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A B S T R A C T

Most methods for flow rate measurement in open channels usually have low accuracy over a range of flow rates
due to varying fluid properties, flow conditions and channel length. This paper suggests an algorithm to improve
on the accuracy of flow rates computed based on hydraulic structure and slope-hydraulic radius methods. A
model for determining flow rates in accelerating flows is also developed. In the proposed algorithm, the para-
meter used for adapting the flow rate models is obtained by comparing the measured fluid depth with the depth
simulated based on the one-dimensional Saint Venant equations. The results show that an improvement
from±2.3% to± 0.8% accuracy in the flow rate measurement using the Venturi flume method could be
achieved. In unsteady state flow in a straight-run channel, the results based on flow simulation also show
possibility of achieving accurate computation over a wide range of flow rates.

1. Introduction

Fluid flow in an open channel has many industrial applications. It is
applied in transportation of slurries, water supply for irrigation, and
river flow control [1]. In these fields, accurate flow measurements are
important for proper flow distribution and control for safe operations.
In open channels, the flow rate is usually difficult to measure directly.
Most methods employed are based on computation of flow rate from
measurements of other variables that can be measured directly. Such
variables include channel width, channel depth, channel slope and
channel velocity. Among other methods, the timed gravimetric, the
area-velocity, the slope-hydraulic radius and the hydraulic structure
methods are used for flow rate measurements in open channels [2].

The timed gravimetric method is limited to flow rates less than100
litres/min and is not suitable for continuous flow. The area-velocity
method requires measurement of average velocity of the flow over a
known cross-section. The area-velocity method uses pressure trans-
ducer and Doppler ultrasonic sensor for depth and velocity measure-
ments, respectively. These instruments are sensitive to flow dis-
turbances, thus resulting in error± 10% in the measurement [3]. In the
slope-hydraulic radius method, a flow resistance model such as the
Manning formula is utilized. The method is applied in uniform flows,
and is best suited for sizing open channels due to its simplicity. For
control purpose, the slope-hydraulic radius method is not suitable due
to its wide measurement error in the range of 25–30%. The

measurement error is due to uncertainty in determining the correct
frictional parameter, such as Manning's roughness coefficient that
characterises the flow. Another common method is the use of hydraulic
structures such as weirs and flumes. Both structures introduce a re-
striction in the flow direction, which leads to changes in the approach
velocity and in the liquid depth in the channel. The measurement of
flow rate with a flume or weir is based on the unique depth-flow rate
relationship established in the flow by the structure. Although flumes
and weirs show high accuracy (2–6%) under laboratory observations,
the field accuracy still lies within±10% [4]. This is due to un-
certainties in measurement of the level, and due to difficulties in ob-
taining the correct discharge coefficient for correction of losses in the
theoretical depth-flow rate relationship.

This paper focuses on the use of hydraulic structures and slope-
hydraulic radius measurement techniques, where the liquid depth is the
only physical measurement required to compute the flow rate in a given
channel geometry. These techniques are easier to manipulate in de-
signing a software for flow control in open channels. Normally, the
hydraulic structures (flumes or weirs) are installed in applications
where the flow upstream is subcritical (that is, the flow condition where
the flow velocity is less than the gravity wave celerity). When the ve-
locity is greater than the wave speed (celerity), the flow condition is
supercritical flow. At the transition between subcritical and super-
critical conditions, the flow is critical, that is, the flow velocity and the
wave speed are the same. In general, flumes are designed depending on
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whether the approaching fluid flow is subcritical or supercritical.
Wilson [5] described the design of straight-run channels for measure-
ment of flow rates in supercritical condition. Similar to subcritical
Venturi flumes, Kilpatrick et al. [6] and Smith et al. [7] gave clear
discussions on development of supercritical flumes. The problems with
the use of supercritical Venturi flume are the difficulty to obtain critical
flow conditions for all flow rates, and the possibility of deposition of
fluid debris or suspensions. These challenges limit the measurement
range as well as the hydraulic control of the flume. The slope-hydraulic
radius method can be applied in supercritical flow conditions, but this
will require in addition to uniform flow model, a model for accelerating
flows, since the flow may not have reached a uniform flow before
discharging the channel.

There are several studies and model reviews on flow rate mea-
surement in open channels [8–10]. The possibility of estimating drilling
mud flow rate for kick/loss detection using a Venturi channel flow rate
model is discussed in Berg et al. [11], where it is shown that the re-
quired tuning parameter for the model depends on the fluid properties
due to non-Newtonian behaviour of the fluid. In this paper, an algo-
rithm is presented for computing flow rate in open channels with im-
proved accuracy. The developed method could be suitable for software
implementation in open channels in both subcritical and supercritical
upstream flow conditions. The desired improved accuracy is obtained
by continuous calibration of the model applied in each of the slope-
hydraulic radius and hydraulic structure techniques. In order to achieve
this, the flow through the channel is simulated using the estimated flow
rate, and the simulated fluid depth is compared with the measured fluid
depth. The difference in the simulated and measured depths is used to
continuously adjust a tuning parameter in the flow rate model until the
difference between the simulated and the measured depths is within a
tolerance level.

The success of this algorithm depends on a suitable 1-D unsteady
state model that can be applied to simulate the flow in an open channel.
The Saint Venant equations have been long established as a good 1-D
model that predicts the flow behaviour in an open channel. The accu-
racy and speed of execution of these hyperbolic partial differential
equations depend on the numerical scheme employed. A number of
numerical algorithms for solving the Saint Venant equations have been
developed [12–14]. The simplified numerical scheme described in Agu
et al. [15] for solving the nonlinear equations, is applied in this paper.

In the following sections, the governing equations are presented,
and the iterative algorithm for computation of the flow rate using both
the hydraulic structure and the slope-hydraulic radius methods, are
described. Simulation results based on the algorithms are presented,
and their accuracy and speed of execution are discussed. Finally, some
conclusions are drawn.

2. Governing equation

The unsteady state flow of fluid in an open channel of any kind of
cross section can be described by the one-dimensional Saint Venant
equations [16]
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Here, Q is the volumetric flow rate, and A and h are the flow cross
sectional area and free surface liquid depth, respectively. θ is the
channel angle of inclination, and g is the acceleration due to gravity. β
is the momentum correction coefficient with a value between 1.03 and
1.07. x is the position along the channel axis and t is the time. For a
Newtonian fluid, the frictional slope Sf is given by Manning's equation

= −S V n R( ) ,f M h
2 4/3 (3)

where nM is the Manning's roughness coefficient, =V Q A/ is the
average flow velocity and =Rh

A
Pw

is the hydraulic radius, where Pw is
the wetted perimeter at the flow cross section. In non-Newtonian fluid
flows, the internal frictional shearing stresses dominate. Based on the
velocity profile for a power law fluid rheology [17], Sf is obtained as
given in Eq. (4). For yield-pseudo-plastic fluid rheology, Sf is given by
Eq. (5) according to Jin and Fread [18].

= ⎛
⎝

+ ⎞
⎠

S K
ρgR

V
h

n
n4

1 2 ,f
h

n

(4)

=
⎡

⎣

⎢
⎢
⎢

+
⎛

⎝
⎜⎜

+ +

+

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥
⎥

+

( )
S

τ
ρgR

V

R
1 (ϵ 1)(ϵ 2)

(0.74 0.656ϵ)
.f

y

h
τ
K h

ϵ

1
ϵ 0.15

y

(5)

Here, ρ, τy, K and n (or ≡ϵ n
1 ) are fluid properties denoting the

density, yield shear stress, flow consistency coefficient and fluid be-
haviour index, respectively.

The numerical solution of Eqs. (1) and (2) can be obtained as in Agu
et al. [15], with notation for the spatial discretization as given in Fig. 1,
where the computation nodes for the liquid depth are at the cell centres
( =i N1,2,3, .., ) and those for the flow rate are at the cell faces
( = +i N, , ,..,3

2
5
2

7
2

1
2 ) based on a staggered grid arrangement. Eqs. (6) and

(7) describe the discretized forms of Eqs. (1) and (2).
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Applying the first order upwind scheme,
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where +Ai 1/2 is the average cross sectional area for each cell face, and is
calculated based on the average cell centre liquid depth, ++h h

2
i i1

2.1. Boundary conditions and inputs

At the upstream boundary, the values of =h t x( , 0) and =Q t x( , 0)
are designated as input corresponding to h0 and Q1/2, respectively, as
shown in Fig. 1. The downstream boundaries are =h t x L( , ) and

=Q t x L( , ) corresponding to hN and +QN 1/2, respectively. Normally,

Fig. 1. Computation nodes for liquid depth and flow rate along
the channel length.
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=Q t x( , 0) is specified along with one of =h t x( , 0) and =h t x L( , )
depending on the flow condition: for a pure subcritical flow, both up-
stream and downstream boundaries are specified with a combination of
depth and flow rate. In a pure supercritical flow, only the upstream
boundary is specified with the flow variables =h t x( , 0) and

=Q t x( , 0). When the flow transits from subcritical upstream to su-
percritical downstream as in free-flowing flumes and weirs, only the
upstream flow rate is used to determine the flow behaviour. The ne-
cessary boundary equation for a given boundary input is also described
in Agu et al. [15].

One of the challenges in simulating supercritical flows is obtaining
accurate measurement of the input liquid depth, owing to the dynamic
nature of the upstream boundary due to disturbances and due to the
flow being under development. In most practical flows, such as that
from a well into an open channel diverter, an estimation of input depth
can be obtained by applying momentum and energy balances over the
fluid volume discharging from the well. Neglecting internal fluid re-
sistance and wall interaction effect within the displaced liquid volume
shown in Fig. 2, the steady state momentum balance across the fluid
volume in the vertical direction can be expressed as

− − = − −ρQv sinθ ρQv P P A F( ) ,w w B0 1 0 (8)

where =F ρgA hB w 0 is the weight of fluid volume, v0 is the entry velocity
of fluid into the return channel, vw is the flow velocity of fluid within
the well at a given flow rate, Aw is the flow cross-sectional area of the
well, and h0 is the liquid depth at the entrance to the channel where A0
is the corresponding flow area.

Applying Bernoulli's principle for energy balance over the fluid
volume, neglecting energy losses,
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Here, hp is the energy per unit weight contributed by a pump to
overcome the potential energy due to fluid level as well as the internal
losses within the fluid volume. Assuming that the pump energy is just
sufficient to overcome the fluid potential energy,
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Substituting (9) into (8),
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For a known geometry, the flow cross-sectional area as a function of
liquid level in the channel is known (see Table 1). Combining the area
function A h( ) in Table 1 with Eq. (10), the input liquid depth h0 to the
channel for any given flow rate can be calculated.

3. Flow rate measurement models

As mentioned earlier, this paper focuses on formulating an algo-
rithm with improved accuracy for determining the flow rate in open
channels based on the hydraulic structure and the slope-hydraulic ra-
dius methods. The model applied is specific to any of these methods,
and this section gives account of these models for different fluids,
geometries and flow conditions.

3.1. Measurement of flow rate using hydraulic structure method

The basic principle underlying the measurement of flow rate in
flumes and weirs is the establishment of critical flow condition in the
structure [19]. A Flume, as that shown in Fig. 3, usually has a throated
section with reduced cross-section, which serves as a control unit for
measuring flow rate in the channel. In a well-designed flume, critical

Fig. 2. Free body diagram for flow from a well into a return channel.

Table 1
Geometries of common flumes.

Figures Areas Wetted perimeters

Rectangular
=A bh = +P h b2w

Trapezoidal
= +A mh b h( ) = + +P h m b2 1w 2

Circular

= −−( )( )A acosD D h
D2

2 2

− −( )h h D h( )D
2

= −( )P Dacosw
D h

D
2

Fig. 3. Top (a) and side (b) views of a Parshall flume.
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flow condition always occurs at a point within the throat section for all
flow rates in the range of measurement. By considering the specific
energy balance between the upstream section and the critical point, the
flow rate can be calculated as given in ISO 4359 [20]
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Here, Cd is the coefficient of discharge accounting for losses and Cv
is the coefficient correcting the replacement of the specific energy at the
measurement point with the measured depth, hm. Cs is the shape coef-
ficient correcting non-rectangularity of the channel geometry, bt is the
bottom width of the channel at the throat section and Am is the cross-
sectional area of the flow at the point of measurement. α is the average
kinetic energy correction factor and k is a dimensionless coefficient
introduced in this work to account for the reduced velocity head at the
measurement section due to boundary layer effect. Subscript m in-
dicates measured value or evaluated values at measurement point.

In a rectangular cross section, =C 1s and ≈k 1.0, since the effect of
boundary layer on the velocity head is small. Cd in a rectangular
channel can be obtained from

= − −C L b L h(1 0.006 / )(1 0.003 / ) .d t m
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In a trapezoidal channel, the approximate expression for the shape
factor and the discharge coefficients are given as follows,
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Here, s is the side slope of the channel (described as s horizontal to 1
vertical). Due to the sloping side of a trapezoidal channel, the effect of
the boundary layer is more significant. Some trial simulations with
water show that the value of k is in the order of magnitude of the
measured depth, hm. The geometries of rectangular, trapezoidal and
circular channels are given in Table 1. Similar to U-shaped channel, the
expressions for Cd and Cs for a circular channel can be found in ISO
4359 [20].

3.2. Measurement of flow rate using slope-hydraulic radius method

Without restricting the flow in an open channel, the flow rate can be
computed when the flow is steady and uniform by using the appropriate
flow resistance model. When the flow is uniform, the fluid body force
due to the channel bed slope is completely absorbed by the frictional
resistance to the flow, hence there is no further acceleration of the flow
and = =S S θsinf 0 . Based on the resistance models Eqs. (3)–(5) and
assuming constant cross-section, the flow rate in an open channel can
be obtained from Eq. 15(a - c) for the respective fluid resistance models.
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Here, γ has been introduced as a correction coefficient. The coeffi-
cient accounts for uncertainties in the model parameters due to mea-
surement errors, mainly in obtaining the flow resistance characteristic

parameters.
Uniform flow can mainly be achieved in a long channel. However,

in many industrial applications the channels are not long enough for a
uniform flow to occur in the entire range of desired flow rates. When
the flow accelerates the whole length of the channel, the models in Eqs.
(15) will overestimate the flow rates. An appropriate model for accel-
erating flow can be derived based on the momentum balance between
any two points in the flow direction. Considering Fig. 4 and neglecting
the effect of pressure force, the steady state momentum balance be-
tween points 1 and 2 gives
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Here, Sf is the average frictional slope obtained from the average
velocity and average hydraulic radius of the two points.

= +A A A0.5( )m m1 2 is the average cross-sectional area at the two
measurement points and Lm is the length of space between the two
points. Eq. (16) can be corrected to account for the effect of pressure
force and non-uniform distribution of the velocity over each cross-
section.
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In Eq. (17), C is the discharge coefficient, correcting the effect of
pressure term and the error associated with the use of average area as
the cross-sectional area of the volume bounded by the two points. Di-
mensional analysis shows that the discharge coefficient depends on the
mean hydraulic radius, = +R R R0.5( )h h h1 2 and Lm, and can be ex-

pressed as = ( )C L
R

γ
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γ is constant over the entire flow, and some trial simulations per-
formed for a range of flow rates show that =γ 0.01 could fit the model
for a wide range of flow rates. However, in real flow, γ may deviate
from the theoretical value. Lm should be reasonably small, but more
than the maximum depth of fluid allowed in the channel. The mea-
surement of fluid depth should be taken downstream, at a point no
farther than 1/2 of the channel total length from the end.

Fig. 4. Free body diagram for accelerating flow in an open channel.
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4. Formulation of estimation algorithm

Since the correction parameters such as α in Eq. (11) and γ in Eqs.
(15) and (18), are not known accurately, the accuracy of the models for
estimating the flow rate will depend on the chosen value of the cor-
rection parameters. In most applications, =α 1.0 is used, resulting in
the reported measurement accuracy of± 2–6% [4]. In the slope-hy-
draulic radius method, the error in using the Manning formula without
correction could be up to±20%, owing to uncertainty in chosen a
value for the Manning's roughness coefficient.

To obtain an improved accuracy in the flow rate measurement using
these models, a specific correction parameter should be given to each
flow rate, since the real behaviour of a fluid depends largely on its flow
rate. In this section, an algorithm for improving on the accuracy of flow
rate estimation is proposed. The method developed here involves
comparing the simulated fluid depths at the measurement points with
the actual depths measured. The resulting error is used to calibrate the
flow rate model by adjusting the appropriate correction parameter.
Considering Eq. (11), it follows that
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Eq. (19) shows that increasing α will decrease the flow rate, and
decreasing it will increase the flow rate. This means that when larger
value of α than necessary is chosen, Q will be underestimated, while Q
will be overestimated with a much lower value of α. The depth of fluid in
the channel increases with the flow rate. When the simulated liquid
depths are higher than the actual liquid depths, the focus will be to
reduce the estimated flow rate. Reducing Q requires increasing α.
Supposing α0 is the initial guess of α, the correct estimation of Q will be
obtained by adjusting α iteratively based on the following conditions
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where δα is an offset of previously determined value of α, which can be
set as =δα 0.01 since the sensitivity of the model to α is quite sig-
nificant, and hms is the simulated liquid depth at the measurement
point.

In Eq. (15), Q is directly proportional to γ , and in Eq. (18), Q also
increases with γ since the ratio >1L

R
m
h

. In using the slope-hydraulic-ra-
dius method,Q is correctly estimated by adjusting γ iteratively based on
the following conditions
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where hm and hms are the average of the two actual measured liquid
depths, and the simulated liquid depths, respectively. Since the sensi-
tivity of the models to γ is not too significant within the model accu-
racy, the offset δγ can be set as 0.05 for models in Eq. (15) and as 0.005
for that in Eq. (18).

In the slope-hydraulic radius method, both models, Eqs. (15) and
(18) are used concurrently for continuous measurement of flow rate.

This is because for a low flow rate, there is possibility that the flow will
reach a uniform state before discharging the channel while with a high
flow rate, the flow may not attain uniform state within the channel
length. Incorporating both models in the estimation algorithm ensures a
wide range of flow rate estimation. In Eq. (15), the measured fluid
depth used for computation is the average value of hm1 and hm2.
Switching between uniform and accelerating flow models depends on
the measured liquid depth difference, ∆ = −h h hm m m1 2 and on the
computed effective slope, = −S S Se f0 . The following gives the general
switching condition, where Im S( )e = Imaginary part of Se.
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For a given channel geometry, bed slope and fluid properties, the
algorithm for computing the flow rate in the channel based on the
slope-hydraulic radius and on the use of Venturi channel is summarized
in the following sections.

4.1. Venturi model

1. Read level hm.
2. With α0, compute Q(0) from Eq. (11).
3. With Q(0), solve Saint Venant equations to give hms

(0). Let =i 0.
4. Repeat until − ≤ −h h 10ms

i
m

( ) 5.
5. Set → +α αi i 1, applying Eq. (20).
6. Recompute +Q i( 1) from Eq. (11).
7. Resolve Saint Venant equations using +Q i( 1), leading to +hms

i( 1).
8. Set → +i i 1, and go to 4.
9. Write =Q Q i( ).

4.2. Slope-hydraulic radius model

1. Read levels hm1 and hm2.

2. With γ0, compute Q(0) from Eqs. (15) or (18).
3. With Q(0), solve Saint Venant equations to give hms1

(0) and hms2
(0) . Let

=i 0.

4. Repeat until − ≤ −h h 10ms
i

m
( ) 5.

5. Set → +γ γi i 1, applying Eq. (21).
6. Recompute +Q i( 1) from Eqs. (15) or (18).
7. Resolve Saint Venant equations using +Q i( 1), leading to +hms

i
1

( 1) and
+hms

i
2

( 1).
8. Set → +i i 1, and go to 4.
9. Write =Q Q i( ).

Fig. 5 illustrates the above algorithms in block form for flow rate
computation. The dotted line surrounding the calculation blocks in-
dicates the iteration loop for updating the tuning parameter such as α
used in the hydraulic structure method or γ used in the slope-hydraulic
radius method. When implementing the algorithm in software, Fig. 5
shows the exact arrangement, with a clear correspondence between
graphical symbol and section of code. The algorithm can easily be
implemented in MATLAB. The set of ordinary differential equations
(ode) for simulating the flow can be solved using a MATLAB ode solver.

5. Results and discussion

In this section, the results obtained with the developed algorithm
are presented. Two cases are considered: one comparing the computed
flow rates with experimental data for a steady state flow in a Venturi
channel, and the other demonstrating the performance of the scheme in
unsteady state flow.
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5.1. Flow rates in steady state flows

At University College of Southeast Norway, a Venturi channel test
rig has been set up. The channel is of trapezoidal cross-section with a
total length of 3.70 m. The detailed description of the rig can be found
in Agu et al. [15].

Fig. 6 shows the steady state flow profile in the channel at flow rate
350 kg/min, simulated for a slurry with density, 1109 kg/m3, and
rheological parameters, =τ 0y , =n 0.5855 and =K 0.0631 Pa.sn. The
channel is inclined at 0.08°. From Fig. 6, it can be seen that the flow
accelerates from the converging section, and further through the throat
section (within a distance of 3.1 and 3.3 m from the leading end). The
flow discharges freely at supercritical condition.

Fig. 7 compares the measured flow rate with the computed flow
rates based on single depth measurement taken at a point 2.6 m from
the leading end, and applying Eq. (11). The results (data marked “With
Improvement”) show that the algorithm developed in this paper yields
an improved accuracy when compared with the traditional method
where =α 1.0 (data marked “With no Improvement”). The error asso-
ciated with the computed flow rate with =α 1.0 is 2.33%. The error is

calculated based on the relative error given by ∑ −( )N
Q Q

Q
1 2

exi si
exi

, where

N is the number of data points, Qexi and Qesi are the individual measured
and computed flow rates in the data set, respectively. Using the im-
provement algorithm, the error is reduced to 0.83%, corresponding to
an improvement of about 64%. The computation time for each flow rate
based on the improved scheme takes about 2 s of computer time, which
can be reduced with more efficient code and higher speed computers.

5.2. Flow rates in dynamic flows

In the second case, the return of flow from a well over a circular
channel is simulated. The 8.432 m long channel with a diameter of

0.4064 m (16 in.) is inclined at 7° with the horizon. The well is an
annulus, with core and outer diameters, 0.1397 m (5.5 in.) and
0.5334 m (21 in.), respectively. The noisy flow variation of a fluid
through the well and then through the straight run channel over 10 min
is given by the function depicted in Fig. 8.

Assuming a fluid with density 1400 kg/m3, and rheological para-
meters: =τ 2.21y Pa, =n 0.7703 and =K 0.2 Pa.sn, Fig. 9 gives the fluid
depth profile in the channel at instances 15, 30, 225 and 450 s of the
flow. The flow is supercritical over the length of the channel at all in-
stances. The supercritical flow behaviour in the channel is due to steep
slope of the channel (bed slope of 7°). It can be seen from the result that
at the instances when the flow rate is high, the flow accelerates down
the channel, but at the low flow rates (at instances 15 and 30 s for
example), the flow seems to have reached uniform flow condition

Fig. 5. Block diagram for implementation of the algorithm for
flow rate estimation.
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before leaving the channel. To estimate the flow rate in the channel, as
described in Section 3.2, two simulated liquid depths are required. The
simulated liquid depths are taken at 1-s interval.

Fig. 10 shows the evolution of simulated liquid depths hs1 taken at
=x 4.637m and hs2 taken at =x 4.848 m from the leading upstream end,

with time. The lower plot of Fig. 10 shows that there is a significant
difference between these two depths within the flow interval 100 and
500 s (that is the difference in the depths is above 10−4 m). Within this
period, the flow rate is high as can be seen in Fig. 8. In the rest of the
flow period, the depth difference is mixed (that is partly greater and
partly less than 10−4 m). This variation in the two depths suggests that
both the uniform and accelerated models will be required to compute
the flow rate in the entire flow duration.

By using the switching algorithm developed here, Fig. 11 compares
the results of the computed flow rates with the input flow rate over the
flow duration. The result shows a good agreement between the com-
puted and the given flow rate. It also shows that despite the dynamics of
the system (where it is possible that the flow has not been developed
before taking the measurements), the algorithm is able to compute the
flow rate with small error. The deviations of the computed flow rate
from the actual are shown in Fig. 12, where it can be seen that the
computation error lies between −0.005 and 0.003 m3/s. The analysis

of the error (based on
∑ −

∑

Q Q

Q

( )
N exi si

N exi

1 2

1 for the accumulated flow over the

entire flow duration) shows that the deviation is less than 5.64%. Most
of the errors are associated with computation of flow rates less than 5 ×
10−5 m3/s, due to difficulty in simulating such a low flow rate in the
channel.

6. Conclusions

In this paper, an algorithm for improving on the accuracy of flow
rate computation in open channels is proposed. The study covers two
flow rate computational methods: hydraulic structure, mainly with
flumes, and the slope-hydraulic radius method. In addition to the flow
resistance model, which is usually applied in the slope-hydraulic radius
method for uniform flow, a model for computing the flow rate in an
accelerating flow is developed.

The results show that the proposed algorithm leads to improvement
in the accuracy of flow rate calculations based on the hydraulic struc-
ture by 65% under experimental verification. For the case studied with
a trapezoidal channel, the computation error is reduced from 2.33% to
0.83%. The computation of flow rate in a straight-run channel under
dynamic condition is theoretical verified, and the result shows that the
switching algorithm between a uniform and an accelerated flow models
can estimate the flow rate with small error irrespective of whether the
flow is fully developed or not within the measurement interval. With
the computation time less than 2 s, this shows that the proposed algo-
rithm is also efficient, and with some improvement, it could be used for
continuous flow rate computation required for control purposes.

The proposed algorithm has been demonstrated for systems within
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industrial scale. For large systems such as river flooding, the algorithm
requires further verification. Moreover, the experimental verification of
the proposed algorithm for slope-hydraulic radius method will be
considered in the future work.
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