurement systems.   

The measurement data obtained from this were plotted using MATLAB shown in 

Figure 9-1. In the figure, the third plot represnts the measurements from this approach 

carried out by me.  

9.6 COMPARISON OF FIRST FINDINGS 

The data obtained from each approaches were plotted with MATLAB and comapred as 

shown in Figure 9-1. The MATLAB code for the plots is shown in Appendix 8. In order 

to minimize the number of pages, only two comparison are shown here. Detailed 

comparison with different PWM (0 - 255) is stored in the SD Card titled ‚Measurement 

Report_html‘, click on ‚RunMe.html‘ to view report. In the figure, three plots are 

obtained for each value of duty cycle.  

 First plot - Helge Lorenzen (PC Based measurement system) 

 Second plot - Tim Hanekamp (Resistive divider with External ADC) 

 Third plot - Achema Egbunu (Resistive div. with Ard. ADC Int. Vector) 



9  IMPLEMENTATION FOR PRELIMINARY INVESTIGATIONS 49 

 

 

 

Figure 9-1: Comparison of the Measurements Obtained from Different Approaches. 

From the plots stored in the SD Card, the behaviour observed from Tim Hanekamp plot 

(2nd plot) as the duty cycle increases was due to a signum errors in his measurement 

code which was later fixed. From Figure 9-1 and the plots stored in the SD Card, it was 

seen that the measurement from Resitive voltage divider with DC-Offset and ADC 

Interrupt Vector (Carried out by Me) was very okay, however, some strange behaviour 

was seen at regular interval from the plots. This happens whenever there is a spike 

(High voltage greater than 5V) from the machine which is cutoff by the Arduino input. 

To address this problem and protect the analog input of the Arduino, a protective circuit 

consisting of Zener diodes and capacitor was implemented at the output of the voltage 

divider as shown in the circuit diagram in Appendix 3. A closer look at the 

measurements carried out by me shows some ripples which might be due to 

 Delays from the ADC in sampling data from one channel to another 

 The selection of reference voltage to Arduino input (AVREF) 

In order to improve this challenge, external reference voltage supply was implemented 

on the measurement device shown in Appendix 3 to provide reference voltage for the 

Arduino analog inputs. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 50 

 

10 DESCRIPTION OF THE SOLUTION FINALLY USED 

 The measurement electronic circuit used is shown in Appendix 3. 

 The excitation electronic circuit used is shown in Appendix 2. 

 The RS232 to Serial communication circuit is is shown in Appendix 6.   

The documents are also stored in the SD Card attached to the cover of this report in 

their respective folders. 

10.1 SOFTWARE IMPLEMENTATION 

The software for this project was designed as procedural and not as object oriented, 

hence, Object-Oriented, Analysis and Design was not used for the software design. 

Flow diagram and Star UML were used for the description of the program flow and the 

general overview.  

10.1.1 ARCHITECTURE AND GLOBALLY OVERVIEW 

The architecuture and the global overview for the software is shown in Figure 10-1. 

 

 

Figure 10-1: Program Overview. 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 51 

 

10.2 DATA MANAGEMENT 

In this project, all the functions declared access the data or store the data in the main 

program. The main program consists of three global arrays which all the functions can 

access. The global arrays are:  

 Global Byte Array – gArByte[] : This stores only the data that are bytes (i.e.:1 

byte). 

 Global Integer Array – gArINT[]: This stores only the data that are integers. 

 Global Long Integer – gArLong[]: This stores only the data that are long 

integers. 

The structure of the main program with the global arrays and their respective variables 

definitions are shown in Figure 10-2. The various registers definitions and the program 

flow for the void setup() and void loop() are also shown in the figure. The structure of 

the main program shown in Figure 10-2 are also stored in the SD Card in a folder with 

filename: Program Structure. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 52 

 

 

Figure 10-2: Program Structure for the Main. 

As shown in the figure, the variables preceeded with ‚Idx‘ (index) represents the 

location in the array for the variables and those preceeded with ‚Sym‘ (Symbolic name) 

represents the the meaning of content of the array for the specific variable with ‚Idx‘. As 

shown in the global array byte (gArByte[]) in FIG H, the ‚logSemaphore 0‘ is an 

IdxlogSemaphore define as 0 in the main program. The 0 represents the space in the 

array (Array index) that holds IdxlogSemaphore and this space can have a value of 

 0: SymLogOff 

 1: SymLogWriteProgress 

 

Global Array 
Byte:

gArByte[]

Global Array 
Int:

gArINT[ngINT]

Global Array Long 
Int:

gArLong[ngLong
]

Define:
ADCPrescalers,
ADCSRA Reg. 

(ASCSRAConfig), 
StartConversation

Define:
CTC mode, 
prescaler for 

Timer0 Interrupt

Define: nMux,
PwmOutputPin, 

SDCardPin

Main Program

Void Setup(): 
Initialize

Void Loop

Define: 
ADMUX 

Reg(ADMUXConfig), 
Mask Channel 

(ADMUXChannelsOnly)

IdxMeasure

Toggle: New 
Measure & 

OldMeasure

IdxFilter

Toggle: 
NewFilter & 

OldFilter

IdxDMeasure

IdxDFilter

IdxSetPM

IdxDCOffset0

IdxIdle

IdxLogTime

IdxLogTimeBuf

IdxSetMeasure

IdxErrorSum

IdxBufSetMeasu
re

IdxError

ngLong

IdxR

IdxS

IdxT

IdxBufR

IdxBufS

IdxBufT

ngINT

IdxlogSemaphor
e

SymLogOff

SymLogWritePr
ogress

SymLogGetFirst

SymLogGetNext

IdxADCRun

IdxWebAnswer
Mode

AMRaw

AMParsedHTM
L

AMCSV

IdxSetDuty

IdxControlMode

SymOpenLoopCon
trol

SymPidControl

SymFuzzyControl

SymNNControl

SymTestNewContr
ol

IdxPIDKP

IdxPIDKI

IdxPIDKD

IdxPWMDuty

IdxCmd

SymCmdNone

SymCmdSetContr
ol

SymCmdStartLog

Declare: 
gIdxNewest, Eth. 

Mac Addr., IPAddr., 
EthernetServer, 

LogFile.
ADC_ISR, 

Timer0_ISR 

Disable: Global 
Interrupts

Initialize: 
Baudrate for
COM Port

Wait for COM 
Port To Initialize

Store: DCOffset 
in 

gArLong[IdxDC
Offset]

Setup & 
Initialize: Timer0 

Interrupt

Setup & 
Initialize: ADC 

Conversion

Setup & 
Initialize: 
SD Card

Enable: Global 
Interrupts

Declare 
Variables & 
Pointers for 
Datalogging

Execute web function: 
DoWeb;
Optional

Log Data to SD 
Card

Reset: 
gArByte[IdxlogS

emaphore] = 
SymLogGetNext

Increment loop 
counter: 

gArLong[IdxIdle]

If value in: 
gArByte[IdxlogSemaphore] 
== SymLogWriteProgress

If value in: 
gArByte[IdxlogSemaphore] 
<=SymLogWriteProgress

End

Loop Start 
after the setup

SymCmdStopLog

SymCmdStoreDef
ault

ChangePWMFr
ency

ChangePWMFr
ency() Function

ComputeVoltToSetpoint(gArLong[IdxSetMeasure])
Optional

Function for converting phase-to-phase voltage 
setpoint to Setpoint measure



10  DESCRIPTION OF THE SOLUTION FINALLY USED 53 

 

 2: SymLogGetFirst 

 3: SymLogGetNext 

As shown in Figure 10-3. Other global arrays with their meaning and content value are 

shown in Figure 10-2. 

 

Figure 10-3: Global Byte Array Index Definition and and their Respective Content 

Meaning 

In the main loop the data logging is executed based on the value in the array space for 

IdxlogSemaphore. The void setup() setup and initialize the timer0 interrupt, ADC 

conversion, and SD card. The program code for the Main is shown in Appendix 8.  

10.3 ADC CONVERSATION AND MULTIPLEXER 

The program flow and timing sequence to the ADC_ISR() is shown Figure 10-4. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 54 

 

 

Figure 10-4: Program Sequence for the ADC_ISR Function. 

As shown in Figure 10-4 the number of Mux channel (nMux) connected to the 60Hz 

machine is 3 and this is defined as a global variable in the main program. The LastRun 

defined in the ADC_ISR function represents the actual Mux channel that is switched by 

the multiplexer since the Mux channel is zero indexed (counting from 0 to 2 = 3 

channels). The value in the global Array gArByte[IdxADCRun] is used for timing 

control for starting the ADC conversion (i.e. setting ADSC to 1). The ADC convertion 

is implemented in manual mode with the Timer0 ISR starting the manual conversion 

(Setting ADSC to 1) at a specified frequency. The setup for the ADC is implemented in 

the void setup(). The sequence of operation is discussed in the following sections. 

 The ADC prescalers are defined in the maian program, however, the default 

ADC precaler is 128 is used in this project and is defined as ‚ADCPrescaler128 

= 7‘ in the main program. 

 The ADCSRA Register is defined in the main program as:  



10  DESCRIPTION OF THE SOLUTION FINALLY USED 55 

 

ADCSRAConfig = 0xC8 + ADCPrescaler128 = 200 + 7 = 207 (In Dec.):  

This sets ADEN, ADSC, ADIE ADPS2, ADPS1, and ADPS0 bits in the 

ADSCRA Control Register to 1. As seen, the ADC Start Conversion bit (ADSC) 

is set to 1 from ‚ADCSRAConfig‘ defined. 

 The ADMUX Control Register is defined in the main program as: 

ADMUXConfig = 0x40 = 64.  

This sets the ADC reference voltage (REFS0) bit to 1 in the ADMUX Register. 

This value is ‚ANDed‘ with the wanted MUX channel number 

‚ADMUXChannelsOnly‘ to enhance the selection of the intended channels and 

mask out the rest bits.   

 The mask bit ‚ADMUXChannelsOnly‘ is defined in the main program as: 

ADMUXChannelsOnly = 0x1F = 31 (In dec.).  

These registers are initialized in the void setup() in the main program based on 

the settings above. 

 

 After the conversion is started by the Timer0 ISR function, the value in the 

global Array ‚gArByte[IdxADCRun]‘ is reset to 0 for the timing control of 

ADC_ISR and also to stabilize the ADC voltage before the next conversion 

(Atmel 2009) and the next Mux channel is set to 1 as shown. 

 

 Once the conversion is complete, the ADC_ISR() function is called based on the 

ADC Interrupt Flag and ADC Interrupt Enable bits (ADIF and ADIE) to fetch 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 56 

 

the results of the conversion from the ADC register and then start the next 

conversion on channel 1 by resetting ADSC bit to 1.  

 The result of the conversion is stored in a global array ‚gArIn[]‘ which is 

accessed by ‚Computation()‘ function. 

 Once the conversion on channel 1 is in progress the ADC_ISR increment the 

value of ‚MuxPos‘ based on the condition shown as shown.  

 

The MuxPos is incremented for two purposes. First is to stabilize the ADC 

voltage before the channel 2 is selected and also as Mux channel which is 

‚ORed‘ with the content of the ADMUX  based on the condition shown. 

 

 Once the value in the global array ‚gArByte[IdxADCRun]‘ is equal to or greater 

than 2 (LastRun) then all the three phases (R, S, T) connected to the 60Hz 

generator have been sampled and stored in the global array and the following 

functions would be called. 

o ComputeActualValue() 

o DoControl() 

 Once the Computation and the control function are executed, the value in the 

global array for log semaphore ‚gArByte[IdxlogSemaphore]‘ is checked to 

determine if the user has requested for datalogging or not. If the user has 

requested for data logging, the value in the array would be set to 

‚SymLogGetFirst‘ (i.e. 2) which will cause the ADC_ISR to reset the log time 

and update the buffer with new data for logging. 

The code for the ADC_ISR for sampling the RST phases is shown in Appendix 9. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 57 

 

10.4 COMPUTE ACTUAL VALUE 

The program sequence for computing the actual value of the RST phases implemented 

in this project is shown in Figure 10-5.  

 

Figure 10-5:  program Sequence for the Computing Actual Value of RST function (i.e.: 

ComputeActualValue()). 

The program code implemented is shown in Appendix 10. 

10.5 CONTROL ALGORITHMS 

The equations for the P, PI and PID control implemented is shown in this section 

followed by the algorithm. 

For P Controller: 

                                                 

                                                  



10  DESCRIPTION OF THE SOLUTION FINALLY USED 58 

 

where: 

u  is the controller output. 

   is the proportional gain. 

  is the error. 

   is the setpoint and 

y is the output of the 60Hz machine. 

PI Controller: 

       
  
  
       
 

 

                

                  
 

 

                

Where: 

u is the controller output 

   is the proportional gain 

  is the errror, defined in equation 26. 

    
  

  
 is the gain for the integral part 

        
 

 
 is the sum of the errors over time. 

PID Controller: 

                  
 

 

                     

Using euler forward to discretize   : 

   
         

  
  

                      

  
      

Where the current setpoint      and the previous setpoint    are the same. That is 

                                      



10  DESCRIPTION OF THE SOLUTION FINALLY USED 59 

 

Therefore, equation 30 becomes: 

    
                      

  
   

          

  
             

                              

   
 

  
                           

where:  

     is the current output measurement from the 60Hz machine. 

     is the previous output measurement from the 60Hz machine. 

   is the sampling interval which is provided by timer0 interrupt.  

  is the sampling frequency which is the frequency of the timer0 interrupt.  

Substitutes equation 33 into equation 29: 

                  
 

 

                                  

                  
 

 

                                

Where    is the gain for the derivative. 

Therefore, equation 36 can be written 

                       

where: 

                                                                             

            
 

 

         

 

 

                               

                                                               

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 60 

 

10.5.1.1 CONTROL ALGORITHM  

 Set the setpoint measure 

 Compute the error:       

 Sum the errors 

 Compute the error slope    =             

 Determine the interrupt frequency   or fixed sampling interval    

 Multiply the error with the proportional gain:          

 Multiply the error sum with the gain of the integral:            
  

 Multiply the error slope with the derivative gain and the sampling frequency:  

                   

 Sum:            

 Store the value of the sum in a variable:              

 Adjust    set           for P Controller until the output is stable 

 Adjust    and     and set      for PI Controller until the output is stable 

 For the PID Controller, adjust   ,      and    until the output is stable 

Remark: 

In order to have good resolution to tune the control parameter   ,    and     and to be 

able to work with integer values when tuning the parameter the parameter are divided 

by a factor by shifting to the right (>>) as shown in equation 41. However, the 

parameters value are shifted after multiplying with their respective error, integral and 

derivative values to avoid shifing all the parameters values to zero. 

                         
 

 

                                         

where: 

a, b, and c are the factors to be divided with. 

Remarks: 

Bit shifting (>>) operator for negative values in Arduino can leads to undefined 

behavior, therefore, the negative sign are taken into consideration in the code.  



10  DESCRIPTION OF THE SOLUTION FINALLY USED 61 

 

10.5.2 FUNCTION THAT WRITES CONTROL SIGNAL TO PWM OUTPUT PIN 

The program flow for the function that write the output of the controller to the PWM 

output pin is shown in Figure 10-6. 

 

 

Figure 10-6: Prgram Flow for the Function that Writes Control Signal to PWM Output 

Pin. 

This function is called by any of the control strategies to write the control output to the 

output pin (PWMOutPin). Within this function a bond is set on the control output (duty 

cycle) between 0 and 255 to prevent a negative values from being written on the output 

pin and also the controller signal from exceeding the maximum PWM value.  

The program code for this function is shown in Appendix 11. 

10.5.3 OPEN LOOP CONTROL 

For the open loop control, the setpoint is set by the user as duty cycle (range: 0 - 255) 

and the function ‚ChangeDuty()‘ is called in order to write the value to the PWMOutPin 

3. The value supplied as duty cycle is stored in the global variable 

‚gArByte[IdxSetDuty]‘ the function ChangeDuty() is called with an input argument 

 

Define: PwmOutPin 

as global.

Main 

Program

If 

NewDuty > 255

If 

NewDuty < 0

Write to 

PWMOutPin

NewDuty = 255

Y Y

NN

ChangeDuty(byte Newduty)

NewDuty = 0

NewDuty

NewDuty



10  DESCRIPTION OF THE SOLUTION FINALLY USED 62 

 

newDuty once the user click on open loop from the HMI and the value in the global 

array gArByte[IdxSetDuty] is written to the output pin. 

10.5.4 P-CONTROL 

The P Control in this project is implemented as a function which can be inserted into 

any other project based on the guidelines given in this section.   

10.5.4.1 THE P CONTROL STRUCTURE 

Figure 10-7 shows the the overview of the P controller implemented in this project. 

 

Figure 10-7: The Structure of the P Controller Function. 

From the figure, U is the actual duty cycle and u is the control signal from the P 

Controller. The control signal ‚u‘ is added to the actual duty cycle U which increases or 

decreases the duty cycle based on the offset (error) between the setpoint and the 

measurement values (Output). The U is then written to the PWM output pin 3 on the 

Arduino where the process is connected to vary the excitation current for the process 

winding. The writing to the PWM output pin is done by calling a function 

‚ChangeDuty()‘ responsible for that. It should be noted that the process in this case is 

referred to the 6Hz machine connected to the Arduino PWM pin 3 through the 

excitation electronic board.  

Input to the controller function: 

 gArLong[idxSetPM]; 

 gArLong[idxFilter]; 

 PWM (Actual duty cycle) defined as: gArByte[IdxPWMDuty] 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 63 

 

 Afunction call ‚ChangeDuty()‘ with an input argument ‚U‘ 

(gArByte[IdxPWMDuty] + u)  

The actual duty cycle stored in the global array ‚ gArByte[IdxPWMDuty]‘ is defined as  

global array in the main program. 

Within the P control function, the followind are declared as local variables 

 setpoint = gArLong[idxSetPM]; 

 measured = gArLong[idxFilter];    (Filtered output value is used as a measured) 

 Other local variables are shown within the function. 

If the setpoint is specified in voltage, this should be scaled to the corresponding analog 

values using the scaling given in Figure 10-7. The scaling given in the figure is only 

valid for the current measurement electronic used for this 60Hz machine, for a different 

measurement electronic, new scaling for the measurement electronic is required to 

determine its range. 

Output of the Controller: 

 The controller returns the duty cycle ‚gArByte[IdxPWMDuty] + u‘ to the 

function call ‚ChangeDuty()‘ as an input argument to write the value of duty 

cycle to the PWM output pin (PwmOutPin 3). 

10.5.4.2 THE PROGRAM FLOW P-CONTROLLER FUNCTION 

The program flow for the function is shown  in Figure 10-8. The program code for the P 

controller is shown in Appendix 11.  



10  DESCRIPTION OF THE SOLUTION FINALLY USED 64 

 

 

Figure 10-8: The Program Flow for the P Controller Function. 

10.5.4.3 TESTING THE P CONTROLLER  

The test in this section was carried out before implementing the controller on the 60Hz 

machine. Figure 10-9 show a simple circuit for testing the P controller. In the figure the 

switch S introduces a disturbance (Load: Potentiometer) to the system when pressed. 

The controller should be able to return the output voltage to the setpoint once the load is 

withing the system capacity (4.5V). 

 
P 

Controller 

Declare variables:
 Kp = gArByte[IdxPIDKP], 

error, u
as long int.

Declare: the array 
 gArLong[]  holding the 
Setpoint & measured, & 
gArByte[IdxPWMDuty] 

that hold PWM 
value(U), define 

PwmOutPin as global.

Main 
Program

error = setpoint - measured

u = Kp*error

ChangeDuty(gArByte[IdxPWMDuty] + u)

If 
NewDuty > 

255

If 
NewDuty < 0

Write to 
PWMOutPin

setpoint

measured

NewDuty = 0 NewDuty = 255
Y Y

NN

NewDuty 

ChangeDuty(byte Newduty)

gArByte[IdxPWMDuty]
Function Call to 

write the 
control output 
to PWMOutPinFunction that writes 

control signal to 

PWMOutPin

NewDuty 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 65 

 

 

Figure 10-9: Hardware Connections for Testing the P Controller. 

The output from the oscilloscope when the switch S is pressed  for a setpoint changed 

from 1.0 volt to 4.5volts is  shown in Figure 10-10. The introduction of a disturbance 

causes the overshoot observed and the controller returns the output voltage to the 

setpoint. 

 

Figure 10-10: Testing the P Controller Before Implementing on the 60Hz Machine. 

 

Feedback

R

S

T

1K

S

10K

100UF 
100V

Vout

Remark: 
10K Variable resistor 
acting as disturbance 
when S is switched on

Process

Control Signal

Oscilloscope
Probe



10  DESCRIPTION OF THE SOLUTION FINALLY USED 66 

 

10.5.5 PI-CONTROL 

The PI Control in this project is implemented as a function which can be inserted into 

any other project based on the guidelines stipulated in this section. 

10.5.5.1 THE STRUCTURE OF THE PI CONTROL 

 

Figure 10-11: The Structure of the PI Controller Function. 

Figure 10-11 shows the details setup in the PI controller function developed in this 

project. As shown in the figure, the measured output is compared with the setpoint and 

the difference is feed to the P (proportional) and the I (Integral) parts of the controller. 

The I part, add the previous difference (i.e. error) to the current error and a bond is set 

on the summed errors by implementing Antiwindup to avoid saturation of the controller 

signal. The error and the summed errors are respectively multiplied with proportional 

gain Kp and the integral time constant Ki and both outputs summed as control signal u. 

The control signal u is added to the actual duty cycle U and a function ‚ChangeDuty()‘  

is called to writing the control output ‚U‘ to PWMOutPin 3 in order to vary the output 

voltage of the 60Hz machine (process). Within the function ‚ChangeDuty()‘  a bond is 

set on U between 0 and 255 to ensure the control output is within the PWM range (0 - 

255). That is preventing the saturation of the control signal.  

The setpoint specifed in volatage can be scaled to the corresponding analog value as 

shown in the figure. This ensure that the voltage setpoint is converted to the 

corresponding analog value before it can be used to compare with the measured value in 

the controller function. The scaling shown is only valid for the current measurement 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 67 

 

electronic used for this 60Hz machine, for a different measurement electronic, new 

scaling for the measurement electronic is needed to determine its range. 

The prerequisites for integrating this function into another project are stipulated in this 

section and should be adhered to for the function to work. 

Input to the controller function: 

 gArLong[idxSetPM] 

 gArLong[idxFilter]  

 Error sum defined stored in the as: gArLong[IdxErrorSum] 

 PWM (Actual duty cycle) defined as: gArByte[IdxPWMDuty] 

 Afunction call ‚ChangeDuty()‘ with an input argument: 

‚(gArByte[IdxPWMDuty] + u)‘   

In the main program the following are declare as global variables array for storing the 

values shown: 

 Int errorsum: gArLong[IdxErrorSum] 

 byte U for duty cycle: gArByte[IdxPWMDuty] 

Within the PI control function, declare the following as local variables: 

 long int setpoint = gArLong[idxSetPM]; 

 long int measured = gArLong[idxFilter];  

 error = gArLong[idxSetPM] - gArLong[idxFilter]; 

 other local variables are indicated within the function. 

Output of the PI control: 

 The controller returns the duty cycle ‚gArByte[IdxPWMDuty] + u‘ to the 

function call ‚ChangeDuty()‘ as an input argument to write the value of duty 

cycle to the PWM output pin (PwmOutPin 3). 

The program code for the PI controller implemented is shown in Appendix 11. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 68 

 

10.5.5.2 THE PROGRAM FLOW FOR THE PI CONTROL FUNCTION 

 

Figure 10-12: Program Flow for the PI Controller Function Implemented In this 

Project. 

The program flow for the function is shown  in Figure 10-12. This shows how the 

function is implemented.  

 PI 
Controller 

Declare variables:
Kp = gArByte[IdxPIDKP], 

Ki = gArByte[IdxPIDKI], error, u, Z 
& AntiWindup as local long int. 

long Int setpoint = 
gArLong[idxSetPM];
long int measured = 
gArLong[idxFilter]

Declare: the array 
 gArLong[]  holding the 
IdxSetPM & IdxFilter, 

errorsum  & 
gArByte[IdxPWMDuty] that 
hold PWM value(U), define 

PwmOutPin as global.

Main 
Program

error = setpoint - measured

errorsum += error

if 
errorsum < -AntiWindup)

errorsum = AntiWinduperrorsum = -AntiWindup

Z = (Ki*errorsum) u = (Kp*errorsum) + Z

ChangeDuty(gArByte[IdxPWMDuty] + u)

if 
errorsum > AntiWindup

errorsum

setpoint

errorsum 
errorsum  

NN

Y

If 

NewDuty > 255
If 

NewDuty < 0

Write to 

PWMOutPin

NewDuty = 255
Y Y

NN

ChangeDuty(byte NewDuty)

measured

NewDuty = 0

NewDuty
NewDuty

Function call to write control Output to 
PWMOutPin

gArByte[IdxPWMDuty]



10  DESCRIPTION OF THE SOLUTION FINALLY USED 69 

 

10.5.5.3 TESTING THE PI CONTROLLER 

The test in this section was carried out before implementing the controller on the 60Hz 

machine. Figure 10-13 show a simple circuit for testing the PI controller. In the figure 

the switch S introduces a disturbance (Load: Potentiometer) to the system when pressed. 

The controller should be able to return the output voltage to the setpoint once the load is 

withing the system capacity (4.5V). 

 

Figure 10-13: Hardware Connections for Testing the PI Controller. 

The output from the oscilloscope when the switch S is pressed  for a setpoint changed 

from 1 volt to 4.5 volts is shown in Figure 10-14. The introduction of a disturbance 

causes the overshoot observed and the controller returns the output voltage to the 

setpoint. 

 

 

Feedback

R

S

T

1K

S

10K

100UF 
100V

Vout

Remark: 
10K Variable resistor 
acting as disturbance 
when S is switched on

Process

Control Signal

Oscilloscope
Probe



10  DESCRIPTION OF THE SOLUTION FINALLY USED 70 

 

 

Figure 10-14: Testing the PI Controller Before Implementing on the 60Hz Machine. 

10.5.6 PID CONTROL 

The PID Control in this project is implemented as a function which can be inserted also 

into any other project based on the guidelines given in this section. 

10.5.6.1 THE STRUCTURE OF THE PID CONTROL 

 

Figure 10-15: The Structure of the PID Control Implemented in this Project 

Figure 10-15 shows the details setup of the PID controller function developed for this 

project. As shown in the figure, the measured output is compared with the setpoint and 

the difference is feed to the P (proportional) and the I (Integral) parts of the controller. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 71 

 

The D-part is determined by finding the slope for the measured value (current measured 

- last measured).  The I part, add the previous difference (i.e. error) to the current error 

and set a limiter (bond) on the Integral (I-part) output (errorsum) by implementing 

Antiwindup to avoid saturation of the control signal. The outputs from P-part, I-part and 

D-part are respectively multiplied with their respective gain (Kp, Ki, and Kd) and 

summed up as control signal u.  

The control signal u is added to the actual duty cycle U and a function ‚ChangeDuty()‘  

is called to writing the control output ‚U‘ to PWMOutPin 3 in order to vary the current 

of the excitation winding of the 60Hz machine (process) connected to the pin via 

excitation electronic board. Within the function ‚ChangeDuty()‘  a bond is set on the 

control output  between 0 and 255 to ensure the control output is not saturated (i.e.:   

       ) . 

The setpoint specifed in volatage can be scaled to the corresponding analog value 

shown in the figure. This ensure that the voltage setpoint is converted to the 

corresponding analog value before it can be used to compare with the measured value in 

the controller. The scaling shown in the Figure 10-15 is only valid for the current 

measurement electronic used for this 60Hz machine, for a different measurement 

electronic, new scaling for the measurement electronic would be needed to determine its 

range. The prerequisites for integrating this function into another project are given 

below and should be adhered to for the function to work. 

Input to the controller function: 

 setpoint : gArLong[idxSetPM]  

 measured : gArLong[idxFilter]  

 Error sum defined stored in the array as: gArLong[IdxErrorSum] 

 Current measure – Lastmeasure: gArLong[idxDFilter]  

 PWM (Actual duty cycle) defined as: gArByte[IdxPWMDuty] 

 Afunction call ‚ChangeDuty()‘ with an input argument: 

‚(gArByte[IdxPWMDuty] + u)‘   

In the main program declare the following as global variables: 

 gArLong[idxSetPM] 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 72 

 

 gArLong[idxFilter] 

 gArLong[IdxErrorSum] 

 gArLong[idxDFilter] 

Within the PID control function, declare the following as local variables: 

 long int setpoint = gArLong[idxSetPM]; 

 long int measured = gArLong[idxFilter];  

 other local variables are indicated within the function 

Output of the PID control function: 

 The controller returns the duty cycle ‚gArByte[IdxPWMDuty] + u‘ to the 

function call ‚ChangeDuty()‘ as an input argument to write the value of duty 

cycle to the PWM output pin (PwmOutPin 3). 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 73 

 

10.5.6.2 THE PROGRAM FLOW FOR THE PID CONTROL FUNCTION 

 

Figure 10-16: Program Flow for the PID Controller Function Implemented In this 

Project. 

 PID 
Controller 

Declare variables:
 error, u, Z, AntiWindup as  long int.  

setpoint = gArLong[IdxSetPM],
measured = gArLong[IdxFilter],

measured = gArLong[IdxErrorSum],
Kp = gArByte[PIDKP],
Ki = gArByte[PIDKI],
Kd = gArByte[PIDKD]

Define global array hold the 
measured value, output 

deviation, Duty cycle, 
Setpoint & Error sum as: 

  gArLong[IdxFilter];
gArLong[IdxDFilter];

gArLong[IdxPWMDuty];
gArLong[IdxSetPM];

gArLong[IdxErrorSum]

Main 
Program

error = setpoint - measured

errorsum += error

if 
errorsum < -AntiWindup)

errorsum = AntiWinduperrorsum = -AntiWindup

Z = (Ki*errorsum)u = (Kp*errorsum) + Z - D

ChangeDuty(gArByte[IxdPWMDuty] + u)

if 
errorsum > AntiWindup

errorsum

setpoint measured

errorsum 
errorsum  

NN

D = (Kd*(gArLong[IdxDFilter])*f)

If 
NewDuty > 

255

If 
NewDuty < 0

Write to 
PWMOutPin

NewDuty = 0 NewDuty = 255
Y Y

NN

NewDuty 
NewDuty 

ChangeDuty(byte Newduty)

error

PWMOutPin



10  DESCRIPTION OF THE SOLUTION FINALLY USED 74 

 

The program flow for the PID control is shown in Figure 10-16. 

Remark: From the HMI, the PID controller settings (KP, KI and KD) determine which 

of the control strategies strategies (P, PI & PID) is being executed in the program. The 

settings are: 

 P - Control: Is executed when KI and KD are set to zero 

 PI - Control: Is executed when and KD set to zero 

 PID - Control: Is executed when non is set to zero. 

The code for the PID control is shown in Appendix 11.  

10.5.6.3 TESTING THE PID CONTROL FUNCTION  

The test in this section was carried out before implementing the PID controller on the 

60Hz machine. Figure 10-17 show a simple circuit for testing the PID controller. In the 

figure the switch S introduces a disturbance (Load: Potentiometer) to the system when 

pressed. The controller should be able to return the output voltage to the setpoint once 

the load is withing the system capacity (4.5V). 

 

Figure 10-17: Hardware Connections for Testing the PID Controller. 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 75 

 

The output from the oscilloscope when the switch S is pressed  for a setpoint changed 

from 1 volt to 4.5 volts is shown in Figure 10-18. The introduction of a disturbance 

causes the overshoot observed and the controller returns the output voltage to the 

setpoint. 

 

 

Figure 10-18: Testing the PID Controller Before Implementing on the 60Hz Machine 

10.5.7 FUZZY LOGIC CONTROL 

From the webserver interface (HMI), the field for the fuzzy logic setpoint is given a 

symbolic name ‚gB5‘ and its value is 2 (i.e.: gB5=2) where value 2 represnts fuzzy 

logic control. Once the setpoint for the fuzzy control is set, this changes the value in the 

global Array Byte gArByte[5] to 2 and this value represents SymFuzzyControl (in the 

main). This enable the fuzzy logic control function to be called in the DoControl() 

function to execute the function. The platform for this is shown in Appendix 11. 

10.5.8 DOCONTROL FUNTION 

This function switches between different control modes based on the control strategy 

specified by the user from the HMI (Web server). The different control strategies 

defined by this function are: 

 Open Loop Control 

 PID Control (P, PI, PID) 

 Fuzzy Logic Control 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 76 

 

 Neural Network (NN) 

Each of this control functions or strategies is called and executed in this section based 

on the user interest. The structure of this function is shown in Figure 10-19.  

The program code for the ‚DoControl()‘ function is shown in Appendix 11.  



10  DESCRIPTION OF THE SOLUTION FINALLY USED 77 

 

 

Figure 10-19: Program Flow for the 'DoControl()' Function 

 

 

Define global arrays: 

gArByte[IdxControlTriggerActual];

gArByte[IdxControlTriggerInterval];

gArByte[IdxControlMode];

SymOpenLoopControl;

SymPidControl;

SymFuzzyControl;

SymNNControl

gArByte[IdxControlTriggerActual]--

gArByte[IdxControlTriggerActual] 
== 0

Set value in: 
gArByte[IdxControlTriggerActual] = 
gArByte[IdxControlTriggerInterval]

If 
ControlModed = 
SymPidControl

If 
ControlMode = 

SymOpenLoopControl

If 
ControlMode = 

SymFuzzyControl

Switch (ControlModes)

If 
ControlMode = 
SymNNControl

Execute: 
ChangeDuty[gArByte[IdxSetDuty]]

Execute: PID_Control()

Execute: 
FuzzyLogicControl()

Execute: 
NeuralNetworkControl()

End

DoControlMain

No

No

No

yes

yes

yes

yes

Access Values in global 
arrays defined in the  Main



10  DESCRIPTION OF THE SOLUTION FINALLY USED 78 

 

10.6 SCALING VOLTAGE SETPOINT TO ANALOG VALUE 

Based on the scaling for the measurement electronic used for this project, the program 

code for calculating the voltage setpoint specified by the user (from HMI) to the 

corresponding analog values for the controller setpoint is developed as a function that 

can be inserted into any project based on the guidelines specified.  

In the control function (P, PI, & PID)  

 Replace: error = gArLong[IdxSetMeasure] - gArLong[IdxFilter + gIdxNewest] 

with:  

error = gArLong[IdxSetptVoltToSetPtMeasure]- gArLong[IdxFilter + 

gIdxNewest] 

In the Main: 

 Call the function: ComputeVoltToSetpoint(gArLong[IdxSetMeasure]) with an 

input argument: gArLong[IdxSetMeasure] in the void loop() after the DoWeb() 

function. 

In the HMI (User Interface): 

 The convertion from voltage setpoint to the corresponding analog setpoint 

measure is only applicable for the close loop control setpoint.  

 If this function is used a limit is set on the phase to phase voltage setpoint (0 -

253V) set by the user which is the maximum phase to phase voltage for the 

target machine (60Hz machine). The limit is set to avoid the user from given 

undesirable values which might lead to problem with the target machine. For a 

different machine, the limit should be set based on its maximum capacity (phase 

to phase output voltage). 

 If the this funtion is not used to compute the corresponding analog value for a 

setpoint voltage, then the measured value of the RST can be obtained by setting 

the pwm for the open loop control and check the ‚System Status‘ under ‚Service‘ 

to get the measured value and then use this as the setpoint for the close loop 

control. The system status should be refreshed before reading the measured 

values or Filter value. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 79 

 

Caution: 

Using this function involves the use of float to compute the actual measure for  

the setpoint and this requires more time and more process load than integer 

computaion.  

The program code for this function is shown in Appendix 8 with the code for the Main.  

10.7 DATA LOGGING 

This section logging the follwing data to an SD card. 

 Measurement of the three pahses: R, S, T  

 Measured value: gArLong[idxFilter] for the three phases 

 Control signal U  

The data logged to the SD card can be downloaded from the Human Machine Interface 

(HMI, i.e.: webserver).  

The function is designed in such a way that the opening of the file for writing (logging) 

is implemented as a function: ‚OpenWriteLogFile()‘which is called in another function 

‚DoWeb()‘  (under Webserver) to execute the code. 

The decision to call the function ‚OpenWriteLogFile()‘ to open the file is based on the 

value in the global Array ‚gArByte[idxCmd]‘  in Table 10-1 and the decision to write to 

the file is based on value of the semaphore in the global Array 

‚gArByte[idxlogSemaphore]‘ in Table 10-2. The value in the global array 

gArByte[idxlogSemaphore] is used for timing control for writing to file (logging). 

The global arrays ‚gArByte[idxCmd]‘ and ‚gArByte[idxlogSemaphore]‘ can assume the 

values in Table 10-1 and Table 10-2 with their corresponding definitions. 

 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 80 

 

Table 10-1: Different Contents of the gArByte[idxCmd] with their Corresponding 

definitions and Description 

Content of gArByte[idxCmd] Meaning of contents defined 

in the main program 

Description 

gArByte[idxCmd] = 0 SymCmdNone No command is available 

gArByte[idxCmd] = 1 SymCmdSetControl  

gArByte[idxCmd] = 2 SymCmdStartLog Start data logging 

gArByte[idxCmd] = 3 SymCmdStopLog Stop data logging 

gArByte[idxCmd] = 4 SymCmdStoreDefault Store global variables as 

default to the SD card 

Table 10-2: Different Contents of the gArByte[idxlogSemaphore] with their 

Corresponding definitions and Description 

Content of 

gArByte[idxlogSemaphore] 

Meaning of contents 

defined in the main 

program 

Description 

gArByte[idxlogSemaphore] = 0 SymLogOff No Logging (i.e.: No 

Writing) 

gArByte[idxlogSemaphore] = 1 SymLogWriteProgress Writing to File in progress 

gArByte[idxlogSemaphore] = 2 SymLogGetFirst Reset the time axis 

(numbering) for 

datalogging 

gArByte[idxlogSemaphore] = 3 SymLogGetNext Update the Buffer for data 

logging 

The sequence of operation is shown: 

 The different values in the global Array: gArByte[idxCmd]  is supplied by the 

user from the HMI (Human Machine Interface) which would be discussed later.  

 When the value in: gArByte[idxCmd]  = SymCmdStartLog  



10  DESCRIPTION OF THE SOLUTION FINALLY USED 81 

 

(i.e.: SymCmdStartLog is 2 defined in the main program) the function 

‚OpenWriteLogFile()‘ is called to open the file for writing the data. 

 Once the file is opened, within the function ‚OpenWriteLogFile()‘ the content of 

the global array ‚gArByte[idxlogSemaphore]‘ is set to ‚SymLogGetFirst‘ to reset 

the time axis (numbering) for datalogging:  

gArByte[idxlogSemaphore] = SymLogGetFirst 

Therefore, the content in this array space would be 2. 

 In the ADC_ISR(), the content in the array ‚gArByte[idxlogSemaphore]‘ is 

checked, if the value stored in the array space for idxlogSemaphore is equal 2 

(SymLogGetFirst) the ADC_ISR() is forced to reset the time axis for the 

datalogging to 0. 

 Then the content in ‚gArByte[idxlogSemaphore]‘ is checked again in the 

ADC_ISR(), if the value stored in the array space ‚ gArByte[idxlogSemaphore]‘ 

is greater than or equal to 2 (SymLogGetFirst) the buffer for the datalogging are 

updated with new values by the ADC_ISR().  

 After the buffers are updated, the ADC_ISR() resets the value stored in the array 

,gArByte[idxlogSemaphore]‘ to 1 (i.e. SymLogWriteProgress): 

gArByte[idxlogSemaphore] = SymLogWriteProgress 

 After then, the content in the array ‚gArByte[idxlogSemaphore]‘ is checked by 

the main loop (void loop()) to see if the value is equal 1 (i.e. 

SymLogWriteProgress). If this is true, the data in the buffers are written to the 

SD card and the value in the array gArByte[idxlogSemaphore] is reset to 

SymLogGetNext (i.e. 3) for the ADC_ISR() function to updates the buffers. 

 When the user clicked on ‚Stop Logging‘ from the HMI the value stored in the 

array ‚gArByte[idxCmd]‘ is reset to 3 (i.e. SymCmdStopLog) and this call a 

function: ‚CloseLogFile()‘ to closed the file. 

 Finally when the file is closed, the value stored in the array ‚gArByte[idxCmd]‘ 

is reset to 0 (i.e. SymCmdNone). 

The flow sequence for the data logging is shown in Figure 10-20. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 82 

 

 

Figure 10-20: Data Logging Program Flow Sequence. 

The program code for the ‚OpenWriteLogFile()‘ function is shown in Appendix 12. 

The program flow sequence for the CloseLogFile() function is shown in Figure 10-21. 

 

Figure 10-21: Program Flow Sequence for the CloseLogFile Function 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 83 

 

The program code for the ‚CloseLogFile()‘ is also shown in Appendix 12. 

10.8 WEBSERVER (HUMAN MACHINE INTERFACE) 

The webserver implemented in this project was designed using Microsoft Expression 

Web. The welcome page and its service menu are shown in Figure 10-22. 

 

Figure 10-22: The Webserver Welcome Page and its Service Menu. 

10.8.1 WEBSITE LOGIC 

The logic design for the webserver (HMI) is describe in shown in Figure 10-23. 

Each field in Figure 10-23 (webserver) is represented with a symbolic name with either: 

 gBIdx: where Idx = 1, 2, ..., n, eg.: gB0, gB1,..., gBn.  

 gIIdx: where Idx = 1, 2, ..., n, eg.: gI0, gI1, ..., gIn. or 

 gLIdx: where Idx = 1, 2, ..., n, eg.: gL0, gL1, ..., gLn. 

where: 

 gB – means global Byte whose values are stored in the global Array Byte 

(gArByte[]) in the array space ‚Idx‘ value. The global Array Byte is defined in 

the Main program. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 84 

 

 gI – means global Interger whose values are stored in the global Array Interger 

(gArINT[]) in the array space ‚Idx‘ value (0, 1, 2, ..., n). The global Array 

Interger is defined in the Main program. 

 gL – means global Long Interger whose values are stored in the global Array 

Long (gArLong[]) in the array space ‚Idx‘ value. The global Array Long is 

defined in the Main program. 

n – represents the numbers for each symbolic name (gB, gI and gL) in the webserver. 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 85 

 

 

Figure 10-23: Logic Design for the Webserver (HMI). 

Each values for each symbolic name (gB, gI& gL) are respectively stored in each of 

their global array (defined in the main program) in a space defined by their Idx number.  

Once the user click any of the fields in the HMI, the symbolic name and/or symbolic 

name with the value (symbolic name=value, eg.: gB0=1) for that field is sent with the 

request string from the web (client) to the server (Arduino) to processing the request 

and respond to the request. The design view for the symbolic names for the global Byte 

(gBIdx), global Interger (gIIdx) and the global Long (gLIdx) are shown in Figure 

10-24, Figure 10-25 and Figure 10-26 respectively.  

 
Welcome PageStandard Menu

Set PID Parameters

KP KI KD

Monitor:
 All the global Arrays Values

[Set As Answer Mode 
HTML (AMParseHTML 0)]

Design Vew:
global arrays -
symbolicname

[Set As Answer Mode Raw 
(AMRaw 1)]

Refresh getWildcards

Voltage
Analog 
Value

Potentiometer

Max. Volt: 
+150V

0V

Min. Volt:
-150V

798

512

226

Gain_Left
(Amplitude)

DCOffset_Right 

Gain_Left
(Amplitude)

Measurement Hardware 
Reference Voltage, 

Reference Analog Value & 
Potentiometers for Tuning

Display RST Values while 
Tuning the Potentiometer

gotoHome

Monitor RST Values while Calibrating

Actual 
Value

R S T

PID Parameters Settings 
Range: 0 - 255

Logging: Start Logging: Stop

Download as CSV

Download Raw Data

Sequence of 
Operations

Setpoint

Setpoint: Open 
Loop Control

Setpoint: Close 
Loop Control

Service
System Status

(For: Debug & Monitoring)

(P) (I) (D)

Hardware Offset
(For: Calibration of 

Measurement Hardware)



10  DESCRIPTION OF THE SOLUTION FINALLY USED 86 

 

 

Figure 10-24: Design for the Symbolic Name Representation of the Global Byte (gBIdx) 

Implemented in the Webserver 

The ‚<#symbolicName#>‘ (eg.: #gB#) are referred to place holders (values) and these 

are replaced with the results of the request sent by webserver to the client (web). The 

user can also place a ‚value‘ and send it to the webserver as request. Hence the 

communication is bi-directional. Once the request is made, all the fields will display the 

current settings in each global arrays for the user to monitor and see what is happening 

in the program. The symbolic name (eg.: gB0, gB1 gB2, etc)  are the attribute names 

given given to each field and this are passed in the request string from the client (web) 

to the webserver to analyze and respond to the request. The same procedures applies to 

Figure 10-25 and Figure 10-26. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 87 

 

 

Figure 10-25: Design for the Symbolic Name Representation of the Global Interger 

(gIIdx) Implemented in the Webserver. 

 

Figure 10-26: Design for the Symbolic Name Representation of the Global Long 

(gLIdx) Implemented in the Webserver. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 88 

 

The prgram flow for the webserver is shown in Figure 10-27. 

 

Figure 10-27: The Program Flow Sequence for the Webserver Implemented in this 

Project. 

 
Client Send 

Request

DoWeb
(Check if Client is 

connected & 
Available)

CreateClient Instance 
for each web request

Set Answer Mode = 
Answer Mode Raw 

If: Client is 
available

GetRequest(Client)
Get FileName from a Function: 
GetRequest(Ethernet Client)

If: AnswerMode = 
OpenLoopControl

Call a Function:
ChangeDuty(gArByte[IdxSetDuty])

If: gArByte[IdxCmd] = 
SymCmdStartLog

Call a Function:
OpenWriteLogFile()

If: gArByte[IdxCmd] = 
SymCmdStopLog

Call a Function:
CloseLogFile()

gArByte[IdxCmd] = 
SymCmdNone

Main

All Functions Can 
Access Global 

Arrays defined in 
the Main:
gArByte[];
gArINT[];
gArLong[]

Yes

No

If: 
gArByte[IdxWebAnswerMode] 

= AMCSV (Answer Mode 
CSV)

Call a Function:
 uploadCSV(client, Filename)

If: 
gArByte[IdxWebAnswerMode] 

= AMParsedHTML

Call a Function:
AnswerFileParsed(client, Filename)

Yes

No

Y

Y

Default for the Web: Call a Function a
AnswerFile(client, Filename)

Stop Client

Web Browser

NewParseRequest(GetString) To 
Return FileName 

If: 
String StartsWith gB

gArByte[Idx] = Value

If: 
String StartsWith gI

gArInt[Idx] = Value

After the Idx is extracted, find the position for     in 
the String & Call a Function: 

getValFromString(GetString, Position+1) To Extract 
the  Value  corresponding to the Idx for the 

particular symbolicName: gB or gI or gL

After extracting the FileName, find the Position of:  
gB, gI, gL in the String & Call a Function: 

getValFromString(GetString, Position+2) To Extract 
the Idx value. 2=lengthOf each: gB, gI, gL

N

Y

Y

Find the position  P  for 
    that ends the 

FileName

If: 
Position P  found

If: 
String StartsWith gL

gArInt[Idx] = Value

Y

While(P>0) 

Find position  P  for     To 
terminate the WhileLoop

Y

Extract other Filename that 
does not ends with    

else

Function To extract the Idx & Value from Symbolic Name (gB, gI, 
gL) & store the values in global Array and Return a FileName

Function To Filter 
Request & Pass it on 
to get the FileName

Y

If: 
!SD.exists(FileName)

Return: FileName

aFileName = DefaultPage

Call a Function:
ReplacementString(string s1) To 
Replace the Place Holder while 

writing to web

If:  String s1  ==IP, Call a Function:
DisplayAddress(Ethernet.localIP())

If:  String s1 StartsWith either: gB, gI, or gL, 
Call a Function:

getValFromString(s1, 2) To Replace each 
SymbolicName from SD card with the content 

in the global Arrays representing their Idx



10  DESCRIPTION OF THE SOLUTION FINALLY USED 89 

 

10.8.2 ANALYZE REQUEST 

From Table 10-3 each submenu in Figure 10-22 is designed with a a speific file name 

and each of this has a corresponding filename stored in the SD card which are used to 

respond (‚answer‘) to web request from the client based on the file and field clicked by 

the user. Table 10-3 (b) the file name is ‚Setpts.htm‘ with a field setpoint measure 

(Close loop setpoint).  The attribute name for this field is ‚gL11‘ (symbolic name) and 

its place holder is ‚#gL11#‘ shown in (b). The user supply 230 as a request for the 

setpoint measure to the webserver (Arduino). The file name, attribute name (symbolic 

name) ‚gL11‘ and its value (230) are sent with the request string from the client (web 

browser) to the webserver as shown in the first row of Figure 10-28.  

Table 10-3: Request Sent by the User from the Web to the Webserver 

 

(a) Filename: SetPts.htm 

 

 

 

(a) Filename: SetPts.htm 

 

 

Figure 10-28: Request String from the Client (Web Browser) to the Webserver 

(Arduino). 

 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 90 

 

This request is analyzed and filtered by the function ‚GetRequest(EthernetClient client)‘ 

as shown. 

 

The function ‚ NewParseRequest(String GetString)‘ extracts the filename (SetPts.htm), 

the vlaue (230) for the gL11 and store this value (230) into the global array 

‚gArLong[Idx]‘ with the Idx value ‚Idx=11‘ specified in the string (gL11) and return the 

filename to the function ‚DoWeb()‘. The controller can access this values ‚230‘ in the 

global array long ‚gArLong[11]‘ and use this as a setpoint for the control. The same 

procedures applies to gB2=1 and gB4=1. For the global Byte ‚gB2=1‘ and gB4=1, their 

values ‚1‘ are stored respectively in the global Array Byte ‚gArByte[2]‘ and gArByte[4].  

The values in the global Array Byte ‚gArByte[2]‘ is used for Web Answer Mode 

‚WebAnswerMode‘. When any of the close loop parameters (eg.: setpoint measure, KP, 

KD, & KD) are clicked by the user the value in gArByte[4]  is set to 1, (i.e.: gb4=1) to 

indicates that the system is on close loop control mode and vise versal. This is an added 

feature to inform the user baout the control mode without having to navigate to another 

field to check the actual parameter responsible for this information. 

The ‚DoWeb()‘ can call different functions responsible for the different answer mode 

based on the value written to the global array byte ‚gArByte[2]‘. The codes for the 

functions discussed are shown in Appendix 13 in the Webserver. 

10.8.3 KINDS OF ANSWERING 

There are three modes of answering the web client request 

 AMParsedHTML: defined as 0 

 AMRaw: defined as 1 

 AMCSV: defined as 2 

The global Array Byte ‚gArByte[2]‘ is responsible for this mode. If the value written in 

this array is 0 (i.e.: gB2=0) the function ‚AnswerFileParsed(client, Filename)‘ 

responsible for sending the reponse to the request in HTML is called. This function 

search for the filename given in the request string in the SD Card and upload the data to 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 91 

 

the web with the information requested as HTML (for design view and debugging). The 

code for the function AnswerFileParsed(client, Filename)‘ is shown in Appendix 13 

with the webserver. 

If the value written in this array is 1 (i.e.: gB2=1) the function ‚AnswerFile(client, 

Filename)‘ which is the default answer mode (AMRaw) is called. This function search 

for the filename given in the request string in the SD Card and upload the data to the 

web with the information requested. The code for the function AnswerFile(client, 

Filename) is shown in Appendix 13 with the webserver. 

Also if the value written in this array is 2 (i.e.: gB2=2) the function ‚uploadCSV(client, 

Filename)‘ which is the answer mode (AMCSV) is called. This function search for the 

filename given in the request string in the SD Card and upload the data to the web with 

the information requested in CSV format. The code for the function uploadCSV(client, 

Filename) is shown in Appendix 13 with the webserver. 

As the files are being uploaded to the client (web) from the SD Card, the place holders 

(#symbolicname#) for example #gL11# in the file for the HTML fields ‚Attribute: 

value‘ are replaced with the values in the global array corresponding to their array and 

Idx value. 

 gBIdx: Is replaced with value in the global Array Byte: gArByte[Idx] 

 gIIdx: Is replaced with value in the global Array Byte: gArINT[Idx] 

 gLIdx: is replaced with value in the global Array Byte: gArLong[Idx] 

Remark: All the codes for each function can be found in Appendix 13 in the Webserver. 

10.8.4 HTML- PAGES 

The web pages for the welcome page, service, PID control (P, PI, & PID), System 

status, Hardware offset (Hardware calibration) are shown in the following figures. 

The HTML codes are shown in Appendix 14. Each HTML codes are stored as a file 

with their name in Appendix 14. The various animation files and the HTML codes are 

also stored in the SD Card attached to back cover of this project. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 92 

 

 

Figure 10-29: Welcome Page for the 60Hz Machine. 

 

 

Figure 10-30: Page for the Open Loop and Close Loop Setpoint for the 60Hz Machine. 

 

 

 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 93 

 

 

Figure 10-31: Data Logging Page for the 60Hz Machine. 

 

 

Figure 10-32: Service Page for the Control of  60Hz Machine. 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 94 

 

 

Figure 10-33: Service Status Page for the 60Hz Machine. 

 

 

Figure 10-34: PID Control (P, PI & PID) Page for the Control of the 60Hz Machine. 

 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 95 

 

 

Figure 10-35: Hardware Offset Calibration Page for the 60Hz Machine Measureement 

Electronic. 

10.8.5 HEPTIC IN MONITORING AND CONTROL 

For the monitoring and control using the HMI interface, the following guidelines should 

be adhered. 

For open loop control: 

 Set the open loop setpoint. The setpoint shoould be given in duty cycle. 

 Duty cycle of 54 (i.e.: pwm = 54) correspond to the phase-to-phase nominal 

voltage (220V) for the machine and a measured value of 194287.  

 The duty cycle of 60 correspond to 230V phase-to-phase voltage and a measured 

value of 211000. 

 For a phase to phase voltage of 120V, the measure is 200000. 

For close loop control: 

 Set the ‚ ControlTriggerInterva/ ‘  to a value greater than 2 for fast control. 

 Set the KP = 136. (KP = 128, 132 and 144 will also work) 

 If desired to operate in P Control, set KI = KD = 0 

 If desired to operate in PI Control, set KP = 136 and KI = 131 and KD = 0. 



10  DESCRIPTION OF THE SOLUTION FINALLY USED 96 

 

 If desired to operate in PID Control, set KP = 136, KI = 131 and KD = 176. 

 Set the setpoint measure for the close loop to 194287 for the nominal voltage 

220V. 

 In the void setup() in the main loop, duty cycle of 255 is written to the output 

pin of the connected to the machine to set the output voltage for the machine to 

zero. This is done due to the inversion of optical signal (control signal) by the 

opto isolator on the excitation electronic board. 

Extending the Code: 

 It should be noted that all the variables contents are store in three global arrays 

and these are harded encoded in the webserver, therefore, to add new feature 

or future expansion of this project, new array space should be added to the 

current global array(s) to accommodate the new future. Changing the current 

Idx for the array will affect the command(s) from the webserver (HMI). 

Others: 

 Multiple users simultaneously accessing the webserver might leads to system 

crash or timeout. 

 No bumpless transfer is implemented for switching from either close loop 

control to open loop and vise versal. This is because system is designed to react 

rapidly to any short circuit faults on the 60Hz grid detected. Implementing 

bumpless transfer will slow down the response time. Therefore, switching from 

close loop to open loop and vise versal is used to test this to see how fast the 

system can respond. 

 It is advisable to set the setpoint to zero when powering up the machine to avoid 

driving the output high. 

 If P Control is desired, set KI = 0 and KD = 0 

  If PI Control is desired, set KD = 0 and 

 If PID Control is desired, set none of the parameters to zero. 

 The system status is used for monitoring and debugging, setting wrong values 

might leads to system crash. The user should be conversant with the function of 

each fields before setting any value. 



11  COMMISSIONING AND TESTING 97 

 

 The calibration of the measurement electronic using the Harware offset page 

should be done with cares due to high voltage. DC voltage is used for the 

calibration. For the online calibration with the machine, a rectifer can be 

developed to rectifier the output voltage from the generator to the input of the 

measurement device.    

 

11 COMMISSIONING AND TESTING 

The commissioning and testing for the different control strategies designed and 

implemented in this project is carried out in this sections along with the webserver 

designed as the HMI interface for the user. 

11.1 OPEN LOOP CONTROL 

The setpoint for the open loop control is given in duty cycle (PWM) from the HMI. The 

duty cycle of 54 gives nominal voltage of 220V (phase-to-phase) for the machine.  

When the duty cycle is sets to 60 from the HMI interface, the output voltage seen from 

the analog and digital multimeters was 225V.  The measurement data obtained was 

plotted using MATLAB with its wavelet function to filter the noise as shown in Figure 

11-1.  



11  COMMISSIONING AND TESTING 98 

 

 

Figure 11-1: Open Loop Control for Duty Cycle of 60. 

11.1.1 FUNDAMENTAL, BOUNDARIES AND CHARACTERISTICS 

 When operating on open loop the duty cycle is directly written to the output pin 

connected to the machine through the excitation electonic board.   

 Duty cycle range: 0 – 255 (positive values only) 

 Duty cycle of 54 (PWM) corresponds to nominal voltage of 220V. 

 A negative duty cycle will have no effect on the output of the machine as the 

code running behind is designed to protect the machine from this. 

 The open loop is implemented with no hand-shake with the controllers, this 

implies there is no bumples transfer between the open loop and the controllers 

(P, PI and PID).  

11.2 PID-CONTROL (P, PI & PID) 

11.2.1 ADJUSTMENT OF THE CONTROLLER COEFFICIENTS 

Adjusting   : 

To adjust the   the following procedures were carried out.  

 The    range is chosen between 0 and 255 



11  COMMISSIONING AND TESTING 99 

 

 Set the nominal setpoint measure to 194287 (220V)   

 The    sets to maximum value of 255 and the division factor ‚a‘ in equation 41 

sets to 31 (close to maximum long integer) and decreases the division factor to 

23 in a step of 1 until oscillation is observed from the analog and digital 

voltmeter connected to the output of the machine and from the measurement 

data ploted using MATLAB as shown in Figure 11-2. 

The plots in the figure for current timedomain, current space phasor, voltage 

amplitude and current amplitude were obtained using wavelet filter in MATLAB 

to filter the noise from the voltage time domain shown. 

 

Figure 11-2: Oscillation Observed when the Division Factor 'a' was Set to 23 at 220V 

Setpoint. 



11  COMMISSIONING AND TESTING 100 

 

The systematic settings for the    and the corresponding findings to determine the next 

   are shown in Table 11-1. In each cases a load 4A (inductive and resistive loads) is 

injected to the grid to observe the output voltage stability based on the    setting using 

the analog voltmeter, digital voltmeter and the measurements data plotted using 

MATLAB and its inbuilt wavelet function to filter the noise voltage time domain. 

Table 11-1: Systematic Steps Determine    for the P Controller 

Setpoint 

Measured 

194287 

Division 

factor 

(a) 

Kp 

(min) 

Kp 

(max) 

voltage 

Output for Kp 

(min) 

voltage 

Output for 

Kp (max) 

Determine 

next Kp 

based on 

findings 

220V 23 1 255 Stable at: 

199V 

Oscillates at: 

209V 

(1+255)/2 = 

128 

220V 23 1 128 Stable at: 

199V 

Stable at: 

200V 

(128+255)/2 

= 192 

220V 23 128 192 Stable at: 

200V 

Oscillates at: 

208V 

(128+192)/2 

= 160 

220V 23 128 160 Stable at: 

200V 

Less 

oscillation at: 

205V 

(128+160)/2 

= 144 

220V 23 128 144 Stable at: 

200V 

Stable at: 

202V but 

with very 

little dynamic 

behaviour 

(128+144)/2 

= 136 

220V 23 128 136 Stable at: 

200V 

Stable at 

201V 

Kp = 136 

chosen 

The systematic procedures for adjusting    is shown in Appendix 15 (P Controller 

Coeeficient) using publish function from MATLAB. The Current Timedomain, Current 

Space Sphasor, Voltage mplitude and Current Amplitude shown in the published file are 



11  COMMISSIONING AND TESTING 101 

 

the output of the wavelet filter from the MATLAB to filter the noise from the Voltage 

Timedomain. 

 Adjusting   : 

The systematic procedures for adjusting    is shown in Appendix 15 (PI Controller 

Coeeficient) using publish function from MATLAB. The Current Timedomain, Current 

Space Sphasor, Voltage mplitude and Current Amplitude shown in the published file are 

the output of the wavelet filter from the MATLAB to filter the noise from the Voltage 

Timedomain. 

Adjusting   : 

The systematic procedures for adjusting    is shown in Appendix 15 (PID Controller 

Coeeficient)  using publish function from MATLAB.  

The Current Timedomain, Current Space Sphasor, Voltage mplitude and Current 

Amplitude shown in the published file are the output of the wavelet filter from the 

MATLAB to filter the noise from the Voltage Timedomain. 

11.2.2 FINDINGS ON SETPOINT JUMPS 

The setpoint jumps are carried out with different controllers in two steps 

 Positive Setpoint Jump: 209V – 231V based on: 

o Active Power (Resistive Load)  - Measurement1 in SD card 

o Positive Reactive Power (Inductive Load) - Measurement3 in SD card 

o Negative Rective Power (Capacitive Load) - Measurement5 in SD card 

 Negative Setpoint Jump: 231V – 209V based on: 

o Active Power (Resistive Load)  - Measurement2 in SD card 

o Positive Reactive Power (Inductive Load) - Measurement4 in SD card 

o Negative Rective Power (Capacitive Load) - Measurement6 in SD card 

For each measurements the load was sets to 4A. 

Findings from the experiment carried out on the machine are shown in  the following 

figures. However, only the positive setpoint jumps for the Active Power for P, PI and 

PID control are shown. Others data for teh respective load are stored in  the SD card 



11  COMMISSIONING AND TESTING 102 

 

attached to the back cover of this report with the MATLAB codes for plottind the data. 

The MATLAB code can also be found in Appendix 16  (Setpoint Jumps). 

 

Figure 11-3: Positive Setpoint Jump (209V - 231V) Based on Active Power (Resistive 

Load) at 4A for P Controller. 

 

 

Figure 11-4: Positive Setpoint Jump (209V - 231V) Based on Active Power (Resistive 

Load) at 4A for PI Controller. 

 



11  COMMISSIONING AND TESTING 103 

 

 

Figure 11-5: Positive Setpoint Jump (209V - 231V) Based on Active Power (Resistive 

Load) at 4A for PID Controller. 

It was seen from Figure 11-3, Figure 11-4 and Figure 11-5 that the output voltage for 

the machine does not return exactly to the setpoint. An offset were observed for all the 

control. 

11.2.3 FINDINGS ON ACTIVE POWER JUMPS (RESISTIVE LOAD) 

When the phase to phase voltage setpoint was set to 220V,        ,        , 

       and the resistive load at 4A connected to the grid was switched on at 

different time shown in Figure 11-6, Figure 11-7 and Figure 11-8 the measurement 

data obtained were plotted using MATLAB with wavelet function to filter the noise as 

shown  in figures.   



11  COMMISSIONING AND TESTING 104 

 

 

Figure 11-6: The P Controller Behaviour When the Active Power Jumps (Resistive 

Load) of 4A was Switched on at t = 1.406s (                    

 ). 

As seen from the plot in Figure 11-6, when the resistive load (disturbance) was 

switched on at t = 1.406s, the output voltage dropped from 202V to 199V (phase-to-

phase and the P-Controller return and stabilize the output voltage at 202V after 500ms 

with an offset of 17V as seen in the figure. When the load was switched off (disturbance 

removed) at t = 5.0s, the voltage increases from 202V to 205V (an overshoot was 

observed) and the controller returns and stabilize the voltage at 202V after 600ms as 

seen in Figure 11-6. 



11  COMMISSIONING AND TESTING 105 

 

 

Figure 11-7: The PI Controller Behaviour When the Active Power Jumps (Resistive 

Load) of 4A was Switched on at t = 1.541s (                

         ). 

As seen from the plot in Figure 11-7, when the resistive load (disturbance) was 

switched on at t = 1.541s, the output voltage decreases from 202V to 200V (phase-to-

phase and the PI-Controller return and stabilize the output voltage at 204Vafter 500ms 

with an offset of 15V as seen in the figure. When the load was switched off (disturbance 

removed) at t = 4.498s, the output voltage increases from 205V to 206V (an overshoot 

was observed) and the controller returns and stabilize the voltage at 204V after 400ms as 

seen in Figure 11-7. 

 



11  COMMISSIONING AND TESTING 106 

 

 

Figure 11-8: The PID Controller Behaviour When the Active Power Jumps (Resistive 

Load) of 4A was Switched on at t = 1.34s (                

           ) 

As seen from the plot in Figure 11-8, when the resistive load (disturbance) was 

switched on at t = 1.34s, the output voltage dropped from 203V to 201V (phase-to-phase 

and the PID-Controller return and stabilize the output voltage at 205V after 490ms with 

an offset of 15V as seen in the figure. When the load was switched off (disturbance 

removed) at t =5.0s, the output voltage increases from 205V to 207V (an overshoot was 

observed) and the controller returns and stabilize the voltage at 204V after 388ms as 

seen in Figure 11-8. 

Remark: 

The MATLAB code for the data analysis for active power jumps, positive reactive 

power jumps, and negative reactive power jumps are shown in Appendix 16. The 

measurement data and the MATLAB codes is also stored in the SD card (Filename: 

Measurement Files) attached to the back cover of this report. In the MATLAB code 

replace the  ‚FileName‘  in the ‚Prefix‘ with the name of the measurement data 

(excluding the fileNo from the Prefix) to be analysed and the ‚Idx = fileNo‘ for example: 



11  COMMISSIONING AND TESTING 107 

 

Prefix = ‘ PcontrolActivePowerJumpIdx‘, the Idx for the file is the fileNo: 136. 

11.2.4 FINDINGS ON POSITIVE REACTIVE POWER JUMPS (INDUCTIVE 

LOAD) 

When the phase to phase voltage setpoint was set to 220V,        ,        , 

       and the inductive load at 4A connected to the grid was switched on at 

different time shown in Figure 11-9, Figure 11-10 and Figure 11-11 the measurement 

data obtained were plotted using MATLAB with wavelet function to filter the noise as 

shown  in figures. 

 

Figure 11-9: The P Controller Behaviour When a Positve Reactive Power Jumps 

(Inductive Load) of 4A was Switched on at t = 1.8s (               

      ). 

As seen from the plot in Figure 11-9, when the inductive load (disturbance) was 

switched on at t = 1.8s, the output voltage decreases from 202V to 199V (phase-to-

phase and the P-Controller return and stabilize the output voltage at 202V after 800ms 

with an offset of 17V as seen in the figure. When the load was switched off (disturbance 

removed) at t = 5s, the output voltage increases from 202V to 204V (an overshoot was 

observed) and the controller returns and stabilize the voltage at 202V after 900ms with 

oscillation observed as seen in Figure 11-9. 



11  COMMISSIONING AND TESTING 108 

 

 

Figure 11-10: The PI Control Behaviour When a Positve Reactive Power Jumps 

(Inductive Load) of 4A was Switched on at t = 5.127s (               

        ). 

As seen from the plot in Figure 11-10, when the inductive load (disturbance) was 

switched on at t = 5.127s, the output voltage dropped from 202V to 199V (phase-to-

phase and the PI-Controller return and stabilize the output voltage at 205Vafter 600ms 

as seen in the figure. When the load was switched off (disturbance removed) at t = 

10.4s, the output voltage increases from 205V to 207V (an overshoot was observed) and 

the PI-Controller returns and stabilize the voltage at 205V after 400ms as seen in Figure 

11-10.  



11  COMMISSIONING AND TESTING 109 

 

 

Figure 11-11: The PID Control Behaviour When a Positve Reactive Power Jumps 

(Inductive Load) of 4A was Switched on at t = 1.597s (               

          ). 

As seen from the plot in Figure 11-11, when the inductive load (disturbance) was 

switched on at t = 1.597s, the output voltage decreases from 204V to 200V (phase-to-

phase and the PID-Controller returns the output voltage to 201Vafter 200ms as seen in 

the figure. When the load was switched off (disturbance removed) at t = 5.373s, the 

output voltage increases from 201V to 205V with an overshoot and the controller returns 

and stabilizes the voltage at 204V after 400ms with oscilation observed as seen in 

Figure 11-11. 



11  COMMISSIONING AND TESTING 110 

 

 

Figure 11-12: The Open Loop Control Behaviour When a Positve Reactive Power 

Jumps (Inductive Load) of 4A was Switched on at t = 1.761s. 

As seen from the plot in Figure 11-12, when the inductive load (disturbance) was 

switched on at t = 1.761s, the output voltage drops from 222V to 217V (phase-to-phase 

and stabilises at 217V after 800ms with an oscillation observed. When the load was 

switched off (disturbance removed) at t = 5.408s, the output voltage increases from 

217V to 222V after 400ms with an an oscillations observed as seen in Figure 11-12. 

11.2.5 FINDINGS ON NEGATIVE REACTIVE POWER JUMPS (CAPACITIVE 

LOAD) 

When the phase to phase voltage setpoint was set to 220V,        ,        , 

       and the inductive load at 4A connected to the grid was switched on at 

different time shown in Figure 11-13, Figure 11-14 and Figure 11-15 the measurement 

data obtained were plotted using MATLAB with wavelet function to filter the noise as 

shown  in figures. 

 



11  COMMISSIONING AND TESTING 111 

 

 

Figure 11-13: The P Controller Behaviour When a Negative Reactive Power Jumps 

(Capacitive Load) of 4A was Switched on at t = 1.87s (            

         ). 

As seen from the plot in Figure 11-13, when the capacitive load (disturbance) was 

switched on at t = 1.87s, the output voltage increases from 202V to 212V (phase-to-

phase) instead of decreasing, and the P-Controller return the output voltage to 205V 

after 500ms. When the load was switched off (disturbance removed) at t = 4.518s, the 

output voltage dropped from 205V to 193V instead of increasing but the P-Controller 

returns the output voltage to 202V after 700ms as seen in the figure.  

 

 

 



11  COMMISSIONING AND TESTING 112 

 

 

Figure 11-14: The PI Controller Behaviour When a Negative Reactive Power Jumps 

(Capacitive Load) of 4A was Switched on at t = 5.485s (            

           ). 

As seen from the plot in Figure 11-14, when the capacitive load (disturbance) was 

switched on at t = 5. 485s, the output voltage decreases from 201V and then increases 

immediately to 213V (phase-to-phase) instead of decreasing and the PI-Controller 

return and stabilize the output voltage at 205V after 700ms. When the load was switched 

off (disturbance removed) at t = 16.52s, the output voltage dropped from 205V to 194V 

instead of increasing but the PI-Controller returns and stabilize the output voltage at 

205V after 800ms as seen in Figure 11-14.  

 



11  COMMISSIONING AND TESTING 113 

 

 

Figure 11-15: The PID Controller Behaviour When a Negative Reactive Power Jumps 

(Capacitive Load) of 4A was Switched on at t = 1.178s (            

           ). 

As seen from the plot in Figure 11-15, when the capacitive load (disturbance) was 

switched on at t = 1.178s, the output voltage increases from 202V to 213V (phase-to-

phase) instead of decreasing and the PID-Controller return and stabilises the output 

voltage to 206V after 700ms. When the load was switched off (disturbance removed) at t 

= 3.359s, the output voltage dropped to 196V instead of increasing and the controller 

returns the output voltage to 202V after 1000ms as seen in the figure.  



11  COMMISSIONING AND TESTING 114 

 

 

Figure 11-16: The Open Loop Control Behaviour When a Negative Reactive Power 

Jumps (Capacitive Load) of 4A was Switched on at t = 1.359s. 

As seen from the plot in Figure 11-16, when the capacitive load (disturbance) was 

switched on at t = 1.359s, the output voltage increases from 222V to 230V (phase-to-

phase) instead of decreasing and stabilizes at 230V after 300ms. When the load was 

switched off (disturbance removed) at t = 4.711s, the output voltage dropped to 222V 

after 300ms instead of increasing as seen in the figure. 

Table 11-2 shows a brief summary of the findings discussed in this section. 

Table 11-2: Brief Summary of the Findings. 

 P Control PI Control PID Control Open Loop 

Control 

Positive Setpoint 

Jumps with Active 

Power (Resistive 

Load) 

(209V– 231V) 

Voltage 

stabilizes at 

224V 

Voltage 

stabilizes at 

225V 

Voltage 

stabilizes at 

224V 

Voltage 

stabilizes at 

222V 

Negative Setpoint 

Jumps with Active 

Power (Resistive 

Voltage 

stabilizes at 

197V 

Voltage 

stabilizes at 

198V 

Voltage 

stabilizes at 

198V 

Voltage 

stabilizes at 

196V 



11  COMMISSIONING AND TESTING 115 

 

Load)(231V– 209V) 

Positive Setpoint 

Jumps with positive 

Reactive Power 

(Inductive Load) 

(209V–231V) 

Voltage 

stabilizes at 

224V 

Voltage 

stabilizes at 

223V 

Voltage 

stabilizes at 

225V 

Voltage 

stabilizes at 

222V 

Positive Setpoint 

Jumps with 

Negative Reactive 

Power (Capacitive 

Load)(209V– 231V) 

Voltage 

stabilizes at 

227V 

Voltage 

stabilizes at 

226V 

Voltage 

stabilizes at 

225V 

Voltage 

stabilizes at 

229V 

Negative Setpoint 

Jumps with positive 

Reactive Power 

(Inductive Load) 

(231V– 209V) 

Voltage 

stabilizes at 

198V 

Voltage 

stabilizes at 

196V 

Voltage 

stabilizes at 

194V 

Voltage 

stabilizes at 

197V 

Negative Setpoint 

Jumps with 

Negative Reactive 

Power (Capacitive 

Load)(231V– 209V) 

Voltage 

stabilizes at 

196V 

Voltage 

stabilizes at 

199V 

Voltage 

stabilizes at 

195V 

Voltage 

stabilizes at 

195V 

Response Time 

when Active load 

switched on 

(Resistive load) 

500ms 500ms 490ms Data not 

available 

Response Time 

when Active load 

switched off 

(Resistive load) 

600ms 400ms 388ms Data not 

available 

Response Time 

when Positive 

Reactive load 

switched on 

800ms 600ms 200ms 800ms 



11  COMMISSIONING AND TESTING 116 

 

(Inductive load) 

Response Time 

when Positive 

Reactive load  

switched off 

(Inductive load) 

900ms 400ms 400ms 400ms 

Response Time 

when Negative 

Reactive load  

switched on 

(Capacitive load) 

500ms 700ms 700ms 300ms 

Response Time 

when Negative 

Reactive load  

switched off 

(Capacitive load) 

700ms 800ms 1000ms 300ms 

Impact of Active 

Load (Resistive 

load) 

When the 

load is 

switched on: 

Output 

voltage drops 

to199V, the 

controller 

returns and 

stabilized 

output 

voltage to 

202V. 

When the 

load is 

switched off: 

Output 

voltage 

increases to 

205V, the 

When the load 

is switched on: 

Output voltage 

drops 200V, the 

controller 

returns and 

stabilized 

output voltage 

to 204V. 

When the load 

is switched off: 

Output voltage 

increases to 

206V, the 

controller 

returns and 

stabilized the 

voltage at 

204V. 

When the load 

is switched on: 

Output voltage 

drops 201V, 

the controller 

returns and 

stabilized 

output voltage 

to 205V. 

When the load 

is switched off: 

Output voltage 

increases to 

207V, the 

controller 

returns and 

stabilized the 

voltage at 

205V. 

Data not 

available 



11  COMMISSIONING AND TESTING 117 

 

controller 

returns and 

stabilized the 

voltage at 

202V. 

Impact of Positive 

Reactive load 

(Inductive load) 

When the 

load is 

switched on: 

Output 

voltage drops 

to 199V, the 

controller 

returns and 

stabilized 

output 

voltage to 

202V. 

When the 

load is 

switched off: 

Output 

voltage 

increases to 

204V, the 

controller 

returns and 

stabilized the 

voltage at 

202V. 

When the load 

is switched on: 

Output voltage 

drops, the 

controller 

returns and 

stabilized 

output voltage 

to 205V. 

When the load 

is switched off: 

Output voltage 

increases, the 

controller 

returns and 

stabilized the 

voltage at 

205V. 

When the load 

is switched on: 

Output voltage 

drops, 

controller 

could not 

return the 

output to the 

204V (output 

stays below 

setpoint).  

When the load 

is switched off:   

The controller 

returns and 

stabilizes the 

voltage at 

204V. 

When the 

load is 

switched on: 

Output 

voltage drops 

from 222V to 

217V and 

remains 

without 

returning to 

setpoint 

222V. 

When the 

load is 

switched off: 

Output 

voltage 

increases to 

222V and 

remains.  

Impact of Negative 

Reactive load 

(Capacitive load) 

When the 

load is 

switched on: 

Output 

voltage 

increases, the 

controller 

returns and 

When the load 

is switched on: 

Output voltage 

increases, the 

controller 

returns and 

stabilizes the 

When the load 

is switched on: 

Output voltage 

increases, the 

controller 

returns and 

stabilizes the 

voltage to 

When the 

load is 

switched on: 

Output 

voltage 

increases 

from 222V to 

230V and 



11  COMMISSIONING AND TESTING 118 

 

stabilizes the 

voltage to 

202V 

When the 

load is 

switched off: 

Output 

voltage 

decreases, 

the controller 

returns and 

stabilizes the 

voltage to 

202V 

voltage to 205V 

When the load 

is switched off: 

Output voltage 

decreases, the 

controller 

returns and 

stabilizes the 

voltage to 205V 

204V 

When the load 

is switched off: 

Output voltage 

decreases, the 

controller 

returns and 

stabilizes the 

voltage to 

202V 

remains there.   

When the 

load is 

switched off: 

Output 

voltage drops 

to 222V and 

remains there.  

 

11.2.6 CONNECTION WITH WIND TURBINE 

When the wind turbine was connected to the 60Hz grid as shown in Figure 11-17 

with a variable load connected to the grid between the turbine and the machine, the load 

was made to increases or decreases. The voltage at point A of the 60Hz machine was to 

be kept constant for any load conditions. In this experiment P Control was used. 

 

Figure 11-17: Connection of the Wind Turbine to  the 60Hz Grid with Variable Load. 

 

The measurement data obtained was analyzed and plotted using MATLAB and its 

wavelet function as shown in  Figure 11-18 to Figure 11-22. 

 

LUV 1

60 Hz 50 Hz

I_Netz

SM SM

Point A

Wind Turbine

Variable 
Load

Machine



11  COMMISSIONING AND TESTING 119 

 

 

Figure 11-18: Phase Voltage (Phase-Neutral) Measured at Point A of the Machine 

when the Wind Turbine is  Conneted  to the 60Hz Grid 

 

Figure 11-19: Voltage Space Phasor and its Filtered Value Measured at Point A of the 

Machine when the Wind Turbine is  Conneted  to the 60Hz Grid. 



11  COMMISSIONING AND TESTING 120 

 

 

Figure 11-20: Phase Current for RST Measured at Point A of the Machine when the 

Wind Turbine is  Conneted  to the 60Hz Grid. 

 

 

Figure 11-21: Current Space Phasor for RST and it Filtered Value Measured at Point A 

of the Machine when the Wind Turbine is  Conneted  to the 60Hz Grid. 

 



11  COMMISSIONING AND TESTING 121 

 

 

Figure 11-22: Power Flow and its Filtered Value Measured at Point A of the Machine 

when the Wind Turbine is  Conneted  to the 60Hz Grid. 

As seen from Figure 11-22 between 0 – 150s there is positive power flow at point A 

which indicates that the power supplied by the wind turbine is not enough to feed the 

variable load and this results in outflow of power from the machine to the load and the 

wind turbine, however, as seen in  Figure 11-19 the P Control stabilizes the voltage at 

within this period for the increased load.  

Between 150 – 420s in Figure 11-22 there was a negative power flow at point A which 

implied an infeed of power by the 60Hz machine however, this leads to an increase in 

voltage as seen in Figure 11-19 but the P Control tries to stabilize the voltage at to the 

setpoint with an offset of 2V from the setpoint. 

At time 502s shown in Figure 11-19 the machine was switched to an open loop control 

under the same load conditions and it was seen from Figure 11-19 that the change in 

voltage from the setpoint in an open loop control was 3V. The P Control was able to 

reduce the effect of the load by 1V.  The MATLAB code is shown in Appendix 17. 



12  INTERPRETATION OF FINDINGS 122 

 

12 INTERPRETATION OF FINDINGS 

From the figures and Table 11-2 (Summary of findings) it was seen that the PI control 

increases and stabilizes the output voltage of the machine at a higher voltage close to 

the setpoint with the different load conditions compare to P and PID controls. The non 

linear behaviour of the machine contributes to the inability of the controllers to return 

the voltage to the exact setpoint. Furthermore, the machine is designed to withstand 

high or large short circuit faults on the grid and this is observed from the open loop 

control as there is no significant different from the closed loop control. 

It was also seen from Table 11-2 that it takes aproximately 500 – 700ms for the P 

control to stabilize the output voltage of the machine for the capacitive load (Negative 

Reactive load) and 700 – 800ms for PI control and 700 - 1000ms for PID control. This 

implies that when fast response is desired for a capacitive load, P control would be the 

right choice based on the findings. 

For the inductive load (Reactive load) as shown in Table 11-2 it takes approximately 

800 – 900ms for the P control to stabilize the output voltage of the machine and 400 – 

600ms for PI control and 200 – 400ms for PID control. This indicates that for the 

inductive load where fast response is required, PID control would be the right choice 

based on the findings. 

Table 11-2 also shows that for a resistive load (Active power) it takes approximately 

500 – 600ms for the P control to stabilize the output voltage of the machine and 400 – 

500ms for the PI control and 388 – 490ms for the PID control. This shows that for 

resistive load where fast response is required, PID control would be the right choice 

based on the findings. However, the PI controller stabilizes the output voltage of the 

machine close to the setpoint with an average response of 600ms seen from Table 11-2.  

When the wind turbine was connected to the 60Hz grid with the machine and the 

variable load it was seen from Figure 11-19 that the P Control was able to stabilize the 

voltage with an offset of 2V compare to open loop control with an offset of 3V. This 

implies that the P Control works.  

 



13  CONCLUSION 123 

 

13 CONCLUSION 

This work covers the introduction for the small scale 60 Hz enegery system , the project 

description and its perculiarity, a brief literature review, different measurements 

approaches and findings, the computation approaches, basic theoritical background, the 

excitation power electronic with RS232 to serial communication, different control 

strategies and logic, coding, webserver (HMI), testing and commissioning and findings. 

The report also contains the user guide, technical documentation and the various 

software used for proper handling shown in Appendix 18. 

The fuzzy logic control could not be implemented due to time constraint, however, the 

platform has been design in the DoControl function and in the main for this to be 

implemented in future. 

From the findings, the controllers were able to stabilize the voltage close to the setpoint 

with different load conditions and the connection with the wind turbine.  

The selection of any of the control strategies is purely based on the use case and the 

customer’s interest as different control strategies have their perculiar feature, 

advantages and disadvantages depending on the application and the use case.  

 

 

 

 

 

 

 

 

 

 



14  REFERENCES 124 

 

14 REFERENCES 

Arduino (2016, 07th September, 2015). "Arduino Software (IDE)." Retrieved 26th 

January, 2016, from https://www.arduino.cc/en/Guide/Environment. 

  

Arduino (2016). "Arduino Uno and Genuino Uno Board." Retrieved 8th May, 2016, 

from https://www.arduino.cc/en/main/arduinoBoardUno. 

  

Arduino (2016). "PWM." Retrieved 11th May, 2016, from 

https://www.arduino.cc/en/Tutorial/PWM. 

  

Atmel (2015). "ATMEL 8-Bit Microcontroller with 4/8/16/32KBytes In-System 

Programmable Flash Datasheet." Retrieved 8th May, 2016, from 

http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-

88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf. 

  

Atmel, C. (2009). ATmel Datasheet 8-bit AVR Microcontroller with 4/8/16/32K Bytes 

In-System Programmable Flash. 

  

CONRAD (2016). "Arduino Board Ethernet Platine 65145 ATMega328 ". Retrieved 9th 

May, 2016, from https://www.conrad.de/de/arduino-board-ethernet-platine-65145-

atmega328-191803.html. 

  

Futureelectronics (2016). "IGBT." Retrieved 6th May, 2016, 2016, from 

http://www.futureelectronics.com/en/transistors/igbt-transistor.aspx. 

  

Helge, L. (2016). 50/60Hz Excitation Board Design for Synchronous Machine. 

  

Kundur, P. (1994). Power   system   stability   and   control, Power System Engineering 

Series. USA, McGraw-Hill, inc. 

  

Manohar, S. S. D. G. (2012). "Literature Review on Voltage stability phenomenon and 

Importance of FACTS Controllers In Power system Environment." 

  

Mousavi, O. A. (2011). Literature Survey on Fundamental Issues of Voltage and 

Reactive Power Control  

  

https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/en/main/arduinoBoardUno
https://www.arduino.cc/en/Tutorial/PWM
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
https://www.conrad.de/de/arduino-board-ethernet-platine-65145-atmega328-191803.html
https://www.conrad.de/de/arduino-board-ethernet-platine-65145-atmega328-191803.html
http://www.futureelectronics.com/en/transistors/igbt-transistor.aspx


14  REFERENCES 125 

 

Sweeney, G. (2012). "Interrupt-Driven Analog Conversion With an ATMega328p." 

Retrieved 9th May, 2016, from http://www.glennsweeney.com/tutorials/interrupt-

driven-analog-conversion-with-an-atmega328p. 

  

Wikipedia (2016, 6th January, 2016). "Duty cycle." Retrieved 30th January, 2016, 2016, 

from https://en.wikipedia.org/wiki/Duty_cycle. 

  

Wikipedia (2016, 4th May, 2016). "Insulated-gate bipolar transistor." Retrieved 5th 

May, 2016, from https://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor. 

  

Wikipedia (2016, 8th May, 2016). "Interrupt." Retrieved 8th May, 2016, from 

https://en.wikipedia.org/wiki/Interrupt. 

  

Wikispaces (2016). "Arduino-PWM-Frequency." Retrieved 7th February, 2016, 2016, 

from https://arduino-info.wikispaces.com/Arduino-PWM-Frequency. 

  

 

  

http://www.glennsweeney.com/tutorials/interrupt-driven-analog-conversion-with-an-atmega328p
http://www.glennsweeney.com/tutorials/interrupt-driven-analog-conversion-with-an-atmega328p
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor
https://en.wikipedia.org/wiki/Interrupt
https://arduino-info.wikispaces.com/Arduino-PWM-Frequency


15  APPENDICES 126 

 

15 APPENDICES 

 

 

  



15  APPENDICES 127 

 

Contents 

1 Appendices ..................................................................................................................... 126 

1.1 Appendix 1:  Thesis Topic Description ..................................................................... 129 

1.2 APPENDIX 2: Excitation Electronic Circuit ............................................................ 131 

1.3 Appendix 3: Measurement Electronic ....................................................................... 133 

1.4 Appendix 4: Program Code for Calibrating Measurement Electronic 

(MATLAB Code) ............................................................................................................... 135 

1.5 Appendix 5: Determine the Non-Linear Behaviour for the Measurement 

Electronic (MATLAB Code) .............................................................................................. 136 

2 Appendix 6: RS232 Hardware circuit.............................................................................. 136 

2.1 Appendix 7: Investigating AnalogRead() Function Execution Time ......................... 137 

2.2 Appendix 8: Main Program Code ............................................................................. 137 

2.3 Appendix 9: Code for ADC_ISR (Sampling Data from Analog Pins) ....................... 147 

2.4 Appendix 10: Code for Computing Actual Values of RST ........................................ 149 

2.5 Appendix 11: Codes for P, PI,  PID control, ‘ChangeDuty()’  and 

‘DoControl()’ Functions ..................................................................................................... 150 

2.6 Appendix 12: Codes for ‘OpenWriteLogFile()’ ,  ‘CloseLogFile()’,  

‘Uploadcsv()’ Functions ..................................................................................................... 154 

2.7 Appendix 13: Code for the Web Server and its subfunctions .................................... 157 

2.8 Appendix 14: HTML Files ....................................................................................... 162 

2.8.1 HTML Main Design-Filename: Main0.htm ....................................................... 162 

2.8.2 HTML Title design-Filename: Title.htm ............................................................ 164 

2.8.3 HTML Standard menu-Filename: index.htm ..................................................... 165 

2.8.4 HTML Setpoint-filename: SetPts.htm................................................................ 166 

2.8.5 HTML Standard menu design-Filename: Menu0.htm ........................................ 168 

2.8.6 HTML Logging design-Filename: Menu1.htm .................................................. 170 

2.8.7 HTML Service menu design-Filename: Menu3.htm .......................................... 171 

2.8.8 HTML System status-Filename: Arrays.htm ...................................................... 172 

2.8.9 HTML Control- Filename: pid.htm ................................................................... 186 

2.8.10 HTML Hardware offset-Filename: HWadj150.htm ........................................... 189 



15  APPENDICES 128 

 

2.8.11 HTML Hardware offset Actual-Filename: FrRST0.htm ..................................... 190 

2.9 Appendix 15: Adjustment of the Controller Coefficients .......................................... 192 

2.9.1 P Controller Coefficient: Kp .............................................................................. 192 

2.9.2 PI Controller Coefficient: Ki ............................................................................. 197 

2.9.3 PID Controller Coefficient: Kd .......................................................................... 204 

2.10 Appendix 16: Measurement Analysis .................................................................... 210 

2.10.1 Setpoint Jumps MATLAB CODE ..................................................................... 210 

2.10.2 Active power jumps for P Control ..................................................................... 215 

2.10.3 Active power jumps for PI Control .................................................................... 215 

2.10.4 MATLAB Code for Active, Reactive and Negative Reactive power jumps ....... 215 

2.11 Appendix 17:  User  Guide.................................................................................... 218 

2.11.1 Handling Instruction .......................................................................................... 218 

2.11.2 Technical and Service Documentation ............................................................... 219 

2.11.3 hardware used ................................................................................................... 220 

2.11.4 software used .................................................................................................... 221 

 

 

 

 

 

 

 

 

 

 

 

 

 



15  APPENDICES 129 

 

15.1 APPENDIX 1:  THESIS TOPIC DESCRIPTION 

 

 

Telemark University College 

Faculty of Technology 

 

 

FMH606 Master's Thesis 

 

Title: Monitoring 50/60Hz grid coupling – A study in conjunction with wind-energy 

feed to main grids 

 

Jade University of Applied Sciences: Helge Lorentzen & Prof. Josef Timmerberg 

 

TUC supervisor: Saba Mylvaganam 

 

External partner: Jade university of Applied Sciences (Mr. Helge Lorenzen & Prof. 

Josef Timmerberg) 

 

Task description: A small scale energy systems is operated for teaching and research 

purpose. This system is to be upgraded to improve possibilities for experiments 

especially with 60Hz grids. To get the 60Hz frequency stable grid, two mechanically 

coupled synchronous machines are used. The task is to stabilize the voltage of the 60Hz 

grid connection. 

The following tasks are assigned to the candidate: 

 

1. Brief literature review covering basics of system behaviour of 3-phase electrical 

power grids and voltage control using synchronous machines. 



15  APPENDICES 130 

 

2. Identify the measuarands involved in the field as well as the corresponding ones 

in the test lab. Discuss the limitations in the scaling up process from the test lab 

to the field. 

3. Investigate different characteristic values for variables of three phase power 

systems (e.g. rms values, space phasors, fundamental amplitude estimation) by 

own implementation to compute. 

4. Use sensor data fusion (e.g. voltage and current sensors) to get higher level 

information like active and reactive power as an input for control strategies. 

5. Implement different strategies (e.g. Fuzzy logic control and P, PI, PID controls) 

to stabilize the voltage for the 60Hz point of common coupling using the sensor 

data. 

6. Use given µ-controller system (Arduino) and MATLAB for investigations. 

7. Create a systematic comparison of the findings for different data acquisition and 

control strategies.  

8. Interpret/discuss the results/findings 

9. Delivery of written thesis following guidelines from TUC 

 

 Task background:   

 

The experimental platform is located in the european 50Hz interconnected system and 

also used for testing of wind turbines in 60Hz grids. The equipment set enables in 

frequency a very rigid coupling and thus a high frequency stability of the 60Hz grid. It 

significantly reduces the available short-circuit power and thus places increased 

demands and voltage control to get a really rigid busbar (slack). 

 

Student category: 

 

This project is specifically defined for SCE student Achema Egbunu 

 

Practical arrangements: 

This work focuses on measurements, data fusion related to wind energy generation. The 

work will involve signal processing, usage of microcontrollers and high-level language 

programming.  

Helge Lorenzen is the project team leader and will be involved in some of the planning 

and supervision in the project. Practical implementation and investigations will be 

performed in his laboratory at Jade University of Applied Sciences, Germany.  

Filename: Saba_Mylvaganam_master_project.rtf 



15  APPENDICES 131 

 

Signatures:  

Student (date and signature):  

Supervisor (date and signature):  

15.2 APPENDIX 2: EXCITATION ELECTRONIC CIRCUIT 

The Excitation Board Circuit Diagram, PCB Design and its Components designed by 

Helge Lorenzen using EAGLE Version 7.5.0 for the project. The components and their 

values along with the circuit are also stored in the SD Card attached to the back cover of 

this report.  

 

The Excitation Board Designed By Helge Lorenzen. 



15  APPENDICES 132 

 

 

PCB for the Excitation Board Designed By Helge Lorenzen. 

Components and its values. 

Part Value Package Library Position (inch) Orientation 

C1           220nF    C075-063X106 Rcl (1.125 0.55) R270 

C2 220nF          C075-063X106 rcl    (1.475 0.225) R0 

C3 10µF CPOL-

RADIAL-

10UF-25V 

SparkFun  (0.475 1.575) R0 

C4 220nF C075-063X106 Rcl (0.475 1.325) R180 

C5 220Nf C075-063X106 Rcl (0.475 1.05) R180 

D1  D-12.5   Diode (0.925 0.55) R270 

D2  D-12.5 Diode (2.275 1.1) R0 

D3  ZDIO12.5 Diode (2.25 0.725) R0 

D4  ZDIO12.5 Diode (2.225 0.875) R180 



15  APPENDICES 133 

 

D5  ZDIO12.5 Diode (1.875 0.95) R180 

D8  D-12.5 Diode (1.85 1.35) R90 

IC1 IR2117 DIL08    Ir (1.475 0.55) R0 

IC2  TO220-IGO SparkFun (0.775 1.15) R270 

J+  1X01 Pinhead (1.125 0.1) R0 

J++  1X01 Pinhead (0.825 1.625) R0 

JGND  1X01 Pinhead (0.15 1.15) R0 

R1  0207/10 Resistor (1.625 0.8) R0 

T1 IGBT or 

MOSFET 

TO-247-3V HL_IGBT_

etc 

(1.625 1.325) R90 

X12V IC2 IC2 con-

phoenix-

508 

(1.175 1.15) R180 

XCE IC2 IC2 con-

phoenix-

508 

(2.15 1.425)   R90 

XR1 HFBR-

2521 

HFBR-15X3 fiber-optic-

hp 

(0.525 0.3) R0 

15.3 APPENDIX 3: MEASUREMENT ELECTRONIC 

The measurement electronic circuit, the PCB board were designed by Helge Lorenzen 

using EAGLE Version 7.5.0 for the project. The componenets and their values along 

with the circuit are also stored in the SD Card attached to the back of this report. 



15  APPENDICES 134 

 

 

Measurement Circuit Diagram Designed By Helge Lorenzen for the project. 

 



15  APPENDICES 135 

 

 

PCB for the Measurement Electronic Designed By Helge Lorenzen. 

15.4 APPENDIX 4: PROGRAM CODE FOR CALIBRATING 

MEASUREMENT ELECTRONIC (MATLAB CODE) 

%Program For the Calibration of Measurement Electronic Device For 3 

Phase 
%Systems 
% Developed By: Achema Hosea Egbunu 
% Student ID: 142773 
clear all;  
close all; 
clc; 

  
DCInVoltage = 268;                        %DC Input voltage 
DCTrue = DCInVoltage* sqrt(2)/sqrt(3);    %Phase voltage: Line-to-

Neutral 

  
%Input the analog measurement values for RST phases:  
%RSTRawAnalogVal = [+R, +S, +T; -R, -S, -T],    

  
%Input the measured analog values for R, S, T  
RSTRawAnalogVal = [798, 798, 798; 226, 226, 226];   

  
%Change in analog values for each R,S,T Phases 
ChangInRSTRawAnalogVal = (RSTRawAnalogVal(1,:) - 

RSTRawAnalogVal(2,:)); 
MeanAnalogVal = mean(RSTRawAnalogVal);  %Mean value for the 

RSTRawAnalogVal 

  



15  APPENDICES 136 

 

%Analog value representing the DCOffset from measurement device 
DCOffset = (MeanAnalogVal - 512);      

  
%change (dV) in DCInVoltage: +DCInVoltage - (-DCInVoltage) 
ChangDC = 2 * DCInVoltage;               

  
VoltperDigit = ChangDC./ChangInRSTRawAnalogVal  %Slope 
MeasurementRange = [(DCOffset + 512).*VoltperDigit; ((DCOffset - 

512).*VoltperDigit)]; 

15.5 APPENDIX 5: DETERMINE THE NON-LINEAR BEHAVIOUR 

FOR THE MEASUREMENT ELECTRONIC (MATLAB CODE) 

%Purpose: Finding the behaviour of the Measurement Device to the Input 
%voltage to determine the range for the linearity of the measurement 

device  

  
%Measurement Data After Calibrating the Measurement Electronic Device 

for 
%the 3 Phases. 
clear all; 
close all 
clc 
DCInVoltage = [-300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300]; 
R = [16 27 74 182 292 401 512 625 734 842 951 992 1004]; 
S = [16 27 74 182 292 401 512 625 734 842 951 992 1004]; 
T = [16 27 74 182 292 401 512 625 734 842 951 992 1004]; 
plot(DCInVoltage, R, '*'); 
hold on; 
plot(DCInVoltage, S, '-.'); 
hold on; 
plot(DCInVoltage, T); 
legend('R', 'S', 'T'); 
xlabel('Voltage'); 
ylabel('RST Measurements'); 

  
%% 
%Remark:  
%The non-linearity behaviour starts after -200V and +200V 
%To Control the voltage in the non-linear range of the plot, code the 
%corresponding analog values representing the desired input voltages 

in the 
%code after: +200V and -200V. 

 

15.6 APPENDIX 6: RS232 HARDWARE CIRCUIT 

The hardware circuit for the RS232 to Serial Communication designed by Helge 

Lorenzen for the project.  

 

 



15  APPENDICES 137 

 

15.7 APPENDIX 7: INVESTIGATING ANALOGREAD() FUNCTION 

EXECUTION TIME 

/*Project Name: Investigating AnalogRead() Execution Time 

  Developed By: Achema Egbunu (ID: 142773)*/ 

 

int analogPin0 = A0;              //Analog Pin for Reading Analog 

Values 

//int analogWritPin = 6;          //Pin for Writing Analog Values 

 

/*Creating an Array store the value*/ 

unsigned long starttimeRd[10];    //Array for storing the start time 

for 'AnalogRead()' 

unsigned long stoptimeRd[10];     //Array for storing the stop time 

for 'AnalogRead()' 

unsigned long vals[10];           //Array for storing the 

'AnalogRead()' Value 

 

void setup() 

{ 

  /*Setup Serial port and Initialise the pins A0 & pin 6 as Output*/ 

  Serial.begin(9600); 

  pinMode(analogPin0, INPUT);   

} 

 

void loop() 

{ 

  int i; 

  for (i = 0; i < 10; i++) 

  { 

    /*Investigating Execution Time for AnalogRead() Function*/ 

    starttimeRd[i] = micros(); 

    vals[i] = analogRead(analogPin0); 

    stoptimeRd[i] = micros();     

  } 

 

  /*Dispaly the Results on Serial Monitor*/ 

  Serial.println("\n\n---Results---"); 

  for (i = 0; i < 10; i++) 

  { 

    /*Displaying the Result for the AnalogRead Values and Exection  

     Time*/ 

    Serial.print("Analog Read Value: "); 

    Serial.print(vals[i]); 

    Serial.print("  Analog Read Exec Time: "); 

    Serial.print(stoptimeRd[i] - starttimeRd[i]); 

    Serial.print(" us");    

  } 

  delay(10000); 

} 

 

15.8 APPENDIX 8: MAIN PROGRAM CODE 

  

/*####################################################### 



15  APPENDICES 138 

 

  ######          ACHEMA HOSEA EGBUNU              ###### 

  ######              ID: 142773                   ###### 

  ######            MASTER THESIS                  ###### 

  #######################################################*/ 

 

/*############################################################### 

  #### Defining Libraries for the SPI, Ethernet and SD Card ##### 

  ###############################################################*/ 

#include <SPI.h> 

#include <Ethernet.h> 

#include <SD.h> 

/*##############################################################*/ 

 

#define nMux 3   //Number of ADC Channels to be used 

 

/*Output Pin Connected to power electronic 

  (Excitation Board) to the Machine */ 

#define PwmOutPin 3   

 

/*############################################################### 

  #### DEFINITIONS FOR HARDWARE CONFIGURATIONS FOR ADC,##########  

  ####             TIMER0 AND PWM FREQ                 ########## 

  ###############################################################*/ 

 

/*############################################################# 

  #####          ADC Prescaler Definitions               ###### 

  ##### For more Information: See Report or ATMEL Manual ###### 

  #############################################################*/ 

#define ADCPrescaler2   1 

#define ADCPrescaler4   2 

#define ADCPrescaler8   3 

#define ADCPrescaler16  4 

#define ADCPrescaler32  5 

#define ADCPrescaler64  6 

#define ADCPrescaler128 7 

 

//Definition for enabling: ADC, ADC-Converaion,  

//ADC Interrupt and prescalers (ADEN, ADSC, ADIE, & Prescalers) 

#define ADCSRAConfig 0xC8 + ADCPrescaler128; 

 

/*####################################################### 

  ####   Timer 0 Control Registers (TCCR0A/TCCR0B) ###### 

  ####       Definitions for Setting Timer         ###### 

  ####   For More Information: Check Report        ###### 

  ####           or ATMEL Manuals                  ###### 

  #######################################################*/ 

 

#define WaveformGenerationModeCTC 2 //CTC Mode definition 

#define TimerClockDivider1    1 //Division by prescaler of 1(TCCR0B) 

#define TimerClockDivider8    2 //Division by prescaler of 8(TCCR0B) 

#define TimerClockDivider64   3 //Division by prescaler of 64(TCCR0B) 

#define TimerClockDivider256  4 //Division by prescaler of 256(TCCR0B) 

#define TimerClockDivider1024 5 //Division by prescaler of 

1024(TCCR0B) 

 

 

/*###################################################### 



15  APPENDICES 139 

 

  #### Prescalers for Changing PWM Frequency      ###### 

  #### Remark: Pin 3 is used as PWMOuptut for the ###### 

  #### control and pin 3 is assigned by default   ###### 

  #### to timer2, therefore, prescaler for Timer2 ###### 

  #### definitions are used Base Frequency for    ###### 

  #### pin 3 is: 31250Hz.                         ###### 

  #### PWM Freq = Base Freq/Prescaler             ###### 

  ######################################################*/ 

#define Divider1    1   //f=31250   

#define Divider8    2   //f=31250/8 = 3906    

#define Divider32   3   //f=977 

#define Divider64   4   //f=488 

#define Divider128  5   //f=244 

#define Divider256  6   //f=122 

#define Divider1024 7   //f=31 

 

 

/*################################################## 

  #### Masks for choosing analog input channel ##### 

  #### For details see ADMUX-Register in the   ##### 

  #### Report or Atmel manual                  ##### 

  ##################################################*/ 

/*"ORed" with the wanted Channel number to select a  

   channel and remove the rest*/ 

#define ADMUXConfig  0x40 

 

//"ANDed" with ADMUX to get select Channel number  

#define ADMUXChannelsOnly 0x1F   

 

/*-------------------------------------------------------*/ 

/*###################################################### 

  #### Symbolic Access To Global Variables         ##### 

  #### NOTE: The values for this names are hard    ##### 

  #### encode in the html-files Any change here    ##### 

  #### might force an update for every file        ##### 

  #### involved page!!!                            ##### 

  #### Advantages: Efficient regarding program     ##### 

  #### code and performancelog (as block), parse   ##### 

  #### (compare integers instead of strings)       ##### 

  ######################################################*/ 

 

/*Remark: Idx       = Stands for Index value for the array 

          Sym       = Stands for Symbolic Name for the "Idx"  

                      value: Idx value can assum other definitions 

          gArByte   = Stands for global Array Byte 

          gArINT    = global Array Interger 

          gArLong   = Stands for global Array Long Interger*/ 

 

/*-----------------------------------------------------------*/ 

 

/*################################################### 

  #### Symbolic names and values for global     ##### 

  #### bytes (8bit) values the symbolic name    ##### 

  #### idx* gives the index of the value in the ##### 

  #### array where its stored: "gArByte"        ##### 

  ###################################################*/ 

/*Remark:  



15  APPENDICES 140 

 

  - definition with 'Idx' represent Array space for storing 

    the respective values 

  - definition with 'Sym' means the Array space can assume 

    other value with the symbol 'Sym'*/ 

#define IdxlogSemaphore       0   //system logic/timing:  

#define SymLogOff             0   //log off mode"  

#define SymLogWriteProgress   1   //Main loop write to SD card 

#define SymLogGetFirst        2   //ISR forced to reset time axis 

#define SymLogGetNext         3   //ISR updates buffered for logging 

#define IdxADCRun             1   //system logic/timing for channel 

#define IdxWebAnswerMode      2   //Dispaly or Output formats for HMI 

#define AMRaw                 0   //Requested file as (txt, htm, raw 

binary)  

#define AMParsedHTML          1   //Replace placeholders #<placeholder 

name>#  

#define AMCSV                 2   //Convert (log data) to CSV  

#define IdxSetDuty            3   //Setpoint: duty cycle (Open Loop 

Control)   

#define IdxControlMode        4   //Select control mode: PID, Fuzzy... 

  

#define SymOpenLoopControl    0   //Open loop control 

#define SymPidControl         1   //PID control 

#define SymFuzzyControl       2   //Fuzzy logic control 

#define SymNNControl          3   //Neural Network control (For Future 

use) 

#define SymTestNewControl     4   //For future use (Scalability) 

 

/* PID-controller parameters */ 

#define IdxPIDKP              5   //Control coefficient for: (P)-

Control 

#define IdxPIDKI              6   //Control coefficient for: PI-

Control  

#define IdxPIDKD              7   //Control coefficient for: PID-

Control   

#define IdxPWMDuty            8   //Store the value of duty cycle   

 

#define IdxCmd                9   //Command to be executed 

#define SymCmdNone            0   //Set after execution other command 

#define SymCmdSetControl      1   //Notify that a parameter was 

changed  

#define SymCmdStartLog        2   //Reqest to open log-file  

#define SymCmdStopLog         3   //Request to close log-file on SD-

Card  

#define SymCmdStoreDefault    4   //store global variables as default 

 

/* It makes little sense to change the duty cycle  

 * with a frequency close to PWM-frequency 

   therefore we use a control trigger to count  

   down for change of Duty cycle in control.*/ 

#define IdxControlTriggerActual   10   //Store value for counting down  

#define IdxControlTriggerInterval 11   //Set the value for fast 

control 

#define IdxDebugByte              12   //Debugging Purpose HMI (spy):  

 

/*Size of Array: (index of last entry + 1)*/ 

#define ngByte                   13  //Size of the global array byte  

volatile byte gArByte[ngByte];       //Global Array Byte 



15  APPENDICES 141 

 

 

 

/*#################################################### 

  #### Symbolic names and values for global     ###### 

  #### integer (16bit) values the symbolic      ###### 

  #### name idx* gives the index of the value   ###### 

  #### in the array where its stored: "gArINT"  ######   

  ####################################################*/ 

#define IdxR      0   //Sampled instantaneous analog value for phase 1  

#define IdxS      1   //Sampled instantaneous analog value for phase 2  

#define IdxT      2   //Sampled instantaneous analog value for phase 3  

#define IdxBufR   3   //Buffered values of R for logging to SD Card 

#define IdxBufS   4   //Buffered values of S for logging to SD Card 

#define IdxBufT   5   //Buffered values of T for logging to SD Card 

 

/* Size of Array: (index of last entry + 1)*/ 

#define ngINT     6     //Size of the Array: "gArInt" 

volatile int gArInt[ngINT];  //Global Array 

 

 

/*################################################### 

  #### Symbolic names and values for global long##### 

  #### integer (32bit) values the symbolic name ##### 

  #### idx* gives the index of the value in the ##### 

  ####     arraywhere its stored: "gArLong"     ##### 

  ###################################################*/ 

 

/* Alternating position (see adress offset gIdxNewest) 

  for the actual and previous computed Measure from  

  RST (In ComputeActual Value())*/ 

#define IdxMeasure          0   //Toggle new and old values measure 

//alternated index          1   //Toggle new and old values measure 

 

/* Alternating position (see adress offset gIdxNewest) 

   for the actual and previous filtered  

   Measure (In ComputeActual Value()) */ 

#define IdxFilter           2   //Toggle new and old values filter 

//alternated index          3   //Toggle new and old values of fileter  

 

#define IdxDMeasure         4   //derivative of the Measure  

#define IdxDFilter          5   //derivative of the filtered Measure 

#define IdxSetPM            6   //Setpoint with unit as measure  

#define IdxDCOffset0        7   //DCOffset value 

#define IdxIdle             8   //Counter idle loops outside ISRs 

#define IdxLogTime          9   //Time axis to be buffered for logging  

#define IdxLogTimeBuf      10   //Time axis for the logging  

#define IdxSetMeasure      11   //Setpoint as Measure from HMI 

#define IdxErrorSum        12   //store sum of the Errors use Control 

#define IdxError           13   //Values from control for debugging 

purpose 

 

/*Setpoint to the controller if Voltage is  

provided as setpoint from HMI but function  

need to be enabled in the mainloop*/  

#define IdxSetptVoltToSetPtMeasure 14   

 

/*Array Size: (index of last entry + 1)*/ 



15  APPENDICES 142 

 

#define ngLong              15  //The size Array    

volatile long int gArLong[ngLong]; //Global Array Long  

/*---------------------------------------------------------*/ 

 

#define ADStartConveration 0x40  //ADC Start Conversion bit (ADSC)  

const int SDCardPin = 4;      //SD Card communication pin with SPI 

 

 

/*################################################### 

  #### Toggle between 0 & 1. Uses for Computing ##### 

  #### the Deviation between New and Old vlaues ##### 

  #### of: IdxMeasured and IdxFilter           ##### 

  ###################################################*/ 

volatile byte gIdxNewest = 0; 

 

 

/*##################################################### 

  #### Defining the Ethernet Settings and Server  ##### 

  ####          used by Webserver                 ##### 

  #####################################################*/ 

  //MAC Address for ARDU. 60HZ M/C: 

  //{0x90, 0xA2, 0xDA, 0x10, 0x6C, 0x32};  

byte mac[] = {0x90, 0xA2, 0xDA, 0x10, 0x64, 0xE5};  

IPAddress ip(192, 168, 0 , 80); 

EthernetServer server(80); 

 

File LogFile; /*Filename for Data logging*/ 

/*------------------------------------------------*/ 

 

/*Assinging the Interrupt Service Routines*/ 

ISR(ADC_vect); 

ISR(TIMER0_COMPA_vect); 

 

/*-------------------------------------------------*/ 

/*########################################### 

  ####             MAIN SETUP           ##### 

  #### RUNS ONLY AFTER STARTUP OR RESET ##### 

  ###########################################*/ 

void setup() 

{ 

  /*Disable Global Interrupt to prevent  

    Interrupting Setup Initialization*/ 

  noInterrupts(); 

 

  /* Initialize the Serial Com Port  

     for Debugging Purpose*/ 

  Serial.begin(9600); 

 

  /*Wait for serial port to connect.  

    Needed for Leonardo (only)*/ 

  while (!Serial) { 

    ; 

  } 

  Serial.println("...");  //For debugging 

 

  /*Store values of DCOffset Implemented in the  

    Measurement Hardware*/ 



15  APPENDICES 143 

 

  gArLong[IdxDCOffset0] = 786432; //=3*512*512; 

 

  /* ################################################## 

     #### Initialization of Timer 0 for real      ##### 

     #### time application See definitions        ##### 

     #### above and ATMEL manual for  a detailled ##### 

     #### description of related registers and    ##### 

     ####          parameters                     ##### 

     ##################################################*/ 

  TCCR0A = WaveformGenerationModeCTC; 

  TCCR0B = TimerClockDivider64; 

  OCR0A = 255; 

  /*                               8E6 

    interrupt frequency= -------------------------------- 

                        TimerClockDivider*(1+OCR0A)       */ 

 

  /*Enable timer0 interrupt*/ 

  TIMSK0 = (1 << OCIE0A); 

 

  /* ################################################# 

     #### Initialization of ADC-conversion. See  ##### 

     #### definitions above and ATMEL manual for ##### 

     #### a detailled  description of related    ##### 

     #### Registers and parameters               ##### 

     #################################################*/ 

  /*                     13*ADCPrescaler 

    conversation time = ------------------- 

                            16E6           */ 

  ADMUX = ADMUXConfig;      //See prescaler options defined above 

  ADCSRA =  ADCSRAConfig; 

  ADCSRB =  0; 

 

  /*############################################### 

    #### Drive the Output pin high to Invert  ##### 

    #### the signal on the Opto Device on the ##### 

    #### Excitation Board to 0                ##### 

    #### (Due to Inversion of Opto Device)    ##### 

    ###############################################*/ 

  analogWrite(PwmOutPin, 255); 

 

  /*SD-Card Initialization*/ 

  if (SD.begin(SDCardPin)) 

  { 

    Serial.println("SD:Ok"); 

  } 

  else 

  { 

    Serial.println("SD: Error"); 

  } 

 

  /*Initialize Ethernet and Server*/ 

  Ethernet.begin(mac, ip); 

  server.begin(); 

 

  /*####################################################### 

    #### A Calling a Function that changes            ##### 

    #### PWM Frequency of the Output pin PWMOutPin: 3 #####          



15  APPENDICES 144 

 

    #######################################################*/ 

  ChangePWMFrequency(Divider32); 

 

  /*Start Global Interrupt*/ 

  interrupts(); 

} 

 

 

/* ############################################# 

   ###               MAIN LOOP              #### 

   ### Executing Costly and Time Consumming #### 

   ###    Actions with Lowest Priories      #### 

   #############################################*/ 

 

void loop() 

{ 

  /*############################################# 

    #### Variables and Pointers for Logging ##### 

    ####          Buffered Values           ##### 

    #############################################*/ 

  long aLong; 

  long *pLong = &aLong; 

  int aInt; 

  int *pInt = &aInt; 

  byte aByte; 

  byte *pByte = &aByte; 

 

  if (gArByte[IdxlogSemaphore] <= SymLogWriteProgress) 

  { 

    /* ################################################### 

       #### Execute this Function because it has     ##### 

       #### the sole Responsibility to Initiates     ##### 

       #### logging of buffered values to SD Card.   ##### 

       #### Webserver may do every thing including   ##### 

       #### opening or close log-File and also has   ##### 

       #### to ensure itself suitable log-semaphore  ##### 

       ####          values on leave                 ##### 

       ###################################################*/ 

    DoWeb(); 

 

    /*######################################################### 

      #### Uncomment this Function If Setpoint From HMI   ##### 

      #### (User Interface) is in Voltage (Phase-to-Phase)##### 

      #########################################################*/ 

    //ComputeVoltToSetpoint(gArLong[IdxSetMeasure]); 

 

    if (gArByte[IdxlogSemaphore] == SymLogWriteProgress) 

    { 

      /*################################################### 

        #### Log the Raw Values of RST Phases to File ##### 

        ###################################################*/ 

      aLong = gArLong[IdxLogTimeBuf]; LogFile.write((byte *) pLong, 

4); 

      aInt = gArInt[IdxBufR]; LogFile.write((byte *) pInt, 2); 

      aInt = gArInt[IdxBufS]; LogFile.write((byte *) pInt, 2); 

      aInt = gArInt[IdxBufT]; LogFile.write((byte *) pInt, 2); 

 



15  APPENDICES 145 

 

      /*########################################################### 

        #### Set Semaphore to Get Next Updated Values From ISR #### 

        ###########################################################*/ 

      gArByte[IdxlogSemaphore] = SymLogGetNext; 

    } 

  } 

  else 

  { 

    /*############################################# 

      #### Increment the Idle Counter Gives   ##### 

      #### Information of Timing Control and  ##### 

      ####         Processor usage            ##### 

      #############################################*/ 

    gArLong[IdxIdle]++; 

  } 

} 

 

 

/*########################################### 

  #### FUNCTION TO CHANGE PWM FREQUENCY ##### 

  #### INPUT: PRESCALER VALUE           ##### 

  #### TIMER 2 USED BECAUSE PIN 3       ##### 

  #### and 11 ARE ASSIGNED TO IT        ##### 

  #### BY DEFAULT AND PIN 3 (PWMOutPin) ##### 

  #### USED FOR CONTROL                 ##### 

  ###########################################*/ 

void ChangePWMFrequency(byte newDivider) 

{ 

  if (newDivider <= Divider1024) 

  { 

    TCCR2B = (TCCR2B & 0b11111000) | newDivider;  //TCCR2B Contains 

  } 

} 

 

 

/*###################################################### 

  #### FUNCTION FOR COMPUTING CORRESPONDING ANALOG ##### 

  #### VALUES FOR A SETPOINT GIVEN IN VOLTAGE      ##### 

  ####              FROM THE HMI                   ##### 

  #### REMARK: THIS INCREASES THE PROCESS LOAD     ##### 

  ####            DUE TO FLOAT COMPUTATIONS        ##### 

  ######################################################*/ 

void ComputeVoltToSetpoint(long int voltSetpt) 

{ 

 

#define Upp         0 

#define AngleR      1 

#define AngleS      2 

#define AngleT      3 

#define measureR    4 

#define measureS    5 

#define measureT    6 

#define factor      7 

 

#define nDouble     8      //Array size 

double LArDouble[nDouble]; //Array for double 

 



15  APPENDICES 146 

 

#define adcValueR   0 

#define adcValueS   1 

#define adcValueT   2 

#define setpointVal 3 

 

#define nINT 4           //Array size 

long int LArINT[nINT];   //Array for Interger 

 

  /*###################################################### 

    ###### Scaling Factor for AC 3P Voltage to Analog #### 

    ####      Value based on Measurement hardware used#### 

    #### Remark: @ 200Vac = 951;                      #### 

    ####         @ 0Vac   = 512;                      #### 

    ####         @ -200V  = 74 (Analog values)        #### 

    ####                                              #### 

    ####              439                             #### 

    #### adcValue =[------.Upp] + 512;                #### 

    ####              200                             #### 

    #### Upp = phase-to-phase voltage for the machine #### 

    ######################################################*/ 

    //setpointmeasure = [adcValueR^2+adcValueS^2+adcValueT^2]-DCOffset 

 

  /*####################################################### 

    ### Setting a Limit to the phase-to-phase voltage ##### 

    ###              given by the user                ##### 

    #######################################################*/ 

  if (voltSetpt >= 253) 

  { 

    voltSetpt = 253; 

  } 

  

 

  /*##### Compute the Angle for the each RST Phases ############*/ 

  LArDouble[Upp] = 0.8165 * voltSetpt; //Peak voltage: 

(VLL*sqrt(2))/sqrt(3) 

  LArDouble[AngleR] = 0;               //Angle: Sin(0)    (degrees) 

  LArDouble[AngleS] = -0.8660;         //Angle: Sin(0 - 120)(degrees) 

  LArDouble[AngleT] =  0.8660;         //Angle: Sin(0 - 240)(degrees) 

 

 

  /*##### Compute the Amplitude for each RST Phases ############## 

    Measure of R phase: Vp*Sin(0) 

    Measure of S phase: Vp*Sin(0-120) 

    Measure of T phase: Vp*Sin(0-240)*/ 

     

  LArDouble[measureR] = (LArDouble[Upp]) * (LArDouble[AngleR]);  

  LArDouble[measureS] = (LArDouble[Upp]) * (LArDouble[AngleS]);  

  LArDouble[measureT] = (LArDouble[Upp]) * (LArDouble[AngleT]);  

 

  /*############ Compute Analog Values for each RST Phases 

###############*/ 

  LArDouble[factor] = 2.195;           //Scaling factor: factor = 

439/200 

  LArINT[adcValueR] = ((LArDouble[factor]) * (LArDouble[measureR])) + 

512;     

  LArINT[adcValueS] = ((LArDouble[factor]) * (LArDouble[measureS])) + 

512;     



15  APPENDICES 147 

 

  LArINT[adcValueT] = ((LArDouble[factor]) * (LArDouble[measureT])) + 

512;     

 

  /*### Compute the Corresponding Measured Value for Voltage Setpoint 

#####*/ 

  gArLong[IdxSetptVoltToSetPtMeasure] =  

              (((LArINT[adcValueR]) * (LArINT[adcValueR]) //R * R 

            + (LArINT[adcValueS]) * (LArINT[adcValueS])   //S * S 

            + (LArINT[adcValueT]) * (LArINT[adcValueT]))  //T * T 

            - (gArLong[IdxDCOffset0]));               //Remove 

DCOffset 

} 

 

 

15.9 APPENDIX 9: CODE FOR ADC_ISR (SAMPLING DATA 

FROM ANALOG PINS) 

ADC_ISR Code: 

 

/*####################################################### 

  ######          ACHEMA HOSEA EGBUNU              ###### 

  ######              ID: 142773                   ###### 

  ######            MASTER THESIS                  ###### 

  #######################################################*/ 

 

/*########################################################### 

  ##### This Function is Called after a Conversion of   ##### 

  ##### every analog sample, Scan the analog channels,  ##### 

  ##### Executes Computation of actual measured values, ##### 

  ##### control algorithm, Buffer values for logging.   ##### 

  ##### Remark: All lower priority tasks such as        ##### 

  #####         webserver are executed between the      ##### 

  #####         Interrupts in the main loop.            ##### 

  ##### NOTE: Not advisable to do Comport operation     ##### 

  #####       like: Serial print due to timing control  ##### 

  ###########################################################*/ 

 

ISR(ADC_vect) 

{ 

#define LastRun nMux-1 

  /*For fetching analog sample from the ADC Register before 

    next conversion*/ 

  unsigned int AnaBufL, AnaBufH; 

  byte MUXPos;                //Temporary keep MUX Channel 

 

  //Fetch data from lower and higher byte of teh ADC Register 

  AnaBufL = ADCL; AnaBufH = ADCH; 

 

  /*###################################################### 

    ###### Start parallel conversation when needed  ###### 

    ######################################################*/ 

  if (gArByte[IdxADCRun] < LastRun) 

  { 

    //Start next conversion (Note: Conversion is done by hardware) 



15  APPENDICES 148 

 

    ADCSRA |= ADStartConveration; 

  } 

 

  //Determine the MUX channel to be set next and mask out the Rest 

  MUXPos = ADMUX & ADMUXChannelsOnly; 

 

  //Limit the next MUX channel to maximum number of channels 

  if (MUXPos < nMux) 

  { 

    MUXPos++; 

  } 

  else 

  { 

    MUXPos = 0; 

  } 

 

  /*########################################################### 

    ##### Store ADC-Value to coresponding array position ###### 

    ##### Index IdxR,IdxS,IdxT are defined as 0..2 to    ###### 

    ##### Corresponds to ADCRun                          ###### 

    ###########################################################*/ 

  //Store sampled values into the array 

  gArInt[gArByte[IdxADCRun]] = (AnaBufH << 8) | AnaBufL; 

 

  /*######################################################## 

    #### Set AD to next MUX channel if all channels   ###### 

    ####          have not been sampled               ###### 

    ########################################################*/ 

  if (gArByte[IdxADCRun] < LastRun) 

  { 

    /*Switch next MUX physically while hardware 

      conversion is in progress*/ 

    ADMUX = ADMUXConfig | MUXPos; 

 

    //Determine the loop number for next ISR-call 

    gArByte[IdxADCRun]++; 

  } 

  else                    //All Channels are sampled 

  { 

    //Set MUX Channel to 0 for next timer interrupt 

    ADMUX = ADMUXConfig; 

 

    /*Call the function to compute the measured values 

      for the sampled data*/ 

    ComputeActualValue(); 

 

    /*Set PWM for excitation to control generator output voltage*/ 

    DoControl(); 

 

    /*################################################# 

      ##### Once the main job is done, then:     ###### 

      ##### Synchronize data logging between     ###### 

      ##### processes  with logSemaphore         ###### 

      #################################################*/ 

    if (gArByte[IdxlogSemaphore] == SymLogGetFirst) 

    { 

      //Reset time axis for data logging 



15  APPENDICES 149 

 

      gArLong[IdxLogTime] = 0; 

    } 

    if (gArByte[IdxlogSemaphore] >= SymLogGetFirst) 

    { 

      /*Update the log Buffer with values for the 

        main loop to log data*/ 

      /*Update log time buffer with new values, 

        consistent with LogValues*/ 

      gArLong[IdxLogTimeBuf] = gArLong[IdxLogTime]; 

      gArLong[IdxLogTime]++;       //Increment the log time 

 

      //Update the R, S, T Buffer with new R,S,T values 

      gArInt[IdxBufR] = gArInt[IdxR]; 

      gArInt[IdxBufS] = gArInt[IdxS]; 

      gArInt[IdxBufT] = gArInt[IdxT]; 

 

      /*Reset the array for logSemaphore to enables the 

        main loop to write buffered values to SD-Card*/ 

      gArByte[IdxlogSemaphore] = SymLogWriteProgress; 

    } 

  } 

} 

 

15.10 APPENDIX 10: CODE FOR COMPUTING ACTUAL VALUES 

OF RST 

Code for Computing Actual Values: 

 

 

 

/*####################################################### 

  ######          ACHEMA HOSEA EGBUNU              ###### 

  ######              ID: 142773                   ###### 

  ######            MASTER THESIS                  ###### 

  #######################################################*/ 

 

/*############################################################### 

  #######  COMPUTATION OF ACTUAL VALUES AND IIR FILTER   ######## 

  #######  THE FUNCTION IS CALLED AFTER EVERY COMPLETE   ########  

  #######  SETS (RST) OF SAMPLED VALUES TO PROVIDE THE   ######## 

  #######  DATA USED FOR DIFFERENT CONTROL FUNCTIONS     ######## 

  ###############################################################*/ 

void ComputeActualValue() 

{    

    #define dypower 2     //Increase to smooth filtered value 

    #define dytrunc (1<<dypower)-1 //Use to compensate integer 

truncation 

    byte idxold, idxnew;           //Store new and old value of 

'gIdxNewest' 

     

    //Toggle index for derivatives Computations used for PID Control 

    idxold = gIdxNewest;        //Store the old value of 'gIdxNewest'  

    gIdxNewest ^= 1;            //Toggle the global variable and 

    idxnew = gIdxNewest;        //Store the newest value to 'idxnew'  



15  APPENDICES 150 

 

     

  /*############################################################## 

    #######  NOTE: The cast is required for computation    ####### 

    #######         of long intergerssince truncation of   ####### 

    #######         interger overflow by C compiler        ####### 

    ##############################################################*/ 

     

  /*Square each phase, sum up then remove DCOffset to get a  

    measure for control */ 

  //##########   Compute actual measure  ############## 

    gArLong[IdxMeasure+idxnew] = (  

      ((long int)gArInt[IdxR] * (long int)gArInt[IdxR])  

    + ((long int)gArInt[IdxS] * (long int)gArInt[IdxS])  

    + ((long int)gArInt[IdxT] * (long int)gArInt[IdxT])) 

    - (long int)gArLong[IdxDCOffset0]; 

      

   /*######################################################## 

     ##########  Filter Measure using IIR Filter   ########## 

     ########################################################*/ 

    gArLong[IdxFilter + idxnew] =                          

    (((((long int)gArLong[IdxFilter+idxold])<<dypower)  

    + (long int)dytrunc                      //compensate integer 

truncation       

    - (long int)gArLong[IdxFilter+idxold]    // 2^dypower-1 

    + (long int)gArLong[IdxMeasure+idxnew])  //weight actual  

    >>dypower);                              //rescale  

 

/*#################################################################### 

  ####### Compute Derivatives for Measure and Filtered Values ######## 

 

 ####################################################################*

/ 

     gArLong[IdxDMeasure] = 

       (long int)gArLong[IdxMeasure+idxnew] 

     - (long int)gArLong[IdxMeasure+idxold]; 

     gArLong[IdxDFilter] =  

        (long int)gArLong[IdxFilter+idxnew] 

      - (long int)gArLong[IdxFilter+idxold]; 

} 

 

15.11 APPENDIX 11: CODES FOR P, PI,  PID CONTROL, 

‘CHANGEDUTY()’  AND ‘DOCONTROL()’ FUNCTIONS  

 

/*####################################################### 

  ######          ACHEMA HOSEA EGBUNU              ###### 

  ######              ID: 142773                   ###### 

  ######            MASTER THESIS                  ###### 

  #######################################################*/ 

 

/*--------------------------------------------------------------------

---*/ 

/*################################################################# 

  #######                     MAIN FRAM TO:                 ####### 

  #######        CHANGE DUTYCYCLE, SELECT CONTROL MODE,     ####### 



15  APPENDICES 151 

 

  #######      CONTROL FUNCTIONS DEPENDING ON THE SYMBOLIC  ####### 

  #######          VALUES IN GLOBAL ARRAY WITH              ####### 

  #######             index: IdxControlMode                 ####### 

  #######      DEVELOPED BY: ACHEMA EGBUNU (ID:142773)      ####### 

  #################################################################*/ 

/*--------------------------------------------------------------------

----*/ 

 

/*####################################################### 

  ###########      CHANGE DUTYCYCLE           ########### 

  ########### FUNCTION TO CHANGE DUTY CYCLE   ###########   

  #######################################################*/ 

void ChangeDuty(int newDuty)  

{ 

  /*Seeting a bond on the Duty Cycle to limit the control  

    signal within the PWM range (0<=pwm<=255)*/ 

  if (newDuty >= 255) 

  { 

    newDuty = 255; 

  } 

  if (newDuty <= 0) 

  { 

    newDuty = 0; 

  } 

  /*Write to PWMOutPin and the array register only  

    if there is changes*/ 

  if (gArByte[IdxPWMDuty] != newDuty)  

  { 

    //Store the new pwm to array to monitor on HMI 

    gArByte[IdxPWMDuty] = newDuty;   

 

    /*Control output is inverted due to the inversion  

     of the opto signal on the excitation board*/ 

    analogWrite(PwmOutPin, ~newDuty); 

  } 

} 

 

/*############################################################ 

  ######                  DO CONTROL                    ###### 

  ###### FUNCTION TO SWITCH DIFFERENT CONTROL MODES:    ###### 

  ###### OPEN LOOP; PID CONTROL; FUZZY LOGIC & NEURAL   ###### 

  ###### NETWORKS SET IdxControlTriggerActual from HMI  ###### 

  ######     (System Status) for fast control           ###### 

  ############################################################*/ 

void DoControl() 

{ 

  gArByte[IdxControlTriggerActual]--; 

  if (gArByte[IdxControlTriggerActual] == 0) 

  { 

    gArByte[IdxControlTriggerActual] = 

gArByte[IdxControlTriggerInterval]; 

    switch (gArByte[IdxControlMode]) 

    { 

      case SymOpenLoopControl : 

        { 

          ChangeDuty(gArByte[IdxSetDuty]); 

          break; 



15  APPENDICES 152 

 

        } 

      case SymPidControl : 

        { 

          PID_Control(); 

          break; 

        } 

      case SymFuzzyControl : 

        { 

          ; 

          break; 

        } 

      case SymNNControl : 

        { 

          ; 

          break; 

        } 

      case SymTestNewControl : 

        { 

          //TestNewControl(); 

          break; 

        } 

        // restart count down 

    } 

  } 

} 

 

 

/*######################################################## 

  #########  (P)(I)(D) CONTROL FUNCTION       ############ 

  #########   P-CONTROL:   KI = KD = 0        ############ 

  #########      PI-CONTROL:  KD = 0          ############ 

  #########  PID-CONTROL: NONE SET TO ZERO    ############ 

  ########################################################*/ 

void PID_Control() 

{ 

  long int error;     //Use to store the values of error 

  int u;              //Use to store the value of Control Signal 

  long int P;         //Proportional part   

  long int P_scaled;  //Use for division by bit operation 

                    

  long int I;         //Use to store the value of the Integral part 

  long int I_scaled;  //Use for division by bit operation  

  long int D;         //Derivative part   

  long int D_scaled;  //Use for division by bit operation  

  int f = 976;        //Frequency: 1/dt, Part of the shifting already 

  long int AntiWindup = 31900; //Use for implementing Anti winddup 

 

  /*############################################################# 

    ########          COMPUTING THE ERREOR             ########## 

    ########            CONTROLLER INPUT:              ########## 

    ######## ERROR = SETPOINT - CURRENT FILTERED VALUE ########## 

    #############################################################*/ 

  error = gArLong[IdxSetMeasure] - gArLong[IdxFilter + gIdxNewest]; 

 

  /*############################################################ 

    #########  SUMMING THE ERRORS FOR INTEGRAL PART   ########## 

    ##########          OF THE CONTROLLER             ########## 



15  APPENDICES 153 

 

    ############################################################*/ 

  gArLong[IdxErrorSum] += error;          

  gArLong[IdxError] = error;    //For debugging purpose 

 

  /*########################################################### 

   * ########               ANTIWINDUP                ######### 

          

    ######### Implementing Anti-Windup to prevent     ######### 

    ######### the control signal from being saturated ######### 

    ###########################################################*/ 

  if (gArLong[IdxErrorSum] > AntiWindup) 

  { 

    gArLong[IdxErrorSum] = AntiWindup; 

  } 

  else if (gArLong[IdxErrorSum] < - AntiWindup) 

  { 

    gArLong[IdxErrorSum] = -AntiWindup; 

  } 

 

  /*############################################################# 

    ###########            P - CONTROL                  ######### 

    ########### The P Controller; scaled by a factor    ######### 

    ###########       to enhance scaling of Kp.         ######### 

    ###########          Factor: 23; KP: 136            #########  

    #############################################################*/ 

     

  /*Bit shift operation with negative values can leads to  

    undefine problem, therefore, this is taken care of here*/ 

    P_scaled = (gArByte[IdxPIDKP] * error);  

    if(P_scaled >= 0) 

    { 

      P = (P_scaled >> 23);   

      } 

      else 

      { 

        P = -(-P_scaled >> 23); 

        } 

     

 /* ############################################################ 

    ##########            PI - CONTROL                ########## 

    ##########   Integral part, scaled by a factor    ########## 

                 

    ##########       to enhance scaling of Ki.        ########## 

    ##########           Factor: 22; KI: 131          ########## 

    ############################################################*/ 

     

  /*Bit shift operation with negative values can leads to  

    undefine problem, therefore, this is taken care of here*/   

  I_scaled = (gArByte[IdxPIDKI] * gArLong[IdxErrorSum]); 

  if(I_scaled >= 0) 

  { 

    I = (I_scaled >> 22);  //Capacitor: KI= 1, shift: >>16 or >>17  

    } 

    else 

    { 

      I = -(-I_scaled >> 22); //Hardcord the shift 

      } 



15  APPENDICES 154 

 

 

  /*######################################################### 

   *#######          PID - CONTROL                    ####### 

    ####### The Derivative part, scaled by a          ####### 

    ####### factor to enhance scaling of KdComputing  ####### 

    ####### rate of change in error with time, scaled ####### 

    ####### by a factor.  Computing the derivative    ####### 

    ####### using the current and the last output     ####### 

    #######          Factor: 22; KD: 176              #######  

    #########################################################*/ 

   

 

 

 

 

   

  /*Bit shift operation with negative values can leads to  

    undefine problem, therefore, this is taken care of here*/ 

  D_scaled  = (gArByte[IdxPIDKD] * gArLong[IdxDFilter]); 

  if(D_scaled >= 0) 

  {     

    D = (D_scaled >> 22);                           

 } 

  else 

  { 

    D = -(-D_scaled >> 22);  

    } 

     

  /*############################################################# 

    #########    COMPUTING THE CONTROL SIGNAL           ######### 

    #########       ADDING THE P + I - D                ######### 

    #########  The -D is because output measurement is  #########  

    #########    used to compute the change in error    #########  

    #############################################################*/ 

  u = (long int)P + (long int)I - (long int)D; 

                                

                                                               

 

   /*################################################################ 

    #######     ADDING THE CONTROL SIGNAL TO DUTY CYCLE     ######### 

    ######## Calling the Function that Writes the Control   ######### 

    ########              Signal to PWMOutPin               ######### 

    ######## INPUT TO ARGUMENT: PREV. DUTYCYCLE + CONTROL u ######### 

       

 

   #################################################################*/  

  ChangeDuty(gArByte[IdxPWMDuty] + u);   

} 

 

15.12 APPENDIX 12: CODES FOR ‘OPENWRITELOGFILE()’ ,  

‘CLOSELOGFILE()’,  ‘UPLOADCSV()’ FUNCTIONS 

 

/*####################################################### 

  ######          ACHEMA HOSEA EGBUNU              ###### 



15  APPENDICES 155 

 

  ######              ID: 142773                   ###### 

  ######            MASTER THESIS                  ###### 

  #######################################################*/ 

 

/*---------------------------------------------------------------*/ 

/*############################################################## 

  #########  FUNCTION FOR ANSWER MODE CSV FORMAT       ######### 

  #########     CALLED IN THE DOWEB() FUNCTION         ######### 

  ######### CONVERT THE RESPONSE TO CSV WHILE SENDING  ######### 

  #########  THE WEBAPPLIED TO FORMAT FOR DOWNLOADING  ######### 

  #########                 LOG DATA                   ######### 

  ##############################################################*/ 

/*----------------------------------------------------------------*/ 

  #define LogFileName "log.dat"  //Filename for data logging 

   

void uploadCSV(EthernetClient client, String Filename) 

{ 

  //for holding the read values from file 

  long aLong; long *pLong; pLong = &aLong;  

  int aInt; int *pInt; pInt = &aInt;       

  long Rest; 

  byte Col; 

 

  File RawFile = SD.open(Filename); 

  if (RawFile)      //if filename is available then 

  {  

    Col = 0;         

    Rest = RawFile.available(); 

    while (Rest > 1)  //Rest = 1 would stay endless 

    {        

      switch (Col) 

      {  

        case 0: 

          { 

            //Read First Column, the time axis 

            RawFile.readBytes((byte *) pLong, 4);   

            client.print(aLong); client.print(','); Col++; break; 

          } 

        case 3: 

          { 

            RawFile.readBytes((byte *)pInt, 2);    //Last Column 

            client.println(aInt); Col = 0; break;  // between first 

and Last 

          }       

        default: 

          { 

            RawFile.readBytes((byte *) pInt, 2); 

            client.print(aInt); client.print(','); Col++; break; 

          } 

      } 

      Rest = RawFile.available(); 

    } 

    RawFile.close(); 

  } 

} 

 

 



15  APPENDICES 156 

 

/*################################################################ 

  #########  FUNCTION TO OPEN LOG FILE FOR LOGGING AND   ######### 

  #########  SET SEMAPHORE THE FILENAME IS HARD ENCORDED ######### 

  ################################################################*/ 

void OpenWriteLogFile() 

{ 

  if (SD.exists(LogFileName)) 

  { 

    SD.remove(LogFileName); 

  } 

  LogFile = SD.open(LogFileName, FILE_WRITE); 

 

 

 

 

 

 

 

 

  /*############################################################### 

    ########  Main loop can log data to opened file.       ######## 

    ########  change of semaphore informs ISR to buffer    ######## 

    ########  the updated values of RST. The ISR also      ######## 

    ########  changes the semaphore which causes the       ######## 

    ########  buffered data to be written to the file      ######## 

    ########  from the main loop.                          ######## 

    ########  NOTE: It may happen that some samples        ######## 

    ########  are not written to file due to execution     ######## 

    ########  higher priorities functions                  ######## 

    ######## (computeactual values & control) by interrupt.######## 

    ######## Therefore the number of ISR-call has to be    ######## 

    ######## logged to get a coresponding time axis for    ######## 

    ######## the samples                                   ######## 

    ###############################################################*/ 

  if (LogFile) 

  { 

    //Forces the time axis to reset to zero in ISR 

    gArByte[IdxlogSemaphore] = SymLogGetFirst;  

  } 

  else 

  { 

    gArByte[IdxlogSemaphore] = SymLogOff; //Do nothing 

  } 

} 

 

 

/*################################################################## 

  ############ FUNCTION TO STOP LOGGING AND CLOSE FILE  ############ 

  ##################################################################*/ 

void CloseLogFile() 

{ 

  //Check if the file is opened 

  if (gArByte[IdxlogSemaphore] > SymLogOff)  

  { 

    LogFile.close();                      //Then close the file     

    gArByte[IdxlogSemaphore] = SymLogOff; //Stop any action for 

datalogging 



15  APPENDICES 157 

 

  } 

} 

 

15.13 APPENDIX 13: CODE FOR THE WEB SERVER AND ITS 

SUBFUNCTIONS 

/*####################################################### 

  ######          ACHEMA HOSEA EGBUNU              ###### 

  ######              ID: 142773                   ###### 

  ######            MASTER THESIS                  ###### 

  #######################################################*/ 

/* =========================================== 

  Web Server for the 60Hz syncronous machine 

 

  ============================================= */ 

#define DefaultPage "index.htm" 

 

//limit length of string to avoid stack overrun 

#define maxLengthRequest 50 

#define MaxParseLength   10 

 

/* String to integer for multi purpose use */ 

long int getValFromString(String w, int p) 

{ 

  byte loop = p; 

  String NumStr = ""; //Start with empty string 

 

  //while the digit value (0..9) is found then 

  while (isDigit(w[loop])) 

  { 

    NumStr.concat(w[loop]);   //Build a number string 

 

    /*increment position to point to the next 

      character in the actua line*/ 

    loop++; 

  } 

  return (NumStr.toInt()); //Return the digit value 

} 

 

/*############################################### 

  ### FUNCTION TO PRINT IP ADDRESS OF ARDUINO ### 

  ###         CONNECTED TO THE MACHINE        ### 

  ###############################################*/ 

String DisplayAddress(IPAddress address) 

{ return String(address[0]) + "." + 

         String(address[1]) + "." + 

         String(address[2]) + "." + 

         String(address[3]); 

} 

 

/* ################################################## 

   ### Just answer with requested file as it is ##### 

   ##################################################*/ 

void AnswerFile(EthernetClient client, String Filename) 

{ 



15  APPENDICES 158 

 

  char c; 

  File AnwerFile = SD.open(Filename); 

  if (AnwerFile)  //file available 

  { 

    while ((AnwerFile.available()) && client.connected()) 

    { 

      //Read the file and send to the client (web) 

      c = AnwerFile.read(); client.write(c); 

    } 

    AnwerFile.close(); //Close file after all sent to web 

  } 

} 

 

 

 

 

 

 

 

/* ################################################## 

   #### FUNCTION TO REPLACE THE PLACEHOLDERS    ##### 

   ####       (format: #<ph>#) In STRING        ##### 

   ##################################################*/ 

 

 

String ReplacementString(String s1) 

{ 

  if (s1 == "IP") 

  { 

    /*If the placeholder is 'IP' replace it with 

      IP address*/ 

    return DisplayAddress(Ethernet.localIP()); 

  } 

  if (s1.startsWith("gB", 0)) 

  { 

    /*if the placeholder starts with 'gB', call the 

      function to return the digit value (Idx value) 

      and replace the string 'gBIdx' with the content 

      of the array 'gArByte[]' representing the 

      index: Idx. that is: Repalce: gArByte[Idx] with 

      gBIdx while responding to the client*/ 

    return String(gArByte[getValFromString(s1, 2)]); 

  } 

  if (s1.startsWith("gI", 0)) 

  { 

    //Same approach as explained above 

    return String(gArInt[getValFromString(s1, 2)]); 

  } 

  if (s1.startsWith("gL", 0)) 

  { 

    //Same approach as explained above 

    return String(gArLong[getValFromString(s1, 2)]); 

  } 

  return ("???"); //return "???" if no placeholder is found 

} 

 

/* ###################################################### 



15  APPENDICES 159 

 

   #####        ANSWER WITH PARSE HTML FILE         ##### 

   ######################################################*/ 

void AnswerFileParsed(EthernetClient client, String Filename) 

{ 

  char c; 

  String s1 = "";     //Start with empty string 

 

  File AnwerFile = SD.open(Filename); 

  if (AnwerFile)              //File available 

  { 

    while ((AnwerFile.available()) && (client.connected())) 

    { 

      c = AnwerFile.read();   //Read teh file 

      if (c != '#') 

      { 

        client.write(c);    //Write to web 

      } 

      else                  //Found a placeholder 

      { 

        c = AnwerFile.read(); //Read next character 

        s1 = "";              //new  replacement identifier 

        while ((c != '#') && (client.connected()) && (s1.length() <  

           MaxParseLength)) 

        { 

          s1.concat(c);        //Append char to string 

          c = AnwerFile.read(); //Read next character 

        } 

         

        /*Parse string to replacement placeholder function 

          to replace the placeholder with values in the array 

          representing their Idx and print the return value to  

          web (client)*/ 

        client.print(ReplacementString(s1)); 

      } 

    } 

    AnwerFile.close(); //Close file after response to client 

  } 

} 

 

/*################################################################ 

  #### FUNCTION TO SEARCH FILENAME AND Idx FROM THE REQUEST   #### 

  ####                STRING FROM THE CLIENT                  #### 

  ####  AND RETURN FILENAME AND STORE THE VALUE FOR Idx TO    #### 

  ####                   RESPECTIVE ARRAY                     #### 

  ################################################################*/ 

String NewParseRequest(String GetString)  

{ 

  String aFileName; 

   

  //Find position in the string with question mark 

  int p = GetString.indexOf("?");   

  int idx;          //array index of value 

  long v; 

  if (p > 0)   

  { 

    /*If position is found then search from position 5 to  

       position 'p' to extract the file name*/ 



15  APPENDICES 160 

 

    aFileName = GetString.substring(5, p); //5=lengthOf("GET /" 

    while (p > 0)  

    { 

      GetString.remove(0, p + 1);    /*also the ?*/ 

      idx = getValFromString(GetString, 2); /*length gB,gI,gL always 

2*/ 

 

      //Find the corresponding value for the Idx 

      v = getValFromString(GetString, GetString.indexOf("=") + 1); 

      

      if (GetString.startsWith("gB", 0))  

      { 

        gArByte[idx] = v;  //Store value of gB in array 

      } 

      if (GetString.startsWith("gI", 0))  

      { 

        gArInt[idx] = v; 

      } 

      if (GetString.startsWith("gL", 0))  

      { 

        gArLong[idx] = v; 

      } 

      p = GetString.indexOf("&"); 

    } 

  }  /*additional parameters*/ 

  else  //if file name does not end with "?" (p not available) then 

  { 

    //Filename ends before " HTTP/" 

    aFileName = GetString.substring(5, GetString.lastIndexOf(' ')); 

  }  

  if (!SD.exists(aFileName))  

  { 

    //Use default if filename does not exist 

    aFileName = DefaultPage;  

  } 

  return (aFileName);  //Return filename 

} 

 

/* ################################################## 

   ######   FUNCTION TO ANALYZE CLIENT REQUEST ###### 

   ##################################################*/ 

String GetRequest(EthernetClient client)  

{ 

  char c; 

  String s1 = "";   //empty the string 

  String Filename = DefaultPage; 

  while (client.connected() && client.available())  

  {  

    //character available from the client  

    c = client.read();          //Read the request 

    if (c == '\n')              //Reached end of line 

    {  

      if (s1.length() != 0)  

      { 

        if (s1.startsWith("GET /", 0))  

        { 

          /*Parse string to function responsible for  



15  APPENDICES 161 

 

            extracting the filename and extract value for Idx 

            and store in the array*/ 

          Filename = NewParseRequest(s1);  

        } 

      }  

      s1 = ""; 

    }   //Clear to start with next row 

    else    

    { /*If end of line not reach, append character to string   

        to build request line*/ 

        //limit length to avoid stack overrun       

      if ((c != '\r')&& (s1.length() < maxLengthRequest))  

      {  

        s1.concat(c); 

      } 

    } 

  } 

  return (Filename); // note: do not return until buffer is empty 

} 

 

 

/* ################################################ 

   ###  Main Function to handle web requests ###### 

   ################################################*/ 

void DoWeb()  

{ 

  //Listen for incoming clients 

   //Create a client instance for each web request 

  EthernetClient client = server.available();  

   

  if (client)     //Client available 

  { 

    gArByte[IdxWebAnswerMode] = AMRaw;   //default raw, as it is 

     

    //Get requested file and Parameters (stored in global arrays) 

    String Filename = GetRequest(client); 

     

    /*Operating in Open Loop Control */ 

    if (gArByte[IdxControlMode] == SymOpenLoopControl) 

    { 

      /*Call the function responsible for writing the duty  

        cycle to pwm pin */ 

      ChangeDuty(gArByte[IdxSetDuty]); 

    } 

     

    /*############################################################# 

      #### Execute Actions as requested as Parameters from HMI #### 

      #############################################################*/ 

    switch (gArByte[IdxCmd]) 

    { 

      case SymCmdStartLog :     //log semaphore is handled, too 

        { 

          //Logging mode, function to open file for logging is called 

          OpenWriteLogFile(); 

          break; 

        } 

      case SymCmdStopLog :       //log semaphore is handled, too 



15  APPENDICES 162 

 

        { 

          //Stop logging mode, function for closing log file is called 

          CloseLogFile(); 

          break; 

        } 

    } 

    gArByte[IdxCmd] = SymCmdNone; //Clear the already executed command 

    

    /* ################################################# 

       ####            Upload Answer (file)         #### 

       ################################################# */ 

    switch (gArByte[IdxWebAnswerMode]) 

    { 

      case AMCSV : 

        { 

          //Uploading CSV Format as response to client 

          uploadCSV(client, Filename); 

          break; 

        } 

      case AMParsedHTML : 

        { 

          //Uploading Response as HTML Format to the client 

          AnswerFileParsed(client, Filename); 

          break; 

        } 

      default : 

        { 

          //Response to client as raw data 

          AnswerFile(client, Filename); 

          break; 

        } 

    } 

    //Stop the client after response to request 

    client.stop();   

  } 

} 

 

15.14 APPENDIX 14: HTML FILES 

15.14.1 HTML MAIN DESIGN-FILENAME: MAIN0.HTM 

<base target="_self"> 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 



15  APPENDICES 163 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

<title>PCC60HzIntro</title> 

 

</head> 

<!-- Note:      

   Text bracketed in hash character is interpreted as placeholder. 

   See examples below. 

   Therefore: Never use hash character in files of this project  

   exept to define placeholders !!!  --> 

<body> 

 

<h1>60Hz-Exitation Control</h1> 

<p>you are connected to Arduino for 60Hz voltage control at IP:#IP#</p> 

<p>Harware: V2.1<br>Software: V.0.1  

</p> 

<h2>Variable Voltage (Open- or Closed loop Control; phase2phase 

120VAC..250VAC)</h2> 

<p><img alt="external reference" 

src="http://www.thebox.myzen.co.uk/Tutorial/Media/PWMan.gif">Image  

embedded from: http://www.thebox.myzen.co.uk/Tutorial/Media/PWMan.gif</p> 

<h2>Fixed frequency=60Hz by  

mechanical transmission</h2> 



15  APPENDICES 164 

 

<p><img alt="external reference" src="http://i59.tinypic.com/4sz32v.gif">Image  

embedded from: http://i59.tinypic.com/4sz32v.gif</p> 

<p><br> 

</p> 

</body> 

 

</html> 

15.14.2 HTML TITLE DESIGN-FILENAME: TITLE.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

<title>60HzPCCBanner</title> 

<base target="_self"> 

</head> 

 

<body> 

 

<h1>60Hz-PCC</h1> 



15  APPENDICES 165 

 

 

</body> 

 

</html> 

15.14.3 HTML STANDARD MENU-FILENAME: INDEX.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

<title>60HzPCCBanner</title> 

<base target="_self"> 

</head> 

 

<body> 

 

<h1>60Hz-PCC</h1> 

 

</body> 

 



15  APPENDICES 166 

 

</html> 

15.14.4 HTML SETPOINT-FILENAME: SETPTS.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

 

<title>PCC60HzSetpoints</title> 

 

</head> 

<!-- Note:      

   Text bracketed in hash character is interpreted as placeholder. 

   See examples below. 

   Therefore: Never use hash character in files of this project  

   exept to define placeholders !!!  --> 

<body> 

 

<table border="2"> 

 <tr> 



15  APPENDICES 167 

 

  <td style="height: 23px">Setpoint Duty Cycle (0:255)<br>for open loop  

  control</td> 

  <td style="height: 23px">Setpoint Measure<br>for close loop  

  control</td> 

 </tr> 

 <tr> 

  <td> 

<form action="SetPts.htm" method="get" style="width: 150px; height: 22px;" 

title="SetPoint"> 

 <input name="gB3" type="text" value="#gB3#" /> 

  <input type="hidden" name="gB2" value="1"> 

  <input type="hidden" name="gB4" value="0"> 

 </form> 

  </td> 

  <td> 

<form action="SetPts.htm" method="get" style="width: 150px" title="SetPoint"> 

 <input name="gL11" type="text" value="#gL11#" /> 

  <input type="hidden" name="gB2" value="1"> 

  <input type="hidden" name="gB4" value="1"> 

  </form> 

  </td> 

 </tr> 

 <tr> 

  <td> 

  &nbsp;</td> 

  <td> 

  Measure, <br/>take as setpoint<form action="SetPts.htm" method="get" 

style="width: 150px" title="SetPoint"> 

 <input name="gL11" type="text" value="#gL0#"> 



15  APPENDICES 168 

 

 <input type="hidden" name="gB2" value="1"> 

    <input type="hidden" name="gB4" value="1"> 

 </form> 

  </td> 

 </tr> 

</table> 

</body> 

</html> 

15.14.5 HTML STANDARD MENU DESIGN-FILENAME: MENU0.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

<title>PCC60HzStandardMenu</title> 

</head> 

 

<body> 

 

Standard menu<ul> 



15  APPENDICES 169 

 

  <li><a href="SetPts.htm?gB2=1" target="Hauptframe">Setpoints</a> 

<em> 

  <br>values and <br>control modes</em></li> 

  <li>Logging is off</li> 

  <li><a href="Menu1.htm?gB2=1&gB9=2">Start</a> <br><em>last log 

will be  

  overwritten</em></li> 

  <li><a href="log.dat?gB2=2" download>download CSV</a><br /><em> 

  ASCII-File with unsigned<br>comma separated values  

  </em> 

  <li> 

  <a href="log.dat" download>download raw</a><br>binary format (no  

  separator):<br>long_32  

  <strong>time</strong><br>int_16 <strong>R</strong><br>int_16 

<strong>S</strong><br> 

  int_16  

  <strong>T</strong></ul> 

  

<p>&nbsp;</p> 

<ul> 

 <li>Self</li> 

 <li><a href="Menu3.htm?gB2=1">Service</a></li> 

</ul> 

  

</body> 

 

</html> 

 



15  APPENDICES 170 

 

15.14.6 HTML LOGGING DESIGN-FILENAME: MENU1.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

 

<title>PCC60HzLoggingMenu</title> 

</head> 

 

<body> 

 

Standard menu<ul> 

  <li><a href="SetPts.htm?gB2=1" target="Hauptframe">Setpoints</a> 

<em> 

  <br>values and <br>control modes</em></li> 

  <li><a href="Menu0.htm?gB2=1&gB9=3">Stop Logging</a> </li> 

  <!-- complete --> 

  <em>enables download</em></ul> 

  

<p><img src="http://www.netanimations.net/Guestbook-04-june.gif"></p> 



15  APPENDICES 171 

 

<p>WARNING <br> 

any webserver stress leads to recording gaps</p> 

  

</body> 

 

</html> 

15.14.7 HTML SERVICE MENU DESIGN-FILENAME: MENU3.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

 

<title>PCC60HzServiceMenu</title> 

</head> 

 

<body> 

 

<p>Service menu<br /> 

for experts only! <a href="Menu0.htm">Ok, Bye</a></p> 



15  APPENDICES 172 

 

<p>&nbsp;</p> 

<p>&nbsp;</p> 

<ul> 

   <li><a href="Arrays.htm?gB2=1" target="Hauptframe">System 

status</a><br/> 

   <em>(shared arrays)</em></li> 

   <li><a href="PID.htm?gB2=1" 

target="Hauptframe">(P),(I),(D)</a> 

   <em><br />k faktors </em></li> 

   <li><a href="HWadj150.htm?gB2=1" 

target="Hauptframe">Hardware Offset</a><br /> 

   <em>Displays sampled channel values and reference value within 

linear  

   range of ±150VDC</em></li> 

  </ul> 

   

</body> 

 

</html> 

15.14.8 HTML SYSTEM STATUS-FILENAME: ARRAYS.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html 

Content-Location: /index.htm 

Connection: close 

 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 



15  APPENDICES 173 

 

<meta name="author" content="Achema Egbunu"> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<title>PCC60Hz SystemStatus</title> 

</head> 

 

<body> 

<p style="background-color:red;color:yellow">Warning, manipulations on this page are 

taken without any control.  

Wrong manipulations can lead to program crashes or even damage  

to hardware.</p> 

<a href="Arrays.htm?gB2=1">refresh values</a> or <a href="Arrays.htm?gB2=0"> 

getWildcards</a><h3>Global Byte Array </h3> 

<table> 

 <tr style="background-color:yellow;"> 

  <td>Array<br>index</td> 

  <td style="width: 130px">Meaning of Index</td> 

  <td style="width: 64px">place<br>holder</td> 

  <td style="width: 508px">Meaning of content of volatile byte  

  gArByte[11];</td> 

 </tr> 

 <tr> 

  <td>0</td> 

  <td style="width: 130px">logSemaphore 0</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB0" type="text" value="#gB0#" style="height: 22px"> 

 <input type="hidden" name="gB2" value="1"> </form> 

  </td> 



15  APPENDICES 174 

 

  <td style="width: 508px">LogOff 0; WriteProgress 1; GetFirst 2; 

GetNext  

  3</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td>1</td> 

  <td style="width: 130px">ADCRun 1</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB1" type="text" value="#gB1#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">Channel just scanned</td> 

 </tr> 

 <tr> 

  <td>2</td> 

  <td style="width: 130px"><strong>WebAnswerMode </strong></td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB2" type="text" value="#gB2#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px"><strong>AMRaw 0; AMParsedHTML 1; 

AMCSV 2  

  </strong> </td> 

 </tr> 

 <tr> 

  <td style="height: 23px">3</td> 



15  APPENDICES 175 

 

  <td style="width: 130px; height: 23px;">IdxSetDuty </td> 

  <td style="width: 64px; height: 23px;"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB3" type="text" value="#gB3#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px; height: 23px;">Setpoint for open loop 

control</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td>4</td> 

  <td style="width: 130px">IdxControlMode</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB4" type="text" value="#gB4#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">OpenLoopControl 0; PidControl 1; 

FuzzyControl  

  2; NN 3; Test 4 </td> 

 </tr> 

 <tr> 

  <td>5</td> 

  <td style="width: 130px">PIDKP</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB5" type="text" value="#gB5#"> 



15  APPENDICES 176 

 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">parameter for PID-Control</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td>6</td> 

  <td style="width: 130px">PIDKI</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB6" type="text" value="#gB6#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">parameter for PID-Control</td> 

 </tr> 

 <tr> 

  <td>7</td> 

  <td style="width: 130px">PIDKD</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB7" type="text" value="#gB7#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">parameter for PID-Control</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td>8</td> 

  <td style="width: 130px">PWMDuty</td> 



15  APPENDICES 177 

 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB8" type="text" value="#gB8#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">backuped actual duty cycle (at PwmOutPin 3) 

</td> 

 </tr> 

 <tr> 

  <td>9</td> 

  <td style="width: 130px"><strong>IdxCmd</strong></td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB9" type="text" value="#gB9#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px"><strong>CmdNone 0; CmdSetControl 1; 

CmdStartLog  

  2; CmdStopLog 3 

  <br>(set to 0 after execution)</strong></td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td>10</td> 

  <td style="width: 130px">ControlTrigger<br>actual value</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB10" type="text" value="#gB10#"> 



15  APPENDICES 178 

 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">count down for change of Duty cycle in 

control</td> 

 </tr> 

 <tr> 

  <td>11</td> 

  <td style="width: 130px">ControlTrigger<br>interval</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB11" type="text" value="#gB11#" style="height: 22px"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">sequence of Duty cycle in control (start value  

  of count down)</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td>12</td> 

  <td style="width: 130px">byte spy</td> 

  <td style="width: 64px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB12" type="text" value="#gB12#" style="height: 22px"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 508px">option to inspect or change any by value by  

  inserting a simple command <br>in the source code for debug 

purpose.</td> 

 </tr> 



15  APPENDICES 179 

 

</table> 

 

<h3>Global Integer Array</h3> 

<table> 

 <tr style="background-color:lime"> 

  <td style="height: 23px; width: 55px">Array<br>index</td> 

  <td style="height: 23px; width: 63px">Meaning of Index</td> 

  <td style="height: 23px; width: 51px">place<br>holder</td> 

  <td style="height: 23px; width: 328px;">Meaning of content of volatile  

  int gArInt[ngINT];</td> 

 </tr> 

 <tr> 

  <td style="width: 55px; height: 23px;">0</td> 

  <td style="width: 63px; height: 23px;">&nbsp;R </td> 

  <td style="width: 51px; height: 23px;"> 

<form action="Arrays.htm" method="get" style="width: 150px; " title="Arduino 60Hz 

Control"> 

 <input name="gI0" type="text" value="#gI0#"/>   

 <input type="hidden" name="gB2" value="1"> </form> 

  </td> 

  <td style="height: 23px; width: 328px;">sampled Value for phase R 

directly</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="width: 55px">1</td> 

  <td style="width: 63px">S </td> 

  <td style="width: 51px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 



15  APPENDICES 180 

 

 <input name="gI1" type="text" value="#gI1#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 328px">sampled Value for phase S directly</td> 

 </tr> 

 <tr> 

  <td style="width: 55px">2</td> 

  <td style="width: 63px">T </td> 

  <td style="width: 51px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gI2" type="text" value="#gI2#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 328px">sampled Value for phase T directly</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="height: 23px; width: 55px">3</td> 

  <td style="height: 23px; width: 63px">BufR</td> 

  <td style="height: 23px; width: 51px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gI3" type="text" value="#gI3#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="height: 23px; width: 328px;">buffered to have it 

consistent</td> 

 </tr> 

 <tr> 



15  APPENDICES 181 

 

  <td style="width: 55px">4</td> 

  <td style="width: 63px">BufS</td> 

  <td style="width: 51px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gI4" type="text" value="#gI4#" /> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 328px">buffered to have it consistent</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="width: 55px">5</td> 

  <td style="width: 63px">BufT</td> 

  <td style="width: 51px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gI5" type="text" value="#gI5#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="width: 328px">buffered to have it consistent</td> 

 </tr> 

</table> 

<h3>Global Long Integer Array</h3> 

<table> 

 <tr style="background-color:aqua"> 

  <td style="width: 97px; height: 42px;">Array<br>index</td> 

  <td style="width: 167px; height: 42px;">Meaning<br>of Index</td> 

  <td style="width: 204px; height: 42px;">place<br>holder</td> 

  <td style="height: 42px">Meaning of content</td> 



15  APPENDICES 182 

 

 </tr> 

 <tr> 

  <td style="width: 97px">0</td> 

  <td style="width: 167px">Measure </td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL0" type="text" value="#gL0#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>newest or previous (toggeled)</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="width: 97px">1</td> 

  <td style="width: 167px">Measure</td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL1" type="text" value="#gL1#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>newest or previous (toggeled)</td> 

 </tr> 

 <tr> 

  <td style="height: 23px; width: 97px">2</td> 

  <td style="height: 23px; width: 167px">Filter </td> 

  <td style="height: 23px; width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 



15  APPENDICES 183 

 

 <input name="gL2" type="text" value="#gL2#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="height: 23px">newest or previous (toggeled)</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="width: 97px">3</td> 

  <td style="width: 167px">Filter </td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL3" type="text" value="#gL3#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>newest or previous (toggeled)</td> 

 </tr> 

 <tr> 

  <td style="width: 97px">4</td> 

  <td style="width: 167px">DMeasure</td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL4" type="text" value="#gL4#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>derivative</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="height: 23px; width: 97px;">5</td> 



15  APPENDICES 184 

 

  <td style="height: 23px; width: 167px;">DFilter </td> 

  <td style="height: 23px; width: 204px;"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL5" type="text" value="#gL5#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td style="height: 23px">derivative</td> 

 </tr> 

 <tr> 

  <td style="width: 97px">6</td> 

  <td style="width: 167px">IdxSetPM </td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL6" type="text" value="#gL6#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>Setpoint as unit measure</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="height: 21px; width: 97px;">7</td> 

  <td style="height: 21px; width: 167px;">DCOffset0 </td> 

  <td style="height: 21px; width: 204px;"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL7" type="text" value="#gL7#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 



15  APPENDICES 185 

 

  <td style="height: 21px">computed Value for analog input as 0V</td> 

 </tr> 

 <tr> 

  <td style="width: 97px">8</td> 

  <td style="width: 167px">Idle </td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL8" type="text" value="#gL8#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>number of idle loops in main </td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="width: 97px">9</td> 

  <td style="width: 167px">&nbsp;LogTime</td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL9" type="text" value="#gL9#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>time axis for logged values (gaps might happen)</td> 

 </tr> 

 <tr> 

  <td style="width: 97px">10</td> 

  <td style="width: 167px">LogTimeBuf</td> 

  <td style="width: 204px"> 



15  APPENDICES 186 

 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL10" type="text" value="#gL10#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>consistent ot samples</td> 

 </tr> 

 <tr style="background-color:silver"> 

  <td style="width: 97px">11</td> 

  <td style="width: 167px">SetMeasure </td> 

  <td style="width: 204px"> 

<form action="Arrays.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gL11" type="text" value="#gL11#"> 

 <input type="hidden" name="gB2" value="1"></form> 

  </td> 

  <td>setpoint given as unit measure</td> 

 </tr> 

</table> 

 

</body> 

 

</html> 

15.14.9 HTML CONTROL- FILENAME: PID.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html  

Content-Location: /index.htm  

Connection: close 

 



15  APPENDICES 187 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

<head> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta content="de" http-equiv="Content-Language"> 

<meta http-equiv="expires" content="0"> 

<meta name="author" content="Achema Egbunu"> 

 

<title>PCC60HzControlMenuPID</title> 

</head> 

 

<body> 

 

<h3>PID-Control</h3> 

<table> 

 <tr> 

  <td style="width: 17px"> 

  &nbsp;KP</td> 

  <td> 

  &nbsp;KI</td> 

  <td> 

  &nbsp;KD</td> 

 </tr> 

 <tr> 

  <td style="width: 17px"> 

<form action="PID.htm" method="get" style="width: 50px" title="SetPoints"> 

 <input name="gB5" type="text" value="#gB5#" style="width: 50px"> 

 <input type="hidden" name="gB2" value="1"> 



15  APPENDICES 188 

 

 <input type="hidden" name="gB4" value="1"></form> 

  </td> 

  <td> 

<form action="PID.htm" method="get" style="width: 50px" title="Arduino 60Hz 

Control"> 

 <input name="gB6" type="text" value="#gB6#" style="width: 50px"> 

 <input type="hidden" name="gB2" value="1"> 

 <input type="hidden" name="gB4" value="1"></form> 

  </td> 

  <td> 

<form action="PID.htm" method="get" style="width: 50px; height: 22px;" 

title="Arduino 60Hz Control"> 

 <input name="gB7" type="text" value="#gB7#" style="width: 50px"> 

 <input type="hidden" name="gB2" value="1"> 

 <input type="hidden" name="gB4" value="1"></form> 

  </td> 

 </tr> 

</table>  

Enter <strong>integer</strong> values within range: 0...255<p>&nbsp;</p> 

&nbsp;<table border="2"> 

 <tr> 

  <td style="height: 23px">setpoint duty cycle (0:255)<br/>for open loop  

  control</td> 

  <td style="height: 23px">setpoint measure<br/>for PID-Control</td> 

 </tr> 

 <tr> 

  <td> 

<form action="PID.htm" method="get" style="width: 150px; height: 22px;" 

title="Arduino 60Hz Control"> 



15  APPENDICES 189 

 

 <input name="gB4" type="text" value="#gB4#"> 

 <input type="hidden" name="gB2" value="1"> 

 <input type="hidden" name="gB4" value="0"></form> 

  </td> 

  <td> 

<form action="PID.htm" method="get" style="width: 150px" title="Arduino 60Hz 

Control"> 

 <input name="gL11" type="text" value="#gL11#"> 

 <input type="hidden" name="gB2" value="1"> 

 <input type="hidden" name="gB4" value="1"></form> 

  </td> 

 </tr> 

</table> 

 

</body> 

 

</html> 

 

 

15.14.10 HTML HARDWARE OFFSET-FILENAME: HWADJ150.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html 

Content-Location: /adjPt150.htm 

Connection: close 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

 



15  APPENDICES 190 

 

<head> 

<title>PCC60HzCalibrateHW150V</title> 

<meta name="author" content="Achema Egbunu"> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta http-equiv="expires" content="0"> 

<meta http-equiv="refresh" content="1"> 

</head> 

 

 

<body> 

<table border="2"> 

 <tr> 

  <td style="width: 150px;font-size:xx-large">actual</td> 

  <td style="width: 150px;font-size:xx-large">#gI0#</td> 

  <td style="width: 150px;font-size:xx-large">#gI1#</td> 

  <td style="width: 150px;font-size:xx-large">#gI2#</td> 

 </tr> 

 </table> 

</body> 

 

</html> 

15.14.11 HTML HARDWARE OFFSET ACTUAL-FILENAME: FRRST0.HTM 

HTTP/1.1 200 OK 

Content-Type: text/html 

Content-Location: /adjPt150.htm 

Connection: close 

 



15  APPENDICES 191 

 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 

<html xmlns="http://www.w3.org/1999/xhtml"> 

 

<head> 

<title>PCC60HzCalibrateHW150V</title> 

<meta name="author" content="Achema Egbunu"> 

<meta content="text/html; charset=windows-1252" http-equiv="Content-Type"> 

<meta http-equiv="expires" content="0"> 

<meta http-equiv="refresh" content="1"> 

</head> 

 

 

<body> 

<table border="2"> 

 <tr> 

  <td style="width: 150px;font-size:xx-large">actual</td> 

  <td style="width: 150px;font-size:xx-large">#gI0#</td> 

  <td style="width: 150px;font-size:xx-large">#gI1#</td> 

  <td style="width: 150px;font-size:xx-large">#gI2#</td> 

 </tr> 

 </table> 

</body> 

 

</html> 



15  APPENDICES 192 

 

15.15 APPENDIX 15: ADJUSTMENT OF THE CONTROLLER 

COEFFICIENTS 

15.15.1 P CONTROLLER COEFFICIENT: KP 

% ######################################################## 

% Adjustment of Control Parameters (KP, KI & KD)   ####### 

% ACHEMA HOSEA EGBUNU (142773)                     ####### 

% ######################################################## 

close all; clear all; clc; %clear the command window, work space & history 

%setpoint = 120; 

           %File index number which is part of the filename 

%---------------------------------------------------------------------% 

Kp = [1, 64, 132, 136, 144, 160, 192, 255]; 

Prefix='S23KP';PostFix='.TXT';  %Files from from the measurement 

 

n = length(Kp); 

N = 9;               %Level of wavelet decomposition, increase to smoothing 

wName='db5';         %Specific wavelet name used 

 

%Prefix='OpenLoop';PostFix='.TXT';  %Files from from the measurement 

 

for k = 1:n 

      KP = Kp(k); 

      Raw = load([Prefix,num2str(KP),'.txt']);  %Load the file 

      t = Raw(:,1);        % First column is the time axis 

      RST = Raw(:,2:4);    % R, S, T Phases 

      I_rst = Raw(:,5:7);  % Current for each three phases(I_r, I_s, I_t) 

 

    % Computing the SPACE PHASOR to find a measure for Amplitude 

    % and a hard wavelet filter to remove the noise 

    % Call function that compute space phsor for voltage and current 

    Usp=abs(ComputeSpacePhasor(RST));   %Voltage Space Phaseor 

    Isp=abs(ComputeSpacePhasor(I_rst)); %Current Space Phasor 

    %Filtering the Noise from the measurements 

    [C,L] = wavedec(Usp,N,wName); %Perform wavelet decomposition of Usp 

    C(L(1)+1:end)=0; 

    FiltUsp = waverec(C,L,wName); %Perform wavelet reconstruction of Usp 

    [C,L] = wavedec(Isp,N,wName); %Perform wavelet decomposition of Isp 

    C(L(1)+1:end)=0; 

    FiltIsp = waverec(C,L,wName); %Perform wavelet reconstruction of Isp 

Show Corresponding Plots 

    h=figure (k); 

    subplot(3,2,1); plot(t,RST); 

    title(['Voltages Timedomain (KP=',num2str(Kp),')']); 



15  APPENDICES 193 

 

    subplot(3,2,2); plot(t,I_rst); title('Currents Timedomain'); 

    subplot(3,2,3); plot(t,Usp); title('Voltage Space Phasor'); 

    subplot(3,2,4); plot(t,Isp); title('Current Space Phasor'); 

    subplot(3,2,5); plot(t,FiltUsp); title('Voltage Amplitudes'); 

    subplot(3,2,6); plot(t,FiltIsp); title('Current Amplitudes'); 

 



15  APPENDICES 194 

 

 

 



15  APPENDICES 195 

 

 

 



15  APPENDICES 196 

 

 

 



15  APPENDICES 197 

 

 

end 

Published with MATLAB® R2013a 

% ################################################################ 
% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 
% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 
% #######         FUNCTION FOR COMPUTING SPACE PHASOR      ####### 
% ################################################################ 

 
%% 
     %Function For Computing the Space Phasor 
%-------------------------------------------------% 
function SP = ComputeSpacePhasor(samples) 
SP = 2/3*(samples(:,1) + samples(:,2)*exp(1i*2*pi/3) + 

samples(:,3)*exp(1i*4*pi/3)); 

15.15.2 PI CONTROLLER COEFFICIENT: KI 

% ################################################################ 

% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 

% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 

% #######           ANALYSIS OF THE MEASUREMENT DATA       ####### 

% #######    Adjustment of Control Parameter (KI)####### 

% ################################################################ 

http://www.mathworks.com/products/matlab


15  APPENDICES 198 

 

close all; clear all; clc; %clear the command window, work space & history 

%setpoint = 120; 

 

           %File index number which is part of the filename 

%---------------------------------------------------------------------% 

Kp = [1, 128, 130, 131, 132, 136, 144, 160, 192, 255]; 

Prefix='PIS22KI';PostFix='.TXT';  %Files from from the measurement 

 

n = length(Kp); 

 

N = 9;               %Level of wavelet decomposition, increase to smoothing 

wName='db5';         %Specific wavelet name used 

 

%Prefix='OpenLoop';PostFix='.TXT';  %Files from from the measurement 

 

for k = 1:n 

      Idx = Kp(k); 

      Raw = load([Prefix,num2str(Idx),'.txt']);  %Load the file 

      t = Raw(:,1);        % First column is the time axis 

      RST = Raw(:,2:4);    % R, S, T Phases 

      I_rst = Raw(:,5:7);  % Current for each three phases(I_r, I_s, I_t) 

 

    % Computing the SPACE PHASOR to find a measure for Amplitude 

    % and a hard wavelet filter to remove the noise 

    % Call function that compute space phsor for voltage and current 

    Usp=abs(ComputeSpacePhasor(RST));   %Voltage Space Phaseor 

    Isp=abs(ComputeSpacePhasor(I_rst)); %Current Space Phasor 

 

    %Filtering the Noise from the measurements 

    [C,L] = wavedec(Usp,N,wName); %Perform wavelet decomposition of Usp 

    C(L(1)+1:end)=0; 

    FiltUsp = waverec(C,L,wName); %Perform wavelet reconstruction of Usp 

    [C,L] = wavedec(Isp,N,wName); %Perform wavelet decomposition of Isp 

    C(L(1)+1:end)=0; 

    FiltIsp = waverec(C,L,wName); %Perform wavelet reconstruction of Isp 

 

          %Computing the Phase to Phase Voltage and Current 

    %---------------------------------------------------------------% 

    Upp = FiltUsp * sqrt(3)/sqrt(2); 

    Ipp = FiltIsp * sqrt(3)/sqrt(2); 

 

    % Show the Corresponding Plots 

    h=figure; 

    subplot(4,2,1); plot(t,RST); 

    title(['Voltages Timedomain (KI=',num2str(Idx),')']); 

    subplot(4,2,2); plot(t,I_rst);      title('Currents Timedomain'); 

    subplot(4,2,3); plot(t,Usp);        title('Voltage Space Phasor'); 

    subplot(4,2,4); plot(t,Isp);        title('Current Space Phasor'); 

    subplot(4,2,5); plot(t,FiltUsp);    title('Voltage Amplitudes'); 

    subplot(4,2,6); plot(t,FiltIsp);    title('Current Amplitudes'); 

    subplot(4,2,7); plot(t,Upp);        title('Phase Voltage'); 

    subplot(4,2,8); plot(t,Ipp);        title('Phase Current'); 

end 



15  APPENDICES 199 

 

 

 



15  APPENDICES 200 

 

 

 



15  APPENDICES 201 

 

 

 



15  APPENDICES 202 

 

 

 



15  APPENDICES 203 

 

 

 



15  APPENDICES 204 

 

Published with MATLAB® R2013a 

 

% ################################################################ 

% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 

% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 

% #######         FUNCTION FOR COMPUTING SPACE PHASOR      ####### 

% ################################################################ 

  

%% 

     %Function For Computing the Space Phasor 

%-------------------------------------------------% 

function SP = ComputeSpacePhasor(samples) 

SP=2/3*(samples(:,1)+samples(:,2)*exp(1i*2*pi/3)+samples(:,3)*exp(1i*4

*pi/3)); 

 

 

 

15.15.3 PID CONTROLLER COEFFICIENT: KD 

% ################################################################ 

% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 

% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 

% #######           ANALYSIS OF THE MEASUREMENT DATA       ####### 

% #######    Adjustment of Control Parameters (KD)        ####### 

% ################################################################ 

close all; clear all; clc; %clear the command window, work space & history 

%setpoint = 120; 

 

           %File index number which is part of the filename 

%----------------------------------------------------------------% 

Kp = [1, 128, 160, 176, 180, 184, 192, 255]; %Index numbers for all files 

Prefix='PIDKD';PostFix='.TXT';  %Files from from the measurement 

 

n = length(Kp); 

 

N = 9;               %Level of wavelet decomposition, increase to smoothing 

wName='db5';         %Specific wavelet name used 

 

%Prefix='OpenLoop';PostFix='.TXT';  %Files from from the measurement 

 

for k = 1:n 

      Idx = Kp(k);         %Idex number for the filename 

      Raw = load([Prefix,num2str(Idx),'.txt']);  %Load the file 

http://www.mathworks.com/products/matlab


15  APPENDICES 205 

 

      t = Raw(:,1);        % First column is the time axis 

      RST = Raw(:,2:4);    % R, S, T Phases 

      I_rst = Raw(:,5:7);  % Current for each three phases(I_r, I_s, I_t) 

 

    % Computing the SPACE PHASOR to find a measure for Amplitude 

    % and a hard wavelet filter to remove the noise 

    % Call function that compute space phsor for voltage and current 

    Usp=abs(ComputeSpacePhasor(RST));   %Voltage Space Phaseor 

    Isp=abs(ComputeSpacePhasor(I_rst)); %Current Space Phasor 

 

    %Filtering the Noise from the measurements 

    [C,L] = wavedec(Usp,N,wName); %Perform wavelet decomposition of Usp 

    C(L(1)+1:end)=0; 

    FiltUsp = waverec(C,L,wName); %Perform wavelet reconstruction of Usp 

    [C,L] = wavedec(Isp,N,wName); %Perform wavelet decomposition of Isp 

    C(L(1)+1:end)=0; 

    FiltIsp = waverec(C,L,wName); %Perform wavelet reconstruction of Isp 

 

          %Computing the Phase to Phase Voltage and Current 

    %---------------------------------------------------------------% 

    Upp = FiltUsp * sqrt(3)/sqrt(2); 

    Ipp = FiltIsp * sqrt(3)/sqrt(2); 

 

    % Show the Corresponding Plots 

    h=figure; 

    subplot(4,2,1); plot(t,RST); 

    title(['Voltages Timedomain (KD=',num2str(Idx),')']); 

    subplot(4,2,2); plot(t,I_rst);      title('Currents Timedomain'); 

    subplot(4,2,3); plot(t,Usp);        title('Voltage Space Phasor'); 

    subplot(4,2,4); plot(t,Isp);        title('Current Space Phasor'); 

    subplot(4,2,5); plot(t,FiltUsp);    title('Voltage Amplitudes'); 

    subplot(4,2,6); plot(t,FiltIsp);    title('Current Amplitudes'); 

    subplot(4,2,7); plot(t,Upp);        title('Phase Voltage'); 

    subplot(4,2,8); plot(t,Ipp);        title('Phase Current'); 

end 



15  APPENDICES 206 

 

 

 



15  APPENDICES 207 

 

 

 



15  APPENDICES 208 

 

 

 



15  APPENDICES 209 

 

 

 



15  APPENDICES 210 

 

Published with MATLAB® R2013a 

 

% ################################################################ 

% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 

% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 

% #######         FUNCTION FOR COMPUTING SPACE PHASOR      ####### 

% ################################################################ 

  

     %Function For Computing the Space Phasor 

%-------------------------------------------------% 

function SP = ComputeSpacePhasor(samples) 

SP=2/3*(samples(:,1)+samples(:,2)*exp(1i*2*pi/3)+samples(:,3)*exp(1i*4

*pi/3)); 

 

 

 

15.16 APPENDIX 16: MEASUREMENT ANALYSIS 

The codes for the measurement analysis are shown in the following sections. 

15.16.1 SETPOINT JUMPS MATLAB CODE 

% ################################################################ 
% #######          ACHEMA HOSEA EGBUNU (142773)            ####### 
% #######        SYSTEMS AND CONTROL ENGINEERING           #######  
% #######       Analysis of the Measurement Data           ####### 
% ################################################################ 
close all; clear all; clc; %clear the command window, work space & 

history 

  
%% 
LowSetpoint = 231;      % Phase to Phase HighVoltage setpoint 
HighSetpoint = 209;     % Phase to Phase LowVoltage setpoint 

  
          %File index number which is part of the filename 
%---------------------------------------------------------------------

% 
fIdx = [1, 2, 3, 4, 5, 6];     %Index numbers for the filename 
Prefix='Meas';PostFix='.TXT';  %Files from from the measurement 

  
n = length(fIdx); 

  
N = 9;               %Level of wavelet decomposition, increase to 

smoothing 

http://www.mathworks.com/products/matlab


15  APPENDICES 211 

 

wName='db5';         %Specific wavelet name used 
%%            
for k = 1:n 

  
      Idx = fIdx(k);     
      Raw = load([Prefix,num2str(Idx),'.txt']);  %Load the file 
      t = Raw(:,1);        % First column is the time axis 
      RST = Raw(:,2:4);    % R, S, T Phases 
      I_rst = Raw(:,5:7);  % Current for each three phases(I_r, I_s, 

I_t) 

         
    % Computing the SPACE PHASOR to find a measure for Amplitude 
    % and a hard wavelet filter to remove the noise 
    % Call function that compute space phsor for voltage and current 
    Usp=abs(ComputeSpacePhasor(RST));   %Voltage Space Phaseor 
    Isp=abs(ComputeSpacePhasor(I_rst)); %Current Space Phasor 

     
                 %Filtering the Noise from the measurements 
    %-----------------------------------------------------------------

---% 
    [C,L] = wavedec(Usp,N,wName); %Perform wavelet decomposition of 

Usp   
    C(L(1)+1:end)=0; 
    FiltUsp = waverec(C,L,wName); %Perform wavelet reconstruction of 

Usp 
    [C,L] = wavedec(Isp,N,wName); %Perform wavelet decomposition of 

Isp 
    C(L(1)+1:end)=0; 
    FiltIsp = waverec(C,L,wName); %Perform wavelet reconstruction of 

Isp 

  

    Upp = FiltUsp * sqrt(3)/sqrt(2); 
    Ipp = FiltIsp * sqrt(3)/sqrt(2); 

  
if k == 1     
       %Setpoints for Voltage Amplitude and Phase to Phase Voltage 
%-------------------------------------------------------------------% 
    idxJump = find(t>2.0);               %Time for the jump 
    idxJump=idxJump(1); 
    SetpointSp = ones(size(FiltUsp,1),1); %Array to store amplitude 

values 
    SetpointPP = ones(size(Upp,1),1); %Array to store phase to phase 

values 

  
  %Positive Setpoint 209V to 231V (Voltage Amplitude and Phase to 

Phase) 
%---------------------------------------------------------------------

---% 
    SetpointSp(1:idxJump)   = sqrt(2)/sqrt(3)*HighSetpoint;   
    SetpointSp(idxJump:end) = sqrt(2)/sqrt(3)*LowSetpoint;  

  
    SetpointPP(1:idxJump)   = HighSetpoint;    
    SetpointPP(idxJump:end) = LowSetpoint;   

     
    % Show the Corresponding Plots 
    h=figure; 



15  APPENDICES 212 

 

    subplot(4,2,1); plot(t,RST);  
    title(['Voltages Timedomain (Measurement=',num2str(Idx),')']); 
    subplot(4,2,2); plot(t,I_rst);      title('Currents Timedomain'); 
    subplot(4,2,3); plot(t,Usp);        title('Voltage Space Phasor'); 
    subplot(4,2,4); plot(t,Isp);        title('Current Space Phasor'); 

  
    subplot(4,2,5); plot(t,[FiltUsp,SetpointSp]);   
    axis([0 inf, 150 240]); title('Voltage Amplitudes'); 
    subplot(4,2,6); plot(t,FiltIsp); title('Current Amplitudes'); 

  
    subplot(4,2,7); plot(t,[Upp, SetpointPP]);  
    axis([0 inf, 150 240]); title('Phase Voltage'); 
    subplot(4,2,8); plot(t,Ipp); title('Phase Current'); 

     
else if k == 2 
        idxJump = find(t>1.3);               %Time for the jump 
        idxJump=idxJump(1); 
        SetpointSp = ones(size(FiltUsp,1),1); %Array to store 

amplitude  
        SetpointPP = ones(size(Upp,1),1); %Array to store phase to 

phase  

  
        SetpointSp(1:idxJump)   = sqrt(2)/sqrt(3)*LowSetpoint;   
        SetpointSp(idxJump:end) = sqrt(2)/sqrt(3)*HighSetpoint;  

  
        SetpointPP(1:idxJump)   = LowSetpoint;    
        SetpointPP(idxJump:end)  = HighSetpoint;   

    
        % Show the Corresponding Plots 
        h=figure; 
        subplot(4,2,1); plot(t,RST);  
        title(['Voltages Timedomain (Measurement=',num2str(Idx),')']); 
        subplot(4,2,2); plot(t,I_rst);      title('Currents 

Timedomain'); 
        subplot(4,2,3); plot(t,Usp);        title('Voltage Space 

Phasor'); 
        subplot(4,2,4); plot(t,Isp);        title('Current Space 

Phasor'); 

  
        subplot(4,2,5); plot(t,[FiltUsp,SetpointSp]);   
        axis([0 inf, 150 240]); title('Voltage Amplitudes'); 
        subplot(4,2,6); plot(t,FiltIsp); title('Current Amplitudes'); 

  
        subplot(4,2,7); plot(t,[Upp, SetpointPP]);  
        axis([0 inf, 150 240]); title('Phase Voltage'); 
        subplot(4,2,8); plot(t,Ipp); title('Phase Current'); 

     
    else if k == 3 
            idxJump = find(t>1.7);               %Time for the jump 
            idxJump=idxJump(1); 
            SetpointSp = ones(size(FiltUsp,1),1); %Array to store 

amplitude  
            SetpointPP = ones(size(Upp,1),1); %Array to store phase to 

phase  

  



15  APPENDICES 213 

 

            SetpointSp(1:idxJump)   = sqrt(2)/sqrt(3)*HighSetpoint;   
            SetpointSp(idxJump:end) = sqrt(2)/sqrt(3)*LowSetpoint;  

  
            SetpointPP(1:idxJump)   = HighSetpoint;    
            SetpointPP(idxJump:end) = LowSetpoint;   

    
            % Show the Corresponding Plots 
            h=figure; 
            subplot(4,2,1); plot(t,RST);  
            title(['Voltages Timedomain 

(Measurement=',num2str(Idx),')']); 
            subplot(4,2,2); plot(t,I_rst);  title('Currents 

Timedomain'); 
            subplot(4,2,3); plot(t,Usp);    title('Voltage Space 

Phasor'); 
            subplot(4,2,4); plot(t,Isp);    title('Current Space 

Phasor'); 

  
            subplot(4,2,5); plot(t,[FiltUsp,SetpointSp]);   
            axis([0 inf, 150 240]); title('Voltage Amplitudes'); 
            subplot(4,2,6); plot(t,FiltIsp); title('Current 

Amplitudes'); 

  
            subplot(4,2,7); plot(t,[Upp, SetpointPP]);  
            axis([0 inf, 150 240]); title('Phase Voltage'); 
            subplot(4,2,8); plot(t,Ipp); title('Phase Current');     

           
        elseif k == 4 
            idxJump = find(t>1.38);               %Time for the jump 
            idxJump=idxJump(1); 
            SetpointSp = ones(size(FiltUsp,1),1); %Array to store 

amplitude  
            SetpointPP = ones(size(Upp,1),1); %Array to store phase to 

phase  

  
            SetpointSp(1:idxJump)   = sqrt(2)/sqrt(3)*LowSetpoint;   
            SetpointSp(idxJump:end) = sqrt(2)/sqrt(3)*HighSetpoint;  

  
            SetpointPP(1:idxJump)   = LowSetpoint;    
            SetpointPP(idxJump:end) = HighSetpoint;   

    
            % Show the Corresponding Plots 
            h=figure; 
            subplot(4,2,1); plot(t,RST);  
            title(['Voltages Timedomain 

(Measurement=',num2str(Idx),')']); 
            subplot(4,2,2); plot(t,I_rst);  title('Currents 

Timedomain'); 
            subplot(4,2,3); plot(t,Usp);    title('Voltage Space 

Phasor'); 
            subplot(4,2,4); plot(t,Isp);    title('Current Space 

Phasor'); 

  
            subplot(4,2,5); plot(t,[FiltUsp,SetpointSp]);   
            axis([0 inf, 150 240]); title('Voltage Amplitudes'); 



15  APPENDICES 214 

 

            subplot(4,2,6); plot(t,FiltIsp); title('Current 

Amplitudes'); 

  
            subplot(4,2,7); plot(t,[Upp, SetpointPP]);  
            axis([0 inf, 150 240]); title('Phase Voltage'); 
            subplot(4,2,8); plot(t,Ipp); title('Phase Current'); 

     
        elseif k == 5 
            idxJump = find(t>1.6);       %Time for the jump 
            idxJump=idxJump(1); 
            SetpointSp = ones(size(FiltUsp,1),1); %Array amplitude 

values 
            SetpointPP = ones(size(Upp,1),1); %Array phase to phase 

values 

  
            SetpointSp(1:idxJump)   = sqrt(2)/sqrt(3)*HighSetpoint;   
            SetpointSp(idxJump:end) = sqrt(2)/sqrt(3)*LowSetpoint;  

  
            SetpointPP(1:idxJump)   = HighSetpoint;    
            SetpointPP(idxJump:end) = LowSetpoint;   

    
            % Show the Corresponding Plots 
            h=figure; 
            subplot(4,2,1); plot(t,RST); 
            title(['Voltages Timedomain 

(Measurement=',num2str(Idx),')']); 
            subplot(4,2,2); plot(t,I_rst);  title('Currents 

Timedomain'); 
            subplot(4,2,3); plot(t,Usp);    title('Voltage Space 

Phasor'); 
            subplot(4,2,4); plot(t,Isp);    title('Current Space 

Phasor'); 

     
            subplot(4,2,5); plot(t,[FiltUsp,SetpointSp]); 
            axis([0 inf, 150 240]); title('Voltage Amplitudes'); 
            subplot(4,2,6); plot(t,FiltIsp); title('Current 

Amplitudes'); 

     
            subplot(4,2,7); plot(t,[Upp, SetpointPP]); 
            axis([0 inf, 150 240]); title('Phase Voltage'); 
            subplot(4,2,8); plot(t,Ipp); title('Phase Current'); 

     
        else 
            idxJump = find(t>1.3);               %Time for the jump 
            idxJump=idxJump(1); 
            SetpointSp = ones(size(FiltUsp,1),1); %Array to store 

amplitude  
            SetpointPP = ones(size(Upp,1),1); %Array to store phase to 

phase  

  
            SetpointSp(1:idxJump)   = sqrt(2)/sqrt(3)*LowSetpoint;   
            SetpointSp(idxJump:end) = sqrt(2)/sqrt(3)*HighSetpoint;  

  
            SetpointPP(1:idxJump)   = LowSetpoint;    
            SetpointPP(idxJump:end) = HighSetpoint;   



15  APPENDICES 215 

 

    
            % Show the Corresponding Plots 
            h=figure; 
            subplot(4,2,1); plot(t,RST);  
            title(['Voltages Timedomain 

(Measurement=',num2str(Idx),')']); 
            subplot(4,2,2); plot(t,I_rst);  title('Currents 

Timedomain'); 
            subplot(4,2,3); plot(t,Usp);    title('Voltage Space 

Phasor'); 
            subplot(4,2,4); plot(t,Isp);    title('Current Space 

Phasor'); 

  
            subplot(4,2,5); plot(t,[FiltUsp,SetpointSp]);   
            axis([0 inf, 150 240]); title('Voltage Amplitudes'); 
            subplot(4,2,6); plot(t,FiltIsp); title('Current 

Amplitudes'); 

  
            subplot(4,2,7); plot(t,[Upp, SetpointPP]);  
            axis([0 inf, 150 240]); title('Phase Voltage'); 
            subplot(4,2,8); plot(t,Ipp); title('Phase Current');             
        end 
    end 
end 
end 
%% 

  

  

  

15.16.2 ACTIVE POWER JUMPS FOR P CONTROL 

 

15.16.3 ACTIVE POWER JUMPS FOR PI CONTROL 

 

15.16.4 MATLAB CODE FOR ACTIVE, REACTIVE AND NEGATIVE 

REACTIVE POWER JUMPS 

% ################################################################ 
% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 
% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 
% #######           ANALYSIS OF THE MEASUREMENT DATA       ####### 
% ################################################################ 
close all; clear all; clc; %Close all open files, clear workspace & 

history 

  
%% 
Prefix='FileName';PostFix='.TXT';  %Files from from the measurement 
Idx = idxNo;      %File index number which is part of the filename: 

eg:131 



15  APPENDICES 216 

 

  
N = 9;            %Level of wavelet decomposition, increase to 

smoothing 
wName='db5';      %Specific wavelet name used            

       
Raw = load([Prefix,num2str(Idx),'.txt']);  %Load the file 
t = Raw(:,1);        % First column is the time axis 
RST = Raw(:,2:4);    % R, S, T Phases 
I_rst = Raw(:,5:7);  % Current for each three phases(I_r, I_s, I_t) 

         
% Computing the SPACE PHASOR to find a measure for Amplitude 
% and a hard wavelet filter to remove the noise 
% Call function that compute space phsor for voltage and current 
Usp=abs(ComputeSpacePhasor(RST));   %Voltage Space Phaseor 
Isp=abs(ComputeSpacePhasor(I_rst)); %Current Space Phasor 

  

%% 
              %Filtering the Noise from the measurements 
%-------------------------------------------------------------------% 
[C,L] = wavedec(Usp,N,wName); %Perform wavelet decomposition of Usp   
C(L(1)+1:end)=0; 
FiltUsp = waverec(C,L,wName); %Perform wavelet reconstruction of Usp 
[C,L] = wavedec(Isp,N,wName); %Perform wavelet decomposition of Isp 
C(L(1)+1:end)=0; 
FiltIsp = waverec(C,L,wName); %Perform wavelet reconstruction of Isp 

  
        %Computing the Phase to Phase Voltage and Current 
%---------------------------------------------------------------% 
Upp = FiltUsp * sqrt(3)/sqrt(2);    %Phase to Phase Voltage 
Ipp = FiltIsp * sqrt(3)/sqrt(2);    %Phase to Phase Current 

  
%% 
% Show the Corresponding Plots 
h=figure; 
subplot(4,2,1); plot(t,RST);  
title(['Voltages Timedomain (Active Power 

JumpsKi=',num2str(Idx),')']); 
subplot(4,2,2); plot(t,I_rst);      title('Currents Timedomain'); 
subplot(4,2,3); plot(t,Usp);        title('Voltage Space Phasor'); 
subplot(4,2,4); plot(t,Isp);        title('Current Space Phasor'); 
subplot(4,2,5); plot(t,FiltUsp);    title('Voltage Amplitudes'); 
subplot(4,2,6); plot(t,FiltIsp);    title('Current Amplitudes');  
subplot(4,2,7); plot(t,Upp);        title('Phase to Phase Voltage'); 
subplot(4,2,8); plot(t,Ipp);        title('Phase to Phase Current'); 

 

Function: SPACE PHASOR 

% ################################################################ 
% #######             ACHEMA HOSEA EGBUNU (142773)         ####### 
% #######           SYSTEMS AND CONTROL ENGINEERING        ####### 
% #######         FUNCTION FOR COMPUTING SPACE PHASOR      ####### 
% ################################################################ 

  
%% 
     %Function For Computing the Space Phasor 



15  APPENDICES 217 

 

%-------------------------------------------------% 
function SP = ComputeSpacePhasor(samples) 
SP = 2/3*(samples(:,1) + samples(:,2)*exp(1i*2*pi/3) + 

samples(:,3)*exp(1i*4*pi/3)); 

 

 

15.16.5 APPENDIX 17: WIND TURBINE DATA ANALYSIS 

close all; clear all; 
Raw = load('20160602_16-15-10_readme.txt');   %Load data 

  
% Get Data for Same Time Axis 
t = Raw.i1_Netz_time; 
iRST = Raw.i1_Netz; 
x = Raw.i2_Netz_time;  
y = Raw.i2_Netz;  
iRST = [iRST, spline(x,y,t)]; 
x = Raw.i3_Netz_time;  
y = Raw.i3_Netz; 
iRST = [iRST, spline(x,y,t)]; 

  
x = Raw.u1N_Netz_time;  
y = Raw.u1N_Netz;  
uRST = spline(x,y,t); 
x = Raw.u2N_Netz_time;  
y = Raw.u2N_Netz;  
uRST = [uRST, spline(x,y,t)]; 
x = Raw.u3N_Netz_time; 
y = Raw.u3N_Netz;  
uRST = [uRST, spline(x,y,t)]; 

  

  
UsedWave='db3'; WavPerc = 100*ones(1,9);  

  
U = sqrt(sum(uRST.^2, 2)); 
I = sqrt(sum(iRST.^2, 2)); 
P = uRST.*iRST;             %Computing power 

  

  
UF = MyFilter(U, UsedWave, WavPerc); 
IF = MyFilter(I, UsedWave, WavPerc); 
PF = MyFilter(P, UsedWave, WavPerc); 

  
h = figure; 
plot(t,uRST); title('The 3 Phases for R, S, T'); xlabel('Time'); 

  
h = figure; 
plot(t,U, t,UF);  
title('Voltage Space Phasor and its Filtered');  
xlabel('Time'); 

  
h = figure; 
plot(t,iRST); 



15  APPENDICES 218 

 

title('Currents for R, S, T'); xlabel('Time'); 

  

h = figure; 
plot(t,I,t,IF); 
title('Current Space Phasor for RST and its Filtered'); 

xlabel('Time'); 

  
h = figure; 
plot(t,P,t,PF); 
title('Power for RST and its Filtered'); xlabel('Time'); 

  
%publish('Runme.m','pdf') 

 

 

 

15.17 APPENDIX 18:  USER  GUIDE 

15.17.1 HANDLING INSTRUCTION 

The handling instructions indicated in this section should be followed for smooth 

operation of the process and program. 

Human Machine Interface (Webserver): 

 For the pen loop control duty cycle is used as setpoint (0 - 255). 0 duty cycle 

represents 0V and 255 represents 253V (phase-to-phase). 

 The norminal voltage for the 60Hz machine is 220V and the duty cycle for the 

nominal voltage is 54. 

 For the close loop control, the setpoint is designed to input the measured value 

as setpoint 

 The measured value (Filter highest values) is obtained by setting the duty cycle 

for the open loop control and read the corresponding measured value (Filtered 

value) from the System status. 

 The measured value for the nominal voltage of 220V (Duty cycle: 54) is: 

194287. 

 The measured value for the voltage of 230V (Duty cycle: 66) is: 227197. 

 Under ‚Service‘ ---> System status, set the ‚ControlTrigger Interval‘ to value 

greater than 2 + Enter  (for fast control). 



15  APPENDICES 219 

 

 For a measurement electronic with no DCOffset, set the DCOffset0 to 0 + Enter 

from the System status.  

 To determine the measured value for the desired voltage setpoint, set the duty 

cycle for open loop for the desired voltage and read the measured value (Filter 

value) from the System status. The highest filter value represents the newest 

value and should be chosen. However, ensure to refresh the page using ‚refresh 

values‘ at the top of the System status before reading the filter value.   

 Set the value of KP, KI = 0 and KD = 0 from (P)(I)(D) menu under Service for P 

Control. 

 Set the value of KP, KI  and KD = 0 from (P)(I)(D) menu under Service for PI 

Control. 

 Set the value of KP, KI and KD from (P)(I)(D) menu under Service for PID 

Control. 

 Values of control coefficients: KP = 136, KI = 131, KD = 176. 

15.17.2 TECHNICAL AND SERVICE DOCUMENTATION 

Software: 

 The index definitions for the variables in the main program should not be 

changed as this is hard encoded to the webserver. Changing this will affects the 

command(s) from the webserver (HMI) and program performance will be 

affected. 

 The ADC Interrupt vector is operated in manual mode with timer 0 ISR used to 

start the conversion on channel 0 a fixed interval. The ADC ISR is called fetch 

sampled values once the conversion is completed by the hardware.  

 The ADC ISR is the anchore for this project. It is responsible for fetching the 

conversion data from ADC Register, executes computation of actual value and 

control, updates the log buffer for RST phases, and set semaphore for data 

logging from the main loop. All this are done within the fixed interrupt 

frequency, however, logging operations can be interrupted by the interrupt if the 

logging takes more time than required. 



15  APPENDICES 220 

 

 Avoid COM port serial print within the interrupt operated tasks as this takes 

more time to print values and may affects the interrupt timing. 

 For future expansion of more control strategies, a platform has been created in 

the control function to call the any new control strategy.    

 If setpoint in voltage from the HMI is desired for the close loop control, the 

function: ChangePWMFrequency() can be enabled in the main loop to address 

this but this will increase main loop execution time and process load due to float 

computations and sometime may leads to timeout for the webserver interface 

(HMI) due to interrupt suspending the main loop tasks for higher priority tasks. 

The range for the setpoint in voltage from HMI is 0 – 253V (phase-to-phase) for 

the 60Hz machine under consideration. However, for other project this can be 

extended by changing the bond implemented in the ‚ChangePWMFrequency()‘.  

 The opto device on the excitation board has an inverted signal, therefore, the 

control signal from the controller is inverted before writing to the output pin 

connected to the excitation board. 

 The coontrol signal is only written to the output pin only if there is changes from 

the previous value in order to keep the machine output stable. However, this has 

an effect, at initialization or startup the control signal is zero which drives the 

machine output voltage high at startup due to signal inversion by opto device on 

excitation board. As a result, setting a zero from HMI will not work, therefore, 

at startup the output pin is driven high with analogWrite(PWMOutPin, 255) in 

the void setup() to invert the signal to zero.   

 KP = 136, KI = 131, KD = 176. The division factor (shifting operator) for:  

KP >> 23, KI >> 22, and KD >> 22. The shifing operator for each of the 

control coefficient is hard encoded in the software. 

15.17.3 HARDWARE USED 

 Arduino Ethernet 

 Measurement Electronic Board 

 Excitation Power Electronic Board 

 RS232 to Serial Communication Board 



15  APPENDICES 221 

 

 60Hz synchronous machine 

15.17.4 SOFTWARE USED 

 Arduino Programming Environment  

 MATLAB (for Data Analysis) 

 LTspice IV (Electronic Components Simulation) 

 EAGLE (for PCB Design)  

 Microsoft Expression Web 4 (For Designing the Webserver) 

 

 


