Master Thesis 2016

Ole Magnus Brastein
130482

Grey-box models for estimation of heating times
for buildings

Telemark University College
Faculty of Technology

Telemark University College
Faculty of Technology

Kjglnes ring 56
3918 Porsgrunn
http://www.hit.no

© 2016 Ole M. Brastein

Abstract

Energy-usage in buildings is responsible for adgrgrt of the total demands on energy
production. Models are required to estimate thdilgand cooling times of buildings, thus
allowing a control system to accurately maintaimémt temperature only when strictly
needed, lowering the demand for energy used fdirftea

Grey-box models based on Thermal Network ResisagaCitor equivalents are used to
predict thermal behavior of buildings. Model sturets are based on cognitive or intuitive
understanding of thermodynamic behavior of building

Working with models and data sets requires softw@oks both for treatment of data,
simulation of models and identification of paramgtén this project software is developed
both in c# and MATLAB as and when applicable.

Grey-box models are shown to accurately predicpagature over the prediction horizon,
leading to accurate estimation of heating time,mt@mpared to measurement data. Further,
the proposed control strategy is shown to overceomee of the shortcomings of standard
heater control systems.

Table of contents

N 1S = ot PSSP 3

JLIR= o1 L= o) oo g =] S 4

OVENVIEW Of TIQUIES ... ittt et et esna e e eseesreeseeneennaeneen 7

OVENVIEW Of TADIES.......eeeece e et b et esaeees 9

= T TSP 10

I 14 o [T A o o 11

2 SYSLOIM OVEN VIBW ...ttt s s e e e teeseesseesseenaesneesseensessannseeneenseensennennns 13

2.1 Prediction of heating/CoOliNG tIMES ..ot st eaea 14

2.1.1 Definition of heating and coOliNG tIME.......ccoiiiriiiire s 16

2.1.2 Control Scheme, local and SUPErVISOry CONEIOlcccevuvieveiineeiee e 16

2.1.3 Infrastructure of building and control SYStEMccooiiiii i 19

2.1.4 Realtime reqUITEMENToiiiieiieeiee ettt ettt sb e se e e e e se e st e saesbeeseeneeneeseeneesaeseeenes 19

2.2 Thermal NEtWOrk RC MOUEIS.......coiiiiiiirieee ettt 20

2.3 Thermal zones and SINGIE-ZONE MOAEIS.........ooiiiiiiiiee et s eaea 21

W = Y oTo a1 e L= T oo TSRS 22

2.5 Data set: Sensor types and POSILIONcccviirereierieeeiee s e e se e e eeea e s e te e sre e ereese e e eneesresresnennens 23

AN R D= o] o] Lo g Io A= e =\ - 24

2.5.2 AMOouNt Of data@ NEEAEM ..ottt bt 25

2.5.3 RaNQe Of At NEEHEMoouiieieeeeeee ettt et a e se e be e e enas 26

3 LItErAlUIN € REVIEW ...ttt et te e e s se e aeeneesteeneesneenneennens 27

3.1 Review of modeling methods for HVAC SYSLEMS.......cvcieieiinie v e s 27
3.2 Development and validation of a gray box model to predict ther mal behavior of occupied office

1011 o [T g o =SSR 28

3.3 EKF based self-adaptive ther mal model for a passive hoUSe.........coceoeieviniii i 29
3.4 Quality of grey-box models and identified parameters as a function of the accuracy of input and

Lo o1 V7= A o IR o = £ 30

3.5 Gray-box modeling and validation of residential HVAC system for control system design 31

N 1 1= o OSSR 32

4.1 Timedependencein data driven MOAEIINGo e 32

4.2 Data driven MOAEIINGcccciiireirirerers sttt sttt ettt e st e st e s ee 32

421 TimMeSerieSregressioN MOUEIS.c it 33

A A O 1YL= & 1 4 T OSSO 35

4.3 Grey box MOdeling PriNCIPIES.ot se et e b s 35

4.3.1 Model calibration and Validationceeivuiiiieieeie et sree e s sraeesree e sres 37

4.4 Thermal NEEWOI K MOEIS ..ottt e e et e sbesne e enes 37
4.4.1 ResSstor and CapacCitor ElEMENTS.......cccvciiieiiiceee e ere s 38
4.4.2 Ventilation asthermal FeSISLANCE.ooeirirriree e 39
4.4.3 Potential and flow in RC @QUIVAIENTcceiiiiiiie e 39
4.4.4 Lumped parameter Of DUITAINGS.......cooiiiieieee e e 40
4.4.5 Thermal NEtWOrk MOAEl SEFUCLUMESo.voueieiiiieecree e 40

4.5 Data PrEtr@aLIMENT . .coeiii ettt ettt e ee e ae e sb e e s be et e e besaeesheesaeeabeesesaseeneesaeasbeanbeenrenn 45
VST R o]0l o1 g 1T gTo o F= 1= 1= = £ 7SS 46
Y 11 oo T L= SOOI 47
e T = === 141 0] g T 47
T L (= T o [SO 49
A.5.5 OULIIEN AELECTION ...t sttt b e b e et e e e e e beseeebeeneeneenes 50

T SIS o =TT Q=T [T= 4 o PSSR 51

4.7 MOdEl PErfOr MANCE CIITEI T .. eeueeeeieie ettt e et se b e e sbe e neenes 51

4.8 White-hox reference MOUEo e e enes 52

4.9 SIMUIALION Of MOAEIS ..ottt sttt b et 52

410 ODE SOIVING iN AiSCret@ tIME....cueiiiciiieecteeeeeeeeeee sttt se e e e sr e eesaesreenn 54
4.10.1Fixed Or Variable SLEP SOIVES ..ottt se et sae e 54
4.10.2RUNGE K ULt 4™ OFAEI SOIVET ... 55

411 Optimization based parameter identification ..o 56
4.11.10ptimizer WOrKing PrinCiPle.ot 56

5 Software Implementation ... e 59

5.1 Softwar e deVElOPMENT PIrOCESS........cieeuieeeierieeeerie sttt eteeeeee e te st eseeseeeeseeseeseeseesbesaeeneensessenbesaeseesnes 60

5.2 Data treatment apPliCALIONc.ooi it eb et ne e e see b e e eaeeneenean 60
5.2.1 Data StOr Qg ClASSES.....cueiueriestirieeteeeeteeestes e stestesseeeesaessestesaestesseessessessessessessessesseeneessensesaessessen 63
5.2.2 Data OPEr aliONS CIASSESccuiiieieeceeeice ettt e st e e st et e saestesreeseesaese e tesaenrennn 65
5.2.3 FIleSWIith MACTO SLEPS .. .ceeieeiteie ettt sttt e e et sa e sb e s e neeneese e besaeseeenas 69

5.3 SIMUIAtion APPIICALION ..ot st b e bt et se e e et seesbesaeeneeneenean 70
5.3.1 ODE MOAEISANA SOIVENS.....uiieiiriiieiiriirieirie ettt sttt be st neenes 73
5.3.2 Software Testing, quality of SIMUIALIONScooiiiiieeiie e 75
5.3.3 Simulations and configuration ClASSES.........cociriieiiieiereere e 76
CIC 0 A I g o0 1 o = o |1 oV 78

Lo Y oo [I 0 q] o] (= 4= g1 = o] 78
5.4.1 Ventilation asreSiStance MOUEcooi i see e 80
5.4.2 Comparing MATLAB tO CHLO VEIIfY ..cuiiiieieeeee et 80

5.5 RK4 implementation and MATLAB built in SOIVErS......cccoviiieie e 80

5.6 Parameter identification in MATLAB ... e 82
20 R O 1 0= PR 84
B.6.2 COMPULE ... ettt e st s e e te s e e s e e s se e seentees e estesmeesaeesaeesaesneesneenseenseenseensenneennensneesees 86

5.7 Heating time estimation, ON/OFF control SmMUlation...........cccvvvevreeieerenesiese e e 87

B RESUILS. ...t sttt r e e e 89
6.1 SUMMAIY OF FESUIES.....uiiieiie ettt sttt e e e se e be s eesreese e e enaeseensesneerenneenean 91
6.2 Removal of outliersin NOVEMDEr Data.........ccccooiiiiiiiieee ettt s 93

T DISCUSSION ...ttt sttt ettt bbbt e e et e nb e bt e bt bt e ne e st et e e e s e ntenbesbenne s 96

7.1 Cognitive model development, Simulated data...........cceceverieiecineeecesese e 96

7.1.1 Conclusion of modelsfrom simulated data...........ccceoereieniienieee e 97
7.2 Range of input and statesin training and calibration data............cccccevvvieveniviecieesesse e 98
7.2.1 Conclusion of required rangesin inputs and statesfor measured data...........c..cccovvevevennnne 100
7.3 Length of data sets, number of SAMPIES........coi i e 100
7.3.1 PrediCtion NOFIZON ..ottt et be b e e e e e e e e besaeeneas 101
7.3.2 Conclusion of length of data SELS........ccccv i ne s 101
T4 TIMESLEP TEBNGEN ..ttt st b e e et ae e e e eeseesbesaeeneeneans 102
7.4.1 Conclusion of timestep IENGLN.........c.o i 103
7.5 Redundant RC MOdEl Para@mMELErS........cccvcviiiiieiiseceeese et ae et ne e e sresresne e 103
7.5.1 Conclusion of parameter redUuNdancycccueieeeierenie s nreas 104
FA Y Koo [I wolaq] o 11= (L YRR 104
7.6.1 Conclusion of MOAEl COMPIEXITYcciiiiiririieeie et eeeas 104
FAT RS o = LT = To [T 11 o o FO ST 105
7.7.1 Conclusion of Solar irFadiation...........ooeiereriieeeee e eaeas 106
ST 2T o T SRS 107
7.8.1 Error diStribULIONcci ittt sttt se e ebe e 109
7.8.2 Conclusion oOf chOiCe Of DESE CASE........ciiieirciie e et 110
7.9 Estimation Of NEAtING tIME ..ot st enen 110
7.9.1 DElAY IN NEALINGe ittt ettt sttt e a e e et e beseesbesbesaeese e e anseseenbesaeeneas 114
7.9.2 Thermodynamics Of €leCtriC NEALErS.......ccvceiieiciece e 115
7.9.3 Energy savings by improved CONTrol ... 117
7.9.4 PerfOrMaNCE CrITEIN A . .oeiii ettt sttt e et e e e e et et et sbe e e e s e seesbeseeeaeas 118
7.9.5 Conclusion of heating time eStiMatioNcciviieieererise e reas 118
7.10 Estimation of cooling time, November ByggL ab........cccccvvvverecierenn e 119
7.10.1Estimated energy SAViNg POLENTIALoieeeriiieiieeee et eee s 121

S @] [ox 11 o o RS 122
REFEN BNCES ...ttt b e bt e s b et e sbe e beeneesneenneenne s 124
N] 0 1= o [o= 126
APPENiX A - TASK DESCIIPLIONcveieeiice sttt e re s reene e e e e sresbesnesrenneenen 127
Appendix B - DetailS Of all FESUIL CASES.......cciviiiiiicice ittt enen 130
PN o] o1 oo [0 QO o la [N I K oV USRI 173
ApPPeNdixX D - SUMMEAIY SNEEL ..ottt ae e e entesresbesnesreeneenen 214

Overview of figures

FIQUIE 1 - SYSIEIM OVEIVIEW. ...cceeiiiiiiiiiimettititea e e e e e e e e e e e e e e e eeeeeteeebn s mmmmnseesnann e e eeeas 13
Figure 2 - Heating time and SEtPOINT........commmeeeeeieeeeeeiiieieeieeirre e e ererre s e e e e e e e aeeees 15
Figure 3 - ON/OFF controller @Xample...... ..o errrre e 16
Figure 4 - Flow chart of predictive control scheme.............cccooovviiiiiiiiiiiiiiieeeeees 17
Figure 5 - Thermal model of & BUIIAINGom o 20
Figure 6 - Example of measured building parameters...........ccccceeeeiieeeeeeeeeeeeveeveeeeee, 23
Figure 7 - Building wall With SENSOIScccceeeiieiiiciee e 24
Figure 8 - Input-output MOdel SITUCTUIEcoeeemiiiiiiiiiie e 34
Figure 9 - Grey-box modeling ProCESS OVEIVIEW.........ccvvvieiiiriiiiiiiiaeeee e e eeeeeeeeeeeeeeeeeeee 36
1o T T30 K I o O O] (o] U | PSR 38
Figure 11 - RC circuit with potential and flow SOBIL..............ccccoviiiiiieiiiiiiee s e 40
FIgure 12 - RAC2 MOUELottt e e e e e e e e e e e e e e e eeeeeananes 41
Figure 13 - RBC2 MOUEIot e e e e e e e e e e e e e eeeeeananes 42
FIgUre 14 - R6C3 MOUELot e e e e e e e e e e e e e ee e e e e e e e e eeaeereannnes 43
FIQUrE 15 - R7C3 MOUEL.....uiii it e e e e e e et e e e e ee e e e e e e e e eeeeereannnes 44
FIgure 16 - RSC3 MOUEottt e e e e e e e e e e e e e eeeeeananes 45
Figure 17 - Data file CONVErsion SOMWAIEccceeeiiiiiiiiiiiiiieeee e 46
Figure 18 - Re-sampling of data by linear interfiola...............ccccoeeviviiiiiiiiiiiiie, 48
Figure 19 - Linear iNterpolationcemmeerurummmiiiieeeeeeeeeeeeeeeeeeessesees s e eeeas 48
Figure 20 - Centered (left) and Uncentered (NMYWMIA ... e 49
Figure 21 - SIMUIAION 10O ...veeeuiiiiiie e e e era e e e e e e e e e e e e eeeeeeenees 53
Figure 22 - Backward and Forward Euler approXinmiQ...............eeeeieeeeeeeeeeeeeeeeeess o 54
Figure 23 - Optimization based parameter identifdiTa....................evviiiiiiieeeeeeerieeenennnnns 57
Figure 24 - Use-case diagram for LogFile CONVESBEIWAIEeueiiiiiiirieeeiiieeeees 61
Figure 25 - LogFile Converter SCreenShOt........coueviviiiiiiiiiiiii e 62
Figure 26 - LogFile Converter Data VIEWcccceeveevviiiuiiiiiieieeeeeeeeeeeeeeeeieeseennmeeeenennnnns 63
Figure 27 - Class diagram for LOGFile ODJ@CTIS . iiveeeeiiiiiiiiiiie i 64
Figure 28 - Code example of accessing LogFile class...........cccoeiiiiiiiiiiiiiiicciiins 65

Figure 29 - Operation execution iN threadcooooeeeiiiiiiiee e 66

Figure 30 - Class diagram for data OperationS...............uvvveiiiiieieeeeeeeeeeeeeevveeeeeeeeeeeeeens 66
Figure 31 - File format CONVErsiON CIaSSES. ..ccuuuriii i 67
Figure 32 - Screenshot of resampling OPeration...........cooooeeeiiiiiiiiiiiiiiie e 68
Figure 33 - Screenshot of outlier detection opemati...................uuuviiiiiiiiiee e e e e s 69
Figure 34 - Use-Case diagram for Simulation SOWAL...............eeeeiiiiiieeeeeeeeeeeee s o 71
Figure 35 - Screenshot of Simulation SOftware.............ooooiiiiiiiiiiii e 72
Figure 36 - Class diagram of ODE Model and ODE 800lasSSesS.............uuveiiiiiiiieeeeeennnn. 3..7
Figure 37 - ODESolver calling dxdt in ODEModel astpof simulation loop..........ccccce...... 74
Figure 38 - LP simulation with three SOIVEISvviveiiiiiii e 75
Figure 39 - Simulation experiments running in akigaaund thread.............cccccoovveennnnn. 6.
Figure 40 - Class diagram of Simulation relate@s®#scceeiiiiiiii e 77
Figure 41 - INpUt liN€ EXAMPIEueeeiii e e as 78
Figure 42 - MATLAB model implementationcccc...uieiieiiie e 79
Figure 43 - Model on state-space form and as Code............uuuiiiiiniiiinieiiiieeeiieeeeee e 79
Figure 44 - MATLAB implementation of resistance tiltion model............cccccccennnn. 80
Figure 45- difference between c# and MATLAB for RAC.........ccoooeee i 30
Figure 46 - MATLAB implementation of RK4 method...........cccooovviiiiiiiiiiiiiieee 81
Figure 47 - Simulating R4C2 in MATLAB With 00€45.... ..., 82
Figure 48 - Use-Case for MATLAB COUE..........cmmmuiiiiiieeee et 83
Figure 49 - MATLAB Parameter identification OVEMME.ccovvvveevviiiiniiiiieeeeeeeeeeen, 84
Figure 50 - Optimize function in MATLAB with inteah callback functions 85
Figure 51 - MATLAB implementation of constraint &Wationcoeevvviiiiiiiinnnn.nd 86
Figure 52 - c# code for ON/OFF CONtrollercoooviiiiiiiiiiiiiii e 87
Figure 53 - Computation of heating time from sin@dBresultscccccoeevveiiiiiiiiinnnns 87
Figure 54 - Simulated ON/OFF control for heatimgdiestimationc.ccovvvvvvnnnis 88
Figure 55 - Manual removal of outliers in Novembata setccooovieiiiiiiiiiiiiiiaees 94
Figure 56 - Comparing case A - R4C2 (top) and D-RE&Httom)........cccvvvvvvvvciiiinneeeeee .9
Figure 57 - Comparing cases 1 (top) and 3 (bottom)...........ccoovvvrrriiiiiiiiiii e, 98
Figure 58 - Case 18 calibration data, red - refegehlue - model, top -pJlower - T, 99

Figure 59 - Comparing power consumption data ie &gop) and 9 (bottom) 102

Figure 60 - Validation reSUltS fOr CASE 17 ..o eeeeeeeerriiiiiiiiiiiasieeeeeeeeseeeeseeeeenreeseeennnnns 105
Figure 61 - Calibration plot fOr CASE 7uuuuuuiiiiiiieee s 108
Figure 62 - Validation plot fOr CASE 7ceeeeeriiiiiiiie e 109
Figure 63 - Error distribution case 7, calibrat{taft) validation (right)T, (top) T.(bottom)
.. 110
Figure 64 - Estimation of heating time, comparethweference November data set.......... 111
Figure 65 - Case 3 validation reSUILScee i e e 113
Figure 66 - Heating time estimation on case 3 @dilich data...............ccceeeeeeiiiieeeeeerreeeee. 114
Figure 67 - Calibration results for CaSe 15 .. iiiiiiiiiiiiiiiiiee e eeeee e 116
Figure 68 - Peaks in power consumption indicate efacooling cycle............cccccceeeeeennnn. 19
Figure 69 - Estimation of cooling time, Novembetada................coouvviieiiininenne e, 120
Overview of tables

Table 1 - List of all cases with data set, model ®meframeccccciviiiines s 90
Table 2 - Summary of results, performance critEmianodelscovviieeiiiiiie s 92
Table 3 - Extract from results, comparing casesmtl 13-16cceevvvevvvvvvnnenneennn. 100

Preface

This project report and the underlying softwareadepment and modeling work have been a
part of the authors’ master studies at Telemarké&lsity Collage at the program Systems
and Control Engineering. The methods and toolsritestin this project presents a
foundation for future work with regards to the w$grey-box modeling to predict heating
and cooling time of buildings, as well as some emhgal ideas for a working control system.
Developed software can serve as tools for futunkwa the subject, in particular with
regards to data pretreatment and simulations ofetsod

The report outlines several suggestions and recomations with regards to data collection,
which is hoped to be useful for future work. Intpardar, ranges for training data in both time
and variation of inputs is treated in detail. Farflsuggestions to future work and
improvements on the presented methods are giverevelpplicable, especially with regards
to model structures and control algorithm.

I would like to thank my supervisor Nils-Olav Skéoe all guidance, support and advice
throughout the project, and PhD candidate WatH3atara for her contribution, particularly
in the form of collected data and her work in dexgwvhite-box models which is used as a
reference in this project. Finally, |1 would like tank my family for their support during this
project.

Larvik, 25.01.2016

Ole Magnus Brastein

10

1 Introduction

Energy-usage in buildings is responsible for adgrart of the total demands on energy
production, particularly in countries with coldrolates. According to the International Energy
Agency (IEA) some 32% of the total energy consumagsed for heating, cooling and
lighting of commercial and residential building$.[lh some countries, taking Norway as an
example, heating of buildings consume as much #saf&he total energy production
(Appendix A).

Modern building techniques, particularly in Scaradilan countries, go along way in making
houses more energy efficient. However, the reneatalof buildings is slow. Taking France
as an example, the renewal rate is reported asléalgr year [2]. Upgrading existing
buildings to modern standards of energy econoneypensive. Therefore, it is of importance
to develop methods and systems which is capabiedoiting energy demands for existing
buildings.

The use of electricity for heating buildings genesgpeak demands on the power grid, due to
simultaneous use of large amount of energy, herexigtion models for buildings are of
interest on a city-wide basis as well [2]. Someréiture also suggest that increased use of
renewable energy sources may lead to higher denfandsedictability in consumption of
electric energy [3].

The motivation for this project is developing madtiat can predict heating and cooling
times for buildings. This type of model can thenused in a control system to predict the
thermal behavior. Energy usage for heating camWwered by allowing the building to cool to
lower temperatures when not in use (Appendix A).

A study of current literature, with focus on modilsthermal behavior in buildings
combining physical laws and data driven modeliagiarried out as a summary of previous
work in the field. The result of this study, whishpresented in a separate chapter, suggest
that using grey-box modeling techniques is a ty@paroach to creating models of thermal
behavior in buildings. Therefore, grey-box modetsthe primary choice of modeling
technique [4] in this project.

A grey-box model is named as such because it caslmiancepts from both white-box and
black-box modeling. The definition of grey-box mbédsed in this project is taken from [4],
where grey-box models is defined as models wherdadisic structure is first formed by using
the laws of physics and then using measurementfidetea system to identify the parameters
of the model.

An advantage of the grey-box modeling technigubas the physical structure of the model
can be designed based on intuitive understandiagsgstem [5] rather then complex
mathematical equations. Thermal behavior of bugdihas been shown to depend on many

11

factors, such as weather conditions, thermal itiemausage patterns and thermal mass of
building structure and furniture [1]. Hence, buildimodels can become complex, if all of
these factors are to be modeled by physical laws.

According to the literature, a typical choice fooael structures in grey-box modeling of
buildings is a Thermal Network [5], where the binlglis represented as a simplified lumped
parameter model [2]. The thermal resistance andai@nce of a building is modeled as a
Resistor-Capacitor (RC) electrical equivalent airf]. A detailed discussion on these
concepts is given in a separate chapter.

Much of the relevant literature is concerned with inodels themselves, and on evaluating a
models ability to predict temperature relative tkknawn, measured, reference [2, 3, 7]. The
focus of this project is on predictions of heatamgl cooling times. The grey-box modeling
technique is used to derive models for severagdfit buildings, both from simulated and
physical measurement data. The derived modelsharersto predict heating time of

buildings with good accuracy. This project add#h previous work in the field by looking

at grey-box models for heating and cooling timéngstion in the frame-work of a specific
predictive control system.

A detailed discussion of requirements for the measent data is given, with focus on what
is important for a models ability to accuratelygiot temperature, as well as heating and
cooling times. A suggested predictive control schésgiven as a framework of these time
predictions. The results presented in this regurivs that the thermostats of electric heaters
have sub-optimal performance with respect to miming heating time. This problem is also
discussed in the framework of the suggested piedicontrol system.

In any data-driven modeling technique a systenpfefrprocessing of data files is required. A
software tool is developed especially for this msg Detailed presentations of the various
pre-processing operations of interest to this ptaee given.

Other software, developed as part of this projedgcused on the simulation of models based
on Ordinary Differential Equations (ODE) such assia derived from Thermal Network
models. Simulations of models are implemented boMATLAB and c# and results are
compared with respect to accuracy and computational Discussions of solvers for ODE’s
is given, with focus on fixed step solvers using Runge-Kutta% order method [8].

An overview of the system and software, includiegatiptions of key concepts, sensors, data
sets, background information and proposed conysiesn design, is given in chapter 2. In
chapters 6 and 7 the results of the 22 separags,caach using different configurations of
data sets and model structures to identify parasedee presented and discussed. Cases are
compared to illustrate interesting aspects in @g#y using grey-box models for heating and
cooling time estimation in control systems. Theoréps concluded in chapter 8 with a short
summary.

12

2 System overview

In this chapter information about the developedesyistogether with relevant background,
information is presented. The primary purpose ekttgoment of thermal building models is
to create better temperature control systems, ltlgesaving energy and increasing thermal
comfort for occupants (Appendix A). This type ohtwl system is based on using models to
predict heating and cooling times of a buildingeThapter starts with an overview of the
system and software, followed by a definition chtireg and cooling times, as well as a
proposed control algorithm. Next, an introductioritte concepts Thermal Networks, Single-
zone models and grey-box modeling is given. Théovie a description of the data
collection systems, test buildings, sensors, ama skts this project is based on.

Input data

From measurements

v

Pre-processing Training & Grey-box modeling Results
LogFile Converter validation dat Parameter Identification Model
Cc# MATLAB Calibration
q
&
1 Validation

Model Structures

Parameters
Thermal Network RC

y y

Model parameters > Simulate ODE —> Results
From knowledge Simulator Simulated Building
c# Behavior

Figure 1 - System Overview

An overview of the system developed in this projsdiven in Figure 1. Three software tools
have been created, shown with blue blocks. Thegath responsible for separate processing
tasks in the system. Each of these softwares witlibcussed in details in a later chapter. The
first tool is called “LogFile Converter” and is uk® pre-process raw data files from different
measurement systems in order to generate traimagalidation data for the modeling
process. The second software tool is the “Simutatsoftware which can simulate a model
given as a set of Ordinary Differential Equatio®@®E). Both these softwares are developed

13

in c#. The last software tool is developed in MATRAT his software is used to identify the
parameters of a model based on measurement detaldb responsible for validating the
model against independent test data. Heating amlthgdimes presented in the results are
computed with MATLAB, but can also be found usihg tSimulation” software.

The “Model Structures” block, shown in yellow, repents the models for a building. These
models are a simplified structural representatioth® thermodynamic behavior of buildings.
Models are derived as Thermal Networks using RasGapacitor (RC) circuit equivalent
descriptions [5]. Both these concepts are desciibéus chapter and with more details in a
later chapter on theory.

The inputs to the system are shown in the two goéeeks. The first input is the measured
raw data that will be pre-processed into usablaitrg and validation data sets. This data
comes from experiments performed on buildings usergsors to measure parameters of
interest to the model. The second input block regmes known building parameters. The
“Simulation” software is not restricted to simufagionly grey-box models with identified
parameters, but can also use parameters computtidrymeans, e.g. expert knowledge.

The results of the system are shown in two blogkesy for the results from the c# simulator
and orange for the output from the MATLAB parameétientification software. The

MATLAB results are statistics and plots generatednfthe parameter identification, and
from the validation of the model based on indepahdata. These results are discussed in
detail in later chapters. The results from theiotugator are presented in grey because these
are not extensively used in this report. The safws still important for the overall system.
Results from c# are interesting in terms of testirgcomputational speed relative to
MATLAB and for use in future control systems, wh&4&TLAB is not available.

2.1 Prediction of heating/cooling times

The key attribute of interest is the heating analing times of a building. The reason for
deriving building models is primarily improved teerpture control, both for comfort of
occupants, and for saving energy used for healing][The energy saving gains is realized
by lowering the building temperature, and thusehergy required to maintain a set
temperature when the building is not in use [1EIBa control scheme requires good
predictions of the time it takes to re-heat théding before use. Models must also predict the
cooling time of a building, i.e. how long time begdhe building is expected to be unused it is
acceptable to start cooling. The time it takesdatlor cool the building, is the primary

feature of a buildings thermal behavior that thiggct aims to predict.

If the temperature can be accurately predictedyimia specific prediction horizon, the
heating and cooling times can be computed baseatharlations using a model. It is natural
to think in terms of Model Predictive Control (MP[®] as a means of achieving improved

14

temperature control of buildings. A simpler schemsng only ON/OFF control of heaters
and predictions of heating and cooling times, i®fsiggested as an alternative control
scheme to maintain the required comfort temperainhg when building is in use, thereby
minimizing the energy consumption. One reasonifsisting on a simple control scheme is to
develop a system that can be installed in exidiuitglings. This will be discussed in a later
chapter.

Setpoint

»

T[C]4

M
Heating time

n

t[h]

Figure 2 - Heating time and setpoint

In Figure 2 the heating time is defined from tmedithe heating system is turned on and the
temperature starts to increase, until the temperagaches its target setpoint. Before heating
begins, the building is assumed maintained at domer temperature setpoint. The heating
time is defined as the time required for changhegtemperature from a low to a high setting.

A control system can use a model to predict theltesf control inputs ahead of time, i.e. a
predictive controller, as shown by black line igiiie 2. Given an estimate of the model
inputs such as weather conditions and building paoay, it is possible to predict when the
buildings heating system must be turned on orTdffs allows the system to maintain an
optimal setpoint of the buildings air temperatireth with regards to thermal comfort and
energy economy. This is in contrast to conventiétiBl or ON/OFF control (grey line) which
only responds to an error, a difference betweersaraad and setpoint.

As a part of this control scheme, improved conbfdhe heaters it self can be realized. Using
electric heaters, where each heater is controjeghtonboard thermostat, is in this project
shown to be inefficient with respect to heatingdinihe thermostat regulates the temperature
of the heater, not the building air temperaturelfit§ he thermodynamics between air and
heater is what determines the temperature in thdibg. This will be further discussed in a
later chapter.

15

2.1.1 Definition of heating and cooling time

It is useful for this project to have a definitiohheating and cooling time. Heating time is
defined as the time from the heater is turned atil the room temperature has reached its
setpoint, i.e. changing from a low to a high terapgne setpoint.

Similarly, cooling time is defined as the time temperature to drop from high to low. For
cooling time, the level the temperature drops simiportant to specify. When predicting
how long time before a building is expected to based the heating can be turned off, the
temperate the building is cooled to will typicallg only 1 degree below the high setpoint, as
this is assumed acceptable to the occupants. Howetlee time of interest is the time it
takes for the building to reach a lower temperasatpoint, such as where the building will
be maintained when not in use, the definition aflicm temperature will be different. The
first definition is used in this project. The gi&ato save energy by more efficient thermal
control. Hence the interesting cooling time is pinediction of when heating can be turned
off, thus saving energy, without causing uncomfagdaemperature decrease in the building.

2.1.2 Control Scheme, local and supervisory control

A controller based on prediction of heating andliogatimes will perform simulations on the
building as part of a loop, at a specific loop tinmeeach loop, the controller will compute the
time until next change in temperature is expedfgatedictions of heating time indicate that
the setpoint of the heating system should be clhrige controller will do so, attempting to
minimize energy consumption by minimizing the tihresating system is on a high
temperature setpoint.

T

T

Tt

SetPoint +-DB

20 — —

\-\-\-\—_

0 \ I \ \
0 100 200 300 400 500 600 700 800

Ternp [C]

Figure 3 - ON/OFF controller example

The actual heater is typically controlled by a atbedd ON/OFF controller, as demonstrated by
a simulation in Figure 3. This type of controlleaimtains a setpoint with a deadband, such
that if the temperature is below setpoint minusdéadband, the heater is turned ON. If
temperature is above setpoint plus deadband therhisawitched OFF. This is the typical
way onboard thermostats on electrical heaters worthe figure, the building temperature is

16

plotted in red, and the setpoint with deadband Wititk dotted lines. As demonstrated, the
temperature is maintained between these two lines.

Tsp - Temperature Setpoint [°C]
theat - Time to heat building

tuse - Time until building is used
teool - Time to cool building by 1°C

Tep= LOW tnot_use- Time to building not in use

top - LOOp time of the algorithm

Ts=HIGH
A 4
Est. Heating Time Est. Cooling Time
A 4 A 4
Time until USE Time until NOT USE

N N
tcool >tnot_use
Ts=LOW Ts=HIGH
v Y v Y
Tsp= HIGH Tsp= LOW
\ 4 \ 4 \ 4 \ 4

Control Heater

A 4

Wait for fioop time

Figure 4 - Flow chart of predictive control scheme

In Figure 4 a flow chart of a suggested predictioatrol scheme is presented. Initially the
building is assumed to be in the unused state@mgérature setpointJis set to LOW. The
actual values for HIGH and LOW setpoints will dep@&m the preferences of building

17

occupants. Typically, HIGH will be a comfort tematre of around, say, 22°C, while LOW
will be a temperature that is at least a reasorabl@unt above freezing. The LOW setpoint
will likely also be affected by the capacity of theating system, i.e. how large steps in
temperature the heaters can deliver within a regseriimeframe. It is an important note that
even with predictive control the heating system tnwgsable to supply enough heat to meet
the requirements of the control system in ordettiercombined system to be efficient. The
capacity of the heating system can limit how loe $letpoint during the “unused” phase can
be, since it limits the speed of re-heating.

The first condition in the algorithm is to checkhe temperature should be in high or low
state. If in low state, meaning building is curhgmiot used, the time to re-heat building is
estimated from the modek{}), together with a computed timgs@ before the building is
expected to be in use (yellow blocks).

Times for building use can be configured or learbased on machine learning [10], or
similar methods. Determination of usage patteouiside the scope of this project and here it
is assumed that the usage pattern is known. liieto heat is shorter then the time to
building will be used, the temperature setpoirthianged to the HIGH state. Note that the
loop times is assumed short enough that a slighydé up to one loop time caused by this
inequality is acceptable. Alternatively the comatiticould be reformed such thgbft,se <

tioop, 1.€. if the heater should be turned on beforenthe loop, it is turned on at present loop,
to avoid delay.

With the new setpoint determined, the heater isrotiad by this setpoint for time period of
one looptime, before the algorithm is repeated.

The second branch of the flowchart for coolingimsilar to heating. First the time the
building takes to cool by, say, 1 degree belowaatps estimated from a modeldd). Then
the time before building is expected to be unusembmputed gb usg- If the condition
determines that it is acceptable to start lettigkuilding cool down, e.g. that cooling by 1°C
takes more then the remaining time until buildisgo longer used, the heater setpoint is set
to LOW, and the system left to control the heateroine looptime.

Without models to predict these times, control eryst must rely on “safe” setpoints. This
typically means that temperature is dropped bydsekes while building is not in use, and that
the drop in temperature is initiated after theding is no longer used. Additionally, the
heating system will typically be engaged beforeunesgl, such that the setpoint is achieved to
soon. The cooling cycle can not be initiated betbeebuilding is known to be unused,
without a model to predict how fast the temperatitebe unacceptably low.

An advantage of the suggested control scheme ur€&iyis that building temperature
preference can be set simply by defining timesdbtsigh and low temperature. The control
algorithm will use this standard settings informaatin a way that is better then typical control

18

systems, by using model predictions to minimizeghergy needed to maintain the
temperature settings.

2.1.3 Infrastructure of building and control system

The “Control Heater” block in Figure 4 will be aodal” controller, where measurements of
room temperature is used to determine if the pdawére heater should be turned on or off to
maintain the given setpoint. The predictive cotdrak used as a supervisory control, feeding
the “local” ON/OFF control of the heater with apsant.

Note that “local” in this sense does not mean tiwtcontroller is physically inside the heater.
Since commercial heaters typically does not hat®og for external control, a system is
required that can control power to the heater. Ceroial electric heaters with onboard
thermostat control do not actually control room pemature but rather the surface temperature
of the heater. This is not desirable in an advamoadrol system, as it may lead to the heater
taking longer then predicted to heat a buildingerffostat control is sub-optimal with respect
to heating time as later chapters will demonstrate.

For this type of control system to be applicableurdings around the world, the system has
to be easy to install and maintain. Requiring adedrheat sources with, say, WiFi [11]
control signal inputs would be infeasible. A possiéolution is to set the heater thermostat to
max and plug in a simple remote controllable debiesveen power outlet and heater. The
addition of a control device allows the controlteys to cut power to the heater without
interference from the thermostat. Such devicesygieally found in so called “Smarthouse”
[10] systems, and can even be part of the powdetdtgelf. Regardless of both new and
existing technology, it is an important requiremienthis project that a control system should
not require any advanced infrastructure, but ratblgron existing power structure of the
building. One possible addition is remote cont®lides that can be plugged in between
heaters and wall outlets, without requiring eleetrinstallation by professionals.

The control system is discussed as motivation ac#dround for the project only.
Development of controllers can be based on theesigms, theory and results presented
here, but their implementation is outside the sauffihis project.

2.1.4 Realtime requirement

An important point to note in the previously diseed algorithm of chapter 2.1.2 is that the
estimates, using models, have a real-time requimgme. a requirement to finish the
computations within a specific time [11]. The esttran must be completed within one loop-
time. If the estimate takes longer then one lolg result will not be available when the
controller needs an updated setpoint, and the gispey controller will fail.

19

Additionally, from the flow chart in Figure 4, tl@&ontrol and Delay blocks, as discussed in
chapter 2.1.3, would actually run in parallel wiitle supervisory control system, possibly as
software objects [12] within the same computen@nesoftware. Thus, time used in
simulations to estimate heating and cooling timetmot stop the controller from
maintaining the present setpoint [11], while a rs@tpoint is computed by the supervisory
control system. Since the supervisory and locatrobmust run in parallel this further puts
demands on the software implementation to ensugepisynchronization of shared
recourses [11].

2.2 Thermal network RC models

The thermodynamic behavior of a building can becdleed by a so called “lumped
parameter” model [4] in the form of an RC equivalencuit. For a detailed discussion of
Thermal Network Modeling, see [5]. The concept tihermal network” describes how heat
energy can flow between elements of the building)issisurroundings, modeled as nodes in a
Resistor-Capacitor (RC) circuit.

1’
1

Figure 5 - Thermal model of a building

C

In Figure 5 a building with a simple RC model ipm¢ed, showing how a resistor can be
used as a model of the walls resistance to heat fidile a capacitor models the buildings
capacity to store thermal energy. The node markedr€ represents the interior of the
building. The node is marked by a black dot, butfe remaining schematics in this report
the dot will be omitted for simplicity.

Thermal behavior of a building is described byftbes of heatQ and the temperature T at
specific points [5]. Heat flow, in the unit of W&%/), can be induced by a heater, solar
irradiation or building occupants and it can bevelni by a temperature differential, in the unit
of Kelvin (K) or Celsius (C). For a differential theeen two absolute temperatures the units K
and C are interchangeable. An example is the difitgal between indoor and outdoor
temperature which drives heat flow between buildimgand outdoor environment.

20

Relationship between temperature differential agat flow, is determined by the thermal
resistance that the temperature differential aotssa [5], in the unit of Kelvin pr Watt.

Thermal energy can be stored in objects, suchragdte, walls and roof, as determined by
the objects thermal capacity, in the unit of JyleKelvin [5]. The amount of energy required
to raise the temperature in an object dependseothdrmal capacitance.

All of these thermal parameters can be describegldntrical equivalents, and the building
can then be modeled as a simple Resistor-CapdBi@y circuit [5], and analyzed using
conventional circuit theory, e.g. Kirchhof's Lavmtential dividers, Ohms Law and Laplace
transformation for impedance computations [13].

Flow of heat is modeled as current in an elecirimud, where the driving potential is the
temperature, modeled as voltage. Using this anakggsistor becomes thermal resistance,
while thermal capacitance is modeled as electdaphcitance [5]. Modeling thermal flow in
a building using the electrical circuit analogy ias advantage of being simple to analyze,
particularly for those used to working with baslieotrical circuits. The intuitive
understanding gained from these simple model strestis important when working with
grey-box models. Since no accurate physical me@ehlvhite-box, is needed, the intuitive, or
cognitive [5], derivation of an RC network allowsdels to be derived based on knowledge
about the buildings thermal behavior, without useamplicated thermodynamic laws and
equations.

2.3 Thermal zones and single-zone models

In modeling of thermal behavior in buildings, tleen “thermal zone” is used to refer to a
section of the building which is modeled [5]. Theision of a building into thermal zones
can be done in many ways, and the particular metsed depends on knowledge of the

building [5].

A thermal zone has typically a single state foraltdemperature of the zone [1], while the
envelope can be modeled by multiple states. Inquéat, walls are often divided into two or
more layers, with a separate temperature statesafdr layer. Roof and floor is treated
similarly, but often with a single state. In somedals, particularly when Thermal Networks
are used, the entire building envelope is modeteah& object with one state for the
temperature of walls, roof and floor combined [R, 3

Thermal zones can be combined to form a more conmbalel, where each zone is modeled
separately, but the models are interconnected dapgeon the thermal behavior of the
building. The term “single zone” is used to deser@model where the whole building is
modeled as a single zone [1].

21

2.4 Grey-box modeling

The terms white-, black- and grey-box models déréo a classification of models, based on
the type of information used to derive the modelhite-box models, physical laws, such as
balance laws, or first principles, are used [I}jrgd @ model with a known structure and
physical meaning . The term white-box is used engénse that the internals of the models are
fully described by equations. The opposite is alblaox model, where the model is entirely
derived from empirical data, with no prescribed $bgl meaning to the structure. The term
black-box is used in the sense that model is n&trid®able, i.e. can not be “seen”.

A grey-box model is a compromise between thesentwdel types. In a grey-box model, the
structure is defined based on physical knowledge@tystem. In the case of a building the
thermal parameters of the building are modeledsmgplified form, often referred to as
“lumped parameter” model [2, 3, 6, 7]. The ternmijped” reflects that the model combines
several discrete parts of a building into one conemb. As an example, the thermal resistance
of all windows and doors can be combined into glsithermal resistance[5, 6].

The parameters of this simplified model structueeidentified based on measurement data.
As such, grey-box models combines the strengtlh®ibf white-box and black-box models[1,
4]. The grey-box models themselves are not a coatibm of white and black-box models,

but rather the combination of methods to deriverthis the reason for the “grey” term. They
are more generally applicable then black-box modathee their internal structure is based on
a general model of a building[4]. Further, likeddebox models, their accuracy is better then
general white-box models, since the grey-box mpdehameters are fitted to a specific
building based on measurements [4].

Grey-box models are particularly interesting in fie&d of Building Automation Systems
(BAS) and Heating Ventilation Air Conditioning (HV@ modeling, since as reported in [1],
a model based on thermodynamic investigation afilding can become complex, due to the
large number of parameters that affects the behadeat equations are in nature partial
differential equations [1], which complicates thedrl further since a discretization method
is required. Combining simplified model structuvath data-driven parameter identification
results in a simpler model then the white-box apphd2, 6].

To extract model parameters from a data set theemedimulated with some initial
parameter values, and the result is compared thrttvn empirical reference measurements.
Then, some method of optimal estimation is usedddify the parameters iteratively, such
that the model will predict the known referenceadaith minimal error.

Grey-box models are the core of this project, andueh, the concept will be discussed in
detail in the following chapters.

22

2.5 Data set: Sensor types and position

For measurements on buildings, there are severables that need to be measured or
estimated, sometimes for multiple locations. Rrrdthe temperature is clearly of importance
to all models of thermal behavior. Also the powensumption by any active heating system
or other appliances that generate heat in theibngiléquires measurements. Thirdly, the
outdoor weather conditions, particularly the terapane, are important. Solar irradiation, or
heat gain from solar energy, needs to be measnrenine way. Alternatively, solar heat gain
can be estimated [2] using e.g. a model and Kaliitan Some models may also include
relative humidity as an input [1]. Occupants ofudlding also generate heat and may be an
important model input. Energy released by occuparag require estimation [6].

Qsolar
1 Th Tl T
2 wl
1 Qheater
Ti -
inf

Figure 6 - Example of measured building parameters

In Figure 6, relevant parameters for this projeetdepicted. The main parameter of interest is
the building temperature,TTo help the models predict, Tneasurements of wall temperature
Tw is used. In some models wall temperature is medduwth on the surface of the wall

inside the building, and in the insulation layeside the wall. Where only one wall
temperature is used,Jis called T,. Supplied heat energy from the electric heatirgjesy in

the buildings is measured by logging the power uséke building. Heat gain from solar
irradiation is not measured in this project, antteated as noise. It is however assumed
relevant to the model behavior, and will be disedssirther in this report. Buildings are

empty during all experiments in this project, stitdt heat gains from building occupants can
be omitted.

23

2.5.1 Description of test data

The data on which the modeling and simulation is poject is based, is taken from two
separate buildings, named “ByggeLab” and “Cabin”.

The data from “ByggeLab” is recorded in an experitakbuilding at Telemark University
Collage in Porsgrunn, further described in [14]e Thiilding was constructed partially as a
test facility to experiment with building modelsidahas a high number of sensors installed in
strategic locations throughout the building.

Inside Insulation Outside

O ,Q

Sensors

Inner Wall Outer Wall
Figure 7 - Building wall with sensors

Temperature and humidity sensors are located @etplaces in the north, east and south
walls, and two places for the west wall. The terapee sensors are of type TMP36, with an
accuracy of +/-1°C [15] . The north wall has a dadth one additional sensor above the
door. The first sensor is positioned close to thieiowooden cladding. The second sensor is
located in the insulation layer, while the thirchser is located on the inside of the inner wall,
as shown in Figure 7. Similarly sensors are aleattxd in the roof. All sensors are connected
to a custom logging system for the test facilit][1

The building contains an electric heater and a Hifier, together with a computer for

logging. Power consumption for all devices is ladjgader the assumption that all energy is
producing heat and energy for other uses is assuegidable. Additionally, a weather

station is used to log both indoor temperature vaeather conditions such as relative
humidity, wind speed, dew point, etc. Further dstan the measurement system and sensors,
as well as technical details of the building stuuet is presented in [14]. The weather station
lacks specification of accuracy, but resolutiospscified to 0.2° Fahrenheit [16]. It is
assumed that the accuracy is in similar rangegtieh then the TMP36 sensors, which is
typical accuracy for cheap, commercial, temperaseresors without specific accuracy
requirements.

Only the temperatures on the north wall are usedigproject, together with indoor and
outdoor temperature from the weather station, aveep consumption measurement. Other

24

sensor readings are not relevant to the simplehe@nal network models presented here.
Most of the data used in this project is taken ftam building. The building is located in a
shaded area, and has only a small window, sucliitbatssumption of solar heat gains being
treated as noise is likely good for this particidaiding.

The second building of interest is a cabin locatededmark near Sjusjgen. This building is
also used as the basis for [17], which contain nrdmemation about the setup. The cabin
contains a measurement system with temperaturegdityrand one light sensor located in
various locations around the building. Since thigding was not constructed for
experimental use, the sensor locations are nanaptas they are for the “ByggelLab”
building. The data for the cabin is also taken fieomeather station, same as for “ByggeLab”.
Additionally, in the measurement system, one teatpee reading from inside the building
floor is used to represent the “wall” temperat@imce the building enclosure is modeled as a
single object [2], and not walls, roof and floopagately [17], this is assumed adequate.
Power consumption for the entire cabin is read feosmart power meter, with an accuracy of
more then 90% [17], which outputs average kWh gneogisumption for each hour of the
day. This can be directly used as average powldMnAll energy is assumed to go to heat
production.

The cabin contains four windows, where two largedeiws face south [17], and is not
surrounded in shade such as “ByggelLab”. Thus ®cHbin data, treating solar heating as
noise may be to simplistic. This will be furthevastigated in the following chapters. The
cabin measurement setup contains a Light Depemisistor (LDR) that can give an
approximate indication of the level of sunlight.

Only temperature and power consumption data is fedodeling in this project.
Temperature is logged by two types of sensing systd he sensor setup for the cabin is
similar, using same type of weather station, sengaAQ and logging software as
“ByggeLab”.

2.5.2 Amount of data needed

In all empirical modeling, an important questiomisat amount of data is required to produce
an accurate model. In [2] a summary table of thewarhof data used in four other published
articles is given, listing the data used in paramigtentification process between 4 and 60
days, with timesteps varying from 1 minute to 1 hdthis illustrates a high degree of
uncertainty in the field about what amount of dateequired. Data sets used in this project
vary from around a thousand to twelve thousand sssnwith sample times at two, six or ten
minutes.

25

2.5.3 Range of data needed

Unlike much of empirical modeling where the expemithcan be freely designed thermal
behavior of buildings depends highly on weatherdaoons which are outside of the
experiments control. The building may also be i@ sisch that the usage pattern and the
heating requirements of occupants limits the wayhich experiments can be designed [6].
This further limits what data can be collected dsudding.

The data sets used in this project are step respperiments, where the active heating
system in the building is turned to a setpoint galuto a maximum, for a specific time, and
then turned low or to a minimum setting, againd@pecified time. High/low experiments
simulate typical usage in occupied buildings, whilening heater on min/max settings gives
more extreme temperature variations in the data.

In data driven modeling, the variation of the irgootust cover the range of inputs on which
the model is expected to work [2, 18]. A model nahreliably predict the results of any
input conditions that were not present in the trrdata. Therefore the amount of data
needed should be considered more in terms of velngeerof inputs are covered by the data,
rather then in terms of time length. A data setketdtively short time containing large
variation in temperature, both in terms of measteatperatures but also in terms of rate of
change, is likely to give better predictions thedata set of significantly longer time, but with
less variance in the data [2, 4]. The questionlzdtvamount of data is needed is investigated
further in later chapters.

Since the grey-box modeling approach depends hiyhiyre data used for parameter
identification, it may be advisable to use sevaratlels, depending on seasons and weather
conditions. Choice of models can be done usingnatdogic, e.g. Fuzzy Logic. Such
techniques can improve results when sub-optimalitrg sets is the only available data. By
limiting the models to use the same range of inpatthe training data used to produce them,
and instead use multiple models depending on donditthe predictions of the models will
be improved.

26

3 Literature Review

In this chapter, the articles on which much of fingject is based, will be reviewed and
summarized separately. Some of the articles refarddeling of Heating, Ventilation and Air
Conditioning (HVAC) systems. Modeling of HVAC syste and Building Automation
Systems (BAS) are overlapping terms, where thartaeproperties of buildings are
concerned.

3.1 Review of modeling methods for HVAC systems

In [4] the authors summarize many of the relevaotieling techniques that can be applied to
the modeling of HVAC systems. A general introductémd definition of white and black box
models is given, followed by a presentation ofghey-box model concept.

A key point in the article is the use of dynamicdals, that is models with internal states,
such that the predicted results of a model dependshat has happened in the past [4].
Typically, the slow changing elements, such as gatpre and humidity, in a HVAC system
are modeled using a dynamic model. Faster dynamhite system can be modeled using
static models, as an approximation [4]. By simptifystate equations of fast dynamics to an
algebraic equation, the model is simpler to complite number of states is reduced, and the
computation time can be significantly reduced bmisating fast dynamics.

The authors further discuss data driven modelinlgrtgjues, such as Auto Regressive
eXogenous (ARX) and Auto Regressive Moving Averagegenous (ARMAX) models[4],
Support Vector Machines and Atrtificial Neural Netk® There exist a large number of data
driven modeling approaches, and many approachelsecaombined to take advantage of
their respective strengths [4]. Different methods different model structures, but in contrast
to grey-box models, the structures used are arieafuithe modeling technique itself, not of
the particular system [4]. Black-box models basedime series regression, are reported to
show accurate predictions given that the conditamessimilar to the training data [4]. Other
black-box modeling techniques are briefly discussedh as e.g. sub-space identification of
state-space models (4SID) [4].

Further, the article describes the developmentrofeabox models, first for a single zone of a
building, and next for various typical HVYAC elemgf]. Each model is derived from

physical balance equations. Of particular intet@shis project, is the development of a single
zone model. This is similar to the work presentefli, but giving a significantly less

detailed model. Both the model presented in [4]iar{d] are based on “the heat balance
method” [4]. An alternative to the heat balancehudtis the “thermal network” method,

where the building is split into several temperataodes, with associated paths between them
of a given thermal resistance. Additionally, therewpacitance of a node can be modeled [4].

27

The variations between published works on gray+noxlels are mainly the method used to
identify the parameters. One possibility is the ofseptimization algorithms, such as e.g.
SQP (Sequential Quadratic Programming) [4]. Obyedtinction and constraints is defined,
and a standard optimization algorithm is usedrid fmodel parameters. Other alternatives
include genetic algorithms [4]. The gray-box mogsliew concludes that this class of models
has better accuracy then physics based models alsib being more general than pure
empirical models [4]. The drawback of grey-box mede the work required in developing
them, since they demand both physical knowledgheprocess and knowledge about
empirical/statistical modeling [4].

An extensive list of performance criteria, on whinbdels can be compared, are listed[4]. A
commonly used criterion is the Root Mean Squarer§RMSE) [18], which can be used to
guantify a models ability to predict a variabldatee to the known true value.

The authors conclude the review of data drivensmisybased and grey-box with a summary
of all the discussed modeling techniques, anddbiks required to compare them.

3.2 Development and validation of a gray box model to
predict thermal behavior of occupied office buildings

In [2], the focus is placed on the developmentrafydoox models based on thermal network
RC models, and comparing different types of moaetsder to choose which structure is
best. Two important shortcomings in traditionalcildoox models are given. The
ARX/ARMAX type models are reported to have problesith non-linear behavior of a
system. Secondly, another empirical approach, ididifNeural Networks, is known to have
problems when used to predict systems under costiiatiegies not present in the training data

[2].

Four different model structures is investigated T2je first structure is the simplest, while the
other structures can be seen as expanding theesiomés, by adding more details, resulting
In more parameters.

In modeling thermal behavior of buildings, solaadiation is important. These are
parameters that are considered difficult to meafd}r& he article suggests a model where the
solar flux can be estimated based on geometryitdibg and its surroundings, together with
time of day, location of building and cloud covezatata [2]. A simplified model for
estimating solar flux on the building interior, digh windows, and on the exterior walls is
suggested. This model uses only the cloud coveaaga input [2].

The identification of parameters is performed usipgmization based on the Interior Point
algorithm [2]. This algorithm can handle non-linehjective functions and constraints of the
identified parameters. The authors suggest constran identified parameters, using one

28

third of the initial value as lower bound, and thtenes the initial value as upper bound [2].
Furthermore, the objective function is chosen asptloduct of the separate error sum of
power consumption and indoor temperature [2]. Patara are normalized, such that all
parameters have the same weight in the objectivetifun. A convergence criterion is stated
to be total change of all parameters less théeff. 10

The four stated models are compared, using sintltid&a[2]. Data is generated at the
extreme cases of cold winter and hot summer. Reatdtfound to be better on data from
winter, respective of summer, due to increasedigedemands.

Further, model fit is concluded to reach maximunueaising two weeks of training data [2].
An interesting result is that a third order modestated too complex for identification.
Second order model gives better performance. Tti®esiconclude that the R6C2 model is
the best choice. A good fit, over 80%, is foundiniyithigh and low outdoor temperature.
However, some problems with model predictions atmdl mid-season with reported model
fit less then 80%. The authors conclude redoingpirameter identification on a monthly
basis improves results [2].

The final section of the article presents a Sobalysis which is used to identify which
parameters of the model affect the ability to ptetimperature and energy consumption in
the building. Different parameters may affect tlve butcomes to varying degree.

In conclusion, the authors find that the R6C2 masléhe best choice. Further, the sensitivity
analysis is reported to show that the two-partahje function is required, due to variation
of parameter significance for temperature and pamsasumption prediction [2].

3.3 EKF based self-adaptive thermal model for a
passive house

In [6] the focus is also grey-box models, basetuomped parameter thermal network models
in the form of RC models. The article is based singiExtended Kalman Filters (EKF) for
identification of parameters. A motivation for theicle is models usable in Model Predictive
Control (MPC). Since the computational load of MiB&nown to be large, efficient models
is a requirement for successful implementation A@jother motivation is a method to deal
with changes in building parameters over time, sagdegradation of building insulation [6].

In most thermal network models, the area of fosumi a single thermal zone. Hence,
multiple rooms or floors are combined into one zdng6] the reference temperature
measurement is taken as the weighted sum of tetopemraeasurements for all areas within
the zone, where the relative volume of each roousésl as a weight for its temperature
measurement [6]. This method has some problendisasssed in [6].

29

To make the models “self-adaptive” the employedhoeéthas to estimate the parameters
while the model is online. To avoid the problenagéraging temperature for the zone a state
estimator is suggested [6].

The key point in [6] is the use of an Extended Kainkilter (EKF) as a state estimator. By
using a so called “dual estimation” technique,tdraperature state and the parameters are
estimated together [6]. The authors note that tie estimation problem becomes non-linear,
even if the model itself is linear. The model obie is an R1C1 in the case of [6]. The EKF
is a well known method for state estimation in tioear systems [6]. By augmenting the

state equation with a parameter vector in additioime state vector, both can be computed by
the EKF [6].

An advantage of this method is that it can be apio estimating other model variables, such
as the heat flux input from occupants, which iswno be difficult to measure [6].

Disturbance heat gain from occupants is estimayemidecond EKF, where the parameters
from the first EKF is kept constant [6]. The thetmparameters of the building are estimated
while the building is empty. Disturbances from quants are neglected in the first EKF. The
occupants heat gain disturbance is estimated ecanisly while building is in use [6].

3.4 Quality of grey-box models and identified
parameters as a function of the accuracy of input
and observation signals

In [3] the influence of several different sourcésmeasurement noise is investigated. Grey-
box models are identified based on simulated data & detailed building model, using
IDEAS library in Modelica [3]. The use of simulatddta in identification of grey-box
models is useful when the objective is to experinoenthe identification process, since the
simulated data source allows generation of traiaimg) validation data with controlled noise
parameters. The purpose of the investigation issbwhat affects the quality of grey-box
model predictions, with respect to use of theseatsith Model Predictive Control, where the
“one day ahead” predictions are of particular ies¢to the controller [3].

Grey-box models are identified based on state-sfmaneequations, derived from a thermal
network, RC-equivalent, model of up to fourth ord&nce the model structure is derived
from physical understanding of the building theriyrmaimics, any identified parameters in the
model will have a specific physical meaning [3].

In the first part of [3] the focus is on input pareters commonly used in building models that
are hard to obtain accurately by measurementsifigadly solar heat gains. Next the article
tests the effect of white and colored noise oridkatified models, and the robustness of the
parameter identification algorithm. White noise miedneasurement uncertainties from

30

sensors, while colored or biased noise may refigstiematic errors, such as a temperature
sensor placed close to a heat source [3].

The solar, heater and occupancy heat gains atlesaibuted across all of the thermal
capacitances in the models, based on distribubefficients, rather then locating each source
specifically at one point in the thermal network [3

Effective solar gains is found using global horiadiirradiance, which can be measured and
is often available from local weather stations flditionally, total irradiance in the vertical
plane, along the four cardinal directions, is usgthput signals to the models [3]. According
to [3] this is a feasible way of including solairgaestimation to the model, without needing
to measure the solar heat gains directly.

In conclusion, the authors of [3] finds that whileth white and colored noise give an
increase in uncertainty for estimated values. Thezeno significant changes in the estimated
physical properties caused by white noise, in @sttio biased noise which gives unreliable
predictions [3].

Finally, total irradiation on the vertical planegether with the domestic electricity demand
taken from a smart power meter on the electricapuof the building, is shown to be a good
estimate replacing the need for measurements daftbetive solar and internal heat gains [3].

3.5 Gray-box modeling and validation of residential
HVAC system for control system design

In [7] the focus is on development of grey-box meder separate parts of a typical HVAC
system. The article describes how to derive phisicalels, based on first principle balance
laws, for several typical HVAC subsystems. For eadbsystem, general state-space models
with unknown parameters are derived, as grey-bodatso The parameters are identified
from measurement data, using an optimization algyori

With completed grey-box models for each subsystbeenunits are combined into a complete
HVAC system and simulated together [7]. Simulinkisgd to simulate the final full system
model.

As with all optimization algorithms, the initial nditions, which serves as a starting point for
the optimization process, has a strong influencthenesults, and the time to convergence
for the algorithm [7]. Since the optimizer onlydslocal minima, a starting value for all
parameters that is close to the true values isadtie [7].

Splitting a complicated system into subsystems revkach subsystem can be identified from
measurements taken specifically for that tasknimeeresting approach, which may be
applicable to other segmentation of a building Imeiythe HVAC system.

31

4 Theory

In this chapter, a theoretical background of thagqmt is given. This chapter explains the
theory used in the project, as well as some suimgpttieory for improved understanding of
the key concepts. The nature of the data from theb@havior modeling is discussed, as well
as applicable methods to pre-process and modeldatahIn particular, the concept of grey-
box models and thermal networks is discussed ildsince they are the basis of the results
in this project. Further, the principles of optiaion based parameter identification and
simulation of Ordinary Differential Equations (ODiS)discussed.

4.1 Time dependence in data driven modeling

In the study of thermal behavior, the system respsmre clearly time dependant. Since the
system is dynamic in nature, Ordinary Differenkgjuations (ODE) are required to describe
the behavior. By discretizing the time derivatisay using Forward Euler [8]:

df _ f (tk+1) —f (tk) df
dt At (k+l) (k) dt

From this equation it is clear that the value dkavative at timewt; depend on the value at
time %, which shows how samples at consecutive timentstae not independent samples,
but depend on each other.

Because of this time dependence, any modeling rdetpplied must be able to support and
use the time depencany in the data. A method #optires or assumes samples are
independent of each other may not be advisablegaMnen studying thermal dynamics.

4.2 Data driven modeling

Data driven modeling, also called empirical modglincludes a large number of methods
and techniques that can be used for finding aiogistip between data. In data driven
modeling the relationship between input and outjaid of a system or process is studied
[18], whiteout any assumption on the specific dtrices of the system, i.e. black-box
modeling. Some modeling methods, such as polynamaalels [19], assume a generic
structure where the output of the system is seenfasction of previous system inputs and
outputs.

Other methods use co-variance between variabléeidata-set to find a model which
describes the structure in the data, or a reldtiprsetween input data and reference data
[18]. This type of models is called multivariatgression models [18] and include methods
such as Partial Least Squares Regression (PLSeRpamciple Component Regression

32

(PCR). While there have been reported researctstimat some success in the application of
regression models to study the thermal behavibudéiings [17], specifically the energy
requirements for heating, the use of polynomial el@dor time series regression models,
seems to be a better choice [4]. In [4] a comprsiversummary of different modeling
approaches to black box modeling used in HVAC sgstis given. It is interesting to note
that multivariate regression methods, such as Pl8®&€RPCR is not discussed there [4].

Since thermodynamic behavior of buildings requaetudy of time varying effects, i.e.
dynamic effects, rather then studying steady stamelitions, time series regression models
[4], on time discrete polynomial form, will be thacus of the remainder of this chapter. This
type of model is ideally suited to describe theaiyit time-dependant nature of thermal
behavior of buildings [4].

4.2.1 Time series regression models

Time series regression models can be expressedagremmial [19, 20] of past inputs,
outputs and estimation errors. The errors are asdumbe white noise, i.e. random, for a
good model. Since they consist of inputs and ostguit not system states, this type of
models is sometimes called “input-output modelsat&space time discrete models can, in
the linear case, be written as input-output mobglstate elimination.

There exist many variations and formulations of tgpe of models. The common factor, or
base principle, is using an equation of past inpatsoutputs, together with an error term, to
formulate a polynomial with coefficients for eadhtloe variables in the model [19]. The
coefficients are the model parameters that habe tiitted to a system. When the error term is
white noise, the model fit is said to be optimalthe sense that it is the best possible
description of the data [19, 20]. A detailed distos on so called “Prediction Error Methods”
which are concerned with identifying models by esgion modeling of time series data is
found in [19].

33

gy =2 ha)u+ ¢q)e

>
+ =
U sl | Uy bo € ! | € Co Y ! | Vi 2
Uk | b1 l &1| C l V1| & l
[] [] []
[] [] []
) X P inputs) °
Uk-m| Dwm &R | Cr YN | aN

Figure 8 - Input-output model structure

One formulation of a time series regression maglgiven in Figure 8, both as an equation
and corresponding block diagram. This model costtinee functions of the time shift
operator ¢ [19]. These functions a, b and ¢ contain the dciefits that form the model. The
function b may exist in a multiple of P if therenmore then one input variable u. If all
coefficient functions a, b and c are non-zeroioelel is said to be an ARMAX model,

which stands for Auto Regressive Moving Average gwus. Being “Auto Regressive”
means that the current output is related to prevauputs as in an Infinite Impulse Response
(IIR) filter [21, 22]. The term “eXogenous” definése model to have external inputs, and
“Moving Average” refers to the type of noise filtey that is applied in the model.

Another type of model, where the error term is eetgd, i.e. ¢(d) = 0, is known as ARX,
since the error model is not present, i.e. not “Mg\Average”. There exist other types of
special configurations of the polynomial modelsvadi. If ¢ = 0 and a(d) = const, the model
becomes a Finite Impulse Response (FIR) filter,revitiee output yat present time depend
only on past inputs [19, 21, 22]. If &= c(d"), the whole model can be divided by this
polynomial in g, forming a denominator for the itguand simultaneously stating that the
output at time k depends only on the error at tinra@d not on errors at past time instants.
This configuration is called an “Output Error” ma¢Eo].

All of these models can be defined as polynomiaig'j where q is called a “time shift” or
“lag” operator [20]. This operator shifts the vénm stated at time k by one timestep, such
that G**y = yi.1. Similarly, for powers of -n, the variable is hif n steps backwards in
discrete time [19, 21, 22]. This allows the modelbe defined on compact form, with the

34

coefficient polynomials describing the structureted model. This structure is of a general
form. The modeling choice, in addition to decidthg model structure, i.e. should any
polynomial be set to 0, or should e.g. a = ¢ t@@w output error model [19], is the number
of coefficients in each polynomial. The number oéfficients equals the polynomial order.

The coefficients are identified from measuremenmadand as such the models are black-box
models. Even if they do rely on a defined struetoy equations that are chosen partially
based on system knowledge, the equations are gemetinot specific to the system that is
modeled. To identify coefficients, Least Squaregrssion [21, 22] technique is used, such
that the coefficients are optimal, in the definedse that error terms become white noise.

Time series regression models, Prediction Erromhigs, or black-box models in general is
not used in the present project, and is includexblsi for comparison to the grey-box
approach. Since thermal behavior of a buildingstaged in chapter 4.1, is an example of time
series data due to the reliance on ODE'’s [8], ithe &eries regression polynomial method is
used to model HVAC systems in literature [4].

4.2.2 Overfitting

There are multiple challenges when working witradéiven modeling [18], which if treated
incorrectly can render the model invalid or wro@ge typical concern is “overfitting” [3],
meaning deriving a model that describes only thmitng data, to such a level of detail e.g.
noise, that the general applicability of the mddebredict the actual system is destroyed [18].
If the model has a high number of parameters totifye the risk of overfitting increases.

This is a well known problem of for example ArtiicNeural Networks [2] which can have a
high number of free coefficients, allowing thematiapt to any pattern in the data. Even if the
model can describe the training data with high ey the model could be describing noise
or structure in the data that is not relevant eosysstem and is thus unique to the particular
training data. In such cases, the model will neegeliable prediction of any data set
independent of the training data. This type of eis@alled overfitting.

4.3 Grey box modeling principles

Modeling methods can be divided into three clas$@sodels. In [4] the authors define
white-box models as being based in physical priesipnd black-box models as models
where the systems behavior is investigated by nugléiputs effect on outputs. The third
class of modeling methods, which is called grey-tmmdels, is defined as models where the
basic structure of the model is derived from phglsejuations or assumptions, and the
parameters of that structure is identified usirtgresgtion algorithms on measurement data of
the system to model.

35

The advantage of grey-box models is that, simdavhite-box models, they are quite generic
in nature. The same model can be applicable toipreikimilar systems. Also, like black-box
models, they can be made to fit a particular systamd thus be more accurate. For prediction
of thermal behavior of buildings this is a greataattage, since all buildings share a similarity
of structure, e.g. all buildings have walls, winddsoors and a roof. However, their
parameters can vary due to e.g. different constmuchaterials such as stone, brick or wood
which have different thermal parameters.

Training Parameter Validation
Data identification Data
ﬁ
l Parameters l

Knowledge Grey-box Mo?lel |
of system | model Validation

Model

structure

Figure 9 - Grey-box modeling process overview

The first step in deriving a gray box model, asickei in Figure 9, is to find a set of
equations that describe the system (grey box)general way [4]. These equations can be
derived using a similar method as for white box eiedusing first principle balance laws [7],
or they can be derived using a cognitive approatbdsed on knowledge of the system
(yellow block), such as for the thermal network relscused here.

Since grey-box model parameters is not necessieiiyed from physical equations, i.e.
unlike white-box parameters where all parametergelated to a known physical property of
the system, parameters does not necessarily hdiveca physical interpretation. They are
however usually still interpretable in some sedsean example, a thermal resistance for the
whole building envelope has a physical meaningjthzgn not be easily computed based on
building code standards. In thermal network modgtire true physical parameters of a
building is “lumped” into a few parameters of th€ Bquivalent.

36

The second step is to identify, or estimate, thharpaters (blue block) of the chosen model
structure. The estimation of model parameters eatidme offline on historical data (green
block), typically using some type of optimizatidgarithm like “Interior Point” [2] or
“Sequential Quadratic Programming” [4] or it care @ estimator like a Kalman Filter [6].
Common to all approaches is the extraction of patara from measured data, or data from a
simulated, more complex, building model.

This procedure introduces an element of self legrimto the modeling. The models can
“learn” from a building how it behaves over timéi§ has an added advantage that any
anomalies in behavior of the building can be idetias an “outlier” [18], i.e. data that does
not fit the general pattern of the thermal behavkar example use of this could be to let the
model alert the occupants if a door or window hesndeft open, or if the insulation of wall

or window is degraded, as this would change thertakparameters of the building
significantly. Further, the self learning capai@kt of such a model allow the system to adapt
to changes and also to some degree capture unrdagfédets in the system.

The third step in the process is to validate the@h¢cyan block) using independent
validation data (orange block), as further discdseehe following sub-chapter.

The disadvantage of grey-box modeling is that m@e complicated to develop the models
[4]. In addition to an understanding of the physhmhavior of the system required to derive
the structure equations, knowledge of data drivedeting is needed [18]. This is previously
discussed in chapter 4.2.

4.3.1 Model calibration and validation

In all data-driven modeling methods, it is vitalntave a good strategy for validation of the
model [18]. To validate a model, means to use thdehto predict results for a set of data
with known reference values, where the data irvéliglation set is indepenant of the data
used to derive the model. Using independent tdatfdathe validation is considered the best
practice [18]. An independent test set will tegt thodel on its ability to predict results on
new data thus detecting if the model was incoryad#ntifying patterns in the calibration
data, such as overfitting [18]. The concerns reggrdverfitting and independent test data is
of particular importance to black-box modeling, bgtially so to grey-box modeling [3],
since it relies on data driven modeling principlBiis illustrates the need for grey-box
modeling to use knowledge of both white- and blaok-modeling methods.

4.4 Thermal network models

In [5] the process of modeling thermal behavioahyetwork of lumped parameter objects is
described as a “cognitive process”. The model isvdé by understanding of the system

37

rather then first principle physical laws. The ding is modeled as a network of
interconnected parts, where temperature in eadtdpaes the flow of heat between each
object, or node, in the circuit [5]. This technigaentuitive by nature, rather then based in
physical laws, but still yields a dynamic modethe form of ordinary differential equations,
once the thermal network circuit is analyzed.

In a Resistor-Capacitor (RC) equivalent model thiie@mal behavior is described as an
equivalent electric circuit. Thermal resistancenmdeled as electrical resistance, and thermal
capacitance is modeled as electric capacitanéaldivs that the voltage potential in a circuit
is equivalent to temperature differential, and glecurrent is equivalent to heat flow.

By modeling thermal behavior as an electric cirdhi¢ system can be analyzed by standard
circuit theory, such as Kirchhof's laws [13, 23hiah say that the flow into a node in the
circuit must equal the flow out. At each node inRA(D circuit, a potential is defined as a
variable. Since the capacitors determine the dyn&elhavior, the potential over each
capacitor forms the dynamic states of the systeemch, the system order is equal to the
number of capacitors. Since RC circuits are simpleature, they can be easily analyzed and
configured as simplified models of a system, basedn intuitive understanding of a
buildings thermal behavior, or by inspection of ty@amics in a data set.

Circuits may also contain potential or flow souraepresenting a driving temperature or heat
flow source. Outdoor temperature, which is assumeependent of the buildings thermal
states, is an example of a driving potential squsdele an electric heater, or solar irradiation
heat gains, are examples of heat flow sources.

In this project RC circuit is used to refer to anrnguit, electrical or thermal, that consists only
of resistive and capacitive elements.

4.4.1 Resistor and capacitor elements

A resistor limits the flow of heat. As a consequeiidas a temperature drop across it. A
capacitor can store energy, where the temperatuossithe capacitor depends on its energy
charge.

R
To—

C__

Figure 10 - RC Circuit

38

As shown in Figure 10, a resistor and capacitorbmaoonnected to form a circuit. This
circuit models a first order dynamic response $tep in temperature T. The state in the
system is the temperature @cross the capacitor C.

4.4.2 Ventilation as thermal resistance

Ventilation in a building will typically introduca heat loss as heat from the building is
released to the outside environment when warnsaiemtilated out [1]. This effect can be
modeled simply in an RC equivalent model as at@sjg] that varies with the volume of air
that the ventilation is replacing per time unit/(m).

This ventilation model requires a parameter thatle&atuned, such that the computed
resistance accurately represents the loss of hematgh the ventilation system.

In this project the model for a ventilation systisngiven as:

1
G, [N

vent

F{/::

N is the ventilation setting in cubic meter pr hcamd Gen¢iS @ tuning parameter, i.e. the
thermal conductance of the ventilation system wken1 n/h. Conductance is defined as
the inverse of resistance, such that the tuningrpater can be defined as a resistance where:
1

Gepy=—
e R/ent
Special attention must be given to the case ofQ\lize. ventilation is switched off, to avoid
division by zero in the model. When the ventilatisff, there is no heat loss through the

ventilation, and the thermal resistance is thusityt Finally, the resistive model for
ventilation is found as:

1
R =1 Gyn [N

vent

00 N=0

N#0

This model will be used in this project where viatiton is required. For the purpose of
parameter identification, if N = 0, the optimizég@ithms will find that changing R, has no
effect on the resulting objective score and sinigiyve the parameter at some value that does
not violate constraints. When N is zergeffhas no affect on results.

4.4.3 Potential and flow in RC equivalent

Potential in a thermal circuit is described by tén@perature across objects, or at a specific
object node. Flow in the circuit is the heat floetween nodes.

39

C__

Figure 11 - RC circuit with potential and flow scar

In Figure 11 the simple RC circuit is expanded vaitliled temperature and heat flow sources.
These sources are used to model energy sourcesffibzttthe building, such as temperatures
not affected by building dynamics, i.e. outdoogosund temperatures (potential source), or
heat sources such as electric heaters, solaratrawdlior building occupants (flow source).

4.4.4 Lumped parameter of buildings

Since the RC equivalent thermal network circuit gledire a type of “lumped parameter”
model [4] it follows that their parameters, as es@nted by the resistors and capacitors in the
circuit, does not correspond directly to a sindiggcal part of the building. Each element
may model several structural parts of a building.a& example, all outer walls are typically
modeled as a single resistance, while any heatiosstly from indoor to outdoor
temperature, such as through windows and doomsodeled by a separate resistor. Similarly,
the energy storage capacity of all walls is modeled single capacitance. This example
illustrates how the thermal behavior of the buitgiby a cognitive, i.e. not based on physics
equations, analysis determines the structure oRtBe¢hermal network. The physical structure
of the building itself could conceivably be usedriodel each wall separately, including any
windows and doors, but from a thermal behavior pewt the above approach is more
meaningful [6].

4.4.5 Thermal network model structures

A total of five model structures are used in thgj@ct. Four of them are taken from [2] while
the fifth one (R5C3) is a modified version of thé@®2 model, where the modification is
based on inspection of data from simulations orsthgle zone white-box model presented in

[1].

4.4.5.1 R4C2

The first structure, R4C2, contains four thermals&nces and two capacitances.

40

| I
. R.V)
0,
= || L
R, _
O, Ok,
_— T —
T | I - :I_
) bR, . R, T
Ql . Q2 . 0
C) QCb l chl +
— G, —C,

Figure 12 - R4C2 model

Figure 12 shows a schematic of the R4C2 model wijiibs the state equations for the model
as:

dT,

: 1
—b - T-T T -
dt CDQl CDF%(ARl qw” R
dT, 1 1
Su=q, -T) - (T-
dt qQ R B R(WT)

One capacitance is used to represent the enenmggstoapability of the air inside the
building (G,), together with any furniture, and other conteftthe building volume. The
second capacitance(Lrepresents the energy storing capacity of thésvedlthe building[2].
One thermal resistance is used to represent theective resistance of the building volume
(Rp), between the temperature of the room and theanjavall temperature. This
temperature can be considered as the boundary tetapeof the inside wall [6]. Another
resistance represents the combined thermal resestdrthe wall itself (). This contains the
resistance of both construction material and irisuiaof the wall.

The potential, temperature in the case of therraork models, across the wall resistor is
taken as the temperature difference between tideibsiilding and outdoor temperature. One
resistance is taken directly between the buildemggerature and the outside,Foypassing

the walls. This resistance represents any heattfioough other elements of the building,
such as windows, doors, etc. The forth and finsistance (R is used to model the
ventilation system, as discussed in chapter 4ah@,is a variable resistance, given as a
function of the ventilation [2].

Three heat sources are included in the model. if$tad a heat flow source, a combination of
internal heat gainsy), such as active heating from HVAC or generalingasuch as

electric, oil, wood and other sources, combinedh weating from appliances and a portion of

41

the heat generated by occupants of the building.sHtond source of heat acts on the wall
node, and consist of solar energy heating up this (@), combined with the remaining heat

generated by occupants [2]. Finally, a third sowfoenergy is modeled as a constant
potential source (J), which is the outdoor temperature. This configorasignifies that the
outdoor temperature is independent of the model.

4.4.5.2 R6C2

The second model, R6C2, expands on the first, dingdwo more resistances and a third
heat flow source. This is done to better take agoount solar heating gains in the model [2].

| | —
((9.
Pa—

. Re
L O

Figure 13 - R6C2 model

Figure 13 shows a schematic of the R6C2 model winéchthe state and output equations:

di, _ 1 - 1 1 1
Moty Lg-t T-
T T A
dTW__i _ 1
T b (T
. _RRQ*RT* RT

R*R
. _RRQ* BT+ BT

R R,

The first additional resistance JRs added between the rooms convective resistamdehe
wall temperature [6]. Additionally the solar heaeegy (@) now acts on the wall temperature

through this new resistance. This helps to modetlifferent effect solar irradiation has on
light furniture compared to heavy walls [2]. The®ed change is the addition of another

42

thermal resistance from the wall temperature teetingronment (B). This allows the model
to show how a part of the incoming solar energyissharged directly to the outdoor
environment, while a part of the energy is absotbethe wall thermal capacitance, causing
an increase in temperature[2]. External solar gnsrgeglected in the first model, but is
included here as a heat source that acts on ts@euif the wall §,).

4.4.5.3 R6C3

The third model, R6C3, adds one more thermal ctaame to model the heat energy storage
in furniture of the building, and is an expansidithe second model[2].

0,
O,
Oy,
— >
— =
Ql T e
+

Heater

Figure 14 - R6C3 model

As shown in Figure 14, there is now a capacit@f ¢(Gnnected to theshode. The state and
output equations are:

dT, .1 1 1
= Qe (L) (T T)- T-
i e eR(T gt D gy T
dT, 1 1
o _ﬁ(T ‘Ts)‘QN—(TW‘Th)
ar, 1 . 1 1
dt SQz CR;(Tb)_ﬁ(TS_TW)
_F%RNQ*L RT+ RJ
R+R,
4454 R7C3

The fourth structure, R7C3, is also an expansiotherR6C2 model.

43

> | 1
. R,(V.)
0,
> | 1
| I
. Rg
O, Or Or . Or., Or
]; — s > ZUZ > wl > T >
T o I " 1
. Rb Q Rs sz Kul Q Re T
Q] . 2 . 3 o0
N 2|) e el +
:: Solar
Heater Cb sz Cw1 Solar

Figure 15 - R7C3 model

In the fourth model is shown in Figure 15. Statd antput equations are found to be:

1

dT, : 1
- (T (- T)- T-
wTeaR T eR(U gy D
Mo L (1, -T) = (Tu-T)
@t C.R, CaRe
dT,, = 1 oy 1 3
@ TR T R (e
- -RRQ*RT* RT
T ReR
L RR.Q*RL* BT
R+ R

The wall capacitance is divided in two parts{@nd G,), with a thermal resistance (R
also Ry is now Ry2) modeling the transfer of heat between the twac#pnces [2]. This
results in a slightly more complex version of th@&J2 model, with the addition of another
temperature node inside the wall.

4.4.5.5 R5C3

In the last model, a modification is made to th&€€R4nodel, in an attempt to find a model
that will better fit with the single zone model peated in [1]. As the authors note in the
article, there is a dynamic in this model thatig;mgicantly slower then the rest. This is

shown clearly in the step response of the modeérAfe initial step change in states, there is
a slow incline, rather then a straight steady staganing that there is a dynamic that takes a

44

long time to reach its steady value. The assumjgitimat this is caused by slow release of
heat energy from furniture [1].

0,
= || | |
. R,(V,)
0,
= || |
Rg _
QRb QR“.
— 7T —
i R . R
) o Lol
C OL ®
fur Solar __CW

Figure 16 - R5C3 model

To model this as an RC thermal network, as shovkigare 16, a new capacitor with a series
resistor is added to the model. The furniture dramg releases heat from the room
temperature and thus the resistor that modelsrenal resistance between room air
temperature and furniture is addeq,(RSince furniture is assumed to also store endrigy
capacitor (G) is added. This gives the model a new stag)(Th this way, the slow release

of heat from furniture, as well as the energy giereapacity can be modeled. State equations
are found to be:

dT, : 1 1
R T-T) (T
W5 gR M g (M) R D gy T
dT, _ 1 1 1
T g (1,1 - (T
R A T A
deur - _ Tfur - -l:-)
dt B Cfur I:\)fur

4.5 Data pre-treatment

When working with data sets for empirical modelihgre are a number of challenges that
needs to be met in order to produce a usable seeasurements. Data from different sources
needs to be combined and pre-processed into fohidata sets. Typically, data sets for
modeling are divided into training and validati@iss

45

: Convert Format Training data
Data file #2
and
® Combine data
: 'I Validation datal
Pre-processing
| Data file #N I—>

Figure 17 - Data file conversion software

Typically, a large number of sensors and measurepwnts are required. Therefore, data
sets can be of significant size, and often fromtiplel sources or logging systems. When
working with modeling, data from these differentisies must be combined and aligned in
time, to give a usable data set for the modelinggss. Additionally, any outliers and noise
in the data should be removed by pre-treatmensskggure 17 depicts how software can be
used to read each of the input data files, do #duessary pre-processing, and export the
finished data-sets on a format readable by the fimadgoftware.

4.5.1 Combining data sets

Measurements from a building contain data fromedéht sources. Typically an internal
logging system is used to record temperature anddity reading throughout the building. A
weather station records the outdoor conditionslendnsmart energy meter measures power
consumption of the active heating systems. Somestixternal metrological data is also
used. Since measurements can come from differgging systems, their output may be on
different format. Hence, a tool for converting di#nt formats of data into one format which
is usable by the modeling software is typicallyuieed. Different countries have different
standards for formats of files, such as differeattichal point, field separators, etc.
Additionally, the different systems may use differémesteps and offsets. Sampling times
may not align, even if the sampling intervals & $ame. In the final data set, each sample
must represent the system at a specific time ihstad have a format that the modeling
software can use. Hence, the combination of data multiple sources requires a significant
amount of pre-processing, before modeling can begin

It is also a likely scenario that the input datis $edsm each measurement system contain a lot
of information not relevant to the modeling, bathterms of extra variables, and also extra
samples outside the time range of interest to thealimg. Therefore, some type of extraction

46

is also required in the software that will retriendy the portion of the input data set that is of
interest.

45.2 File formats

Typically, data is stored in a Comma Separated 8a(CSV) file, which is simple ASCII
encoded text, where numeric values is stored astengs, separated by some field
separator. Typically, as the name suggests, a camninasome countries a semi-colon is
used. Further, the decimal separator can vary mamtry to country. Finally, the line
endings can also be different. In Windows compuiteesASCIl codes CR + LF (10 + 13) is
used. Other systems use a single character linagrsdich as just LF (13) for Unix.

While these format concerns may seem trivial, treyin fact vital to the data treatment
steps. Data must be delivered to the modeling taloich may have strict requirements on the
data format used. As an example, when using MATIahB its “readcsv” function, as in this
project, the data file must use comma as field ispg dot as decimal point, and Unix style
line endings of LF. If a file has CR+LF as line amg$, this will cause every other row in the
data matrix to become zeros.

Figure 17 demonstrates the process of readingfidatamultiple files and converting them
into two data sets, training and validation. Eagtui file is read and converted from a
specific format, while the exported data sets aréhe format required by the modeling
software.

4.5.3 Re-sampling

In addition to having different formats, differdagging systems will typically have different
time-scales. Some data requires a high sampliegoetause of fast dynamics, such as power
consumption of a heater, while other data chanigedys such as temperature. Therefore,
logging systems must use a sampling frequencytdeita the data its intended to record. The
sampling frequency must not violate the Nyquists8itan Sampling theorem [21]. If there are
fast changing signals that need to be logged, sagh@tes must be high.

The sampling time of the raw data may not be a gbmace for the final data set. If a higher
sampling time, i.e. a longer time step, is useithéfinished data set, filtering of high
frequency signal information may be required toviolate the sampling theorem and avoid
aliasing [21].

47

Figure 18 - Re-sampling of data by linear intergaa

In addition to different sampling intervals, theifhed data set requires values for all
variables at the same time instant. Hence all ngsdinust be “temporally aligned”, meaning
aligned in time. This can be done by using re-sargpif the original data, into a new time
frame, which is shown in Figure 18, where the eattdotted lines represent the new time
instants where measurements is required, and tiedibk is the original measurements taken
with longer timestep and a slight offset. By usihg original time-frame of the input data,
and computing an estimate by linear interpolatibeach measured variable at the time
required for the output data set, the finished daliehave all measurements at the same time
instant. This constitutes a single sample at ane tnstant, even if taken from multiple
logging systems whit initially varying and/or urgaled time frames.

The new value between two of the original sam@emputed using linear interpolation

[22].

X(ti+1) B X(ﬁ) (
ti+1 _ti

This equation can be used for computing the measnex at time where timegis larger

then t but smaller then.t, and x is known at &and 1.

x(t) = x(t) + t—t)

X(t)
A
X(t|+l) .. g
X(tk) .. :
xt) f ;
>
ti t tiv1 t

Figure 19 - Linear interpolation

In Figure 19 the process of linear interpolatiomascribed by the above equation is shown
graphically. The original data set is parsed td time two samples atand t.;, such thatyt
lies between them in time.

48

4.5.4 Filtering

In all measurement systems, there will be measurenmse. Typically this will consist of
random signal variations that are not related éontleasurand, but are induced into the system
as an error. Random noise is often called whiteeydecause the frequency spectra of
random variations contain all frequencies at saragntude [13]. To remove this kind of

noise a filter can be used. There are several lohtikers, such as time discrete low-pass
filters (LP), Weighted Moving Average (WMA) filter&IR, IR, and other types [21].

Ko ks Ke

Figure 20 - Centered (left) and Uncentered (rigiiMA

In this project a Weighted Moving Average filterused [22]. This can be of two types,
centered or non-centered. If centered, the filsersuan equal quantity of samples from both
past and future time to compute the output at thegnt time instant. Since this filter requires
samples from future timesteps, it is only possiblase it on recorded data set, e.g. historical
data, and not on data processed continuously frproaess.

A WMA filter that is not centered uses only datanfr previous timesteps to compute the filter
output, and will always introduce a delay in tHeefed signal. The difference between
centered and uncentered WMA filter is shown in Feg20. The horizontal red line represents
the filter output. Both filters give the same outpunce they average the same seven samples.
The difference is in which timestep the outputgsdifor. The uncentered WMA gives the
same output as the centered, but three timestegswaich is what creates the delay in the
filter.

The equations for centered (left) and uncenteligtitjrWWMA filters are:

kN
2

2, wx(©) S
() =—5—— () = E—

2%{ iw

=z
=
A
——+
N—r

In both filters a set of weights can be defineddach of the N samples used in the filter,
where N is the filter window width. Often, all wéitg equal to 1 and the denominator of both
equations become simply N.

49

Centered WMA filters are used in this project siatielata are recorded in files, i.e. historical
data.

45.5 OQutlier detection

The last pre-treatment step of interest in thiggatas detection of outliers. An outlier is
defined as a sample that does not fit the genettdnm in the data [18]. There can be many
reasons why certain samples should be classifieditisrs, such as sensor malfunctions,
noise, or changes in conditions that the modebisRrpected to predict and hence is outside
the region of interest. In general, an outlier sample that is likely erroneous and would
have a large, unwanted, impact on the model, if@mioved from the data set.

Different modeling techniques have different apphas to dealing with outliers. In
multivariate regression, inspection of score ardliog plots can be used to identify outliers
[18]. As a general data treatment pre-processeg stutliers can be defined as any sample
that has an unlikely magnitude of change, respedivhe neighboring samples. By defining
a window around each sample and computing an a&enagy this window, each sample can
be compared against this average and a limit plangdde maximum deviation acceptable.

abg x——=— > X,

If the absolute value of the difference between@arat time k and the average of N
neighboring samples is larger then some limjt, the sample is classified as an outlier. If an
outlier is found the sample can be deleted frondtita-set and an interpolated value used
instead.

It is worth noting that the process of detectingiers is often not trivial. The distinction
between an outlier and an extreme sample, i.anplsahat does fit the general trend, but has
high values of some relevant variables, is not gdaabvious [18] and automatic outlier
removal can be a risky process. Hence, some manpalvision and tuning of the detection
parameters is advised.

Note that automatic detection of outliers is nguarantied method. Data sets should always
be inspected, and if certain samples seem to coutdikely values, they can be classified as
outliers and removed or replaced by an averagesvaltypical outlier scenario for buildings
iIs when a door or window is left open. This “bréake thermal model of the building, and
any samples taken on a building in such conditidhbe& outliers in a larger data set.

50

4.6 Solar irradiation

Solar irradiation is in literature [2, 6, 7] considd an important input to the thermal behavior
of a building. In the data on which this projecb&sed little information about solar
irradiation is available. It is difficult to measuthis parameter directly [3]. In relevant
literature an estimation or model based on sofadiation angles relative to the buildings
location is used. Additionally, data from cloud eocage and geometry of building and its
surroundings, such as shade from trees and otlildmgys, is used as input to the estimation.

The data used in this project are taken from bugglin Norway during October, November
and December, where daylight is low, sun angldivel@ao ground is low through out the day,
and solar irradiation is also low, as a consequdhgeassumed that solar gains from the
relevant time period can be neglected. Particufaryhe “ByggelLab” data set, the
surrounding buildings provide a high degree of giadsuch that treating solar gain as noise
in the modeling is a valid assumption. For the ‘il@adata set, this assumption may be an
oversimplification, but without better data, orrzokvn, well-defined, method of solar
irradiation estimation, the only option left istteat solar heating as noise.

4.7 Model performance criteria

When comparing results of different combinationsnaidel structures and datasets, a defined
quantifiable criterion is needed. The Root Meanaguerror (RMSE) is a commonly used
such statistic [18]. Two types of RMSE are usethis project. First, the Root Mean Square
Error of Calibration (RMSEC) is used to quantifywhevell a model fits a specific training

data set.

The error in this equation is the difference betweasference in the calibration data set and
prediction of the model.Tis the temperature predicted by the model, whilis The

reference temperature in the calibration data. ilnportant to note that the RMSEC is not a
measure of the models ability to predict behawiogeneral, but rather how close the model is
able to predict the data set from which the mogdatameters is identified. As such, itis a
measure of the models fit with the calibration data

At each data point in the training set, the modedtion error is computed, squared and
summed over all N samples. The result is dividetheynumber of samples and the square
root is taken. This preserves the unit of the RMSHCh that in the case of temperatures, the
RMSEC is given in the unit of °C.

51

A similar statistic, Root Mean Square Error of Regdn (RMSEP), is used to quantify a
models ability to predict indepenant test data.[83fce the data is now independent of the
calibration of the model, RMSEP is a measure oftloéels ability to predict system
behavior. RMSEP is therefore the most importanntjtygon which combinations of models
and data sets can be compared.

As the equations shows, the difference between RM&k RMSEP is the use of ih the
error term, i.e. a reference from independentdat, rather then the data used to calibrate the
model. In empirical modeling this is an importargtichction.

4.8 White-box reference model

In [1] a set of equations derived from first prplei balance laws is used to model a single-
zone building. The resulting model is an exampla wiite-box model, entirely derived from
physical laws and an understanding of thermal dyosrithe result is a set of ODE’s
containing 17 states, a number of algebraic eqgusfiar boundary conditions and around 70
parameters. This model is complex, and difficulatalyze, but likely to be dynamically
accurate, assuming that the modeling assumptidds bad parameters are correct [1].

Parameters of the model are derived from buildimayacteristics and standard code such as
the TEK10 regulations [1]. Using a grey-box apploan a model with 70 unknown
parameters would not be a feasible solution, sirdpkyto the number of parameters to
identify. In literature [2, 6, 7] a model of fifibrder (5 states) is considered complex for use in
parameter identification.

An interesting use of white-box models such ad]nd to use it for simulation and using the
result data to train a grey-box model. Working vaiimulated data, rather then real
measurement data, gives more flexibility in seqdacement, and allows easier
experimentation with various aspects of the bugdiin example of a study based on
simulated data is given in [3].

4.9 Simulation of models

Simulation of models is required for the identifioa of the parameters of a grey-box model.
A numerical computation on the model must be paréat, such that the results can be
compared with measurement data. It is importabetaware of the timescale, such that the
simulated and measured results are aligned in filme simulated results must be known at

52

fixed time steps, the same time instants as theuned data. Measured data can be re-
sampled and aligned to fit the required timescatel, simulations can be designed to produce
results at the same time instants as the measatad d

Models used in this project will be on state-spgacm, using Ordinary Differential Equations
(ODE) and will be linear. Simulations on these nisdadll be required both in the c#
software, for performing simulations on known madeind in MATLAB, for identification

of parameters. In MATLAB there are many well knoaptions for ODE solvers, but for c#
the selection is limited, and there are no stantail in features for this. Therefore,
implementation of an ODE solver is a required péathis project.

The simplest type of solver to implement is a fisteb solver, where the timestep is
independent of the solution, and given to the sagea configurable setting. In this project a
fixed step Runge-Kutta™order solver [8] is implemented and used, bottéimnd in
MATLAB. This allows direct comparison of resultsdaalso gives improved computational
speed over MATLAB's built in solvers, as later cteap will show. Since parameter
identification requires the optimizer to simulate tmodel repeatedly, solver speed is of vital
importance.

Initial conditions

X0

A 4

RK4 (ode, xt,u)

dx/dt
A

A

Update states

Xk

A\ 4

Increate step (k++)

Figure 21 - Simulation loop

With a fixed step solver, a simple simulation Idiée in Figure 21 is used. At each timestep,
the model states are computed based on previousutechstates. ODE’s is evaluated by a
solver, such as RK4 in the yellow block. The stateables and time k is updated in the blue
blocks. The updating is done in an iterative Id®gfore the simulation starts, the initial
conditions are set up in the green block. Inputhéomodel are provided to the solver to
evaluate the ODE’S.

53

4.10 ODE solving in discrete time

To simulate the models based on ODE’s a discnete $iolver is used. These solvers use a
numerical method of discretizing the ODE from coatius time domain and into a sampled
discrete time domain. In many scientific computisgguages, such as MATLAB, this is a
standard function that can be invoked when neddegkeneric programming languages such
as c#, a third party library is typically used,carthere is little or no support for numerical
computation natively.

The simplest form of discretization is the Forwardl Backward Euler (first order accurate),
where the time derivative is approximated by tHitedence in value of the function, between
two adjacent samples, i.e.

af(t) _ flte)—f(t) A FE BE df (te) o F(te) — F(6)
dt At = e dt At
>

Figure 22 - Backward and Forward Euler approximaiso

The important difference between Forward Eulet)lelso called Explicit Euler, and
Backward Euler (right), also called Implicit Eules,when the difference in value over the
sample step is equated to the derivative [24]epscted in Figure 22. If the derivative at the
beginning of the step is used, the approximatiaghed=orward Euler, since derivative is used
forward in time. If the derivative at the end oé tlample step is approximated to the
difference, the approximation is the Backward E{B¢r

Both these approximations are of first order accyirtn a Taylor series expansion
approximation terms above first order is ignoretroncated [24]. Other approximations have
better accuracy. Euler approximation is not usediisproject, but it is included here as a
background for discretization of ODE’s.

4.10.1 Fixed or variable step solver

In some linear dynamic systems, there may be & hagation in time constants of the
different ODE’s. Since the sample time used inr@szation depend on the time constants of
the ODE'’s for the solution to be numerically stal@de22, 24], the smallest time constant in
the system determines the size of the time stegh inshe solvers. It may be that this time

54

step is not required for the entire simulation homi, but rather only when there is a change in
the faster dynamics of the system. In this typsystem, it would be beneficial if the timestep
length could be varied, depending on the presemtenigal solution.

In this project, all the models are linear, whishyipical for thermal networks. Further, the
time constants can all be assumed to be of appat&lynsimilar magnitude. The heat flow
through a wall is typically not drastically differefrom the heat flow through a roof, window
or other building elements. Since variable stepesslare more complicated to implement,
only a simple fixed step solver is used here.

During simulation on the complex 17 state singlaezmodel from [1] some problems with
significantly different time constants where endewed, presumably due to how the layers in
the walls are modeled with very different thermaperties. Some layers have very fast
dynamics compared to the rest of the building beealiey have a very low thickness and/or
thermal resistance causing rapid thermal respahsaggh them. In this case, a variable step
solver would have improved the simulation speedicantly, since for fixed step solvers

the only remedy is using shorter timesteps [24jlteng in more simulation steps.

4.10.2 Runge Kutta 4™ Order solver

An improvement on the Euler approximation is thealted Runge Kutta®™order
approximation. As the name suggest, this approximas 4" order accurate, and offers
significant improvements in accuracy and stabdier Euler approximations [8, 24].

Where the Euler schemes approximate the derivatilseat the beginning or end of the
timestep, the RK4 method uses a central approxamatvhere the derivative is also estimated
in the middle of the sample step [8]. Additionaky initial “guess” of the true derivative is
used and updated with improved computations. Btallscussion on RK4 implementation

is found in literature [8].

The RK4 scheme can be formulated by a set of eapgaés:
k, = At (t,, xn)
K, —Ath(t 8 X+ j
k3:AtElf(l;1 +— xn+—]
Kk, Ath(tn+At X, + k)
K = %< (32l + 2K+ K)

First, the algorithm computes an initial guesstfi@ change in x between time n and n+1.
Half of this change is then used to compute a ngssg for the derivative in the middle of the

55

step. Again, the guess is updated using the bagiable previous guess, before the derivative
at the end of the timestep is computed, using tiesgin k as an estimate. Finally, all four
guesses is combined into an estimate of the changbetween time n and n+1, and x is
updated, thus advancing the algorithm one time$téple this method is more
computationally heavy then the Euler schemes ntbmashown to be fourth order accurate
[22, 24], meaning that in terms of a Taylor segipproximation, the®and higher order

terms is truncated. The RK4 method is the chosproapnation of the derivative in this
project, since it is simple to implement in cod# &nd MATLAB) and also faster then the
built in solvers in MATLAB.

4.11 Optimization based parameter identification

As described in chapters 2.4 and 4.3, a criticel gfathe grey box modeling procedure is the
identification of parameters from measurement fitarhere are many methods possible for
the identification of these model parameters [d}thle this project the method of choice is the
use of an optimization algorithm, specifically theterior Point” algorithm, which is also

used in [2]. The actual implementation is done IRTMAB and using the non-linear
optimizer “fmincon”.

4.11.1 Optimizer working principle

The working principle of an optimization algoritheto find a minimal point for the

objective function. As such, the objective functaefines what goal the optimizer is trying to
achieve. This process is similar to finding theimia point on a graph by equating the first
order derivative to zero and the second order deve to be negative, i.e. finding a minimal
point. Optimization algorithms do this numericallyithout need for computing the
derivative/gradient.

56

| Optimizer I‘_
Parameter
guess
Objective
Training data | ODE Model | Function
Inputs Simulated
result
+
Training data
Error
References

Figure 23 - Optimization based parameter identifica

The principle of optimization used in parametemnttfecation, as depicted in Figure 23, is
based on repeated simulation of the model (greackplusing the optimizer algorithm

(yellow block) to search for an optimal set of paeters that minimizes the error (orange
block) between simulated results from the modelmgam®d with the measured reference
values of the real system (blue blocks). The ohjeatonsists of the sum of squared error for
all reference variables as compared to model ositpruthis way, the end result of the
algorithm, at convergence of the optimizer, istao§@arameters that when used in simulation
with the given model, gives the best possibledfithe training data set. RMSEC can be used
to quantify the degree to which a model fits a data

At all iterations of the optimizer algorithm a gader all values for the “decision variables”,
in this case the model parameters, are suggestedndy the different algorithms comes up
with new guesses, based on the success or faiitine previous guesses, is the difference
between various algorithms, such as SQP, IntenortPActive Set, Nelder-Mead and others.
To compute a numeric value representing the suafesasch guess in achieving the objective
given to the optimizer, the model must be simulategr the time range present in the
training data. The simulation results are usedtopute the objective function, the
accumulated square error, over the whole trainatg det.

At the initialization of the algorithm an initialgss of the model parameters, also called
decision variables in an optimizer, is given. Firgda good starting point for the algorithm to
work from is important, as there can exist multipleally minimal solutions [2]. Finding a
good general solution for the model may requireestmal and error in initial model
parameters [2].

57

In addition to the defined objective, a set of ¢maiats may also be formed for the decision
variables. In [2] the authors suggest using mininoamstraints on the parameters as 1/3 of
the initial parameters and a maximum constrain&tohes the initial parameters, thus
limiting the range around the initial conditions fehere the optimizer is allowed to search
for an optimal solution. By repeatedly running tpgimizer, changing the initial conditions
after each run, it is possible to find a set dfi@hparameter values that produces a solution
where none of the parameters are on the conshainmtdries [2]. The exception would be if
there is no solution to the problem, i.e. no sggasmeters that can make the model fit the
given data.

58

5 Software Implementation

There are several software tools developed fortagect, some in c# and some in

MATLAB. General syntax details for c# and MATLABn@ also for GUI programming e.g.
WinForms, can be found in literature [12] and i$ included here. Software modeling [12]
and implementation of the key software elementhimproject is discussed in detail. Where
applicable, results of tests on individual softwpaets are also included here, to demonstrate
the software results. A selection of source codéhfe important parts of the developed
software is included in Appendix C. A selectiorcte#ss diagrams is presented as a model of
the software. These class diagrams are somewhplifgeah relative to the source code and
some details have been omitted.

An overview of the developed software and requingdit data is given in Figure 1 and
discussed in chapter 2. Since all the experimarts@ne based on data sets from multiple
sources, a software tool that can combine and fmeeps the data into suitable training and
validation data sets is required. The model cdianai.e. the identification of parameters, is
performed in MATLAB, because it requires supportdptimization algorithms. Since the
parameter identification, as discussed in chaptet,4equires simulation of the model, the
models and the RK4 solver, discussed in chapté€x, &klso implemented in MATLAB.
Additionally, solvers and models are implemented#nn a tool designed primarily for
simulation of models, but also with the option xpert data. It can be used to generate
simulated data from more complicated models, ssahewhite-box model in [1].

The three main software tools cooperate to solgaabks in this project. LogFile Converter
delivers pre-processed training and validation,datede from different input data sets, to the
Parameter Identification software in MATLAB. Theeittified parameters can then be given
to the simulator, which can store simulation sgiand parameters in files for easy access.
Simulations can be run on both identified and pefigured models with known parameters.
Results from model calibration and validation aredpiced by MATLAB code. Results from
simulating models and estimating the heating/cgdiime of buildings is also done in
MATLAB, but can be produced by the c# software afi.w

Note that all result plots in this project are magehe MATLAB parameter identification
software. Simulation results from the c# “Simulasoftware is used as training and
validation data for some test cases, and alsocad pf working software. The most important
results from the c# simulation is the reduced camapnal time achieved by the fixed step
RK4 solver, compared to MATLAB built in solvers, discussed later in this chapter. Further,
the c# results compared to MATLAB results show #giatulating models in c# is viable,
which is a requirement for future predictive cohigstem implementation.

59

5.1 Software development process

All software in this project is designed using @Gbj@riented Analysis and Design (OOAD)
[12] principles, thus creating software that camimelified and expanded. Examples of where
this type of thinking is important, is the modedsdes in c#. A common base-class is used
with inheritance [12] for multiple models. This@hls the solvers to use the polymorphism
concept of OOAD [12] to solve any model defineddeyived classes. This means the
software can be expanded with new model classes|dbther thermal network structures be
investigated as for grey-box modeling.

The developed software can be considered experatngoftware, since the specification of
the software was somewhat unclear at start of imergation. Further, the software was
expected to grow with the needs of the projectc&there is only one developer in the
project, a simple development process suitablsdch software was used. At the initial
stages of software development, a conceptual degigach software was made, using a class
diagram [12]. These are efficient tools to modélveare classes and cooperation between
classes, to ensure a hierarchal inheritance modbeisoftware that will allow the system to
grow. By using the concepts of inheritance andugirbverloaded methods (polymorphism),
new classes, e.g. new solvers, models, operattans)e added into the existing framework.

For the purpose of documenting software functidpadi Use-Case diagram [12] for each
software was made. These diagrams show the mattidas of each software, and what each
of the function need in terms of external inputpautfrom actors [12].

By getting the modular design of the software rigbin conception, each class and each
module of the software can be developed and teBtedexample, each operation in the
“LogFile Converter” software can be tested separatmce the controller-class framework is
implemented and tested. This ensures that eaclojiduwe software is working, before the
whole software is tested as a combined tool.

5.2 Data treatment application

The data treatment application, called simply “LibgEonverter”, is the software
implementation of the pre-processing steps destiiibehapter 4.5. Each of the steps is
implemented in its own class, called an “operatié@erations can be linked together in a
“macro”, to perform a complete transformation froe input data into usable training and
validation data sets. Operations include readileg fextracting data, re-sampling, filtering
[10], outlier detection and exporting data to C3¥.f

60

Modlfy Macro

User

@

Do Operatlon

PIot Results é 5

Data Output File
(Csv)

Macro Flle

(XML)

Data Input File
(Csv)

Figure 24 - Use-case diagram for LogFile Convedeftware

As shown by the use-case diagram in Figure 24saftevare is focused around the creation,
modification and execution of a “Macro”. As desedb a Macro is a set of operations
required to convert the input data into the desmmefhut, and can include plotting of results.
The most important use-case [12] is “Do Operatioviiich is responsible for executing each
of the operations defined in chapter 4.5. The “Exedacro” use-case relies on “Do
Operation” to perform each operation in a sequeletermined by the Macro. “Plot Results”
has the task of presenting results on GUI, eiteex graph or a matrix with data. “Create
Macro” and “Modify Macro” is responsible for recamd operations into a macro file, and
modifying a pre-existing macro loaded into the wafi, respectively.

The first actor in Figure 24 is the “User”, the g@m who uses the software to create data sets
for modeling. The actors “Data Input File” and “B&utput File” is stored information on
disk, typically Comma Separated Values (CSV), asuatreated and resulting treated data,
respectively. The final actor “Macro File” repretea stored Macro, as an eXtensible Markup
Language (XML) file, a set of operations and seggirincluding settings for plotting, stored

on disc, such that the macro can be reloaded etsaftware and the resulting data set
recreated directly from the raw data.

All operations work on a worker data set, whicintgrnal to the software and therefore not
included as an actor. When an operation is exegutediven this worker data set as input.
On completion, the worker data set is updated thighresults of the completed operation.

61

Then, the next operation to be executed repeatgrtuess, building on the results of the last
operation.

ool er mdract NOC Teonne - [m] b e

File View Operation Macro

45— — HNorth £1
— HNorth #2

— Horth #3
— Morth High
— HNorth #1 F+R
— Horth #2 F+R

~ North #3 F+R
—— North Hight F+R

Value

Q
T T T T T T T T T T T T
@ 24 48 72 96 128 144 168 192 216 249 264 288

Time [h1
Macro Progress: 13/13 CurStep Progress: 100.8% Time remaining: 00:00:80 [Columns: 4 Samples: 1765 Start: 2015-12-84 18:00:00 Duration: 294.@ h] MacroOps: 13

Figure 25 - LogFile Converter Screenshot

A screenshot of LogFile Converter software is giwekigure 25. The main part of the GUI is
used for either a plot of up to 8 graphs, or it barused to show a table or matrix type
presentation of the current worker data set irstifewvare.

A menu bar, marked with red square in Figure 26y users access to various commands,
such as handling macros, configuration and settithédbottom of the GUI, a status line
shows current statistics of the active data seluding start time, length, number of samples
and variables. Additionally, the number of stepthimloaded macro is shown. At the left
side, the progress of the currently loaded macgivisn. Since some operations can take a
significant amount of time, particularly re-samplimn estimate of the remaining time to
completion is also given.

62

B2 Log file converter: extract NOS Temps.mer - m} X
Plot Settings Urit:North Unit:North Unit:North Unit:North High ~
Show Graph Temp#1 Temp#2 Temp Temp#

1 how Date 476255 7.30835 5.6807 868275

2 4764675 729915 56871 8.4947

3 04.122015182... |4.7878 7309 5634 8218425

4 04122015 183... |4.809675 7313175 572015 964025

5 04122015 184... |4.7861 7312775 57535 10.140825

3 04.12.2015 185... |4.77835 7338525 5752675 1059435

7 04122015 130... |4.821175 7.3685 5760775 11.02095

8 04.12201519.1... |4.84005 7400625 57307 11445325

9 04.12.201519.2.. |4.834975 743955 5.803975 11954925

10 04.12.201519.3.. |4.826875 747635 5792875 1218665

1 04122015 19.4... |4.80885 752515 5811325 12456425

12 04122015 195.. |4.804525 75731 5833175 129994

13 04.12.2015 200... |4.828075 7640825 5.8323 13.327875

1% 04.12201520.1... |4.844775 7692175 5.844725 13.4915

15 04.122015202... |4.8251 77324 5.86525 13529

16 04.122015203... |4.8199 7.824075 5.89095 13.8799

17 04122015 204... |4.82885 7382325 5.884175 14.403225

18 04.12.2015 205... |4.827675 75445 5.8979 14518375

13 04122015 210... |4.831975 202195 5.9527 14529575

20 04.12201521.1... |4.855475 2080375 595185 14.708225

21 04.122015212.. |4.863675 2167125 5948275 15.10005

2 04122015213, |4.85255 8235275 5.978375 15.2002

23 04.122015214.. |4.863975 831445 6011325 15334625

24 04.12.2015215.. |4.884075 8386775 £.0405 15762925

25 04.12.2015220... |4.503 8470325 £.0753 15.864025

2% 04122015221.. |4.323175 8550525 £.038775 16.0233

27 04122015222 |4.896625 860405 6.09875 16.204475

2 04.122015223.. |4.888 8672075 6121075 16.209625

29 04.12.2015224... |4.887975 8753375 6147175 16.119675

30 04.12.2015225.. |4.884125 8826125 6.17435 16365475

31 04.12.2015 230... |4.90425 28814 61916 16.62365

2 04122015231 |4.917125 8976075 6.228925 16.6866

1 4122015217 A 99775 90192195 £ ITEATR 18 GARI9R &

Macro Progress: 13/13 CurStep Progress: 188.8% Time remaining: 80:88:80 [Columns: 4 Samples: 1765 Start: 2015-12-84 18:86:00 Duration: 294.8 h] MacroOps: 13

Figure 26 - LogFile Converter Data view

Figure 26 shows another screenshot of LogFile Coavevhere the software is in the “data
view” mode. Here, all data in the worker data set be inspected in a table or matrix form.

5.2.1 Data storage classes

The software is modeled using class diagrams starénthat future maintenance and
expansion of the software is possible [12]. Likekgensions can be adding more pre-
processing operations, or expanding existing ojmersit perhaps adding different types of
filters or data file formats.

Class diagram for the software is split up in tvaotp to make discussion of the
implementation easier to follow.

Since the software is concerned with handling lapgentities of information from log files
[10], with a varying number of variables (columasyd samples (rows), and also with varying
formats, text or numbers, and time scale, bothgtamaps and intervals, it is useful to define
an internal data storage structure. This struatarebe used by the different operations to
handle data in a uniform way, regardless of thgial data source. By using a set of classes
to hold the data, other classes can rely on thee datversion and access methods in these
classes to do basic operations on the data, sudtreving field values as text or numbers,
or accessing a particular sample in the data set.

63

LogFile
+List LogLines LogLine
+Add(LogFile) +Array LogValues
+AddLine(LogLine) +DateTime stamp
+CreateValueNameIndex() [+Count
+GetColumn(index) -
+GetColumn(name) +ToSt_r|ng()
+GetTimeArray(DateTime start) +Get(index)
+Set(index, val)
LogValue
+Name
+virtual GetDouble()
+virtual GetString()
+override ToString()
LogValueString LogValueDouble
+string sVal +double fVal
+GetDouble() +GetDouble()
+GetString() +GetString()
+LogValueString(string sVal) +LogValueDouble(string sVal)
+LogValueString(double fVal) +LogValueDouble(double fVal)

Figure 27 - Class diagram for LogFile objects

Figure 27 shows the class diagram for the datagéoclasses. A LogFile class is a set of
samples, either raw data read and converted frbl®, @ombination of multiple files, or it

can hold the results of any of the defined openatid he class has some accessor methods
that allow operations to retrieve a column, i.gialge in the data, by index or name, or get a
list, in the form of a c# dictionary, of all colusiwariables by name and index. For purpose of
plotting, the class can return an array of timeet from a given start time. Note that the c#
classes DateTime and TimeSpan are used to hahdl@alinformation allowing efficient
computations with time and conversion to and frert strings.

The LogFile class has a List-structure of LogLinekich represent the samples in the data
set. This class also stores the timestamp of eadiple, either as read from file, or as created
by an operation, e.g. re-sampling.

LogLine holds an array of LogValues, which is whitre actual data is stored. LogValue
class itself is never used directly, but servea base class with two overloaded child classes
[12]. LogValueDouble is designed to hold a valu@wmeric format, while LogValueString
can hold a value of text. Both classes have owdrndhe base class virtual methods
GetString and GetDouble. This allows operationsittaply retrieve any value in a LogFile as
a double or string, depending on what the operatemds. As an example, filtering only
needs numeric values, and will retrieve a fielé&sasDouble, while exporting a file to CSV
uses GetString to retrieve the value of each steletent as a string.

64

Finally, all the classes use overloaded [] (“br&Qkeperators, which allows LogFile objects
to be accessed like a two-dimensional array, wtierdirst bracket holds the sample index
and the second bracket returns a specific indeake\from within the LogLine.

//make a list of all variable names in the file
Dictionary<string, int> dct = Input.CreateValueNameIndex();
int nColumns = dct.Count;

double[][] fVal = new double[nColumns][];
for(int nC = @; nC < nColumns; nC++) {
fVal[nC] = new double[Input.Count];
for(int nSamp = @; nSamp < Input.Count; nSamp++) {
fVal[nC][nSamp] = Input[nSamp][nC].GetDouble();

}

}

Figure 28 - Code example of accessing LogFile class

Using operators in this way gives a simple andabbedcode that is easy to maintain, as
shown in Figure 28. The “Input” data set is an obg# type LogFile, which in the above

code is converted to a 2D double array. Note tiatibuble array is “transposed” in the sense
that the indices in brackets are reversed withaesip the LogFile object. First a dictionary

of all columns is retrieved using “CreateValueNamdelx”. Next, the code loops over the
entire LogFile Input, all samples and variabletym@ang the double value of each of them
using GetDouble virtual method. As shown, this nsaloe very simple and readable code,
which is important in all software, particularly software that is expected to be expanded in
the future.

5.2.2 Data operations classes

The theory behind all the operations is discusseatktails in chapter 4.5. In this chapter, only
the implementation details are covered.

The data operations consist of six operation ctassith a common base class
“DataOperation”. A framework, or Controller patterlass [12], “DataOperationCtrl”, is used
to hold a queue of operations that is executed lmckground thread. Since operations can
take a long time to complete, they must be exeantedbackground thread [11], and not on
the GUI thread of the application, otherwise thievgare will appear to “hang” while
operations are performed. This would give an uroespe, and not user friendly, software.

65

Operation Que Background Thread

Operation #1

— | Exec Operation

Operation #2

| Operation #N |

New Operation

Add to bottom

Figure 29 - Operation execution in thread

In Figure 29 it is shown how a queue of operatgstored in a controller class containing a
worker thread [11]. New operations are added tdotittom of the queue, while the top
operation is executed in the background thread.i/\the operation is complete, the next
operation in the queue is ready for execution.

DataOperationCtrl LIVl R
. +Input

+OperationQue +Result

+Progress

+TimeToComplete +Do()

+Threado / I

LoadFile SaveFile Resample Extract Filter OutlierDetection

+FormatConverter +FileName +StartTime +ColumNames +Weights +QutlierLimit
+FileName +FieldSep +TimeStep +StartTime +Centered +AvgFilterWidth
+FieldSep +Steps +StopTime

Figure 30 - Class diagram for data operations

Figure 30 shows a class diagram of the operatindglee controller class. All operations are
inherited from a common base class called "Data&ijmar’. The base class has a virtual
method named "Do” which is called by the framewtwrlperform the operation. Each

66

operation child class overrides the “Do” functiand performs whatever actions on the data
it requires. Additionally, the base class has twgltile type data sets called Input and Result.

When an operation is created, it is given a Logéldgct as Input, and once complete, it
returns the data in Result. Additionally, the belsss contains an “OnCompleteEvent” that
the controller will call [12] once the operationsh@ompleted. Since the operation is
implemented as an object, all the required inforomeftor use of the results is encapsulated
inside [12]. The user can configure the operatiojea before passing it to the controller,
including setting the callback event on completion.

DataOperationCitrl class has a property called Rsggthat can be used to monitor progress of
the current operation. Similarly, “TimeToCompletg’of type TimeSpan and returns an
estimated time to completion for the currently exed operation.

In Figure 25 an example of an executed macro i&/shblere, a data set is loaded and a list
of columns in the original data set is extractedafgpecific time interval. The results are
filtered. Both raw and filtered data is plottedsttow what the filtering operation has done
with the data.

Pre-processing data in this way gives users ofdifitevare much flexibility in configuring the
pre-processing steps, as well as opportunity tovbed happens at each step, thus monitoring
the process of creating the training and validatiata sets.

5.2.2.1 LoadFile operation

The first operation in any Macro will be to loadaérom a file. Since the LogFile Converter
Is expected to handle many types of formats, tlreadtFile” operation uses a special
“converter” class called FieldConverter, which t¢ake one line from a file, in the form of a
string, and return the values as a LogLine objactuding timestamp and field names.

FieldConverter

+virtual ConvertFieldsToLogLine(sFields)

AN

WeatherStation NOSLogFile

+ConvertFieldsToLogLine(sFields) +ConvertFieldsToLogLine(sFields)

Figure 31 - File format conversion classes

As shown in Figure 31, the FieldConverter classlzaonverloaded, where each child class
overrides the ConvertFieldsToLogLine method. Thisvwes the software to support new file
formats, simply by defining new derivatives of Ei€bnverter classes. By having specialized
conversion classes, a large number of file forroatsbe included, depending on project
needs.

67

5.2.2.2 Filtering Operation

The filtering operation, as detailed in chapter4l.t% demonstrated in Figure 25. From the
figure, it is demonstrated how a noisy data setheafiltered by averaging the data over a
specified window. In the figure, the lighter coldnglot is overlaid on top of the raw data, to
show how the filter extracts the general trenchendata, but removes the random variations
from sensor readings, termed as noise. The filjerirdata is a standard operation and much
literature exist where detailed discussions oeriig can be found [10, 21, 22].

5.2.2.3 Resampling Operation

The theory behind the resampling operation is dised in chapter 4.5.3.

Figure 32 - Screenshot of resampling operation

In Figure 32 the result of applying the resamplpgration is shown. The red line is the
original data, while the blue dots represent vahatdabe required time instants, also shown by
vertical grey lines. Each point is computed bydinmterpolation. This is most clearly seen at
the peak marked a) in the red curve, where themelea values on both sides of the highest
value original sample are clearly computed by lineterpolation between relevant two
closest samples.

68

5.2.2.4 Outlier Detection Operation

The outlier detection operation is described iraidl@ chapter 4.5.5. In outlier detection,
there is always a certain amount of human judgnmeaived, even when applying automatic
algorithms. In the field of chemometrics, outli@tekction is often done manually [18]. Here,
an automatic algorithm is used, and as such theahyadgment factor is expressed by the
settings used in the algorithm. What should bengéeffias an outlier, and what should be
included as extreme samples, is not always obvious.

-18 T T T T T T T 1
(<] 18 20 38 a8 58 &8 70 88 98 181

Figure 33 - Screenshot of outlier detection openati

In Figure 33 the results of the outlier detectipemtion is shown. Red dots are original data
points, while the blue line plot is the data afiatliers have been replaced with an average
value of nabouring samples, using interpolationilainto in resampling. From the plot in
Figure 33, four outliers have been identified ahfoa), b) and c), which are shown as red
dots without the blue line plot going through théhthese samples are actually outliers is a
matter of judgment call. The purpose here is sinbplgemonstrate how the algorithm works.

5.2.3 Files with macro steps

It is likely that a set of pre-processing stepsi@¢dne used several times, perhaps with slightly
varying input files and output file names. Alsaisitonsidered an advantage in data driven
modeling, if all training and validation sets canrl-created from raw data, with possibility

69

to vary pre-processing parameters such as oduthésland filter window width. This allows
users to experiment with the pre-processing infacient way.

LogFile Converter handles this by storing a soethtimacro” in a file. A list of data
operations, together with steps for plotting ifuggd, can be saved in an XML file [11]. This
allows a macro to be recorded, by doing the proeesiep by step the first time, and then
saved to file. Later, the macro can be loaded aedwged again by the software, or users can
edit the macro, execute it step by step, or adcerstaps to the end of the macro, thus
expanding the data pre-processing procedure.

5.3 Simulation Application

The second tool developed in this project, is thefulation” software in c#. This software is
intended for simulation of a set of known modelistures. Implemented models include a
selection of thermal network models, a low-pagsifilest model and the model from [1]. The
parameters and inputs can be varied. The modeitstas are coded as separate classes, and
thus the software has a limited selection of modelan simulate. Due to the OOAD based
software design [12] it is easy to expand the safémwvith more classes and new models in
the future.

The simulations could have been performed with &yTLAB. In fact, they all need to be
for the parameter identification process describezhapter 4.11. However, having a platform
in c# for simulating ODE based models is usefub &s future work, both to demonstrate
results of models, and also to have flexibilitychoices of platforms in future controller
implementations, such as discussed in chapter.2t.2n not be assumed that all building
has a computer capable of running MATLAB.

The simulation software is not used in the genemnadif the results presented later in this
report. These are all generated by the MATLAB cadtlvever, development of c#
simulations for models is a requirement of the geb{Appendix A). In particular, the c#
Simulation software can be used to simulate andocoenheating times for models, which is
what a future control system based on this projeetld require. The c# tool is also used to
generate simulated data on for the cases A-D inethdts in later chapters. Finally, it is of
interest to test the computational speed of ODEesslin c#.

70

%/ %

User Export Results
Output File
(CSV / Screenshot)

Create Slmulatlon

Simulation Settings File
(XML)

P

Parameter File
(MATLAB)

X

Inputs
Csv)

Figure 34 - Use-Case diagram for Simulation sofvar

The most important use-case [12] for the Simulasioftware, from the diagram in Figure 34,
is “Run Simulation”. On user request it will exeewat simulation, computing the results,
given inputs and parameters. The use-case “Craatgdadion” is responsible for setting up a
simulation, with all necessary configuration detaéind storing it to a file. When a simulation
is finished results can be plotted by “Plot ReSutsexported to a file as screenshot or as a
CSV data file by “Export Results”.

The actor [12] “User” is the person operating tbftvgare, while “Simulation Settings File”
and “Parameter File” are files on disc storing datian settings and model parameters,
respectively. Parameter files use MATLAB code siyatax so the same file can be read
directly by MATLAB as well. This file format is atshuman readable. The actor “Input” is
the simulation model inputs, which can be eithsejparate file or part of the “Simulation
Settings File”.

Simulation configuration is stored in files, comiag both settings for the simulation and for
the plotting of results. The software is made tdléeble, so that users can customize

71

simulation and plotting with a high degree of freed Keeping simulation settings in files,
allows users to load, modify and re-run previoasusations. Inputs to the models can be
stored in separate files, which can be created égsnrement systems from real world
conditions, perhaps using LogFile Converter, asriesd in chapter 5.2, for converting data,
or the input files can be created manually. Altaxady, input to models can be specified in
the simulation file via settings in the software.

85! Simulation: R4C2 wycomputed parameters - [m] x

File Simulation Configure Toals Done

0= — Tt

Tw
65 —| — Tinf
68 —
55—
58—
45—
48 —
35—
30 —
25—
28—

15 —|

T
5] 58 100 15@ 200 250 300 350 400
time [h]

1000 = H

— Vnt

7508 — SIr
580
250

Q 50 1ee 15e 2e@ 250 300 358 4080

Figure 35 - Screenshot of Simulation software

Figure 35 presents a screenshot of the “Simulatsoffiivare tool, after a simulation has been
completed. Settings and operations such as startsngulation or loading a file can be
accessed from the menu bar on the top of the Ghd.rfiain part of the GUI is reserved for
two separate plots, each with up to 8 graphs, wiher@ser can configure plotting of model
states, outputs or inputs, to give a customizatdegntation of the simulation results. The
height of each plot can be configured, dependinthenmportance of the contents. Axis
range can be defined for both plots separatelgwatlg flexibility in presentation of data.

In the top right corner of the GUI, a progress @ation is shown. When simulating a large
number of timesteps, the running time may be Sicanit, so an indication of progress is
useful. All computations are done by a backgroumead, such that the GUI remains
responsive while computations are performed.

72

5.3.1 ODE Models and Solvers

The backbone of the “Simulation” software is thenpoitations performed to solve an ODE
model for a given timestep length and a given nurobémesteps. The computations are
divided into two types of classes, both derivearfiits own base-class.

ODEModel

+ParameterList

+virtual dxdt(x, t, u)
+LoadParamFromFile()
+virtual EndStep()
+virtual Setup()

ODESolver
+ODEModel
+virtual Solve(time, IC)
+Progress SingleZone R4C2
+dxdt(x, t, u) || +dxdt(x, t, u)
SolverFE SolverHeun SolverRK4
+Solve() +Solve() +Solve()

Figure 36 - Class diagram of ODE Model and ODE 8pblasses

As shown by the class diagram in Figure 36, thenggé contains an “ODE Model” class,
which is used as a base class for all the modekslajged. The principle way ODE’s are
solved numerically requires a callback functiort tten compute the current value of the
ODE, as described in chapter 4.10. This callbaoktion computes a value for the
differential equation, given a set of states, is@nd the current time. These callback
functions are implemented as the ODEModel deriVasises, one class for each model the
software is able to solve. Further, the parametktise model are read from a file, such that
the simulation configuration can specify the maaled define a location for the parameter
file.

73

ODESolver

Solve()

N loops, dt ste

ODEModel

XOmemfmmpl (ixdlt(x, t, L) —

Figure 37 - ODESolver calling dxdt in ODEModel awtpof simulation loop

The virtual method “dxdt” (green block) is the taltk function, shown in Figure 37, named
dxdt since the value it returns is the time demabf the model states, at a particular time
instant. This dxdt method is where the mathemaégahtions of each model are
implemented in code.

A second callback function called “EndStep” is usedllow models to do any computations
requiredafter the solver has finished computing one step. Inessllike RK4, dxdt will be
called four times for each timestep, thus some edatjpns that are only required to do once
for each timestep can be placed in “EndStep”. AangxXe of this use can be computation of
outputs as a function of the newly computed states.

The method “Setup” is also a virtual method thaldctlasses can overload. This method is
called by the framework such that the model capreparations before the solver starts to
work. Typically, this will include loading model mameters from file, thus avoiding that
parameters must be read more then once.

Further, the software has a second base classd @IDESolver. Once the models are
defined, the system needs an implementation olvaistor ODE equations. These solvers all
have some commonalities between them, such ascel@n a callback function for
evaluating the dx/dt function. The ODE Solver claas an attribute which is an object of an
ODEModel derived class it is tasked with solvingeTvirtual method “Solve” is overridden
by each child, to implement its own way of numedhcsolving the ODE. Solver schemes are
discussed in chapter 4.10. Figure 37 shows hownbelasses ODESolver and ODEModel
cooperate, and how the Solve method calls the mbetthod to return values for the ODE’s.

In the class diagram of Figure 36 there are thobdeess, Forward Euler, Heun and RK4. The
latter is discussed in detail in chapter 4.10.utéemethod is similar to RK4 but with only
one “guess improvement” and i¥'®rder accurate. This method has not been uségin t
project, but it is implemented in the software.

74

5.3.2 Software Testing, quality of simulations

During software development, each class is tegpdrately [12]. Since this software is
relatively simple in structure, the most critida@m to test is the accuracy of the computations.
Since this requires all the classes of the softw@moperate it tests the software as a whole.

To test the solvers, a simple model of a standawd-Bass filter (LP) is implemented into the
system as an Ordinary Differential Equation (ODEdel. This model can be used to test the
solvers, since the results are very well known ssidable by hand computations for

comparison.
a5 Simulation: LowPass filter - m} x
File Simulation Configure Tools Done

10 — et

H

9 — RKé

3_____\\

7

6

5 T —

/__F

4

3

2

)
1)
e ; ; T ;
e 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19

18 — — Input

8

&

4|

24

e

e 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19

Figure 38 - LP simulation with three solvers

In Figure 38 the results of simulating an LP fikkgth Time-constant = 10s and initial state 10
for 10 timesteps of 5 sec and then applying antiop& for 10 steps is given. From the
manual solution to the first order LP filter, itkeown that when applying a step change, after
one time constant, ~63% of the total change wilehiaappened. From Figure 38, at timestep
2 at point a), where t = 10 sec equals one timeaohghe RK4 simulation gives a value for
the LP filter state of ~3.7 which indeed correspotada change of ~6.3, or ~63% of the total
change.

By inspecting the values of the solution at thisestep (value after t = 1 time constant, 10
sec), comparing to hand computation, the simulatsults with RK4 solver is found to be of
acceptable accuracy. Simulated solution gives afleseconds 3.6817. The correct hand

75

computed value is 3.6788 (=IhHavhich gives 0.3% error with timestep of 5 seconds
Reducing timestep to 2.5 seconds gives a simutatadt of 3.6789, where the error has
dropped to 0.01%. This shows that the solvers appédze performing their task of
numerically solving the ODE'’s correctly, as longassappropriate timestep for simulation is
chosen.

It is interesting to note from Figure 38 that thHé4Rand Heun solvers give almost the same
results, while the FE solver is dropping to fasewlthe state variable declines, and rising to
fast when the state increases. This can be attdiiotthe FE methods use of the derivative at
the start of each time step, as an approximatiothBowhole time-step. Hence, when the state
is increasing, the derivative is computed to hayigd similarly when the state is decreasing,
the derivative estimate is to low.

By shortening the timestep significantly, all sadas will converge towards the true solution,
but at a cost of increased computing time. In dmainder of this project, the RK4 solver will
be preferred, due to increased accuracy and s$yalotimpared to FE and Heun, as discussed
in chapter 4.10.2.

5.3.3 Simulations and configuration classes

With the backbone, the computational engine ofthmulations, implemented, the remaining
part of the Simulation software is concerned withfgguration and storage of configuration
in files. In this software a “simulation” is defid@s a set of “experiments”, where each
experiment is the solution of a single ODE modehalsmgle solver. Thus, a simulation can
contain multiple models and solver combinationssThuseful to compare different solvers
against the same model, or multiple models agaimsh other. In all result cases in this
project, a simulation file will contain only onectumodel and solver pair.

Simulation Background Thread

Experiment #1 = —"I Exec Experiment

Experiment #2

Experiment #N |

Figure 39 - Simulation experiments running in akground thread

In Figure 39 it is shown how a simulation can contaultiple experiments as defined
previously. The combination of one model and orlees@ives one experiment. Each

76

experiment is solved in a queue in a backgroureathrsimilar to the que, thread and
controller setup used in the LogFile Converternsafe, discussed in chapter 5.2.

SimulationConfig
+Name
+Experiments
ExperimentConfig +PlotSettings
+u
+Model +x0
+Solver +N
+dt
+Clone() .
: ; +ParameterFileName
+Compare(ExperimentConfig) +PlotMap
+Clone()
+Compare(SimulationConfig)
Simulation
+ODESolver
SimulationCtrl +ODEModel
+threadDoSimulation :28
+IstExperimentnQue +N
+eventComplete(result) +Result
+eventError(message) esul
+RunTime
+DoSimulation() +SolverType
+GetSolverProgress() +dtStart
+RunSimulation(Simulation) +Input
+Run()
+GetSolverProgress()
+GetInput()
+GetState()

Figure 40 - Class diagram of Simulation relatedsses

A class diagram of the software is shown in Figt@eThe Simulation class is a worker
object in the software, where objects of classeweld from ODESolver and ODEModel is
linked together with configuration data requiredttee simulation, such as initial state x0,
timestep dt, number of steps to simulate N andrtpet data to use. The simulation objects
has a Property “RunTime” which can be read to getstimate of the expected time to
completion. Methods GetState and Getlnput are tesegtrieve results from the simulation
object, once the model is solved. By keeping ddvant information encapsulated in the
simulation object, the software can treat it as@mpulete package, where all information to
interpret the results is contained.

The “SimulationConfig” class is a representationihef settings required by the “Simulation”
class. This class holds all the settings in a &iredhat can be exported to an XML [11] file
for storage. “ExperimentConfig” is simply a helpidgss to store combinations of Model and
Solver in a XML file. Both of these configuratiolasses have overloaded methods for
cloning and comparing, allowing software to chaek tonfigurations against each other for
changes. This is useful to detect when the softasfaoelld prompt user to save results, and to
make a deep copy of the configuration. A deep éspyvalue by value copy that does not
have any memory references to the original object.

77

The final class, SimulationCtrl contains the backgd thread object which executes the
solvers computations. A queue of experiments id tséold both current and future
experiments for a simulation. Once an experimestfimshed, the next one in the queue will
run, until all experiments in the simulation isigined.

When each experiment is complete, a callback asdimed to alert host application of the
results. Applications can use this event to triggetting of the results, or store results to file.
Similarly, an error event is called if the solvetelts a problem, or an exception is thrown
from the worker thread, such that the parent apptio can be alerted that something has
gone wrong.

5.3.4 Input handling

Typically, inputs to simulations is either configdras a simple stepwise constant or read
from a file. To accommodate both these input tyfies,'Simulation” software can be
configured to read data from a CSV file or giveseaof input lines directly in the
configuration file, which is part of the setup ftinas in GUI.

100x 1, 2, 3

Figure 41 - Input line example

Each input line, either from configuration or rdean file, is assumed to be a comma
separated string, using comma as field separatbdanas decimal sign. Any whitespace
characters such as space or tab is filtered datyialg files to be more user friendly
formatted. The final syntax detail is the use ofxdrsymbol in the beginning of a line, only
preceded by an integer number. If an “x” is detédtea line, the preceding integer K is
assumed to mean “repeat this line K times”. Thtepwise constant inputs, such as the one
shown in Figure 35 can be configured, without répgaeach line K times. The software
assumes that each input line is used for a singlestep, thus using the multiplier to repeat
each line multiple times allows the input on tha¢ Ito be used for multiple timesteps. In
Figure 41 an example of an input line, as expeloyetthe Simulation software, is shown. This
line would be interpreted as having three inputsulOand u2, with a value of 1, 2 and 3
respectively, all for 100 consecutive timestepsteNbat the spaces are ignored by the
software reading the input line text string.

5.4 Model implementation

Since implementations of the models are requirdd ATLAB for the parameter estimation,
as discussed in chapter 4.11, as well as in c#iiaulation software, it is natural to
implement them in a similar fashion. Models arelenpented in MATLAB using functions
similar to the dxdt virtual method of the ODEMod#dss in chapter 5.3.1.

78

function [dxdt,y] = ModelR4C2(t,x,u,theta)
*extract parameters from theta
*extract states from x
*extract inputs from u
*compute ventilation resistance
*compute differential equations
*assign return value dxdt

end

Figure 42 - MATLAB model implementation

Figure 42 shows an example of what a model impleatiem looks like in MATLAB. The
dxdt function has the same structure for all mqdsisl both implementations, MATLAB and
CH#.

In modeling, the parameters are typically contaiimeal vector called theta. The first step is to
extract parameters from this theta vector. Thaoise such that the differential equations can
be written on a more natural form using paramedenes that are the same as in the model
derivation and RC schematic drawings, e.g. Fig@re=br the same reason, states are
extracted from the state vector x, as well as mjfnaim vector u, and given names from the
model development. This avoids the ODE equatiofesercing the x (current states), u
(inputs) and theta (model parameters) vectors thg@s, and they can instead be written in a
form similar to the mathematical expressions.

dr, _ 1 . 1 1

e e (BT o5 (R-T)- -

o T N T TR

1o 1 -7y 1 (7=

E_EWQZ QNR)(TW -II)) %(TW L)

In code:

dT b=1/C b*Q1-1/(C_b*R_ b)*(T_b-T w) -1/(C_b*R_g)*...
(T_b-T_inf)-1/(C_b*R_v)*(T_b-T_inf);

dT w=1/C w*Q2-1/(C w*R b)*(T_w-T_b) -1/ (Cw*R w)*...
(T_w-T_inf)

Figure 43 - Model on state-space form and as code

In Figure 43 an example of how two ODE equations state-space model can be converted
to code in a way that is recognizable. MATLAB a#ddocode is similar when implementing
this type of equations, but the code in Figuresiaken from the MATLAB implementation.
This is significantly easier to debug then usingxhu and theta vectors with indices directly.

79

5.4.1 Ventilation as resistance model

Modeling ventilation as a variable thermal resistars discussed in chapter 4.4.2.

function R_v = Ventilation(N,R_vent)
R_v=Inf;

if (N>D0)
G_vent=1/R_vent;
R v=1/(G_vent*N);
end

end

Figure 44 - MATLAB implementation of resistancetNation model

The implementation of this model in MATLAB as a @ilon that can be called by models to
compute a resistance value is given in Figure #4.flinction simply implements the model,
by testing if the ventilation volume pr time pardereN is zero or not. If zero, the resistance
returned is infinity, otherwise it is computed awtog to the given model.

5.4.2 Comparing MATLAB to c# to verify

With models implemented in both c# and MATLAB, siations are run on both
implementations and the results compared.

« 1012

05— —

4 | | | 1 | | |
0 500 1000 1500 2000 2500 3000 3600 4000

Figure 45- difference between c# and MATLAB for R4C

By subtracting the states for model R4C2 as siradlat MATLAB from the results of the c#
application the plot in Figure 45 can be createsteNhat the y-axis is in scale™) such that
the differences are on order of ¥0This test shows that the model implementatious gi
identical results in both languages, down to thezision of the double data type.

5.5 RK4 implementation and MATLAB built in solvers

Fixed step RK4 solver is used in MATLAB, as wellias#, as described in 4.10. In c# there
is no built in choice of ODE solvers, but for MATBAthere are a number of ready made
solvers that could have been used. Rather theg asiy of these built in functions, such as
the commonly used “ode45”, this project uses adfigiep implementation of the RK4
algorithm [8]. This is done for two reasons. Firsit allows a direct comparison of the results
in the two implementations, c# and MATLAB, sinceaetty the same algorithm is used. The

80

only expected difference is caused by roundingombde number format, and is in the range
of the double data type precision, as shown int&hdp4.2. Further, the fixed step solver is
faster in simulation then the built in ode45, sincecomputation time is used to find the best
step length.

function [dxdt] = RK4(x,t,u,dt,model)
%F1d
[F1d,y] = model(t,x,u);

%F2d
xt=x+dt/2.0* Fld;
[F2d,y] = model(t + dt/2.0,xt,u);

%F3d
xt=x +dt/2.0 * F2d;
[F3d,y] = model(t + dt/2.0,xt,u);

%F4d
xt = x + dt* F3d;
[F4d,y] = model(t + dt,xt,u);

%compute next state
dxdt=1/6.0*(F1d+2.0*F2d + 2.0 * F3d + F4d);
end

Figure 46 - MATLAB implementation of RK4 method

MATLAB code for implementation of the RK4 methodgiven in Figure 46. The details of
this method are discussed in chapter 4.10.2. Tpéementation follows the well defined
scheme of the RK4 method [22], where the first sgepmply to evaluate the model at the
present timestep in simulation. Second step usg¢®taluation to estimate the state half a
timestep ahead, and uses that to re-evaluate tbelnmithis is repeated in step 3, but now
using the results of step 2 as the state estirRatally in step 4, the state at the end of the
present timestep is evaluated, at t + dt, usingdhelt in step 3 as an estimate for the state.
With all four steps completed, the final stateraate is computed by a weighted sum of each
of the four previous results. The returned resalen estimate for the time derivative of the
state vector x. Thus, the simulation is advanceshasvn in Figure 21, simply by adding the
returned dx/dt value to the previous state estimate

Xeay = X T AtLAX

Note that in the implementation in Figure 46 theime value has not yet been multiplied with
the step length dt. This implementation detailase<o have compatibility directly with the
Forward Euler method [8] when using the RK4 funtiio a simulation loop.

To test the implementation of RK4, which is alreatipwn to be identical in c# and
MATLAB, the R4C2 model is simulated using the builiode45 in MATLAB.

81

0.06

0.04 —

002 — —

-002 —

o I
1

| | | | 1
0 500 1000 1500 2000 2500 3000 3600 4000

Figure 47 - Simulating R4C2 in MATLAB with ode45

-0.04

Figure 47 shows the result of this test. As exktite error between ode45 and RK4
implementation are close to zero. The only disanepas at the timesteps when inputs are
changed. Since ode45 does not use the exact saesdps as RK4 there is a slight
difference, but the magnitude is around 0.05 dexgceatigrade which is significantly less
then the precision of any sensors used, hence detenbe neglitable.

It is interesting to note that simulating 4000 stepth ode45 takes around 8.8 seconds, while
using the RK4 fixed step solver takes only 0.5 sdsoThis is a reduction of nearly twenty
times in computational time. Further, when runrtimg same simulation in c#, the
computation time is much lower, around 0.01 sectviden using the simulation in the
optimizer for parameter identification, the simidatis run repeatedly, possibly thousands of
times. Hence the computational time of one simaoitats important for this project.

Simulation time is also important to this projeethuse the proposed final control structure
has realtime requirements [11], as discussed ipteh2.1.4. Based on the simulations
performed here, the realtime requirement shoultiliable for any reasonable loop times
in the supervisory controller. Looptimes for a systtasked with temperature control is
assumed to be no shorter then 1-5 minutes.

5.6 Parameter identification in MATLAB

Identification of model parameters is done exclelsivoy MATLAB code, and not in c#. This
is mainly due to use of optimizer algorithms in MIAAB. There are alternatives for c# but
MATLAB's “fmincon” function is well known and idedbr use in this type of project.

82

Valldate Model
Valldatlon Data

CS
€9 RK4 Solver

S|mulate Model
Model

(ODE egs.) Model Parameters

(MATLAB code)
Calibrate Model

Training Data \

Csv) Compute Objective Function

Figure 48 - Use-Case for MATLAB code

A use-case diagram showing all the main functioyati the parameter identification code in
MATLAB is given in Figure 48. The most importantedsase here is “Calibrate Model”,
implemented in the “Optimize” function. This useseas responsible for identification of
model parameters, which is the purpose of thisxso#. To identify parameters, “Calibrate
Model” relies on “Compute Objective Function”, irephented in “Compute” function, to
evaluate the quality of any given parameter set) ith respect to the objective score, but
also with respect to inequality constraints forreparameter. To find the objective score of a
given parameter set, the model is simulated oggven range of inputs and time, which is
handled by “Simulate Model” use-case. Finally,@ivergence of parameters, i.e. when
optimizer have found the “best” parameters, a lozaima of objective function, the model
must be validated using independent testset d&iiahvis done by the use-case “Validate
Model” Validation returns a Root Mean Square EobPrediction (RMSEP) [18] indicating
how well the model is able to predict a set of knaeference data. Model parameters are
stored in a vector, typically called theta in maaigl

The actors “Training Data” and “Validation Data®andependent CSV data sets. “Model” is
the actor representing the model structure as ODE'sdel Parameters” is the output of the
code, in the form of model parameters for the chasedel. The file uses a MATLAB code
style format such that it is directly readable by M.AB, and also readable by humans.
Finally, the actor “RK4” represents the solver usedompute the time evolution of the
model.

The principle behind using an optimization algantto identify parameters of a model is
discussed in detail in chapter 4.11. In short,aipgmizer algorithm uses trial and error to

83

“guess” the model parameters. Each guess is sietbiéatd the results compared with known
reference data. Inputs are also measured on thproEss, and those values are used as
input to the model. An objective score is computeceach parameter “guess” based on how
well the simulation fits the known references.

Optimize
fmincon
Config Loop to convergence
Initial theta — Ltz Objective J Opt. theta
— - —
Simulate ﬂttralnts G

Figure 49 - MATLAB Parameter identification ovewie

The software that implements this concept consistisree main functions, Optimize,
Compute and Simulate. Optimize uses “fmincon”, alMAB built in function, which runs
the actual optimization algorithm. Figure 49 shdwsv these software functions depend on
each other to accomplish the task of parametetifc=ion.

In addition, there are multiple models implementeiyell as the RK4 solver function. Some
additional functions for plotting and exportinguls to CSV files are also implemented as a
support framework. The functionality in Optimizeda@ompute is discussed in detail below.

The Simulate function simulates the model overexsic number of timesteps, sampling
time and a given initial state. The same simulaitgplementation is used in both MATLAB
and c#, which is discussed in chapter 4.9, 4.¥0abd 5.3. The simulation is in principle an
iterative calling of the dxdt evaluation to advatice simulation for a given number of
timesteps.

5.6.1 Optimize

The Optimize function takes two kinds of inputsstlly configuration settings such as
timestep length, inputs to the model, referenca,dadt, and secondly an initial guess for
parameters (theta). The optimize function is simi@gked with calling fmincon with
appropriate callback functions for computing thgotive function and constraints.

84

Optimize

A Objective

If theta changed:

Gpg—] = ICompute I

Constraint

If theta changed:

< G :I Compute I

Figure 50 - Optimize function in MATLAB with intatcallback functions

The fmincon function in MATLAB has two callback fction arguments, as shown in Figure
50, one for the objective and one for constraimt@ptimization there are two types of
constraints [9], equality and inequality. For paed@n identification, only inequality
constraints are used. Since both evaluation oftcaings and computation of the objective
require the model to be simulated, the optimizertaios two local functions that are given as
callback functions. Both of them call on the Conepfuinction to evaluate the model, if and
only if the “guess” for parameter vector “theta’shzhanged since the last time Compute was
called. If theta has not changed, the resultingahbje score and constraints evaluation vector
will not be changed by calling Compute either. Tikisimply an issue of computational
efficiency, avoiding simulating the model twice fsach new parameter vector “theta” that is
evaluated.

Optimize is an interface to fmincon, which resolttes problem of requiring to simulate the
model twice, once for the objective and once mordHe constraints. It also configures the
fmincon parameters, such as what type of algortthose. The fmincon function will come
up with guesses for model parameters, in the thesttor, based on the chosen optimization
algorithm, “Interior Point” in this project. For éaguess, fmincon calls the Objective and
Constraint callback functions. The return valuenfrObjective is the objective score J, while
the constraints are returned as a column vectéioGtmincon the standard form is that the
values of G must all be negative or zero. A positiglue constitutes a violation of a
constraint. The return value from Objective isth&ie the fmincon optimizer tries to
minimize.

85

5.6.2 Compute

The compute function is tasked with calling thedee function to evaluate a given set of
model parameters and comparing the results toemgference and returns two values J and
G. Actually, the function returns three valueseaohd constraint vector for equality
constraints H is demanded by fmincon, but H is gv@turned as a null matrix, since
equality constraints are not used in parametetifttzation. The simulated result is compared
with the known reference and the Root Mean Squaioe i computed as:

3= (x-¢)

nx N
k=1 i=1
Here, nx is the number of states, which are tentipegsiin the case of buildings. Further, x is
the simulated states, r is the measured statell amthe number of samples in the training
data set. For each state in the model, the ersgjuared for each sample and summed up.
This is repeated for all states, and the resutsammed up. This gives the objective function
used to evaluate the parameter guesses providiihgon. By minimizing J, the optimal
parameters are identified. The parameters are apimthe sense that they minimize the
square error between the model prediction andlogvia true values of the real building.

The second returned value from Compute, shownguargi49, is the constraints. The syntax
of fmincon requires that the inequality constraingsevaluated and returned as a column
vector where all elements are required to be zenegative. If any single element in the
vector is positive, that constitutes a violatiorttod constraints.

In parameter identification, as suggested in [, donstraints can be formed by demanding
that all parameter guesses from the fmincon mubebgeen 0.3 and 3 times the initial
parameter given to the system.

In MATLAB code, this can be written as:

theta_rel = theta./thetaO;
G =[theta_rel - 3.0;
0.3 - theta_rel];

Figure 51 - MATLAB implementation of constraintleasion

In Figure 51 an example code which sets up thel@movector according to the fmincon
standard syntax, based on the parameter idenitificatheme using fmincon. The theta_rel
vector will hold values for each parameter in traitéded by the initial guess for that
parameter. The /. operator performs an elementdmgent division. If all elements are less
then 3, clearly the first block row of G will begegive. Similarly, if all elements are larger
then 0.3 the second block row of G will also beateg. Hence, if both conditions are true, G
will contain only negative or zero elements. Thiforms the fmincon algorithm if a
constraint has been broken. What fmincon actuabsdvith that information depends on the
chosen algorithm, and is beyond the present pripetiscuss. Details on optimization

86

algorithms can be found in the literature. The gple behind optimization algorithms and its
use in parameter identification is discussed irptdrad.11.

5.7 Heating time estimation, ON/OFF control simulation

An important part of this project is the estimatadrheating and cooling time, as discussed in
chapter 2.1. To achieve this, a simulated ON/OFR#rober is required. The model by itself

Is capable of predicting the temperature in buddirgiven an input of power supplied to the
indoor air in the form of heat. When validating aradibrating models, this input is taken
from measurement data. When simulating the buildiitly a heater under ON/OFF control,
the power to the heater is instead computed byaalter.

if(T_b < Tsp - db)
bHeaterOn = true;

if(T_b > Tsp + db)
bHeaterOn = false;

Q1 = bHeaterOn ? Qheater : 0;

Figure 52 - c# code for ON/OFF controller

Similar controllers are implemented both in c# anMATLAB. In c#, the code can be

simply written as in Figure 52. The temperatugesichecked against a setpoinp ¥/- a
deadband db. The heater state is then switcheddaegly, if the temperature is above or
below these limits. At each timestep the heatee stather on or off, determines what power
Is supplied from the heater to the air. This impats the controller as described in chapter
2.1.2 and specifically demonstrated in Figure 3uByg a deadband around the setpoint, the
controller avoids rapid on and off cycles at thermries. This would otherwise be caused by
noise in temperature measurements.

k sp=0;
for i=KkO:N
if (k_sp==0 && x(i,ctrl_index) >= Tsp)
k sp=i;
end
end
Theat = (k_sp - k0)*dt/3600.0;

Figure 53 - Computation of heating time from sinedhresults

Actual computation of heating time can be doneegithanually by inspecting simulated
results, or it can be done automatically by codelar to Figure 53. This code is only
implemented in MATLAB. If the x data is noisy, antered WMA filter should be applied
first, to avoid noise spikes indicating a tempem@atat setpoint, but for simulated results this is
typically not required. The variable “control_indes the state that is under control, i.e. room
temperature location in the x state vector. Thesit®p index where setpoint is reached is

87

found in k_sp, while kO is the timestep index ofentheating cycle is initiated. N is the total
number of samples. A simple for loop checks allldated results from the start of the
heating cycle until it finds a temperature at co\absetpoint.

5 Simulation: RAC2 undler Termostat control =S
File Simulation Configure Tools Done(®©.8258 [s])
24— —Tb

—T
— Tinf
Tref

22+
26—+
18+

16—

144

12 {AAANMAAAAANAANA S -~ AADAAAANAAAADMNAAAAAAAN
NMVVVVYVVVVVYYVVYY 2 S VYVVYVYVVVVYV VY VYV VYV VY VY

18—

T T T T T T
4] 144 288 432 576 720 864

1011 1 O

Figure 54 - Simulated ON/OFF control for heatingné estimation

In Figure 54, the c# Simulation software is usedimoulate the R4C2 model with parameters
identified from the "ByggelLab” data sets, using QRF control to maintain a setpoint. As
demonstrated, approximate heating time can be tdikectly from the plot by inspection, or
more accurately from exported data. Alternativalyalgorithm like in Figure 53 can be
added to the c# software as well for automatic agatpn of heating time. In a control
system, this would be the required solution.

88

6 Results

After implementing software, as described in chaptdased on the theory presented in
chapter 2 and 4, a total of 22 separate casegpbtafon of grey-box modeling where tested.
In each case, named 1-18 for measured data andoAdata simulated by the single-zone
model presented in [1], parameters for a modelastified from data, and validated against
independent testset data.

For all cases, an initial guess of parametersasd i3 start the process. Then, identification is
run multiple times, manually adjusting the iniframeters, until a set of initial parameters
for each building is found that does not causadtatification to run into the boundary
conditions of each parameter. Boundries are 03Btimes the initial guess. This process takes
some manual trial and error, but eventually a Betittal guess parameters is found that
allows the optimization to find an optimal set ef@meters to fit the given calibration data.

While the development of a simulation tool is apartant part of this project, the results
presented are all taken from MATLAB plots, as shoawhkigure 1. This is a consequence of
the parameter identification. Since models aredeadid as part of the identification process,
all necessary plots are produced by MATLAB. Howesganulations on the same model
using the same parameters as identifies by the M¥BIaptimizer code would give identical
results, as shown in chapter 5.4.2.

In this chapter, results are presented in tablefsany form. More details on results are found
in Appendix B. Selected plots are also shown irptdra7, together with discussions of points
of interest in the results.

Note that RMSEP and RMSEC, as discussed in chdptevalues are exported by the
software with three decimal points, while the ingata uses only one decimal point. The
results are presented in the report in the exagtexported by software, but the analysis is
carried out using only one significant decimalhe tesults.

89

Table 1 - List of all cases with data set, model ameframe

Casett Building Model Time frame dt Samples | Calibration Validation

A Simulation R4C2 Simulated time (4000 samples) i® m | 4000 1-2000 2001 - 4000
B - R6C3 - -

C - R7C3 - -

D - R5C3 - -

1 ByggLab R4AC2 04.12.2015 18:00 - 17.12.2015 00:00 | 10 min 1765 1-954 1018 - 1766
2 - R7C3 - -

3 - R4AC2 - - - 1018 -1766 | 1-954

4 - R7C3 - -

5 - R4C2 02.11.2015 17:18 - 17.11.2015 07:16 10 mi{n2100 1-1050 1051 - 2100
6 - R7C3 - -

7 - R4C2 - - - 1051 - 2100 1-1050

8 - R7C3 - -

9 - R4C2 02.11.2015 17:18 - 17.11.2015 07:16 2 min 10500 1-5250 5251 - 10500
10 - R7C3 - -

11 - R4AC2 - - - 5251 - 10500 1 -5250

12 - R7C3 - -

13 - R4AC2 02.11.2015 17:18 - 30.11.2015 03:28 10 m| 3950 1-2100 2201 - 3950
14 - R7C3 - -

15 - R4AC2 - - - 2201 - 3950 1-2100

16 - R7C3 - -

17 Cabin R4C2 01.10.2015 01:00 - 25.12.2015 23:50 | 0 mih 12378 1-6189 6190 - 12378
18 - R4AC2 - -

In Table 1 the list of all 22 cases is presentdti @etails on which models are used, as well
as what data sets and timesteps are used. Theseem@l noteworthy things in Table 1.
Firstly, only two models are actually used on measient data, R4C2 and R7C3. This is
because there are no measurements on furnitureestatape in any of the data sets which can
be compared with the models predicted furniturepemrature. Therefore R6C2, R6C3 and
R5C3 are not usable with the available data seiseder, as a proof of concept, these
models are tested against simulated data, witkstbeption of R6C2, which is not used in
this project. It is however interesting as an imediate model between R4C2 and R6C3.
Based on [1], furniture is found to store significthermal energy, so a model like R6C2 that
only treats the furniture temperature as a poteditteded between walls and room is not of
particular interest, unless the capacitance isctkie in R6C3.

Further, there are data from three sources. CaseDAuse the simulated data taken from
simulations of the single-zone white-box model fridf The remaining cases use
measurement data from two locations, discussebapter 2.5. Only two cases are using data
from the “Cabin” data set, since these data wasdda give unsatisfactory results, due likely
to a large influence from solar irradiation, asl Wwé discussed later.

90

In some cases, a small part of the data is skipgesh defining calibration and validation
ranges. This is the same as classifying the skigp&alas outliers, hence dropping them from
the data sets. This is done because the data skifhyged ranges does not fit the excepted
dynamic, and thus indicate an anomaly, e.g. tlv@ahdow or door was left open for a time.
An example of this is found in the December datassamples 955 to 1017. The most
interesting results are found in the November datan the “ByggelLab” location. Outliers
for this data set are treated in a separate chapter

For the simulated data sets, ventilation is on7@°7h) for the first half of the data set. The
difference here between training and validatioradats is that the outdoor temperature is
increased from -2.2°C to +5°C. For all measured,d&abin” and “ByggelLab”, there is no
ventilation system.

Many of the cases include predictions of othelest#iten T, i.e. the building air temperature.
For a control system based on model predictiopss The most important state to predict.
Other states are auxiliary, i.e. important for gu@lity of predictions of J. As such,
gualitative comparison of models is mainly basedRMSEP of T.

6.1 Summary of results

A summary of the results is presented in table fdfar each case, the chosen model is
identified from data, and validated. This produsegeral performance criteria as previously
discussed in chapter 4.7, 4.11 and 5.6, in fornBRMSEC and. RMSEC described how well
the model is able to fit the calibration data sdtile RMSEP describes the models ability to
predict a measured state using independent data.

91

Table 2 - Summary of results, performance critésramodels

Casett Model RMSEC RMSEP Ty RMSEP Ty, (inner) RMSEP T, (middle) RMSEP T (furniture)
A R4C2 2.949 1.871 1.053 -

B R6C3 4.681 1.420 2.225 - 2.824
C R7C3 2.367 1.737 1.020 1.058

D R5C3 1.000 1.273 0.737

1 R4C2 1.012 1.869 2.947

2 R7C3 1.383 1.994 2.826 2.426

3 R4C2 0.951 1.510 2424

4 R7C3 1.014 1.400 2.259 2.092

5 R4C2 0.602 0.576 2.150 - -
6 R7C3 0.685 0.639 1.923 1.912

7 R4C2 0.837 0.590 1.334 - -
8 R7C3 1.014 0.645 1.182 1.241

9 R4C2 0.600 0.575 2.152

10 R7C3 0.681 0.637 1.925 1912

11 R4C2 0.836 0.586 1.335

12 R7C3 1.009 0.641 1.243 1.183

13 R4C2 1.101 0.795 0.744

14 R7C3 1.362 0.811 0.543 0.558

15 R4C2 0.815 0.816 0.992

16 R7C3 0.869 0.847 0.928 0.881

17 RA4C2 1.662 2.557 2.981

From Table 2 there are several interesting retulbe discussed. Some general remarks are
given here, while particularly interesting reswate discussed in chapter 7. The details of all
cases are found in Appendix B. Note that case #8dkided from the results above, since the
optimizer fails to identify parameters for this ea€ase 18 is further discussed in a later
chapter.

The purpose of this project is the prediction dadtiteg times in buildings, where the goal is to
reheat a building to a comfortable temperatureiwighpredicted time. In that respect, a
prediction error of 1°C is quite adequate.

Not all the presented models can be used in ad®system. The best cases from Table 2,
cases 5 and 7, give particularly accurate prediistitt is probable that these models would
show satisfactory predictions for use in the typpredictive control system discussed in
chapter 2.1.2, as will be demonstrated and disdusskew.

Table 2 shows that the RMSEP values as are in 1@dage 2°C. The sensor accuracy is
around +/- 1°C [25] which shows that these resulty be considered reasonably good
predictions. However, RMSEP is a measure of priedicrror over all samples. With respect
to model predictions in a control system, as dbsdrin chapter 2.1, a better measure of a

92

models ability to predict temperature would beaitthe error at the end of a heating cycle or
the heating time estimation error. Here, RMSEPRsedufor qualitative comparisons.

6.2 Removal of outliers in November Data

As discussed in chapter 4.5.5, removal of outieespartially manual operation. Special
attention to outlier removal is given to the Novenbata because these data turns out to
give the most interesting results when used in-i@ymodeling, in particular for estimation
of heating and cooling times. Hence, some extra icaremoving anomalies in the data is
justified. This data set contains experiments witleeeelectric heater is used with thermostat
control to keep the room temperature approximatehstant over a long time period. The
experiment results are interesting for the purmdg®edicting heating and cooling time of a
building.

During the experiment, a person has to physicaltgrethe building to change the thermostat
setting. This causes an influx of cold outsideahich disturbs the temperature readings
indoors. This is an artificial effect, not causgdduilding thermodynamic behavior. Clearly,
this event will occur in a real building while ise, but for the purpose of identifying building
parameters, particularly from a time limited dagg ¢his type of anomaly should be removed
e.g. by approximating what the temperature woultehzeen if building was not manipulated
by people.

93

a)

" I \ \ I \ \ I \
0 200 400 600 800 1000 1200 1400 1600 1800
Samples

Figure 55 - Manual removal of outliers in Novembdata set

After manual inspection of the data, it was foulmat the energy consumption of the heater
starts to increase at step 544, because the thi&tnhas been changed. In the next six
samples, the temperature declines, as shown imd=uat point a), where the red graph is
original data and black is after outliers removEd remove the anomaly, Tor samples 545
to 550 is set to 15.6°C over the whole range, asisithe average value before and after the
anomaly occurs. Timestep in the data set is 10 @30 removing six outliers constitutes
one hour of data. A similar procedure is appliedamples 1430 to 1440, at point b), where
Tb is set to 14.6°C.

For the third step, which is not shown in the plibEigure 55, occurring around sample 2984,
there is no such anomaly. This is likely becausepirson entering the building closed the
door faster thus releasing less heat. Alternatitledyiack of a drop in temperature could be
because the building at this time is around 6°Gs tess heat escapes when cold air is
entering the building. Since at step 3 the outtdeperature is around -5, while at step 1
outside temperature is around 10C and for step@narO, the temperature difference
between inside and outside is comparable for edktlstep changes/heating cycles. Hence it is
more likely that the person entering the buildiregkthe door open for a while at step 1 and
2, probably to cool the building further beforerstey a new heating cycle. The data is not
specifically recorded for the purpose of parametentification, but the experiment was
performed as part of the ongoing research projetel@mark University Collage for another
purpose.

For these data sets the assumption that the pefsmchanged the thermostat setting kept the
door open is not verifiable. A useful extensiorthte logging system would therefore be to

94

include measurements on doors and windows to detesxt they are open and closed.
Keeping a window or door open essentially setghibemal resistance of the building
envelope to something closer to zero, forcing amabthermal behavior in the building.

Since the open door/window will dominate the thdrb@havior, this causes an anomaly, a set
of outlier samples, in the data. A finished consydtem based on the principles described in
this project could probably detect such eventsutiéeos, and alert users if e.g. a window or
door is left open. Another such event could beangk in insulation quality for a part of the
building envelope, e.g. a degradation of insulabowindows, causing such kind of
anomalies to occur.

95

7 Discussion

The results of this project consist of 22 caseh ditferences in models, data sets and
sampling interval. The results are presented iletiom in chapter 6 and the detailed results
of each case are given in Appendix B, with relevastilts repeated as needed in this chapter.
The results of each case are not of particularestebeyond identifying which models is

likely to work in a control system. Those model&dhgreat interest on a case by case basis.
The discussion on these results is best given paang different cases to see what effects
the results. The discussion is focused on how tég-lgox modeling approach, based on RC
equivalent thermal network models, can give uspl#éictions of a buildings thermal
behavior. Further, it is interesting to see whapeeters in the data and modeling process
affects these results.

In this chapter, several interesting points of asston are presented, based on the case results
from chapter 6. Where applicable, a conclusionamheliscussion is given at the end of each
sub-chapter.

7.1 Cognitive model development, simulated data

The concept of parameter identification was fiestéd on simulated data. The three models
from reference literature in [2] gives RMSEC valueshe range 2° - 5°C which are
considered unsatisfactory prediction errors. Aftepecting the trends in the simulated data,
it was found that a very slow dynamic is presemmeitie model. There is an element that
takes a long time to change temperature relativeaaest of the system. The slow dynamic,
likely introduced by the furniture sphere modelfugher discussed in [1]. The thermal
energy storage capacity in this construct is lahgace the R5C3 model was constructed to
better fit with the simulated data, as discussezhapter 4.4.5.5. Indeed, as Table 2 shows,
this model improves results significantly, withRMSEC of 1.0°C. The most important
performance characteristic of these models, RMS¥EEhe building temperature,,Tis also
significantly improved.

96

R4C2 - validation
I

0 20 40 60 80 100 120 140 160 180 200
Time [h]

R5C3 - validation
I

| | | | | | | | |
0
0 20 40 60 80 100 120 140 160 180 200
Time [h]

Figure 56 - Comparing case A - R4C2 (top) and D-Rfabttom)

Comparing case A and D, in Figure 56, validatiartgkhow that the addition of thermal
energy storage, with a resistor to limit the floixeaergy into building air, increases the
models ability to predict the simulated data. FasecA there is a clear trend that the model
(stapled lines) under predicts the temperatures\webeling, shown in point a), and over
predict when heating, due to a lack of stored gnrdurniture. For case D, this is improved
by including a RC model of the furniture, as shawpoint b).

7.1.1 Conclusion of models from simulated data

While the results of fitting one model to the siatidn of another model, is not practically
useful, these results show the advantage of usagdgnitively developed thermal network
models. These models can be derived, modified mpdoved, simply by intuitive
understanding of the process, rather then throogiptex mathematics and physics. This is
an advantage of the grey-box modeling techniqud ursthis project. The ability to make
model structures that fit both data and buildingsdal on cognitive knowledge is a powerful
approach to modeling.

97

7.2 Range of input and states in training and calibration
data

The next cases of interest are cases 1 and 3nAtteely cases 2 and 4 show the same, but
with one more state, hence cases 1 and 3 illugtratpoint better.

R4C2 - Validati

30

0 20 40 60 80 100 120 140

R4C2 - Validati

5 | | | | | | |
0 20 40 60 80 100 120 140 160
Time [h]

Figure 57 - Comparing cases 1 (top) and 3 (bottom)

Comparing the validation results for cases 1 amdRgure 57, it is interesting to note that
for case 1 the model under-predicts the referemb#e in case 3 the model over-predicts. In
both cases the model and data is the same, btrathing and validation sets are swapped.
This means that the training data for case 1 iv#tidation data for case 3, and visa versa.
The RMSEC and RMSEP values for both cases are aalmpaas shown in Table 2.

The reason for this behavior is seen in the outteroperature if;, plotted as a black line.

For case 1, the training data is from first weebetember, while for case 3 it is mostly the
second week. In case 1, the outdoor temperatumethe range -5 to 0 degrees, while for case
3, the temperature has increased to 0 to 10 deddew=® there is a mismatch in input ranges
between training and validation sets, the modés faipredict the validation data. The
prediction error depends on whether the conditinrmitdoor temperature in validation data
are higher or lower then the training data, heheeprediction error is of opposite sign in case

98

3 with respect to case 1. This illustrates a vergdrtant point when working with any type of
empirical models. It is unlikely that a model wjive good predictions on data from
conditions not present in the training data. Thidiscussed in theory in chapter 2.5.3, and
confirmed by the results of case 1 and 3.

A further point of interest in the discussion @iting data, beyond the bespoke requirement
of having appropriate matching between the conutia training data and the data on which
the model is expected to predict behavior, is #edrfor a certain degree of dynamic behavior
in the data. Since the models contain capacitagicieg the models internal states, there is a
need for variation in these states, in order totileappropriate values for the capacitors. If
there are no dynamic behavior, the RC models doeilceduced to their steady state
equivalents by using familiar circuit theory [28]here a fully charged capacitor is replaced
by an open circuit and only the resistors remalms Tllustrates the need for dynamic

behavior in the data. If the states are constant#épacitor values can not be identified from
the training data.

Model fit / Calibration

10 | T \ T 60

Al » b i
A S !’ =~ }'l'. ‘ﬁil\ ‘f p)

0 C) 7

0 200 400 600 800 1000 1200

heat

500 | |
0 200 400 600 800 1000 1200

Figure 58 - Case 18 calibration data, red - refezenblue - model, top v Tlower - T,

Figure 58 shows the calibration results from cakelhe temperature stategim graphs a)

and T, in graphs b) are kept approximately constantHerdntire data set by the heating
system in the cabin. Red graphs are the refereeesumements while blue graphs are model
predictions. Even with large variation in the owddtemperature, shown in graph c), and the
supplied power shown in lower plot marked d), theneot enough dynamic behavior in this
training data to identify the value of the capasit@ince the capacitors can not be identified
properly, the optimizer fails to find the resistasa@s well. Capacitors are driven to the upper
boundries (3x initial guess). From case 17 theainguess for parameters is fairly certain,
such that it can be concluded that capacitor vdlresase 18 should not be as high as the

99

optimizer result suggests. This case illustratesséttond requirement for good training data,
e.g. variation, or dynamic behavior, of the refeeedata for model states.

7.2.1 Conclusion of required ranges in inputs and states for
measured data

Based on the results in case 18 and comparisoasef L and 3, two things are found to be
important in regards to the type and amount of dedaired for training of models. Firstly,
the input conditions to the model must span thgeaof inputs that the model is expected to
be able to predict. Secondly, there must be afszggnt amount of dynamic behavior in the
states, for the optimizer to be able to identify ttynamic elements of the model. Based on
other cases in this project, the dynamic behawesdot have to be as extreme as in case 1
and 3 (10° to 30°+ C), but steps of around 10°@nset® be acceptable. These results agree
well with the reference literature in [2] where se@al variations is found to have an impact
on the results, and further that identifying maailameters from winter data gives better
results, due to a heavier load on the heating syste

7.3 Length of data sets, number of samples

The next point of interest to discuss is the effeethumber of samples, or rather the length of
time represented, in each data set has on the roalillation and validation. Cases 5 to 8 are
similar to cases 13 to 16, except that the laterall of November, rather then just the first
half. The entire data set for case 5 to 8 composedalf of the data for case 13 tol16, used
either as training or validation data. Cases 1B6tgan be seen as re-doing case 5 to 8 with
the additional data.

Table 3 - Extract from results, comparing cases\giH8 13-16

Case# | Model RMSEC RMSEPT, | RMSEPT,(inner) | RMSEP T, (middle)
5 RAC2 0.602 0.576 2.150

13 R4C2 1.101 0.795 0.744

6 R7C3 0.685 0.639 1.923 1.912

14 R7C3 1.362 0.811 0.543 0.558

7 RAC2 0.837 0.590 1.334

15 R4C2 0.815 0.816 0.992

8 R7C3 1.014 0.645 1.182 1.241

16 R7C3 0.869 0.847 0.928 0.881

Table 3 is a duplication of selected results frombl€ 2, but organized differently to facilitate
comparison of cases. Based on the performanceiayiRMSEP and RMSEC, in Table 3

100

there is no clear pattern of improvement when thicing additional data. For some states,
the results are improved, but in others the resusvorse with larger data sets.

In chapter 2.5.2 a short discussion on the lenfjttata sets for training is given. From the
literature, it is found a large variation in theespf training data, in the range 4 - 60 days [2].

7.3.1 Prediction horizon

When discussing timeframe of data sets and predsitit should be noted that the purpose of
these models is the prediction of heating timeafbuilding. In typical daily use, a building is
unlikely to require many days worth of heating tiltAe most, some 2-5 days may be
considered the upper limit of what a thermal betiamodel is required to predict. In

literature the term “day-ahead” predictions is pftesed in connection with building thermal
behavior, signaling that prediction horizons ofrggke day is a typical length for model
validation [3].

Some of the cases presented in Table 2 use validdéita over a significantly longer time
range. The reason the validation periods in Taldeedonger then strictly needed is because
data sets for calibration and validation is swapgedind between cases. E.g. for case 1 first
half of December data is used for calibration, secbnd half for training. In case 2, the data
sets are reversed.

The RMSE values given in Table 2 are correct, gibenength of the validation sets, but it is
possible that shortening the validation period wayiVe lower RMSEP values, given that the
same calibration data is used. Since thermal behava building is time dependant, a longer
validation period is likely to give less accurategictions then a short validation period.

Since the RMSEP values are typically in the samgeas sensor accuracy, the results as
presented here are considered good enough, wghoutening validation sets to lengths
similar to the expected prediction horizon in atooinsystem.

7.3.2 Conclusion of length of data sets

Introducing more training data, does not necegsamiprove prediction results. This suggests
that the time frame of the training data is natfical to the results, but rather the range of
input values present in the training data is, aswdised in 7.2. As long as the training data
covers a sufficient length in time, necessary lierdynamics of the system to be represented,
further data does not improve results. The valatesults may be improved by using a data
set with length closer to the assumed length ddiptens required in a control system.

101

7.4 Timestep length

The effect the timestep length has on results ean\estigated from the cases in Table 1, by
looking at the effect of reducing the timestepha tesampled data. By reducing timestep dt
down from 10 min to 2 min, the number of samplasdseased by five.

Comparing cases 5 to 8 with 9 to 12, e.g. 5 with @jth 10 and so on, looking at the list of
performance criteria in Table 2, it is shown theatucing the timestep does not improve the
results. Both model fit with training data and thedels ability to predict independent test
data is the same for all comparisons. In factyéiselt numbers are identical for each of the
four comparisons, e.g. case 5 has an RMSEPfof U.576 while case 9 give 0.575. Any
differences can be attributed to random variatisme RMSE values are computed by the
software with three decimals but only one significdecimal is used in the data.

600 T T

500

— Pheatdt = 10min

E 400

& 300
H

S
a 200

— Pheatdt = 2min

L L L L |
80 100 120 140 160 180
Time [h]

0 |
0 20 40

| THNNMITIIONII i

Figure 59 - Comparing power consumption data inecagtop) and 9 (bottom)

The main concern when choosing the timestep leisgtiat it has to be short enough to
capture any dynamic changes in all the input ddta.Nyquist-Shannon sampling theorem
states that sampling rate should be twice thatehighest frequency in any sampled signal
[10, 13]. This is a requirement for the loggingteys, but also for the resampling operation.
In the data sets of this project, power consumptdy far the fastest changing data.

Since the “LogFile Converter” software can filtaetdata before resampling, high frequency
information such as that found in the fast changiogrer consumption data can be filtered
out [10]. The logging system records power consiwngdbr ByggelLab at dt = 30 sec, such
that filtering data in the pre-processing allowssthing out the signal. By this process, the
resampling can be done at a lower sampling frequesiace the filtered data has a lower
maximum signal frequency then the original raw d@itas process is known as oversampling
[10].

In Figure 59, the plots of power consumption datacase 5 and case 9 after processing are
shown. The top plot uses a resampling timeste® ahih while the lower uses a timestep of 2
min. Just by visual comparison it can be seenttligtiata in case 9 contains significantly

102

more details in the power consumption plot, i.@rghr edges giving higher frequencies in
the information spectra [10]. It is therefore igting to note that the slight distortion
introduced by the filtering and resampling operaiiocase 5 gives identical results to case 9.

7.4.1 Conclusion of timestep length

Based on the results in Table 3 reducing timestegth from 10 min down to 2 min does not
provide any improved prediction results. Based lotspf data, it appears that 10 min
resampling operation distorts power consumptioa,dait this has apparently no effect on the
modeling results. This is likely because the avesgpplied power, over any time interval, to
the building is the same for both datasets. Inangate sample count by five times, increases
the time the optimization takes to converge fro.®min up to 2.1 min, for the R4C2

model. For R7C3 the time to convergence goes frémin to 4.9 min with the shorter
timestep.

A convergence time of less then 5 min for both ni@deconsidered acceptable. Retuning the
model is not a real-time operation, i.e. has naiipaequirements on completion time. This
operation will typically not be run often, maybecerpr day, in a worst case scenario, but
retuning models on a monthly basis is a more liselnario [2].

7.5 Redundant RC model parameters

Due to a lack of measurement data, redundancyranpeters can arise. Parameters are
redundant in the sense that two parameters togeéiseribe the same part of the model. This
Is the case with R7C3 model. The model introdubesR resistor in series withfRand the
subsequent addition of the fiode. This addition models solar irradiation hegatight
furniture in the building, as discussed in chagtdt5. There are no measurement data that
can be used as reference for the temperatumed therefore the optimizer will have a
problem when identifying Rand R. Only the sum of these two will affect the reswithout
a reference for Jand the optimizer has in fact an infinite numbiesautions. IncreasingR
and decreasingRvith the exact same amount gives identical objecicores in the
optimization when Thas no affect on the objective. This forms arigjion in the objective
function that the optimizer tries to minimize, iggves infinite number of equally acceptable
solutions in this region.

! The computer used to run the identification haixaore 3.2GHz CPU using parallel computing in M4WB

103

7.5.1 Conclusion of parameter redundancy

It is unclear to what degree this is a problentfieroptimizer. However, the problem could
have been fixed by simply reducing the model,removing R, such that the model structure
fits the measurement system. For future projecis,recommended to derive the model and
measurement setup together, such that one reftextsgeeds of the other. Since this project is
in part a study of the application of grey-box misdthe structures where taken from
literature, as discussed in chapter 4.4.5, whi¢heas found not to exactly fit the
measurement setup. A revised model may give improssults.

7.6 Model complexity

While only two of the models described in chaptdr3lare used with measurement data, it is
interesting to compare the results when increasiagnodel complexity. The difference
between R4C2 and R7C3 is mainly the addition aé\& state for the temperature in the
middle of the wall, and also the Bnd R resistors which introduce redundancy due to ldck o
reference for J as discussed in chapter 7.5.

Looking at the results in Table 2, comparing c&sand 6, the results are similar for both
models, but the simpler model shows slightly betsults. There is a trend that the more
complex R7C3 model slightly degrades predictiorigrarance in terms of RMSEP and also
has lower fit to the model, in terms of RMSEC. he teference literature [2, 3] the
conclusion is also that increasing model complelx@yond a certain point does not improve
the results.

7.6.1 Conclusion of model complexity

As discussed in chapter 7.5, there is a conceratabe R7C3 model and redundancy of
parameters, which could degrade performancenbt<lear if the degradation of
performance of the more complex model is causetidyedundant parameter, or if it is a
problem with overfitting [18]. Having more paranstallows models to fit structure in the
training data that is not relevant for the modethsas noise. Since that the data sets have
only one significant decimal, comparing RMSE valtezsnodels should also use only one
significant decimal. The differences between the tmodels are small, on the order of 0.1°C.

A conclusion to draw from these results is tha itnportant that the model fits the actual
measurement setup, not only the building. Furtier measurement setup should be designed
together with a set of specific models that willttened and validated against the
measurement data. Because of this uncertaintythenitlatively small differences between
results, it is not possible to conclude if the eaged model complexity offers any advantages
in the prediction results.

104

7.7 Solar irradiation

As discussed in chapter 4.6, solar irradiation lgaats are in this project considered as noise.
This is not an optimal model, since solar heat gashown to be important for building
thermal behavior [1, 2, 6]. However, due to laclgobd measurement data in the data sets,
the choice was made to ignore solar heating.

15
I
Ty ref
Y [Tb sim
T ref
_ w
------- T sim
w
5 7 inf
g
2l
2 -
1200
Time [h]
s2r -
E MMMMM@M@MWM
=3
i -
, AN
0 200 400 600 800 1000 1200
Time [h]
5 idation error
T T T T T T,
‘/\/"\/‘/\’N‘\ﬂv//\ﬂ" e
g o e B T
o
£
e —
1200

0 200 400 600 800 1000 1200
Time [h]

Figure 60 - Validation results for case 17

In Figure 60, the validation results for case & @esented. This plot shows some interesting
behavior with regards to solar irradiation. Caseésltfhe only usable result from the cabin data
set. Case 18 failed to identify parameters, asudssd in 7.2. The cabin data set contains a
Light Dependant Resistor (LDR) that measures ligiaugh a window, shown in the second
plot from the top. These measurements could petignbe used to model solar heat gains,
but is in this project used only to indicate theeleof sunlight affecting the cabin.

By inspection of the plot in Figure 60, it is irgsting to observe the spikes in room
temperature found in the reference data (red fiokdmarked a). There is a sudden increase
of 2° - 3°C in temperature, which coincides witk golar irradiation spikes in the LDR graph.
Further, these spikes are only visible in the exfee when the outside temperature is
relatively high, e.g. around -5° to 5°C. If the @abr temperature drops below -5, the spikes
disappear from the data, indicating that the dod@at gains does not affect the room
temperature anymore.

105

This can be explained by looking at the lowest,glu¢ power consumption, marked b). If the
power consumption, i.e. the power used to artificiaeat the cabin, is high, the solar heat
gains does not increase temperature, but rathecend drop in consumed power. In cold
temperatures, there is significant power used timtaia the setpoint temperature of 7°C, thus
reduction of power is possible when solar gairedided to the cabin. When little or no power
is required to maintain setpoint, the system islento lower the heating power further and
instead the room temperature rises.

It is also interesting that for the first three da@y the data set, e.g. the first three spikeben t
LDR plot, day 1 and 3 show higher light levels tligty 2. This can be seen on the spikes in
Ty as well. There are clear spikes in temperaturédgs 1 and 3, while day 2 show only a
very slight increase in temperature during the d&ys may indicate that the LDR
measurements could be used for solar heat gaidspoas.

7.7.1 Conclusion of solar irradiation

From these results, it is clear that solar gaiay plsignificant role in the heating of the cabin,
and thus can not be ignored when modeling the iogld his is further evident by the results
in Table 2, where the performance criteria for cedare worse then for any of the cases for
“ByggeLab”. It is also interesting to note the @ation between the LDR measurements and
the spike in Tb for the first three days. This mshpw potential for using LDR’s to estimate
the solar gains, together with an identified model.

One important aspect of solar irradiation is thateffect can be introduced to the model
indirectly. When the sunlight heats the cabin,ilt typically also heat the outside air, causing
increases in outdoor temperature, as shown alsmure 60. This can lead the optimizer to
computing a lower Rresistance then what would be identified if sbleat gains where
included in the data set. The optimizer will tryfited parameters that, based on given inputs,
can predict the states such as Tb. Thus, if outtbyoperature correlates with indoor
temperature, i.e. they rise and fall together iitlecation is that Rshould be low. However,

if the correlation is caused by an external effeet,solar irradiation, this correlation is not
indicative of a low B The model identification will give too low therim@sistance between
indoor temperatures statg dnd outdoor temperature. The low value iRl constitute
overfitting [18], and thus give a model with poaegiction performance in conditions with
lower solar heat gains. Hence, inclusion of a modfieblar heat gains is found to be an
important improvement on the presented resultsicodarly for the data from “Cabin”.

106

7.8 Best case

As discussed the “Cabin” data set has some problathgespect to identifying a usable
model. Hence, the “ByggelLab” is the only buildinghwsufficient data for parameter
identification. The best results are found in cased 7, which use the same data set, only
with validation and calibration swapped around leetwthe two. The important variable to
predict is T, the room temperature, which would be the variétidé a control system is
expected to keep at a certain level at specifiesinience the RMSEP fop 16 the criteria on
which the quality of each case is compared. Bysason, case 5 and 7 are found to be the
best models. Results from case 9 is identical am#,11 identical to 7, but cases 9 and 11 is
derived from data with five times more samplegjiasussed in chapter 7.4. Increasing model
complexity, such as cases 6 and 8, gives lessaedoredictions of Jf as discussed in 7.6.

To select one case as the best one for in-depdly,stdook at the validation data is needed. In
case 7, i.e. with the first half of the data asdadlon data, a smooth step response is found.
The temperature is kept at a relatively constahtevaf 15.6°C for a time, before the heater
power is engaged and the building starts to he&wprds the new setpoint of 21.5°C.
Further, case 7 shows slightly better RMSEP fortéingperature J, compared to case 5, but
also a slight increase in RMSEC. Despite sligrahgér RMSEC, case 7 is considered the
best case result among the 22 cases tested jprdpest. Therefore, closer inspection of case
7 is of interest.

107

Model fit / Calil i
T

Reference
Model

) 0 20 40 60 80 100 120 140 160 180

0 | | 1 1 1 | | |
4 20 40 60 80 100 120 140 160 180
Time [h]

Figure 61 - Calibration plot for case 7

In Figure 61, the results of calibrating the R4C&dJe to the training data for case 7 are
given. The outdoor temperature in graph c) consist&lues in the range approximately 0 to
10C. There is a notable feature around hours @0 tavhere the temperaturg if plot a, and
also for T, in plot b), is increased by adjusting the setpofrthe heater, as seen from the
used power in plot d). After the temperature readtsenew setpoint, power is supplied to the
heater in pulses by the ON/OFF thermostat contrtdlenaintain the setpoint. In Figure 61
the top graph a) is the room temperatusewhile the bottom graph b) is the wall temperature
Tw. Just by inspecting the plot, it is shown thatrtiedel fits the calibration data to a high
degree. Of particular importance is the modelstgtio follow the building temperature

under a step response caused by increased poaetite heating, which is demonstrated in
plot a).

108

RA4C2 - Validation
25 T

180

T
T
w

y AN
N) Vet \ /Uvub
\ -

0 20 40 60 80 100 120 140 160 180

T T T T T T T
— P
a0 | heat

0 20 40 60 80 100 120 140 160 180
Time [h]

Figure 62 - Validation plot for case 7

The results of validating case 7 against data o irst half of November are shown in
Figure 62. The outdoor temperaturgThas the same range in validation as in calibmatio
to 10C. Further, the validation data contain a srgoind hour 90 as marked by an arrow in
the figure. By giving the model the same inputthastrue system, the results show a
simulated building temperature close to the meashwodding temperature. For the purpose
of predicting heating time, this is exactly what thodels are required to do. Therefore, the

results of case 7 are considered promising fousigeof this modeling technique in a control
system.

7.8.1 Error distribution

If the errors between model and real system, bmtimbdel calibration and validation, are
just random fluctuations or noise, the error disttion will become a zero mean Gaussian
curve [20]. This holds for pure empirical modelsaagdl as grey-box models. Hence, it is
interesting to look at the error distribution fbetresults in case 7. Note that error
distributions for all cases are shown in Appendix B

109

_Cal. T - val. Ty []] Ef\iﬁr
BT P 'y
ﬂﬁﬂlﬁﬂbﬂ

Figure 63 - Error distribution case 7, calibratiqteft) validation (right)T, (top) T.(bottom)

As shown in Figure 63, the error distributionsd¢ase 7 shows mean errors in calibration
close to zero. For validation of The plots also correspond closely to what is etqueif the
error is mostly caused by random noise fgrblt for T, there is some systemic errors that
shifts the error mean up to around 1.2°C. Zeroresrmarked in the plots by black arrows.

7.8.2 Conclusion of choice of best case

The most interesting feature of these plots is vawéhat the error distribution shows the
errors in the same interval or range as the sextracy of +/- 1°C. Given that the sensor
accuracy gives a degree of uncertainty in the nreasents, it is interesting to note that the
error distribution reflects this error range. Thugher supports the conclusion that the grey-
box models, particularly for case 7, are a validimoé for predicting thermal behavior of
buildings, and especially for prediction of heatargl cooling times.

7.9 Estimation of heating time

Case 7 is chosen as the best case for heatingoahdgtime estimation, because it has a low
RMSEP for validation, i.e. less then the sensoumy (>1°C). Case 7 also has a clean step
response in the reference data, allowing a googaoson between heating time estimation
on the model and the real system. In case 7, thielfd50 samples of November (dt = 10min)
is used as validation. The step change occurswgileeb45 based on manual inspection of the
power used by the electric heater. At this santhiegnergy used by the heater increases,
hence the heating cycle begins. At this samplebtileing temperaturelis found to be
15.6°C.

To find the end of the heating cycle, an averagetrature in the steady state is used. By
averaging of samples 720 to 820 gives an averggeZL.5°C, hence this is assumed to be
the temperature setpoint of the heater thermoBiig. setpoint is first reached at sample 679,

110

with a following overshoot. The standard deviatiomhis range is found to be 0.1°C. The
thermostat is in simulations set to have a tempezdblerance (deadband) of +/- 2x stdev =

0.2°C.

The heating cycle is found to take 135 steps of td minutes, which computes to 22.5
hours. This is a relatively long heating time, e long for a residential building in normal
use. This means only that the heater is under-diraeed for the building it is used in, if the
step in temperature setpoint used here is reprderfor the applied final control system.
Alternatively, the heater may not be controlledmplly, with respect to using the shortest

possible time to reach the new setpoint.

To find the power consumed by the heater, averagepconsumption when the heater is

off, samples 700 - 719, is computed to be 103W.l&ity, samples 547 - 566 when heater is
on, gives an average power consumption of 472Wcelghe electric heater is using
approximately 370W and other equipment, such akammes and computer, in the room uses

around 100W. This information is used when simatathe heating time.

The heating time estimation and comparison witarezfce is started from sample 500. At

this time, the temperature in the building is syeadaround 15.6°C.

Case 7 - ON/OFF control for heating time estimation

s

it

Th sim
Tb ref

inf

SetPoint +/- DB

| —

100
Samples

Figure 64 - Estimation of heating time, comparethweference November data set

To simulate the heater under ON/OFF control, aioersf the R4C2 model with controller is
used, as described in chapters 2.1.2 and 5.7.ifrhtaged heater is configured to supply
370W with a constant 100W supply from appliancedependent of the heaters ON/OFF
state. The control deadband is set to +/- 0.2°@ tlaa starting point of the heating is sample
545, same as found in the data set. The resulegepted in Figure 64. Setpoint with
deadband is plotted with black dotted line. Blagkdsline is the simulated temperature, while

blue dashed line is the measured reference. Thiwoutemperature is plotted in magenta.
Vertical lines represent start and stop of theihgatycle. The red vertical line is the start
of the step, while black and blue dashed lineglaend of the heating cyclg.4sim and
theatref, for simulated and measured data, respectively

By inspection and interpretation of the results, fitllowing times are computed:

Heating time building to SP: 180-44 = 136 -> 2Rduirs
Heating time building to 20C: 78-44 = 34 -> 5.61®
Heating time model to SP: 87-44 = 43 -> 7.6 hours

Based on these time computations, the model isdftaisignificantly under-predict the time
the heater used to reach the setpoint 21.5°C.h&ppens because the heaters thermostat
controller is not reaching the setpoint in thedastvay possible. Electric heaters are typically
regulating the temperature of their surface, netithilding air temperature. Hence, they
switch OFF before the room temperature has reaitteesetpoint (SP). This can be seen from
Figure 64, where the power usage drogpfrethe room temperature has reached its setpoint.

This is not efficient with respect to minimizingdieng time to a specified setpoint. Since the
thermal capacity of the heater can be assumedd@ative to the building, there is little
chance of overshooting the setpoint by maintaipioger to the heater until the setpoint is
reached. Even if the heater at this point is haokten the room temperature, the residual heat
energy in the heater, once switched off, will nottier increase the room temperature by a
large amount causing an overshoot inHence, the thermal behavior and power usage in
Figure 64 is assumed caused by the bespoke fuatitioaf electric heater thermostats. As
evident from the plot in Figure 64, the room tenapere in the building quickly reached
20°C, but from 20° to 21.5°C takes significantindger, due to how the thermostat controller
works.

The optimal way to heat a room by electric heatéth respect to minimizing heating time, is
for the heater to remain on constantly until theirdel temperature is reached. This will give
the maximum amount of energy the heater is capaldapplying to the thermal capacitance
of the room in the shortest possible time. In (idée validation data contain exactly this
scenario, i.e. heater is constantly ON.

112

5 | | | | | |
0 20 40 60 80
Time [h]

ion error

0 20 40 60 80
Time [h]

0 20 40 60 80

100 120 140 160
Time [h]

Figure 65 - Case 3 validation results

From Figure 65, it is shown that outdoor tempeesufi, in graph a), for this data set is
similar to that used for calibration of the modektase 7 shown in Figure 61, around 0° to
10°C. The model of case 7 should be able to prélaécthermal behavior in the case 3
validation data as well. Heating time can be esechahen the heater is on constantly, i.e.
optimal step change from one temperature to anofiés is how the heater would behave if
under control of a system such as the one descinbathpter 2.1.2.

113

25 Case 3 - ON/OFF control for heating time estimation

Tb 5im
oo ———Tbref
- T

inf

t-::
— ——t Sim

heat

- tI'aat ref

5 - =

Temp [C]

---------- SetPoint +/- DB

0 e]

Faan =
ol) = — P ref
= ; I tot
= | / : i i
i 300 : 5
200 i —_ — = sim
100 |- — : \—/ - heat
: — — ref

0 10 20 30 40 50 60 70 80
Samples

Figure 66 - Heating time estimation on case 3 \alwh data

By inspecting the data, the heating cycle is foumbdegin at sample 3. At sample 69 the
measured temperature in the building has reach&l@1The same setpoint as in case 7 is
used, since case 3 does not actually have a setpomather the setpoint of the thermostat is
unobtainable, so that it heats the building tohiglest possible temperature the heater is
capable of. The starting temperature of the steage 3 is found to be 13.1°C. There is a
small drop in temperature at the time the heatzeases power. This is assumed caused by a
person entering the building, thus releasing hotram the building and reducing

temperature. The drop is however small enoughithais little effect on the computations.

Simulations with ON/OFF control, where the simutblbeater is kept on until the room
temperature reaches it setpoint, is found to preduxactly the same heating time as the
reference data. The plot in Figure 66 shows theilsited temperature (black line) reaching

the setpoint at exactly the same time, sample $theareference (blue dashed line), with a
computed heating time of 69 -3 = 66 samples. Tait of the heating cyclg ts indicated by
vertical red line while the end of the heating eyisl shown as a dashed blue line. This gives a
heating time of 10.1 hours. Heating time in casel8nger then case 7, because the initial
temperature is lower giving a larger step in setpoi

7.9.1 Delay in heating

In Figure 64, the temperature in the room doestast to increase until a significant time
after the heater starts using power. This is likelysed by the thermodynamic behavior of the
heater itself. Filtering of power consumption data outlier removal as described in chapter

114

4.5 can also explain part of the delay. Howevex l#ist outlier sample was found to be
sample 550, and the temperature increase doe®git lhefore sample 552, which is
approximately 20 minutes later. The filter windoged is +/- 15 minutes, using a centered
WMA filter, which also does not fully account fdre delay in temperature rise. It is therefore
likely that the heater dynamics is the main cadgbeodelay between increased power
consumption and rise in temperature. Figure 66 €tews a short delay before the
temperature starts to increase, after the heateemis switched on.

To confirm that the heater is indeed the causaefielay, further research, with
measurements of heater surface temperature, i€siegQy

7.9.2 Thermodynamics of electric heaters

An interesting improvement on the thermal netwoddels would be to add a first order RC
model of the heater itself. If the model can bgtredict the thermal interaction between
heater and air, the heating time estimates mayjadsercto the measured data. This may be
more important for typical Norwegian homes heatgdtand-alone electric heaters then
models for complex building with central heatingtgyns. For identification of such a model,
measuring the temperature of the heater would dpeinel, hence it is not applicable with the
data sets used here. However, as a future prdjectikely to give better estimates of heating
time under thermostat control if the heater iteelhcluded in the model.

115

Model fit / Calibrati

1
Reference
Model

Temp [C]

s | \ \ \ |
0 50 100 150 200 250 300

Time [h]

400 [— —

200 [—

| | | L |
0
0 50 100 150 200 250 300

Time [h]

Figure 67 - Calibration results for case 15

In further support of the argument for modelingtees the calibration plot results for case 15
are shown in Figure 67. Here, room temperatyris Tharked as graph a) where blue is
simulated and red is the reference, graph b) igdasimnthe wall temperature,J and graph c)

is the outdoor temperature. Finally, graph d) esgbwer usage.

The simulated room temperature contains many spidés that are not found in the
reference data. The general trend of the modellation results is similar to the reference
data, but these small spikes are only seen in atmuak. This indicates that the power
supplied to the heater is not directly introducste the thermal capacitance of the room air,
Cyp, such as the model describes. Rather, the hedteasa low-pass “filter”, where the
spikes in supplied energy is smoothed out befdeetifig the room temperature. Heating of
the room is a consequence of raised temperatube dfeater.

From the above discussion of the way heat eneayy &lectric heaters is modeled, and also
the discussion of delays in temperature incredisssems likely that improved prediction
results may be gained by introducing the heatepé&ature as a state in the model. By adding
a thermal capacitance for the heater, with a sepé#rarmal resistance to the room air, the
model would more accurately describe the datahEura measurement of the heater surface
temperature is required in order to model this terajure as a state, i.e. a reference is needed
to identify the parameters of the heater. Wherdipialheaters are used, it may be possible to

116

model them as a single heater, using the averatgsuemperature as a reference for the
model state.

The fact that models can be modified and expandét abserved data further emphasizes
the strength of cognitively derived model structujg], as discussed in chapter 7.1.

7.9.3 Energy savings by improved control

The results show a potential for energy savingc&such a system would require a shorter
time of high power to the heater, reduction of ggarsage could be gained by this type of
improved control.

As previously discussed, the heating cycle heummaturally long (~22h) and hence the
estimate potential savings is hardly general. feuntbsearch with a better dimensioned
heater, or improved control system, could be dorimprove the estimate and perhaps scale
it up to potential savings over one year. Regasdlig®ere seems to be evidence in the results
that a potential for energy savings by an impros@uatrol scheme exist. The following
argument and computation is included as an exaofgiew energy savings due to improved
control can be calculated.

Assume that sample 180, the time when the referéatzereaches the setpoint (SP)
temperature, is the time where the building is etgubto be at comfort temperature (SP =
21.5°C). The start of the heating cycle would hlbeen delayed from sample 44 to sample
137, based on the model simulated heating time cladnples.

Assuming now that the heater is on for the entdsa@mples, and not switched off by the
onboard thermostat as in Figure 64, and furtharmasg) that keeping heater on max power
for 430 minutes, as the model predicts, is enoagldch the setpoint, there is a time period
of 15.5 hours where the heater can be left onaWwesktpoint of 15.6°C rather then the high
setting of 21.5°C. These assumptions are soundusedhe heater is in fact capable of
reaching the 20°C in a time shorter then the estichaeating time, so keeping the heater on
for slightly longer would likely reach the setpooft21.5°C within the estimated time.

By averaging the power consumption of the heatdreatow and high setpoint, samples 1-
300 and 850-950 respectively, i.e. the time wherhtbater is only maintaining setpoint and
not changing it, a power consumption of 116 W éw bnd 158W for high is found. Thus, if
the heater can be kept on low setpoint for 15.5himnger, an energy saving of (158-116) W
* 15.5h = 0.651kWh is gained. The test-buildinghis case is very small compared to most
residential buildings. Hence, for larger builditigge energy savings would increase according
to the building size. Also the estimated savingddde realized for each heating cycle.

This reduction in energy consumption is made ptes$ip using heating time estimation to
better maintain comfort temperature in the buildamdy when required. Consequently,

117

improved control of the heater itself is achievgdibing building temperature, not heater
surface temperature, as the control variable.

7.9.4 Performance criteria

In much of this project, the RMSEC and RMSEP diaisare used to quantify models in
terms of fit with calibration data and ability toeglict independent test data, respectively.
Since the purpose of this project, as discussetiapter 2.1, is the estimation of time, not
temperature, a better criterion of model perforneamnould be comparing prediction time of
the model with actual building heating cycles. Pneblem with this method is that due to the
insufficiencies of thermostat controllers buildirege not heated optimally, as they would be
by a more advanced control system in which modmlédcbe used. Hence, comparison of
model and measurements is not readily availablecandhot be used as a performance
criterion.

An improvement on this project would therefore bétiplement the control system
discussed in 2.1.2, at least partially. New expents where heaters are controlled based on
room temperature, thus ensuring that the heatersaatrolled optimally with respect to
heating time, could be carried out. The resultsmifeuch an experiment could then be used to
train models and compare the predicted heating ¢ihmeodel and building, to find out what
model structure performs better in the framework pfedictive control system.

7.9.5 Conclusion of heating time estimation

From the heating time estimates for case 7, iemahstrated that due to the way thermostats
on electric heaters work, the room takes a long tioreach the setpoint. Without introducing
the thermostat into the model, this is behaviomtioglel can not predict. Therefore the model
gives a much shorter heating time then what agtaaiturs in the data.

The goal of this project is to show how grey-boxdels can be used in predictive control
systems. In such a system, the heater would nobteolled by the onboard thermostat, but
rather by an external controller, thus modelingttie@mostat is not relevant for this project.

The difference between the models estimated hetitmegand actual time it takes to reach the
setpoint in case 7 is not an indication of the nhbeéeng wrong. In fact, based on validation

of the model, it predicts quite accurately what Wdppen to the temperature in the building,
given the supplied heater power. The differendesiating times is caused by the models
ability to predict thermal behavior producing arsfigantly better control signal to the virtual
heater, compared with what the thermostat on theabbeater is capable of.

The part of the model that does not fit the reatawy is the simulated ON/OFF controller, or
thermostat, which outperforms the controller ontieater because the virtual controller uses

118

the room temperature as a reference, not the haatiaice temperature as the physical device
does. The difference in heating time should theeche seen as a positive result of the
project. This is an indication of a potential foreegy savings if the models and control
structure presented here is applied.

When instead using case 3 to compute heating timere the heater is not controlled by the
thermostat, because the setpoint is turned sothahthe thermostat is always on, the heating
time estimates of the model are accurate to withim sample (dt = 10 min).

This result shows that grey-box models are capafippeedicting heating times with the
required accuracy for use in predictive controtsyss. This result should be seen as the most
important conclusion of this project.

It is also worth noting that the predictions onec8svalidation data is done with model from
case 7, i.e. November data is used to predict Deeebehavior. This further demonstrates
that the model is able to predict behavior on imthelent data, as long as the input ranges are
similar to the calibration data.

7.10 Estimation of cooling time, November ByggLab

Estimating cooling time is interesting because tedting how long it takes the temperature
to drop below comfort level tolerance, the consydtem can choose to turn off heating a
predicted time before the building will be unoc@giTypical control systems in use will
switch off heating only once building is empty. Wéccurate predictions of the cooling time,
energy savings can be gained by precise contialidding temperature, maintaining comfort
temperature only when strictly required.

In the data set for November the high of power aorgion peaks decrease from around 400
to around 200W between sample 1102 and 1112. ®Ridtibm sample 1096 gives:

430

400

[\
[
[\

L 7
_ N

0

s0

0

1 S 3 4 5 L] T] a L", H = LE] 14 # L] w ® B I

Figure 68 - Peaks in power consumption indicatetsibicooling cycle

119

From Figure 68, it is approximated that the sarbpleveen the two peaks, sample 1107 is a
reasonable starting point for the cooling time,when the thermostat was turned down to the
lower setting. By assuming a temperature drop Gfliélow the setpoint is acceptable, i.e.
20.5°C, the goal is to estimate how long timeketathe temperature to drop by 1°C. Based
on experimental data, 20.5°C is reached at sani@lb.1

Case 7 - cooling time estimation -1C

P oy SIM

— — —P__ ref

tot

—_ — =t Sim
| ool

0 10 20 30 40 50 60
Sarmples — — —t ref
Cool

Figure 69 - Estimation of cooling time, Novembetada

From Figure 69 the time it takes from the timestéere temperature setpoint is assumed to
change to low, at k = 1107, it takes 24 timestapsmulations and 38 timesteps in reference
data, before temperature has dropped by 1 deifestical lines represent the start of the
cooling cycle § (red), time when simulations reach 1°C below setgg,, sim (black

stapled) and the same for reference dagaref (blue stapled).

The model is using actual power data from measuntsng to the point where the setpoint is
changed, and a constant 100W power to appliantastaé setpoint. However, in the
reference data there are some peaks in power, siiggéhat there is some added heat to the
building during the cooling phase. This power usaggks could be caused by equipment
other then the heater. It could also explain whyliog time is longer in the reference data.

The interesting thing to note here is that basesimmlations, which are somewhat
conservative in their results due to the bespokeep@onsumption input, it takes about 4
hours (24 samples at dt = 10 min) before tempezdtas dropped by one degree. By this
estimate, the temperature setpoint could have tlegmged four hours earlier, if a
temperature 1°C below the initial setpoint is atable.

120

7.10.1 Estimated energy saving potential

Using the estimated values for power consumptidh tigh and low thermostat settings, the
energy savings would compute to (158-116) W * 4hE68kWh. Note again that this is a
low number, but also still for the test buildingialinis quite small.

This kind of energy savings, by predictable coglicmuld be realized daily, perhaps even
twice daily, depending on how often the temperaseteoint changes. As a rough estimate,
assume that for 200 days pr year, a residentiaehafrcomparable thermal behavior to the
test facility, but with five times higher need fogating power, the temperature is lowered
both during the day while occupants are at work, amight while house is unused. By
utilizing a model to predict how long it will takbe temperature to drop 1°C, choosing a
conservative energy savings estimate of 0.5kWoplireg cycle for a larger building, based
on the estimates for the test facility and its sikie savings pr year comes out to
approximately 200kWh. This estimate is a very roagleulation, but it is only taking into
account savings based on predictably initiatindingamf buildings a certain time before they
are not used. Predictable heating is likely to hagaificantly higher potential for improved
energy economy. The computation is mainly inclugieshow that there is a potential for
energy savings by predictable cooling of buildings.

It should be noted that this estimate is basedhoougdoor temperature around 8° to 10°C,
which may be a good approximate average year-armmgerature for southern Norway. In
colder climates, the savings might be significahiyher.

121

8 Conclusion

In this project, several software tools has beemldped and tested. Together, they form a
tool-set for grey-box modeling by optimization bagarameter identification [2], and for
simulation of the developed models. Relevant poegssing of data is shown to be
efficiently carried out by the developed software.

Implementation of models in both c# and MATLAB atewn to give identical results.
Further, ODE solvers [8, 21, 22] implemented irhdahguages are demonstrated to solve
models quickly and accurately, providing a compatet! foundation for model based
predictions in control systems. The RK4 fixed stefver algorithm is shown to greatly
improve the computational speed, relative to th# lUMATLAB solvers. The c#
implementation improves the speed even furtheyrams that the simulation techniques
presented in this report can be implemented irabtiae system [11], as discussed in chapter
2.1.2.

Theory and practice regarding the concept of g@yfhodels, discussed in chapters 2.4 and
4.3, is given [2, 3], with some additional preserteeory, discussed in chapter 4.2, regarding
data driven modeling in general [19, 20]. The amaund type of data required for successful
parameter identification of a grey-box model iscdssed in chapters 7.2, 7.3 and 7.4. Range
and variation of inputs and states is found toheedominating factor in successful parameter
identification, as well as use of a proper modelctire [3]. Models are mainly taken from
literature [2], with one example of how models t@nadapted by cognitive reasoning rather
then physical equations [5]. Further improvememtsnodels are suggested, particularly with
respect to inclusion of the heater to air dynarfocsmproved thermal control.

Results of using two separate model structures shatincreasing model complexity does
not yield improved results, as discussed in chap&rDue to redundancy in model
parameters, as discussed in chapter 7.5, no camelakout increased model complexity is
possible without further research.

A proposed control strategy, given in chapter 2.9,and 7.10, both for improved local

control of energy to electric heaters, and for supery control of building temperature is
demonstrated to show promising results with regardke reduction of energy consumption.
By use of grey-box models, with parameters idegdifior a particular building, results show
prediction accuracy in the same range as the saansaracy. Further, models have been
shown to predict heating and cooling times. Analgsiows that the electric heaters employed
in the experiments do not efficiently reach thesgtt temperature, with respect to heating
time. If the heater is left fully on for the whdleating cycle heating times is shown to be
predicted with accuracy of one sample. Solutiomnsmiprovements to this control system are
suggested in chapter 7.9.2.

122

The most important result of this project is disagsin chapter 7.9, where a grey-box model
of the simplest form (R4C2) [2], using parametdentified from independent data, is shown
to predict the heating time of the test building/igeLab” with an accuracy of one timestep
(10 min). This experiment shows that the combimatibgrey-box modeling with heating and
cooling time predictions is a feasible strategyddvanced temperature control in buildings.

123

References

[1]

[2]

[3]

[4]
[5]
[6]
[7]

[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]

[20]

D. W. U. Perera, C. F. Pfeiffer, and N.-O. SkeéiModelling the heat dynamics of a
residential building unit: Application to Norwegi®uildings,"Modeling, Identication
and Controlvol. 35, pp. 43-57, 2014.

T. Berthou, P. Stabat, R. Salvazet, and D. Miaxc'Development and validation of a
gray box model to predict thermal behavior of ocedmffice buildings,'Energy and
Buildings,vol. 74, pp. 91-100, 5// 2014.

G. Reynders, J. Diriken, and D. Saelens, "Qualf grey-box models and identified
parameters as function of the accuracy of inputabservation signalsEnergy and
Buildings,vol. 82, pp. 263-274, 10// 2014.

A. Afram and F. Janabi-Sharifi, "Review of mdidg methods for HVAC systems,”
Applied Thermal Engineeringpl. 67, pp. 507-519, 6// 2014.

K. K. AssociatesThermal Network Modeling Handbqdk000.

S. F. Fux, A. Ashouri, M. J. Benz, and L. Gullzg'EKF based self-adaptive thermal
model for a passive hous&hergy and Buildingssol. 68, Part C, pp. 811-817, 1//
2014.

A. Afram and F. Janabi-Sharifi, "Gray-box modegl and validation of residential
HVAC system for control system desigipplied Energyyol. 137, pp. 134-150, 1/1/
2015.

A. Tveito, H. P. Langtangen, B. F. Nielsen, aadCai, Elements of Scientific
Computing Springer, 2010.

L. Wang,Model predictive control system design and impleatemn using
MATLAB® London: Springer, 2009.

N.-O. Skeielecture Notes: An Introduction to Hard/Soft SessarProcess
MeasurementdPorsgrunn: Telemark University College, 2013.

N.-O. Skeielecture Notes: Industrial Information Technologporsgrunn: Telemark
Univeristy Collage, 2014.

N.-O. Skeielecture Notes: Object-Oriented Analysis, Desigr Brogramming
using UML and C#Porsgunn: Telemark University College, 2014.

T. L. Floyd,Electronic devicesUpper Saddle River, N.J.: Prentice Hall, 2002.

R. Oleksandr, "Master Thesis: Estimation @ beating time for buildings,” Telemark
University College, Faculty of Technology2015.

A. Devices, "Low Voltage Temperature Sens&sy H," One Technology Way, P.O.
Box 9106, Norwood, MA 02062 - 9106, U.S.A.2015.

T. V. AB, "Manual: Weather Station," #art.no. 02049 Ver. 20090&d, 2009.

D. W. U. Perera, M. Halstensen, and N.-O. 8k&rediction of Space Heating
Energy Consumption in Cabins Based on Multivariégression Modelling,"
International Journal of Modeling and Optimizatiom|. 5, 2015.

K. Esbensenyiultivariate analysis in practiceéDslo: CAMO, 1998.

L. Ljung, "Prediction error estimation methgd€ircuits, Systems and Signal
Processingyol. 21, pp. 11-21, 2002/01/01 2002.

R. T. Baillie, "Predictions from ARMAX modelsJournal of Econometricsol. 12,
1980.

124

[21] E. C. Ifeachor and B. W. JerviBigital Signal Processing, A practical approach
Prentice Hall, 2002.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterljrasnd B. P. Flannerfjyumerical recipes
in C++: the art of scientific computingCambridge: Cambridge University Press,
2002.

[23] J. W. Nilsson and S. A. Riedél|ectric Circuits 6th ed.: Prentice Hall, 2001.

[24] S. Linge and H. P. LangtangehxGentle Introduction to Programming for
ComputationsTelemark University Collage, 2014.

[25] AnalogDevices, "Low Voltage TEmprature Sensbk4P35/TMP36/TMP37 Rev H,"
ed.

125

Appendices

A) Task description

B) Plots of results, calibration and validation &lr22 cases, with description and statistics
C) Code listing of relevant C# classes and MATLABdtions
D) Summary Sheet

126

Appendix A - Task Description

127

N 3 Vs Y
4
m

Telemark University College
Faculty of Technology

FMH606 Master's Thesis

Title: Grey box models for estimation of heating times for buildings

TUC supervisor: Nils-Olav Skeie Ver. 11-NOV-15

Co-supervisors: Carlos Pfeiffer

Task background:

The building sector has become one of the largest energy consumers in the world owing to the
population growth, economic development and social development. In Scandinavian countries
where a harsh cold climate dominates, building energy consumption is at its highest due to the
space heating and water heating. In Norway, 48% of the total energy production is allocated
for space heating. Recent investigations in Norway have revealed that there is a feasibility of
saving more than 50 TWh both from residential and commercial buildings by 2020. To
achieve this goal, the Norwegian government has imposed various regulations to force the
people to save energy.

A good way to save energy for space heating is to turn the heating off when the building is not
in use. Under these situations, it is important to know how much time is required to heat a
building from a particular low temperature to a comfortable temperature. The heating time of a
building depends on outside weather conditions (outside temperature, solar irradiation, wind,
humidity), ventilation, building construction properties, heat sources, etc. To achieve a better
prediction of the heating time it is necessary to consider all these consequences
simultaneously.

Further, thermal mass of the building plays an influential role in heating of buildings. Higher
the thermal mass, it might store energy during the nighttime (when the power is cheap) to
release it as heat during the daytime reducing the electricity bill.

A mathematical model must be used for estimating the heating times, and a combination of
both a mechanistically model and a data driven model can be a solution for adapting to
different type of buildings. A mechanistic model is developed for a building [1] and can be
used as a starting point. This model has been testing out on a small building at Telemark
University College [2].

Task description:

Address: Kjolnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47.

O AAF

The main task will be to evaluate how mechanistic and data driven models can be combined to
estimate the heating/cooling time of buildings.
The sub-tasks will be:

e Give an overview of the research status for combining mechanistic and data driven
models, as grey box models,

e Discuss methods that can be used for developing data driven models, with focus on
models for estimating heating time for buildings,

e Discuss combinations of mechanistic and data driven models that can be useful for
estimating heating time for buildings,

e Implement models for a single-zone building, preferable in the programming language
C# (or Matlab if C# is too time consuming), based on the literature review.

e Use the developed models to simulate and predict the heating and cooling times for
several buildings. Experimental data will be available for these buildings. Compare the
results.

e Discuss how to adapt these models to any building in an easy and efficient way, with
focus on the type of data needed, the amount of data needed, calibration of the
mechanistic model, and the training and verification of the data driven model.

Student category:

SCE students

Practical arrangements:

Experimental data for at least three buildings will be available for the models.

Signatures:) 1 8 oo -

References

[1] Perera, D.W.U., C. Pfeiffer, and N.-O. Skeie, Modelling the heat dynamics of a residential
building unit: Application to Norwegian buildings. Modeling, Identification and Control, 2014. 35(1):
p. 43-57.

[2] Romanets, Oleksandr, Estimation of the heating time for buildings. Master Thesis, 2015, Telemark
University College.

Appendix B - Details of all result cases

In this appendix the raw results of all 22 casemfchapter 6 is presented. For each case,
first, the calibration plot with error distributios given. The MATLAB code generates these
automatically for all models. Red lines are refeemwhile blue are model simulated values.
In the error distribution plots the red verticaldiindicates the average error. If the only error
in a model calibration or validation is random mQithe average error should be 0 and the
distribution forms an approximate Gaussian distrdou

After calibration plots, a text box with statistissgiven. This includes the actual parameter
values for the model, with the initial guess théroer started from in parenthesis. The
statistics include the time it takes to identifg harameters, and the step length of the
simulations, which must be same as in the datd8s¢t. RMSEC for all states combined, and
RMSEP for each state is given.

Then, the validation results are given as plotefd@rence temperatures and predicted
temperatures, together with relevant inputs.

Finally, a small description of each case is given.

Case 18 is not included since it gives unusabldtefarameter identification does not
converge to a reasonable solution, i.e. somethmitgs to case 17 which is the same
building. See discussion in chapter 7.2)

Several of the results presented in Appendix Bsis #ound in chapter 7. The duplicated plots
in appendix B is simply included for completenasghsthat appendix B contains all results
from all cases, even if those results are discussddtail in previous chapters.

130

Case A

7 Model fit / C:
T T T T T T T T Referonce
Model
60—
50—
40 |
g
g3
3
e
20
10—
0
0 1 I I I I | I I
0 20 40 60 80 100 120 140 160 180 200
Time [h]
1000
T T T T T T T Pt
800 — —
£ 600~ —
& 400 —
200 — —
o I I I I | I I \ I
0 20 40 60 80 100 120 140 160 180 200
Time [h]

Eror(€)

o s 8 8 B B 8 8 & &
& T

Simulation statistics

Total time : 0.7 min

Timestep : 360 sec

R_b = 0.114847 (Initial = 0.060000)

R w = 0.205706 (Initial = ©.600000)
R_g = 0.083690 (Initial = 0.135000)
R_vent = 0.191784 (Initial = ©.200000)
c_b = 102887.846812 (Initial = 58000.000000)
C_w = 422925.109635 (Initial = 500000.000000)
RMSEC: 2.492

Model type: R4C2

rmsep Tb: 1.871

rmsep Tw: 1.053

131

Validation

03 2 3
52352

0 20 40 60 80 100 120 140 160 180 200
Time [h]

idation error
® \

10 1 | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time [h]

800 T

600 [— —

Power [W]
IS
8
I
|

N
8
8
T
|

)
)
[Ny =
S
a2
3
|-
3

80 100 120 140 160 180 200
Time [h]

Description

This case is based on simulated data from single-mwodel in [1]. The model parameters are
taken from mostly from the article, with some autial data from the author and from the
MATLAB code used in simulations. The results matubse presented in the article. For all
simulations ventilation of 0.77 m3/h is used fag flrst half of the simulation, and no
ventilation for the second half. The same is regzbagain for validation data, but this time
the outside temperature is increased from -2.(urs¢he original article) to +5. In case A
R4C2 is the model that is calibrated to the sinadatata.

132

Case B

Calibration
70 Model fit / Calil
I Reference
Model
60 — —
50 — —
40 — —
[
%30 —
8
20 —
10— —
0
10 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time [h]
1000 ——
800 [— —
£ 600— —
& 400 —
200 — -
o I I I I | I | | I
0 20 40 60 80 100 120 140 160 180 200
Time [h]
Simulation statistics
Total time : 1.9 min
Timestep : 360 sec
R_b = 0.109506 (Initial = ©.200000)
R_w = 0.154294 (Initial = ©.200000)
R_s = 0.021128 (Initial = ©.020000)
R_e = 0.048588 (Initial = ©.020000)
R_g = 0.085182 (Initial = ©.135000)
R_vent = 0.194271 (Initial = ©.200000)
C_b = 127525.376848 (Initial = 58000.000000)
Cw = 521414.292444 (Initial = 500000 .000000)
C_s = 7380.319340 (Initial = 20000.000000)
RMSEC: 4.681
Model type: R6C3
rmsep Tb: 1.420
rmsep Tw: 2.225
rmsep Ts: 2.824

Validation

T, ref
....... T, sim
T, ref
....... T, sim
T, ref
rrrrrrr T, sim
Tint
g
o
s
&
0 1 | 1 1 | 1 1 | 1
0 20 40 60 80 100 120 140 160 180 200
Time [h]
error
10 T
T
K
— T
o
o
5
&
10 | | | I I | L L L
0 20 40 60 80 100 120 140 160 180 200
Time [h]
800
f T I —
600 — —
ﬂ;} 400 — —
5
a
200 — —
0 | | | | | | L | |
0 20 40 60 80 100 120 140 160 180 200
Time [h]

Description

Same as case A, but using model R6C3.

134

Case C

Calibration

Model fit / C:

o T T T T T T T

Reference
Model

Temp [C]

0 20 40 60 80 100 120 140 160 180 200
Time [h]
1000
T T T T T T T Pt

800 — —
S 600 — —
& 400 —

200 — —

o I I I I | I I \ I
0 20 40 60 80 100 120 140 160 180 200
Time [h]

o s 8 EBEESE

s 8 & %

e 8 & B B ¥

Eroric)

Simulation statistics

Total time : 1.3 min

Timestep : 360 sec

R_b = 0.079525 (Initial = ©.200000)
Rwl = 0.124764 (Initial = ©.100000)
Rw2 = 0.030125 (Initial = ©.050000)

R_s = 0.019515 (Initial = ©.020000)

R_e = 0.031240 (Initial = ©.020000)

R_g = 0.086887 (Initial = ©.135000)
R_vent = 0.204330 (Initial = ©.200000)

C_b = 106171.842680 (Initial = 58000.000000)
cCwl = 478522.915426 (Initial = 250000.000000)
Cw2 = 103737.964106 (Initial = 250000.000000)
RMSEC: 2.367

Model type: R7C3

rmsep Tb: 1.737

rmsep Twl: 1.058

rmsep Tw2: 1.020

135

Validation

R7C3 - validation
0 T
T, ref
rrrrrrr T, sim
T, ref
,,,,,,, T, sim
T el
T, sim
10 Tint
)
o
£
°
e
20
0 1 1 |
0 50 100 150 200
Validation error
10 T T I T,
3
Tut
~ Tz
S
a
g 0
3
2
-10 1 1 1
0 50 100 150 200
1000
T T T P
§ 500 [— —
3
<
0 ! I
0 50 100 150 200
Time [h]
T T,
«f
o
20
i
ol
ol
o
0 s f
Enor(c)
T T
o
ol
P
P
ol
o
. s - S 2
Enoric]

Eg
Emorc)

Description

Same as case A, but using model R7C3.

136

Case D

Calibration
70 | | | : Model fit / ‘f‘ il | | —
Model
60 — —
50 — —
§40 | —
£
=30 -
20 —
10— —
o I | | i | | | |
0 20 40 60 80 100 120 140 160 180 200
Time [h]
-1 T T T T T LDR
15— -
S 2f e
‘§’-25 = —
al- _
35 I I l I 1 I I I L
20 40 60 80 100 120 140 160 180 200
Time [h]
1000 T — Pheat
800 — _
% 600 — —
§ 400 — —
200 - —
o I I I I I I I I I
] 20 40 60 80 100 120 140 160 180 200
Time [h]
- commecign i i : _—
- ' ' ==
Simulation statistics
Total time : 1.0 min
Timestep : 360 sec
R_b = 0.242068 (Initial = ©.300000)
R_w = 0.426743 (Initial = ©.500000)
R_fur = 0.337576 (Initial = ©.300000)
R_g = 0.081158 (Initial = ©.080000)
R_vent = 0.198818 (Initial = ©.200000)
C_b = 132926.073103 (Initial = 132000.000000)
Cw = 186273.277238 (Initial = 190000.000000)
C_fur = 5400055 .179060 (Initial = 5400000.000000)
RMSEC: 1.000
Model type: R5C3
rmsep Tb: 1.273
rmsep Tw: 0.737

137

Validation

R5C3 - vali
60
T T T, ref
....... T, sim
T, ref
....... T, sim
Tml
g
o
s
e
0 I | 1 I l 1 I L 1
0 20 40 60 80 100 120 140 160 180 200
Time [h]
error
° \
Tb
4 T,
g 2
o
g 0
Ea2
4
5 | | | I I | L L L
0 20 40 60 80 100 120 140 160 180 200
Time [h]
800
T T T — Preat
600 — —
g 400— —
o
o
200 — —
0 1 | | 1 | | L 1 1
0 20 40 60 80 100 120 140 160 180 200
Time [h]
ValbestionEror Histogram
T T 7
ool
wl
-l
n -

Emoro)

Description

Same as case A, but using model R5C3.

138

Case 1

Calibration
40 MlodslﬂtlI
e
5 ! ! L ! !
[] 20 40 60 80 100 120
Time [h]
600 —
500
__400
2
gaoo
© 200
100 —
N I I I I I I
0 20 40 60 80 100 120
Time [h]
==
Simulation statistics
Total time : 0.3 min
Timestep : 600 sec
R_b = 0.036387 (Initial = ©.040000)
Rw = 0.080332 (Initial = ©.100000)
R g 0.201898 (Initial = ©.300000)
R_vent = 0.330000 (Initial = ©.200000)
C_b = 1107894 .607319 (Initial 1110000 .000000)
C_w = 1398321.529381 (Initial 1400000 . 000000)
RMSEC: 1.012

Model type: R4C2
rmsep Tb: 1.869
rmsep Tw: 2.947

139

Validation

R4C2 - Validatit

30

25

20

Temp [C]
3

140

Temp [C]
SHoh b b A o a4
T T 1 °
. 3
°
5
I
4

800 T T T T T

600 [— —
400 — —
200 — —

Time [h]

Power [W]

Description

Based on data from “ByggLab” in the timeframe frém12.2015 18:00 to 17.12.2015 00:00.
Samples 1-964 used for calibration and 1018 - I@6@alidation of the model. Data set
contains step responses where heater thermostiahésl to max, thus giving the highest
possible temperature in the building that the hezda sustain. This is shown by the heaters
constant use of power. The reason for maximum testyoe was to have largest possible
dynamic changes in thermal behavior.

Small spikes in power are assumed caused by ofjogrraent in the building (such as air
humidifier). Note that there is a discrepancy ia tAnge of outdoor temperatures between
calibration and validation data.

140

Case 2

Calibration

Model fit / Calil

40 T

Reference
Model

35— —

5 1 I 1 1 1 | |
0 20 40 60 80 100 120 140 160
Time [h]

heat

0 1 | 1 | | | 1
0 20 40 60 80 100 120 140 160
Time [h]

=

o 8 & & 8

Emrc]

Simulation statistics

Total time : 0.7 min

Timestep : 600 sec

R_b = 0.051108 (Initial = ©.060000)

R_wl = 0.044626 (Initial = ©.080000)

R.w2 = 0.039092 (Initial = ©.020000)

R_s = 0.001630 (Initial = ©.001000)

R_e = 0.034231 (Initial = ©.050000)

R_g = 0.128300 (Initial = ©.135000)
R_vent = 0.330000 (Initial = ©.200000)

c_b = 1305475.975806 (Initial = 1310000.000000)
Cwl = 1002396.655774 (Initial = 1000000 .000000)
Cw2 = 487131.525411 (Initial = 500000 .000000)
RMSEC: 1.383

Model type: R7C3

rmsep Tb: 1.994

rmsep Twl: 2.426

rmsep Tw2: 2.826

141

Validation

R7C3 - Validation

20 40 60 80 100 120 140
Time [h]

error

140
Time [h]
800
- Ph-at
600 — —
g 400 — -
o
o
200 — -
0 | | | | | |
0 20 40 60 80 100 120 140
Time [h]

Description

Same as case 1, but with model R7C3

142

Case 3

. Model fit /
T Reference
Model
20 -
25— —
20— —
__ 15 —
o
o
£
8
10 = —
5l _
o _
5 _
o I ! I I I !
0 20 40 60 80 100 120 140
Time [h]
700
- Phel(
600 — —
500 {— -
2 400 -
8
3 300 —
[:8
200 — —
100 — —
o I | | | | |

0 20 40 60 80 100 120 140
Time [h]

=

Emric)

Simulation statistics

Total time : 0.8 min

Timestep : 600 sec

R_b = 0.023466 (Initial = ©.040000)

R_w = 0.069227 (Initial = 0.100000)

R_g = 0.566107 (Initial = ©.300000)
R_vent = 0.329176 (Initial = 0.200000)

C_b = 791360.856092 (Initial = 1110000.000000)
C_w = 1414151.688278 (Initial = 1400000.000000)
RMSEC: 0.951

Model type: R4C2

rmsep Tb: 1.510

rmsep Tw: 2.424

143

Validation

T, ref

0 20 40 60 80 100 120 140 160
Time [h]

ion error

) 0 20 40 60 80 100 120 140 160
Time [h]

5400
§ 300

S
200

0 20 40 60 80 100 120 140 160
Time [h]

o 8 8 8 8 8 8 8 & &
T T e s e e

3 & 8 8 8 8 & %
T T T T T T

Description

Same as case 1 but with calibration and validadeta swapped (i.e. calibration data for case
1 is used as validation data for case 3, etc).

144

Case 4

Calibration
35 Model fit /
T Reference
Model
sk _
25— —
20— —
g 15— —
5
RTY —
s |
o |
s _
0 I ! I 1 I !
0 20 40 60 80 100 120 140
Time [h]
700 —
600 — —
500 (— —
%400 — —
§ 300 — —
200 — —
100 — —
N 1 I I I I
0 20 40 60 80 100 120 140
Time [h]
Simulation statistics
Total time : 0.9 min
Timestep : 600 sec
R_b = 0.032667 (Initial = 0.060000)
Rwl = 0.040553 (Initial = ©.080000)
R w2 = 0.030970 (Initial = 0.020000)
R_s = 0.001594 (Initial = ©.001000)
R_e = 0.030686 (Initial = ©.850000)
R_g 0.188886 (Initial = ©.135000)
R_vent = 0.330000 (Initial = 0.200000)
C_b = 986571.542641 (Initial = 1310000.000000)
C_wl = 998644 .472573 (Initial 1000000 . 000000)
C_w2 = 611869.633066 (Initial = 500000.000000)
RMSEC: 1.014
Model type: R7C3
rmsep Tb: 1.400
rmsep Twl: 2.092
rmsep Tw2: 2.259

145

Validation

R7C3 - Validation
T

5 1 | | 1 | 1 |
0 20 40 60 80 100 120 140 160
Time [h]

error

) 0 20 40 60 80 100 120 140 160
Time [h]

600

— Pheat

500
5400
$ 300
H

S
a 200

100

0 20 40 60 80 100 120 140 160
Time [h]

s
Enor)

Description

Same as case 3, but using model R7C3.

146

Case 5

Calibration
2 Model fit /
T Reference
Model
20— —
15— —
5
§
k3
10— —
s _
o ! L ! L ! | ! I
[] 20 40 60 80 100 120 140 160 180
Time [h]
500 —
400 — —
gaoo — —
a 200 — —
100 —
N I I I I I I I I
0 20 40 60 80 100 120 140 160 180
Time [h]
Simulation statistics
Total time : 0.6 min
Timestep : 600 sec
R_b = 0.069268 (Initial = ©.040000)
Rw = 0.079561 (Initial = ©.100000)
R g = 0.185601 (Initial = ©.300000)
R_vent = 0.330682 (Initial = ©.200000)
C_b = 1370105.274711 (Initial 1110000 .000000)
C_w = 1454574.102325 (Initial 1400000 . 000000)
RMSEC: 0.602

Model type: R4C2
rmsep Tb: 0.576
rmsep Tw: 2.150

147

Validation

R4C2 - Validatit
I

] 20 40 60 80 100 120 140 160 180

] 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

‘3 ‘

Description

Data logged from “ByggelLab” in the timeframe fro.01.2015 17:18 to 17.11.2015 07:16.
The data set was resampled with timestep 10 mingiesg a total of 2100 samples. Data is
split in two such that samples 1- 1050 are useddbbration of the model, and 1051 to 2100
for validation. In case 5 model R4C2 is used. Taim s taken while the building temperature
is controlled by the heater onboard thermostatsptegific setpoint. The setpoint is in the
range that would be comfortable to human occupaatiser then some maximum settings as
in case 1 - 4, typically around 22°C. Calibrationl &alidation data for case 5 show inputs in
similar ranges, making them particularly interegt@tiowing models to be calibrated and
validated on data of similar range.

148

Case 6

Calibration
2 I llllodsl fit / C: —
Model
20— —
15— —
g
5
k3
10~ —
s _
o I I I I I ! I !
20 40 60 80 100 120 140 160 180
Time [h]
500 —
400 — —
2300 — —
§200— —
100 —
N I I I I I I I I
20 40 60 80 100 120 140 160 180
Time [h]
Simulation statistics
Total time : 1.2 min
Timestep : 600 sec
R_b = 0.071423 (Initial = ©.060000)
Rwl = 0.030028 (Initial = ©.080000)
Rw2 = 0.033602 (Initial = ©.020000)
R_s = 0.001641 (Initial = ©.001000)
R_e = 0.020918 (Initial = ©.050000)
R_g = 0.173131 (Initial = ©.135000)
R_vent = 0.329998 (Initial = ©.200000)
C_b = 1356046.205051 (Initial = 1310000.000000)
cCwl = 1803684 .779566 (Initial = 1000000 .000000)
Cw2 = 484190.536511 (Initial = 500000.000000)
RMSEC: 0.685
Model type: R7C3
rmsep Tb: 0.639
rmsep Twl: 1.912
rmsep Tw2: 1.923

149

Validation

320 R7C3 - Validation
T T T T T, ref
....... T, sim
_ T, ref
,,,,,,, T,, sim
T,z ref
A |- T, sim
T\nl
5 1 1 | 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180
Time [h]
lidation error
2
T T I I T,
] Twi
— Tm
180
Time [h]
600
- Ph-at
500 — —
s 400 — —
g 300 — —
o
o 200+ | | =
100 —
0 1 | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]

Enrc)

Description

Same as case 5, but using model R7C3

150

Case 7

Calibration
o Model fit /
T Reference
Model
25— -
20— —
15— —
5
§
k3
10— —
5 -
o -
s ! L ! L ! | ! I
[] 20 40 60 80 100 120 140 160 180
Time [h]
600 —
500 — —
400 — —
2
§ 300 — —
& 200 [+ -
100 —
N I I I I I I I I
0 20 40 60 80 100 120 140 160 180
Time [h]
==
Simulation statistics
Total time : 0.6 min
Timestep : 600 sec
R_b = 0.055901 (Initial = ©.040000)
Rw = 0.108072 (Initial = ©.100000)
R g 0.161105 (Initial = ©.300000)
R_vent = 0.330000 (Initial = ©.200000)
C_b = 1231400.027247 (Initial = 1110000.000000)
C_w = 1027141.440197 (Initial = 1400000.000000)

RMSEC: 0.837
Model type: R4C2
rmsep Tb: ©.590
rmsep Tw: 1.334

151

Validation

P | R4C2 -
T, ref
....... T, sim
T, ref
....... T, sim
Tint
0 1 1 1 | | 1 1 1
0 20 40 60 80 100 120 140 160 180
Time [h]
idation error
3
T T T
2= - T,
ol i
o
5
Qo 7
A -
2 | | | | I I L L
0 20 40 60 80 100 120 140 160 180
Time [h]
500 T
Pheat
400 — —
g 300 — —
]
g 200 [— —
a
100 —
0 1 | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]
o
wl
wl
ol
o
°z

o v s 8 8 B & & &
S e e e

Description

Same as case 5, but with calibration and validatata ranges swapped.

152

Case 8

Calibration
20 Model fit / C:
T Reference
Model
25— —
20— —
15— —
5
§
k3
10— -
51— -
of -
5 I I I I I ! I !
0 20 40 60 80 100 120 140 160 180
Time [h]
o0 — Pheat
500 — —
400 — —
B
gaoo— m
l1200— —
100 —
N I I I I I I I I
0 20 40 60 80 100 120 140 160 180
Time [h]
Simulation statistics
Total time : 0.8 min
Timestep : 600 sec
R_b = 0.065599 (Initial = ©.060000)
Rwl = 0.047750 (Initial = ©.080000)
Rw2 = 0.041396 (Initial = ©.020000)
R_s = 0.001639 (Initial = ©.001000)
R_e = 0.036868 (Initial = ©.050000)
R_g = 0.139050 (Initial = ©.135000)
R_vent = 0.330000 (Initial = ©.200000)
C_b = 1298656.225866 (Initial = 1310000.000000)
cCwl = 1070878.621398 (Initial = 1000000 .000000)
Cw2 = 212718.029709 (Initial = 500000.000000)
RMSEC: 1.014
Model type: R7C3
rmsep Tb: 0.645
rmsep Twl: 1.182
rmsep Tw2: 1.241

153

Validation

P R7C3 - Validation

T T T

100 120 140 160
Time [h]

idation error
3

180

0 20 40 60 80 100
Time [h]

120 140 160

180

o

Ph-m

100 120 140 160
Time [h]

o5
Enor)

¥

]

&

g

8

»e

Description

Same as case 6, but with calibration and validadata ranges swapped.

154

180

Case 9

Calibration
2 Model fit / C:
T Reference
Model
20— —
15— —
5
§
k3
10— —
s _
o ! L ! L ! | ! I
0 20 40 60 80 100 120 140 160 180
Time [h]
800 —
700 — —
600 — —
5500 — —
§ 400 (— m
& 300 —
200 —
100 —
N I I I I I I I
0 20 40 60 80 100 120 140 160 180
Time [h]
i ==
Simulation statistics
Total time : 2.1 min
Timestep : 120 sec
R_b = 0.066961 (Initial = ©.040000)
R_w = 0.076891 (Initial = ©.100000)
Rg = 0.193564 (Initial = ©.300000)
R_vent = 0.330228 (Initial = ©.200000)
c_b = 1348657.593801 (Initial = 1110000.000000)
C_w = 1492990.498436 (Initial 1400000 . 000000)
RMSEC: 0.600

Model type: R4C2
rmsep Tb: 0.575
rmsep Tw: 2.152

155

Validation

320 | R4C2 -
T, ref
....... T, sim
| T, ref
....... T, sim
Tint
5 1 1 1 | | 1 1 1
0 20 40 60 80 100 120 140 160 180
Time [h]
idation error
2
I I T,
1 — T,
g°]
o -
E 1
= |
3 -
4
0 20 40 60 80 100 120 140 160 180
Time [h]
800 T
Pheat
600 — —
© 400 [— —
E
5
a
200 — —
0 1 | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]

Description

Same as case 5, but with 2 min intervals in tha @fter resampling), thus increasing sample
count by five. Calibration range is then 1 - 525d &alidation in range 5251 - 10500.

156

Case 10

Calibration
2 I llllodsl fit / C: —
Model
20— —
15— —
5
~
10— —
s _
o I I I I I ! I !
0 20 40 60 80 100 120 140 160 180
Time [h]
800 —
700 — —
600 — —
ESUO— —
gmo— —
Q300 — —
200 (—| —
100 —
N I I I I I I I I
0 20 40 60 80 100 120 140 160 180
Time [h]
- : : ctn s : ==
=5
Simulation statistics
Total time : 4.9 min
Timestep : 120 sec
R_b = 0.070494 (Initial = ©.060000)
Rwl = 0.029697 (Initial = ©.080000)
Rw2 = 0.033170 (Initial = ©.020000)
R_s = 0.001641 (Initial = ©.001000)
R_e = 0.020600 (Initial = ©.050000)
R_g = 0.175438 (Initial = ©.135000)
R_vent = 0.329990 (Initial = ©.200000)
C_b = 1347356.243500 (Initial = 1310000.000000)
cCwl = 1821632.125297 (Initial = 1000000 .000000)
Cw2 = 484679.215477 (Initial = 500000.000000)
RMSEC: 0.681
Model type: R7C3
rmsep Tb: 0.637
rmsep Twl: 1.912
rmsep Tw2: 1.925

157

Validation

320 I R7C3 - Validation

0 20 40 60 80 100
Time [h]

error

120

140

160

180

0 20 40 60 80 100 120 140 160 180
Time [h]
800
- Ph-at

600 — —
§ 400 — [—
o
o

200 — I —

0 1 1 1 | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]

o & % 8 8 %

s

Eror(c)

Eror(c)

75
Ere(c)

Description

Same as case 9, but using model R7C3

158

Case 11

Model fit /
30
T Reference
Model
25— —
20— —
15— —
g
o
£
3
e
10— —
5 -
0 -
5 I 1 | | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]
800
I Phel(
700 [— —
600 — —
= 500 — —
B
g 400 [~ -
o
4 300 — —
200 — —
100 —
0 1 1 1 1 | | | 1
0 20 40 60 80 100 120 140 160 180
Time [h]

‘ ==

Eror(€)

o 8 8 E B B 8 8 &
& T T

Eroric)

Simulation statistics

Total time : 2.4 min

Timestep : 120 sec

R_b = 0.054909 (Initial =
Rw = 0.106218 (Initial =
R g 0.163950 (Initial =
R_vent = 0.329894 (Initial =
C_b = 1221509.512024 (Initial =
C_w = 1044410.223996 (Initial =
RMSEC: 0.836

Model type: R4C2

rmsep Tb: 0.586

rmsep Tw: 1.335

0.040000)
0.100000)
0.300000)
0.200000)
1110000 .000000)
1400000 . 000000)

159

Validation

R4C2 - Validatis
25
I T, ref
....... T, sim
T, ref
....... T, sim
7 Tint
0 1 1 1 | | 1 1 1
0 20 40 60 80 100 120 140 160 180
Time [h]
lidation error
3
T T T
2 _ T,
ol i
o
5
g o —
A -
2 | | | | I I L L
0 20 40 60 80 100 120 140 160 180
Time [h]
800
I Pheat
600 — —
§400— —
5
a
Zoo_l[lel‘IIlll[l‘[l'lllll]
L
0 1 | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]

=]

Description

Same as case 9, but with calibration and validainges swapped.

160

Case 12

Calibration
2 I llllodel fit / C: —
Model
5
~
s _
o _
5 I I I I I I !
0 20 40 60 80 100 140 160 180
Time [h]
800 —
700 — —
600 — —
5500 — —
§ 400 |- —
Q 300 — —
200 — —
100 —
N I I I I I I I
0 20 40 60 80 100 140 160 180
Time [h]
==
Simulation statistics
Total time : 3.0 min
Timestep : 120 sec
R_b = 0.065126 (Initial = 0.060000)
Rwl = 0.047461 (Initial = ©.080000)
R w2 = 0.041141 (Initial = 0.020000)
R_s = 0.001639 (Initial = ©.001000)
R_e = 0.036619 (Initial = 0.850000)
R_g = 0.139713 (Initial = ©.135000)
R_vent = 0.330052 (Initial = 0.200000)
C_b = 1295058.575120 (Initial 1310000 .000000)
C_wl = 1076282.116937 (Initial 1000000 . 000000)
C_w2 = 212833.480922 (Initial 500000 . 000000)
RMSEC: 1.009
Model type: R7C3
rmsep Tb: 0.641
rmsep Twl: 1.183
rmsep Tw2: 1.243

161

Validation

25 I R7C3 - Validation

Temp [C]

Time [h]

100

idation error
3

120

160

180

Temp [C]

0 20 40 60 80 100 120 140 160 180
Time [h]
800
—

600 — —
g
g 400~ -
: l [jJ l l ‘ I I l I I [l ‘ [l ' l l l l l

200 — -

L
0 1 | | | | | | |
0 20 40 60 80 100 120 140 160 180
Time [h]

Emorc)

KEEEEEEE

o 8 B8 8 EE

s o 05

Eror(c)

Description

Same as case 11, but using model R7C3

162

Case 13

¢
20 | Model fit /
Reference
Model
5 1 | 1 | | |
0 50 100 150 200 250 300 350
Time [h]
600
I Phe:(
500 —
__ 400 —
B
§ 300 (—
o
a
200 — [
100 M4
0 | | | | L |
0 50 100 150 200 250 300 350
Time [h]
T T f T T ==
(s |
™ 1
® 4
wl-
w 1
o T
Erricl
T T T T T T (=
ol | ==
ol 4
ol 1
o 4
ol 1
ol

Simulation statistics

Total time : 1.0 min

Timestep : 600 sec

R_b = 0.054775

R_w = 0.089732

R_g = 0.184655
R_vent = 0.330000

c_b = 1232103.711683
C_w = 1231242.811396
RMSEC: 1.101

Model type: R4C2
rmsep Tb: 0.795
rmsep Tw: 0.744

(Initial
(Initial
(Initial
(Initial
(Initial
(Initial

0.040000)
0.100000)
0.300000)
0.200000)
1110000 .000000)
1400000 .000000)

163

Validation

50 100 150 200 250 300

] 50 100 150 200 250 300

; 400

o 200
I

100

0 50 100 150 200 250 300
Time [h]

Description

Case 13 is similar to case 5, but with more datekhe rest of November is included, thus
extending the data set from 02.11.2015 17:18 t913R015 03:28, resampled with 10 min
interval for a total of 3950 samples. The datas#ien nearly twice the size as in case 5.
Samples 2100 - 2200 were classified as outlierdauapid dynamics assumed caused by
venting of the building and where excluded fromtin@deling process. The data is split such
that 1 - 2100 forms the calibration. Note that thithe entire data set from case 5-8.2201-
3950 forms the validation data. Note also thataileloor temperature range in the last half
(validation) of the data set has a range of -100@ (calibration, as shown for case 5 has a
range of 0 - 10C). There is a mismatch in inpugesnfor this case. Its also interesting to note
large prediction errors during large fluctuatiom®otdoor temperature(hour 65 and 110).

164

Case 14

¢
20 | Model fit /
Reference
Model
5 1 | 1 | | |
0 50 100 150 200 250 300 350
Time [h]
600
I Phea(
500 —
__400—
B
§ 300 (—
o
a
200 —
100 M4
0 | | | | L |
0 50 100 150 200 250 300 350

Time [h]

Enorc)

L

L1

=
|—s

Simulation statistics

Total time : 2.0 min

Timestep : 600 sec

R_b = 0.055127

Rwl = 0.034297

Rw2 = 0.032163

R_s = 0.001635

R_e = 0.025033

R_g = 0.176442
R_vent = 0.330044

C_b = 1246052.641217
cCwl = 1605478.615390
Cw2 = 293211.937609
RMSEC: 1.362

Model type: R7C3

rmsep Tb: 0.811

rmsep Twl: 0.558

rmsep Tw2: 0.543

(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial

.060000)
.080000)
.020000)
.001000)
.050000)
.135000)
.200000)
1310000.000000)
1000000 . 000000
500000 . 000000)

O 00000

165

Validation

R7C3 - Validation
T

T, ref
....... T, sim
_ T, ref
,,,,,,, T,, sim
T, ref
A |- T, sim
Tint
5 -
o
5
= -
15 1 | 1 1 L
0 50 100 150 200 250 300
Time [h]
idation error
2 T
T
- T
Tz
) 0 50 100 150 200 250 300
Time [h]
600 T
—
500 — —
g 400 — —
& 300 — | | -
E
5
Q200 —
100 | —
0 | | | | |
0 50 100 150 200 250 300
Time [h]

- 8 8 & ¥ 8

o8 8 8B Y¥EE

Description

Same as case 13, but using model R7C3

166

Case 15

20

Temp [C]

Calibration
Model fit / C:
Reference
Model
| | 1 | |
0 50 100 150 200 250 300
Time [h]
I Phea(
| | | | |
0 50 100 150 200 250 300
Time [h]

Simulation statistics

Total time : 0.9 min

Timestep : 600 sec

R_b = 0.037364

R_w = 0.055217

R_g = 0.899999
R_vent = 0.330007

C_b = 957331.551375
C_w = 2012721.530961
RMSEC: 0.815

Model type: R4C2
rmsep Tb: 0.816
rmsep Tw: 0.992

(Initial
(Initial
(Initial
(Initial
(Initial
(Initial

0.040000)
0.100000)
0.300000)
0.200000)
1110000 .000000)
1400000 . 000000)

167

Validation

R4C2 - Validatis
* T T T, ref
....... T, sim
T, ref
....... T, sim
Tml
5 | I 1 | | L
0 50 100 150 200 250 300 350
Time [h]
3 error
T T,
2 Tw
o) 1
o
E 0
|
-2
3 | | | | L |
0 50 100 150 200 250 300 350
Time [h]
600
Ph-at
500 —
g0~ ’ i
> ol WIARAY
g 300 I \m
o
o 200
100 1
0 | | | | | |
0 50 100 150 200 250 300 350
Time [h]

g & 2
T

wo 8 8 8 8 ¥ 8
b o e e e e e

Description

Same as case 13 but with calibration and validaaoges swapped.

168

Case 16

¢
2 Model fit /
Reference
Model
g
o
£
3
e
15 | | 1 | |
0 50 100 150 200 250 300
Time [h]
600
I Phea(
500 — -
__ 400 — -
B
§ 300 (— —
o
a
200 —
100 —
0 1 1 | | |
0 50 100 150 200 250 300
Time [h]

CatbrionErrHistogram

Enorc)

Enor 0]

L

)

Simulation statistics

Total time : 1.7 min

Timestep : 600 sec

R_b = 0.041221

Rwl = 0.024549

Rw2 = 0.023117

R_s = 0.001622

R_e = 0.015548

R_g = 0.405000
R_vent = 0.330196

C_b = 1173163.947254
cCwl = 2435485.178205
Cw2 = 168343.332890
RMSEC: ©.869

Model type: R7C3

rmsep Tb: 0.847

rmsep Twl: 0.881

rmsep Tw2: 0.928

(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial
(Initial

.060000)
.080000)
.020000)
.001000)
.050000)
.135000)
.200000)
1310000.000000)
1000000 . 000000
500000 . 000000)

O 00000

169

Validation

320 R7C3 - Validation
T T T, ref
....... T, sim
T, ref
,,,,,,, T, sim
T,z ref
,,,,,,, T, sim
T\nl
5 | 1 1 | 1 1
0 50 100 150 200 250 300 350
Time [h]
ion error
3 T
Tb
2 T
T
— w2
o 1
o
g 0
L
2
3 1 1 I 1 | 1
0 50 100 150 200 250 300 350
Time [h]
600
Ph-at
500 —
40— | ’
- |
300 — A
: I
o
@ 200
100 1
0 | | | L | |
0 50 100 150 200 250 300 350
Time [h]

o 8 8 B B ¥

s & & 8 ¥

we

3
Eor)

o 8 8 & 88

o 05
)

Description

Same as case 14, but with validation and calibmatoges swapped.

170

Case 17

Model fit / C:
30
T T T T Reference
Model
g
o -
£
]
&
10 | I I | |
0 200 400 600 800 1000 1200
Time [h]
4
I LDR
3= -
)
£2 -
°
b
1 -
0 |
0 200 400 600 800 1000 1200
Time [h]
5000 T
Phoat

o 200 400 600 800 1000 1200
Time [h]

Calibration Eror Histogram.
T T T -
——

Lo B B85 88 R EEE

s
—

o 8 8 8 8 88 88

n 3 2 v o ' 2 3
Eror(c]

Simulation statistics

Total time : 0.9 min

Timestep : 600 sec

R_b = 0.018120 (Initial = ©.018000)

R_w = 0.015629 (Initial = 0.815000)

R_g = 0.022717 (Initial = ©.022000)
R_vent = 0.330002 (Initial = 0.200000)

C_b = 6099999.999947 (Initial = 6100000.000000)
C_w = 6999999.999960 (Initial = 7000000 .000000)

RMSEC: 1.662
Model type: R4C2
rmsep Tb: 2.557
rmsep Tw: 2.981

171

Validation

R4C2 - Validation

T T LDR

Temp [C]

38 b g8 3808

Description

Case 17 is the only case based on “Cabin” datagisammewhat successful in identifying
parameters for a model. Only R4C2 is tested, dimeee are no temperature readings from
inside the insulation layer of the walls (requifedR7C3). This case has also the longest
time range, from 01.10.2015 01:00 to 25.12.2015@3lose to three months worth of data.
This data set is also the only one with measuresnaritght. For most of the data, the
building is maintained at setpoint of 7°C by thatees, except for a short periode around
hours 500 to 600, where there is a step response 2Qf - 23°C. The lack of dynamic
variation in the indoor temperature Tb is a notetwpproblem with this particular data (also
the reason case 18 failes).

172

Appendix C - Code Listing

This appendix lists the source code for the mopbmant classes in c¢# and functions in
MATLAB. These form the business layer of the sofevim this project, responsible for all
the computations and simulations required to aehibe results. Most of the classes and
functions described in chapter 5 are listed belmvt,some minor discrepancies between
model and code in naming may occur. In the softwamdels of chapter 5 only the most
important methods and attributes are included endiagrams, for simplicity.

173

Log file data structures (LogFile Converter, c#)

class LogValue {

public string Name{get;set;}

public LogValue(string name) {
Name = name;

}

/// <summary>

/// Get LogValue as double

/// </summary>

/// <returns></returns>

public virtual double GetDouble() {
return 0.0;

}

/// <summary>

/// Get log value as string

/// </summary>

/// <returns></returns>

public virtual string GetString() {

return K

public override string ToString() {

return Name + " = " + GetString();

class LogValueDouble:LogValue {
private double _fVal;
string _sFormat = "";
public LogValueDouble(string name, double fVal, string sFormat = "")
: base(name) {

_SsFormat = sFormat;

_fval = fval;
}
public LogValueDouble(string name, string sVal, string sFormat = "")
: base(name) {
_sFormat = sFormat;
if(!double.TryParse(sVal, out _fVval))
_fval = double.NaN;
}

public override double GetDouble() {

return _fVal;

public override string GetString() {
return _fvVal.ToString(_sFormat);

174

class LogValueString :LogValue{

private string _sVal;

public LogValueString(string name, string sval)
: base(name) {
_sVal = sval;

}

public LogValueString(string name, double fVal, string sFormat = "0.0")
: base(name) {
_sVal = fval.ToString(sFormat); ;

}

/// <summary>

/// return value as double

/// </summary>

/// <returns></returns>

public override double GetDouble(){
double fVal;

try {
if(double.TryParse(_sVal, out fVal))
return fVal;
else
return double.NaN;
}

catch(Exception ex){

return double.NaN;

//return value as string
public override string GetString() {

return _sVal;

175

class Logline {
public DateTime TimeStamp { get; set; }

private LogValue[] _values;

public int Count {
get {
if(_values == null) return 0;

else return _values.Length;

public LogLine(int nValues) {
_values = new LogValue[nValues];

/// <summary>
/// Check if the LoglLine contains value of a given name
/// </summary>
/// <param name="sName"></param>
/// <returns></returns>
public bool ContainsName(string sName) {
if(Count == @)

return false;

else {
for(int i = @; i < _values.Length; i++)
if(_values[i].Name == sName)
return true;
}

return false;

public LogValue this[string sName] {

get {

int index = IndexOf(sName);

if(index == - 1) return null;

else return _Get(index); }
set {

int index = IndexOf(sName);

if(index != -1)

_Set(value, index);

}

public LogValue this[int index] {
get { return _Get(index); }
set { _Set(value, index); }

}
public int IndexOf(string sName) {

176

if(_values == null)

throw new Exception("No data to search");

for(int i = @; i < _values.Length; i++) {
if(_values[i].Name == sName)
return i;
}
return -1;
}
private void _Set(LogValue val, int index) {
if(_values != null && index < _values.lLength && index >= 0)
_values[index] = val;
else

throw new Exception("index out of range");

private LogValue _Get(int index) {
if(_values != null && index < _values.lLength && index >= 0)
return _values[index];
else

throw new Exception("index out of range");

public override string ToString() {
if(_values != null) {
string[] sVals = new string[_values.Length];
for(int i = @; i < _values.Length; i++) {
sVals[i] = (this[i] != null ? this[i].ToString()
}

return TimeStamp.ToString() +

+ String.Join(" | ",
sVals);

else

return N

177

")

class LogFile {
protected List<LoglLine> _lstloglLines;

public int Count {
get {
if(_lstLoglLines == null) return 0;

else return _lstLoglines.Count;

#region constructor
public LogFile() {
_lstloglLines = new List<LogLine>();

}

#tendregion

#tregion file operations

/// <summary>
/// Return a dictionary index over all value names found in the LogFile
/// </summary>
/// <returns></returns>
public Dictionary<string, int> CreateValueNameIndex() {
if(_lstLoglLines == null || _lstLoglines.Count == @)

throw new Exception("No LogLines in this file");

Dictionary<string,int> dct = new Dictionary<string,int>();

for(int j = @; j < _lstLoglLines.Count; j++){
LogLine line = _lstlLoglLines[]j];

for(int i = @; i < line.Count; i++) {
if(line[i] != null && !dct.ContainsKey(line[i].Name))
dct.Add(line[i].Name,dct.Count);

}

return dct;

/// <summary>
/// Add all LoglLines in another file to this one
/// </summary>
/// <param name="file"></param>
public void AddFile(LogFile file) {
for(int i = 0; i < file.Count; i++) {
AddLine(file[i]);

178

/// <summary>

/// Add line to a file

/// </summary>

/// <param name="line"></param>

public void AddLine(LogLine line) {
_lstLoglLines.Add(line);

}

#tendregion

#region Get columns

public void GetStartStopTime(out DateTime dtStart, out DateTime dtStop) {
dtStart = DateTime.MaxValue;
dtStop = DateTime.MinValue;

for(int i = 0; i < this.Count; i++) {
if(this[i].TimeStamp > dtStop)
dtStop = this[i].TimeStamp;

if(this[i].TimeStamp < dtStart)
dtStart = this[i].TimeStamp;

/// <summary>
/// Return an array of values, one from each LogLine, with the name sName
/// </summary>
/// <param name="sName"></param>
/// <returns></returns>
public double[] GetColumn(string sName) {

double[] fClm = new double[_lstLogLines.Count];

for(int k = 0; k < _lstLogLines.Count; k++) {

LogLine line = _1stlLoglLines[k];

for(int i = @; i < line.Count; i++) {
if(line[i] != null && line[i].Name == sName)
fClm[k] = line[i].GetDouble();

}

return fClm;

/// <summary>

/// Return all values in column index, based on the CreateValueNameIndex list of
columns and indecies

/// </summary>

/// <param name="index"></param>

/// <returns></returns>

public double[] GetColumn(int index) {

Dictionary<string, int> dct = CreateValueNameIndex();

179

if(index >= dct.Count)

throw new Exception("index out of range");
if(_lstLoglLines == null || _lstLoglLines.Count == @)

throw new Exception("No data in file");
string sName = dct.FirstOrDefault(x => x.Value == index).Key;

return GetColumn(sName);

public enum TimeUnit { Sec,Min,Hour};
/// <summary>

/// Get the timestamps of file relative to some starting point. Configurable time
unit Sec,Min,Hour

/// </summary>
/// <param name="dtStart">Start time</param>
/// <param name="tm">Time unit</param>
/// <returns></returns>
public double[] GetTime(DateTime dtStart, TimeUnit tm) {
double[] fTime = new double[_lstLoglLines.Count];
for(int k = @; k < _lstLoglLines.Count; k++) {
LogLine line = _lstlLoglLines[k];
switch(tm) {
case TimeUnit.Sec:

fTime[k] = (line.TimeStamp -
dtStart).TotalSeconds;

break;
case TimeUnit.Min:

fTime[k] = (line.TimeStamp -
dtStart).TotalMinutes;

break;
case TimeUnit.Hour:

fTime[k] = (line.TimeStamp -
dtStart).TotalHours;

break;
}
}
return fTime;
}
#tendregion

#region operators
public LoglLine this[int index] {

get {
if(_lstlLoglLines == null || index >= _lstlLoglLines.Count)
throw new Exception("index out of range or no lines
found");
return _lstLoglLines[index];
}
}
#tendregion

180

Data Operations (LogFile Converter, c#)

class DataOperationCtrl {
private Thread _thrOperation;
private bool _bRunSim = true;
private List<DataOperation> _lstQue;
public delegate void OperationFailed(string sError);
public event OperationFailed OnOperationFailed;
DateTime _dtOpStart;

public double CurProgress {

get {
if(_1stQue != null && _1stQue.Count > @)
return _1stQue[0].OpProgress;
else
return 100;
}

public TimeSpan TimeRemaining {

get {
TimeSpan ts = DateTime.Now - _dtOpStart;
if(CurProgress > 0) {
double fPercentRemaining = 100 - CurProgress;
double fSecUsed = (double)ts.TotalSeconds;
double fSecPrPercent = fSecUsed / CurProgress;
double fSecRemaining = fSecPrPercent * fPercentRemaining;
return new TimeSpan(@, @, (int)fSecRemaining);
}
else return new TimeSpan(®);
}
}
public DataOperationCtrl() {
_1stQue = new List<DataOperation>();
_thrOperation = new Thread(DoOperation);
}
public void Start() {
_bRunSim = true;
_thrOperation.Start();
}
public void Stop() {
_bRunSim = false;
_thrOperation.Abort();
}

181

public void Que(DataOperation op) {
_1stQue.Add(op);
}
//Worker thread proc
private void DoOperation() {
while(_bRunSim) {
if(_1stQue.Count > 0) {

try {
_dtOpStart = DateTime.Now;
_1stQue[©].Do();
_1stQue[@].Finish();

}

catch(Exception ex) {
string sType = ex.GetType().ToString();

if(ex.GetType().ToString() !=
"System.Threading.ThreadAbortException”) {

if(OnOperationFailed != null)

OnOperationFailed(ex.Message);

}
}
finally {
_1stQue.RemoveAt(0);
}
}
else

Thread.Sleep(100);

182

class DataOperation {
public delegate void OperationComplete(DataOperation op);
public event OperationComplete OnOperationComplete;
public LogFile Input { get; set; }
public LogFile Result { get; set; }
public double OpProgress { get; set; }

public DataOperation() {
Input = new LogFile();
Result = new LogFile();

public virtual void Do() {

public void Finish() {
if(OnOperationComplete != null)
OnOperationComplete(this);

class LoadFileOperation:DataOperation {
protected string[] sLines = null;
string _sFileName;
FieldConverter _converter;
bool _bHasHeader = false;
char _cFieldSeparator;

public LoadFileOperation(string sFileName,char cFieldSeparator,bool bHasHeader,
FieldConverter converter) {

_sFileName = sFileName;
_converter = converter;
_bHasHeader = bHasHeader;

_cFieldSeparator = cFieldSeparator;

public override void Do() {
base.Do();
OpProgress = 0;
if(Input != null)
Result = Input;
else if(Result == null)

) throw new Exception("No Results LogFile object found (cannot be
null)");

if(File.Exists(_sFileName))
sLines = File.ReadAllLines(_sFileName);
else

throw new Exception("Failed to load file");

OpProgress = 10;

183

//remove line one, if header

string sHeader = null;

if(_bHasHeader) {
sHeader = sLines[0@];
string[] sa = new string[sLines.Length - 17];
Array.Copy(sLines, 1, sa, 0, sa.Length);
sLines = sa;

for(int i = @; i < sLines.Length; i++) {
Logline line =

_converter.ConvertFields(sLines[i].Split(_cFieldSeparator),
sHeader.Split(_cFieldSeparator)

Result.AddLine(line);
OpProgress = 10 + 90.0 * (double)i / (double)sLines.Length;
}

OpProgress = 100;

class ExtractOperation :DataOperation{
string[] _sClmNames;
DateTime _dtStart;
DateTime _dtStop;

public ExtractOperation(string[] sClmNames, DateTime dtStart, DateTime dtStop) {
_sClmNames = sClmNames;
_dtStart = dtStart;
_dtStop = dtStop;
}
public override void Do() {
base.Do();

//make a look table

Dictionary<string, int> dct = new Dictionary<string, int>();

for(int i = @; i < _sClmNames.Length; i++)
dct.Add(_sClmNames[i], i);

//scan this file for any fields matching the list, using the indecies from
list to rearange columns

for(int nLine = @; nLine < Input.Count; nLine++) {
LoglLine line = Input[nLine];
if(line.TimeStamp >= _dtStart && line.TimeStamp <= _dtStop) {
LoglLine lineOut = new LoglLine(dct.Count);

lineOut.TimeStamp = line.TimeStamp;

for(int nField = ©; nField < line.Count; nField++) {
string sName = line[nField].Name;
if(dct.ContainsKey(sName)) {

lineOut[dct[sName]] = new
LogValueString(line[sName].Name, line[sName].GetString());

184

//add line if timestamp within bounds
Result.AddLine(lineOut);

class FilterOperation:DataOperation {

double[] _weights;
bool _bCentered;

public FilterOperation(double[] weights, bool bCentered) {
_weights = weights;
_bCentered = bCentered;

}

public override void Do() {
base.Do();

//make a list of all variable names in the file
Dictionary<string, int> dct = Input.CreateValueNameIndex();

int nColumns = dct.Count;

double[][] fVval = new double[nColumns][];
for(int nC = @; nC < nColumns; nC++) {
fVal[nC] = new double[Input.Count];
for(int nSamp = 0; nSamp < Input.Count; nSamp++) {
fVval[nC][nSamp] = Input[nSamp][nC].GetDouble();

double[][] fFilterd = FilterWMA(fVal);

for(int nSamp = @; nSamp < Input.Count; nSamp++) {
Logline line = new LoglLine(nColumns);
line.TimeStamp = Input[nSamp].TimeStamp;
for(int nC = @; nC < nColumns; nC++) {

line[nC] = new
LogValueDouble(Input[nSamp][nC].Name,fFilterd[nC][nSamp]);

}
Result.AddLine(line);

private double[][] FilterWMA(double[][] fX) {
double fSumXW = 0.0, fSumW = 0.0;
int N,1i,j;
int nC = fX.Length;

185

int nR = fX[@].Length;

double[][] fY = new double[nC][];
for(int ¢ = @; c < nC; c++) {
N = Math.Min(fX[c].Length, _weights.Length);
fY[c] = new double[nR];
for(int r = 9; r < nR; r++) {
fSumih = 0.0;
fSumXW = 0.0;

for(i =0; i < N; i++) {

//compute x index, offset by N/2 if ArrayOffset mode,
centers window on cur output value => optimal noise reduction

j=1+r - (_bCentered ? (N / 2) : 9);

if(j < fX[c].Length && j >= @) {
fSumW += _weights[i];
fSumXW += _weights[i] * fX[c][]j];

}
if(fSumW == 0.0) fY[c][r] = 0.0;
else fY[c][r] = fSumXW / fSumW;

}

return fY;

class RemoveOutliersOperation:DataOperation {
double _fOutlierLimit;
int _N;

public RemoveOutliersOperation(double fOutlierLimit, int N) {
N =N;
_fOutlierLimit = fOutlierLimit;

public override void Do() {
base.Do();

//make a list of all variable names in the file

Dictionary<string, int> dct = Input.CreateValueNameIndex();
int nColumns = dct.Count;

double[][] fVal = new double[nColumns][];
for(int nC = @; nC < nColumns; nC++) {
fVal[nC] = new double[Input.Count];
for(int nSamp = 0; nSamp < Input.Count; nSamp++) {
fVval[nC][nSamp] = Input[nSamp][nC].GetDouble();

186

double[][] fFilterd = RemoveOutliers(fVal);

for(int nSamp = @; nSamp < Input.Count; nSamp++) {
LoglLine line = new LoglLine(nColumns);
line.TimeStamp = Input[nSamp].TimeStamp;
for(int nC = @; nC < nColumns; nC++) {

line[nC] = new LogValueDouble(Input[nSamp][nC].Name,
fFilterd[nC][nSamp]);

}
Result.AddLine(line);

}

private double[][] RemoveOutliers(double[][] fX) {
int nC = fX.Length;
int nR = fX[@].Length;
int i, j;

double fSum, fN, fAvg;

double[][] fY = new double[nC][];
for(int ¢ = @; ¢ < nC; c++) {
fY[c] = new double[nR];
for(int r = @; r < nR; r++) {
fN = 0;
fSum = 9;
for(i =0; i < _N; i++) {
//compute x index, offset by N/2
j=1i+r - (N/ 2);

if(j < fX[c].Length && j >= @) {
N += 1.0;
fsum += fX[c][3];

//compute the average over N samples (centered)
fAvg = fSum / fN;

if(Math.Abs(fX[c][r]-fAvg) > _fOutlierLimit)
fY[c][r] = fAvg;

else
fy[c]lr] = fX[c][r];

return fY;

187

class ResampleOperation :DataOperation{

DateTime _dtStart;

TimeSpan _tsStep;

int _N;

public ResampleOperation(DateTime dtStart, TimeSpan tsStep, int N) {
_dtStart = dtStart;
_tsStep = tsStep;
N =N;

public override void Do() {
base.Do();
if(Input == null || Input.Count == 0)
throw new Exception("No data in file");

//make a list of all variable names in the file
Dictionary<string, int> dct = Input.CreateValueNameIndex();

int nColumns = dct.Count;

//loop through all the times in the new file
DateTime dtCur = _dtStart;
for(int i = 0; i < _N; i++) {

OpProgress = 100.0*(double)i/(double)_N;

//create a new line and add it to the resampled file

Logline line = new LoglLine(nColumns);

//set the timestamp

line.TimeStamp = dtCur;

//loop over all variable/column names in the file, and interpolate
values for each of them. Find closest value before and after the current dt

for(int nc = @; nc < nColumns; nc++) {
//get current column name
string sName = dct.Keys.ToList()[nc];

//find line directly before and after which contains a
variable of name sName

int nLineBefore, nLineAfter;

_FindLineBeforeAfter(dtCur, sName, out nLineBefore, out
nLineAfter);

if(nLineBefore == -1 || nLineAfter == -1)

throw new Exception("Failed to find datapoints before
and/or after a specified sample time");

//now we have the line we want, get the values

double fBefore = Input[nLineBefore][sName].GetDouble();
double fAfter = Input[nLineAfter][sName].GetDouble();

188

//interpolate

double fTotalTime = (Input[nLineAfter].TimeStamp -
Input[nLineBefore].TimeStamp).TotalMilliseconds;

double fDeltaTime = (dtCur -
Input[nLineBefore].TimeStamp).TotalMilliseconds;

double fDeltaVal = fAfter - fBefore;

double fval = (fDeltaval / fTotalTime) * (fDeltaTime) +

fBefore;
//set value for this colum
line[nc] = new LogValueDouble(sName, fVal);
}
Result.AddLine(line);
dtCur = dtCur + _tsStep;
}
OpProgress = 100;
}

private void _FindLineBeforeAfter(DateTime dtCur, string sValueName, out int
nLineBefore, out int nLineAfter) {

//find closest lines in time before and after the current time

TimeSpan tsBefore = TimeSpan.MinValue;

TimeSpan tsAfter = TimeSpan.MaxValue;

nLineBefore = -1;
nLineAfter = -1;

for(int nLine = @; nLine < Input.Count; nLine++) {
Logline line = Input[nLine];
if(line.ContainsName(sValueName)) {

TimeSpan tsDelta = line.TimeStamp - dtCur;

//check this line is closer then previously closed line AFTER dt
if(line.TimeStamp > dtCur && tsDelta < tsAfter) {
nLineAfter = nLine;
tsAfter = tsDelta;

//check this line is closer then previously closed line BEFORE dt
if(line.TimeStamp <= dtCur && tsDelta > tsBefore) {
nLineBefore = nLine;

tsBefore = tsDelta;

189

class SaveFileOperation:DataOperation {

string _sFileName;

string _sFieldSep;

bool _bHeader;

public SaveFileOperation(string sFileName, string sFieldSep, bool bHeader) {
_sFieldSep = sFieldSep;
_sFileName = sFileName;
_bHeader = bHeader;

}

public override void Do() {
base.Do();

Dictionary<string, int> dct = Input.CreateValueNameIndex();

//number of columns out

int nLen = dct.Count;

//1list of lines to write to file

List<string> lstLines = new List<string>();

//get header
if(_bHeader) {
List<string> keyList = new List<string>(dct.Keys);

lstLines.Add("Timestamp" + _sFieldSep + String.Join(_sFieldSep,
keyList.ToArray()));

}

//get all lines
for(int k = @; k < Input.Count; k++){
LoglLine line = Input[k];

string[] sFields = new string[nLen + 1];
sFields[@] = line.TimeStamp.ToString();

for(int i = @; i < line.Count; i++) {

//get the column for this value
int clm = dct[line[i].Name];
sFields[clm + 1] = line[i].GetString();

¥
l1stLines.Add(String.Join(_sFieldSep, sFields));

File.WriteAllLines(_sFileName, lstLines.ToArray());

OpProgress = 100;

Result = Input; //no changes in data

190

Format Conversion (LogFile Converter, c#)

class FieldConverter {
/// <summary>
/// Create the LogLine, throw exception if problems with fields vectors
/// </summary>
/// <param name="sFields">string array of fields to convert</param>
/// <returns></returns>
protected LoglLine MakeLogLine(string[] sFields) {
if(sFields == null || sFields.Length == @)

throw new Exception("Invalid field vector");

return new Logline(sFields.Length);

}

/// <summary>

/// Convert all fields to strings

/// </summary>

/// <param name="sFields">string array of fields to convert</param>

/// <returns></returns>

public virtual LoglLine ConvertFields(string[] sFields, string[] sHeader) {
LoglLine line = MakelLoglLine(sFields);

bool bHeaderOK = true;

if(sHeader == null || sHeader.Length < sFields.Length)
bHeaderOK = false;

for(int i = @; i < sFields.Length; i++)

line[i] = new LogValueString(bHeaderOK ? sHeader[i] : "Field" +
i.ToString(), sFields[i]);

return line;

class NOSLogSystem : FieldConverter {

string[] _sTimeHeaders = new
string[7]{"TimeStamp", "Day", "Month","Year","Hour", "Minute","Second"};

public NOSLogSystem() {

}

public override LoglLine ConvertFields(string[] sFields,string[] sHeader) {
int _nChannels;
_nChannels = (sHeader.Length - 7) / 4;

LoglLine line = new LoglLine(_nChannels * 4);
//handle the timestamp and time information
int[] nTime = new int[6];

for(int i = 1; i < 7; i++)
nTime[i - 1] = Convert.ToInt32(sFields[i]);

191

line.TimeStamp
nTime[4], nTime[5]);

new DateTime(nTime[2], nTime[1], nTime[@], nTime[3],

for(int i = @; i < _nChannels * 4; i++) {

line[i] = new LogValueString(sHeader[7 + i], sFields[7 + i]);

return line;

class WeatherStationFormat:FieldConverter {

string[] _sFieldFormat = new string[19] { "e", "e", "@.0", "0.0", "0.0", "0.0", "",
"9.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0", "0" };

string[] _sFieldNames = new string[19] { "Interval", "Indoor Humidity", "Indoor
Temperature", "Outdoor Humidity", "Outdoor Temperature", "Absolute Pressure)", "Wind",
"Gust", "Direction", "Relative Pressure", "Dewpoint", "Windchill", "Hour Rainfall", "24
hour Ra%nfall", "Week Rainfall"”, "Month Rainfall", "Total Rainfall"”, "Wind Level", "Gust
Level” };

public override LoglLine ConvertFields(string[] sFields,string[] sHeader) {

//call this one just to check sFields vector. Ignore the return line
MakeLogLine(sFields);
Logline line = new LoglLine(19);

bool bHeaderOK = true;
if(sHeader == null || sHeader.Length < sFields.Length)
bHeaderOK = false;

//get the timestamp
DateTime stamp;
if(DateTime.TryParse(sFields[1], out stamp))

line.TimeStamp = stamp;

for(int i = 0; i < 19; i++) {
if(i == 8) //wind direction

line[i] = new LogValueString(bHeaderOK ? sHeader[2 + i]
_sFieldNames[i], sFields[2 + i]);

else

line[i] = new LogValueDouble(bHeaderOK ? sHeader[2 + i]
_sFieldNames[i], sFields[2 + i], _sFieldFormat[i]);

}

return line;

192

ODE Solver (Simulation, c#)

public enum SolverType { FE,Heun,RK4};

public class ODESolver {
public int Progress { get; protected set; }
protected ODEModel _model;

public ODESolver() {
Progress = 0;
_model = null;

}

public void SetModel(ODEModel model) {
_model = model;

}

public virtual double[][] Solve(double[] x@, double[][] u, double tStart, double dt,
int N, out double[][] y) {

Progress = 0;

if(_model == null)

throw new Exception("No model asigned to solver");
if(x0 == null)

throw new Exception("Initial state cannot be null");
if(u == null)

throw new Exception("Input cannot be null");
if(x@.Length <= 0)

throw new Exception("Initial state cannot be length less then 1");

y = new double[N][];

return null;

public class SolverFE : ODESolver {

public override double[][] Solve(double[] x@, double[][] u, double tStart, double
dt, int N, out double[][] vy) {

base.Solve(x0, u, tStart, dt, N, out y);

int nx = x0.Length;
double[][] x = new double[N][];
double[] dxdt = x0;

//set initial values at t=0
x[0] = new double[nx];

y[@] = _model.Measurments(x0);
Array.Copy(x@, x[@], nx);

for(int k = 1; k < N; k++) {

//evaluate function at current state/time
dxdt = _model.dxdt(x[k - 1], tStart + k * dt, u[k - 1]);

193

//set next state
x[k] = new double[nx];
for(int i = 0; i < nx; i++)
x[k][i] = x[k - 1][i] + dt * dxdt[i];

_model.EndStep();

y[k] = _model.Measurments(x[k]);

Progress = (int)(k * 100 / (N - 1));
}

return x;

public class SolverHeun : ODESolver {

public override double[][] Solve(double[] x@, double[][] u, double tStart, double
dt, int N, out double[][] vy) {

base.Solve(x0, u, tStart, dt, N, out y);

int nx = x0.Length;

double[][] x = new double[N][];
double[] dxdt = x0;

double[] xt = new double[nx];

//set initial values at t=0
x[@] = new double[nx];

y[@] = _model.Measurments(x0);
Array.Copy(x@, x[@], nx);

for(int k = 1; k < N; k++) {

//evaluate function at current state/time
double t = tStart + k * dt;

//FE
double[] Ffe = _model.dxdt(x[k - 1], t, u[k - 1]);

//x_fe
for(int 1 = 0; i < nx; i++)

xt[i] = x[k - 1][i] + dt * Ffe[i];
double[] Fhn = _model.dxdt(xt, t + dt, u[k - 1]);
//compute next state
x[k] = new double[nx];
for(int 1 = 0; i < nx; i++)

x[k][i] = x[k - 1][i] + dt / 2.8 * (Ffe[i] + Fhn[i]);

_model.EndStep();

194

y[k] = _model.Measurments(x[k]);
Progress = (int)(k * 100 / (N - 1));
}

return x;

public class SolverRK4 : ODESolver {

public override double[][] Solve(double[] x@, double[][] u, double tStart, double
dt, int N, out double[][] v¥) {

base.Solve(x0, u, tStart, dt, N, out y);

int nx = x0.Length;

double[][] x = new double[N][];
double[] dxdt = x0;

double[] xt = new double[nx];

//set initial values at t=0
x[0] = new double[nx];

y[@] = _model.Measurments(x0);
Array.Copy(x@, x[0], nx);

for(int k = 1; k < N; k++) {

//evaluate function at current state/time
double t = tStart + k * dt;

//F1d
double[] F1d = _model.dxdt(x[k - 1], t, u[k - 1]);

//F2d
for(int 1 = 0; i < nx; i++)

xt[i] = x[k - 1][i] + dt / 2.@ * F1d[i];
double[] F2d = _model.dxdt(xt, t + dt / 2.0, u[k - 1]);

//F3d
for(int 1 = 0; i < nx; i++)

xt[i] = x[k - 1][i] + dt / 2.0 * F2d[i];
double[] F3d = _model.dxdt(xt, t + dt / 2.0, u[k - 1]);

//Fad
for(int i = 9; i < nx; i++)

xt[i] = x[k - 1][i] + dt * F3d[i];
double[] F4d = _model.dxdt(xt, t + dt, u[k - 1]);

//compute next state
x[k] = new double[nx];
for(int 1 = 0; i < nx; i++)

x[k1[i] = x[k - 1][i] + dt / 6.0 * (F1d[i] + 2.0 * F2d[i] +
2.0 * F3d[i] + F4d[i]);

195

_model.EndStep();

y[k] = _model.Measurments(x[k]);

Progress = (int)(k * 100 / (N - 1));
}

return x;

196

ODE model (Simulation, c#)

public class ODEModel
{

public Dictionary<string,double> Parameters{get;set;}

public ODEModel() {

Parameters = new Dictionary<string, double>();

public virtual double[] dxdt(double[] x, double t, double[] u){
return null;

public virtual void EndStep() {
public virtual void Setup() {

public virtual double[] Measurments(double[] x) {
return null;
}
protected double par(string sName) {
if(Parameters.ContainsKey(sName))
return Parameters[sName];
else

throw new Exception("No parameter by the name " + sName + " found");

}
public void LoadParamFile(string sFileName, bool bErase = true) {
if(Parameters == null)

Parameters = new Dictionary<string,double>();

if(bErase)

Parameters.Clear();

if(!File.Exists(sFileName))

throw new Exception("Parameter file:

+ sFileName + "not found!");
string[] sLines = File.ReadAlllLines(sFileName);

for(int i = @; i < sLines.Length; i++) {
if(sLines[i].Length > © && sLines[i][@] !'= '%') {

//params in one line

string[] sParams = sLines[i].Replace(" ", "").Replace("\t",
") .Split(;');

for(int k = @; k < sParams.Length; k++) {

if(sParams[k].Length > @ && sParams[k][@] != '%' &&
sParams[k].Contains('=")) {

string[] sTemp = sParams[k].Split('=");

197

if(sTemp.Length != 2)

throw new Exception("Format error on line

+ (i + 1).ToString() + " of parameter file");

double fval;
if(double.TryParse(sTemp[1], out fval)) {

string sParamName = sTemp[@];

if(Parameters.ContainsKey(sParamName))
Parameters[sParamName] = fVal;
else

Parameters.Add(sParamName, fVal);

class ModellLP:0DEModel {

public override double[] dxdt(double[] x, double t, double[] u) {
base.dxdt(x, t, u);

//get parameters
double T = par("T");

int nLen = Math.Min(x.Length,u.Length);

double[] dxdt = new double[nLen];
for(int i = @; i < nLen;i++)
dxdt[i] =1 / T * (u[i] - x[i]);

return dxdt;

class ModelR4C2 : ModelRC {
//parameters
double R_b, R_w, R_g;
double C_b, C_w;

public override void Setup() {

base.Setup();
//PARAMETERS
//THERMAL RESISTANCES

R_b = par("R_b");
R_w = par("R_w");

198

//connecting thermal resistances for window, door, floor and roof in paralell

R_g = par("R_g");

//THERMAL CAPACITANCE
C_b = par("C_b");
C_w = par("C_w");

}
public override double[] dxdt(double[] x, double t, double[] u) {

base.dxdt(x, t, u);

#tregion extract states and inputs from arguments
//number of states, alocate return array

int nx = 2;

if(x.Length != nx)

throw new Exception("Not enough states in x@. Found " +
x.Length.ToString() + ", need " + nx.ToString());
int nu = 7;
if(u.Length != nu)

throw new Exception("Not enough inputs in u. Found " +

u.Length.ToString() + ", need " + nu.ToString());

//EXTRACT STATES
double T_b = x[0];
double T_w = x[1];

//EXTRACT INPUTS
//heat sources

double Qheater
double Qpeople

ufe];

uf1];

double Qappliences = u[2];

double Qsolar = u[3];

double Qextsolar = u[4];

//outside weath condition parameters
double T_inf = u[5];

//ventilation
double V_e = u[6];

#tendregion

#region Model

//sum up heat sources

double Q1 = Qheater + Qappliences;
double Q2 = Qsolar;

//ventialtion equivalent resistance

double R_v = Ventilation(V_e);

199

(Cb *R_g) *

(Cw * R w) *

//DIFFERENTIAL EQUATIONS

double dT b=1/Cb*QlL - 1/ (Cb*Rb)* (T.b-T_w)
(Tb-Tinf) - 1/ (Cb*Rv)* (Tb- T inf);

double dT_ w =1/ C_w * Q2 - 1/ (Cw *R_b) * (T_w - T_b)
(T_w - T_inf);

#tendregion

#region return differentials
//RETURN DIFFERENTIALS

double[] dxdt = new double[nx];
dxdt[e] = dT_b;

dxdt[1] = dT_w;

return dxdt;

#tendregion

200

1/

1/

Simulation Framework (Simulation, c#)

public class SimulationCtrl {

private Thread _thrSimulation;

private bool _bRunSim = true;

public delegate void SimulationComplete(Simulation sim, double nRunTimeMS);

public event SimulationComplete OnSimulationComplete;

public delegate void SimulationFailed(string sError);

public event SimulationFailed OnSimulationFailed;
private List<Simulation> _1stSimQue;

public int GetSolverProgress() {
if(_1stSimQue != null && _1stSimQue.Count > 9)
return _1lstSimQue[@].GetSolverProgress();
else
return 100;

public SimulationCtrl() {
_1stSimQue = new List<Simulation>();

_thrSimulation = new Thread(DoSimulation);

public void Start() {
_bRunSim = true;
_thrSimulation.Start();

public void Stop() {
_bRunSim = false;
_thrSimulation.Abort();

public void QueSimulation(Simulation sim) {
_1stSimQue.Add(sim);

private void DoSimulation() {
while(_bRunSim) {
if(_1stSimQue.Count > @) {
try {
DateTime dtStart = DateTime.Now;
_1stSimQue[@].Run();
TimeSpan tsRunTime = DateTime.Now - dtStart;

if(OnSimulationComplete != null)

201

OnSimulationComplete(_lstSimQue[@],
tsRunTime.TotalMilliseconds);

}
catch(Exception ex) {
string sType = ex.GetType().ToString();

if(ex.GetType().ToString() !=
"System.Threading.ThreadAbortException”) {

if(OnSimulationFailed != null)

OnSimulationFailed(ex.Message);

}
}
finally {
_1stSimQue.RemoveAt(9);
}
¥
else

Thread.Sleep(100);

public class Simulation {
public ODESolver Solver { get; protected set; }
public ODEModel Model { get; protected set; }
public double[] x0 { get; private set; }
public int N { get; private set; }
public double dt { get; private set; }
public double[][] Result { get; protected set; }
public double RunTime { get; protected set; }
public int Index { get; protected set; }

public string ParamFileName { get; protected set; }
public string[] sInput { get; protected set; }

public double[][] fInput { get; protected set; }
public double[][] Measurments { get; protected set; }

private DateTime _dtStart;

public string SolverType {

get {
if(Solver == null) return "None";
else return
Solver.GetType().ToString().Replace("NumSimLib.Solver.","");
}
}
public int GetSolverProgress() {
if(Solver == null) return 0;
else return Solver.Progress;

202

public double[] GetState(int nState, int nStep, double fMin = double.MinValue,
double fMax = double.MaxValue) {

double[] fRes;
fRes = new double[N / nStep];
for(int i = 0; i < N/ nStep; i ++) {
fRes[i] = Math.Min(Math.Max(fMin, Result[i * nStep][nState]), fMax);
}

return fRes;

}

public double[] GetInput(int nInput, int nStep, double fMin = double.MinValue,
double fMax = double.MaxValue) {

double[] fRes;
fRes = new double[N / nStep];
for(int i = 0; i < N/ nStep; i ++) {
fRes[i] = Math.Min(Math.Max(fMin, fInput[i * nStep][nInput]), fMax);
}

return fRes;

}

public double[] GetMeasurment(int nInput, int nStep, double fMin = double.MinValue,
double fMax = double.MaxValue) {

double[] fRes;
fRes = new double[N / nStep];
for(int i = @; i < N / nStep; i++) {

) fRes[1i] = Math.Min(Math.Max(fMin, Measurments[i * nStep][nInput]),
fMax);

}
return fRes;

}

public void Setup(int index, ODESolver solver, ODEModel model, double[]
initial_conditions, int sim_horizion, double time_step,string[] 1nput string parfile) {

Index = index;

Solver = solver;

Model = model;

x0 = initial_ conditions;
N = sim_horizion;

dt = time_step;

sInput = input;
ParamFileName = parfile;

RunTime = 0;

public void Run() {
//set the model to solver
if(Solver == null)
throw new Exception("No solver configured for simulation");
StartTimer();
//set model parameters

Model.LoadParamFile(ParamFileName);

203

//call setup to let the model init itself
Model.Setup();

//set the model to solver
Solver.SetModel(Model);

//decode u strings
List<string> lstInputs = new List<string>();
for(int i = @; i < sInput.Length; i++) {
string sU = sInput[i].Replace(" ", "").Replace("\t", "").ToLower();

//has multiplication
int nStart = sU.IndexOf('x");
int nMultiplier = 1;
if(nStart != -1) {
if(!int.TryParse(sU.Substring(@, nStart), out nMultiplier))
nMultiplier = 1;
sU = sU.Substring(nStart + 1);
}
for(int k = @; k < nMultiplier; k++) {
1stInputs.Add(sU);

}

//create the input vector for LP simulation (all @), decode u strings
fInput = new double[N][];
for(int i = @; i < N; i++) {
//extract CSV values
string[] sVals = 1lstInputs[i % lstInputs.Count].Split(',");
fInput[i] = new double[sVals.Length];
for(int k = @; k < svVals.Length; k++) {
double.TryParse(sVals[k], out fInput[i][k]);

//solve the model and store results

double[][] vy;

Result = Solver.Solve(x@, fInput, @, dt, N, out y);
Measurments = y;

StopTimer();

protected void StartTimer() {
_dtStart = DateTime.Now;
}
protected void StopTimer() {
TimeSpan ts = DateTime.Now - _dtStart;

RunTime = ts.TotalMilliseconds;

204

Parameter ldentification (MATLAB)

function [theta_opt] = optimize(theta0,theta,u,x0,N,dt,mode
%% init local worker variables
thetalast = [];
myJ =[;
myG = [J;
myHeq = [[;

%% run optimizer

options= optlmset(Algorlthm , 'Iinterior-
point' , 'Display’ , 'off' Maxlter' , 300, 'UseParallel'

% check bounds in fmincon speed, group inputs

[theta_o E])
fmincon{@objective,thetaO,[],[].[1.0.[].[], @constr

%% objective func
function J = objective(theta)
if ~isequal(theta,thetalLast)

[myJ, myG, myHe q|1|
compute(eta,theta0,u,x0,N,dt,model,r,Ew);

thetalLast = theta;
end
%return myJ
J =myJ;
end

%% constraints func
function [G, Heq] = constraints(theta)
if ~isequal(theta,thetalLast)

[myJ, myG, myHe q|1|
compute(eta,theta0,u,x0,N,dt,model,r,Ew);

thetalLast = theta;
end
%return myG and myHeq

G = myG;
Heq = myHeq;
end

end

function [myJ myG myHeq] = compute(theta,theta0,u,x0,N,dt,m
%% Solve ODE with current theta
[x,y,u] = simulate(u,x0,N,dt,model,theta);
theta_rel = theta./thetaO;

%% compute J
J=0;
for i=1:size(r,2)

e = X(,i)-r(:,i);

205

I,r,Ew)

, 'always');

aints,options);

odel,r,Ew)

J=J + e*e*Ew(i);

end

%% return J,G,Heq

myG = [theta_rel - 3.0;
0.3 - theta_rel];

myJ = J;

myHeq = [|;

end

function [x_store,y_store,u] = simulate(u,x0,N,dt,model,the

%init sim loop
nx = size(x0,1);

ny =2;
x_store = zeros(N,nx);
y_store = [];
X = X0;
for i=1:N
u_cur = u(i,))"

%solve the ODE one timestep at a time
[dxdt,y] = RK4(x,i*dt,u_cur,dt,@(t,x,u) mod
X =X + dt * dxdt;

x_store(i,:)=x;

if isempty(y_store)
ny = size(y,1);
y_store = zeros(N,ny);
end

if ny>0
y_store(i,}) = y;
end
end
end

function [dxdt,y] = RK4(x,t,u,dt,model)
%F1d
[F1d,y] = model(t,x,u);

%F2d

xt=x+dt/2.0*F1d;
[F2d,y] = model(t + dt/2.0,xt,u);

206

ta)

el(t,x,u,theta));

%F3d
xt = x + dt/2.0 * F2d;
[F3d,y] = model(t + dt/2.0,xt,u);

%F4d
xt = x + dt * F3d;
[F4d,y] = model(t + dt,xt,u);

%compute next state
dxdt=1/6.0*(F1d+2.0*F2d + 2.0 * F3d + F4d);
[F,y] = model(t + dt,x+dt*dxdt,u);
end

207

Model implementations (MATLAB)

function [dxdt,y] = ModelR4C2(t,x,u,theta)
% load parameters

R_b = theta(1);
R_w = theta(2);
R g = theta(3);
R_vent =theta(4);
Cb = theta(5);
C w = theta(6);

%extract states
T _b=x(1);
T_w=x(2);

%heat sources
Qheater = u(1);
Qpeople = u(2);

Qappliences = u(3);
Qsolar = u(4);
Qextsolar = u(5);

%outside weath condition parameters
T_inf = u(6);

%ventilation

N = u(?);

%sum up heat sources
Q1 = Qheater + Qappliences;
Q2 = Qsolar;

%ventialtion equivalent resistance
R_v = Ventilation(N,R_vent);

%DIFFERENTIAL EQUATIONS

dT_b=1/Cb*Q1 - 1/(C b*R be*(Tb-Tw) - 1/(Cb*
R g)*(T_b-T_inf) - 1/(C_b*R_v)*(T_b - T_inf);

dT_ w=1/C w*Q2 - 1/(C_w*R_b)*(Tw-Tbh - 1/(Cw*
R_w) * (T_w - T_inf);

%RETURN DIFFERENTIALS
dxdt = zeros(2,1);
dxdt(1) = dT_b;
dxdt(2) = dT_w;

y=1[
end

208

function [dxdt,y] = ModelR6C2(t,x,u,theta)
% load parameters

R b = theta(1);
R _w = theta(2);
R_s = theta(3);
R e = theta(4);
R g = theta(5);
R_vent =theta(6);
Cb = theta(7);
Cw = theta(8);

%extract states
T b =x();
T w=x(2);

%heat sources
Qheater = u(l);
Qpeople = u(2);

Qappliences = u(3);
Qsolar = u(4);
Qextsolar = u(5);

%outside weath condition parameters
T_inf = u(6);

%ventilation
N =u(7);

%sum up heat sources
Q1 = Qheater + Qappliences;
Q2 = Qsolar;

Q3 = Qextsolar;

%ventialtion equivalent resistance
R_v = Ventilation(N,R_vent);

%ALGEBRAIC NODE EQUATIONS (store for later return b y Measurments)
Ts=(Rb*R s*Q2+R_b*T_ w+R_s*T_b) /I (R_b+R_s);
Th=(Re*Rw*Q3+R_e*T_w+R_ w*T_inf)/ (R_e +R_w);

%DIFFERENTIAL EQUATIONS

dT b=1/C b*Q1l - 1/(C_b*R_b)*(Tb-Ts) - 1/(Cb*
R g)F(T_b-T1inf) - 1/(C_b*R VW)*(T_b T infy;

dT_w= - 1/(C_w*R_s)*(Tw-Ts) - 1/(Cw*
R_w)™ (T_w-T_h);

%RETURN DIFFERENTIALS
dxdt = zeros(2,1);

209

dxdt(1) = dT_b;
dxdt(2) =dT_w;

y= zeros(2,1);

y(1) =T_s;

y(2)=T_h;
end

function [dxdt,y] = ModelR6C3(t,x,u,theta)
% load parameters

R_b = theta(1);
R_w = theta(2);
R_s = theta(3);
R e = theta(4);
R g = theta(5);
R_vent =theta(6);
Cb = theta(7);
Cw = theta(8);
C_s = theta(9);

%extract states
T_b =x(1);
T_w =x(2);
T_s =x(3);

%heat sources
Qheater = u(1);
Qpeople = u(2);

Qappliences = u(3);
Qsolar = u(4);
Qextsolar = u(5);

%outside weath condition parameters
T_inf = u(6);

%ventilation
N =u(7);

%sum up heat sources
Q1 = Qheater + Qappliences;
Q2 = Qsolar;

Q3 = Qextsolar;

%ventialtion equivalent resistance
R_v = Ventilation(N,R_vent);

%ALGEBRAIC NODE EQUATIONS (store for later return b y Measurments)
Th=(Re*Rw*Q3+R_e*T_w+R_ w*T_inf)/ (R_e +R_w);

210

%DIFFERENTIAL EQUATIONS

dT b=1/C b*Q1 - 1/(Cb*R b)*(T_ b-T.s) -
/(C_b*R_g)*(T_b-T_inf) - 17(Cb *R_V)*(T_b-T_inf);

dT_w= - 1/(Cw*R_s)*(T_w-T_s) -
[(C_w*R_w)*(T_w-T_h);

dT s=1/C s*Q2 - 1/(C_s*R_b)*(T_s-T_b) -

[(C_S*R_s)*(T_s-T_w);

%RETURN DIFFERENTIALS
dxdt = zeros(3,1);
dxdt(1) = dT_b;
dxdt(2) =dT_w;
dxdt(3) =dT_s;

y= zeros(1,1);
y(1)=T_h;
end

function [dxdt,y] = ModelR7C3(t,x,u,theta)
% load parameters

R_b = theta(1);
R_wl = theta(2);
R_w2 = theta(3);
R_s = theta(4);
R_e = theta(5);

R g = theta(6);
R_vent =theta(7);
Cb = theta(8);
C wil = theta(9);
C w2 = theta(10);

%extract states

T_b =x(1);
T_wl=x(2); %middle of wall
T w2 =x(3); %wall inside building

%heat sources
Qheater = u(1);
Qpeople = u(2);
Qappliences = u(3);
Qsolar = u(4);

Qextsolar = u(5);

%outside weath condition parameters
T_inf = u(6);

%ventilation
N =u(7);

211

%sum up heat sources
Q1 = Qheater + Qappliences;
Q2 = Qsolar;

Q3 = Qextsolar;

%ventialtion equivalent resistance
R_v = Ventilation(N,R_vent);

%ALGEBRAIC NODE EQUATIONS (store for later return b y Measurments)
Ts=(Rb*R S*Q2+R_ b*T w2+R_s*T_b) I (R_b+R_s);
Th=(Re*Rwl*Q3+R e*T wl+R wl*T_ inf) / (R_e + R_w1);

%DIFFERENTIAL EQUATIONS

dT_b=1/Cb*Q1l - 1/(C b*R b)*(Tb-T_s%_ - 1/(Cb*
R_g)*(T_b - T_inf) - 1/(C_b*R_v)*(T_b-T_inf),

dT _wl = - 1/(C_wl*R_w2)* (T_wl-T_w2)- 1/(C_wl*
R_wI) * (T_wl - T_h);

dT_w2 = - 1/(C_w2*R_s)* (Tw2-Ts) - 1/(C_w2*

R _w2) * (T_w2 - T_wl);

%RETURN DIFFERENTIALS
dxdt = zeros(3,1);
dxdt(1) = dT_b;
dxdt(2) = dT_w1,;
dxdt(3) = dT_w2;

y= zeros(2,1);

y(1) =T_s;

y(2)=T_h;
end

function [dxdt,y] = ModelR5C3(t,x,u,theta)
% load parameters

%data;
R_b = theta(1);
R_w = theta(2);
R_fur = theta(3);
R g = theta(4);
R_vent =theta(5);
Cb = theta(6);
C w = theta(7);

C_fur = theta(8);

%extract states

T b =x1);
Tw =x(2);
T _fur =x(3);

%heat sources
Qheater = u(1);
Qpeople = u(2);

212

Qappliences = u(3);
Qsolar = u(4);
Qextsolar = u(5);

%outside weath condition parameters
T_inf = u(6);

%ventilation
N =u(7);

%sum up heat sources
Q1 = Qheater + Qappliences;
Q2 = Qsolar;

%ventialtion equivalent resistance
R_v = Ventilation(N,R_vent);

%DIFFERENTIAL EQUATIONS
dT b =1/Cb*Q1 - 1/(Cb*R_b

R fur _IgT b - T_fur) 1/(C_b*R_g)*(T_

w =1/C W*Q2 - 1/(C_w*R_b)
RW)_*(TW T_inf);

dT_fur =- 1/(C_fur*R_fur)* (T_fur-T

%RETURN DIFFERENTIALS
dxdt = zeros(3,1);
dxdt(1) = dT_b;
dxdt(2) =dT_w;
dxdt(3) = dT_fur;

y=1[

end

213

*(T_b
b(T‘I' |nf-)r -

*(T_w-T_b)

_b);

1/(C_b*

1/(C.b*

1/(C_w*

Appendix D - Summary sheet

214

»] (’)g
m

Telemark University College
Faculty of Technology
M.Sc. Programme

MASTER’S THESIS, COURSE CODE FMH606

Student: Ole Magnus Brastein (130482)

Thesis title: Grey-box models for estimation of hating times for buildings
Signature: e

Number of pages: 215

Keywords: Grey-box models

Heating time prediction

Thermal network models

Supervisor: Nils-Olav Skeie SIgN..

2" supervisor: Carlos Pfeiffer SIgN..
Censor: Hakon Tjelland SN
External partner: SigN.:
Availability: <Open >

Archive approval (supervisor signature) Sign.:c.ctien . Date:.............
Abstract:

Energy-usage in buildings is responsible for adgrart of the total demands on energy
production. Models are required to estimate théilg@and cooling times of buildings, thus
allowing a control system to accurately maintaimémrt temperature only when strictly
needed, lowering the demand for energy used fdirftea

Grey-box models based on Thermal Network ResisagaCitor equivalents are used to
predict thermal behavior of buildings. Model stures are based on cognitive or intuitive
understanding of thermodynamic behavior of building

Working with models and data sets requires softw@oks both for treatment of data,
simulation of models and identification of paramgtén this project software is developed
both in c# and MATLAB as and when applicable.

Grey-box models are shown to accurately predicptgature over the prediction horizon,
leading to accurate estimation of heating time,mt@mpared to measurement data. Furth
the proposed control strategy is shown to overceomee of the shortcomings of standard
heater control systems.

Telemark University College accepts no responsibili for results and conclusions presented in this gort.

er,

