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Abstract

A theoretical framework for sampling theory is developed. In this relation, concepts like

mixture heterogeneity and representative samples are mathematically de�ned. Further,

the relation between Gy�s concepts of accuracy and reproducibility with mixture quality

and the entropy of the sample distribution is established. Moreover, it is shown that within

the developed framework, Lacey�s conjecture is mathematically consistent. It is also shown

that a consequence of the theory is the prediction of the number of key components of

given size in random binary closed batch systems. It is also shown that this estimate is

a function of microstructural properties of the mixture under study. Furthermore, this

theory is used to develop a unifying approach to description of RTD of continuous systems.

These results are further used to develop a model for RTD of a commercial twin screw

extruder.

A new theoretical approach to the dynamics of the mixing processes is developed. In

this context, the concept of heterogeneity landscape is introduced. It is argued that the

valleys in the heterogeneity landscape correspond to di¤erent equilibrium states of the

mixture. Further, it is shown that the valleys in the heterogeneity landscape can math-

ematically be described by heterogeneity equation and this would allow for classi�cation

of all the valleys. The characteristic function of the general solution to the heterogeneity

equation is also determined. Moreover, it is shown that based on the mathematical model

for the valleys, one can deduce that in the case of insu¢ cient information about the mix-

ture structure, the normal distribution, up to the second order; is the best distribution in

describing the mixture structure.
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Chapter 1

Foreword

"Who could ever calculate the path of a molecule? How do we know that

the creations of worlds are not determined by falling grains of sand?"

Victor Hugo, Les misérables (1862)

T
he worldwide annual production of grains and aggregates of various kinds is

gigantic, reaching almost ten billion tons (Duran 2000, p.3). It is estimated

that the processing of particulate materials consumes approximately 10% of

the total energy consumptions in the world. According to US Department of Energy (EIA

2005), the world�s total energy consumption in the year 2001 was 119,000 TWh. Hence,

roughly speaking, we spent about 12,000 TWh just for processing of particulate materials

in year 2001. This was more than the amount of electrical energy produced by all the

conventional hydroelectric, Geothermal, Solar and Wind power plants in the world during

the same year! This also exceeded the combined energy consumption of Europe�s three

biggest economies; Germany, France and United Kingdom in the same year. Obviously,

this huge �gure also contributes signi�cantly to the emission of greenhouse gases, which

have great impact on life on the planet. Therefore, advances on understanding of the

particulate systems bound to have major global economic and environmental impact.

From scienti�c point of view, particulate systems o¤er numerous challenges with far

reaching implications for many seemingly di¤erent research �elds. The reason perhaps

lies in some apparently intractable complexities. The particulate materials exhibit some

sort of �dual�nature, wherein they simultaneously show both macroscopic discrete orga-

1



Chapter 1. Foreword 2

nization and microscopic continuous behaviour, in which both chaos and new order may

emerge. This has been a source of great consternation for scientists. It is becoming more

and more apparent that a satisfactory understanding of particulate systems ought to lead

to a paradigm shift in how we conceive the world around us.

An immediate consequence of the complexities involved in particulate systems is that it

is rarely possible to have a complete overview of all parameters a¤ecting the system under

study. This would usually result in a situation where many systems operate in far from

optimal state and consequently may result in severe economic loses. Furthermore, even

in the rare cases in which it is possible to identify the parameters a¤ecting the process;

it is not always possible to �nd economically viable measurement methods to directly

determine the process parameters of interest. For more than a century, many engineers

and scientists have been struggling to tackle such problems with limited success. However,

it is still believed by many that the science of particulate materials is in its infancy.

Nevertheless, this situation is not unique for this subject. In fact many phenomenon as

diverse as biological processes and tra¢ c jams in big cities to earthquake and tsunami

forecast share similar resilience in revealing their secrets. It seems that the common

denominator in all of these subjects is their complex nature which demands an approach

with interdisciplinary �avour.

1.1 The Objective of the Thesis

A bulk of particulate materials usually consists of particles with di¤erent sizes and shapes.

That is, one should always consider a bulk of solids consisting of mixture of particles with

di¤erent sizes, shape and so on. Nonetheless, mixing of di¤erent powders is also an

important operation in a wide range of processes. For these reasons, it does not come as

surprise that the characterization of mixing and mixtures of particulate materials is one

of the most important issues in bulk solid handling processes.

It has been over sixty years ago since Lacey (1943) gave a probabilistic characterization
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of mixture of particulate materials. Since than several hundreds of research articles and

books, covering various aspects of the subject have been published. But despite this

huge wealth of information, we believe that the subject is still lacking a reliable scienti�c

framework. We believe that the function of science, as Braithwaite (1953, p.1) put it, is

to establish general laws covering the behaviour of the empirical events or objects with

which the science in question is concerned, and thereby to enable us to connect together

our knowledge of separately known events, and make reliable predictions of events as yet

unknown. However, it is our opinion that most of the work in this subject do not serve

this function. Therefore, the main objective of this work is to establish a framework

within which a unifying scienti�c approach to the subject is possible.

The most important step in this direction is to establish a method by which one can

unambiguously describe existing information. The common and most successful method

of describing our state of knowledge about a phenomenon is by a mathematical model.

With a mathematical model one achieves several things. As Zellner (1984, p.14) put it,

�Mathematically formulated models do have the advantage that in general their logical

consistency can be checked using the available operations of mathematics. While, this

task is not always easy, it does appear easier than that associated with checking the

logical consistency of many non-mathematical models�. Thus, the �rst and perhaps the

most important advantage is that it is an e¤ective way of communicating our state of the

knowledge to others. Secondly, our model allows us to take advantage of huge number of

methods developed by others outside our �eld. And the last but not the least, a mathe-

matical model can aid us to get a clearer picture of the consequences of our assumptions

and discoveries.

However, despite these advantages, it is di¢ cult to �nd a single mathematical model

capturing every circumstance that is relevant in the real world. This has led us to believe

that any mathematical model would be at best a subjective description of our state of

knowledge of the real world. This is perhaps the main reason that there are so many di¤er-

ent models for characterizing mixtures of particulate materials. Indeed, the subjectivity
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means that each model corresponds to a di¤erent state of knowledge about the process

under study. Nevertheless, it is reasonable to demand that any one who is given same

information about a phenomenon should arrive at the same conclusions. Accordingly,

we believe that any unifying approach to the subject of mixing has to be founded on a

mathematical framework. However, in order to achieve this, one needs to carefully iden-

tify and de�ne the most fundamental concepts of the subject. Indeed, as Jaynes (1967)

has pointed out, "you cannot base a general mathematical theory on imprecisely de�ned

concepts. You can make some progress that way; but sooner or later the theory bound to

dissolve in ambiguities which prevent you from extending it further ... Unless the concep-

tual problems of a �eld have been clearly resolved, you cannot say which mathematical

problems are the relevant ones worth working on; and your e¤orts are more likely to be

wasted". Most of the present work is devoted to identi�cation and de�nition of the fun-

damental concepts of the mixing of particulate materials. However, some e¤orts is also

made to demonstrate some of the direct implications of these concepts.

The task of formulating a scienti�c theory based on an acceptable de�nition of scienti�c

theory is not without its di¢ culties. The most accepted de�nition is due to Popper (2002,

§22), which requires that all scienti�c theories should ful�l the falsi�ability criteria. This

basically means that all the "meaningful" statements of a scienti�c theory should be in

such logical form that they can be refuted by experience. Although, it is tempting to adopt

this de�nition, one should bear in mind that Popper dismisses the idea of induction (see

for example Popper 2002, p.18). That is, he claims that there is no rational justi�cation

for reasoning from repeated instances of which one has experience to instances of which

one has no experience. However, in the case of complex systems in which one, in general,

does not have a complete overview of all the parameters, induction is a valuable tool.

Indeed, as Jaynes (2003, p.310) puts it, "the functional use of induction in science is not

to tell us what predictions must be true, but rather what predications are most strongly

indicated by our present hypotheses and our present information". Accordingly, we found

it necessary to replace the falsi�ability criteria by irrationalability criteria. That is, the



Chapter 1. Foreword 5

statements of a scienti�c theory should be in such logical form that they can be shown

to be irrational by experience. This allows for development of a probabilistic theory in

which all the statements ful�l the irrationalability criteria. Indeed, since a probabilistic

statement can only be shown to be irrational and almost never possible to falsify.

1.2 The Structure of Thesis

The thesis is divided into three major parts. The �rst part is devoted to state of the

subject and fundamental tools being used in the rest of the thesis. The second and third

parts are concerned with development of a mathematical framework for Sampling and

Mixing theory, respectively. The main material of the thesis is organized in the following

manner:

� Chapter 2: A general exposition of the literature on the subject is given. The

chapter begins with a short exposition of the parameters which a¤ect the �nal state

of the mixture. The mixers are further divided into two major classes, batch and

continuous. In each case, some of the existing models in literature are reviewed.

� Chapter 3: Our approach to irrationalability criteria rests on Bayesian interpre-

tation of probability theory. Therefore, in this chapter a short presentation on the

most basic concepts of the subject relevant to this work is given. This chapter begins

by exploring some of the historical aspects of the subject and the arguments in the

favour for revision of the classical interpretation of the probability. This follows by

a short introduction to the basic rules of the Bayesian probability theory in which

concepts like prior and posterior probability and their relation to Bayes�theorem are

explained in some details. It is shown how these basic concepts result into some of

the most powerful tools that Bayesian interpretation can o¤er. More speci�cally, a

short introduction to the principal of maximum entropy, marginalization and model

selection is provided. The chapter is concluded by explaining the now celebrated
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entropy concentration theorem.

� Chapter 4: The main objective of this chapter is to develop a consistent model

for mixture heterogeneity. In this context, the meaning of representative sample

in relation to evaluation of mixture quality is discussed. Further, a mathematical

model which quanti�es the most important properties of a representative sample,

i.e., accuracy and reproducibility, is developed. In this relation, it is shown that

reproducibility can be used as a measure for mixedness and mathematically it can

be modeled by the entropy of the sample distribution. Further, from the sampling

point of view, the mixing systems are divided into two categories of open and closed

systems. In each case a mathematical model is developed. It is demonstrated that

the same mathematical formalism can be adopted to model both type of systems and

the only di¤erence is in how the constraints are assigned. A set-theoretical approach

to the concept of mixture heterogeneity is also established and it is demonstrated

how mixture heterogeneity can be quanti�ed. This chapter is concluded by deter-

mining the relation between the pdfs of di¤erent sample spaces of di¤erent orders.

These results are summarized in two theorems as, fundamental theorem of sample

spaces and fundamental theorem of ensembles.

� Chapter 5: The objective of this chapter is to demonstrate some of the established

facts about sampling of particulate mixtures and hence demonstrate the consis-

tency of the framework developed in Chapter 4. In this context, Lacey�s conjecture

is stated and is shown that it is mathematically consistent within the developed

framework. One major consequence of this analysis is stated in the mixture het-

erogeneity theorem. Moreover, a new model is developed which can be applied to

estimate the number of tracer particles of given size in random binary closed batch

systems. It is further shown how the same techniques can be used in determining

the RTD of the binary closed continuous systems. This chapter is concluded by

demonstrating how the developed model for the RTD of a binary closed continuous
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system can be applied to model the RTD of a commercial twin screw extruder.

� Chapter 6: In this chapter a new approach to the dynamics of the mixing processes

is introduced. In order to do so, a short introduction to some of the most commonly

used concepts in theory of complex dynamic systems is presented. Based on these

concepts, the theory of punctuated equilibrium is introduced and is shown how it can

explain the dynamics of mixture of particulate materials. Furthermore, it is demon-

strated how all these concepts can be uni�ed under the concept of heterogeneity

landscape. A mathematical classi�cation of all the valleys in a heterogeneity land-

scape is also achieved through the introduction of the heterogeneity equation, which

is summarized under the fundamental theorem of mixing. This chapter is concluded

by a discussion on a method for determining the coe¢ cients of the heterogeneity

operator.

� Chapter 7: The objective of this chapter is to demonstrate some of the direct

consequences of the analysis of the previous chapter. It is shown that the choice

of pdf for heterogeneity function being normal is not an assumption but a direct

consequence of insu¢ cient information on the structure of the mixture. It is also

shown how inference on the mixture heterogeneity can be conducted and in the

case of the pdf for heterogeneity function being normal, Gy�s estimate for mixture

heterogeneity is reproduced.

In the Appendix A, an alternative approach to determination of the mean residence

time is given. This method was discovered during our literature study of the subject. It

is surprising that no one in literature has ever considered to study the continuous mixers

from the Queueing theory point of view. Therefore, we found it necessary to add this

appendix as a supplement to the material in Chapter 2.

We have in many occasions found it necessary to explain the sources of inspiration,

historical facts, related results in other �elds or philosophical bases for our approach, which

in general are not directly related to the subject of this thesis. For this reason we have
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placed all such material under the sections with the title of "Comments". These sections

should not be considered as a part of thesis but as a source of additional information. We

hope that this would lead to constructive discussions which would hopefully result into

further advances.
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Chapter 2

Literature Survey on Particulate

Mixing

TheMaster said, Yu, shall I tell you what knowledge is? When you know

a thing, to know it, and when you do not know a thing, to recognize

that you do not know it. That is knowledge.

K�ung Fu-tsu, Analects of Confucius (500 BC)

I
n general a batch of particulate material can be considered as a set of units which

consists of solid fragments. By de�nition, it is homogeneous if all the units are

strictly identical. It would be heterogeneous if the units are not strictly identical

to each other (see Ghaderi 2003). A good example of an apparently homogeneous set is

a batch of calibrated ball-bearing balls. Even though the di¤erence in diameter of each

ball is in the sub-micron range the balls are not strictly identical. The batch is therefore

heterogeneous. Small di¤erences between units, in a batch of particulate material could

have a profound e¤ect on the outcome of the process. This is a well established fact which

is proven in many applications, see for example Abou-Chakra and Tüzün (1999). Thus,

in reality, one always has to consider a batch of particles as a mixture of non-identical

solid fragments. Therefore being able to characterize mixtures should be one of the most

important objectives of research in bulk solid handling. There is a large number of articles

and books which covers di¤erent aspects of the subject. In this chapter, however, only a

small portion of the literature, which is believed to be most relevant to the present work

9
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is reviewed. Accordingly, the chapter begins with a short exposition of the parameters

which a¤ect the �nal state of the mixture. The mixers are further divided into two major

classes, batch and continuous. In each case, some of the existing models in literature are

reviewed.

2.1 Mixing Parameters

Mixing of particulate materials is a complex process in which characteristics of the parti-

cles, mixing equipment and operating conditions can in�uence the tendency to mix and

de-mix. Therefore, the degree of mixedness and the rate of mixing are functions of many

variables related to these characteristics. Segregation of particles usually occurs when

mixing particles with di¤erent sizes. Larger particles stay at the top of the mixture, and

smaller particles sink to the bottom. Segregation is made possible by the gaps that open

up around particles when they are shaken or made to �ow, allowing percolations to oc-

cur. Large particles tend to move toward less dense regions of smaller particles and this

is why large heavy objects can rise to the top of vertically shaken layers of particulate

materials. The above mechanism is known as percolation. Campbell and Bridgewater

(1973) have investigated the mixing of dry particles by percolation. Percolation is also

associated with convection and shear movements. The convective movement is de�ned

as movement of adjacent particles from one location to another in the mixture, while

the shear is de�ned as slipping movement of particle planes within the whole volume. A

recent study by Shinbrot et al. (1997) of particles in a vibrating container indicate that

the qualitative mechanism of convection may simply be that the penetration of particles

into voids in the bulk depends on relative velocities of adjacent particles. The role of this

velocity di¤erential is to provide additional scattering opportunities that may permit a

particle from one side or the other to enter the void. Shinbrot et al. conclude that this

observation explains the mechanism that drives particles toward regions of low shear.

Di¤erence in density of particles can also lead to segregation. In a recent experi-
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Figure 2.1.1: In a Hardinge Ball Mill, the large pebbles segregate to the part with the larger diameter
and small pebbles segregate to the part with smaller diameter.

ment, Burtally et al. (2002) demonstrated that when a mixture consisting of particles of

equal size but di¤erent density is vibrated up and down, it can completely separate out.

However, Campbell and Bauer (1966) have reported that for density ratio less than 3:1,

size distribution exerts greater in�uence on mixing and demixing than the di¤erences in

density and shape. In this relation, Egermann and Orr (1983) reported suggestions on

particle size to reduce or eliminate segregation.

Particles possessing small angles of repose exhibit good �owability and small coe¢ cient

of friction. Good �owability is not necessarily of advantage for mixing. Fan et al. (1970)

have pointed out that segregation may occur due to their rapid movement.

Dimension and geometry of a mixer and those of an agitator have in�uence on the

particle �ow pattern and �ow velocities. For instance, if one considered a cylinder rotating

on its horizontal axis, quite small variations to that shape could convert the machine from

a mixer to a separator. For example, if one end of the cylinder were changed to a cone,

the resulting system is the very well-known and well-established piece of equipment, the

Hardinge Ball Mill (see Figure 2.1.1). It is well-known that during operation, the large

pebbles segregate to the part with the larger diameter (mainly the cylindrical part) and

small pebbles segregate to the part with smaller diameter (mainly the conical part).

Interactions between particles and the construction materials and surface �nishes of

a mixer may produce static charges and hence cause agglomeration. Friction between
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particles and the surface of a mixer has some e¤ect on mixing and demixing. Broadbent

et al. (1993) have investigated some of these issues. They studied the mixing process

in a batch mixer by introducing radioactive tracer particles into the mixture which in

turn was monitored by a positron camera. They found, among other things, that there

were signi�cant di¤erences in behaviour of the particles in the central region and the two

end regions of the mixer, as well as signi�cant di¤erences in the behaviour of particles in

the two end wall regions even though these were super�cially mechanically similar. They

concluded that the mixer performance is extremely sensitive to the mixer design.

Type, location, and number of loading and emptying devices may enhance or hamper

the mixing action. The operating conditions of a mixer can also greatly a¤ect the degree

of mixedness and the rate of mixing. Carley-Macauly and Donald (1962) studied some of

these e¤ects on mixing and demixing in tumbling mixers. However, it appears to be that

Rose (1959) was the �rst investigator to systematically study the relationships between

the mixing process and the physical parameters. He attempted a dimensional analysis by

assuming that mixing and demixing occur simultaneously in a mixer. He found that the

parameters that can be considered to be related to mixing were:

� Diameter of the mixer

� Speed of rotation of the mixer

� Mean diameter of particles

� Mean coe¢ cient of friction of the particles

� Gravitational force

and those parameters considered to be related to demixing were:

� Diameter of the mixer

� Speed of rotation of the mixer
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Characteristics of Particles Characteristics of Mixing Equipment
Particle size distribution Mixer dimension and geometry

Particle shape and surface characteristics Agitator dimension

Bulk density and particle density Construction materials and surface �nishes

Moisture content Type, location and number of loading and emptying devices

Angle of repose Operating Conditions
Coe¢ cient of friction particles Weight of each constituent added

Friability Ratio of volume of the mixture to that of the mixer

State of agglomeration Method, sequence, place and rate of adding constituents

Flowability Mixer or agitation speed, if any

Table 2.1.1: Variables in�uencing the state of a mixture, summerized by Fan et al. (1970).

� Mean diameter of the particles

� Di¤erence of the mean sizes of the constituents of the mixture

� Mean density of the mixture

� Di¤erence of the densities of the constituents of the mixture

Fan et al. (1970) reported that Rose�s analysis has been also con�rmed experimentally

by other investigators. A list containing some of the above mentioned variables is given

in table 2.1.1.

In practice, the above list is incomplete and could be extended inde�nitely. In a 1964

review, which was based on a survey for the Institution of Chemical Engineers in the UK,

Bourne (1964) pointed out that �far too little is known of how the interactions between the

geometry of a mixer, its �ow pattern, and physical proportion of materials determine the

rate and degree of mixing and the laws of scale-up�and that �experiments with powders

will probably be di¢ cult to interpret and generalize quantitatively until the laws of particle

�ow and force transmission in powders become established, even for simple geometries�.

After 40 years and hundreds of research papers, most of the Bourne�s conclusions and

recommendations are still valid. In this sense, any model would necessarily be based on

only some of the parameters that in�uence the �nal state of a mixture. However, the

reliability of models will depend on the degree of independence between the parameters
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included in the model and the ones that were not included. Nevertheless, the proposed

models should be �exible enough in order to be modi�ed to take into account the new

knowledge, which is as yet unknown.

2.2 Batch vs. Continuous Mixing

Mixers, in general, can be divided into Continuous and Batch mixers. Batch or discontin-

uous is characterized by the fact that the mixer is �lled with the ingredients, then started

and after a certain mixing time, the mixture is discharged, see for example Weinekötter

and Gericke (2000, p.67). The feeding, mixing and discharging operations are performed

one after the other. Whilst, in continuous mixing process the ingredients are continuously

fed into the mixer then mixed and the product prepared for the next processing stage.

However, the operations of feeding, mixing and discharging follow each other locally but

contemporaneously.

It is di¢ cult to generalize the relative merits of batch and continuous mixing because

each particular application has its own special requirements and constrains. However,

one can consider the advantages and disadvantages of each process as follows, see de Silva

(1997), Scho�eld (1975) and van Heusden (1993):

� In continuous mixing high throughputs can be achieved with relatively small units.

� Continuous mixers have lower power requirements due to small hold-up.

� Continuous mixing requires less handling than batch mixers.

� In continuous mixing there is less chance of segregation after the mixer.

� Continuous mixers, if properly designed, can have short residence times, resulting

in small space requirements, but are unable to deal with �uctuations in feed com-

positions. Expensive control systems become necessary in order to ensure that such

�uctuations do not occur.
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� Control loops for continuous mixers must have very short response times.

� Continuous mixers are very sensitive to malfunction of system components.

� The design of a continuous mixer is often restricted to one application and adapta-

tion to other duties is often di¢ cult.

� Successive operations are not possible in continuous mixers.

The relative importance of these various advantages and disadvantages of batch and con-

tinuous mixing depend upon the process it is likely to be employed in. Traditionally,

mixing has been a batch operation, but requirements for large throughputs with a con-

stant composition in an uninterrupted process are growing. This, in turn, has resulted in

an increased interest in continuous mixers/mixing.

2.3 Review of Models on Batch Mixing

Most of the models and characterization of the batch mixers are either empirical or sto-

chastic in nature. This in a sense re�ects the di¢ culties in delineating the inherently

complex nature of solid mixing processes by means of the deterministic approaches.

In general, the mixing and segregation mechanisms can be viewed either macroscopi-

cally or microscopically, see Fan et al. (1990). In the macroscopic approach, the movement

of solids are visualized as that of coherent clumps or blocks of powders, whilst in micro-

scopic approach, as interparticle percolation in the regions known as failure zones existing

between moving blocks, see for example Bridgewater (1976).

Lacey (1954) has suggested three mechanisms contributing to creation of a mixture;

(i) convective mixing: the transfer of groups of adjacent particles from one location in

the mixture to another, (ii) di¤usional mixing: the interpenetration and random local

mingling of individual particles, (iii) shear mixing: the slipping of particle planes within

the whole mixture, in which it changes the relative position of the constituting particles.
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Nonetheless, as Poux et al. (1991) have also pointed out, although a speci�c mechanical

action needs to be considered, shear mixing can be considered as a speci�c combination

of the convective and di¤usional mixing.

As mixing proceeds, all the aforementioned mechanisms function to some extent. Dif-

ferent mixers give di¤erent predominating mechanisms. Bourne (1964) noticed that con-

vection alone always produces a mixture consisting of streaks or patches of individual

components, if the size of the regions scrutinized is su¢ ciently small. On the other hand,

di¤usion is a mechanism whereby patches are diluted by the other components. Di¤usion,

which occurs simultaneously with sub-division and convection, acts across the boundaries

of patches so that in practice the boundaries are not sharply de�ned. Moreover, convec-

tion increases the rate of di¤usion by increasing the surface area of patches and decreasing

di¤usion paths. Nevertheless, particles in the mixture can only migrate from or to patches

while the mixture is agitated. This means that the rate of migration depends on the nature

of agitation and so it depends upon more than the physical properties of the material.

2.3.1 Macroscopic Approach

Most macroscopic approaches are based on modelling of above mechanisms. For example,

Lacey (1954)argued that the behaviour of materials in mixers that repeatedly spread

particles over freshly exposed surface of the mix is very similar to ordinary molecular

or thermal di¤usion. Based on this argument he applied the Fick�s law of di¤usion

(Ficks, 1855) to model di¤usional mixing. The Fickian di¤usion model is mathematically

described by
@C

@t
= D

@2C

@x2
; (2.3.1)

where C is the concentration of the key component, D is the di¤usivity, x is the distance

in the direction of dispersion and t is the time. However, in order for Fickian di¤usion

model to work, the mixture ingredients should not behave di¤erently in the way they

move; i.e. the segregation tendencies should be negligible. In fact, Carstensen and Patel
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(1977) have experimentally demonstrated that in the case of binary non-spherical particles

having rough surfaces and di¤erent mean diameter, the Fickian di¤usion model is not

valid. Moreover, as Harnby (1967), points out, in general, Fickian di¤usion model is

not applicable to the mixing of a real system resulting from interaction between the

mechanisms of mixing and segregation.

For this reason a new mathematical model, based on Fick�s law of di¤usion was de-

veloped by Strek et al. (1978), which was used in describing a two-component system

mixed radially in a horizontal rotating drum mixer, accompanied by segregation. In this

model, which is also known as di¤usional segregation model, the concentration of the key

component, C (r; t) ; is considered to be the sum of two independent component functions

called the homogenization and the segregation functions; i.e.

C (r; t) = Ch (r; t) + Cs (r; t) : (2.3.2)

Applying Eqn. (2.3.1) in cylindrical coordinate to both Ch (r; t) and Cs (r; t) leads to

@Ch (r; t)

@t
= Dh

�
@2Ch (r; t)

@r2
+
1

r

@Ch (r; t)

@r

�
(2.3.3a)

@Cs (r; t)

@t
= �Ds

tk

�
@2Cs (r; t)

@r2
+
1

r

@Cs (r; t)

@r

�
(2.3.3b)

where Dh and Ds are di¤usional homogenization and segregation coe¢ cients, respectively,

and h > 1 is a dimensionless constant. These equations can be solved for C (r; t) under

the assumptions of unity loading and complete segregation as the �nal state of the system.

The di¤usional segregation model, besides being speci�c to certain type of mixers,

introduces a new way of considering the mixing and segregation. In this approach, one

considers the e¤ect of mixing and segregation to di¤use, independently, through the mix-

ture and depending on the mixture parameters, determine the �nal state of the mixture.

This is indeed a radical approach, which contrary to previous approaches, focuses on

modelling the e¤ects using the machinery which was previously only used for studying
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the causes. However, judging from literature, this model despite having the potential of

providing a uni�ed mathematical description of both mixing and segregation processes,

did not receive the attention it deserved. It is also di¢ cult to judge if the authors had a

full overview of the consequences of their radical approach. They also admit that more

experimental investigations are necessary in order to check the model. Unfortunately, not

much further work in this direction was ever conducted posterior to their publication.

Sommer (1979) has also noticed that in presence of demixing tendencies, the Fickian

di¤usion model is inadequate. He suggested that a better description of the mixing

process is to assume that the mass transport in the mixer consists of two components;

transport by convection and transport by dispersion. Based on this simple assumption,

he demonstrated that this model, which is now known as di¤usive-convective model, is

better described by a generalized version of the Eqn. (2.3.1); i.e.

@C (x; t)

@t
= � @

@x
[v (x)C (x; t)] +

@2

@x2
[D (x)C (x; t)] ; (2.3.4)

where v (x) and D (x) are convection and dispersion transport coe¢ cient functions, re-

spectively. Equations of type (2.3.4) are known as Fokker-Planck equations and were

�rst introduced by Fokker (1914) and Planck (1917) in relation to problems in statisti-

cal mechanics. In order to validate the model, Sommer observed the mixing of ballo-

tini in a glass drum. Based on the experimental observations he showed that the Eqn.

(2.3.4) could be used to describe the mixing mechanisms. He also demonstrated that the

di¤usive-convective model could su¢ ciently describe previous experimental �ndings by

Müller (1966). Hwang et al. (1980) also used the di¤usive-convective model in studying

the mixing of dry powders during �ow over an inclined surface. The validity of the model

was veri�ed through a series of experiments using di¤erent chute lengths and di¤erent

feeding conditions.

Thus, in general, it appears that the di¤usive-convective model is better than the

Fickian di¤usion model. However, although this model has been successful in describing
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the mixing processes consisting of non-spherical particles, in deriving the Eqn. (2.3.4),

Sommer assumed that the mixture consisted of completely identical spheres which were

independent of one another. It seems that this assumption, at least in cases studied, is

not necessary. Nevertheless, no convincing argument has ever been produced to con�rm

the redundancy of the assumption.

2.3.2 Microscopic Approach

In microscopic approaches, one constructs models in which interaction between particles

and their relation to the bulk properties can be studied. The most common method is

known as discrete element method (DEM). DEM is a computer based simulation method

in which the main goal is to establish a link between experimental observations and be-

haviour of the bulk at particle level. In DEM, particles are assumed to undergo collisions

obeying classical Newtonian mechanics. Hence, the problem reduces to one with N body

interaction where no closed form solution exist (except for N = 2). Theoretically however,

it is possible to integrate the coupled equations of motions in time using numerical tech-

niques. Therefore, the size of the system under study is restricted by the computational

power available.

In a recent article, Dury and Ristow (1999), applied DEM in studying the dynamics

of the size segregation process of binary particle mixtures in three-dimensional rotating

drums, operated in the continuous �ow regime. The drum used in the simulation had

a diameter of 70 mm and a height of 25 mm. It was �lled with a binary mixture of

large beads having radius of 1:5 mm and small beads r 2 f0:75 mm; 1:0 mm; 1:25 mmg.

The total number of particles used were up to 17000; which is quite small comparing

with the mixtures in practice. Nonetheless, they could demonstrate that when a rotating

drum is operated in the continuous �ow regime, the size segregation will take place for

arbitrary small di¤erences in particle size. Moreover, they could show that the highest

achievable segregation can be obtained for a slightly more than half-�lled cylinder and
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therefore least mixing. These results which also were previously shown experimentally by

Metcalfe et al. (1995), could be interpreted as a con�rmation that the assumed model in

the particle level is correct. However, as Baxter (1998, p.50) points out, it is perfectly

possible that quite di¤erent models of the mechanics at particle level will result in very

similar macroscopic predictions. Nonetheless, DEM is potentially powerful approach in

gaining insight into the mechanisms governing mixing and segregation, provided that it

can be shown to reproduce physical phenomena of real systems.

2.4 Review of Models on Continuous Mixing

In general the mixing actions involved in continuous mixers are divided in radial and axial

mixing, see for example Scho�eld (1975). The radial mixing causes the intermingling of

the parallel streams, which in turn, reduces the radial heterogeneity of the mixture and

axial mixing smooths out the time based �uctuations in the e¤ective composition of the

input, which reduces the axial heterogeneity of the mixture. Since the radial direction is

usually much smaller than the length of the mixer, the contribution of heterogeneity along

the axial direction is far greater than in the radial direction. Therefore, continuous mixers

are characterized by their ability to smoothing out ingoing �uctuations (axial mixing).

In order to reduce the axial heterogeneity, the mixer delays the particles on their way

out. This, in practice, means that the mixer forces the particles not to take the geo-

metrically shortest way out but rather more tortuous paths. This can be either achieved

by allowing the mixture ingredients to pass over structures which disturb the �ow and

divert the particles or simply by dilating the mixture in order to initiate the equivalent

of Brownian motion in �uids.

2.4.1 Residence Time Distribution

Continuous mixers are, in general, characterized by quality of the mixture that has passed

a certain point in the mixer (usually the outlet), within a certain duration of time. In
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this relation, each slice of material that �ows out of the mixer can be thought as a

sample. The heterogeneity within each sample is not important and is related to radial

mixing. Therefore the mixers are characterized by their ability in smoothing out in

going �uctuations; i.e. reduction of axial heterogeneity. This property is often related to

residence time distribution (RTD); the distribution of times that elements of the �ow of

material spend in the mixer.

As Shinnar et al. (1972) have also pointed out, the RTD-model based approach has

become an important analytical tool in the study of various processes. The subject is

especially important in design of continuous reactors. Although, the concept was originally

developed for �uids, it has been extensively used in the literature on continuous mixing

of particulate materials. The reason for this is the natural connection between the time

each particle spends in the mixer and the quality of axial mixing.

To this end, notice that each particle in the out�ow from the system possesses a

previous history. The duration of the particle�s stay in the system is de�nable in statistical

term. With each distribution of residence time, one can de�ne a function F (t) with

the following property: the fraction of particles possessing a residence time t or less is

equal to F (t): The fraction of particles whose residence time exceeds t is given by the

complementary function F �(t); which is de�ned as

F �(t) = 1� F (t): (2.4.1)

As Shinnar and Naor (1963) have also noticed, the functions F (t) and F �(t) may also be

interpreted as probabilities. Therefore, F (t) can be considered as being the probability of

a single particle staying in the system for a time t or less and F �(t) the probability that

the particle�s residence time exceeds t. Now, notice that �F (t) = F (t + �t) � F (t); is

the probability of a particle having RTD in < t; t+�t > : But

�F (t) � dF

dt
�t = f(t)�t: (2.4.2)
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Hence, if we let �t ! 0; then f(t)dt can be interpreted as the probability of a particle

having a residence time between t and t+dt or equivalently the probability of a residence

time being found between t and t + dt: Thus f(t) can be regarded as the probability

density for RTD. It should be stressed that usually the functions f; F and F � refer to the

density and distribution of the RTDs of particles as they appear at the location of the

exit from the system.

Models for Residence Time Distribution

In principle, all the information about the RTD is embodied in any one of the functions f;

F and F �. The di¢ culty arises when an attempt is made to translate the somewhat ab-

stract information into more physically meaningful concepts. The most common method

is to compare the experimental distributions with functions obtained from some idealized

theoretical models. One model which is frequently encountered is based on the assump-

tion that as soon as a particle has entered the system (an intensely agitated vessel, for

example) the probability of its leaving in the out�ow becomes independent of past history

and is thus constant. The memoryless property is precisely a property of exponentially

distributed random variable which can be used to model RTD, see for example Arnold

and Huang (1995):

f(t) =

8><>: �e��t , t > 0

0 , t � 0
(2.4.3)

where � > 0; is the reciprocal of the mean residence time,

� =
1
_
t
� (2.4.4)

This type of mixing and the ensuing RTD are sometimes referred to as belonging to the

ideally mixed or exponential vessel.

If there are several identical and independent exponential vessels with each having

the same mean residence time, connected in series, then the RTD can be modelled by
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n-Erlang distribution (see Dougherty, 1990, p.181),

f(t) =

8><>:
(n�)n

(n�1)!t
n�1e�n�t , t > 0

0 , t � 0
(2.4.5)

where � > 0; is the same as the one in Eqn. (2.4.4) and n > 0; is the number of the

vessels. Moreover, it can be shown that the mean residence time of a vessel is given by
_
t=n; in which

_
t is the mean residence time of the whole system.

On the other extreme, one has a behaviour characterized as plug �ow. This situation

can be described as �rst-in-�rst-out (FIFO). This means that particles spend same amount

of time,
_
t ; in the system. Thus, in this case f(t) can be described by a delta function.

It is easy to show that a plug �ow mixer can be represented as in�nite serially connected

exponential vessels. Indeed, notice that the Laplace transform of f for n serially connected

exponential vessels is

Lff(t)g = (�n=(�n+ s))n: (2.4.6)

Then, it can be shown that

lim
n!1

Lff(t)g = exp(�s=�)) lim
n!1

f(t) = �
�
t� ��1

�
: (2.4.7)

However, true plug �ow does not exist in actual mixers because each particle undergoes a

randomwalk brought about by convection and di¤usion. Therefore, it is useful to introduce

the concept of near plug �ow to describe such situations. This means that a system in

the state of near plug �ow can be approximated by a large, but �nite, number of serially

connected exponential vessels.

The cases in which n vessels are connected in parallel have also being studied. It can

be shown that in these cases, the RTD density can be described by n-Hyperexponential
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Figure 2.4.1: A typical �ow network, Shinnar et al. (1967)

distribution (see for example Allen, 1990, p.148),

f(t) =

8><>:
nP
i=1

qi�ie
��it , t > 0

0 , t � 0
(2.4.8)

where
nX
i=1

qi
�i
=
1

�
; (2.4.9)

and ��1 > 0; is the mean residence time and qi > 0; is the fraction of �ow passing through

the vessel with ��1i as its mean residence time.

The down side to these models is that as soon as the number of elements increase, the

calculation becomes more tedious. Mathematical techniques like Laplace transformation

makes such calculation easier and can give an alternative picture of the model which is

easier to grasp. However, more complicated networks of exponential vessels are possible.

In the most general case the model consists of n ideally mixed vessels arbitrarily connected

by interstage �ows where the volume of the ith vessel is vi and the volumetric �ow rate

from the ith to jth vessel is wij (i; j = 1; 2; : : : ; n); as shown in Figure 2.4.1. The inlet

stream is distributed to the vessels arbitrarily. By adjusting these values, one can �t the

model with the experimental data. Shinnar et al. (1969) have used a method of analysis

based on randomwalk model and tracer experiments to determine the model parameters.

This method, like most others, has the weakness that it becomes practically impossible

to handle when the number of connections and vessels increases beyond a certain limit.
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Little else exists in the literature on how to handle such complex models. Nonetheless,

as Shinnar and Naor (1963) have pointed out, all actual distribution functions may be

approximated by a theoretical model composed of a number of exponential and near plug

�ow vessels connected in some network. This is of course mathematically equivalent to

the statement that all well behaved functions can be approximated by some power series.

The use of other models has also been reported by Fan and Wen (1975). A particular

one which is of some potential interest is the Gamma distribution, see Dougherty (1990,

p.176),

f(t) =

8><>:
(��)�

�(�)
t��1e���t , t > 0

0 , t � 0
(2.4.10)

where ��1 > 0; is the mean residence time of the system and � (�) is the Gamma function

de�ned as,

�(�) =

1Z
0

t��1e�tdt , � > 0: (2.4.11)

Gamma distribution is just a generalization of n�Erlang distribution. Indeed, by restrict-

ing the values of � to positive integers, the Gamma distribution reduces to n�Erlang.

Quite a variety of shapes can be described by di¤erent choices of � and �: This can be

an advantage in �tting the data.

The representations discussed in this section may have a physical justi�cation in the

�ow characteristics of the system. Alternatively, they may be arti�ces which help to

illustrate the basic features of the system. However, one should be careful not to give

undue weight to f(t) obtained by any arbitrary models.

2.4.2 Escape Probability Density

Wang (1986) pointed out that mixing behaviour of a majority of the actual mixers deviates

from the ideal mixer (exponential vessel). He argued that this deviation may be caused

by non-uniform velocity pro�le, velocity �uctuation due to di¤usion, short-circuiting, by-
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passing and channelling of particles, by the presence of segregating component or stagnant

regions caused by mixer geometrical shape and internals, or by the recycling of solid

particles within the mixer as a result of impeller and helix design. These are evidently

part of a reason for complicated modelling networks.

Shinnar and Naor (1963) have suggested the intensity function or escape probability

density as a method of visualizing the features of RTD related to stagnancy. In the con-

text of modelling based on n- Erlang and n- Hyperexponential distributions, stagnancy

is generally associated with systems in which total �ow may be decomposed into �ows

connected in parallel where one of the components has a signi�cantly larger average resi-

dence time than the other. Now, on viewing a particle which has just entered the system,

as mentioned previously, the probability of its leaving the system within the time interval

< t; t + dt > is equal to f(t)dt: However, a slightly di¤erent problem may be posed; a

particle has already stayed in the system for a time t, one wishes to know the probability

of the particle leaving the system within the next time element dt. To this end, let this

probability be denoted by �(t)dt: This function �(t) may be evaluated by the following

reasoning. Notice that on one hand, the probability of a particle leaving the system within

t and t+ dt equals f(t)dt; whilst on the other hand, this probability is the product of two

other terms:

� F �(t) is the fraction of particles whose RTD exceed t:

� The probability of a particle leaving between t and t + dt, assuming it is of age t;

that is �(t)dt:

Therefore

f(t)dt = F �(t)�(t)dt; (2.4.12)

which implies

�(t) =
f(t)

F �(t)
= � d

dt
lnF �(t): (2.4.13)
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Analogous transforms of probability density functions are commonly called intensity func-

tions and are well known in di¤erent statistical contexts, see for example Johnson et al.

(1995). In general, the intensity function �(t); reveals more features of RTD and , as

Shinnar and Naor have also demonstrated, it is a more natural function to study than

f (t) : Moreover, there is a one to one correspondence between �(t) and f(t): Indeed, it is

straightforward to show that

f (t) = � (t) exp

�
�
Z t

0

� (�) d�

�
: (2.4.14)

Physically �(t) is a measure of the probability of escape for a particle which has stayed in

the system for a period t: Thus, by de�nition, �(t) should be constant in the case of ideally

mixed vessel as the chance of escape is independent of previous history. This is indeed

the case, which can be deduced from Eqn. (2.4.3). Thus any departure of �(t) from

constancy is an indication of ill-mixedness. Indeed, as Shinnar and Naor (1963) have

demonstrated, a system with stagnancy is one in which the escape probability (or the

intensity function) decreases in time over some interval. For example, imagine a system

in which a considerable fraction of the particles moves in near plug �ow, whereas the

remaining fraction is absorbed into a stagnant phase from which it is exuded later into

the main stream. Any particle which has remained in the vessel for a time exceeding the

time of the plug �ow has a high chance of being in the stagnant phase and, therefore, a

low escape probability and intensity function. In comparison, a particle which has stayed

in the system for duration slightly shorter than the plug �ow time possesses a high escape

probability. The corresponding �- curve would show a de�nite maximum even though

the plug �ow may be somewhat distorted by the mixer. The same result is obtained, if a

fraction of the particles passes through a region with an extended residence time.



Chapter 2. Literature Survey on Particulate Mixing 28

2.4.3 Mean Residence Time

Another useful quantity is the mean residence time,
_
t . This value corresponds to the �rst

moment of t, i.e.:
_
t =

1Z
0

tf(t)dt =

1Z
0

F �(t)dt; (2.4.15)

where F �(t) is as de�ned in § 2.4.1 and the last equality achieved by noticing that

Z
F �(t)dt =

Z
tf(t)dt+ tF �(t) and lim

t!1
tF �(t) = 0: (2.4.16)

The mean residence time
_
t , is basically the average time that each element spends in the

vessel. This number is often used to characterize the continuous mixers.

Now, let V (t) denote the total volume of the mixture, in the mixer at time t, with

inlet and outlet �ow rates ui(t) and uo(t), respectively. From the conservation of mass

follows that
dV (t)

dt
= ui(t)� u0(t): (2.4.17)

Based on the above equation, Shinnar et al. (1969) deduced that

_

V = V0 +
_
uo
_
t ; (2.4.18)

where V0 denotes the total stagnation volume in the system (assumed to be constant). The

most noticeable aspect of their approach is that they assume no statistical considerations,

nor any general considerations of stationarity but instead carry out simple averaging in

time, over what may be regarded as a very long transient from the moment the mixing

vessel is brought (empty) on stream till it is retired (empty) from service. However, as the

authors also admit, their proof is more intuitive and based on some heuristic arguments.

In the Appendix A a more rigorous proof of this result based on some well established

results from the Queueing theory is given.
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2.4.4 Variance Reduction Ratio

Another method of the characterization which is related to RTD of a continuous mixer

is, variance reduction ratio or in short VRR. It is de�ned as

V RR =
�2in
�2out

; (2.4.19)

where �2in and �
2
out are the variance in concentration of the key component at the input

and output of the mixer, respectively. Danckwerts (1953) demonstrated that VRR, in the

case of steady-state �ow, could be used to characterize how e¤ectively a mixer reduces

the time-based input �uctuations. Indeed, let Rin (�) denote the autocorrelation function

of the input and f (t) the density of residence time of the mixer. Danckwerts showed that

1

V RR
=
�2out
�2in

= 2

Z 1

0

Z 1

0

�in (�) f (t) f (t+ �) dtd� ; (2.4.20)

where the autocorrelation coe¢ cient, �in (�) is de�ned as

�in (�) =
Rin (�)

�2in
; (2.4.21)

which can be shown to have the following property (Dougherty 1990, p.245),

j�in (�)j � 1 for all � : (2.4.22)

Assuming that Rin (�) and f (t) are known, the variance of outgoing composition can be

determined by Eqn. (2.4.20). Wang (1986) has also suggested that the variance obtained

by this method can be used to construct the so called quality control chart in order

to monitor the quality of the mixture, which could be interesting information from the

process control point of view.

As it was already noticed by Lacey (1943), mixture heterogeneity reaches its minimum

for a random mixture and is always nonzero. Based on this observation, Weinekötter
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and Reh (1995) suggested that Danckwerts model is only valid in the case of �uids and

has to be modi�ed in order to be valid for solid mixing. They suggested the following

modi�cation:
1

V RRsolids

=
1

V RRfluid

+
�2out;ideal feed

�2in
� (2.4.23)

The �rst term on the right side is calculated from Eqn. (2.4.20) and the second term

stands for feed in absence of �uctuations. However, Weinekötter and Reh only produced

a plausible argument in defence of their suggested modi�cation. They neither show or

suggest, in a consistent way, how one can determine the value of each term in Eqn.

(2.4.23).

To this end, Ghaderi (2003) demonstrated that Eqn. (2.4.23) naturally follows by

assuming that the mixer being a linear time invariant system (LTI). Moreover, he showed

how the second term in Eqn. (2.4.23) can be estimated from the input variogram and that

mixer e¢ ciency is properly characterized by (2.4.20); i.e. Danckwerts original formula.

2.4.5 Dispersion Model

The current research is mainly concentrated around what is known as the dispersion

model. This model is an attempt to describe the mixing process based on the mixing

mechanisms in the mixer. As mentioned earlier, in a mixer particles are forced to not

take the geometrically shortest way out but rather more tortuous paths. These paths,

which can be modeled by randomwalks, are the essential mechanisms in reducing the axial

heterogeneity of the mixture. The dispersion model relates some of the statistics of these

randomwalks to the performance of the mixer. This model is described by the transport

equation:
@ci
@t
= �ui

@ci
@x

+Di
@2ci
@x2

; (2.4.24)

where ci (t) is the weight concentration of the key component, ui is the axial transport

velocity (also known as convective transport coe¢ cient) and Di is the dispersion coe¢ -
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cient. This is essentially the Fokker-Planck equation on page 18, with ui and Di being

independent of x:

Several investigators have demonstrated that the mixing mechanisms in continuous

mixers can be described by the dispersion model (Sommer 1979, Weinekötter and Reh

1995). This model is based on two assumptions:

1. Axial dispersion takes place only inside the mixer (closed vessel as boundary condi-

tion).

2. The heterogeneity in radial direction can be disregarded.

Sommer (1996) suggested that each key component in the mixture can be described

by a separate Fokker-Planck equation. Furthermore, he points out that each component

has its own unique dispersive coe¢ cient and axial transport velocity. Obviously, in this

context, it is reasonable to assume that if the components consist of nearly identical or

very similar substances and di¤er, for instance, only in their colour, (ui; Di) pair for each

component may be assumed to be equal.

The concentration ci at point x changes within a certain time interval �t. During

this period of time, each particle receives several blows, either from other particles or

from the mixer, which may change their direction of the motion. Now, let �x denote the

amount of displacement of a given key particle in axial direction within time �t. Each

particle at point x is displaced by a di¤erent amount �x. Therefore, the displacements

�x are statistically distributed with a probability density function of p (�x). If the �rst

and second moments of p (�x) are �nite then

ui = lim
�t!0

E (�x)

�t
and Di = lim

�t!0

E (�x2)

2�t
; (2.4.25)

where

�2 (�x) = E
�
�x2

�
� [E (�x)]2 : (2.4.26)
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Thus ui describes the mean rate of the displacement and Di is deviation from this mean

value caused by random �uctuations. Notice that in case, Di = 0 all the particles are

displaced equally and thus the plug �ow behaviour can be expected.

If the Eqn. (2.4.24) is normalized with the length of the mixer l and the mean residence

time of the key component, ��1i , it follows that

@ci
@�

=

�
Di

uil

�
@2ci
@�2

� @ci
@�

; (2.4.27)

where � = x=l; � = t�i; �i = ui=l. The inverse of the expression in brackets is also known

as Peclet or Bodenstein number ( See for example, Weinekötter and Gericke 2000, p.91).

Weinekötter (1993) has numerically solved this equation for a set of Peclet numbers.

Based on these solutions he was able to calculate RTD for each corresponding Peclet

number. Thus by comparing the experimental and theoretical RTDs, he achieved the

characterization of the continuous mixers by their Peclet numbers. For very large Peclet

numbers the mixer shows near plug �ow characteristics whereas for small ones, the RTD

resembles that of an ideal mixer. The RTDs determined from the dispersion model are

similar to RTDs of serial cascade of exponential vessels presented in § 2.4.1. If this is true

then there should be a relation between the Peclet number and the long-term behaviour of

the escape probability density of particles, presented in § 2.4.2. However, no such relation

has ever being established.

One of the biggest challenges a designer can face is the scale-up. As Fan et al. (1990)

have also pointed out, it is not possible to totally rely on experiences gained from experi-

ments with a pilot-scale mixer for scale-up. As one proceeds with scale-up, the hypotheses

developed from and veri�ed in pilot-scale mixer may become invalid. In order to over-

come this problem, Fan and Wang (1974) suggested a procedure known as principle of

similarity, in which the knowledge of Peclet number and mean residence time may be

very useful. Indeed, the principle of similarity requires that the Peclet number and the

mean residence time of the both pilot-scale and plant-scale mixers to be equal. However,
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in practice, this is only possible if the relations between the Peclet number, mean resi-

dence time, mixer parameters and the mixture characteristics are known. Unfortunately,

judging from literature, at present this has not been fully achieved.

2.5 Epilogue: Comments

In a review of the subject, Fan et al. (1990) concluded that although considerable progress

has been made in our understanding of solid mixing processes, the design of mixers for

particulate solids has mainly been carried out heuristically. They attribute this to the

complexity of particulate mixing behaviour which is only describable by a large number of

parameters. In a recent book, Kaye (1997, p.8) claims that the failure of academic study

to signi�cantly improve the performance of mixing equipment is due to fundamental

philosophical problems and not the inadequacies of the research investigations. He also

points out that the source of the problem is the assumption that the problems of e¢ cient

design of mixing equipment are solvable in a deterministic manner, provided that we

gained more understanding of the causes which contribute to the performance of the

mixer. He concludes that systematic study of the dynamics of the mixing equipment is

properly a branch of deterministic chaos or in short chaos. In general, processes which are

very sensitive to small �uctuations are called chaotic. This is because their trajectories are

in general very irregular, so that they give the impression of being random, even though

they are driven by deterministic forces.

A quick review of literature supports some of Kaye�s claims. First of all, there is no

philosophical discussion on the issues that are faced by most of scientist in this �eld.

Secondly, there exists a great deal of valuable results, mostly experimental, which would

eventually fade into oblivion by time. The most important reason for this is that, as yet,

there is no so-called grand theory of mixing. This means that we do not yet have the

possibility of synthesizing our knowledge into a single theory. Bourne (1964) has pointed

out that there are in general two di¢ culties in any study of mixing:
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(a) the absence of theoretical background to aid the deduction of further generalizations;

(b) the absence of widely applicable criteria of mixing.

He warned the investigators that as long as above two di¢ culties are not resolved, one

should not produce extensive experimental data which remain speci�c to the conditions

studied. This is a great philosophical dilemma. Mixing of particulate materials has

important applications in the modern process industry. However, in order for it to �ourish

as a science, it has to �nd a way to synthesize the existing knowledge in a unifying manner.

This discussion is mainly absent from the main stream literature. It appears that a

discussion on this issue is not fashionable and certainly not publishable. This is perhaps

the main reason why many outsiders do not consider the mixing of particulate materials

as a science. A similar situation has been experienced by biologists. For a long time many

people did not recognize biology as a science. However, recent developments, which are as

much philosophical as theoretical, have not only drastically reduced the number of skeptics

but also turned biology to a discipline which has been making valuable contributions to

our understanding of the dynamics of complex systems. Chaos theory has found its place

in the biological systems. This is perhaps what Kaye also suggests that should happen in

mixing.

However, some would perhaps disagree with Kaye that Laplacian determinism should

be completely abandoned. In fact, most people �nd the idea that all events in the universe

are connected by a cause-and-e¤ect chain very compelling. It is still believed that theories

should be based on principals which are not in con�ict with common sense. Nevertheless,

in practice a mixture in a given state is a result of interactions of many causes, which

for all useful purposes, are di¢ cult to determine. Therefore, it is perhaps meaningless to

talk about a grand theory of mixing. However, despite this, it is still reasonable to seek

a grand theory of existing knowledge which also should be �exible enough to be modi�ed

in order to explain new knowledge which is not known to us yet.

Roughly speaking, as Je¤reys (1973, p.190) put it, a theory that explains more than
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one fact is useful, one that explains no facts is redundant, and one that explains just as

much as it assumes is ad hoc and tells us no more than the fact itself does. In order

to have a useful theory of mixing, many researchers only consider hypothesis that are

actual logical constructs from observations on the structure of the mixture. It appears

that this idea is inspired from a form of idealism known as phenomenalism, which may be

de�ned by the statement that nothing is to be supposed to exist that cannot be reduced to

descriptions of sensations. According to Thorburn (1918), phenomenalism may be tracked

back to the medieval writer William of Occam1. In the current scienti�c literature, this

idea is usually known as Occam�s razor or the law of parsimony. It is interpreted to mean

that the simplest of two or more competing theories is preferable and that an explanation

for unknown phenomena should �rst be attempted in terms of what is already known.

However, in the literature on mixing of particulate materials, phenomenalism has been

adopted to mean the following:

1. The analysis of suggested hypotheses should show what they actually say about

experience.

2. If a hypothesis contains reference to quantities whose values do not a¤ect the pre-

diction of experience, then the hypothesis should be restated in such a way that

these quantities do not appear in it.

Although the above points are quite compelling, unfortunately, in the literature the sec-

ond point is overstated to the e¤ect that everything mentioned in a hypothesis must be

separately observable. This means that a hypothesis can never be stated until we have

knowledge, by experience, of all its aspects, perceived and unperceived. Now, the question

is why this obvious contradiction left unnoticed by most researchers in this �eld. One

might conjecture that the main reason for this is that we, as yet, are not in possession

of complete knowledge of the parameters which a¤ect the state of a mixture. Therefore,

1William of Occam (also Ockham or any of several other spellings) (ca. 1285-1349) was a Franciscan
friar and philosopher, from Occam a small village near Ripley, in Surrey, south-west of London, England.
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most models, described in scienti�c papers on mixing, are at best semi-empirical. These

models, in general, are constructed to describe the mixing operation under particular cir-

cumstances. For this reason, any inconsistencies are usually attributed to our incomplete

knowledge. Indeed, in general, we have to restrict ourselves to theories which describe

our incomplete state of knowledge. However, despite this, it is still reasonable to demand

that our theory should have the �exibility of being modi�ed to explain new facts, which

are not known to us yet.

It appears that theories which are result of pure phenomenalism, in general, do not

ful�l our �exibility criteria. In fact, Ramsey (1931, p.212) has argued that if the theoretical

terms of a theory are logically constructed only out of observable entities, the theory will be

incapable of being modi�ed to explain new sorts of facts. It seems to us that Braithwaite

(1953, p.62) have produced such type of admissible scienti�c hypotheses in support of

Ramsey�s argument. This implies that phenomenalism, in general, is not adequate for

our needs and it requires further development or modi�cation, before it can deal with

problems of mixing.

Thus based on the above discussion, in order to have a useful theory of mixing, it

must necessarily be abstract. Because only in this way, the theory will be capable of

taking into account all the important aspects of the mixing process. Moreover, since this

theory is based on incomplete knowledge of the parameters that a¤ect the �nal state

of a mixture, it cannot have any speci�c reference to particular circumstances in which

the mixing operation takes place. In the following chapters, it is demonstrated how this

theory can be constructed.



Chapter 3

Bayesian Probability Theory

Probability theory is nothing but common sense reduced to calculation.

Pierre S. Laplace, A Philosophical Essay on Probabilities (1814)

T
he major part of the present work, both from the philosophical and technical

point of view, rests on Bayesian interpretation of probability theory. Therefore,

despite a great number of excellent expositions of the subject, it was necessary

to give a short presentation on the most basic concepts of the subject relevant to this

work. This Chapter begins by exploring some of the historical aspects of the subject and

the arguments in the favour for revision of the classical interpretation of the probabil-

ity. This follows by a short introduction to the basic rules of the Bayesian probability

theory in which concepts like prior and posterior probability and their relation to Bayes�

theorem are explained in some details. It is shown how these basic concepts result into

some of the most powerful tools that Bayesian interpretation can o¤er. More speci�cally,

a short introduction to the principal of maximum entropy, marginalization and model

selection is provided. The chapter is concluded by explaining the now celebrated entropy

concentration theorem.

3.1 The Necessity of New Interpretation

There is a popular jargon that says �there are three kinds of lies: lies, damned lies and

statistics�, see Twain (2000). Obviously, one hopes that scientists would never use data

37
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in such a selective manner to suit their own ends. However, the analysis of data is often

the source of some frustration even in an academic context. Sivia (1996, p.1) explains

this in the following manner:

�The sense of unease, which many of us have towards the subject of statistics

is largely a re�ection of the inadequacies of the "cook book" approach to data

analysis that we are taught as undergraduates. Rather than being o¤ered

a few clear principles, we are usually presented with a maze of tests and

procedures; while most seem to be intuitively reasonable individually, their

interrelations are not obvious. The apparent lack of a coherent rationale leads

to considerable apprehension because we have little feeling for which test to

use or, importantly, why.�

It is believed that the above quote summarizes the concerns of many scientists. As Loredo

(1990) points out, this has led to a situation such that many scientists are dubious about

results obtained using any but the simplest statistical methods, and some even openly

assert, �If it takes statistics to show it, I don�t believe it.�However, it seems to be that

a more uni�ed and logical approach to the whole subject already exists and, in e¤ect, is

provided by the probability formulations of Bayes and Laplace.

The probability theory, as traditionally interpreted, treats all probabilities as frequen-

cies (here the word frequency is used in the sense of the number of times an event occurs).

This interpretation of probability theory is often known as frequency interpretation. For

example to address the problem of estimating the value of a mixture parameter within

this framework, one must imagine one is estimating the distribution of a random parame-

ter within an ensemble of data sets. One then tries to determine the mean and standard

deviation of this parameter within the ensemble. However, this is not the problem, which

is usually encountered in practice. Indeed, typically the problem is that there is only

a single data set, and one is trying to determine the value that the parameter had at

the time the data was taken. But frequentists have no way to reason from an observed
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frequency in a �nite number of trials to the value of the probability (identi�ed as long-

term frequency). This is an awkward situation, because to frequentists, probabilities by

de�nition deal with long-term frequencies, and therefore there is no way of inferring their

values from actual data.

Jacob Bernoulli clearly recognized the distinction between probability and frequency,

deriving the relationship between probability of occurrence in a single trial and frequency

of occurrence in a large number of independent trials now known as Bernoulli�s theorem or

the law of the large numbers (see for example Uspensky 1937, p.96). Bernoulli�s theorem

tells us that, if the probability of obtaining a particular outcome in a single trial is known

to be p; the relative frequency of occurrence of that outcome in a large number of trials

converges to p. This theorem is an example of reasoning from probability to frequency.

However, the inverted version of this problem was also of interest to Bernoulli. That

is, supposing the probability of occurrence in a single trial is unknown, what does the

observation of the outcome n times in N repeated, independent trials tells us about the

value of the probability? Bernoulli never solved this problem, but his interest in it further

emphasizes the distinction made by him and his contemporaries between probability and

frequency.

The aforementioned problem was �rst addressed by Rev. Thomas Bayes (1763) and

later in a much more systematic way by Laplace. Laplace (1814) interpreted a probability

as a reasonable degree of belief; not a frequency of occurrence. However, it appears that

his work was ignored for over a century until Je¤reys (1998), in the mid 1930, rediscovered

it and derived probability theory as an axiomatic theory of inference. Cox (1946) while

studying the question of plausible reasoning from the perspective of logical consistency,

discovered that the only rules which met his requirements of consistency were those of

probability theory. That is, the rules of probability theory rather than being restricted

to just frequencies, constitutes the basic calculus for logical and consistent plausible rea-

soning (see for example Cox 1961). This �nally led Jaynes (1957a) to prove that if one

represents a reasonable degree of belief as a real number, then the only consistent rules for
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manipulating probabilities are those given by Laplace. This gave birth to a wider inter-

pretation of probability theory, called Bayesian probability theory (BPT). For Bayesians,

probability theory is a kind of �quantitative epistemology�, a numerical encoding of one�s

state of knowledge. The Bayesian interpretation is founded on three simple desiderata,

see for example Bretthorst (1996) and Loredo (1990):

� The degrees of belief should be represented by real numbers.

� One should reason consistently, i.e., if a conclusion can be reasoned out in more

than one way, every possible way must lead to the same result.

� The theory should reduce to Aristotelian logic when the truth values of the hypothe-

ses are known. E¤ectively, this desideratum will ensure that the resulting theory is

consistent with deductive logic in the limit that propositions are certainly true or

false.

In this context, problems of the form �what is the best estimate of a parameter (say,

mixture heterogeneity) one can make from the data and one�s prior information?�make

perfect sense. Indeed, BPT allows one to reason from observed frequency to probability.

The observed frequency constitutes data, which one can use to estimate the value of the

simple trial probability. Such a calculation can be done for any number of trials and it is

not restricted to the in�nite case.

However, as Loredo (1990) puts it, it is futile to argue over which of the interpre-

tations are correct. The di¤erent interpretations merely re�ect di¤erent choices for the

types of problems the probability theory can address, and it seems possible that either

interpretation could lead to a consistent mathematical theory. But though this is true,

it leaves open the question of which approach is more useful or appropriate, or which

approach addresses the types of problems actually encountered by scientists in the most

straightforward manner. It appears to us that BPT is much more closely related to how

we intuitively reason in the presence of uncertainty or incomplete knowledge and hence,
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at least in case of mixture of particulate materials, often ought to lead to a simpler

description.

3.2 The Rules of Probability Theory

The mathematical content of the probability theory of Bernoulli, Bayes and Laplace is

founded on two basic rules, the product rule and the sum rule; all other rules may be

derived from these (see Jaynes 2003). If A; B; and C stand for arbitrary hypotheses, then

the product rule states

p (A;B jC ) = p (A jC ) p (B jA;C ) (3.2.1)

where p (A;B jC ) is the joint probability that �A and B are true given that C is true�,

p (A jC ) is the probability that �A is true given C is true�, and p (B jA;C ) is the prob-

ability that �B is true given that A and C are true�. The vertical bar is conditional

symbol, indicating what information is assumed for the assignment of a probability. In

fact in BPT all probabilities are conditional.

The second rule of probability theory, the sum rule, relates the probability for �A or

B�. The operation �or�is indicated by a �+�inside a probability symbol. The probability

for �A or B given C�is

p (A+B jC ) = p (A jC ) + p (B jC )� p (A;B jC ) : (3.2.2)

If the hypotheses A and B are mutually exclusive, i.e., they are independent, the prob-

ability p (A;B jC ) is zero. It is important to keep in mind that the arguments for a

probability symbol are propositions, not numbers, and that operations inside the paren-

theses are logical operations.
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Theorem 3.1 (Bayes) Let A; B; and C stand for arbitrary hypotheses. Then

p (A jB;C ) = p (A jC ) p (B jA;C )
p (B jC ) (3.2.3)

Proof. In Aristotelian logic, the hypothesis �A and B� is same as �B and A�, so the

numerical value assigned to the probabilities for these hypotheses must be the same. This

commutativity property of Aristotelian logic implies that the order in the product rule

(3.2.1) may be rearranged to obtain

p (B;A jC ) = p (B jC ) p (A jB;C ) (3.2.4)

which implies that

p (B jC ) p (A jB;C ) = p (A jC ) p (B jA;C ) (3.2.5)

and hence the statement of the theorem.

Notice that above theorem refers to probabilities, not probability densities. Thus when

considering continuous parameters, we should write

p (A jB;C ) dA = p (A jC ) dA� p (B jA;C ) dB
p (B jC ) dB (3.2.6)

where p�s are understood to be densities. But the di¤erentials cancel, so equation (3.2.3)

is correct for densities as well as probabilities.

The above general result is always called Bayes�Theorem, after Rev. Thomas Bayes

(1763), who derived a special case of the theorem. However, as Gillispie (1997, Ch.10)

points out, it was Laplace and not Bayes who �rst saw the result in its generality and

showed how to use it in real problems of inference.

In a sense, Bayes�theorem (BT) represents the learning process. It tells us how to

adjust our plausibility assessments when our state of knowledge regarding an hypothesis

changes through the acquisition of data. Indeed, let A = H; an hypothesis we want to
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assess, B = D; some data we have that is relevant to the hypothesis and C = I; some

background information that describes the way in which H and D are related, and also

any alternatives we may have to H: Then (3.2.3) implies that

p (H jD; I ) = p (H jI ) p (D jH; I )
p (D jI ) : (3.2.7)

The above equation tells us that our �after data�or posterior probability of H is obtained

by multiplying our �before data�or prior probability p (H jI ) by the probability of the

data assuming the truth of the hypothesis, p (D jH; I ) ; and dividing it by the probability

that we would have seen the data anyway, p (D jI ) ; also called global likelihood1. The

factor p (D jH; I ) is called the sampling distribution when considered as a function of the

data, or the likelihood function, L (H) ; when considered as a function of the hypothesis.

Sampling distribution basically represents the process of reasoning from some speci�ed

hypothesis to potentially observable data, whether the link between hypothesis and data is

logical or causal (see for example Jaynes 2003, p.84). However, although the determination

of sampling distributions plays an important role in probability theory, in the real world

such problems are an almost negligible minority. In virtually all real problems of scienti�c

inference, one is in just the opposite situation; the data D are known but the correct

hypothesis H is not. Then the problem facing the scientist is of the inverse type: �Given

the data D; what is the probability that some speci�ed hypothesis H is true?�

This is exactly sort of problems that Bernoulli could not �nd a satisfactory solution

for and, as mentioned above, was �rst addressed by Bayes and Laplace. Indeed, it turns

out that Bayes� theorem provides the necessary theoretical tool to handle this sort of

problems.

1For reasons that will become clear later, p (D jI ) usually plays the role of an ignorable normalization
constant.
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3.3 Interpretation of Prior Probabilities

A closer look at the Bayes�theorem seems to indicate the presence of a new feature absent

from the frequency theory. Indeed, Bayes�theorem indicates that the question:�what do

you know about the hypothesis H after seeing the data D?�, i.e., p (H jD; I ) ; can not

have any defensible answer unless we take into account: �what did you know about

H before seeing D?�, which is represented by prior probability, p (H jI ). The concept

of prior probability is completely missing from frequency Theory. Prior probability as

Je¤reys (1973, p.31) put it; �is intended to express simply the probability at the start

of an investigation and may have been in�uenced by many previous investigations.�.

If we interpret probability as a representation of our state of knowledge then Bayes�

theorem is indeed in accordance with the aforementioned learning process. However,

Bayes�s theorem, despite this intuitively appealing interpretation has been a source of

controversy and dispute for over two hundred years. The dispute is not on the truth of

the theorem but on the concept of prior probability. Loredo (1990, p.88) blames this on

the lack of a compelling rationale for some of the practices of Bernoulli, Bayes, Laplace

and their contemporaries in assigning the prior probabilities.

Indeed, there were problems associated with how prior probabilities should be assigned.

The probability axioms described how to manipulate probabilities, but did not specify

how to assign the probabilities that were being manipulated. In most problems, it seemed

clear how to assign the sampling probability, given some model for the phenomenon being

studied. But �nding compelling assignments of prior probabilities proved more di¢ cult.

In a certain class of problems, Bernoulli and his successors found an intuitively reasonable

principle for such an assignment, which following Keynes (1921, p.41), we shall call the

principle of indi¤erence (PI), also known as principle of insu¢ cient reason. It is a rule for

assignment of probabilities to a �nite, discrete set of mutually exclusive and exhaustive

propositions (i.e., one proposition, and only one, must be true). The PI asserts that if

the available evidence does not provide any reason for considering proposition A1 to be
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more or less likely than proposition A2, then this state of knowledge should be described

by assigning the propositions equal probabilities. It follows that in a problem with N

mutually exclusive and exhaustive propositions and no evidence distinguishing them, each

proposition should be assigned probability 1=N:

The domain of useful applications of PI is certainly not zero, for Laplace was led to

some of the most important discoveries in celestial mechanics by using it in analysis of

astronomical data (for more detail see Gillispie 1997, Ch.16). However, while PI seemed

compelling for dealing with probability assignments on discrete �nite sets of propositions,

it was not clear how to extend it to cases where there were in�nitely many propositions

of interest. Such cases arise frequently in science, whenever one wants to estimate the

value of a continuous parameter, �: In this case, � is a label for a continuous in�nity

of propositions about the true value of the parameter and we need to assign a prior

probability (density) to all values of � in order to use Bayes�theorem. However, Bayes�

theorem has the obvious di¢ culty that it is not, in general, invariant under a change

of parameters and there seems to be no criterion for telling us which parameterization

to use. For this reason, the assignment of prior probability seem to have a disturbing

subjectivity, since di¤erent investigators choosing to label hypotheses di¤erently by using

di¤erent parameters could come to di¤erent conclusions.

The statisticians of the late nineteenth and early twentieth centuries dealt with this

legitimate problem by surgical removal. They drastically restricted the domain of the

theory by asserting that probability had to be interpreted as relative frequency of occur-

rence in an ensemble or in repeated random experiments. As a by-product, the problem

with arbitrariness of assignment of prior probability disappeared. Because the frequency

interpretation of probability made the concept of the probability of an hypothesis ille-

gitimate. This is because the frequency interpretation can only describe the probability

of a random variable: a quantity that can meaningfully be considered to take on various

values throughout an ensemble or a series of repeated experiments. An hypothesis, being

either true or false for every element of an ensemble or every repetition of an experiment
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is not a random variable; its �relative frequency of occurrence�throughout the ensemble

or sequence of experiments is either 0 or 1:

Assessing hypotheses was one of the principle aims of probability theory. Denied the

use of Bayes�s theorem for this task, frequency theory had to develop ways to accomplish

it without actually calculating probabilities of hypotheses. As Loredo (1990, p.89) points

out, the frequentist solution to this problem was the creation of the discipline of statis-

tics. In statistical analysis one basically constructs some function of observable random

variables that is somehow related to what one wishes to measure; such a function is called

a statistic. Familiar statistics include the sample mean and variance, the �2 statistic and

F statistic. Since a statistic is a function of random variables, its probability distribu-

tion, assuming the truth of the hypothesis of interest, can be calculated. A hypothesis

is assessed by comparing the observed value of the statistic with the long-run frequency

distribution of the values of the statistic in hypothetical repetitions of the experiment.

However, for complicated problems, there is seldom a compelling �natural�choice for a

statistic. To provide a rational for statistic selection, many principles and criteria have

been added to classical theory, including unbiasedness, e¢ ciency, consistency, coherence,

the conditionality principle, su¢ ciency and likelihood principle.

Once a statistic is selected, it must be decided how its frequency distribution will

be used to assess a hypothesis. To replace the Bayesian notion of the probability of a

hypothesis, other real number measures of the plausibility of an hypothesis are introduced,

including con�dence regions, signi�cance levels, type I and II error probabilities, test size

and power and so on. These all require the consideration of hypothetical data for their

de�nitions. These hypothetical data sets are predicted by the hypothesis but not seen.

This is as Loredo (1990, p.90) puts it, as if a juror tried to decide guilt or innocence by

taking into consideration a mass of evidence that might possibly have been presented at

the trial but which was not.

The frequency interpretation was introduced to eliminate apparent arbitrariness and

subjectivity of Bayesian interpretation. Yet a large degree of arbitrariness must enter the
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frequency theory to allow it to address the problems Laplace could address directly. For a

more comprehensive discussion and illustrative examples on this topic we refer to Jaynes

(2003, Ch.5) and also Good (1983, Ch.6).

3.4 Assignment of Prior Probabilities

In the mean time, developments in the seemingly unrelated �elds outside the traditional

domain of probability theory changed the odds in favour of the Bayesian interpretation.

The introduction of the theory of transformation groups during the second half of the

19th century and information theory during the �rst half of the 20th century made the

necessary tools available in order to overcome the problems of assignment of prior prob-

abilities.

3.4.1 Least Informative Probabilities

In probability theory a problem is considered to be well-posed if it contains enough in-

formation to allow unique, unambiguous probability assignments. The simplest kind of

information we can have about some proposition A1 is a speci�cation of alternatives to it.

That is, we can only be uncertain of A1 if there are alternatives A2; A3; : : : that may be

true instead of A1; and the nature of the alternatives will have a bearing on the plausibility

of A1: Probability assignments that make use of only this minimal amount of information

are referred to as least informative probabilities (LIP). The following example by Loredo

(1990, p.99) sheds some light on the concept.

Consider a problem where probabilities must be assigned to two propositions, A1

and A2. Suppose we know from the very nature of the alternatives that they form an

exclusive and exhaustive set (one of them, and only one, must be true), but that is all

we know. We might indicate this symbolically by writing our conditioning information

as B = A1 + A2. Since the propositions are exclusive, p (A1; A2jB) = 0; so the sum

rule (3.2.2) implies that p (A2jB) = 1� p (A1jB) : Now imagine someone else addressing
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this problem, but labeling the propositions di¤erently, writing A01 = A2 and A02 = A1.

Obviously, p (A01jB) = p (A2jB) ; and p (A02jB) = p (A1jB) : But now note that since

B is indi¤erent to A1 and A2, the state of knowledge of this second person regarding

A01 and A
0
2; including their labeling is the same as that in the original problem. Since

equivalent states of knowledge must be represented by equivalent probability assignments,

then p (A01jB) = p (A1jB) : But this means that p (A1jB) = p (A2jB) ; which through

the sum rule implies p (A1jB) = p (A2jB) = 1=2: In the similar manner, this line of

thought can be generalized to a set of N mutually exclusive and exhaustive propositions

Ai (i = 1 to N), leading to the LIP assignments p (AijB) = 1=N: This is just the principle

of indi¤erence mentioned earlier, now seen to be a consequence of consistency when all

the information we have is an enumeration of a mutually exclusive and exhaustive set of

possibilities, with no information leading us to prefer some possibilities over the others.

The philosophy of above approach can be traced back to David Hume. Indeed, this idea

was formulated by Hume in the following passage (see Hume 1740, p.86):

�As chance is nothing real in itself, and, properly speaking, is merely the

negation of a cause, its in�uence on the mind is contrary to that of causation;

and it is essential to it, to leave the imagination perfectly indi¤erent, either

to consider the existence or non-existence of that object, which is regarded as

contingent. A cause traces the way to our thought, and in a manner forces

us to survey such certain objects, in such certain relations. Chance can only

destroy this determination of the thought, and leave the mind in its native

situation of indi¤erence; in which, upon the absence of a cause, it is instantly

re-instated. Since therefore an entire indi¤erence is essential to chance, no one

chance can possibly be superior to another, otherwise than as it is composed

of a superior number of equal chances. For if we a¢ rm that one chance can,

after any other manner, be superior to another, we must at the same time

a¢ rm, that there is something, which gives it the superiority, and determines
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the event rather to that side than the other: That is, in other words, we must

allow of a cause, and destroy the supposition of chance; which we had before

established. A perfect and total indi¤erence is essential to chance, and one

total indi¤erence can never in itself be either superior or inferior to another.�

When the set of possibilities is in�nite, as when it is desirable to assign probabilities

to the possible values of continuous parameters, the analysis becomes more complicated.

This is because it may not be obvious how to transform the original problem to an

equivalent one that will help us determine the probability assignment. Indeed, in the

�nite discrete case, the only transformation that preserves the identity of the possibilities

is permutation, leading to PI. But in the continuous case, there is an in�nite number of

possible reparameterizations.

The key to resolving this dilemma is to realize that specifying the possibilities not

only provides labels for them, but it tells us also about their nature. As Jaynes (1968,

p.239) put it, �if we approach a problem with the charitable presumption that it has a

de�nite solution, then every circumstance left unspeci�ed in the statement of the problem

de�nes an invariance property (i.e., a transformation to an equivalent problem) which

that solution must have.�. In this sense, in problems with continuous parameters, trans-

formations that lead to equivalent problems that can help one assign a LIP can often

be identi�ed by the nature of the parameters themselves. Information unspeci�ed in the

problem statement can be as important for this identi�cation as the speci�ed information

itself, for problems that di¤er with respect to unspeci�ed details are equivalent.

It is easy to show that in any speci�c case, mathematically, the collection of all the

transformations that transform the problem to an equivalent one poses a group structure2.

2A nonempty set G with a binary operation (�) on G is called a group if the following three axioms
hold (see e.g. Bhattacharya et al. 1994, p.62):

1. Associativity: a � (b � c) = (a � b) � c for all a; b; c 2 G:

2. Identity: there exists e 2 G such that e � a = a for all a 2 G:

3. Inverse: for every a 2 G there exists a0 2 G such that a0 � a = e:



Chapter 3. Bayesian Probability Theory 50

In the discrete case, this group is the permutation group Sn where n is the number of

propositions (Bhattacharya et al. 1994, p.84). In the continuous case, in general, the

group of transformations is a Lie group (for more detail see Onishchiks 1993, Warner 1983

or Weyl 1961). Usually, the group of transformations can be related to the symmetries of

the system under study. Symmetries are often related to invariant properties of a given

system. It turns out that there is a profound relation between the symmetries of a system

and its behaviour. This is currently a very active area of research and there are reasons

to believe that it might be fruitful to study particulate systems from this point of view

(for some illustrative examples on the concepts of symmetry and transformation groups,

see Ghaderi and Naqvi 1995).

3.4.2 Informative Probabilities

More than often, beside the speci�cation of possibilities, I1; we may have some additional

information I2 that should lead us to probability assignments di¤erent from LIP. Rather

than p (Aij I1) ; we seek p (Aij I1; I2) ; an informative probability (IP) assignment.

One way to �nd p (Aij I1; I2) is to use Bayes�theorem, i.e., Eqn. (3.2.7), to update our

assignments for each of the Ai one at a time. To do this, as Loredo (1990, p.101) points

out, the additional information D � I2 must be able to play the role of data, that is, it

must be meaningful to consider for each Ai the �sampling probability�p (Dj I1; Ai) in

p (Aij I1; D) = p (Ai jI1 )
p (D jI1; Ai )
p (D jI1 )

: (3.4.1)

Speci�cally, D has to be a possible consequence of one or more of the Ai considered

individually, since each application of Bayes�theorem will require us to assume that one of

the Ai is true to calculate the likelihood of the additional information. However, this is not

the only kind of information we may have about the various possibilities. Our information

may refer directly to the possibilities themselves, rather than to their consequences. In

these cases the Bayes�theorem cannot be used. Yet such information is clearly relevant
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for assessing the plausibility of the propositions. Therefore, there was a need for �nding

rules that could allow one to use information of this kind to make probability assignments.

The clues to a possible solution of this problem revealed itself after development of

information theory by Shannon (1948). He introduced a measure for uncertainty which

he named entropy3. Later, Jaynes (1957b; 1957c) showed that the concept of entropy is

useful in converting certain types of information called testable information to a proba-

bility assignment. Following Jaynes (1968, p.230) a testable information is de�ned in the

following manner:

De�nition 3.1 A piece of information I concerning a parameter � is called testable if,

given any proposed prior probability assignment f (�) d�; there is a procedure which will

determine unambiguously whether f (�) does or does not agree with the information I:

Jaynes demonstrated that if I is testable, then in accordance with Bayesian desiderata,

one should select from among all the possible normalized distributions satisfying the

constraints imposed by I; the one with maximum entropy. The entropy of a �nite discrete

distribution over mutually exclusive and exhaustive alternatives is de�ned by

H = �
NX
i=1

pi ln pi; (3.4.2)

and that of a continuous distribution is de�ned analogously by

H = �
Z
p (�) ln

�
p (�)

m (�)

�
d�; (3.4.3)

with m (�) the LIP assignment for the parameter �: This rule is now called the principle

of maximum entropy (MaxEnt). In Section 4.3, based on combinatorial arguments, both

3In science, the term entropy is generally interpreted in three distinct, but semi-related, ways, i.e. from
macroscopic viewpoint (classical thermodynamics), a microscopic viewpoint (statistical thermodynamics),
and an information viewpoint (information theory). The thermodynamic interpretations, generally, di¤er
substantially from the information theory interpretation and are only related in namesake, although
there is not complete agreement on this issue. It was Rudolf Clausius (1865, p. 355) who �rst introduced
the phrase entropy (or equivalence-value as he called it in 1854) and gave a consistent mathematical
formulation of it within the classical thermodynamics theory.
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above entropy expressions for the mixture of particulate materials are developed.

Shore and Johnson (1980) have shown that MaxEnt is an uniquely correct method

for inductive inference when the constraints on pdf are given in the form of expected

values. In fact, they showed that maximizing any functional but entropy will lead to

inconsistency unless that functional and entropy have identical maxima. In other words,

given information in the form of constraints on the expected values, there is only one pdf

satisfying the constraints that can be chosen by a procedure that satis�es the consistency

axioms; this unique pdf can be obtained by MaxEnt. These axioms maybe phrased as

follows.

I. Uniqueness: The result should be unique.

II. Invariance: The choice of coordinate system should not matter.

III. System Independence: It should not matter whether one accounts for independent

information about independent systems separately in terms of di¤erent densities or

together in terms of a joint density.

IV. Subset Independence: It should not matter whether one treats an independent subset

of system states in terms of a separate conditional density or in terms of the full

system density.

For further readings on MaxEnt the reader is referred to Jaynes (2003, Ch.11) and

Gregory (2005, Ch. 8).

3.5 Marginalization

From the above discussions it is clear that any problem one wishes to address with BPT

must be well-posed, in the sense that enough information must be provided to allow

unambiguous assignment of all probabilities required in a calculation. As a bare minimum,

this means that an exhaustive set of possibilities must be speci�ed at the start of every
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problem. This set is called sample space if it refers to possible outcomes of an experiment,

or hypothesis space if it speci�es possible hypotheses one wishes to assess. For example

in an estimation problem the hypothesis space is simply the set of possible values of

the parameter, say H = f�ig and the sample space, say S = fsig ; consists of set of

possible data. The hypothesis space, the sample space, or both can be either discrete or

continuous.

Let the unknown true value of a parameter be �: Bayes� theorem can be used to

address an estimation problem by calculating the probability that each of the possible

parameter values H is the true value. To this end, let, in Eqn. (3.2.7), D represent a

proposition asserting the values of the data actually observed and H be the proposition

� = �; asserting that one of the possible parameter values, � is the true value. Then the

Bayes�theorem reads,

p (� jD; I ) = p (� jI ) p (D j�; I )
p (D jI ) : (3.5.1)

The prior p (� jI ) and the likelihood p (D j�; I ) are both direct probabilities; i.e., their

values are assigned directly, rather than derived from other probabilities using the product

and sum rules. The direct probabilities can be assigned using the methods described

previously. The term in the denominator is independent of � and given the prior and the

likelihood, its value can be calculated using the rules of probability theory as follows.

Recall that the assumption is that the model is true for some value of its parameters.

Thus the logical proposition (�1 + �2 + � � � ) is true and so has a probability of one for the

given I. Then from the product rule (3.2.1) follows,

p (D; �1 + �2 + � � � jI ) = p (D jI ) p (�1 + �2 + � � � jI )

= p (D jI ) :
(3.5.2)
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But by expanding the logical product on the left and again using (3.2.1), we also have

p (D; �1 + �2 + � � � jI ) =
P
i

p (D; �i jI )

=
P
i

p (�i jI ) p (D j�i; I ) :
(3.5.3)

Eqns. (3.5.2) and (3.5.3) together imply that

p (D jI ) =
X
i

p (�i jI ) p (D j�i; I ) ; (3.5.4)

which can easily extended to the case when we are dealing with continuous parameters

to yield

p (D jI ) =
Z
p (� jI ) p (D j�; I ) d�: (3.5.5)

This expresses p (D jI ) in terms of the prior and the likelihood. Thus in an estimation

problem, the denominator of Bayes�theorem is just the normalization constant for the

posterior. In these cases the Bayes�s theorem takes the simple form

p (� jD; I ) = Np (� jI ) p (D j�; I ) ; (3.5.6)

where N denotes the normalization constant.

The trick just used to calculate p (D jI ) arises frequently in BPT. It is usually referred

to as marginalization. Marginalization is of great practical and theoretical importance,

because it can often be used to signi�cantly reduce the dimensionality of a problem by

eliminating the so-called nuisance parameters, i.e., quantities which necessarily enter the

analysis but are of no intrinsic interest. For example if a problem has two parameters,

� and �; but we are interested only in �; then we can calculate p (� jD; I ) from the full
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posterior p (�; � jD; I ) by using the trick we used to calculate p (D jI ) : Hence

p (� jD; I ) =
R
p (�; � jD; I ) d�

= 1
p(DjI )

R
p (� jI ) p (� j�; I ) p (D j�; �; I ) d�:

(3.5.7)

The above integral can sometimes be evaluated analytically which can greatly reduce the

computational aspects of the problem especially when many parameters are involved. A

good example of this can be found in Gregory and Loredo (1992).

3.6 Model Comparison

If a model is inadequate, then some alternative model must be better and so BPT assesses

a model by comparing it to one or more alternatives. This is done by assuming that some

member of a set of competing models is true. Then one uses the Bayes� theorem to

calculate the probability of each model given the observed data.

To this end, let I denote that one of a set of models is true and the information about

the model number k be Ik; where k = 1 to m. Then

I = I1 + I2 + � � �+ Im; (3.6.1)

where as usual �+�denotes the logical operation �or�. Moreover let D stand for the data

and Hk stand for the hypothesis, �model number k is true�. Then Bayes�theorem reads,

p (Hk jD; I ) = p (Hk jI )
p (D jHk; I )

p (D jI ) : (3.6.2)

Furthermore, note that since Hk asserts the truth of model number k; only information

Ik in I is relevant and hence

HkI = Hk (I1 + I2 + � � �+ Im) = Ik; (3.6.3)
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where HkI denotes the logical product of Hk and I: This implies that

p (D jHk; I ) = p (D jIk ) : (3.6.4)

Now, the ratios of the probabilities of the models are called odds. The odds in favour of

model k over model j is de�ned as,

Okj =
p (Hk jD; I )
p (Hj jD; I )

; (3.6.5)

which together with (3.6.2)-(3.6.4) imply that

Okj =

�
p (Hk jI )
p (Hj jI )

� �
p (D jIk )
p (D jIj )

�
: (3.6.6)

In this work, it is more convenient to take the logarithm of the odds because of the fact

that one can then add up terms. In the spirit of Jaynes (2003, p.90), this new function is

called as evidence,

 kj = 10 log10Okj; (3.6.7)

where the base 10 logarithms is used. By using the base 10 and putting the factor 10 in

front, one measures the evidence in decibels (dB). If  kj > 0 then there are good reasons

to prefer model number k over model number j: The opposite would be true if  kj < 0.

Theoretically, the model k is as good as model j if  kj = 0.

3.7 Entropy Concentration Theorem

In many statistical problems, one usually has information which places some kind of

restriction on a probability distribution without completely determining it. According to

MaxEnt, if two distributions satisfy the information at hand, one should choose the one

with greater entropy. In other words, the conversion of prior information into de�nite prior
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probability assignment becomes a variational problem in which the prior information plays

the role of constraint. This means that the notion of entropy de�nes a kind of measure on

the space of probability distributions such that those of high entropy are in some sense

favoured over others.

However, at this point a fair question is that how far distributions of lower entropy are

from the one determined by MaxEnt? And more importantly, how can one by comparing

observed entropy and the MaxEnt entropy accept or reject a hypothesis (model)? In the

later case, using entropy analysis for hypothesis testing, frequency of di¤erent events are

known experimentally. A successful hypothesis about the systematic in�uences is than

one for which the experimentally observed entropy is su¢ ciently close to the MaxEnt

entropy. In this context, the notion of distance or "being su¢ ciently close" was �rst prop-

erly explored by Jaynes which led to the result which is known as entropy concentration

theorem, see Jaynes (1982; 1983).

Theorem 3.2 (Entropy concentration) Let �H = Hmax � H denote the di¤erence

between the MaxEnt entropy and the observed entropy. Moreover, let N be the total

number of observations, n total number of outcomes and m total number of constraints.

Then for large N; 2N�H is distributed as chi-square with � = n � m � 1 degrees of

freedom, independently of the nature of constraints.

For example, the intervals

�
Hmax �

�2� (0:95)

2N
;Hmax

�
(3.7.1)

and �
Hmax �

�2� (0:99)

2N
;Hmax

�
(3.7.2)

are known as 95% and 99% entropy intervals. If one takes any probability distribution sat-

isfying the same constraints as the maximum entropy distribution, there is a 95% chance

that its entropy will be greater than Hmax � �2�(0:95)
2N

and a 99% chance that its entropy
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will be greater than Hmax� �2�(0:99)
2N

: Consequently, for large values of N; entropies of most

of the probability distributions satisfying a given set of constrains will be concentrated

near the maximum entropy value. In fact, it is possible to show that the length of the

entropy interval (see e.g. Kapur and Kesavan 1992, p.51):

� decreases fast as N increases;

� increases with con�dence level;

� increases with n and decreases with m:

Since for large N; most distributions have entropies very near the maximum entropy,

most distributions satisfying the given constraints are very close to MaxEnt distribution.

As a result, MaxEnt distribution is the best choice for a unique distribution. Moreover, one

can also conclude that if the entropy of a distribution satisfying the given constraints lies

outside, say 99% entropy interval, it indicates the possibility of an additional constraint,

which has to be taken into account.



Chapter 4

Sampling Theory

Quality estimation is a chain and sampling is its weakest link.

P.M. Gy, Sampling for Analytical Purposes (1998)

T
he characterization of mixtures is closely related to some of the topics in sam-

pling theory. Therefore, sampling is an integral part of the any theory on the

mixing of particulate materials. In this chapter some of the important issues

relevant to the present work are addressed. The aim is to develop a consistent model for

mixture heterogeneity. In this context, the meaning of a representative sample in rela-

tion to evaluation of mixture quality is discussed. Further, a mathematical model which

quanti�es the most important properties of a representative sample, i.e., Accuracy and

Reproducibility, is developed. In this relation, it is shown that Reproducibility can be

used as a measure for mixedness and mathematically it can be modeled by the entropy

of the sample distribution. Further, from the sampling point of view, the mixing systems

are divided into two categories of open and closed systems. In each case a mathemati-

cal model is developed. It is demonstrated that the same mathematical formalism can

be adopted to model both type of systems and the only di¤erence is in how the con-

straints are assigned. A set-theoretical approach to the concept of mixture heterogeneity

is also established. In this relation, it is demonstrated how mixture heterogeneity can

be quanti�ed. This chapter is concluded by determining the relation between the pdf of

di¤erent sample spaces of di¤erent orders. These results are summarized in two theorems

as, fundamental theorem of sample spaces and fundamental theorem of ensembles.

59
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4.1 Introduction

Usually the analysis of the whole mixture, due to economic reasons or destructiveness of

the process is not possible. In these cases, the mass of the mixture under consideration is

�rst reduced to tiny amount before taken for analysis. The process of mass reduction is

known as sampling. Obviously, this mass reduction should be of such nature that retains

the important features of the original lot. Thus, an important aim of any sampling theory

should be to describe methods of reducing the mass of a lot without signi�cantly changing

its other important properties. In order for any sampling theory to achieve this objective,

it needs to identify the sources which contribute to divergence of sample properties from

the properties of the original lot. In literature, a sample which has approximately similar

properties as the original lot is known as representative sample. However, more often most

authors only describe the method and the locations of samples, the sample size and the

number of samples (see for example Fan et al. (1970) and references therein). But in the

absence of compelling criteria for representativeness, it is di¢ cult to see the usefulness of

such information. Therefore, producing a set of compelling criteria should also be one of

the chief objectives of any successful sampling theory.

It appears that the �rst documented attempt to develop a theory for sampling of par-

ticulate materials was by D. Brunton (1895). However, the most noteworthy of all the

sampling theories in the past hundred years, is the one developed by P. Gy. It appears

that he has been very successful in handling the challenges one faces in sampling. Gy

(1998, p.30) de�nes a sample to be representative when it is taken by a selection method

that is both accurate and reproducible. The Accuracy is de�ned as the absence of bias or

systematic error and reproducibility is de�ned as a low dispersion of the sample values

about their mean. According to Gy, accuracy is achieved whenever the selection method

is correct. That is, all the constituent elements of the lot have an equal probability of

being selected. He also demonstrates how this can be determined by studying the sam-

pling procedure. Similarly, reproducibility can be checked as the condition in which the



Chapter 4. Sampling Theory 61

sampling variance is minimal, i.e., below certain prescribed value (see Gy 1998, p.32).

The reproducibility is improved as the mixture quality improves. The best Reproducibil-

ity is achieved whenever the mixture components are randomly distributed through the

mixture. Thus the value of the variance would vary depending on the quality of the mix-

ture and need not necessarily be small. In this sense, in the case of particulate mixtures,

the reproducibility is, in general, less important than accuracy. This also means that

in general a representative sample, from particulate mixing point of view, is a sample

which is collected by a correct selection method. However, if the samples show good

reproducibility, this would imply that mixture ingredients are evenly distributed. Thus,

reproducibility could in a sense be used as a measure for mixedness.

Although, in general, Gy�s theory gives a compelling qualitative explanation of sam-

pling process, to some extent, it fails on the quantitative part. Ironically, the source of

the problem is not due to lack of understanding of fundamentals of the subject but is

caused by the statistical concepts used in the theory. Gy, as most other researchers in

this �eld, applies the frequency interpretation of the probability theory (see also Sommer

1986). But, as explained previously, from a mathematical point of view, this has led to

that, the easy and intuitive concepts become more complicated and similarly the more

complicated problems become hopelessly beyond reach. Nevertheless, once one under-

stands Gy�s sampling theory, description of a suitable mathematical framework would be

within reach. In this chapter, a¤ords would be concentrated on demonstrating how this

framework can be constructed.

4.2 Closed vs. Open System

In order to check the composition and distribution of the components in a mixture, one

needs to de�ne the smallest scale at which the desired component is to be observed. This

scale is known as scale of scrutiny. The scale of scrutiny de�nes the limit of resolution of

information. This limit is imposed either by the application or by measurement instru-
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ments and is speci�ed by the volume of the sample. For example, producers of a drug

in tablet form need to make sure that composition of their tablets are within the desired

limits otherwise it can have a catastrophic result. Therefore, in these cases, the scale of

scrutiny is chosen to be equal to the volume of a typical tablet (see e.g. Fan et al. 1970).

Any variations within smaller volumes are ignored, while the variations between samples

give an indication on how well di¤erent components in the mixture are distributed. Thus,

the structure of a mixture can be de�ned as the relation between the compositions of

di¤erent samples in which their volume is speci�ed by the scale of scrutiny.

From an analysts point of view, mixing systems can be divided into two classes, closed

and open systems. In a closed system, depending on the scale of scrutiny, the whole batch

of the mixture is divided into a number of samples, which are further analyzed. Whereas,

in an open system, only a fraction of the samples are analyzed1. Thus, in reality, sampling,

as de�ned previously, is conducted only in the case of open systems and in the case of

closed systems, splitting is a more suitable description. In this work, sampling will be

used also to mean splitting. However, at each case it would be clear from the context if

one is working with a closed or open system.

In a closed system, properties like amount of di¤erent components in the mixture can

be determined exactly, whereas in an open system, same properties can only be estimated

(unless there is some cogent information, which allows determining these properties in

some other way). In other words, in general, models for open systems are more uncertain

than for corresponding closed systems.

4.2.1 Closed System

A mixture of particulate materials could in general consists of many components. How-

ever, binary mixtures are also frequently encountered. For example, in the pharmaceutical

industry usually only one active ingredient (key component) and several diluents (lactose,
1It should be emphasised that our de�nition of closeness and openness of a system depends solely

on the information about the system. This does not necessarily coincide with the common use of these
words in physics and chemistry.
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starch, glucose, etc.) are in a dosage; therefore, the homogeneity of the active ingredient

is the main concern (see e.g. Kristensen 1973). Nevertheless, from the sampling point

of view, there is no conceptual di¤erences between binary and multicomponent mixtures.

However, mathematically, the di¤erence is in the dimension of the sample space; i.e., the

collection of all possible samples of given size and shape. Indeed, following Wang et al.

(1978), assume that the mixture consists of (k + 1)-components. Then for a given sample

size and shape, one can de�ne a k- vector in which each of its component equals the

number of particles of a given mixture component2. Now, suppose that one divides the

whole mixture into n samples. Then for each sample a k- vector r0i can be obtained, which

can be used to construct the so-called sample matrix,

X =

0BBBB@
r01
...

r0n

1CCCCA =

0BBBB@
r11 � � � r1k
...

. . .
...

rn1 � � � rnk

1CCCCA ; (4.2.1)

where rij stands for number of particles of type j in sample i and r0i is the transpose of the

column vector ri: In other words, each row of the sample matrix contains the information

on the number of particles of each type in a given sample. Thus, in the case of binary

mixtures, the above matrix consists of only one column vector.

The above procedure is also valid for mixtures produced by continuous mixers. Indeed,

according to Gy (1998, Ch.6), the best way to sample a mixture �owing out of a continuous

mixer is by directing the mixture onto a conveyer belt with a constant velocity. Then,

each sample can be taken as all the material occupying a �xed length in the moving

direction of the conveyer belt. In this case, one can construct a similar sample matrix as

2It is assumed that the total number of particles in each sample is known and is equal to ri. Now,
let rij denote the number of particles of type j in sample i. Since

k+1X
j=1

rij = ri

then only k of (k + 1) components need to be determined.
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in (4.2.1), with the di¤erence that in this case the distance between samples is measured

by time contra spatial distance in the case of a batch mixer. The closedness of the system

is guaranteed if all the material �owing out of the mixer during its operation is equal the

combined content of the analyzed samples.

4.2.2 Open System

As Too et al. (1980) point out, in many mixing problems, the true proportions of com-

ponents in a mixture are known. However, it is more than often not possible to analyze

the whole mixture. In these cases, one takes so called spot samples, which their combined

content only constitutes a fraction of the whole mixture. In other words, the sampling

procedure is exactly same as in the case of closed systems with the only di¤erence that

just a fraction of the mixture is analyzed. This is the true sampling in the sense which was

de�ned previously. However, in the case of open systems, the acquired information about

the structure of the mixture is less reliable compared with the closed systems. Moreover,

in the case of an open system the sample matrix has fewer rows than the corresponding

closed system.

4.3 Models for Binary Closed Systems

In order to keep the matters simple, for the rest of this section, it is assumed that the

system under study is a binary closed system. After establishing a model for this system,

it will be demonstrated how the results can be extended to other cases.

4.3.1 Batch Systems

Suppose, for the sake of the argument, that the mixture and the mixing equipment, to

start with are in a de�nite state and it is always possible to rearrange the particles and

the machine parts in order to achieve this initial state on demand. Now, begin the mixing
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operation and let it last for a de�nite amount of time, after which the mixer is brought

to rest. The mixture is then divided into n samples, in which the sample volume fraction

is denoted by vi such that
nX
i=1

vi = 1; (4.3.1)

where the sample volume fraction is de�ned as the sample volume divided by the total

volume of the mixture. Furthermore, assume that there are totally N tracer particles (key

component particles) in the mixture. After analyzing the samples, suppose that we �nd

r1 tracer particles in the �rst sample, r2 in the second sample and so on. Thus

N =
nX
i=1

ri; (4.3.2)

which is usually much larger than the number of samples. The distribution frig gives rise

to a probability distribution fpig ; in which pi denotes the probability of �nding a tracer

particle in sample i. Indeed, the natural candidates are,

pi = ri=N: (4.3.3)

If the experiment stops here, the above candidate is the best choice. However, it might

happen that one simply would like to explore the possibility of other candidates. For

this reason, the samples are combined and the mixture and the mixing equipment are

brought to the same initial state before the �rst experiment. The mixture is then mixed

and sampled according to the same procedure as the previous experiment. Each time one

conducts this experiment, a potential candidate for the distribution of the tracer particles

can be found. After many trails, some distributions will be found to come up more often

than others. Accordingly, the one that occurs most frequently would be the best candidate

representing the observers state of knowledge. Now, the question is what the expected

frequency, say F , of each candidate distribution is. If one could determine this from the

information about the system, then it would be possible to pick the one with the highest
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frequency.

To this end, note that the probability of a tracer particle being found in the ith sample

is vi. Now, since in reality the volume of the sample is far greater than the size of each

particle, the probability of �nding more than one tracer particle in sample i is independent

of the number of tracer particles already in the sample and hence, the probability of �nding

the distribution frig is

vr11 � vr22 � � � vrnn =
nY
i=1

vrii : (4.3.4)

Obviously, fpig is not a¤ected by exchanging the tracer particles among samples as long

as the distribution frig remains the same. Thus, the expected frequency F with which

fpig will arise is given by

F (fpig) = (number of ways of obtaining frig)�
nY
i=1

vrii : (4.3.5)

The number of ways to distribute N particles among n samples such that ri particles are

in the sample i; for i = 1; : : : ; n; is given by the multinomial coe¢ cients (see Dougherty

1990, p.45): 0B@ N

r1; : : : ; rn

1CA =
N !

r1! � � � rn!
; (4.3.6)

and hence

F (fpig) =

0B@ N

r1; : : : ; rn

1CA nY
i=1

vrii =
N !

(Np1)! � � � (Npn)!

nY
i=1

vNpii : (4.3.7)

Now, notice that the functional F achieves its maximum at the same fpig as ln (F ) :

Moreover, recall that for large x; the Stirling�s formula yields the following approximation

(see Arfken 2001, p.650):

ln (x!) � x lnx+ ln
p
2�x� x: (4.3.8)
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In fact, it is easy to show that Stirling�s approximation is quite good for even numbers as

small as x = 10. Hence,

ln [F (fpig)] � �N
nX
i=1

pi ln

�
pi
vi

�
� (n� 1) ln

p
2�N �

nX
i=1

ln
p
pi: (4.3.9)

Since any other monotonically increasing function of F (fpig) also achieves its maximum

at the same point, in particular N�1 ln [F (fpig)], then from Eqn. (4.3.9) follows that

D (p : v) = lim
N!1

1

N
ln [F (fpig)] = �

nX
i=1

pi ln

�
pi
vi

�
: (4.3.10)

In literature, D (p : v) is known as cross-entropy or Kullback-Leibler entropy, due to the

work by Kullback and Leibler (1951)3. Thus, Eqn. (4.3.10) implies that the maximum

value of F (fpig) is attained for the set fpig which maximizes D (p : v).

As mentioned previously, one of the conditions that is necessary in order for a sample

to be representative, is that the selection method has to be Correct. As Gy (1998, p.31)

points out, the Correctness of a sampler is the result of its design, construction, instal-

lation, usage and maintenance. Nonetheless, when sampling is done Correctly, all the

constituent elements of the lot have an equal probability of being selected to each sample.

In the present case under study, this means that the volume of samples have to be equal,

i.e.

v1 = v2 = � � � = vn =
1

n
; (4.3.11)

which implies that

D

�
p :

�
1

n

��
= �

nX
i=1

pi ln pi � lnn: (4.3.12)

Since n is constant then this means that, in the case of Correct sampling, the maximum

value of F (fpig) is attained for the set fpig which maximizes its entropy H (fpig) (see

Chapter 3).

3It seems that this measure was �rst appeared in Gibbs (1902, Ch.11)
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The Lagrangian multipliers method (Arfken 2001, p.1039), can be used to determine

the vector p which maximizes H (p) ; subject to the obvious constraint,

nX
i=1

pi = 1: (4.3.13)

In this case, the Lagrangian is

L = �
nX
i=1

pi ln pi � �

 
nX
i=1

pi � 1
!
; (4.3.14)

in which � denotes the Lagrangian multiplier. Di¤erentiating the above equation with

respect to p1; : : : ; pn; yield

� (1 + ln pi)� � = 0; for i = 1; : : : ; n; (4.3.15)

which, subject to the constraint (4.3.13) implies that

p1 = � � � = pn =
1

n
� (4.3.16)

Moreover, the second-derivative matrix or Hessian matrix of the functional H (p) is (see

Strang 1988, p.327), 0BBBBBBB@

�1=p1 0 � � � 0

0 �1=p2 � � � 0

...
...

. . .
...

0 0 � � � �1=pn

1CCCCCCCA
; (4.3.17)

which is always negative de�nite. Thus, for the uniform probability distribution given

by (4.3.16), H (p) has a local maximum. The strict negative de�niteness of the Hessian

matrix also indicates that H (p) is a concave function, i.e., H (p) cannot have more than

one maximum and if it has a local maximum, then that is also the global maximum

(Kapur 1989, p.199). In other words, for the uniform probability distribution, H (p) is



Chapter 4. Sampling Theory 69

maximum and all other distributions have lower entropy. Moreover, notice that from

(4.3.10) follows that for any other set of probabilities, say fqig, F (fpi = n�1g) =F (fqig)

increases asymptotically as

F (fpi = n�1g)
F (fqig)

! exp fN [ln (n)�H (q)]g ; (4.3.18)

and passes all bounds as N grows large. This means that number of con�gurations which

results into assignment of uniform probability by far exceeds all other alternatives.

The above discussion shows that the maximum entropy is achieved whenever the

ingredients of the mixture are randomly distributed among the samples. Thus, this implies

that Gy�s Reproducibility concept is equivalent to maximization of the sample entropy.

Indeed, this result is not surprising, since the distribution of the particles at maximum

entropy can be realized in greatest number of ways. This is what Reproducibility is all

about. However, sampling real mixtures rarely results in uniform distribution. As Fan

et al. (1979) have pointed out, this is due to either the mixing process is incomplete or

because the segregation occurs by di¤erences in the physical properties of the mixture

components. As it will be shown later, these phenomenons enter the model as constraints

which are expressed in the form of expectations of certain functions. This would, in

general, result in probabilities other than the uniform probability. Nonetheless, based on

the above discussions, it is evident that the entropy of sample distribution can be used

as a measure of Reproducibility. Indeed, this can be done by calculating the di¤erence

between the observed entropy and entropy corresponding to the uniform distribution. As

was mentioned previously, this di¤erence times 2N is �2 distributed and therefore can

easily be evaluated (see Section 3.7 on entropy concentration theorem). Thus, the greater

the di¤erence is, the less is the Reproducibility of the samples and vice versa.
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4.3.2 Continuous Systems

In a continuous system, the samples can be thought as a discrete time series. The simplest

example of such a system is a binary closed continuous system. Each element in the time

series, say r (t) ; represents the number of tracer particles in a sample. Each sample

consists of the portion of the mixture which left the mixer between t and t+�t; where �t

is a predetermined time length. Therefore, the entire time series fr (0) ; : : : ; r (T )g must

be considered as a single trial and combinatorial arguments refer to a collection of many

di¤erent realization of it.

Now, recall that the continuous mixers are characterized by their ability to reduce the

axial �uctuations feed into the mixer, which in turn is related to RTD of the mixer. The

RTD of a mixer is determined by imposing an interference factor on the mixer whilst it is

in stationary operation and observing how this interference is broken down inside it. The

tracer must be quantitatively measurable in small concentrations in order not to change

the �ow pattern. Its motion should correspond to that of the mixture. One common

method of measuring RTD of a mixer is by determining its impulse response. Indeed, a

slug of concentrated tracer is injected into the feed at a speci�ed time t0 (reference time),

and the concentration of the tracer in the outlet stream is measured at various times, t.

The time of injection should be virtually instantaneous, that is, within a period much

shorter than the mean residence time. Since, all the tracer material enters the mixer at

the same time then each sample from the outlet only contains the tracer particles with

residence time between ti and ti+�t4. Following the same arguments as § 4.3.1, it follows

that the maximum value of F (fp (ti)g) is attained for the set fp (ti)g which maximizes

D (p : v) = �
nX
i=1

p (ti) ln

�
p (ti)

v (ti)

�
; (4.3.19)

where ti = ti�1 + �t. Now, recall that in the above context, p (ti) is the probability

of �nding a tracer particle in sample i. However, this can also be interpreted as the

4For the sake of simplicity in notation, we shall assume that t0 = 0:
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probability of �nding a tracer particle having a residence time in < ti; ti+1 >. This

implies that

p (ti) � f (ti)�t; (4.3.20)

where f (ti) is the probability density for the RTD of the system. Moreover, it is obvious

that

v (ti) �
u (ti)

V
�t; (4.3.21)

where u (ti) is the volumetric �ow rate of the mixture out of the mixer at time ti and V is

the total volume of the mixture at the end of the trial. Substituting the above equations

back into Eqn. (4.3.19) and letting �t! 0, one gets

D (f :u) = �
Z 1

0

f (t) ln

�
f (t)

u (t) =V

�
dt: (4.3.22)

The above equation is the continuous version of the Eqn. (4.3.10) for binary closed

continuous systems. However, note that, in general, u (t) is not constant and hence it

a¤ects the choice of f (t). Indeed, Eqn. (4.3.10) can be rewritten as

D (f :u) = �
�Z 1

0

f (t) ln f (t) dt�
Z 1

0

f (t) ln

�
u (t)

V

�
dt

�
: (4.3.23)

That is, maximizing D (f :u) ; maximizes our ignorance about the details which do not

contain any regularity at the outlet of the mixer.

Now, there is another way of looking at this. Note that since non-tracer components

are assumed to be stationary and per de�nition each sample contains only tracer particles

of similar residence time then

v (ti) /
ti
n�t
; (4.3.24)

where n is the number of samples and �t is the mean residence time of the system. Let T

denote the total mixing time during the whole cycle of our tracer experiment. Then since
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per de�nition �t is �xed,

n =
T

�t
) v (ti) /

ti
�tT
�t; (4.3.25)

from which follows that

D (f :u) = �
Z 1

0

f (t) ln f (t) dt+

Z 1

0

f (t) ln tdt� C (4.3.26)

in which C is a constant. Hence, it is reasonable to assume that

Z 1

0

f (t) ln

�
u (t)

V

�
dt _ ln g =

Z 1

0

f (t) ln tdt; (4.3.27)

where g is the geometric mean residence time. In other words, any choice of f (t) should

also ful�l the constraint on the geometric mean residence time of the system. Thus, in

the case of closed binary continuous systems, the probability density for the system RTD

is determined by maximizing

�
Z 1

0

f (t) ln [f (t)] dt; (4.3.28)

subject to the constraints

Z 1

0

f (t) dt = 1 and
Z 1

0

f (t) ln tdt = ln g: (4.3.29)

Moreover, one should also in addition take into account any other possible constraints.

4.4 Interlude: Comments

The combinatorial argument that resulted into Eqn. (4.3.10) is based on a more general

argument known as monkey argument (see Sivia 1996, p.116). The argument, in its

more general form, goes something like this that various propositions (samples, in our

case) could be represented by di¤erent boxes, which might have di¤erent sizes, into which
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pennies (tracer particles, in our case) are thrown at random. This job is often delegated

to a hypothetical team of monkeys, to denote the fact that there should be no underlying

bias in the procedure. Following almost the same argument as above, one reaches at

principle of maximum entropy. In fact as Jaynes (1982) pointed out, this rational was

well understood by Jacob Bernoulli and Laplace, although they did not use the principle in

its logarithmic form. It might probably be that the Stirling�s approximation was unknown

at the time (Stirling�s formula was �rst published in his most important work Methodus

Di¤erentialis in 1730. This formula appears as Example 2 to Proposition 28).

We need to be also clear about the rationale of the limit N !1, in relation (4.3.10).

We pass to the limit, not because we believe that N is in�nite; we know that it is not. We

pass to the limit rather because we know that this will simplify the calculation without

a¤ecting the �nal result. Indeed, as was explained in Chapter 3, pi simply represents a

reasonable degree of belief. It is easy to convince oneself that for su¢ ciently large N; the

relation in (4.3.10) should be a good approximation and there is no need to let N !1:

In fact, the exact value of N is not important. This is of great advantage since in reality

N is usually unknown.

As mentioned previously, it is important to distinguish between frequency and proba-

bility. A frequency is something that can be measured, whereas a probability represents

a state of knowledge. As Tribus (1961, p.43) also pointed out, a statement about fre-

quencies can, by direct measurement, be shown to be wrong. However, a statement about

probability can only be demonstrated to be irrational. The combinatorial argument lead-

ing to Eqn. (4.3.10) was based on imagining many identical experiments were conducted.

Such a thought experiment is not proof but rather an attempt to clarify the plausibility

of certain outcomes, while be able to reason consistently without violating common sense.
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4.5 Modelling of Multicomponent Closed and Open

Systems

It is instructive to explain in detail how the model for binary closed batch and continuous

systems can be extended to multicomponent closed/open systems. However, the under-

lying arguments remain similar to the combinatorial argument of Section 4.3. Therefore,

in the following most of the calculations are omitted.

4.5.1 Multicomponent Batch Systems

Suppose that the system under study is a (k + 1)-component closed batch system which

is divided into n samples. Then the sample matrix consists of n rows and k columns. Let

Nj denote the number of particles of type j in the mixture. Then

nX
i=1

rij = Nj for j = 1; : : : ; k (4.5.1)

where rij denotes the number of particles of type j in sample i: That is, the sum of

elements in each column of the sample matrix is predetermined. Thus the sample matrix

can be considered as a contingency table. The applications of contingency tables have

had a long history and are well established in statistics (see e.g. Dougherty 1990, p.509).

However, there is a vital di¤erence between the sample matrix and the contingency table.

In general, the sum of elements of each row of the sample matrix is unknown. The reason

is that the volume of the sample is �xed but the particles are not mono-size. Therefore,

the total number of particles in each sample may vary. Nonetheless, other constraints like

the mean number of particles in each sample is possible.

To this end, let

p (r; jj i; I) = prij; (4.5.2)
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where prij is the probability of �nding r particles of type j in a given sample i and

N =
kX
j=1

Nj: (4.5.3)

Now, following similar combinatorial arguments as in § 4.3.1, it can be shown that, in the

case of correct sampling of (k + 1)-component closed batch system, the maximum value

of F (fprijg) is attained for the set fprijg which maximizes

H (fprijg) = �
nX
i=1

kX
j=1

sjX
r=0

prij ln prij; (4.5.4)

subject to

nX
i=1

kX
j=1

sjX
r=0

prij = 1;
nX
i=1

sjX
r=0

rprij = Nj and
nX
i=1

kX
j=1

sjX
r=0

rprij = N; (4.5.5)

where sj is the maximum possible number of particles of type j in a sample. Of course if

there are any additional constraints, they should also be taken into account.

Now, suppose that the system under study is a (k + 1)-component open batch system.

Since, in the case of open systems, one have only information on a small fraction of the

system, the only available informations are in the form of expectancy constraints. This

means that, mathematically, the analysis is similar to the closed system with the only

di¤erence that the constraints are

nX
i=1

kX
j=1

sjX
r=0

prij = 1;

nX
i=1

sjX
r=0

rprij = �Nj and
nX
i=1

kX
j=1

sjX
r=0

rprij = �N; (4.5.6)

where �Nj and �N are expected or average number of particles of type j and the total

expected number of all k- type particles in the mixture, respectively. It is assumed that

one has prior knowledge of the number of components in the mixture. If this information

is not available, the value of k has to be estimated from the samples. The parameter sj
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can also be estimated from the volume of the sample and the particles of type j.

4.5.2 Multicomponent Continuous Systems

In a continuous system, the sample matrix for a (k + 1)-component closed continuous

system is 0BBBB@
r0 (0)

...

r0 (T )

1CCCCA =

0BBBB@
r1 (0) � � � rk (0)

...
. . .

...

r1 (T ) � � � rk (T )

1CCCCA ;

where T = n�t: Following similar arguments as in the case of closed batch system, it is

easy to show that in the case of (k + 1)-component closed continuous system, the Eqn.

(4.3.19) can be written as

D (p : v) = �
kX
j=1

nX
i=1

pj (ti) ln

�
pj (ti)

vj (ti)

�
; (4.5.7)

where pj (ti) is the probability of �nding a tracer particle of size class j in sample i. As it

was mentioned in § 4.3.2, pj (ti) can be related to the the density of the RTD and keeping

in mind that the RTD of the system, in general, depends on the size of the particles, one

gets

pj (ti) � f (xj; tj)�x�t; (4.5.8)

where xj is the equivalent diameter of the particle of size class j. Moreover, it is easy to

show that

vj (ti) �
u (xj; ti)

V
�x�t; (4.5.9)

where u (xj; ti) is the volumetric �ow rate of particles of size xj and V is the total volume

of the mixture at the end of the trial. Substituting the above equations in (4.5.7) and

letting �x! 0 and �t! 0,

D (f :u) = �
Z 1

0

Z 1

0

f (x; t) ln

�
f (x; t)

u (x; t) =V

�
dxdt: (4.5.10)
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Now, as in § 4.3.2, it follows that

Z 1

0

Z 1

0

f (x; t) ln

�
u (x; t)

V

�
dxdt /

Z 1

0

Z 1

0

f (x; t) ln [t (x)] dxdt; (4.5.11)

where t (x) is the residence time of the particles of size x in the mixer. The right hand

side of the above equation is just the geometric mean residence time which is a measure

of �uctuations at the outlet of the mixer. Therefore, in the case of closed multicompo-

nent continuous systems, the probability density for the system RTD is determined by

maximizing

�
Z 1

0

Z 1

0

f (x; t) ln [f (x; t)] dxdt; (4.5.12)

subject to the constraints

Z 1

0

Z 1

0

f (x; t) dxdt = 1 and
Z 1

0

Z 1

0

f (x; t) ln [t (x)] dxdt = ln g: (4.5.13)

One should also in addition take into account any other possible constraints. In the case

where the system is open, average values of the constraints, which can be determined

experimentally, should be used.

4.6 A Model for Mixture Heterogeneity

The mathematical model presented in previous section models the accuracy and repro-

ducibility of samples and gives a simple but accurate mathematical description of each

of these terms. However, it is rarely possible to count the number of particles in each

sample. The content of each sample is usually described by the amount of relative weight

of each mixture component in the sample. Although, usually the density of each com-

ponent is known, it is almost impossible to get an exact �gure on how many particles it

corresponds to. The reason for this is that, in general, the size of particles of any given

mixture component varies over a wide range. This means that for a given sample weight,
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there can be no unique number of particles of any type. Therefore, it is desired to char-

acterize the mixture based on weight of components rather than the number of particles.

In the following it will be demonstrated how this can be achieved.

4.6.1 Sample Space

As it was argued earlier, one of the important conditions for correctness of samples is

that the volume of samples are equal which in turn is determined by the scale of scrutiny.

However, this in general does not put any signi�cant restriction on the shape of the

sample. It is conceivable that the shape of the samples can in some way a¤ect the

observed structure of the mixture. However, except for regular shapes, it is di¢ cult to

�nd a practical way of describing an irregular shape. Nevertheless, it is always possible

to check the similarity between two shapes. Since, the number of particles in a mixture is

�nite then there would be only �nite number of possible shapes to be considered. Hence,

one can talk about the set of all possible sample shapes, without being speci�c about a

particular way of describing them (For further discussion see Section 5.1).

Based on the above discussion, in order to avoid favouring any particular shape, in

the following a set-theoretical approach is adapted.

De�nition 4.1 Let 
L be the collection of all partitions of the lot L into disjoint non-

empty subsets. A sub-collection is called sample space of order n 2 N; denoted as


n� � 
L; if it is the collection of all possible partitions of L, each of which consists of n

equivolume samples (subsets) with predetermine sets of shape, denoted by index �, and is

a result of repetition of the same mixing experiment.

The mixing experiment referred to in the above de�nition is similar to the one described

in § 4.3.1. In this relation, each partition corresponds to all the samples taken in a single

sampling trial, which ful�ls the system constraints. Moreover, notice that the position

of samples in each partition does matter. That is, the neighbourhood that each sample

resides in is important and therefore the sampling process should not disturb it. In
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fact, this is what determines the structure of the mixture. However, the positions of

particles within each sample are irrelevant and do not a¤ect the structure of the mixture.

Accordingly, let the state of a mixture be the spatial con�guration of constituents of the

mixture at a particular instant in time and the set of all such states as state space. Note

that the position of each particle, with respect to a common reference, can be uniquely

determined by three numbers. This implies that a state of the mixture is determined by

a set of 3N numbers, where N denotes the total number of particles in the mixture. In

other words, the state space can be considered as a sub-space of R3N .

Two states of a mixture are equivalent modulo n, if the collection of their respective n

samples of given shape are equal. This is in accordance with the notion of scale of scrutiny.

For a given scale of scrutiny, in general, many states of the mixture are indistinguishable,

i.e., equivalent modulo n. Nevertheless, for the sake of mathematical consistency, it is

assumed that the state space only consists of those states which are attainable by the

aforementioned mixing experiments, modulo n.

De�nition 4.2 Let 
r� and 

s
� be two sample spaces with predetermined shape indexes.

Furthermore, let A = fAig 2 
r� and B = fBjg 2 
s� denote the partitions L = [ri=1Ai

and L = [sj=1Bj; respectively. Then B re�nes A; written A � B, if each Ai 2 A is union

of some samples Bj 2 B. Similarly, 
s� re�nes 
r�; denoted 
r� � 
s�; if every partition in


r� has a re�nement in 

s
�; i.e., for every A 2 
r�; there exists B 2 
s� such that A � B:

Furthermore, if for every � there exists a � such that 
r� � 
s�, then we shall say that the

ensembles 
r � 
s, where 
r = [�
r� and 
s = [�
s�:

Strictly speaking, by the above de�nition, an ensemble is not a sample space, because

samples in a sample space are result of repetition of the same mixing experiment. This

also means that the sample shapes remain the same in every trial, whereas, in the case of

ensemble, there is no restriction on the shape of the samples. An immediate consequence

of the above de�nition is stated in the following proposition.
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Proposition 4.1 Let 
r� and 

s
� be two non-empty sample spaces of 
L where � and �

denote the corresponding shape indexes. Then, 
r� � 
s� if and only if s = qr, where q is

a positive integer.

Proof. Assume that s = qr for some positive integer q. Now, let A be any partition in


r�. Then each sample Ai 2 A can be divided into q equivolume samples of given shapes.

This new partition corresponds to the same mixture state and hence must belong to 
s�

for some �. In the similar manner, it is easy to see that by splitting each sample into q

equivolume samples of shape index �, one can �nd a re�nement for any partition A 2
r�
in 
s� and hence, by de�nition, 


r
� � 
s�. Conversely, assume that 
r� � 
s� for some �

and �. Since by hypothesis the sampling is Correct, then the samples are equivolume. In

other words there exists a positive integer q such that s = qr:

Corollary 4.1 Let 
r and 
s be two non-empty ensembles of 
L. Then 
r � 
s if and

only if s = qr, where q is a positive integer.

Proof. This is a direct consequence of Proposition (4.1) and De�nition (4.2).

Until now, the sample space was associated to physical collection of particles. But in

order to take full advantage of this abstract de�nition, one needs to work with numbers.

That is, if one likes, it is necessary to assign coordinates to each partition, which in a

later stage can be used to quantify their properties. In general, there is no unique way to

assign coordinates to a partition. Therefore, there is a great degree of freedom in choosing

any consistent procedure which �ts the purpose of the application of interest. Of course,

one�s conclusions should be independent of any particular choice.

4.6.2 Mixture Heterogeneity

Let ci and cL denote the relative weight of the key component in sample i and lot L;

respectively. Notice that depending on the system being batch or continuous, the index i

determines the position or the time the sample is taken, respectively. Moreover, the exact

value of cL is only known in the case of closed systems and in the case of open systems it
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has to be estimated from the corresponding sample space. Accordingly, if it was possible to

have a homogeneous mixture, then all the samples would have been identical to each other.

In particular, ifMi denotes the mass of the sample i; then ciMi = cLMi; irrespective of i5.

Therefore, contribution of heterogeneity by sample i should be proportional to (ci�cL)Mi:

That is

hi = K(ci � cL)Mi; (4.6.1)

whereK is an arbitrary non-zero constant. In order to be able to compare the contribution

of heterogeneity from di¤erent samples, it is assumed that hi is dimensionless. Since, K

is arbitrary and its value should not a¤ect the quality of the mixture, it can be chosen

such that

hi =
(ci � cL)Mi

cLM� ; (4.6.2)

where cLM� denotes the mean mass of the key component in the samples. Similarly hi

can be de�ned for each component in the mixture. Thus one can construct a so-called

heterogeneity matrix similar to the sample matrix. That is

H =

0BBBB@
h01
...

h0n

1CCCCA =

0BBBB@
h11 � � � h1k
...

. . .
...

hn1 � � � hnk

1CCCCA ; (4.6.3)

where n stands for the number of samples and k + 1 is the number components of the

mixture. Accordingly, the matrix element hij corresponds to contribution of heterogeneity

of component j of the mixture in sample i, to the mixture.

Mathematically, construction of each heterogeneity matrix can be considered as as-

signment of coordinates to each partition in the sample space. The collection of all these

5Note that the following equality always holds, irrespective of mixture structure,

nX
i=1

ciMi =
nX
i=1

cLMi = cLML
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coordinate points constitute �n�k � Rn�k.

De�nition 4.3 Let H : 
n�k� ! �n�k� , where

H =

0BBBB@
h01
...

h0n

1CCCCA =

0BBBB@
h11 � � � h1k
...

. . .
...

hn1 � � � hnk

1CCCCA ;

and �n�k� is some discrete or continuous subset of Rn�k. Then hij is called a random

variable if it is a measurable function. The kernel of H is the partition of 
n�k� into

pre-images under H.

Notice, to say that hij is a measurable function means that the pre-images are measurable

sets. In this work, the class of relevant measures are the so-called probability measures.

It appears that Gy (1998, p.64) was the �rst investigator to introduce the concept of

heterogeneity function, which also plays a major role in his approach to sampling theory.

Nonetheless, the degree of success would greatly depend on how good this model coincides

with the real notion of heterogeneity. In order to be able to demonstrate this clearly,

for the rest of this chapter, it is assumed that the mixture under study is binary. This

means that the heterogeneity matrix consists of a single column. Hence, the heterogeneity

functions or coordinates over 
n� can be de�ned as

h : 
n� ! Rn;

where

A 7! h0 (A) = (h (A1) ; : : : ; h (An))0 = (h1; : : : ; hn)0 2 Rn;

for a given key component.

Heterogeneity functions contain much useful information about the structure of the

mixture. In particular, their average properties are of great importance. The reason for

this is that most of the observable physical phenomenon that a¤ect the structure of the
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mixture, also a¤ect the average properties of the heterogeneity functions. But, in general,

the knowledge about the range of each heterogeneity function is incomplete. Therefore,

one needs to somehow estimate the average properties of the heterogeneity functions.

This is where the probability theory enters. In order to be able to assign a probability

distribution to h, the following procedure can be followed:

1. Use the prior information to assign a probability distribution to Rn:

2. Use the experimental value of h and the probability distribution, determined in the

previous point, to estimate the average properties of �n� � Rn:

A general discussion of the underlying concepts behind the above procedure was given in

Chapter 3 and further elaborated in Section 7.2. For the rest of this Section it is assumed

that a probability density function (pdf) which adequately models the variations in h is

known.

Now, let p (hj I) denote the conditional probability of h given the prior information

I about the structure and shape of the samples. As was argued previously, p (hj I)

assigns a reasonable degree of belief to subsets of Rn. If there exists su¢ cient amount of

information about �n�, p (hj I) assigns higher probabilities to elements in �n� than to its

complement Rnn�n�. The lack of knowledge about the range of h leads usually to assume

that it can attain any value in Rn. This is the reason that the assigned distributions

are usually continuous. Based on experience, there is never any need to consider in�nite

sets or measure theory in real, exact problems. Indeed, any data set that can actually

be recorded and analyzed is digitized into multiples of some smallest element. But the

continuity assumption makes the mathematics more manageable and unless there is some

strong evidence to believe otherwise, it is a good approximation.

Since the information contained in a pdf can be extracted by using usual rule for

estimating its moments, then, in general, it is reasonable to believe that the moments for

h with respect to p (hj I), if they exist, contain some useful information about the average
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properties of �n�
6. In the case of multivariable distributions, the power law moments of

the form

Ms =
1

n

Z
Rn

 
nX
i=1

hsi

!
p (hj I) dh; (4.6.4)

where dh = dh1 � � � dhn, are the most interesting objects. In particular, in the context

of present chapter, the �rst and second moments for h with respect to the distribution

p (hj I) are of special interest.

De�nition 4.4 let p (hj I) denote the conditional probability of h, given the prior infor-

mation I. Then the �rst and second moments for h are

1. M1 = �h =
1
n

R
Rn (
Pn

i=1 hi) p (hj I) dh = 1
n

Pn
i=1

R
Rn hip (hj I) dh =

1
n

Pn
i=1 hhii :

2. M2 = �2h+�
2
h =

1
n

R
Rn (
Pn

i=1 h
2
i ) p (hj I) dh = 1

n

Pn
i=1

R
Rn h

2
i p (hj I) dh = 1

n

Pn
i=1 hh2i i :

There are some general properties of M1 and M2, independent of the pdf assigned to h,

which are useful in the proceedings.

Proposition 4.2 let M1 and M2 denote the �rst and the second moments for h, respec-

tively. Then

1. M1 = � = 0

2. M2 = 0 if and only if the cumulative probability P (h 6= 0j I) = 0

Proof. Let p (hj I) denote the probability density for h. Then from the De�nition (4.4)

follows that

M1 = �h =
1

n

Z
Rn

 
nX
i=1

hi

!
p (hj I) dh (4.6.5a)

=
1

n

Z
Rn

 
nX
i=1

(ci � cL)Mi

cLM�

!
p (hj I) dh (4.6.5b)

=
1

ncLM�

Z
Rn

 
nX
i=1

ciMi

!
p (hj I) dh� 1

ncLM�

Z
Rn

 
nX
i=1

cLMi

!
p (hj I) dh (4.6.5c)

6For a discussion on the existence of moments with respect to p see Je¤reys (1998, p.86). See also
Prohorov and Rozanov (1969, § 4.3) for more details.
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but by de�nition
nX
i=1

ciMi = cLML and
nX
i=1

cLMi = cLML (4.6.6)

and hence statement (1) follows. Note that this also implies that M2 = �2, where �2 is

the variance for h. Now, to prove the second statement, assume that M2 = 0 and suppose

on the contrary that P (h 6= 0j I) 6= 0. Then it is possible to �nd an " > 0 such that

P (khk > "j I) =
Z
khk>"

p (hj I) dh 6= 0; (4.6.7)

where khk denotes the length of the vector h: However,

M2 = �2 =
1

n

nX
i=1

Z
Rn
h2i p (hj I) dh (4.6.8a)

� 1
n

nX
i=1

Z
khk>"

h2i p (hj I) dh (4.6.8b)

�"
2

n

Z
khk>"

p (hj I) dh > 0; (4.6.8c)

which clearly contradicts the assumption that �2 = 0: Hence, the statement P (h 6= 0j I) =

0, is true. Conversely, if P (h 6= 0j I) = 0 then p (hj I) =
Qn

i=1 � (hi) ; where � denotes the

impulse function. This is because the total probability over the whole space should always

be equal to unity. Thus

�2 =
1

n

nX
i=1

Z
Rn
h2i

nY
i=1

� (hi) dh = 0: (4.6.9)

From the above proposition, it is evident that �2 can be used as a global measure for

heterogeneity. In the future, this measure would be referred to as mixture heterogeneity.

Mixture heterogeneity is a measure of heterogeneous properties of the mixture and the

contribution due to error in estimation based on insu¢ cient knowledge over the range

of heterogeneity functions. The heterogeneous properties of the mixture can be divided



Chapter 4. Sampling Theory 86

into two categories, static and dynamic. The static properties are properties like size and

shape of the particles in the mixture, whilst, the dynamic properties depend on if the

mixture is at equilibrium or not. In general, the mixture heterogeneity is higher when the

mixture is far from equilibrium as compared to being at equilibrium. Further discussion

on this topic can be found in § 6.1.2.

As was mentioned above, the range of h can be considered as coordinates for each

sampling trail in �n� � Rn. The distance of each point to the origo in Rn, corresponds to

the Euclidian length khk. Thus, the mixture heterogeneity is equivalent to the average

square of the distances of all the points from the origo in Rn. Geometrically, the set of

all possible points in �n� constitute a hyper-plane Pn; in which

h1 + � � �+ hn = 0 for all (h1; : : : ; hn)
0 2 Rn: (4.6.10)

The mixture heterogeneity gives an indication on the region where, in general, one can

expect to �nd majority of points belonging to �n�: Indeed, the majority of these regions

are clustered within the closed set which is created by the intersection of the hyper-plane

Pn and the hyper-sphere Sn�1; with the radius �. Similarly, all the above results can be

extended to the case of ensembles.

Now, notice that

hi + hj =
(ci � cL)Mi

cLM� +
(cj � cL)Mj

cLM�

=
(ci+j � cL)Mi+j

cLM� ; (4.6.11)

in which

Mi+jci+j = ciMi + cjMj and Mi+j =Mi +Mj: (4.6.12)

Assume that

h = (h1; : : : ; h2r)
0 2 �2r� and g = (g1; : : : ; gr)

0 2 �r�; (4.6.13)
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such that 
r� � 
2r� . Then a sample, say k, in a partition in 

r
� is a combination of

samples, say i and j, in a partition in 
2r� . From the above equations, it is easy to show

that

gk =
1

2
(hi + hj) : (4.6.14)

This result can easily be generalized as in the following proposition.

Proposition 4.3 Let 
r� � 
s�, such that g and h denote the heterogeneity functions on


r� and 

s
�, respectively. Then for any given partition A 2 
r�; there exists a partition

B 2 
s�; such that the heterogeneity functions on A and B are related in the following

manner

gi =
1

q

kiX
j=ki�1+1

hj; (4.6.15)

where s = qr and ki = iq.

Proof. The prove follows from Proposition (4.1) and induction on the order of the sample

spaces.

Corollary 4.2 Let 
r and 
s be two non-empty ensembles of 
L such that 
r � 
s:

Furthermore, let g and h denote the heterogeneity functions de�ned on 
r and 
s, re-

spectively. Then for any given partition A 2 
r, there exists a partition B 2 
s, such

that the heterogeneity functions on A and B are related in the following manner

gi =
1

q

kiX
j=ki�1+1

hj; (4.6.16)

where s = qr and ki = iq.

Proof. The prove follows from Corollary (4.1) and Proposition (4.3).

Proposition (4.3) indicates that as scale of scrutiny becomes coarser, i.e., each sample

contains more particles; the observer becomes more ignorant of �ner variations. In fact,

it demonstrates that a coarsening of scale of scrutiny is equivalent to the average of the

contribution of heterogeneity of the q neighbouring samples of the �ner partition. In other
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words, the heterogeneity function of the coarser sample space can be found by letting the

heterogeneity function of the �ner sample space pass through a suitable low-pass �lter.

As a result of this �ltering operation, one would expect that the mixture becomes less

heterogeneous. Note that this process is asymmetric. Indeed, the low-pass �ltering is an

irreversible process. Therefore, unless there is su¢ cient extra information, it is impossible

to recover the information about the �ner sample space from the coarser one.

4.6.3 The Relation between Pdfs of Non-relatively Prime Sam-

ple Spaces and Ensembles

Two integers are relatively prime if they share no common positive factors (divisors)

except 1. For example, 4 and 9 are relatively prime, whereas 4 and 8 are non-relatively

prime.

De�nition 4.5 Two sample spaces are relatively prime if their orders are relatively

prime. Similarly, two ensembles are relatively prime if their orders are relatively prime.

If two sample spaces are non-relatively prime then by Proposition (4.1), there exists

two shape indexes � and � such that the sample space with the greater order is a re-

�nement of the sample space with the smaller order. Thus, in the case of non-relatively

prime sample spaces, it would be interesting to determine the relation between the pdf of

a sample space and the pdf of any of its re�nements.

A meaningful relation between a sample space and its re�nements can only exist if

they share the same mixture state. This means that in moving from a sample space to

any of its re�nements, one is not allowed to physically move the particles or exchange the

position of the samples, which in reality is only possible by convective type operations.

Moreover, the transformation is assumed to be correct. That is, in any intermediate stage

of the transformation, the samples are equivolume. This restriction does not a¤ect the

�nal structure of the sample space but mathematically, it implies that the information
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Figure 4.6.1: Schematic representation of the map 	 : �s�! �r��Rs�r.

on the structure of a sample space can only be related to its re�nements in a continuous

manner and vice versa. Accordingly, the information on heterogeneity functions can only

be mapped by continuous maps from a sample space to its coarser contra part.

To this end, let g (
r�) = �
r
� and h

�

s�
�
= �s� such that s = qr, in which q is a positive

integer and � and � are shape indexes such that 
r� � 
s�. Then following Proposition

(4.3), one can de�ne a continuous map

	 : �s� ! �r� � Rs�r (4.6.17)

such that

h = (h1; � � � ; hs)0
	7!

0@1
q

k1X
j=1

hj; � � � ;
1

q

krX
j=kr�1+1

hj;
1

q
h2; � � � ;

1

q
hk1 ;

1

q
hk1+2; � � � ;

1

q
hs

1A0

;

(4.6.18)

where ki = iq (see Fig. 4.6.1). In a sense, 	
�
�s�
�
= V� can be considered as a coordinate

patch induced from �s� into �
r
� � Rs�r. It is easy to show that 	 is an injective map7.

Thus, any element, say v 2 V�, has a coordinate de�ned by (4.6.18) in terms of a unique

point on �s�, i.e., h = 	
�1 (v).

7A map ' : X ! Y is injective if and only if ' (x1) = ' (x2)) x1 = x2:
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Let f (vj�; I) denote the induced pdf on the patch V�. The corresponding pull-back,

	�f is de�ned as

	�f = 	� [f (vj�; I)] = f �	(hj �; I) = p (hj �; I) such that v 2 V� and h = 	�1 (v) :

(4.6.19)

Then for any D � V� such that the support8 of f on D is contained in D, i.e., suppD (f) �

D,

Z
D

f (vj�; I) dv =
Z
	�1(D)

	� [f (vj�; I)] d	 =
Z
	�1(D)

p (hj �; I) d	; (4.6.20)

where v = 	(h). The last integral in the above equation is known as the Stieltjes integral

(Kestelman 1960, p.247), which can be shown to be

Z
	�1(D)

p (hj �; I) d	 =
Z
	�1(D)

p (hj �; I) jdet J	 (h)j dh; (4.6.21)

where det J	 denotes the Jacobian determinant of the map 	, i.e., det (@	i=@hj). Since

the region D was an arbitrary subset in which suppD (f) was non-empty, then for every

v = 	(h),

f (vj�; I) = p (hj �; I) jdet J	 (h)j : (4.6.22)

Furthermore, from (4.6.18), it is easy to see that

@	i

@hj
2
�
0;
1

q

�
for all i = 1; : : : ; r: (4.6.23)

Notice that with appropriate row exchange operations, the matrix J	 can be made triangu-

lar with the diagonal entries equal to q�1. It is a well known property of the determinants

that the row exchange only changes the sign of the determinant and not its magnitude

(Strang 1988, p.214). Thus, since the resultant matrix is triangular then its determinant

8Support of f on D is de�ned as the closure of a subset of D in which f is nonzero (see e.g. Loomis
and Sternberg 1990, p.336).
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is equal to the product of its diagonal elements (Strang 1988, p.216). In other words,

jdet J	 (h)j = q�s: (4.6.24)

Substituting this result back into (4.6.22), yields

f (vj�; I) = q�sp (hj �; I) such that v 2 V� and h = 	�1 (v) ; (4.6.25)

which de�nes the value of the induced pdf for any given element in the patch V�, in term

of the pdf on �s�.

Now, by marginalizing the nuisance part of V� (see Section 3.5 on marginalization),

one arrives at

p (gj�; I) =
Z
V�\Rs�r

f (vj�; I) dv = q�s
Z
U�

p (hj �; I) dh; where U� = 	�1
�
V� \ Rs�r

�
:

(4.6.26)

The above equation establishes the relation between the pdf of a sample space and the

pdfs of its re�nements. Since the integration is an irreversible operation, as was mentioned

previously, it is impossible to recover p (hj �; I) from the mere knowledge of p (gj�; I).

The above result can readily be extended to ensembles. Indeed, by Corollary (4.2),

one can extend the map de�ned in (4.6.18) to yield,

	 : �s ! �r � Rs�r: (4.6.27)

This map is also injective and with similar arguments as above it can be shown that

p (gj I) =
Z
V \Rs�r

f (vj I) dv = q�s
Z
U

p (hj I) dh; (4.6.28)

where

	(�s) = V and U = 	�1
�
V \ Rs�r

�
: (4.6.29)
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The above results demonstrate that the relations between the pdfs of sample spaces

and pdfs of ensembles are essentially the same and in the case of sample spaces, also

independent of sample shapes. However, the domain of integration in the later case is

determined by the shape of the samples.

4.6.4 The Relation between Pdfs of Relatively Prime Sample

Spaces and Ensembles

In the cases where the sample spaces are relatively prime, Proposition (4.1) can not be

used directly as in the above. Nevertheless, as it will be shown shortly, Proposition (4.1)

still plays an important role in establishing the relation between pdfs of relatively prime

sample spaces and ensembles.

Suppose r and s are relatively prime integers such that r < s and t = sr. Then by

Proposition (4.1), there exists shape indexes �; � and  such that 
s� � 
t� and 
r � 
t�.

Furthermore, let k, h and g be the heterogeneity functions de�ned on 
t�, 

s
� and 


r
,

respectively. Then, by Proposition (4.3), one can de�ne the maps ' and  ,

' : �t� ! �s� � Rt�s and  : �t� ! �r � Rt�r (4.6.30)

such that

k = (k1; � � � ; kt)0
'7!

0@1
r

n1X
j=1

kj; � � � ;
1

r

nsX
j=ns�1+1

kj;
1

r
k2; � � � ;

1

r
kn1 ;

1

r
kn1+2; � � � ;

1

r
kt

1A0

(4.6.31a)

k = (k1; � � � ; kt)0
 7!

0@1
s

m1X
j=1

kj; � � � ;
1

s

mrX
j=mr�1+1

kj;
1

s
k2; � � � ;

1

s
km1 ;

1

s
km1+2; � � � ;

1

s
kt

1A0

(4.6.31b)

where ni = ir and mi = is (see Fig. 4.6.2). It is easy to show that ' and  are injective.
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Figure 4.6.2: Schematic representation of the map ' : �t�! �s��Rt�s and  : �t�! �r�Rt�r.

That is for each element v 2 V� = ' (�t�), there exists an unique element k 2 �t� such

that k = '�1 (v). Similarly, for each element u 2 U =  (�t�), there exits an unique

element k 2 �t� such that k =  �1 (u). Thus, the following map is well-de�ned,

 � '�1 : V� ! U (4.6.32)

and easy to show that it is bijective9. In other words, there is a one-to-one correspondence

between the elements in V� and U. Following similar arguments leading to (4.6.22), it

can be shown that

p (uj ; I) = p (vj �; I) jdet J �'�1 (v)j ; (4.6.33)

where u = � '�1 (v) and det J �'�1 (v) denotes the Jacobian determinant of the map

 � '�1.

From the multiplicative property of determinants (Strange 1988, p.217) and the chain

9A map � : X ! Y is bijective if and only if � (x1) = � (x2) ) x1 = x2 and for any element y 2 Y ,
there exists an unique element x 2 X such that � (x) = y.
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rule, one can show that

jdet J �'�1 (v)j = jdet J (k)j jdet J'�1 (v)j (4.6.34)

where

jdet J' (k)j jdet J'�1 (v)j = 1: (4.6.35)

This implies that

jdet J �'�1 (v)j =
jdet J (k)j
jdet J' (k)j

: (4.6.36)

Using Eqn. (4.6.24), follows that

jdet J �'�1 (v)j =
�r
s

�t
; (4.6.37)

and hence

p (uj ; I) =
�r
s

�t
p (vj �; I) ; (4.6.38)

where u = � '�1 (v) and t = rs. Then by marginalization,

p (gj ; I) =
Z
U\Rt�r

p (uj ; I) du =
�r
s

�t Z
'� �1(U\Rt�r)

p (vj �; I) dv: (4.6.39)

Note that if 
r and 

s
� are not relatively prime, one can easily deduce Eqn. (4.6.26) from

Eqn. (4.6.39). Similarly, in the case of relatively prime ensembles, it can be shown that

p (gj I) =
Z
U\Rt�r

p (uj I) du =
�r
s

�t Z
'� �1(U\Rt�r)

p (vj I) dv; (4.6.40)

where u = �'�1 (v), t = rs, ' (�t) = V and  (�t) = U . It can also be shown that Eqn.

(4.6.28) follows from Eqn. (4.6.40) subject to 
r and 
s not being relatively prime.
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4.6.5 Fundamental Theorems of Sampling

As it was shown, Eqns. (4.6.39) and (4.6.40) summarize the relation between the pdfs of

sample spaces and ensembles, respectively.

Theorem 4.1 (Fundamental theorem of sample spaces) Suppose there exists shape

indexes �; � and  such that 
s� � 
t�, 
r � 
t� and t = sr with r < s. Furthermore, let

k, h and g be the heterogeneity functions de�ned on 
t�, 

s
� and 


r
, respectively. Then

p (gj ; I) =
Z
U\Rt�r

p (uj ; I) du =
�r
s

�t Z
'� �1(U\Rt�r)

p (vj �; I) dv; (4.6.41)

where the maps ' and  are de�ned by (4.6.31). If 
s� and 

r
 are non-relatively prime

sample spaces, then in Eqn. (4.6.41) ' = 1, i.e., the identity map, �t� = �
s
� and r=s = q�1

in which q is an positive integer.

Theorem 4.2 (Fundamental theorem of ensembles) Suppose that 
s � 
t, 
r �


t and t = sr with r < s. Furthermore, let k, h and g be the heterogeneity functions

de�ned on 
t, 
s and 
r, respectively. Then

p (gj I) =
Z
U\Rt�r

p (uj I) du =
�r
s

�t Z
'� �1(U\Rt�r)

p (vj I) dv; (4.6.42)

where the maps ' and  are de�ned by extension of the domain of (4.6.31) to the whole

space �t. If 
s and 
r are non-relatively prime sample spaces, then in Eqn. (4.6.42)

' = 1, i.e., the identity map, �t = �s and r=s = q�1 in which q is an positive integer.

One consequence of the above Theorems is that the pdf of two sample spaces (en-

sembles), independent of their shape indexes and orders, can be related to each other by

(4.6.41) and (4.6.42), under the condition that they both have a common re�nement. This

is a useful result which is very valuable in theoretical study of sample spaces (ensembles).
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4.7 Epilogue: Comments

In the previous Section, we assumed that the mixing system under study is binary. This

assumption was necessary in order to avoid mathematical complication. Indeed, this in

one respect would have dragged us into the subject of random matrices (Mehta 2004).

This is currently a very active �eld of research with range of applications covering a great

number of subjects. However, there are still many issues remain to be resolved before it can

be applied to the problems we are dealing with in the present work. Nevertheless, there is

another less elegant approach to modelling of multicomponent mixtures. Indeed, this can

be done by stacking each column of the heterogeneity matrix on another. This operation

transforms a n � k heterogeneity matrix into a column vector consisting of nk entries.

Then similar mathematical approach as above can be applied to model multicomponent

mixtures. It remains to be seen which approach is simpler and more e¤ective.

As it was mentioned previously, the knowledge about the range of the heterogeneity

functions, due to insu¢ cient information about all the system parameters, is limited.

This results in a sort of "fuzziness" of assumed range of heterogeneity functions. That

is, if an element h 2 �n� � Rn, then a subset of Rn containing h also belongs to �n�.

Mathematically this fuzziness property can be thought of as instead of working with points

in the space, one is forced to work with so-called open sets. In this context, it seems that

an appropriate framework can be founded on the subject of general topology. This subject

can be divided into two broad areas. The �rst, which could be called continuous topology,

centres on the concepts like compactness andmetrization which are the indispensable tools

of modern mathematics. The second area, which might be called geometric topology, is

primarily concerned with the connectivity properties of topological spaces (see e.g. Willard

1970). It appears that the �rst attempt to develop such a theory resulted into creation

of random set topology by Matheron (1975). However, despite its success in Geostatistics

and other related subjects, it seems that adaptation of frequency interpretation of the

probability theory have had a limiting e¤ect on its applicability. Nevertheless, the subject
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of random set topology o¤ers an alternative approach which is certainly worth some

attention.



Chapter 5

Application of the Sampling Theory

The whole is more than the sum of the parts.

Aristotle, Metaphysica (350 BC)

T
he main objective of this chapter is to demonstrate some of the established

facts about sampling and mixing of particulate mixtures. Lacey�s conjecture is

stated and is shown that it is mathematically consistent within the mathemat-

ical framework of sampling of particulate materials, developed in Chapter 4. One major

consequences of this analysis is stated in the mixture heterogeneity theorem. Moreover,

the modelling techniques of Chapter 4 is used in developing a new model which can be

applied to estimate the number of tracer particles of given size in random binary closed

batch systems. It is further shown how the same techniques can be used in determining

the RTD of the binary closed continuous systems. This is further deepen by applying

these methods to construct a model for RTD of commercial twin screw extruder. Also

a short discussion on the concept of Constitutional heterogeneity and its relation to the

topics discussed in the present chapter is given.

5.1 Lacey�s Conjecture

Lacey (1943) developed a model for mixtures based on the assumption that the constituent

particles are identical and only di¤er in colour. He demonstrated that, in these cases, for a

completely random mixture the variance of the sample composition decays inversely with

98
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the sample size. He, although in di¤erent wordings, also made the following conjecture.

Conjecture 5.1 (Lacey) The mixture heterogeneity increases as the sample size de-

creases, independent of the distribution of the constituents and sample shape.

Poux et al. (1991) pointed out that this conjecture is reasonable since every mixture

can be made homogeneous provided that samples selected for analysis are large enough.

The experimental studies by Poole et al. (1964) indicated that in the case of non-random

mixtures that they studied, there was a correlation between the dependence of the hetero-

geneity on sample size and the degree of randomness attained in the mixture. Nonetheless,

they could also con�rm that the mixture heterogeneity decreases as the sample size in-

creases, although, not necessarily as in the case of Lacey�s ideal mixture.

Several workers have suggested that the correlation between the sample size and degree

of mixedness is due to the shape of the samples. Indeed, Bourne (1967; 1968) showed

that the sample variance-size relationship in two dimensional samples, is in�uenced by

the type of correlation inherent in the mixture and the type of sample shape. Cooke and

Bridgwater (1977) extended Bourne�s results and determined general expressions for one,

two and three dimensional sample shape-variance relation. However, beside empirical

evidence, they could not produce any convincing rational for their choice of correlation

coe¢ cient.

It is possible to calculate the correlation coe¢ cient from a experimentally determined

curve of sample variance vs. sample size. However, as Scott and Bridgewater (1974)

have pointed out, the correlation coe¢ cient is actually related to the rate of change

of the variance-sample size curve. It has been for long known that large experimental

errors may mask the mixture variance (Orr 1979). For example, Lai and Hersey (1981)

con�rmed this point experimentally for at least several types of micro-dose-mixing. The

e¤ect of these errors on the derivative of a variance-sample size curve is quite large.

Thus as Tucker (1981) has also pointed out, it has been convenient to assume a certain

shape for the curve describing the correlation coe¢ cient as a function of distance, which
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is also known as correlogram, and use sample variance measurements to determine its

validity. Although this method has its advantages, there appears to be no other reason

for preferring any particular correlogram than empirical evidence. Moreover, because

of considerable experimental errors in sample variance which come from using a �nite

number of samples, any choice of correlogram which is solely based on empirical evidences

is doubtful.

Tucker (1981) realizing the weakness of the above approach, suggested a method of

choosing the correlogram function based on physical consideration. He showed that the

variance in concentration of the key component in the mixture is determined by the

integral of the product of the mixture correlation function and a function depending on the

sample shape. This sample shape function can only be evaluated analytically for simple

shapes and for more complicated shapes is determined numerically. Further, he argued

that for small distances, the sample shape function can be approximated by the surface

area to volume ratio of the sample. Using this and the correlogram function determined

by physical considerations, it is possible to show the truth of Lacey�s conjecture. However,

this is only possible if the correlation function is non-zero for small distances in which the

aforementioned approximation for the shape function is valid. Therefore, for the more

general mixtures, the status of the conjecture remains undetermined.

Gy (1979, Ch.19), based on some logical arguments, did get closest in theoretically

demonstrating the truth of Lacey�s conjecture. But in proving the conjecture, he assumed

that p (hj I) is a normal distribution. Although, based on experience, he argued that this

assumption is not necessary, however, he never proved the redundancy of the normality

assumption. In fact as Ashton and Valentin (1966) have pointed out, under conditions

usually encountered in practice, the distribution of mixture ingredients and hence p (hj I),

often deviates from the normal distribution. That is, the third or higher moments of the

distribution are non-zero. Nevertheless, Pearson (1922) has shown that in the absence of a

logical relation, because of sampling and analytical errors, the determination of moments

higher than the second is precluded, since several hundred samples would be required for
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their accurate determination.

The above discussion demonstrates that despite strong logical and empirical evidences,

it appears that there is no model for mixture heterogeneity that could con�rm the truth

of the Lacey�s conjecture. Indeed, this is the �rst test which any model should pass in

order to be taken seriously. In the following, it will be shown that the model which

was developed for mixture heterogeneity in Section 4.6, does indeed con�rm the truth of

Lacey�s conjecture. Since this heterogeneity model is identical to Gy�s model then in a

sense it proves also that Gy�s conclusion was right.

5.1.1 Proof of Lacey�s Conjecture for Non-relatively Prime Sam-

ple Spaces and Ensembles

As it was explained earlier, the volume of the samples decreases as the order of the

sample space increases. Thus sample space of higher order correspond to samples of

smaller volume. Now, for the sake of clarity, Lacey�s conjecture is �rst proved for 
r� and


s� such that 

r
� � 
s�. In the next Sub-Section, it will be shown how it can be proven

for relatively prime spaces.

From De�nition (4.4) and Theorem (4.1), it follows that

�2 (g) =
1

r

Xr

i=1

Z
�r�

g2i p (gj�; I) dg (5.1.1)

=
1

r

Xr

i=1

Z
V�

�
vi
�2
f (vj�; I) dv

=
1

rqs

Xr

i=1

Z
	�1(V�)

�
q�1
Xki

j=ki�1+1
hj

�2
p (hj �; I) dh;

where all the parameters are same as in (4.6.26). Moreover, notice that 	�1 (V�) = �s�,
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and hence

�2 (g) =
1

rqs+2

Xr

i=1

Z
�s�

�Xki

j=ki�1+1
hj

�2
p (hj �; I) dh (5.1.2)

=
q�(s+1)

s

Xr

i=1

*�Xki

j=ki�1+1
hj

�2+
:

Now, by Schwarz inequality (Arfken 2001, p.607), it follows that

�Xki

j=ki�1+1
hj

�2
� (ki � ki�1)

Xki

j=ki�1+1
h2j = q

Xki

j=ki�1+1
h2j ; (5.1.3)

which implies that

�2 (g) � q�(s+1)

s

Xr

i=1

�
q
Xki

j=ki�1+1
h2j

�
: (5.1.4)

Moreover, it is evident that

1

s

Xki

j=ki�1+1



h2j
�
= �2 (h)� 1

s

�Xki�1

j=1



h2j
�
+
Xs

j=ki+1



h2j
��
; (5.1.5)

and hence

�2 (g) � q�(s+1)
Xr

i=1
q

�
�2 (h)� 1

s

�Xki�1

j=1



h2j
�
+
Xs

j=ki+1
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���

(5.1.6a)

� q�(s+1)
�
s�2 (h)� 1

s

Xr

i=1

�Xki�1

j=1



h2j
�
+
Xs

j=ki+1



h2j
���

: (5.1.6b)

It is easy to show that

Xr

i=1

�Xki�1

j=1



h2j
�
+
Xs

j=ki+1



h2j
��
= s (r � 1)�2 (h) ; (5.1.7)

which if substituted back into the inequality (5.1.6b), yields

�2 (g) � q�(s+1) (s� r + 1)�2 (h) : (5.1.8)
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Now, consider the function

m (s) =
�r
s

�s+1
(s� r + 1) : (5.1.9)

The �nite Taylor�s expansion of m (s) with respect to s around r is (Arfken 2001, p.334)

m (s) = m (r) + �
dm

ds

����
s=r

+ � � �+ �k�1

(k � 1)!
d(k�1)m

ds(k�1)

����
s=r

+Rk; (5.1.10)

where

Rk =
�k

k!

dkm

dsk

����
s=r+��

, for some � 2 [0; 1] (5.1.11)

is the Lagrange remainder of order k and � = s� r: It is easy to show that for k = 1,

m (s) = 1��
�

r

r + ��

��
r

r + ��
ln

�
r + ��

r

�
+
r (1 + r + ��)

(r + ��)

�
; (5.1.12)

which evidently implies that m (s) � 1 and hence by (5.1.8), it follows that,

�2 (g) � �2 (h) : (5.1.13)

In other words, Lacey�s conjecture is true in the cases where 
r� � 
s� for some � and �. By

Theorem (4.2), the above result can be extended to ensembles. This means that Lacey�s

conjecture, in the case of the non-relatively prime ensembles, is also true independent of

sample shape.

5.1.2 Proof of Lacey�s Conjecture for Relatively Prime Sample

Spaces and Ensembles

In order to prove Lacey�s Conjecture, one has to show the truth of the conjecture inde-

pendent of order of sample spaces or the shape of the samples. Accordingly, let 
r � 
t�
and 
s� � 
t� for some shape indexes �; � and  such that t = rs, for 1 < r < s and r and
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s being relatively prime. Furthermore, let k, h and g denote the heterogeneity functions

on 
t�, 

s
� and 


r
, respectively. Then by De�nition (4.4) and Theorem (4.1), it follows

�2 (g) =
1

r

Xr

i=1

Z
�r

g2i p (gj ; I) dg (5.1.14a)

=
1

r

Xr

i=1

Z
U

([ur]i)
2 p (uj ; I) du (5.1.14b)

=
1

r

�r
s

�tXr

i=1

Z
V�

��
 � '�1 (vr)

�
i

�2
p (vj �; I) dv; (5.1.14c)

where, since  � '�1 is a bijective map, ' �  �1 (U) = ' (�t�) = V� and ur denotes

 � '�1 (vr) = ur = (g1; : : : ; gr; 0; : : : ; 0) 2 U (5.1.15)

Now, from (4.6.31) follows that

 �1 (ur) =

0@sg1; 0; : : : ; 0| {z }
s

; sg2; 0; : : : ; 0| {z }
s

; : : : ; sgr; 0; : : : ; 0| {z }
s

1A : (5.1.16)

Since r and s are relatively prime, it is easy to show that

�
' �  �1 (ur)

�
i
= vi =

8>>>><>>>>:
s
r
gj for an unique j 2 f1; : : : ; rg

or

0

(5.1.17)

Thus

�2 (g) � 1

r

�r
s

�tXr

i=1

Z
V�

�r
s
vi

�2
p (vj �; I) dv; (5.1.18)
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which implies

�2 (g) �
�r
s

�t+1 1
s

Xr

i=1

Z
V�

(vi)
2 p (vj �; I) dv (5.1.19a)

�
�r
s

�t+1 1
s

Xs

i=1

Z
V�

(vi)
2 p (vj �; I) dv (5.1.19b)

�
�r
s

�t+1
�2 (h) (5.1.19c)

and since 1 < r < s < t, then

�2 (g) � �2 (h) : (5.1.20)

The above result can similarly be extended to the case of relatively prime ensembles. In

other words, Lacey�s conjecture is proved for relatively prime ensembles.

5.1.3 Fundamental Theorem of Mixture Heterogeneity

The above results can now be summarized as follows.

Theorem 5.1 (Fundamental theorem of mixture heterogeneity ) Let 
r� and 

s
�

be two sample spaces for some � and � such that r < s. Furthermore, let g and h denote

the heterogeneity functions on 
r� and 

s
�, respectively. Then �

2 (g) � �2 (h). This is

also true in the case of ensembles.

Corollary 5.1 The mixture heterogeneity increases as the sample size decreases, inde-

pendent of the distribution of the constituents and sample shape.

Proof. This is a direct consequence of Theorem (5.1).

The above results show that Lacey�s conjecture is a direct consequence of how one

conceives the concept of heterogeneity and no additional assumptions were necessary in

order to show its truth. In fact the proof is more general. Indeed, it is easy to see that

Theorem (5.1) is valid for any model of heterogeneity that possesses the same property as

was described in Proposition (4.3). In other words, this property is more fundamental to
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the notion of heterogeneity than the form of its representation in algebraic form. This is

also consistent with the condition that one�s conclusions should be independent of choice

of the algebraic form of the heterogeneity function, as long as it satis�es certain conditions.

Another consequence of Theorem (5.1), in the case of closed systems, is that the

following series

0 = �21 (h) � � � � � �2i (h) � � � � � �2N (h) ; (5.1.21)

where �2i and N denote the mixture heterogeneity over the ensemble 
i and number of

particles in the mixture, respectively, make perfect sense. That is, if the order of the

ensemble is one, i.e., the whole mixture consists of one sample which contains all the

particles in the mixture, the mixture heterogeneity is nil. Physically, this means that

by choosing the scale of scrutiny to be the whole mixture, one becomes blind to all the

�ner details in the mixture. On the other extreme, if the order is equal to the number

of particles in the mixture, it is evident that mixing or segregation has no e¤ect on the

value of the mixture heterogeneity. That is, at this scale of scrutiny, the mixture looks as

heterogeneous as it can be.

5.2 Interlude: Comments

In the above, it was demonstrated that if we assume the validity of the model for mixture

heterogeneity developed in Chapter 4, then, mathematically, Lacey�s conjecture has to be

true. However, as Je¤reys (1973, p.11) put it, mathematics can only display connections

between scienti�c statements; it does not prove the statement by itself. Indeed, the only

thing which is achieved by proving the Lacey�s conjecture is to demonstrate that our

model is consistent with respect to empirical evidences.

As mentioned earlier, it was Gy who �rst proposed the model for heterogeneity which

is also used in this work. However, Gy could not produce convincing theoretical evidence

in favour of Lacey�s conjecture. In fact, he could only partially demonstrate its plausibility
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by assuming that the sample distribution is Normal. As long as the mixture components

are randomly distributed, i.e., the mixture heterogeneity is at its minimum or equivalently

the sample Reproducibility is at its maximum, this assumption seems to be reasonable.

But if the mixture is partially mixed, as mentioned previously, the correlation among

the samples and their respective shape a¤ect the level of heterogeneity. Bretthorst (1996)

points out that if a pdf does not contain any information on correlations, it would be more

correct to say that this pdf makes allowances for every possible correlation. Evidently, in

the case of partially mixed mixtures, this does not apply and proper constraints on the

correlations or higher moments should be taken into consideration. In Gy�s modelling

approach one assumes that the samples are reproducible. As was explained previously,

this assumption, in general, is not valid in particulate mixing.

5.3 An Estimate for the Number of Tracer Particles

of Given Size in Random Binary Closed Batch

Systems

In the following, the modelling technique of Chapter 4 is applied to estimate the number

of tracer particles of di¤erent sizes in a random closed binary batch system. In this

context, by the phrase "random" one means that the mixture is at the state of minimum

heterogeneity.

As was argued previously, the assignment of the probability depends on the amount of

testable information about the mixture. This information is usually expressed in the form

of physical constraints which restricts the degrees of freedom of the mixture parameters.

Since, in the present case, the system is a closed batch system, two obvious constraints

yield. The �rst one is the conservation of the number of tracer particles in the mixture

and the second one is the conservation of the mass of the tracer particles in the mixture.

Now, let p (r; jj i; I) be the probability of �nding r tracer particles of size class j in a
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given sample i. Then by the product rule (3.2.1),

p (r; jj i; I) = p (jj i; I) p (rj i; j; I) : (5.3.1)

The terms on the right hand side of the above equation can be interpreted as follows.

The �rst term p (jj i; I) is probability of �nding size class j in a given sample i. Since

the samples are equivolume and the state of minimum heterogeneity is assumed, p (jj i; I)

is independent of choice of particular i and therefore contains no additional information

which is not already in I. Thus

p (jj i; I) = p (jj I) = qj; (5.3.2)

where qj is the probability of �nding a tracer particle of size class j in a randomly chosen

sample and is assumed to be known1. For the sake of simplicity, it is assumed that qj�s

represent the distribution of the particle volumes and therefore by size of a particle one

means its volume. The second term p (rj i; j; I), is the probability of �nding r particles of

given size class j in a given sample i. Again, since the samples are equivolume and the

mixture is at the state of minimum heterogeneity, p (rj i; j; I) is independent of choice of

i and hence

p (rj i; j; I) = p (rj j; I) = prj; (5.3.3)

where prj is the probability of �nding r tracer particles of given size class j in a randomly

chosen sample. Thus

p (r; jj i; I) = qjprj: (5.3.4)

Now, if one assumes that the number of tracer particles of given size class j in any sample

1If there is no information on the size distribution of the tracer particles, uniform distribution should
be assumed (see Section 3.4).
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can be somewhere between 0 and sj, then

sjX
r=0

prj = 1; for each given j = 1; : : : ; k (5.3.5)

which implies
kX
j=1

sjX
r=0

p (r; jj i; I) =
kX
j=1

qj

sjX
r=0

prj =
kX
j=1

qj = 1: (5.3.6)

The total entropy of the distribution is

�
kX
j=1

sjX
r=0

p (r; jj i; I) ln [p (r; jj i; I)] = �
kX
j=1

qj ln qj �
kX
j=1

qj

sjX
r=0

prj ln prj: (5.3.7)

As it was shown in Chapter 4, the most probable distribution is the one which maximizes

the above entropy functional subject to appropriate constraints. Since qj�s are �xed, this

implies that the best candidate for prj is the one which maximizes

�
kX
j=1

qj

sjX
r=0

prj ln prj: (5.3.8)

Now, in the probabilistic framework, the physical constraints a¤ect the expected values of

parameters. Therefore, the conservation of the number of tracer particles in the mixture

is expressed as

n
kX
j=1

qj

sjX
r=0

rprj = N (5.3.9)

and similarly the conservation of the mass of the tracer particles in the mixture as

n�

kX
j=1

vjqj

sjX
r=0

rprj = cLML; (5.3.10)

where vj denotes the volume of a particle of size class j, cLML the total mass of the tracer

particles in the mixture of total mass of ML and �, the density of the material that the
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tracer particles are composed of. Thus, the Lagrangian in this case is

L = �
kX
j=1

qj

sjX
r=0

prj ln prj �
 

kX
j=1

�j � qj

! 
sjX
r=0

prj � 1
!

� �

 
kX
j=1

qj

sjX
r=0

rprj �
N

n

!
� �

 
�

kX
j=1

vjqj

sjX
r=0

rprj �
cLML

n

!
; (5.3.11)

where �j, � and � are the Lagrange multipliers. Now, maximizing L for variations in

prj�s, one gets

@L

@pij
= 0) �qj (1 + ln prj)� (�j � qj)� �rqj � ��rvjqj = 0; (5.3.12)

which implies

prj = aj exp [�r (�+ ��vj)] : (5.3.13)

Using (5.3.5) and observing that it is the sum of a Geometric progression of sj terms,

1 =

sjX
r=0

aj exp [�r (�+ ��vj)] = aj
1� exp [� (sj + 1) (�+ ��vj)]

1� exp [�r (�+ ��vj)]
; (5.3.14)

which implies that

aj =
1� exp [�r (�+ ��vj)]

1� exp [� (sj + 1) (�+ ��vj)]
� (5.3.15)

The parameters � and � can be determined by using the remaining constraints. Indeed,

Eqn. (5.3.9) implies that

N

n
=

kX
j=1

qj

sjX
r=0

rprj =

kX
j=1

qj �Nj; (5.3.16)

where �Nj is the expected number of particles of size class j in a randomly chosen sample.

But

�Nj =

sjX
r=0

rprj =
1� zj

1� z
sj+1
j

sjX
r=0

rzrj ; (5.3.17)
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in which zj = exp [� (�+ ��vj)]. Since the last term in the above equation is an

Arithmetic-Geometric progression (see e.g. Gradshteyn and Ryzhik 2000, p.1), one gets

sjX
r=0

rzrj =
zj

(1� zj)
2

�
1� (sj + 1) zsjj + sjz

sj+1
j

�
; (5.3.18)

and hence

�Nj =
zj

1� zj

1� (sj + 1) zsjj + sjz
sj+1
j

1� z
sj+1
j

; (5.3.19)

where zj 6= 1 and sj > 0 are assumed. Hence, the Lagrange multipliers � and � can

uniquely be determined by solving the following system of equations

N

n
=

kX
j=1

qj
zj

1� zj

1� (sj + 1) zsjj + sjz
sj+1
j

1� z
sj+1
j

(5.3.20a)

cLML

n�
=

kX
j=1

vjqj
zj

1� zj

1� (sj + 1) zsjj + sjz
sj+1
j

1� z
sj+1
j

(5.3.20b)

Thus, the expression in (5.3.19) describes the expected number of tracer particles of given

size in a randomly chosen sample, subject to the conservation of number of tracer particles

and their total mass given by (5.3.20).

The parameter sj is the maximum possible number of tracer particles of size class j

in a randomly chosen sample, which is obviously application dependent. For example,

sj is depending on the ratio of sample volume to particle volume. This in turn is also

related to the number of particles in the closest packing con�guration of particles of size

class j in the sample. For particles with irregular shapes there is, as yet, no consistent

theory which can be used to determine this upper bound. Moreover, even if such theory

existed, the shape of samples has also to be taken into account, which further complicate

the calculations. Nevertheless, it is always possible to estimate sj experimentally. In the

following two distinct possibilities of great importance are considered which can function

as limiting cases of the expression in (5.3.19).
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5.3.1 Case I: sj = 1

As it was argued in Chapter 4, with respect to size of particles in a mixture, no particles

are exactly alike. That is, each possible size class in the interval between the minimum

and maximum size of the tracer particles is represented by at most 1 particle and hence

sj = 1. Then by Eqn. (5.3.19), one gets

�Nj =
zj

1 + zj
=

1

exp (�+ �mj) + 1
; (5.3.21)

where mj = �vj is the mass of a single particle of size class j. Since in most practical

cases the number of tracer particles and hence particles in the mixture is quite large, in

the cases in which the size distribution is narrow one can assume that it is continuous,

i.e.,

1

�

mmaxZ
mmin

q (m) dm = 1; (5.3.22)

where mmin and mmax stand for the minimum and maximum mass of the tracer particles

in the mixture, respectively. Hence, the constraints assume the following form,

N

n
=

1

�

mmaxZ
mmin

q (m)

exp (�+ �m) + 1
dm

cLML

n
=

mmaxZ
mmin

mq (m)

exp (�+ �m) + 1
dm: (5.3.23)

From Eqn. (5.3.21) it is clear that in order to have dimensional consistency, � must

be expressed in reciprocal mass units; that is, Kg�1, g�1, etc. Moreover, from (5.3.21)

follows that

� � = 0: �Nj is independent of the mass of the tracer particles

� � > 0: �Nj decreases as mj increases

� � < 0: �Nj increases as mj increases
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Mixtures of particles of di¤erent sizes will, in general, have voids formed by the larger

particles that are partially �lled by the smaller ones (e.g. Furnas, 1931). In order to

increase the packing density of the mixture, large number of �ne particles are mixed with

much smaller number of coarse particles. If the proportion of �nes in the mixture is

su¢ ciently high the mixture is known as being �nes continuous. This, as Arteaga and

Tüzün (1990) have also pointed out, depends on the size ratio of the smallest to largest

particles and the weight fraction of �nes. If the non-tracer component of the mixture

consists of coarser particles then one needs to have � > 0 in order to achieve the closest

packing. On the contrary, if the non-tracer component of the mixture is �ner, then one

needs to have � < 0. However, as Heywood (1961) have also noticed, although smaller

particles can �t in the voids between larger ones, decreasing the voidage, �ne particles

tend to cohere, forming loose chains with high voidage, and thus nullifying the expected

voidage decrease. In fact in some of these cases, as Heywood also discovered, if the

mixture is coarse continuous, a greater packing density might be attained. In these cases

the choice of � should be opposite of the aforementioned cases.

Now, from (5.3.20) follows

cLML

N
=

Pk
j=1 qjmj

�NjPk
j=1 qj

�Nj

= �m; (5.3.24)

where �m is the weighted mean of m1; : : : ;mk in which the weights being proportional to

qj �Nj. If � = 0, these weights are equal and cLML=N coincides with the mean particle

mass of the tracer particles. This means that contrary to the above two cases, the size

classes in the neighbourhood of the mean particle size are more dominantly represented

in the mixture than the ones in the lower and upper tail of the tracer size distribution.

Moreover, since in this case �Nj is also independent of the mass of the tracer particles,

then the size distribution of the tracer particles have to be uniformly distributed.

Based on the above discussion, it is reasonable to assume that � depends on the



Chapter 5. Application of the Sampling Theory 114

microstructural properties of the mixture. Moreover, it is easy to show that

@

@�

�
cLML

n

�
=

@

@�

 
kX
j=1

qjmj
�Nj

!
= �

kX
j=1

qjm
2
j

zj

(1 + zj)
2 < 0 (5.3.25)

and
@

@�

�
N

n

�
=

@

@�

 
kX
j=1

qj �Nj

!
= �

kX
j=1

qjmj
zj

(1 + zj)
2 < 0; (5.3.26)

that is, both cLML=n and N=n are monotonic decreasing functions of �.

5.3.2 Case II: sj =1

On the other extreme, If the size of particles is much smaller than the sample volume and

if in addition it can be assumed that the mixture consists of a large number of particles

then it is reasonable to assume that the number of particles belonging to each size class

is somewhere between 0 and in�nity, that is sj !1. Thus

�Nj =
zj

1� zj
=

1

exp (�+ �mj)� 1
; (5.3.27)

where mj = �vj is the mass of a single particle of size class j. From the above expression

it is evident that �+ �mj > 0. Moreover, a similar analysis as the above reveals that for

all the pairs (�; �) that satisfy this constraint, �Nj decreases as mj increases, unless � = 0

in which � must be greater than zero and hence �Nj is independent of the mass of the

tracer particles. Both cLML=n and N=n are also monotonic decreasing functions of �.

5.4 Interlude: Comments

In statistical mechanics the distributions in (5.3.21) and (5.3.27) are known as Fermi-

Dirac and Bose-Einstein, respectively (e.g. Trevena 1993, Ch.5). The distribution in

(5.3.19) is known as the Intermediate Statistics. It appears that this distribution was

�rst proposed by Gentile (1940) in relation to physics of elementary particles in which
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he discussed the possibility of the existence of particle statistics intermediate between

Fermi-Dirac and Bose-Einstein statistics. However, in the context of quantum mechanics,

it appears to be no physical situation which follows the Intermediate Statistics (see e.g.

Lavenda and Dunning-Davies 1989). Nonetheless, in the light of the above results, the

mixture of particulate materials may serve as model for studying the properties of the

Intermediate Statistics.

It seems to be that Jaynes (1957b-1957c) was the �rst investigator to suggest that

these statistics can be derived from the maximum entropy principle (see also Chapter 3).

Similar mathematical approach as the one in previous Section is also discussed by Forte

and Sempi (1976), Kapur (1983) and Kapur (1994, Ch. 41) in relation to other problems

in statistical mechanics and tra¢ c theory.

5.5 Constitutional Heterogeneity

In the case of closed systems, the series (5.1.21) and Theorem (5.1) have another inter-

esting application. Indeed, consider what will happen if the particles agglomerate in the

mixture. This, in practice means that the number of distinguishable constituents are

reduced to say N 0. That is, in a sense, the e¤ect of agglomeration on �2N (h), can be

considered as an increase in the sample size and thus by Theorem (5.1),

�2N 0
�
�h
�
� �2N (h) : (5.5.1)

In a similar manner, comminution increases �2N (h). For this reason, in the case of closed

systems, �2N (h) is known as Constitutional heterogeneity of a mixture. Clearly, the Con-

stitutional heterogeneity of a mixture is not a¤ected by mixing or segregation. It is only

changed by physically changing the size of the constituents. This fact was already known

to Aristotle for more than two thousand years ago. Indeed, while he was studying the

sand particles, he concluded his �ndings in a now famous sentence �the whole is more
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than the sum of the parts�. It is impossible to determine the quality of the mixture by

examining each of its constituents separately.

In the context of the sampling theory, Gy (1979, p.225) noticed these facts which also

play an important part in his approach to sampling theory. However, in practice, the Con-

stitutional heterogeneity of a mixture is di¢ cult to determine. Since, as was mentioned

earlier, any knowledge on the coarser sample space is insu¢ cient to uniquely determine

the structure of its re�nements. Nonetheless, since the Constitutional heterogeneity is

related to some physical concepts, it should be possible to estimate. Indeed, it seems to

be that the distribution (5.3.21) can be used to estimate the Constitutional heterogeneity

of a mixture. Further investigation into this matter is needed and is left to a later time.

5.6 Residence Time Distribution for Closed Binary

Continuous Systems

As it was shown in § 4.3.2, in the case of closed binary continuous systems, the probability

density for the system RTD is determined by maximizing

�
Z 1

0

f (t) ln [f (t)] dt; (5.6.1)

subject to the constraints

Z 1

0

f (t) dt = 1 and
Z 1

0

f (t) ln tdt = ln g: (5.6.2)

Hence, in this case, the Lagrangian is

L = �
Z 1

0

f (t) ln [f (t)] dt� (�0 � 1)
�Z 1

0

f (t) dt� 1
�

� �1

�Z 1

0

f (t) ln tdt� ln g
�
; (5.6.3)
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where �0 � 1 is used as the �rst Lagrange multiplier instead of �0 as a matter of conve-

nience. Now, maximizing L with respect to f (t) is equivalent of solving the corresponding

Euler-Lagrange equation2 of the Calculus of Variations, which in this case implies that

� ln [f (t)]� 1� (�0 � 1)� �1 ln t = 0; (5.6.4)

and hence

f (t) = e��0t��1 : (5.6.5)

However, a closer look at the constraints revels that, in general, one can not uniquely

determine the parameters �0 and �1. The reason for this is that f (t) has a singularity

at t = 0. This singularity can be avoided by changing the de�nition domain of the f (t)

to [t0;1], where t0 > 0. Physically, this means that the residence time of any particle in

the mixture is greater than zero, which is obviously true. If this condition is ful�lled, the

parameters �0 and �1 can be uniquely determined and accordingly

f (t) = �t�0 t
�(�+1); t � t0 > 0 (5.6.6)

where

��1 = ln

�
g

t0

�
; g > t0: (5.6.7)

In literature, the distributions of type given by Eqn. (5.6.6) are known as the Pareto

distribution.

From the above analysis it is clear that the choice of the parameters �0 and �1 depend

on t0. Since, in general, there is a great degree of freedom in choosing t0; there would be

an in�nite family of Pareto distributions, all satisfying the above constraints. In other

2Let L =
R b
a
F [t; f (t) ; f 0 (t)] dt where F is a known function. Then according to Euler-Lagrange

equation, the function f (t), which maximizes or minimizes L is given by

@F

@f
� d

dt

�
@F

@f 0

�
= 0
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words, in order to achieve uniqueness, further constraints have to be imposed. Now, as

it was discussed in § 2.4.3, the conservation of mass of the mixture imposes a constraint

on the mean residence time of the system which has to be taken into account. That is, in

this case the Lagrangian is

L = �
Z 1

0

f (t) ln [f (t)] dt� (�0 � 1)
�Z 1

0

f (t) dt� 1
�
� �1

�Z 1

0

f (t) ln tdt� ln g
�

� �2

�Z 1

0

tf (t) dt� �t
�
: (5.6.8)

Now, maximizing L with respect to f (t) yields

f(t) =

8><>:
(��)�

�(�)
t��1e���t , t > 0

0 , t � 0
(5.6.9)

where ��1 = �t and � is determined from

ln g =

Z 1

0

(��)�

�(�)
t��1e���t ln tdt: (5.6.10)

The distribution in (5.6.9) is the well-known gamma distribution. Furthermore, it can be

shown that (see e.g. Gradshteyn and Ryzhik 2000, p.572)

ln g =

Z 1

0

(��)�

�(�)
t��1e���t ln tdt =

(��)�

�(�)

d

d�

�
�(�)

(��)�

�
; (5.6.11)

and hence

ln g =
�0(�)

�(�)
� ln (��) =  (�)� ln (��) ; (5.6.12)

where  is the Euler psi function also known as digamma function (Gradshteyn and

Ryzhik 2000, p.892). This implies that

g� =
1

�
exp [ (�)] : (5.6.13)
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Figure 5.6.1: The relation between the ratio of the geometric mean to the mean residence time of a
mixing vessel and its order.

Now, according to the modelling techniques of § 2.4.1, � is the number of exponential

vessels in series. However, until now there has not been any constructive method for

determining �. Nonetheless, Eqn. (5.6.13) can now be applied to determine the order

of the mixer. Indeed, since the mean and geometric mean residence time of a mixer can

experimentally be determined; Eqn. (5.6.13) can be solved for �. A plot of the order of

the mixer versus the ratio of the geometric mean to the mean residence time is given in

Fig. (5.6.1). It is easy to show that

lim
�!1

g� = 1: (5.6.14)

Indeed, if g = �t, the distribution given by (5.6.9) is the degenerate Dirac�s delta distrib-

ution centred at the common value of g and �t. This corresponds, as also mentioned in §

2.4.1, to the plug �ow regime. On the other extreme, small values of � imply that parti-

cles, on average, spend longer time in the mixer and small values of g would mean that

the average axial �uctuations at the outlet of the mixer are small. Therefore, in general,

small values of g� correspond to better axial mixing as compared to larger ones. Thus,
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the ratio of the geometric mean to the mean residence time can be used as a measure for

how capable a mixer is to disperse the incoming stream and hence a measure for axial

mixing.

Now, suppose that the volumetric �ow rate at the outlet of the mixer is constant. That

is, the mixer smooths out all the incoming axial �uctuations. Then the geometric mean

residence time does not impose any constraint on the RTD of the system and therefore

the Lagrangian in this case would be

L = �
Z 1

0

f (t) ln [f (t)] dt� (�0 � 1)
�Z 1

0

f (t) dt� 1
�
� �

�Z 1

0

tf (t) dt� �t
�
:

(5.6.15)

It can easily be shown that in this case maximizing L with respect to f (t) would result

into exponential distribution given by

f(t) =

8><>: �e��t , t > 0

0 , t � 0
(5.6.16)

which as mentioned previously, has been used as a model for an ideal mixer. Moreover,

notice that for � = 1, the distribution in (5.6.9) reduces also to the exponential distribu-

tion. Hence form this and Eqn. (5.6.13), it can be said that the exponential distribution

is a special case of gamma distribution in which

g� = e� = 0:561 46; (5.6.17)

where  is the so called Euler�s constant (Gradshteyn and Ryzhik 2000, p.xxxii). Thus,

in the case of an ideal mixer the geometric mean of the system is uniquely determined by

the processes which impose other constraints on the system. That is, in the above case,

the geometric mean is solely determined by the same processes that restrict the mean

residence time of the system. In other words, one can design a mixer which is very similar

to an ideal mixer by choosing the mean residence time in such a way that Eqn. (5.6.17) is
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ful�lled. Moreover, since an ideal mixer is the best achievable mixer, for any given mixer

e� = 0:561 46 � g� � 1 (5.6.18)

or equivalently

� � 1: (5.6.19)

The above analysis o¤ers an insight into the dynamics of the system. As it was explained

in § 2.4.1, the mixing behaviour of a majority of the actual mixers deviates from the ideal

mixer (exponential vessel). This deviation is usually believed to be caused by the non-

uniform velocity pro�le, velocity �uctuation due to di¤usion, short-circuiting, by-passing

and channelling of particles, by the presence of segregating component or stagnant regions

caused by mixer geometrical shape and internal, or by the recycling of solid particles

within the mixer as a result of impeller and helix design. It is as yet to be determined

how much each of the aforementioned mechanisms a¤ects the mean and the geometric

mean residence time of the mixer.

Finally, as was also explained in § 2.4.1, in literature the sole reason for using the

gamma distribution is due to the variety of shapes which can be described by di¤erent

choices of � and �. This can certainly be an advantage in �tting the data, but it is

doubtful if it can contribute to gaining new insight into the processes involved. The

above analysis not only explains why the gamma distribution is the natural choice but

also relates the parameters � and � to some physically measurable characteristics of the

continuous systems.

5.6.1 Application to Modelling of Plasticating Twin-Screw Ex-

truder

The above modelling technique can be applied to wide variety of continuous systems in

industry. As it was mentioned earlier, it has been long known that gamma distribution
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can be used as a density for RTD of many continuous systems (e.g. see Wen and Fan

1975, Ch. 8). In order to demonstrate this, in the following, the parameters of the gamma

distribution for a twin screw extruder is determined and compared with the experimental

RTD published in literature.

Twin screw extrusion is one of the core operations in polymer processing and is also

a key component in many other processing operations. An extrusion process consists of

a solid conveying section, a melting section with a mixture of solids and liquid material,

and �nally a metering zone where only liquid is pumped. The foremost goal of a twin

screw extrusion process is to build pressure in a polymer melt so that it can be extruded

through a die or injected into a mould. The screw design should ensure good mixing

conditions and a uniform temperature distribution of the melt, in addition to serving as

a good positive conveying and pumping device (see e.g. Tadmor and Klein 1970). When

uniform retention times are desired, the system should provide a uniform distribution of

the material, which means that plug �ow conditions should prevail with no dead zone

regions (Todd 1978). In the following, based on the published data by Wolf et al. (1986),

the RTD of a commercial counterrotating twin-screw extruder is studied.

In order to determine the RTD of the extruder, Wolf and co-workers used a special

injector to inject an impulse stimulus of the radioactive tracer in the feed stream. This

was done after the extruder was at steady state with regard to �ow rate, pressure and

temperature conditions. The time of injection was recorded and the tracer gamma-ray

radiations, C (t) (number of counts/min) at the die was continuously monitored by a

sodium iodide probe (see the �rst two columns of the Table 5.6.1).

Now, in the case of the impulse response, the concentration of the injected tracer at

the outlet of the system is

C (t) =

Z 1

0

q� (�) f (t� �) d� = qf (t) ; (5.6.20)

where q is the quantity of the tracer injected and f (t) is the density for RTD. This implies
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that

f (t) =
C (t)R1

0
C (t) dt

: (5.6.21)

Similarly, the cumulative RTD is

F (t) =

Z t

0

f (�) d� =

R t
0
C (�) d�R1

0
C (t) dt

: (5.6.22)

The experimental distribution functions can be calculated by using the data of output

concentration vs. time as given below:

f (t) = C(t)P1
t=0 C(t)�t

F (t) =
Pt

0 f (t)�t

Partial calculations of these functions can be found in Table 5.6.1.

Accordingly, the mean and geometric mean residence time of the system are

�t =
P1
t=0 t�C(t)�tP1
t=0 C(t)�t

= 3:3377

g = exp
�P1

t=0 ln(t)�C(t)�tP1
t=0 C(t)�t

�
= 3:3272

(5.6.23)

Now, putting the above values in Eq. (5.6.13) and solving for �; one gets

� = 199: (5.6.24)

Hence, according to Eq. (5.6.9), the density for RTD of the system is

f(t) =

8><>: (1:0203� 10�17) t198e�59:62t , t > 0

0 , t � 0
(5.6.25)

Both theoretical and experimental density and cumulative RTD of the system are shown

in Figs. 5.6.2 and 5.6.3. As it was mentioned previously, large values of �, which in this

case is 199, correspond to more plug �ow behaviour as compared to ideal mixer model for
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t
[min]

C (t)
[Cnt/min]

C (t)�t ln (t)C (t)�t tC (t)�t f (t) f (t)�t F (t)

0-2.8 0 0 0 0 0 0 0
2.8-2.9 120 12 12.568 34.2 0.0897 0.0090 0.0090
2.9-3.0 600 60 64.908 177 0.0448 0.0448 0.0538
3.0-3.1 1550 155 172.847 472.75 1.1584 0.1158 0.1697
3.1-3-2 2350 235 269.640 740.25 1.7564 0.1756 0.3453
3.2-3.3 2460 246 289.949 799.5 1.8386 0.1839 0.5291
3.3-3.4 1900 190 229.703 636.5 1.42 0.1420 0.6712
3.4-3.5 1360 136 168.419 469.2 1.0164 0.1016 0.7728
3.5-3.6 980 98 124.161 347.9 0.7324 0.0732 0.846
3.6-3.7 700 70 90.631 255.5 0.5232 0.0523 0.8984
3.7-3.8 500 50 66.088 187.5 0.3737 0.0374 0.9357
3.8-3.9 320 32 43.138 123.2 0.2392 0.0239 0.9596
3.9-4.0 200 20 27.474 79 0.1495 0.0149 0.9746
4.0-4.1 120 12 16.785 48.6 0.0897 0.0090 0.9836
4.1-4.2 70 7 9.962 29.05 0.0523 0.0052 0.9888
4.2-4.3 50 5 7.235 21.25 0.0374 0.0037 0.9925
4.3-4.4 40 4 5.881 17.4 0.0299 0.0030 0.9955
4.4-4.5 30 3 4.479 13.35 0.0224 0.0022 0.9978
4.5-4.6 20 2 3.030 9.1 0.0149 0.0015 0.9993
4.6-4.7 10 1 1.537 4.65 0.0075 0.0007 1
4.7-4.8 0 0 0 0 0 0 1

Table 5.6.1: Experimental data byWolf et al. (1986) and calculated parameters of the tracer experiment
on a commercial counterrotating twin-screw extruder.
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Figure 5.6.2: The theoretical model for the density of RTD versus corresponding experimental values
from Wolf et al. (1986)
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Figure 5.6.3: The theoretical model for the cumulative RTD versus corresponding experimental values
from Wolf et al. (1986)

which � is equal one. The plug �ow features can also be seen from the Figs. 5.6.2 and

5.6.3.

It is obvious that the gamma distribution captures the most essential features of the

experimental data. However, it is easy to show that large values of � are very sensitive to

errors in measured mean and geometric mean residence time. Indeed, in the above case,

when comparing experimental data with the theoretical model, two things have to be kept

in mind. First of all, since Wolf et al. used radioactive tracers of relatively short half-life3,

the e¤ect of decay on the true measurement had to be taken into account. Although Wolf

et al. had noticed this and pointed out that they have taken this into consideration, no

�gures on the expected error after this correction is given. Secondly, and perhaps more

importantly, the experimental errors due to concentration measurements and �ow rate

�uctuation are magni�ed in the f -curve and causes more scatter of data points.

3The tracers had a half-life of 2:576 h. This would correspond to a reduction of counts by 6% during
a period of 16 min (see Wolf and White 1976).



Chapter 6

A Model for Dynamics of the Mixing

Processes

One of the principal objects of theoretical research in any department

of knowledge is to �nd the point of view from which the subject appears

in its greatest simplicity.

Willard Gibbs, Rumford Medal Ceremoney (1881)

I
n this chapter a new approach to the dynamics of the mixing processes is introduced.

This chapter begins by a short introduction to some of the most commonly used

concepts in theory of complex dynamic systems. Based on these concepts, the theory

of punctuated equilibrium is introduced and is shown how it can explain the dynamics of

mixture of particulate materials. Furthermore, it is demonstrated how all these concepts

can be uni�ed under the concept of heterogeneity landscape. Amathematical classi�cation

of all the valleys in a heterogeneity landscape is also achieved through the introduction

of the heterogeneity equation, which is summarized under the fundamental theorem of

mixing. This chapter is concluded by a discussion on a method for determining the

quotients of the heterogeneity equation.

6.1 A Qualitative Approach to Mixing Processes

A mixer acts on a mixture in a deterministic way. However, in general, it is di¢ cult to

predict the �nal state of the mixture, in which both chaos and new order may emerge.

126
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Therefore, a mixing system can be considered as a complex dynamic system. According to

Heylighen (1996), a system would be more complex if more parts could be distinguished,

and if more connections between them existed. More parts to be represented means

more extensive models, which require more time to be searched or computed. Since the

components of a complex entity cannot be separated without destroying it, the method

of analysis or decomposition into independent modules cannot be used to develop or

simplify such models. This implies that complex entities will be di¢ cult to model, that

eventual models will be di¢ cult to use for prediction or control, and that problems will be

di¢ cult to solve. In this relation, Grassberger (1989) de�nes the complexity as midpoint

between order and disorder, which is also known as being on the edge of chaos. However,

Edmonds (1996) points out that Grassberger�s de�nition of complexity depends on the

level of representation: what seems complex in one representation, may seem ordered or

disordered in a representation at a di¤erent scale. Indeed, in the present work, this role is

played by the scale of scrutiny. As was explained previously, the perception of the mixture

quality is greatly in�uenced by the size of samples. As the size of samples decrease, the

mixture becomes more heterogeneous. At the extreme limit, i.e., when each sample only

consists of one particle, it would be impossible to say anything about the quality of the

mixture. Thus, for a given scale of scrutiny, a mixture could posses a simple structure,

while changing the scale might result in a more complex structure.

Evidently, the quality of the mixture depends on the state of the mixture. Recall that

the state of a mixture is de�ned as spatial con�guration of the constituents of the mixture

at a particular instant in time and the set of all such states as state space (see also § 4.6.1).

Accordingly, the evolution of the mixture can then be described by a time-parametrized

trajectory in the state space, representing the states of the mixture at subsequent instants.

Obviously, the trajectory to a great extent is a¤ected by the mixing parameters, some of

which were mentioned previously. According to Heylighen (1992), in order to determine

possible trajectories in the state space, one needs two further structures: operators and

dynamical constraints. An operator is a transformation or transition rule mapping initial
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states onto subsequent states1. A dynamical constraint is a selection criterion which

determines which of the possible state transitions corresponding to di¤erent operators

will actually take place. Dynamical constraints, in general, can be found in the following

forms:

1. Di¤erential (or di¤erence) equations, relating the predicted state transition to the

present state.

2. Conservation principles, stating that a certain global property of the system must

be conserved during the transition.

3. Variation or optimization principles, stating that transition will occur which mini-

mizes (or maximizes) a certain function of the transition parameters.

However, as mentioned previously, in general, one does not have all the information

necessary to give a precise description of evolution of the state of the mixture. This means

that the best one can achieve is to make the best estimate based on whatever information

available. In other words, it is only possible to describe the most probable states based

on the available information. Thus, in this work, the dynamical constraints can be found

in the following forms:

1. Di¤erential (or di¤erence) equations, relating the most probable state transition to

the present state of the mixture.

2. The information that has led to assignment of the pdf to the states of the mixture

is testable, i.e., constraints on the moments of the pdf are known. The conservation

principles a¤ect the moments of the pdf.

3. Maximum entropy principle, stating that transition will occur which maximizes the

entropy of the assigned pdf.

1It should be emphasized that operator is here used in the restricted meaning of a time evolution
operator.
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In Chapters 4 and 5, it was shown how points 2 and 3 in the above list can be utilized.

The objective of this chapter is to demonstrate a possible approach to point 1. However,

to start with, one needs a more intuitive model which can help to visualize the problem

one is facing.

6.1.1 Attractors and Basins

The most fundamental concept in complex dynamics is that of an attractor. An attractor

is a region of state space such that the trajectory of a dynamical system can enter but

cannot leave, and which contains no smaller such region (Heylighen 1998). In a sense, an

attractor can be considered as the collection of neighbouring equilibrium states which the

mixture state converges to. The simplest attractor consists of only one state, and is known

as point attractor. However, this is only possible in the hypothetical case of ideally perfect

mixture, which as de�ned by Egermann (1980), is a mixture which consists of identical

particles arranged in a perfectly ordered manner. In the case of realistic mixtures, an

attractor can have a much more complex structure. For example, as Abouzeid (1989)

has also pointed out, in any mixing operation, the mixing and demixing mechanisms

will be operational. The combination of mixing-demixing, in which one is dampening

the heterogeneity and the other one is amplifying it, can produce the most complicated

behaviours. The simplest non-point attractor is a one-dimensional limit cycle attractor

(see Fig. 6.1.1). But it is also possible to have attractors with multiple dimensions or

even fractal dimensions, which are known as strange attractors.

Another characteristic of highly non-linear systems is that they have in general sev-

eral attractors. This situation is usually encountered in the case of cohesive mixtures.

Indeed, as Harnby (1985) also noticed, a cohesive mixture usually possesses a natural

structure which has to be repeatedly broken down in order to give individual particles

within that structure an opportunity of relocating themselves. The nature and strength

of the interparticulate forces acting within the cohesive mixture will determine the ease,
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Figure 6.1.1: a) A point attractor: the arrows represent trajectories starting from di¤erent points but

all converging in the same equilibrium state. b) A one-dimensional limit cycle attractor: the arrows

correspond to trajectories starting outside the attractor, but ending up in a continuing cycle along the

attractor.

or di¢ culty, likely to be experienced in re-locating individual particles within a mixture

and also determines the number and the shape of the system attractors.

When there are more than one attractor, the main question is in which of those

attractors the systemwill end up. Imagine, as Heylighen (1998) argues, that each attractor

corresponds to a lake, and that the trajectories leading into an attractor correspond to

the rivers and streams �owing into those lakes. Depending on where it falls, rainwater will

follow either one river or another, ending up in either one lake or another. The complete

area drained by a river is called its basin. Similarly, each attractor has a basin, which

is the surrounding region in state space such that all trajectories starting in that region

end up in the attractor. The basins belonging to di¤erent attractors are separated by

a narrow boundary. However, the boundary separating the two basins will in general

be very di¢ cult to discriminate exactly (it may for example have a fractal shape). This

means that for initial positions close to the boundary, it is very di¢ cult to determine to

which attractor they lead. Small �uctuations can push the system either into one or into

the other basin, and therefore either into the one or into the other attractor (see Figure

6.1.2). Thus, close to the border, the system behaves chaotically, whilst inside the basin

it moves predictably towards the attractor.

In cohesive mixtures, the interparticulate forces cause the agglomeration of constituent

particles into small but stable groupings of like constituents (Harnby 1985). These, in turn
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Figure 6.1.2: Three attractors with some of the trajectories leading into them. Their respective basins
are separated by a dotted line.

may lead to macroscopically self-organized structures which are stable. Self-organization

is basically a process where the e¤ect of the environment is minimal, i.e., where the

development of new, complex structures take place primarily in and through the system

itself (Heylighen 1997). For example, when mixing a very cohesive mixture, there is a

strong possibility that mixture will adhere to the mixer walls or form dead spots within

the mixer. This usually results into a self-organized structure where there are a large

number of stationary islands separated by small but dynamic regions. In these cases, the

mixing process instead of being a slow and continuous process, tends to consist of long

periods of virtual standstill, �equilibrium�, �punctuated� by avalanche like episodes of

very fast development to new heterogeneity levels. For this reason, in this work whenever

a mixture achieves this type of self-organized structure, it is said that the mixture self-

organized itself into state of punctuated equilibrium.

In general, at the punctuated equilibrium, typical variations in mixture heterogeneity

tend to be small. This is because the changes either cover small regions of the mixture

and therefore their global impacts are small, or system has entered an attractor. However,

occasionally big changes do take place without necessarily being caused by any external

triggering mechanism. This is mainly caused by interaction among the constituents of

the mixture through the mixing equipment in which cascade of local changes result in
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overall global change in the heterogeneity level of the mixture. In the aforementioned

terminology, the big changes usually occur whenever a bifurcation takes place in which it

has a drastic e¤ect on the mixture heterogeneity.

For example, agglomeration of the particles in a mixture may result in a stable struc-

ture, i.e., the mixture ends up in an attractor, in which the changes in the level of hetero-

geneity of the mixture are quite small. However, mixers with high shearing or impaction

characteristics are capable of breaking down agglomerates (Harnby 1985). In these cases,

if the mixing process persists, eventually the structure of the mixture will lose its stability

and breaks down. The mixture may then evolve toward another attractor. This results

in changes which a¤ects the whole mixture and thus, in general, a change in the mixture

heterogeneity.

In the aforementioned example, it is evident that shearing or impaction action results

in an increase in the number of attractors of the system. One way to understand this

is by observing that destruction of agglomerates results in an increase in the number of

free constituents of the mixture. The greater number of free constituents means greater

number of possible mixture states and thus, in general, greater number of attractors.

Hence, in the above example, as mixing process continuous, the system attractor splits in

two (or more). Prigogine (1984, p.160) calls the splitting of attractors as bifurcation. After

the �rst bifurcation, the system achieves two stable patterns of behaviour and the mixture

will evolve very rapidly toward one of them, depending on which basin its state falls into

right after bifurcation. If the mixing continuous, more bifurcation takes place, and the

attractors split up further. At certain point, the number of attractors becomes very large

and the system is erratically jumping from the one to the other all the time. This is true

chaos. At this point, the behaviour of the system has become totally unpredictable and

no structure can be sustained. That is, it is like �nding an attractor arbitrarily close to

any point of state space. At this stage, if the mixing process is halted, the �nal resting

state of the mixture could be anywhere in the state space. An overview of entire range of

possible states is illustrated in Fig. 6.1.3, in what is termed a bifurcation diagram.
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Figure 6.1.3: Bifurcation diagram: it represents the entire range of possible mixture states.

In general, the true chaos is not desirable. Since, pushing the state of the mixture

toward the far right hand side of the bifurcation diagram implies that the mixture het-

erogeneity can practically attain every possible value, something which makes the mixing

operation redundant. However, in some cases, it is an e¤ective way to destroy the unde-

sired stable structures. Nonetheless, under normal conditions, most mixtures remain in

a region in the bifurcation diagram known as edge of chaos. In this region, the mixture

will eventually self-organizes itself into the punctuated equilibrium.

Of course for a given instance of time, a mixture in the punctuated equilibrium does

not necessarily posses a good quality. It may appear that the concept of punctuated

equilibrium suggests that if the mixing operation continuous, eventually over time, the

quality of the mixture may improve by occasional bifurcation events. However, there are

at least two reasons to believe that this process, in general, is not e¢ cient. First of all,

since the time between each bifurcation could be arbitrarily long, there is no guarantee

that one can achieve the desired mixture quality within the reasonable time interval.

Secondly, sensitivity of the system to �uctuations at each bifurcation point may in e¤ect
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result in rising of the level of mixture heterogeneity. Indeed, the e¤ects of heterogeneous

nature of the constituents of the mixture are negligible within an attractor. But since the

bifurcation is mainly induced due to interaction between the constituents of the mixture,

the heterogeneous nature of the mixture plays a signi�cant role at the close vicinity of

the bifurcation point. This means that in practice, right after a bifurcation, one has little

control over which attractor the system will evolve into. Thus in practice, one needs to

change some of the mixing parameters in order to improve the quality of the mixture.

The change of mixing parameters may result in getting the system out of equilibrium.

Of course, if the mixing persists, the mixture enters another equilibrium state which on

average might posses a better quality. Otherwise, same process has to be repeated again

until desired quality is attained.

What the concept of punctuated equilibrium seems to suggest is that there are virtually

same mechanisms which are responsible for small as well as big changes in the mixture

heterogeneity. The self-organization of the mixture into the punctuated equilibrium is

established solely because of the dynamical interactions among individual elements of the

mixture. Therefore, the concept of punctuated equilibrium could only be able to describe

the general features of a mixing process, not detailed account of utterly accidental details

of that process.

6.1.2 Heterogeneity Landscape

Recall that a sample space consists of collection of all partitions of the mixture into a

predetermined number of samples with prede�ned shapes, at a given instance of time

(see also § 4.6.1). Thus, the dynamics of the mixture can be described by changes in

the structure of the sample space over time. As it was shown in Section 4.6, one way to

characterize the structure of a sample space is by the concept of mixture heterogeneity.

Hence, the dynamics of the mixture can be described by the changes in the mixture

heterogeneity over time.
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Figure 6.1.4: Schematic representation of the state space in which ti denote the time and t1< t2< t3.
The points in the principal sub-space �n� (ti) represent the di¤erent states of the mixture corresponding
to the sample space 
n� (ti).

Now, as mentioned above, the dynamics of the mixture can also be described by a

time-parametrized trajectory in the state space, representing the states of the mixture at

subsequent instants, modulo n (see § 4.6.1). Then each point on such a trajectory can

be identi�ed by a partition in a sample space. This means that the state space can be

partitioned into subsets, each of which can be identi�ed by certain sample space. Indeed,

in Fig. 6.1.4 a schematic representation of the state space is given in which �ve possible

trajectories in the state space are depicted. Consequently, each path can be parametrized

by time and hence for a given time, the set of all the points belonging to di¤erent paths

constitute a sub-space, which for convenience is denoted as principal sub-space of the state

space. In Fig. 6.1.4, the principal sub-spaces are represented by the planes �n� (ti). Since

every point in each �n� (ti) can be identi�ed by a partition in the sample space 

n
� (ti) and

vice versa, then �n� (ti) can also be identi�ed by the same mixture heterogeneity as 

n
� (ti).

However, the reader is warned that in general the topology of the principal sub-spaces

�n� (ti) is more complicated than the ones depicted in Fig. 6.1.4. For example �
n
� (ti)

might not even be connected, i.e. it consists of several isolated sub-spaces or some paths

may even be self-intersecting, resulting in more complicated topology.

Thus, from the state space point of view, the mixture heterogeneity can be interpreted
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as a measure for how spread the paths are in the state space. The more spread the paths in

the state space are in a given time, the larger the mixture heterogeneity would be at that

given time. Accordingly, the paths in the state space converge in the attractors and hence

the mixture heterogeneity is low in the vicinity of attractors. On the other extreme,

the paths in the state space are more spread in the vicinity of bifurcation points and

hence correspond to much higher mixture heterogeneity. In § 4.6.2, the heterogeneous

properties of the mixture where divided into two categories, static and dynamic. The

contribution of dynamic properties to mixture heterogeneity is only signi�cant in the

vicinity of bifurcation points, whilst in attractors the static properties are dominant.

Now, the rather abstract and mathematically complex structure of a system of attrac-

tors and basins can be replaced by the more intuitive model of heterogeneity landscape. A

heterogeneity landscape is determined by the collection of principal sub-spacesM of the

mixture states, a de�nition of the neighbourhood of principal sub-spaces, and the mix-

ture heterogeneity function �2 :M! R. On the heterogeneity landscape every principal

sub-space has a certain height corresponding to a particular value of �2. This landscape

has peaks and valleys. In this relation, one can imagine that there are two forces2 which

are operating in the heterogeneity landscape; mixing and demixing. Mixing forces the

mixture state toward a lower level of heterogeneity and therefore one can assume that it

acts downward. On the other hand, demixing increases the mixture heterogeneity and

thus can be regarded as a force which acts upward. Evidently, the strength of these forces

depends on the mixing parameters.

Now, it is desirable that the trajectory of the system through the state space always

follow the path of steepest descent, i.e., move from a given principal sub-space state to

that neighbouring one for which �2 is minimal. This is exactly what one is trying to

achieve by designing a good mixer. Moreover, from the above discussion, it is evident

that the attractors of the state space correspond to the local minima of �2. This means

2In this context, the word force is a metaphor to illustrate a concept and is quite di¤erent from its
usual de�nition in Newtonian mechanics.
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Figure 6.1.5: A Heterogeneity landscape: the arrows denote the directions in which the mixture state
will evolve. The height of a position corresponds to the value of the mixture heterogeneity in that state.

that, in general, the system would move downward in the heterogeneity landscape. When

it has reached the locally lowest point, all remaining directions would point upward, and

therefore the system would not be able to leave the bottom of the valley. The local maxima

of the heterogeneity (peaks) are points that separate the basins of the attractors (valleys)

that lie in between the peaks. In general, the steeper the slope, the faster would be the

descent of the system along that slope. An imaginary heterogeneity landscape is depicted

in Fig. 6.1.5, in which the arrows denote the directions to which the mixture state could

evolve. In this context, the mixture state A corresponds to a lower heterogeneity level

than B. The bottoms of the valleys A, B and C are the local minima of the mixture

heterogeneity function, i.e., the attractors. The peaks X and Y delimit the basin of the

attractor B. X separates the basins of A and B, whilst Y separates the basins of B and C.

In general, mixing operation does not only a¤ect the state of the mixture but also

changes the heterogeneity landscape. For example, as mentioned previously, when mixing

very cohesive mixtures, a mixer with high shearing characteristic is capable of breaking

down the agglomerates. The destruction of agglomerates results in an increase in the

number of free constituents of the mixture, which in turn increases the number of available

states. Moreover, destruction of the agglomerates means also that the mixture state is

changed. This means that mixture has moved to a new neighbouring state that did not

exist before comminution, i.e., as a result of mixing operation, the heterogeneity landscape

is changed.
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6.2 Interlude: Comments

Just a quick study of literature reveals that although di¤erent terminologies are used

in di¤erent subjects, many people working with complex phenomenon are familiar with

the sensitivity of the systems in the vicinity of a bifurcation. For example, in a recently

published best-seller, Gladwell (2002) uses the term tipping point instead of bifurcation to

describe how a small but precisely targeted push cause a fashion trend, the popularity of

a new product, or a drop in the crime rate. In a now classical work in Sociology, Schelling

(1971) demonstrated, by cellular automata modelling, how at the tipping point a small

preference for one�s neighbours to be of the same colour could lead to total segregation of

a society. Similar approaches could be found to almost all complex problems in di¤erent

scienti�c disciplines.

The theory of punctuated equilibrium was �rst proposed by Gould and Eldredge (1977)

as a criticism of the traditional Darwinian theory of evolution. The traditional Darwinian

theory of evolution saw evolution as a slow, continuous process, without sudden jumps.

However, if one studies the fossils of organisms found in subsequent geological layers, it

appears that long intervals in which nothing changed (equilibrium), punctuated by short,

revolutionary transitions, in which species became extinct and replaced by wholly new

forms. It accounts for what the fossil record appears to suggest that evolution of species

consists of a series of irregularly spaced periods of chaotic and rapid evolutionary changes

in what are otherwise dominated by long periods of evolutionary stasis.

It appears that in general, large complex systems with many components have a ten-

dency to evolve toward the state of punctuated equilibrium. In the context of this work,

this happens when a mixture self-organizes itself into a structure in which small changes

in mixture heterogeneity are much more frequent over time than the large ones. In fact,

Bak et al. (1988) claim that many complex systems have tendency to self-organize to

a critical state, where the size of disturbances obeys a Pareto like distribution, in which

the large disturbances being less frequent than small ones. They called this phenomenon
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self-organized criticality (SOC). In the context of present chapter, according to Bak (1997,

Ch.9), the state of punctuated equilibrium is achieved whenever the mixture self-organizes

itself into the critical state. However, although this idea is quite compelling, we believe

that at punctuated equilibrium, how an observer perceives the distribution of the mixture

heterogeneity depends on the available information on the evolution of the mixture struc-

ture over time. This means that the distribution of the mixture heterogeneity does not

necessarily need to be Pareto like. If we are supplied with su¢ cient amount of information

we might discover details that cannot be modeled by Pareto like distributions. Moreover,

as it was demonstrated in Section 5.6, the Pareto like distributions might not even be able

to uniquely describe the phenomenon under study. Nonetheless, if one chooses to look

beyond this minor disagreement, the following quote by Bak captures the core essence of

systems in punctuated equilibrium (Bak 1997, p.143):

�Systems with punctuated equilibria combine features of frozen, ordered sys-

tems, with those of chaotic, disordered systems. Systems can remember the

past because of the long periods of stasis allowing them to preserve what they

have learned through history, mimicking the behaviour of frozen systems; they

can evolve because of the intermittent bursts of activity.�

The concept of heterogeneity landscape of previous section was inspired by a similar

idea in biology which was �rst introduced by Wright (1982) and is known as �tness

landscape. The �tness landscape depicts the process of adaptive evolution as that of

climbing peaks and passing over saddles to reach higher peaks in the �tness landscape.

This picture proved to tremendously simplify the topology of genetic space. However,

Wright�s �tness landscape is static contrary to our heterogeneity landscape which is sort of

�deformable rubber landscape�. This results in that the heterogeneity landscape is much

richer and more general a concept than the �tness landscape. In fact, there are reasons

to believe that deformable rubber �tness landscape is also more appropriate than the

Wright�s original one, in describing the evolution of species. For a more detail discussion
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of this topic we refer to Kau¤man (1993).

6.3 Valleys in Heterogeneity Landscape

As it was mentioned previously, the heterogeneity landscape also changes over time and

for all practical reasons, it is not possible to have complete information over its geography.

However, as soon as the mixture state reaches the bottom of a valley and the mixture

achieves equilibrium, the mixture heterogeneity exhibits only small �uctuations. As it

was noticed by Lacey (1943), although stated di¤erently, for any given mixer, the best

possible mixture is obtained whenever the mixture reaches a state in which the observer�s

information about its structure is insu¢ cient to con�dently claim that further mixing

has any signi�cant structural e¤ect on the mixture. This is what is known as a random

mixture. In the context of the present work, this corresponds to bottom of a valley in the

heterogeneity landscape with lowest height. However, in general, heterogeneity landscape

might also contain several other valleys which do not correspond to the state of minimum

heterogeneity. Theoretically, at equilibrium, the state of the mixture could be in any one

of these valleys and therefore it is important to have a model which is general enough

to be able to describe any valley in the heterogeneity landscape. In the following, a

mathematical model is proposed which ful�lls this condition.

To this end, let p (hj�2t ; t; I) denote the pdf describing the conditional probability of h

at a given time t where �2t and I stand for mixture heterogeneity at time t and information

which indicates that mixture is at equilibrium, respectively. Since, it is assumed that

the mixer is still processing the mixture, it is reasonable to assume that the level of

mixture heterogeneity is �uctuating, but in a small neighbourhood of bottom of the

given valley. Now, as explained previously, p represents the state of the knowledge of

the observer. At equilibrium, although �2t �uctuates over time, since p describes the

same equilibrium state and hence same state of knowledge, the functional form of p

should remain same. Consequently, one has a hierarchy of distributions p (hj�2t ; t; I)
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characterized by a single scale parameter �2t . Whenever the mixture heterogeneity is

changed by adding or subtracting small increments of heterogeneity to components of h,

the probability distribution, which is a model for the state of observer�s knowledge, will

keep its functional form, but is only moved up the hierarchy to a new value of �2t .

Now, suppose that the pdfs p (h (t)j�2t ; t; I) and f
�
h (t+ �) = �h

���2t+� ; t+ � ; I
�
are

assigned to the heterogeneity functions h (t) and �h, respectively. Let h (t) = �h � ",

where " has a probability distribution q ("j�2"; t+ � ; I), which for convenient is denoted

as transition probability and where �2" is the contribution to the mixture heterogeneity by

". By de�nition, at equilibrium, q must be independent of p. Furthermore, " is evidently

function of � and q must ful�l the condition

lim
�!0

q
�
"j�2"; t+ � ; I

�
=

nY
i=1

� (h"ii) ; (6.3.1)

where � denotes the impulse function and h"ii denotes the expected value of "i.

By the product rule (3.2.1), one gets

f
�
�h; "
���2t+� ; t+ � ; I

�
= f

�
�h
���2t+� ; t+ � ; I

�
f
�
"j �h; �2t+� ; t+ � ; I

�
: (6.3.2)

But since by assumption " is independent of h then

�2t+� = �2h (t) + �2" (t+ �) (6.3.3)

and hence

f
�
"j �h; �2t+� ; t+ � ; I

�
= f

�
"j�2"; t+ � ; I

�
= q

�
"j�2"; t+ � ; I

�
: (6.3.4)

Moreover, note that for a speci�c "; the probability of the heterogeneity function having
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the value �h is just the probability that h should have the value
�
�h� "

�
. Thus

f
�
�h
���2t+� ; t+ � ; I

�
= p

�
�h� "

���2t ; t+ � ; I
�
; (6.3.5)

which combined by (6.3.2) and (6.3.4) yields

f
�
�h; "
���2t+� ; t+ � ; I

�
= p

�
�h� "

���2t ; t+ � ; I
�
q
�
"j�2"; t+ � ; I

�
: (6.3.6)

Finally, by marginalizing the nuisance parameter " (see Section 3.5 on Marginalization),

one gets,

f
�
�h
���2t+� ; t+ � ; I

�
=

1Z
�1

p
�
�h� "

���2t ; t+ � ; I
�
q
�
"j�2"; t+ � ; I

�
d": (6.3.7)

Now, for small � it is reasonable to assume that �2" (t+ �) � �2h (t). The Taylor series

expansion of p
�
�h� "

���2t ; t+ � ; I
�
with respect to h is, (Arfken 2001, p.340)

p
�
�h� "

���2t ; t+ � ; I
�
=

1X
k=0

(�1)k

k!
(" �rh)

k p
�
hj�2t ; t; I

�
(6.3.8)

where

rh =

�
@

@h1
; : : : ;

@

@hn

�
� (6.3.9)

Substituting (6.3.8) back into (6.3.7) and rearranging the terms

f
�
�h
���2t+� ; t+ � ; I

�
= p (hj�2t ; t; I)�

nP
j=1

h"ji @
@hj
p (hj�2t ; t; I)

+1
2

nP
j=1



"2j
�

@2

@h2j
p (hj�2t ; t; I) +

nP
i<j

h"i"ji @2

@hi@hj
p (hj�2t ; t; I)

�1
6

nP
j=1



"3j
�

@3

@h3j
p (hj�2t ; t; I)� � � �

(6.3.10)

where h�i is the expected value operator.

As discussed earlier, at equilibrium the functional form of the probability distribu-
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tion remains the same except possibly moving up the �2t hierarchy. Accordingly, since

by assumption �2" (t+ �) � �2h (t) ; the tangent-plane approximation (see Loomis and

Sternberg 1990, p.140) implies

f
�
�h
���2t+� ; t+ � ; I

�
= p

�
hj�2t ; t; I

�
+ �2"

@

@�2t
p
�
hj�2t ; t; I

�
+O

�
�2"
�

(6.3.11)

where O is a function of higher orders of �2" such that

lim
�2"!0

O (�2")
�2"

= 0: (6.3.12)

Comparing (6.3.11) and (6.3.10), yields

@
@�2

p (hj�2; t; I) + O(�2")
�2"

= �
nP
j=1

h"ji
�2"

@
@hj
p (hj�2; t; I)

+1
2

nP
j=1

h"2ji
�2"

@2

@h2j
p (hj�2; t; I) + � � � ;

(6.3.13)

where �2 = �2t . At this point, in order to make the notation more manageable, it is conve-

nient to adapt the Einstein�s summation convention, i.e., the summation is performed over

the Latin indices appearing twice in the equations without writing down the summation

sign. In this new notation, the Eqn. (6.3.13) can be written as

@

@�2
p
�
hj�2; t; I

�
+
O (�2")
�2"

=
1X
�=1

M
(�)
j1;j2;��� ;j� ("; t+ �)

�!�2"

(�@)�

@hj1 � � � @hj�
p
�
hj�2; t; I

�
; (6.3.14)

where

M
(�)
j1;��� ;j� ("; t+ �) = h"j1 � � � "j� i =

1Z
�1

("j1 � � � "j� ) q
�
"j�2"; t+ � ; I

�
d"; (6.3.15)

denotes the �th moment of ": Moreover, from (6.3.1) follows that

lim
�!0

M
(�)
j1;��� ;j� ("; t+ �) = 0 and lim

�!0
�2" (t+ �) = 0: (6.3.16)
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Now, If � is small enough it is reasonable to assume that �2" (t+ �) is continuously di¤er-

entiable function of � with a non-vanishing derivative in a neighbourhood of � = 0. Then

by the so-called inverse-function theorem of calculus (Loomis and Sternberg 1990, p.167),

there exists a unique function, say �, on a neighbourhood of � = 0 such that

� = �
�
�2"
�
� (6.3.17)

Thus, the moments M (�)
j1;��� ;j� ("; t+ �) can be expanded into a Taylor series with respect

to �2" to yield

M
(�)
j1;��� ;j� ("; t+ �)

�!
=
M

(�)
j1;��� ;j� ["; t+ �]

�!
= D

(�)
j1;��� ;j� (t)�

2
" +�

�
�2"
�

(6.3.18)

where � is a function of higher orders of �2". Now, let �
2
" ! 0 in (6.3.14) and taking into

account only the linear terms in (6.3.18),

@

@�2
p
�
hj�2; t; I

�
= L (h; t) p

�
hj�2; t; I

�
(6.3.19)

where

L (h; t) =

1X
�=1

D
(�)
j1;��� ;j� (t)

(�@)�

@hj1 � � � @hj�
� (6.3.20)

The solution of Eqn. (6.3.19), i.e., p (hj�2; t; I) with respect to the obvious initial condi-

tion (see Proposition 4.2)

p
�
hj�2 = 0; t; I

�
=

nY
j=1

� (hj) ; (6.3.21)

represents the state of observer�s knowledge about the mixture at equilibrium. Thus, by

assigning appropriate values to the coe¢ cients of the operator L, small neighbourhoods

of the bottom of any valley in the heterogeneity landscape can be characterized by the

solutions of the Eqn. (6.3.19). The results of this section are summarized in the following
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theorem.

Theorem 6.1 (Fundamental Theorem of Mixing) In the heterogeneity landscape, the

pdf p (hj�2; t; I) in the small neighbourhoods of the bottom of any valley satis�es the het-

erogeneity equation
@

@�2
p
�
hj�2; t; I

�
= L (h; t) p

�
hj�2; t; I

�
(6.3.22)

where

L (h; t) =
1X
�=1

D
(�)
j1;��� ;j� (t)

(�@)�

@hj1 � � � @hj�
(6.3.23)

and

D
(�)
j1;��� ;j� (t) =

1

�!
lim
�!0

M
(�)
j1;��� ;j� ("; t+ �)

�2" (t+ �)
; (6.3.24)

in which the pdf of " is given by the transition probability q ("j�2"; t+ � ; I), independent

of p and �2" is the contribution to the mixture heterogeneity by ". Furthermore, p has to

ful�ll the following boundary condition

p
�
hj�2 = 0; t; I

�
=

nY
j=1

� (hj) ; (6.3.25)

where � is the impulse function.

In proving the theorem (6.1), only some general assumptions are made and therefore,

in a sense, it can be considered as the fundamental theorem for mixture of particulate

materials at equilibrium. Thus, all the information about the structure of the mixture in

the equilibrium are encoded in the operator L.

In order to solve the heterogeneity Eqn. (6.3.22), one natural question would be if

it is possible to simplify the equation by ignoring some of the higher terms of the right

hand side. However, it is conceivable that by truncating the expansion after certain order,

the solution might not even be positive, a condition which is demanded by the axioms of

the probability theory. Indeed, in the one dimensional case, for mathematically similar

equations, there exists a theorem due to Pawula (1967) which in the present context states
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that in order for the probability p (hj�2; t; I) to be positive, the terms on the right hand

side of (6.3.22) may stop either after the �rst term or after the second term, if it does not

stop after the second term it must contain in�nite number of terms3.

6.4 Interlude: Comments

In the most frequently encountered form of heterogeneity equation, �2 and hj are analo-

gous to time and distance, respectively. In these cases, the heterogeneity equation is known

as n- dimensional Kramers-Moyal expansion. Similarly, the operator of type L (h; t) is

known as the n- dimensional Kramers-Moyal operator with D(�)
j1;��� ;j� (t) being the so-called

Kramers-Moyal coe¢ cients. It is just a matter of proper transformation of variables and

therefore, mathematically the solutions are similar. These type of equations play a cru-

cial role in statistical mechanics and some of their applications �rst appeared in the work

of Kramers (1941) and Moyal (1949). The Kramers-Moyal coe¢ cients with the upper

indices � = 1 and � = 2 are known as drift coe¢ cient or drift vector and di¤usion coef-

�cient or di¤usion matrix, respectively (see Risken 1996, p.84). Moreover, it is evident

from (6.3.24) that the di¤usion matrix is a symmetric matrix which in general is semi-

de�nite. In general, if the Eqn. (6.3.22) stops after the second order terms, the resulting

heterogeneity equation is known as the n- variable Fokker-Planck equation.

Our approach and the context that it was used is very di¤erent from the most known

text-book approaches (see e.g. Risken 1996, Ch.4). The derivation of the heterogeneity

equation was to certain degree inspired by the work of Jaynes (2003, Ch.7) in driving

the one variable Fokker-Planck equation and his proof of central limit theorem. Never-

theless, the �rst appearance of similar treatment, as Jaynes also acknowledges, is given

in a paper by Landon (1941). Vernon D. Landon was an electrical engineer studying

properties of noise in communication circuits. He discovered that the samples of electrical

noise produced by widely di¤erent sources could not be distinguished one from the other
3This has not stopped people from exploring the non-positive solutions, see e.g. Risken and Vollmer

(1987).
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by any known test. This led Landon to argue that if the distribution of noise voltage

is so universal, then it must be better determined theoretically than empirically. This

led him to similar equation as (6.3.22). Jaynes, by applying the Bayesian�s interpreta-

tion of probability was able to generalize Landon�s discovery and shed some light on its

signi�cance.

6.5 Determination of The Heterogeneity Operator

The characteristic function of h with respect to p (hj�2; I) is de�ned as

�
�
k; �2

�
=

Z
Rn
eik

0hp
�
hj�2; I

�
dh (6.5.1)

where k0 stands for transpose of the vector k and i =
p
�1. Similarly

p
�
hj�2; I

�
= (2�)�n

Z
Rn
e�ik

0h�
�
k; �2

�
dk: (6.5.2)

It can be shown that a pdf of a random variable is uniquely determined by its characteristic

function (see for example Feller 1971, Sect. XV.7).

It turns out that � (k; �2) can be used to determine the coe¢ cients of the heterogeneity

operator. Indeed, recall that the heterogeneity equation is

@

@�2
p
�
hj�2; t; I

�
=

1X
�=1

D
(�)
j1;��� ;j� (t)

(�@)�

@hj1 � � � @hj�
p
�
hj�2; t; I

�
(6.5.3)

where

D
(�)
j1;��� ;j� (t) =

1

�!
lim
�!0

M
(�)
j1;��� ;j� ("; t+ �)

�2" (t+ �)
(6.5.4)

in which

M
(�)
j1;��� ;j� ("; t+ �) = h"j1 � � � "j� i =

1Z
�1

("j1 � � � "j� ) q
�
"j�2"; t+ � ; I

�
d": (6.5.5)
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From Eqn. (6.5.1), it is easy to show that by replacing the operator @=@hj by ikj in

equation (6.5.3), one arrives at the corresponding equation in the characteristic function

of h, which is

@

@�2
�
�
k; �2

�
=

1X
�=1

 
�Y
s=1

kjs

!
D
(�)
j1;��� ;j� (t) (�i)

� �
�
k; �2

�
: (6.5.6)

This equation can easily be solved to yield
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k; �2

�
= C exp

( 1X
�=1
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!
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(�)
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where C is a constant. Furthermore, from (6.5.1) follows that

�
�
0; �2

�
= 1: (6.5.8)

Therefore, C = 1 and hence

�
�
k; �2

�
= exp
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�=1
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�Y
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!
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(�)
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: (6.5.9)

It can be shown that the mixed moments of h can be obtained by di¤erentiation of the

characteristic function (see for example Prohorov and Rozanov 1969, Sect.4.3), i.e.,

Mr1;:::;rn (h; t) = hhr11 � � �hrnn i =
�

@

@ik1

�r1
� � �
�

@

@ikn

�rn
�
�
k; �2

���
k1=���=kn=0

(6.5.10)

whereM0;:::;0 = 1. From the above equation, it is evident that the mixed moments of h are

a function of the coe¢ cients of the heterogeneity operator, i.e. D(�)
j1;��� ;j� (t). This implies

that any information on the mixed moments of h can be converted into information on

D
(�)
j1;��� ;j� (t) through the Eqn. (6.5.10).



Chapter 7

Application of Theory of Mixing

All the laws of physics are not properties of the world, but arise from

conventions introduced in the analysis of the data.

Arthur Eddington, Fundamental Theory (1946)

T
he objective of this chapter is to demonstrate some of the direct consequences

of the analysis of the previous chapter. It is shown that on the contrary

to generally accepted dogma that choice of pdf for h being Normal is an

assumption; it is a direct consequence of insu¢ cient information on the structure of the

mixture. It is also shown how inference on the mixture heterogeneity can be conducted

and in the case of the pdf for h being Normal, Gy�s estimate for mixture heterogeneity is

reproduced.

7.1 Insu¢ cient Information

Mixture heterogeneity �2 is not a real property of h, but only a property of the probability

distribution p that one assigns to represent one�s state of knowledge about h. As it was

shown in the previous chapter, at equilibrium, the mixture heterogeneity is related to h

through the pdf p (hj�2; t; I), which satis�es the heterogeneity equation

@

@�2
p
�
hj�2; t; I

�
=

1X
�=1

D
(�)
j1;��� ;j� (t)

(�@)�

@hj1 � � � @hj�
p
�
hj�2; t; I

�
(7.1.1)
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where

D
(�)
j1;��� ;j� (t) =

1

�!
lim
�!0

M
(�)
j1;��� ;j� ("; t+ �)

�2" (t+ �)
(7.1.2)

in which

M
(�)
j1;��� ;j� ("; t+ �) = h"j1 � � � "j� i =

1Z
�1

("j1 � � � "j� ) q
�
"j�2"; t+ � ; I

�
d": (7.1.3)

However, a necessary condition for solving the general heterogeneity equation is the com-

plete knowledge of the transition probability in the given valley, which of course depends

on the amount of information available to the observer. From this point of view, any

model or description of the structure of a mixture would necessarily be subjective. Nev-

ertheless, despite the subjectivity of the description, it is still reasonable to demand that

any one who is given same information about the structure of the mixture should arrive

at the same conclusions. In other words, the demand is on the objectivity in drawing

conclusions based on the given information and not on the information itself. In the

context of the heterogeneity equation, as was demonstrated previously, this information

is encoded in the coe¢ cients of the equation through Eqn. (6.5.10), which constitute an

unique pdf.

In general, when a mixture is at equilibrium, any observed �ne details of the past

structure of the mixture are irrelevant for predicting �ne details of the future structure,

but that coarser features may be expected reasonably to persists, and thus be relevant

for predicting future values of mixture heterogeneity. It is like studying a landscape from

a far distance in which only the general features of the landscape is visible. In some

applications, this description is su¢ cient enough.

Cogent information on the higher mixed moments of " might generally result in a

more accurate description of the mixture structure. Thus, in order to describe the major

features of the mixture structure, it is su¢ cient to only look at the �rst and second order

mixed moments of ". Consequently, in Eqn. (7.1.1) for � � 3, it is assumed that all the
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mixed moments of " are identically zero. This implies that

@

@�2
p
�
hj�2; t; I
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+D
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�
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Then by Eqn. (6.5.9), the characteristic function of h is

�
�
k; �2

�
= exp
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�ikrD(1)

r �2 � krksD
(2)
rs �

2
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which in the vector form can be written as

�
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�
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�
ik0�� 1

2
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; (7.1.6)

where
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Accordingly, it can be shown that p (hj�2; t; I) is a multivariate Normal distribution,

which is uniquely determined by � and � (Fang and Zhang 1990, p.43). Furthermore, if

� is non-singluar, then

p
�
hj�2; t; I

�
= (2�)�

n
2 j�j�

1
2 exp

�
�1
2
(h� �)0��1 (h� �)

�
; (7.1.9)

where j�j denotes the determinant of the matrix �.

Now, assume that the components of " are independent. It should be emphasized

that here by independence one means logical independence and not necessarily physical

causal independence1. Indeed, any two components of " may be in fact causally depen-

1It seems that John M. Keynes (1921, p.164) was the �rst author who clearly expressed this distinction
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dent, i.e., one in�uences the other, but for an observer who has not yet discovered this

or is incapable of observing this �ner detail, the probabilities representing his state of

knowledge are independent. This would evidently result in a more conservative estimate

of the mixture structure. The independence of the components of " implies that � is

diagonal. Furthermore, in the absence of credible information on the behaviour of the

�rst moments of the components of ", it is reasonable to assume that they are equal.

Then by independence and Proposition (4.2),

0 =M1 [h (t+ �)] =M1 [h (t) + " (�)] =M1 [h (t)] +M1 [" (�)] =M1 [" (�)] ; (7.1.10)

which implies that

h"ji = 0 for all j (7.1.11)

and hence

� = 0: (7.1.12)

Thus the equality and independence of the components of " imply that each one of them

being equally likely to be positive as negative. Otherwise, one would have, for each

component, a systematic build up resulting in a non-zero drift vector, which is certainly

not true in the present case.

Next, it is important to determine the rank of the matrix �. If � is singular then

the Eqn. (7.1.4) would be an underdetermined equation which in this case would have

in�nitely many solutions. In order to avoid disagreement among observers, more detail

structural information on the mixture structure is needed in order to settle all disputes.

On the other hand, if � is positive de�nite which in this case basically means that the

diagonal entries are greater than zero, Eqn. (7.1.4) has an unique solution2. Therefore, no

additional information is necessary. This is exactly in accordance with the aforementioned

. See also Jaynes (2003, p.92) for further discussions.
2Note that � can not be negative de�nite. Since, the second moment of a quantity is always non-

negative.
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argument on the relation between the major features of the mixture structure and amount

of information available to the observer. One needs less amount of information in order

to describe the coarser as compared to �ner structural details. Further, if one assumes

that the second moments of the components of " are all equal, i.e.



"2i
�
=


"2j
�
for all i and j; (7.1.13)

then it is easy to show that

�2" =


"2j
�
for all j (7.1.14)

and hence

�ij = �2�ij; (7.1.15)

in which

�ij =

8><>: 1 for i = j

0 for i 6= j
(7.1.16)

is the Kronecker delta function (Arfken 2001, p.11). In other words, Eqn. (7.1.9) attains

a simpler form,

p
�
hj�2; t; I

�
=
�
2��2

��n
2 exp

 
� 1

2�2

nX
i=1

h2i

!
; (7.1.17)

which is the multivariate Normal distribution in n independent and identically distributed

parameters of zero mean and variance of �2.

The analysis in this section demonstrates that, up to the second order, the distri-

bution of the heterogeneity function attains a Normal form at equilibrium. From this

point on, the mixing process can be stopped at any time and as long as the mixture is

at equilibrium, the resulting distribution is still Normal. There is also another aspect of

this analysis which sheds some light on the long standing debate on Normal distribution

being the right choice for description of the mixture structure. Indeed, in general, the

Normal distribution, up to the second moment, adequately describes the mixture struc-

ture at equilibrium. Moreover, in the event of insu¢ cient information about the mixture
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structure, the above analysis seems to suggest (but far from proof) that the choice of

Normal distribution results in a more conservative estimate of the structural parameters

as compared to the case that a more detailed knowledge about the mixture structure is

available. This observation could be very valuable, especially for pharmaceutical com-

panies for which there are stringent demands on the quality of the mixtures. Further

investigation on this issue is necessary and is left to a later time.

7.2 Inference on Mixture Heterogeneity

In general the value of the mixture heterogeneity is unknown. The objective of this section

is to demonstrate how one can estimate its true value based on the available data on the

heterogeneity function h. The basic mathematical tools for this purpose are described in

Chapter 3.

In a sense, given any information on the distribution of the heterogeneity function

h, one has to reason backward, i.e., from the pdf assigned to h, to a pdf for mixture

heterogeneity �2. This so-called �inverse�reasoning can be achieved by simple application

of Bayes�theorem, which implies that

p
�
�2
��d; t; I� = Np

�
dj�2; t; I

�
� p

�
�2
�� t; I� (7.2.1)

where N is the normalization constant and d is the available data. The quantity on the

far right, p (�2j t; I), is the prior probability; it represents the state of knowledge about the

mixture heterogeneity before the observer has analyzed the data. This is modi�ed by the

experimental measurements through the likelihood function, p (dj�2; t; I), and yields the

posterior probability, p (�2jd; t; I), representing the observers state of knowledge about

the mixture heterogeneity in the light of the data. The most probable estimate for �2,

given the measurement vector d is the one which maximizes the posterior probability.
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That is
@

@�2
p
�
�2
��h; t; I�����

h=d

= 0 (7.2.2)

or equivalently
@

@�2
�
p
�
hj�2; t; I

�
� p

�
�2
�� t; I������

h=d

= 0: (7.2.3)

Now, for the sake of the argument, assume that the heterogeneity function has a multi-

variate Normal distribution in n independent and identically distributed parameters of

zero mean and variance of �2, i.e.,

p
�
hj�2; t; I

�
=
�
2��2

��n
2 exp

 
� 1

2�2

nX
i=1

h2i

!
: (7.2.4)

Moreover, in the absence of credible information on �2, it is reasonable to assume that

p (�2j t; I) is uniformly distributed, i.e.

p
�
�2
�� t; I� =

8><>:
1

�2max��2min
�2min � �2 � �2max

0 Otherwise
: (7.2.5)

Then from Eqn. (7.2.3) follows that

1

2�4

 
n�2 �

nX
i=1

d2i

!
p
�
dj�2; t; I

�
= 0; (7.2.6)

which implies that

�2 =
1

n

nX
i=1

d2i : (7.2.7)

The above expression for mixture heterogeneity was �rst introduced by Gy (1979, p.218).

In his work, whenever samples only consist of one particle each, �2 is called Constitu-

tional heterogeneity and Distributional heterogeneity otherwise. From the aforementioned

analysis one can deduce the following:

1. Any estimate for the mixture heterogeneity �2 has to ful�l the Eqn. (7.2.3).
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2. At equilibrium, the likelihood function is a solution of heterogeneity equation.

3. In the absence of su¢ cient information on the mixture structure at equilibrium,

Eqn. (7.2.7) represents, up to the second moment, the best estimate for mixture

heterogeneity.

In general, one should be able by combining the solution of the heterogeneity equation,

the prior probability on �2 and the Eqn. (7.2.3), to produce the best estimate for mixture

heterogeneity at equilibrium. However, in many cases it might be di¢ cult to �nd an

expression in closed form for this estimate. In these cases a numerical approach would be

more suitable.

The choice of the prior pdf in (7.2.5) is just a way of encoding a lot of initial ignorance

about the mixture heterogeneity. Since it was constant and uniformly distributed, it could

be cancelled out of the Eqn. (7.2.3) and therefore did not play part in calculation of the

estimate for mixture heterogeneity. However, a fair question is how the estimate (7.2.7)

would have changed if one had chosen a di¤erent prior. In general, it is intuitively evident

that as the empirical evidence grows, one should eventually arrive at the same conclusions

irrespective of the initial beliefs. This means that the posterior pdf is then dominated by

the likelihood function, and the choice of prior becomes largely irrelevant. Accordingly,

the choice of prior is quite important whenever the number of trials are small, which is

usually the case in practice. For a more general and illustrative discussion of this issue

the reader is referred to Sivia (1996, p.15).



Chapter 8

Concluding Words

Scienti�c progress never achieves �nality; it is a method of succesive

approximation.

Harold Je¤reys, Scienti�c Inference (1931)

8.1 Concluding Remarks

The main objective of this work was to establish a theoretical framework within which

a unifying scienti�c approach to the subject was possible. It was argued that this the-

oretical framework has to ful�l the irrationalability criteria, which basically means that

the statements of the theory should be in such logical form that they can be shown to be

irrational by experience. This paved the way for development of a probabilistic theory in

which all the statements ful�l the irrationalability criteria.

Our approach to study of the mixtures can basically be divided into two main cate-

gories. The �rst approach (see Sections 4.3-4.5) was based on simply counting the number

of the particles of interest in each sample. Using some simple combinatorial arguments,

led us to a mathematical theory for sampling of particulate materials. This also resulted

in a new measure for mixedness which could be modelled by entropy of the sample dis-

tribution. Based on these new �ndings, a new unifying approach to modelling of RTD

of continuous systems is developed (see Section 5.6). Furthermore, this new mathemat-

ical approach to sampling theory not only con�rms what was previously known, it also

resulted in new predictions, which was unknown until now. Indeed, it allowed us, for
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example, to predict the number of key components of given size in binary closed batch

systems (see Section 5.3). In the case of the continuous systems, the theory also gives a

compelling explanation for deviation of real systems from the ideal exponential systems.

As a result of this analysis a new measure for axial mixing was discovered.

The Second approach was based on characterizing the mass ratio of the particles of

interest in each sample. This led us to Gy�s de�nition of the heterogeneity. Based on this,

we developed a mathematical theory which relates the sample heterogeneity to mixture

heterogeneity (see Section 4.6). In developing this theory, we demanded that the theory

should not violate common sense. In our case, this common sense was formulated by

Lacey�s conjecture. Indeed, within the framework of our mathematical theory it was

shown that the Lacey�s conjecture is consistent, independent of the shape of the samples

(see theorem 5.1). This is a much stronger statement than any ever made by existing

theories. The reason for this lies in the nature of this statement. Indeed, no amount of

empirical evidence can ever demonstrate its validity and therefore should be considered as

the �rst of its kind. Following the same line of thought, we were able to relate the mixture

heterogeneity of a mixture to an abstract object which we have called the heterogeneity

landscape (see § 6.1.2). The advantage of this abstract approach was that it made it

possible by applying the basic rules of the probability theory to give a mathematical

description of all the possible equilibrium states of a mixture (see Section 6.3). This

new mathematical theory led us to rediscovery of known facts which previously were only

taken to be true by assumption (see Section 7.2).

8.2 Future Work

This work is far from being complete. We merely managed to get beyond the basic

de�nitions and concepts. However, we hope that we managed to demonstrate some of the

potentials of this approach. Here are some suggestions for future projects:

1. It is important to determine a possible relation between the entropy of the sample
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distribution and the heterogeneity equation describing the dynamics of the mixture

at equilibrium. We believe that this should lead to discovery of similar laws as the

laws of thermodynamics.

2. Due to lack of right instruments, it was not possible for us to experimentally verify

the prediction of the theory on the number of the key components of given size in

binary closed batch systems. As it was also shown in Section 5.3, the parameters of

this estimate depend on the microstructural properties of the mixture under study.

Further investigation is needed to determine the nature of these parameters. This

we believe should serve as the foundation of a theory of statistical mechanics for

particulate materials.

3. In § 2.4.5, it was argued that the RTDs determined from the dispersion model are

similar to RTDs of serial cascade of exponential vessels presented in § 2.4.1. Now, in

Section 5.6, it was shown that the ratio of the mean and geometric mean residence

time of a continuous mixer is a function of order of the mixer which is also equal

to the number of exponential vessels in serial cascade. This observation implies

that there should be a relation between the Peclet number and hence the dispersion

coe¢ cient and the geometric mean residence time of a continuous system. Further

investigation is needed to determine the nature of this relation.

4. The general solution of the heterogeneity equation could only be given in the form

of its characteristic function. There is a class of pdfs known as Stable distributions.

It seems to us that the solution of the heterogeneity equation could serve as a

generalization of these types of distributions. Further investigation is necessary

in order to verify this. For more readings about Stable distribution, we refer to

Schneider (1986) and references therein.

We believe that answer to above questions should result into further development of

the theory and a better understanding of complex systems like particulate solids.



Appendix A

On a Problem related to the Mean

Residence Time

A major topic of Applied Mathematics that deals with the phenomenon of waiting is

called Queueing theory. Queueing theory arises from the use of powerful mathematical

analysis to theoretically describe production processes along with statistical/probabilistic

techniques to account for varying dynamic patterns within the stages of a productive

process. The origins of the formal study of Queueing theory is credited to A. K. Erlang,

a Danish telephone engineer who in the 1920�s was attempting to predict telephone call

service1.

One of the foundations of Queueing theory is the Little�s law which is expressed as

L = �W (A.0.1)

where � is the average arrival rate, W is the average time a customer spends in the

system, and L is the average number of customers in the system. This result was �rst

proved by Little (1961). Little�s proof, despite the fact that Eqn. (A.0.1) is easy to

state and intuitively reasonable, was di¢ cult. Later Stidham (1974) published a simpler

proof that is quite general and more intuitive than Little�s proof. Stidham�s proof also

con�rmed the intuition of most researchers that Little�s law is essentially a deterministic

relation and that the probabilistic assumptions imposed in previous proofs are necessary

1As a matter of fact most of the model work in § 2.4.1 can be deduced directly from the results in
Queueing theory.
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only for the existence of the relevant limits, but not for the relation itself. For the sake

of completeness, Stidham�s version of Little�s theorem is stated here without proof.

Theorem A.1 Let L (t) be the number of customers present at time t: De�ne L by

L = lim
t!1

1

t

Z t

0

L (�) d� (A.0.2)

and � by

� = lim
t!1

N (t)

t
(A.0.3)

where N (t) is the number of customers who arrive in the interval [0; t] : Let Wi be the

time in the system for the ith customer and de�ne the mean time in the system W by

W = lim
n!1

1

n

Xn

i=1
Wi (A.0.4)

If � and W exist and are �nite, then so does L; and L = �W:

Now, a continuous mixer can be considered as a queueing system. Each particle plays

the role of a customer which enters the system through the inlet, processed by the mixer

and departs the mixer via the outlet. Therefore, the Eqn. (A.0.1) is also valid in case

of continuous mixers. Evidently, the number of particles is proportional to their volume.

Substituting this in (A.0.1) and replacing � by corresponding average volumetric �ow

rate, one arrives at
_

V =
_
uiW =

_
uoW; (A.0.5)

where
_
ui and

_
uo are average inlet and outlet volumetric �ow rate, respectively. The

conservation of mass implies that average inlet �ow rate should be equal to average outlet

�ow rate (from the moment the mixing vessel is brought (empty) on stream till it is retired

(empty) from service). Furthermore, if it is assumed that there is a constant dead volume
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in the mixer, say V0, then for the case of continuous mixers one gets

_

V = V0 +
_
uo
_
t ; (A.0.6)

which con�rms all the observations made by Shinnar et al. (1969).
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