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Abstract  
An experimental study was designed to measure shock 

waves (supersonic gas flow) in a shock tube. A high-

speed camera captured images of the shock waves, at a 

framerate up to 500,000 frames per second. With respect 

to the huge number of images to be analyzed, an image-

processing algorithm was developed for automatic 

tracking of the shock waves. However, each shock wave 

might be divided into to two parts; a normal shock (the 

shock wave is perpendicular to the flow direction), and 

an oblique shock (the shock is at an oblique angle 

relative to the flow direction).  

The proposed framework calculates the characteristics 

of the wave front, i.e. the angle and velocity of normal 

and oblique shocks. A technique based on Template 

Matching and an extended version of Segmented 

Regression is developed to track the wave front in the 

high-speed videos.  

To our understanding, the proposed framework is novel, 

and our findings are in accordance with results derived 

from pressure sensors within the test tube 

Keywords: front tracking, image processing template 

matching. 

1 Introduction 

This paper introduces a framework for automatic 

tracking of shock wave fronts in high-speed video films. 

One major challenge is that high-speed video films are 

often blurred and corrupted with noise, and accurate 

physical measurements of key elements within the wave 

front are difficult to obtain. Figure 1 illustrates wave 

front propagation throughout a high-speed video. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1. Illustration of wave front propagation through 

the test section of the test rig. Images (a) through (e) 

show frames from 62 through 142 with a 20-frame 

interval between each frame. 
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Figure 2 illustrates elements of interest within a wave 

front which are normal and oblique shock angles and 

velocities. 

 

 

Figure 2. Illustration of key elements within a wave front 

where 𝜶𝟏 and 𝜶𝟐 are normal and oblique shock angles, 

and 𝒗𝟏 and 𝒗𝟐 are normal and oblique shock velocities, 

respectively. 

It is observed in Figure 2 that the normal and oblique 

shock appears in approximately 90- and 45-degree 

orientations, relative to the horizontal plane. This 

orientation of the normal and oblique shocks is also the 

case throughout multiple videos which are studied.  

2 Methods 

This chapter describes the test rig and methods that first 

generates two datasets which are later combined using 

Segmented Regression. 

2.1 Test Rig 

The wave front is generated by a test rig where a 

flammable gas mixture is pumped into the shock tube, 

then ignited. The rest of the tube is filled with a specific 

gas to examine wave front velocities through the 

selected gases. Among the gases in which the wave front 

velocity is studied are Ar, N2 and CO2. Figure 3 shows 

a drawing of the test rig used in production of the high-

speed videos. The test section of the test rig has a 

window in which the high-speed camera can film the 

wave front at up 500 000 frames per second. 

 

Figure 3. Drawing of the test rig used to produce shock 

wave experiments. Red lines in the splitter plate represents 

pressure sensors. 

During the test procedure, the wave front hits the end-

wall in the test section and reflects causing the desired 

shock phenomena to occur. The splitter plate is 

equipped with pressure sensors, and measurements from 

these sensors can be used to calculate both the normal 

and the oblique shock velocity. 

The splitter plate contains pressure sensors which are 

placed in the holes in the splitter plate. The accuracy of 

which the holes have been drilled has an impact when 

calculating wave front velocities, as the wave front 

velocities are sometimes upwards of 400 [m/s], 

depending on the gas being studied. Unfortunately, the 

technique based on pressure sensors is limited to spares 

measurements (1D+time). Even though, having 

velocities calculated through pressure sensors in 

addition to image processing creates a way to compare 

results. More importantly, with the framework based on 

image processing, the entire front is revealed (2D+time).  

The outline of this paper is as follows: in Section 2, 

an edge detection algorithm based on Template 

Matching is introduced. Thereafter, a modified version 

of Segmented Regression is utilized to merge 

information generated by the Template Matching. In 

Section 3 the results are present, and the paper is closed 

with Conclusions in Section 4. 

2.2 Removal of Outlier Frames 

It was found that every 10th image (i.e. no.: 1, 11, 21, 31 

etc.) in the high-speed video films were severely 

corrupted by noise and blur compared to the rest of the 

film, due to hardware failure. These frames were 

therefore removed and are not expected to have 

significant influence on the final results. The removed 

frames must, however, be considered when estimating 

velocities, as the number of frames dictates the elapsed 

time of a wave front over a given distance. 

2.3 Template Matching 

Template Matching is used to generate two wave front 

tracking datasets. One template is designed to track the 

oblique shock segment, and one template is designed to 

track the normal shock segment. Both these datasets are 

later (see Subsection 2.3) processed by a modified 

Segmented Regression technique, leading to an accurate 

location of the entire front.   

2.3.1 Normal Shock Template 

Figure 4 illustrates the process of normal shock 

Template Matching using two 5-by-5 pixel matrices. 

Each of the templates (a 5-by-5 matrix) is assigned a 

pre-allocated value representative for the shock wave.  

 

 

Figure 4. Normal shock Template Matching matrices on 

brightened raw image. Matrices are not to scale. 

The left-hand template matrix is pre-allocated to best fit 

the brighter front portion of the wave front, while the 
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right-hand template matrix is pre-allocated to best fit the 

darker portion within the wave front. The template is 

moved pixel by pixel, through the entire image. At each 

location, the deviation between the pre-allocated 

template value and all pixels covered by the template, is 

calculated. This error is then assigned to an error matrix, 

i.e. if the template is centered at row 𝑖 , column 𝑗 , the 

deviation between the template and the pixels covered 

by the template, is assigned an error matrix at row 𝑖,  
column 𝑗. Results from the normal shock template 

matching is visualized in Figure 5. 

 

 

Figure 5. Error matrix produced by the normal shock 

Template Matching. A dark “ridge” is prominent where 

the normal shock is expected, indicated by the red ellipse. 

The dataset for the normal shock is then generated from 

the error matrix by a simple approach; for each row, 

mark the position of the minimum value in the error 

matrix. The produced dataset is visualized as blue points 

in Figure 7. (a).    

2.3.2 Oblique Shock Template 

Figure 6 illustrates the process of oblique shock 

Template Matching using two 5-by-5 pixel matrices, 

both with the same pre-allocated average value, in a 45-

degree skewed orientation.  

 

 

Figure 6. Oblique shock Template Matching matrices on 

brightened raw image. Matrices are not to scale. 

The average value matches the brighter lower portion of 

the wave front, which is where the oblique shock occurs. 

At each location, the deviation between the pre-

allocated template value and all pixels covered by the 

template, is calculated. This error is then assigned to an 

error matrix. The dataset for the oblique shock is then 

generated by the same approach as for the normal shock 

dataset, i.e. for each row, mark the position of the 

minimum value in the corresponding error matrix. The 

produced dataset is visualized as blue points in Figure 7. 

(b).    

 

2.4 Modified Segmented Regression 

A modified Segmented Regression technique is 

implemented to fit two line segments using two separate 

datasets. The modified approach is founded on the 

following observation; each of the templates is designed 

to track a specific feature in the shock wave. The normal 

shock template is designed to identify the vertical part 

of the shock wave, whereas the oblique shock template 

is designed to track the tilted part. However, the 

template designed to track normal shocks is, not 

expected to perform well in regions where oblique 

shocks occur, and vice versa. The datasets obtained 

through the Template Matching are illustrated in Figure 

7. Please note that the normal shock template tracks the 

vertical part of the shock wave rather accurately, but 

fails to track the oblique part of the shock, see the lower 

part of Figure 7.(a). For the exact same input image, the 

oblique shock template tracks the tilted part of the shock 

wave rather accurately, but to some extent fails to track 

the vertical part of the shock, see the upper part of Figure 

7.(b). Based on this, these two datasets should “merge” 

in such a way that coordinates describing the normal and 

the oblique shock, within these two datasets, are selected 

optimally.  

 

  
(a)              (b) 

Figure 7. (a) and (b) are the resulting datasets of normal 

and oblique shock Template Matching. 

To fit two line segments with the datasets illustrated in 

Figure 7, an optimization problem was formulated, and 

solved by a brute force approach: 

𝑆𝑖 = ∑(�̂�𝑗 − (𝑎�̂�𝑗 + 𝑏))
2

𝑖

𝑗=1

+ ∑ (�̅�𝑗 − (𝑐�̅�𝑗 + 𝑑))
2

,

𝑛

𝑗=𝑖+1

 

  

for   i = 2: n − 2 

(1) 

where 𝑆𝑖 is a vector containing the combined error of 

both line segment estimates in each iteration, and 𝑛 is 

the number of rows in the image. Moreover, �̂�𝑗,�̂�𝑗 and  
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�̅�𝑗, �̅�𝑗 represent the data points given by the normal and 

the oblique shock template, respectively. The constants 

𝑎, 𝑏 and 𝑐, 𝑑 are the line segment coefficients 

representing the normal and oblique shock. 

By minimizing 𝑆𝑖, the optimal combination of the two 

datasets is given. The index 𝑖 which corresponds to the 

lowest error 𝑆𝑖 becomes the breaking point. Meaning 

that coordinates situated at, and above, row number 𝑖 
should be collected from the normal shock dataset, and 

coordinates situated below row number 𝑖 should be 

chosen from the oblique shock dataset. The result from 

the modified Segmented Regression technique is shown 

in Figure 8. 

 

Figure 8. Resulting line segments obtained with a 

modified Segmented Regression approach. The red dot 

represents the breaking point, while the blue and orange 

line represents normal and oblique shock estimates, 

respectively. 

2.5 Normal and Oblique Shock Angle Estimation 

As first order polynomials are used to estimate both the 

normal and oblique shock, i.e. polynomials on the form 

𝑦 = 𝑎𝑥 + 𝑏, the slope of each shock is given by 

coefficient 𝑎, and thereby the angle is calculated by 

𝛼 =
π

2
− 𝑡𝑎𝑛−1(𝑎) (2) 

Where 𝛼 is the calculated angle and 𝑎 is the slope of the 

line segment representing the normal or the oblique 

shock. Formula (2) is applied to all wave front 

estimations throughout the videos, and the median of all 

normal angles is defined as 𝛼1 and the median of all 

oblique angles is defined as 𝛼2.  

2.6 Normal and Oblique Shock Velocity Estimation 

The velocity is estimated by comparing the position of 

the wave front in the first and the last image, relative to 

the time interval between the frames, i. e.  

 

𝑣 =

(Δx ∙ Pmm
px

)

𝑇𝑐𝑎𝑚 ∙ 𝑁𝑓𝑟𝑎𝑚𝑒𝑠
  

(3) 

where 𝑣 is the velocity of the shock wave in [
𝑚𝑚

𝑠
], Δx is 

the number of pixels the shock wave has moved, Pmm

px
 is 

a pixel to millimeter conversion factor, 𝑇𝑐𝑎𝑚 is the 

elapsed time per frame capture and 𝑁𝑓𝑟𝑎𝑚𝑒𝑠 is the 

number of frames the wave front is tracked. 

The reason for calculating wave front velocities globally 

(first to last frame) instead of locally (two subsequent 

frames), is due to variations in the wave front estimate. 

Through visual inspection it comes clear that each wave 

front estimation might vary around +/- 7 pixels while 

still being considered a satisfactory wave front estimate. 

In Figure 9, the span of an accepted wave front estimate 

is shown. 

 

 

Figure 9. Illustration of expected wave front estimate. 

The black lines in the right-hand image displays the 

variation to be expected by a wave front estimate. The 

variation is around +/-7 pixels. 

If the velocity is to be calculated from one frame to the 

next, +/-7 pixels could make a significant impact on the 

velocity estimate as a wave front moves approximately 

5 pixels per frame. However, calculating the velocity 

over 100 frames, using the first and last frame, reduces 

the impact of wave front estimate variance. 

A different solution to estimating the velocity could be 

calculating the velocity from one frame to the next for 

all frames, then find the median velocity of all the 

estimated velocities.  

3  Results 

The presented framework is tested on different high-

speed videos to study the robustness of the framework. 

The results obtained through applying the framework to 

different high-speed videos are shown in Table 1 and 

Table 2. 
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Table 1. Velocity estimations of the shocks using the 

proposed framework. 

 

 

 

 

 

 

 

 

 

 

Table 2. Angle estimations of the shocks in the high-

speed videos using proposed framework 

Experime
nt no. 

Normal shock 
angle [𝒅𝒆𝒈] 

Oblique shock 
angle [𝒅𝒆𝒈] 

2516 87 50 

2533 89 89 

2543 87 54 

2573 87 50 

2592 89 62 
 

Table 3 shows the confidence interval of the estimated 

normal and oblique shock angles. 

Table 3. Confidence interval of normal and oblique shock 

angle estimations. 

Experime 
nt no. 

Normal shock 
95% confidence 
interval [deg] 

Oblique shock 
95% confidence 
interval [deg] 

2516 [86 … 87] [47 … 53] 

2533 [88 … 91] [88 … 91] 

2543 [86 … 88] [50 … 58] 

2573 [85 … 87] [45 … 52] 

2592 [85 … 93] [57 … 63] 
 

A plot of all wave fronts tracked in experiment 2516 and 

2573 can be seen in  Figure 10 and  Figure 11, 

respectively. 

 

Figure 10. Result of all wave front estimations for 

experiment 2516 is displayed as red lines. The wave front 

in the first frame is the rightmost red line, while the wave 

front in the last frame is the leftmost red line. 

 

Figure 11. Result of all wave front estimations for 

experiment 2573 is displayed as the red lines. The wave 

front in the first frame is the rightmost red line, while the 

wave front in the last frame is the leftmost red line. 

4 Conclusions 

The task of developing a wave front tracking framework 

given by the Combustion, Process Safety and 

Explosions research group (CPSE) at University 

College of South-East Norway (USN) was approached 

with focus on finding a viable solution. As the high-

speed videos provided is blurred and corrupted with 

noise, developing a solution which shows promise was 

prioritized. The result is a framework that estimates 

normal and oblique shock angle and velocity, as well as 

triple point estimation in each frame and triple point 

velocity in the given video. The framework is limited by 

the quality of the video provided, as the video is the only 

source of information the framework receives. Certain 

inputs from the user is required in order to ensure 

optimal performance of the framework. 

The framework developed was first implemented on a 

single high-quality frame as a way to do a feasibility test 

during development. Secondly, the framework was 

expanded to automatically run for an entire video. 

Lastly, the framework was tested on different high-

speed videos to test diversity of the framework. 

An extended Segmented Regression method was 

developed in order to handle two separate data sets in 

parallel. 

The proposed framework delivers results in accordance 

with theoretically calculated values and measured data 

presented by the CPSE research group at USN in 

cooperation with Caltech. 
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