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Abstract

Some methods for transient closed loop step response system identification presented in the literature
are reviewed. Interestingly some errors in a method published in the early 80’s where propagated into a
recently published method. These methods are reviewed and some improved methods are suggested and
presented. The methods are compared against each other on some closed loop system examples, e.g. a
well pipeline-riser severe-slugging flow regime example, using Monte Carlo simulations for comparison of
the methods.
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1. Introduction

Closed loop subspace System IDentification (SID) has
been given a large amount of effort the last two decades
resulting in e.g. the DSR e alg., Di Ruscio (2009). A
problem with closed loop subspace SID is the possibil-
ity of correlations between the controller output and
the process noise, if this is present then the results
may be biased. However, this is solved in DSR e, see
Di Ruscio (2009). Closed loop SID is a relatively ma-
tured field and is documented in books as e.g. Ljung
(1998), Söderström and Stoica (1989) etc.

The open loop plant may be unstable or very poorly
damped and has to be operated in closed loop, or it
might be for economic or safety reasons (Söderström
and Stoica (1989)).

In this paper our main focus is the SID method used
in so-called on-line closed loop step response tuning
methods: Yuwana and Seborg (1982),Jahanshahi and
Skogestad (2015).

We can classify such methods as indirect, as we need
to know the reference and output time series, as well

as the controller (See Fig.1). We may further call such
methods nonparametric, type transient analysis, as de-
scribed in Söderström and Stoica (1989), which are ex-
amples of continuous identification methods.

The only notable strength of these methods is that
they are easy to use, pragmatic and easy to understand.

However, the weaknesses are rather many. Firstly,
nonparametric transient step response methods are
sensitive to noise and do not give accurate results
(Söderström and Stoica (1989) Ch.3). Secondly, one
requires a high number of measurable quantities sam-
pled at high frequency, e.g. a settled output time series
response. Third, some of these curve points are rather
strenuous to identify, e.g. the first valley point. Pro-
ducing larger oscillations by increasing the reference
change or the controller proportional gain could help,
however this may be rather unappetizing in process
industries.

One contribution of this paper is to show that the
identification method given in Jahanshahi and Skoges-
tad (2015) may be improved. It should be a well-known
fact that if we are given an experiment signal using a
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Figure 1: Block diagram of a closed loop system which
is illustrating two SID methods. Method 1:
Direct method using y and u. Method 2: In-
direct method using r, y and hc. Note that
we also have a third approach called joint
input-output method, where r, u and y are
needed.

pure step signal only, then this signal is only persistent
exciting of order one which is different from the sec-
ond order model structure, assumed in Jahanshahi and
Skogestad (2015). Furthermore, we may predict that
by introducing process noise, this method will present
itself inferior to other SID methods.

Notice however that this particular SID method,
i.e. Jahanshahi and Skogestad (2015), is aimed for
a pipeline-riser system, where the severe-slugging flow
regime is modeled using a second order marginally sta-
ble/unstable open loop model. Severe-slugging flow,
i.e. oscillations in the outlet flow is regarded as a prob-
lem in the offshore industry and needs to be addressed
for safety and economic reasons (Courbot (1996)).

The contributions of this paper can be itemized as
follows

• An error is discovered in Jahanshahi and Skoges-
tad (2015) having it roots in Yuwana and Seborg
(1982) for estimating the time instant of the first
peak, tp, giving implications for the φ estimate in
Jahanshahi and Skogestad (2015). The modified
algorithm is denoted JSDR.

• An alternative formulation to the algorithm pre-
sented in Jahanshahi and Skogestad (2015), is pro-
posed. The proposed algorithm is denoted DR.

• Documentation is given for an additional error dis-
covered in Yuwana and Seborg (1982) for the time
constant and the time delay expressions of a first
order plus time delay model.

• Counter-example on the closed loop transient re-
sponse SID algorithm presented in Jahanshahi and
Skogestad (2015). Monte Carlo simulation experi-
ments shows that the two transient response iden-
tification algorithms, JSDR and DR, considered in
this paper, are inferior to the following subspace
algorithms; DSR/DSR ry (Di Ruscio (1996)) and
DSR e (Di Ruscio (2009)) and the Prediction Er-
ror Method (PEM).

• An m-file script developed for estimating the 6
necessary parameters from the transient closed
loop step response e.g. tp etc, is presented in App.
A.

The rest of the paper is organized as follows. In Sec.
2 we formulate the improved JSDR method, as well as
the proposed alternative, the DR method. In Sec. 3 we
give numerical examples. In Secs. 4 and 5 discussion
and concluding remarks are given, respectively.

2. On transient response SID
algorithms

2.1. Improved JSDR method

Assume that the underlying system can be described
by the following transfer function

hp(s) =
b1s+ b0

s2 + a1s+ a0
. (1)

This particular model was used to describe the essential
dynamics of a pipeline-riser system in Jahanshahi and
Skogestad (2015).

By stabilizing with a P-controller, the closed loop
transfer function becomes

y(s) =
K(1 + τzs)

τ2s2 + 2ξτs+ 1
r(s), (2)

where we introduce a reference step,

r(s) =
r

s
. (3)

We restrict ourselves to 0 < ξ < 1 and τ > 0.
The problem renders itself in identifying the closed

loop model parameters (ξ, τ,K, τz), thereafter, by back
calculation, we obtain the open loop model parameters
(a1, a0, b1, b0). These models are identified based on
the data vectors,

Y =

y
T
1
...
yTN

 , R =

r
T
1
...
rTN

 , (4)
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Figure 2: Closed loop step response. The x-axis
t is time. The estimated parameters
(tp, yp, r, tu, yu, y∞) are used to identify
(ξ, τ,K, τz) in Eq. (2). A MATLAB function
for identifying these six parameters is found
in App. A.
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Figure 3: Closed loop step inverse response. The
x-axis t is time. The estimated parame-
ters (tp, yp, r, tu, yu, y∞) are used to identify
(ξ, τ,K, τz) in Eq. (2). A MATLAB function
for identifying these six parameters is found
in App. A.

generated from a closed loop step response as illus-
trated in Figs. 2 and 3.

The time transient closed loop step response is

y(t) = Kr

[
1−De−ξt/τ sin(ωt+ φ)

]
, (5)

where

D =

√
1− 2ξτz

τ + ( τzτ )2

1− ξ2
, (6)

ω =

√
1− ξ2
τ

, (7)

and

φ = arctan

(
τ
√

1− ξ2
ξτ − τz

)
. (8)

In Jahanshahi and Skogestad (2015) the time re-
sponse, Eq. (A.2), is wrong, even though referring to
the correct Eq. (5) or Eq. (A-1) in Yuwana and Seborg
(1982).

The damping ratio ξ is estimated and deduced for a
system with τz = 0 in Söderström and Stoica (1989)
Ch. 3 Eq. (3.3g), e.g.,

ξ =
− ln(v)√
π2 + ln2(v)

, (9)

where the relative overshoot v is estimated as

v =
y∞ − yu
yp − y∞

. (10)

A proof of the expression of the damping ratio in Eq.
(9) is given in App. F.

The steady-state gain of the closed loop system is
defined as

K =
y∞
r
. (11)

By putting the derivative of Eq. (5) w.r.t. time
(dydt = 0) equal to zero, thereafter solving w.r.t. t = tp,
we have that

tp =

arctan

(√
1−ξ2
ξ

)
− φ

ω
. (12)

Solving Eq. (12) w.r.t. φ we obtain

φ = arctan

(√
1− ξ2
ξ

)
− tpω. (13)

For the 1st under-/overshoot we have that

tp + tu = τ

arctan

(√
1−ξ2
ξ

)
+ π − φ√

1− ξ2
. (14)
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Using Eqs. (12) and (14) we obtain

tu = τ
π√

1− ξ2
=
π

ω
. (15)

Solving Eq. (15) for τ gives

τ =
tu
√

1− ξ2
π

. (16)

Evaluating Eq. (5) at t = tp gives

y(tp) = yp = Kr

[
1−De−ξtp/τ sin(ωtp + φ)

]
,

= Kr

[
1−De−ξtp/τ

√
1− ξ2

]
, (17)

then by using Kr = y∞, and solving Eq. (17) w.r.t.
D, we obtain

D =
D0 e

tp ξ

τ√
1− ξ2

, (18)

where we have defined that

D0 =
y∞ − yp
y∞

. (19)

Where we in Eqs. (17) and (18) have used that

sin(ωtp + φ) =
√

1− ξ2, as shown in App. F.
Last, we solve Eq. (6) w.r.t. τz and get that

τz = τ ξ ±

√
τ2 ξ2 − τ2

[
(ξ2 − 1) D2 + 1

]
. (20)

The algorithm is presented and summed up in Alg.
2.1.

Algorithm 2.1 (The JSDR algorithm)

Step 1. From the step response time series data
Y and R in Eq. (4) and illustrated in Figs. 2 and 3,
calculate the six parameters (tp, yp, r, tu, yu, y∞). An
algorithm for step 1 is presented in App. A.

Step 2. Calculate the 4 closed loop step response
model parameters ξ from Eq. (9), τ from Eq. (16), K
from Eq. (11) and τz from Eq. (20).

Step 3. Back calculate to the proposed open loop
model structure in Eq. (1).

These adjustments propose the improved algorithm.
The JSDR algorithm m-file implementation can be
found in App. B.

In Jahanshahi and Skogestad (2015) Eq. (A.17) will
not work for a case of inverse response, i.e. τz < 0.
This is solved by using Eq. (20) instead, however the
drawback is that we need to know a priori if τz < 0.

Interestingly, an error was found in Eq. (A-5) in
Yuwana and Seborg (1982), which estimates the time
instant, tp, of the first peak. This error has propagated
into wrong estimation of φ in Eq. (A.12), in Jahanshahi
and Skogestad (2015). Notice here that Eq. (13) for
φ should be used instead of the wrong Eq. (A.12) in
Jahanshahi and Skogestad (2015). Note also that this
error has no direct impact on the Yuwana-Seborg al-
gorithm, but it impacts the estimate of τz in Eq. (20).

2.2. Proposed alternative algorithm (DR)

An alternative closed loop time transient response to
Eq. (5) can delicately be expressed as

y(t) = Kr

[
1− e−

ξ
τ t (cos(ω t) + c sin(ω t))

]
, (21)

where ω is the angular frequency, as defined in Eq. (7),
and

c =
ξτ − τz
τ
√

1− ξ2
. (22)

Now, by simply solving Eq. (21) w.r.t. c at t = tp,
we obtain that

c = −
cos(tp ω) +

e
tp ξ
τ (yp−r K)

r K

sin(tp ω)
. (23)

Notice that the above parameter c is related to the
phase angle φ (Jahanshahi and Skogestad (2015)) as

1

tan(φ)
= c, (24)

and as in Eqs. (8) and (13).
By solving Eq. (22) w.r.t. τz, we have that

τz = ξτ − cτ
√

1− ξ2, (25)

or
τz = ξτ − cτ2ω. (26)

Eqs. (25) or (26) is more preferable than Eq. (20),
partly because Eq. (20) is observed to produce complex
solutions, hence, τz = real(τz) is added in the JSDR
algorithm. DR will not have the problem of having to
know if τz < 0, in prior, which gives DR an edge over
JSDR.

The DR algorithm m-file implementation can be
found in App. C. Note that the difference from JSDR
in Alg. 2.1 is the estimating of τz.

Notice that an alternative formula for the time in-
stant of the first extremum Eq. (12) is found by solving
the derivative of Eq. (21) w.r.t. time. This gives

tp =

π
2 + arctan

(
cξ+τω
ξ−cτω

)
ω

. (27)

216



Christer Dalen, “Transient SID”

The time instant of the first under-/overshoot is found
to be

tp + tu =

3π
2 + arctan

(
cξ+τω
ξ−cτω

)
ω

. (28)

This gives the same as Eq. (15),which is obtained
by putting Eq. (27) into Eq. (28) and solving for tu.
Solving Eq. (27) w.r.t. c we obtain

c =
ξ + τω tan(tpω)

τω − ξ tan(tpω)
(29)

We also propose an alternative DR2 algorithm, using
c from Eq.(29) instead of Eq. (23). The DR2 algorithm
m-file implementation can be found in App. D. Notice
however, that this alg. DR2 is more sensitive to noise
than both JSDR and DR.

2.3. The propagation of errors based in
the Yuwana-Seborg article

Notice that in Yuwana and Seborg (1982) a first order
plus time delay model, i.e.

hp(s) = K
e−dms

1 + tms
, (30)

as the assumed open loop model is considered.
In Yuwana and Seborg (1982), Eqs. (9) and (10)

are both wrong. These equations can also be found in
Hapoglu et al. (1998).

However, the correct equations are

dm =
2∆tσ2
πσ1

, (31)

and

tm =
∆tσ1σ2

π
, (32)

where

σ1 = ξ
√
K + 1 +

√
ξ2(K + 1) +K − 1 (33)

and
σ2 =

√
(1− ξ2)(K + 1). (34)

It might be on purpose that ”-1” was removed in Eq.
(33) for avoiding complex solutions. This error/ap-
proximation was also briefly noted in Jutan and Ro-
driguez (1984) and Taiwo (1993).

2.4. Further details and discussions

• The algorithms presented under this section are
implemented in MATLAB as function [b, a] =
alg(Y,R,Kp, dt), where subscript ’alg’ means
JSDR or DR (see Apps. B and C for the algo-
rithms).

• JSDR and DR are equipped with the following
function, y = filtfilt(bf , af , x), with motivations
for the incoming example. Here, ’filtfilt’ is a func-
tion for zero-phase digital filtering, and bf and af
are from the function ’butter’. Both these func-
tions are contained in the Signal Processing Tool-
box in MATLAB. This filter is however manually
tuned for the incoming example.

• An additional subspace algorithm, denoted
DSR ry, is presented under App. E. This algo-
rithm is using the DSR algorithm on the closed
loop data R and Y, then back calculating to the
assumed open loop model.

• Note that the presented algorithms may autom-
atize various existing tuning methods, e.g. the
’Good Gain method’ presented in Haugen (2012).

3. Numerical examples

Example 3.1 (Counter-example to transient SID)
Consider the continuous closed loop system described
by the transfer functions, in Eq. (1) and

hc(s) = Kp, (35)

where b1 = −0.012, b0 = −0.0041, a1 = −0.0019 and
a0 = 0.0088 and Kp = −10.

The unstable open loop model, hp, is in fact a re-
duced order model based from a fourth order non-
linear model, which captures the severe-slugging behav-
ior present in pipeline-riser processes. The open loop
model parameters are chosen based on Sec. 6.1 in Ja-
hanshahi and Skogestad (2015).

Eqs. (1) and (35) may be formulated as a discrete-
time closed loop system,

yk = Dxk + wk, (36)

uk = Kp(yk − rk), (37)

xk+1 = Axk +Buk + vk, (38)

where the process noise vk and measurement noise,
wk are chosen as white noise with covariance matrices
E(vkv

T
k ) = 0.52I2 and E(wkw

T
k ) = 0.052I1, respec-

tively.
Two different reference signals, rk, are used, i.e.

PRBS for the subspace algorithms/PEM and a simple
step for the transient algorithms.

The closed loop system in Eqs. (36), (37) and (38)
was simulated from k = 1 . . . 1000 with dt = 1 [sec] for
the subspace algorithms/PEM and from k = 1 . . . 40000
with dt = 0.01 [sec] for the transient algorithms as
illustrated in Fig. 4. Monte Carlo simulations are
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Figure 4: MATLAB zero-phase filtering y =
filtfilt(b, a, x).

performed using M = 100 experiments. The re-
sults from the simulations are the parameter estimates
(b1, b0, a1, a0) in the open loop model (Eqs. (35)).

For comparing the results from the Monte Carlo sim-
ulations, we consider the following performance crite-
rion, which is given by Eq. (B.67b) in Söderström and
Stoica (1989):

Palg =
N

M − 1

M∑
i=1

(θ̂i − θ0)(θ̂i − θ0)T , (39)

where θ̂ = [â, b̂] is the estimated parameters, θ0 = [a, b]
is the true parameters, M simulations and N samples.

Results from the Monte Carlo simulations are shown
in Figs. 5, 6 and Tab. 1. Our proposed algorithm,
DR, is far more robust than the JSDR algorithm. Fur-
thermore it shows that the subspace algorithms and
PEM render themselves superior over the transient al-
gorithms. PEM has the best performance while DSR ry
is the runner-up candidate just before DSR e. Note
that DR2 alg. is dropped in this example, reason being
rather unstable results.

Example 3.2 (van de Vusse chemical reactor)
A chemical isothermal reactor (van de Vusse (1962)) is
studied in this example. Consider the following closed

Simulations
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Figure 5: Parameter estimates of the open loop system,
hp(s) in Eq. (35) showing JSDR (red aster-
isk), DR (magenta circle), PEM (red square),
DSR e (blue plus) and DSR ry (black cross).
Monte Carlo simulations are performed us-
ing M = 100 experiments. Only the first 50
points are plotted. The last 50 points can be
seen in Fig. 6.
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Figure 6: Parameter estimates of the open loop system,
hp(s) in Eq. (1) showing JSDR (red aster-
isk), DR (magenta circle), PEM (red square),
DSR e (blue plus) and DSR ry (black cross).
Monte Carlo simulations are performed us-
ing M = 100 experiments. Only the last 50
points are plotted. The first 50 points can be
seen in Fig. 5.
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Table 1: Comparing the performance criteria gener-
ated from the different algorithms.

alg Palg

PEM 0.0001
DSR e 0.0029
DSR ry 0.0010
JSDR 39.2542
DR 6.8918

loop system

y = x2, (40)

u = Kp(r − y), (41)

ẋ1 = −k1x1 − k3x21 + (v − x1)u, (42)

ẋ2 = k1x1 − k2x2 − x2u, (43)

where the reaction rate coefficients are k1 = 50, k2 =
100 and k3 = 10. u is the feed flow rate, y is the con-
centration of the product out the outlet. The concen-
tration of the byproduct into the reactor, v, is treated
as an unknown constant or slowly varying disturbance
with nominal. value vs = 10.

A sufficient large proportional gain is chosen, Kp =
140, i.e. large enough for stabilizing the closed loop
system and giving a relativity large overshoot preferable
for the transient algorithms.

Choosing a reference signal r = 1.02 gives the steady
state xs = [2.1046, 0.8847]T . The closed loop system
is then simulated on time 0 < t < 0.20 (Fig. 7) with
a sampling time equal 0.0001, given the initial state
x(t = 0) = xs and a reference step for the transient
algs. and a PRBS for the subspace algs.

However, it should be noted that the generated data
is detrended, i.e. Y := Y − Jys, R := R − Jr and
U := U − Jus, where ys = xs2, J is a vector of ones of
correct length and N is the length of e.g. Y .

In Tab. 2, the DR2 algorithm estimates a model
which is closest to the Jacobian estimate, based on
ys, us, xs.

We compare the identified models, generated from the
following algs., JSDR, DR, DR2, DSR e and DSR ry,
over M = 100 different validation sets, i.e. M different
PRBS reference realizations.

The performance is measured by the criterion,

Valg =
1

NM

M∑
k=1

[ N∑
i=1

(ŷi − yi)2
]
k

, (44)

where ŷi is the true output and yi is the simulated out-
put from the identified models.

Results from the simulations are shown in Tab. 3. In
this particular example it is shown that the JSDR alg.
is the best performing of the transient algs., however
the subspace algorithms gives the best models.

time / [s]
0 0.05 0.1 0.15 0.2 0.25

y
-0.005

0

0.005

0.01

0.015

0.02

0.025

ref
real
JSDR
DR
DR2

Figure 7: Comparing the closed loop step response of
the van de Vusse chemical reactor model vs.
the closed loop models, as in Eq. (2), gen-
erated from the transient algorithms JSDR,
DR and DR2.
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Figure 8: Comparing, using a step response, the Jaco-
bian estimate, donated ’real’, vs. the open
loop models, as in Eq. (1), identified us-
ing the transient algorithms JSDR, DR and
DR2. Tab. 1 shows the numerical results.
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Table 2: Comparing the different algorithms on es-
timating the parameters for the open loop
model Eq. (1). Comparing the Jacobian es-
timate, donated ’real’, vs the transient algo-
rithms; JSDR, DR and DR2. Fig. 8 shows
the graphical results.

real JSDR DR DR2

b0 295.9561 293.1288 293.1288 293.1288
b1 -0.8847 -0.8578 -0.8444 -0.9045
a0 [e+04] 1.3358 1.3315 1.3315 1.3315
a1 [e+04] 0.0231 0.0221 0.0219 0.0227
V [e-07] 0 2.2370 2.6703 1.3618

Table 3: Comparing the identified models, generated
from the following algs., JSDR, DR, DR2,
DSR e and DSR ry, over M = 100 different
validation sets. The performance is measured
by the criterion, Valg.

Valg Value [e-08]

VJSDR 0.7903
VDR 1.6191
VDR2 1.1782
VDSR e 0.0280
VDSR ry 0.0281

4. Discussion

• Notice that by defining v as in Eq. (10) and eval-
uating the time response, Eq. (5), it can be shown
that the expression for ξ becomes as in Eq. (9).
This was however also pointed out in the appendix
in Yuwana and Seborg (1982).

• Notice that the back calculation step to develop-
ing the open loop model is not unique, as also
described in Secs. 2.2 and 2.3.

• Notice, relative small sampling time dt have to be
used for obtaining accurate estimates.

• As demonstrated in Ex. 3.1 the transient identi-
fication methods need a large number of obser-
vations compared to the classical subspace and
prediction error methods. Even of this, the qual-
ity of the estimation results is poor compared to
PEM/DSR as illustrated in Tab. 1.

5. Concluding Remarks

A couple of errors in Yuwana and Seborg (1982) have
been documented, one of which caused implications for
the algorithm presented in Jahanshahi and Skogestad
(2015).

A new alternative formulation for the algorithm pre-
sented in Jahanshahi and Skogestad (2015) is proposed
and compared with Monte Carlo simulations. The new
algorithm DR is found to outperform the JSDR algo-
rithm, however these transient response algorithms are
rather inferior in comparison to the highly respected
subspace algorithms, i.e. DSR/DSR ry (Di Ruscio
(1996)), DSR e (Di Ruscio (2009)) and the classical
prediction error method (PEM), e.g. Ljung (1998).

A. Function for estimating the 6
variables in Figure 2.

function [ dyp , dyinf , dys , dyu , tu , tp ] . . .
=id 6 param2 (Y,R,T)

[ dyp , ip ]=max(Y) ;
tp = T( ip ) ;
dy in f=Y(end ) ;
dys=max(R) ;
[ dyu , iu ]=min(Y( ip : end ) ) ;
tu = T( ip+iu −1); tu=tu−tp ;

B. The JSDR alg.

function [ b , a , tauz , tau , xi ,K2 ] . . .
=JSDR(Y,R,T, Kc0 , tz , f c )
% ON THE ARGUMENTS:
% Outputs in Y and r e f e r e n c e s in R.
% Kc0 i s the p r o p o r t i o n a l gain used in
% the c l o s e d loop experiment .
% Sampling time i s dt .
% The s i g n o f t z need to be known in
% advance o f the i d e n t i f i c a t i o n ,
% t z =’neg ’ f o r i n v e r s e response case ,
% i . e . t z <0,
% e l s e tz>0 i s cons idered .
% A 1 s t order zero phase f i l t e r wi th
% cut−o f f f requency o f f c ( f c =0.01).
% F i l t e r i s not used when f c =−1.

i f ( f c ˜=−1)
[ b , a]= butte r (1 , f c ) ;
Y= f i l t f i l t (b , a ,Y) ;

end

% Easy a l go r i th m f o r f i n d i n g the
% 6 v a r i a b l e s f o r i d e n t i f i c a t i o n .
[ dyp , dyinf , dys , dyu , tu , tp ] . . .
=id 6 param2 (Y,R,T) ;

% Est imat ing the 5 v a r i a b l e s xi , tau ,
% K2, phi , tauz f o r the c losed−l oop
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v=(dyinf−dyu )/( dyp−dy in f ) ;

x i=−log ( v )/ sqrt (piˆ2+( log ( v ) ) ˆ 2 ) ;

tau=tu∗sqrt(1−x i ˆ2)/pi ;

K2=dy in f /dys ;

E=sqrt(1−x i ˆ2)/ tau ;

phi=atan ( sqrt(1−x i ˆ2)/ x i ) . . .
−tp∗sqrt(1−x i ˆ2)/ tau ;

D0=(dyp−dy in f )/ dy in f ;
D=D0/(exp(−x i ∗ tp/ tau )∗ sin (E∗ tp+phi ) ) ;

i f (strcmp ( tz , ’ neg ’ ) )
tauz=x i ∗ tau−sqrt ( x i ˆ2∗ tau ˆ 2 . . .

−tau ˆ2∗(1−Dˆ2∗(1− x i ˆ 2 ) ) ) ;

else
tauz=x i ∗ tau+sqrt ( x i ˆ2∗ tau ˆ 2 . . .

tau ˆ2∗(1−Dˆ2∗(1− x i ˆ 2 ) ) ) ;

end

tauz=real ( tauz ) ;

% Back−c a l c u l a t i n g to the
% open−l oop model
Kp=dyin f /(Kc0∗abs ( dys−dy in f ) ) ;

a0=1/( tau ˆ2∗(1+Kc0∗Kp ) ) ;
b0=Kp∗a0 ;
b1=K2∗ tauz /(Kc0∗ tau ˆ 2 ) ;
a1=−2∗x i / tau+Kc0∗b1 ;

b=[0 b1 b0 ] ;
a=[1 −a1 a0 ] ;

C. The DR alg.

function [ b , a , tauz , tau , xi ,K ] . . .
=DR(Y,R,T,Kp, f c )
% ON THE ARGUMENTS:
% Outputs in Y and r e f e r e n c e s in R.
% Kc0 i s the p r o p o r t i o n a l gain used
% in the c l o s e d loop experiment .
% Sampling time i s dt .
% A 1 s t order zero phase f i l t e r wi th
% cut−o f f f requency o f f c ( f c =0.01).
% F i l t e r i s not used when f c =−1.

i f ( f c ˜=−1)

[ b , a]= butte r (1 , f c ) ;
Y= f i l t f i l t (b , a ,Y) ;

end

[ dyp , dyinf , dys , dyu , tu , tp ] . . .
=id 6 param2 (Y,R,T) ;

% Id v and x i
v=(dyinf−dyu )/( dyp−dy in f ) ;

x i=−log ( v )/ sqrt (piˆ2+log ( v ) ˆ 2 ) ;
tau=tu∗sqrt(1−x i ˆ2)/pi ;
K=dy in f /dys ;

% The omega parameter
w=sqrt(1−x i ˆ2)/ tau ;

% C a l c u l a t e c parameter
work=(K∗dys−dyp )/(K∗dys ) ;
work=work∗exp( x i ∗ tp/ tau ) ;
c=(work−cos (w∗ tp ) )/ sin (w∗ tp ) ;

tauz=x i ∗ tau−c∗ tau∗sqrt(1−x i ˆ 2 ) ;

% Back c a l c u l a t e wi th new formulas
b0=K/( tau ˆ2∗Kp) ;
b1=tauz ∗b0 ;
a0=1/tauˆ2−Kp∗b0 ;
a1=−2∗x i / tau+Kp∗b1 ;

a=[1,−a1 , a0 ] ;
b=[0 ,b1 , b0 ] ;

D. The DR2 alg.

function [ b , a , tauz , tau , xi ,K ] . . .
=DR2(Y,R,T, Kc0 , f c )
% ON THE ARGUMENTS:
% Outputs in Y and r e f e r e n c e s in R.
% Kc0 i s the p r o p o r t i o n a l gain used
% in the c l o s e d loop experiment .
% Sampling time i s dt .
% A 1 s t order zero phase f i l t e r wi th
% cut−o f f f requency o f f c ( f c =0.01).
% F i l t e r i s not used when f c =−1.

i f ( f c ˜=−1)
[ b , a]= butte r (1 , f c ) ;
Y= f i l t f i l t (b , a ,Y) ;

end

% Simple a l gor i thm f o r f i n d i n g the 6
% v a r i a b l e s f o r i d e n t i f i c a t i o n .
[ dyp , dyinf , dys , dyu , tu , tp ] . . .
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=id 6 param2 (Y,R,T) ;

% e s t i m a t e x i tau w c K
v=(dyinf−dyu )/( dyp−dy in f ) ;
x i=−log ( v )/ sqrt (piˆ2+( log ( v ) ) ˆ 2 ) ;
tau=tu∗sqrt(1−x i ˆ2)/pi ;
w=sqrt(1−x i ˆ2)/ tau ;
c=( x i+tau∗w∗tan ( tp∗w) ) / ( tau∗w−x i ∗tan ( tp∗w) ) ;
K=dy in f /dys ;

tauz=x i ∗ tau−c∗ tau∗sqrt(1−x i ˆ 2 ) ;

% Back−c a l c u l a t i n g to the
% open−l oop model
Kp=dyin f /(Kc0∗abs ( dys−dy in f ) ) ;

a0=1/( tau ˆ2∗(1+Kc0∗Kp ) ) ;
b0=Kp∗a0 ;
b1=K∗ tauz /(Kc0∗ tau ˆ 2 ) ;
a1=−2∗x i / tau+Kc0∗b1 ;

b=[0 b1 b0 ] ;
a=[1 −a1 a0 ] ;

E. The DSR ry method

function [ num, den]=DSR ry (Y,R,Kp, dt )
% [ a , b , d , e ]= d s r r y (Y,R,Kp)
% ALGORITHM
% 1. Id . c l o s e d loop model from r to y ,
% i . e . y=h ry ∗ r
% 2. Back c a l c u l a t e to open loop model

L=8; J=15; n=2;
[ a , b , d , e ]= dsr (Y,R, L , 0 , J , 1 , n ) ;

%1) D i s c r e t e model i n f o
[ bd dsr , ad dsr ] = s s 2 t f ( a , b , d , e ) ;

% Closed loop model hry=hc∗hp/(1+hc∗hp )
b0 ry=bd dsr ( 3 ) ; b1 ry=bd dsr ( 2 ) ;
a0 ry=ad dsr ( 3 ) ; a1 ry=ad dsr ( 2 ) ;

% Back c a l c u l a t e to open loop d i s c r e t e
%aaa model

b0=b0 ry /Kp;
b1=b1 ry /Kp;

a0=a0 ry−Kp∗b0 ;
a1=a1 ry−Kp∗b1 ;

num d=[0 b1 b0 ] ;
den d =[1 a1 a0 ] ;

%2) Continuous time model i n f o
h pd=t f (num d , den d , dt ) ;
h pc=d2c ( h pd , ’ zoh ’ ) ;
[ num, den ] = t fda ta ( h pc , ’ v ’ ) ;

F. Proof of Eq. (9)

The peak at the first extremum t = tp is given from
Eq. (5), i.e.

yp = y(tp) = y∞ − y∞De−
ξtp
τ

√
1− ξ2, (45)

where we have used that Kr = y∞ and that

sin(ωtp + φ) = sin(arctan(

√
1− ξ2
ξ

)) =
√

1− ξ2. (46)

This is seen from Fig. 9.

1

√
1
−
ξ
2

ξ

ϕ

Figure 9: Right triangle.

The peak at the second extremum t = tp+tu is given
by

yu = y(tp + tu) (47)

= y∞ − y∞De−
ξ(tp+tu)

τ sin(ω(tp + tu) + φ)

= y∞ − y∞De−
ξ(tp+tu)

τ sin(arctan(

√
1− ξ2
ξ

) + π)

= y∞ + y∞De
− ξ(tp+tu)

τ sin(arctan(

√
1− ξ2
ξ

))

= y∞ + y∞De
− ξ(tp+tu)

τ

√
1− ξ2, (48)

where we have used that sin(φ + π) = − sin(φ) for an
angle φ.

From this we evaluate the numerator and denomina-
tor in Eq. (10) as

y∞ − yu = −y∞De−
ξ(tp+tu)

τ

√
1− ξ2, (49)

yp − y∞ = −y∞De−
ξtp
τ

√
1− ξ2. (50)

Substituting Eqs (49) and (50) into the expression v
for the relative overshoot Eq. (10) we obtain

v =
y∞ − yu
yp − y∞

=
e−

ξ(tp+tu)

τ

e−
ξtp
τ

= e−
ξtu
τ . (51)
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Hence, the relative overshoot v is independent of the
term D (Eq. (6)) and hence independent of the system
zero tz.

Using Eq. (15) for tu we obtain

v = e
− ξπ√

1−ξ2 . (52)

From Eq. (52) we have the equation

ln(v) = − ξπ√
1− ξ2

. (53)

Solving Eq. (53) for ξ2 we obtain

ξ2 =
ln2(v)

π2 + ln2(v)
. (54)

Assuming 0 ≤ v ≤ 1 we have to use the positive root
and hence

ξ =
− ln(v)√
π2 + ln2(v)

, (55)

where 0 ≤ v ≤ 1 is the relative damping.
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