
Telemark University College

Anushka Perera

Using CasADi for
Optimization and Symbolic
Linearization/Extraction of
Causality Graphs of Modelica
Models via JModelica.Org

HiT Report No. 5

HiT Report No.5

Anushka Perera

Using CasADi for Optimization and Symbolic
Linearization/Extraction of Causality Graphs of
Modelica Models via JModelica.Org

Telemark University College
Faculty of Technology

ii

HiT Report No. 5

ISBN 978-82-7206-380-0
ISSN 1894-1044

Telemark University College
P.O. Box 203
3901 Porsgrunn

Phone 35 57 50 00
Fax 35 57 50 01
http://www.hit.no/

 2014 Anushka Perera. All rights reserved

Preface

My visit to Modelon AB was basically for two purposes; (1) to participate in Dymola Introduc-
tion Course I & II (25th 29th Nov. 2013) and (2) an extended stay at Modelon to work on
several tasks (till 12th Dec. 2013). This report mainly concerns (2). I had already had some
experience with Dymola prior to the course and I had gained a lot at the end of the course. In
particular, working with discrete events, troubleshooting models and numerical problems, se-
lecting the right solver, embedding external C and Fortran model components, exporting models
as stand-alone executables or DLLs and interfacing Dymola with MATLAB and Simulink were
quite interesting.

The tasks to be worked during my extended stay are: (1) linearizing dynamic models which
are modeled according to the Modelica standards at a specified operating point and then make
system matrices available for linear system analysis (a good possibility is to use Python Control
Systems Toolbox. See in http://python-control.sourceforge.net/manual/intro.html)
(2) extracting the structural information of complex dynamic systems, as this can be useful
for example for analyzing structural observability/controllability, decomposing large scale sys-
tems into subsystems, etc. using graph-theoretic approaches and (3) accessing IPOPT solver in
Python. All tasks have been more or less completed.

Anushka Perera, Porsgrunn, February 04th, 2014.

1

Acknowledgement

Thanks goes to a few. Firstly, prof. Bernt Lie — my main PhD supervisor — is he who
recommended the course at Modelon. Also he communicated with Johan Åkesson who is the
technical director at Modelon and arranged an extended stay at Modelon so that I could work on
some tasks related to my research work there in Modelon Head Office. The two lecturers Johan
Widhal and Stéphane Velut who conducted an interesting, fruitful, as well as a well organized
Dymola workshop. Johan Åkesson arranged me to work with Toivo Henningsson and Toivo
was very supportive throughout. Fredrik Magnusson should also be mentioned here. Thanks to
Joel Andersson, Joris Gillis and others who answered my questions at CasADi FAQ; this was
of great help. Finally, thanks a lot Stéphane Velut, I enjoyed the time I spent with you and
your family in the evening on Dec. 1th, 2013.

2

Contents

1 Introduction 4

2 Basics of CasADi 5
2.1 SX and SXMatrix . 5
2.2 SXFunction . 7
2.3 MX and MXFunction . 14

2.3.1 Solve dx
dt = f (t, x, u) for a given initial condition x0 using a user defined

integrator function for t ∈ [t0, tf] . 16
2.3.2 A simple discrete state space model . 18
2.3.3 A simple optimal control problem . 20

3 FX Derived Functions 25
3.1 An Overview . 25
3.2 Nonlinear Programming . 26

3.2.1 The Rosenbrock’s Function . 26
3.2.2 The problem given in page 6-50 of [7] . 28

3.3 Integration of DAEs/ODEs . 28
3.3.1 Solve the system of ODEs given in page 10-16 of [7] using CVodesIntegrator 28
3.3.2 Solve the system of ODEs (the van der Pol system) given in page 10-13

of [7] using IdasIntegrator . 29

4 Linearization of ODEs and Extraction of Causality of Modelica Models 32
4.1 Symbolic/Numeric Linearization . 32
4.2 Extraction of Causality of Modelica Models and Structural Properties 40

5 Conclusion 48

Appendices 49

A The Modelica Model Used in Sub-Section 4.2 50

B The Python script for symbolicLinearization() 52

C The Python script for numericLinearization() 54

D The Python script for createNodes() 56

E The Python script for createEdges() 57

F The Python script for generateGraph() and decomposeGraph() 59

3

Chapter 1

Introduction

The Modelica language has become a handy modeling tool for multi-domain complex physi-
cal systems. Its object-oriented and equation-based approach eases the modeling process to a
great extent. Dynamic models which are scripted according to the Modelica standards demand
a simulation environment. There are many simulation tools such as OpenModelica, Dymola,
JModelica.org, OPTIMICA Studio, etc. OpenModelica and JModelica are two examples of free
Modelica-based simulation environments. Dynamic Optimization is also an important aspect in
control engineering. JModelica.org, among others, provides support of Dynamic Optimization
and it is free. Apart from being freeware, there are many other attractive features in it. Python,
which is again free, is the scripting language used in the JModelica.org platform and it is pos-
sible to integrate various Python libraries on demand so as to get required functionalities that
we seek. Often used Python libraries are Numpy, Scipy, MatPlotLib, etc. The JModelica.org
installer installs those necessary packages automatically. More interestingly, JModelica inter-
faces to CasADi which is a symbolic framework for Automatic Differentiation and Nonlinear
Optimization. The JModelica.org-CasADi interface is at our main interest in this report due
to two main reasons: (1) it is possible to translate Modelica/Optimica models into a symbolic
representation via the JModelica.org-CasADi interface and use the power of CasADi to find
Jacobian matrices both symbolically and numerically — this can be used to linearize dynamic
models and in particular symbolic Linearization is possible to use in analyzing structural prop-
erties of dynamic systems, and (2) CasADi is already interfaced with state of the art nonlinear
optimizers (e.g. IPOPT.), integrators (e.g. SUNDIALS.), etc. and consequently, JModelica.org
freely inherit those well-known integrators/nonlinear solvers so that we can use them in Python.

The report treats three main tasks: (1) interfacing nonlinear optimizers and integrators —
like IPOPT, CVODES, etc. — into Python, (2) linearization of Modelica models at a given
operating point, and (3) extracting causality of Modelica models. All these objectives are
achieved via JModelica.org within its limitations. Most of the content of this report depends
on the JModelica.org-CasADi interface. Therefore a good understanding of CasADi is a pre-
requisite. Chapter 2 gives an introduction to basic symbolic manipulation in CasADi with
several examples. Here defining and usage of symbolic expressions and functions are explained.
A discussion on how to use built-in optimizers and integrators available in CasADi is given
in Chapter 3. Chapters 2 and 3 cover tasks (1) and (2). Several modifications are made
in the Python script casadi interface.py (which is available in the JModelica.org installation
directory.) to linearize Modelica models both symbolically and numerically as well as to do
structural observability analysis, system decompositions, etc. This is given Chapter in 4. It is
assumed that JModelica.org has been installed.

4

Chapter 2

Basics of CasADi

CasADi is a software tool for automatic/algorithmic/computational differentiation [1] and non-
linear optimization. Joel Andersson in answering one of my questions on 24-01-2014 at CasADi’s
FAQs;

“But CasADi has come to denote the whole optimization framework and not just the
symbolic core. So if you write about it, we’d prefer that you write “the optimization
framework CasADi”. We avoid to call it either a “CAS” or an “AD-tool” since it’s
not really intended to replace either.”

The CasADi framework may be equipped with for example a Python front-end, and it in-
terfaces with powerful nonlinear optimizers (KINSOL, IPOPT, KNITRO, WORSHOP, etc.),
DAE/ODE integrators (CVODES, IDAS, etc.), linear solvers (MUMPS, MA27, etc.), etc.
CasADi is easily installed via JModelica.org and may use Python in either Pylab or Ipython
mode. This avoids the installation hassle to a great a great extent. Also the latest release of
OpenModelica (version 1.9.0) features with CasADi. See in https://openmodelica.org/. But
this will not be under this report.

There are five main base classes upon which the structure of CasADi is based: SX, SXMatrix,
DMatrix, FX (several sub-classes of the FX class are SXFunction, MXFunction, LinearSolver,
ImplicitFunction, GenericIntegrator, Simulator, ControlSimulator, NLPSolver, and QP Solver.)
and MX. See the class diagram given in Figure 2.1 which is available at http://casadi.

sourceforge.net/api/html/d5/d01/classCasADi_1_1FX.html#diagram. SX, SXMatrix and
MX classes are to represent symbolic variables whilst FX is the base class for all CasADi’s func-
tionality. Chapter 2 will discuss SX, SXMatrix, DMatrix, SXFunction, MX and MXFunction
classes and Chapter 3 is dedicated to the FX class and its derived classes.

2.1 SX and SXMatrix

Scalar and matrices with scalar entities are created using SX and SXMatrix classes respectively.
Consider a sample expression given below;

y = f (x1, x2) = cos

([
sin

(
x1
x2

)
+

x1
x2
− exp (x2)

]
·
[
x1
x2
− exp (x2)

])
x1, x2 and y are floating point numbers. Now, we will see how to represent these variables
symbolically. Start Python either in Pylab or IPython mode. Then import CasADi package
using the Python command from casadi import *. Now you can access the SX class (also
other classes: SXMatrix, DMatric, FX and MX). Define x1 and x2 then using these symbolic
variables, formulate an expression for y as follows;

5

Figure 2.1: The Class Diagram of CasADi. Taken from https://github.com/casadi/casadi/wiki.

6

from casadi import *

from casadi.tools import *

x1 = SX("x1")

x2 = SX("x2")

y = cos((sin(x1/x2)+x1/x2-exp(x2))*(x1/x2-exp(x2)))

dotdraw(y)

printCompact(y)

The dotdraw() function is used to visualize the evaluation procedures graphically for given
symbolic expressions. The Python package pydot has to be installed in order to use dotdraw()

function and also from casadi.tools import * command must have been implemented before
dotdraw(). I am working on Ubuntu 12.04 LTS and I could manage to install pydot package
just with a click as pydot is available in Ubuntu Software Center. Note that JModelica.org
installer doesn’t install pydot package. The computational graph of y is constructed using the
dotdraw(y) command is shown in Figure 2.2 and it depicts x1

x2
is evaluated 3 times (i.e. 3 edges

related to the same evaluation task, x1
x2

) and ex2 twice (i.e. 2 edges for the same task, ex2). In
total, there are 11 elementary operations with some repetitions. We may eliminate common
sub-expressions (CSEs)1 from y, which is something we might do manually. It can be seen that
x1
x1

and ex2 are repeated several time in y, so we can eliminate these common sub-expressions.

Define, z1 , x1
x1

and z2 , ex2 . Then, y = cos ([sin (z1) + z1 − z2] · [z1 − z2]). Now run following
code and see Figure 2.3:

from casadi import * # if you haven’t imported already!

from casadi.tools import * # if you haven’t imported already!

x1 = SX("x1")

x2 = SX("x2")

z1 = x1/x2

z2 = exp(x2)

y = cos(sin(z1)+z1-z2)*(z1-z2)

dotdraw(y)

printCompact(y)

Observe the output from printCompact(y) and notice that now x1/x2 and ex2 are evaluated
only once. The SXMatrix class is used to create symbolic matrices where elements of SXMatrix
objects are SX instances. The following example demonstrate how to create symbolic matrices
as objects from the SXMatrix class. We can also use ssym to create SXMatrices. See the code
given below:

Use SX class to create SX objects

x1 = SX("x1")

x2 = SX("x2")

x3 = SX("x3")

x4 = SX("x4")

Use SXMatrix class and ssym to create SXMatrix objects

X1 = SXMatrix([[x1,x2],[x3,x4]])

X2 = ssym("X2",4,5)

X3 = SXMatrix.ones(3,1)

2.2 SXFunction

The SXFunction class is a subclass of the FX class. We can formulate functions that involve
only scalar operations as an SXFunction class’ object. Let’s say that we have y = f (x1, x2). f

1Thanks goes to Joel Andersson and Greg Horn, @CasADi FAQs.

7

Figure 2.2: The graph of y without CSE.

Figure 2.3: The graph of y with CSE.

8

Figure 2.4: Methods associated with funName object.

can be defined as a SXFunction object. Use the syntax funName = SXFunction([x1,x2],[y]).
If you enter print funName, then you will get;

Inputs (2):

0. 1-by-1 (dense)

1. 1-by-1 (dense)

Output: 1-by-1 (dense)

Function not initialized

It says that ‘‘Function not initialized’’. So initialize it before going any further using
the command, funName.init().2. You may try type(funName) and verify that funName is an
object the class casadi.casadi.SXFunction. To see available funName-object’s methods, enter
funName. and press tab key. See Figure 2.4.

Now try some of its (i.e. funName’s) functions; to get input/output expressions number of
inputs/outputs, set input values, evaluate the function and get output. Use the following com-
mands, respectively; funName.inputExpr(), funName.outputExpr(), funName.getNumInputs(),
funName.getNumOutput(), funName.setInput(), funName.evaluate() and funName.getOutput().
See the example given below:

Get input variables;

for i in range(funName.getNumInputs()):

print funName.inputExpr(i)

Get output expression;

for i in range(funName.getNumOutputs()):

print funName.outputExpr(i)

Set inputs’ values;

for i in range(funName.getNumInputs()):

funName.setInput(i**2+i,i)

Evaluate funtion;

funName.evaluate()

Get output values;

for i in range(funName.getNumOutputs()):

print funName.getOutput(i)

2“The instantiation of an evaluation program for a certain set of input parameters with nomination indepen-
dent and dependent variables maps it into an evaluation procedure, since then the control flow is fixed.”[1]

9

Enter print funName and you will get the actual evaluation procedures in CasADi. See
below:

Inputs (2):

0. 1-by-1 (dense)

1. 1-by-1 (dense)

Output: 1-by-1 (dense)

@0 = input[0][0];

@1 = input[1][0];

@2 = (@0/@1);

@3 = (@0/@1);

@3 = sin(@3);

@3 = (@3+@2);

@2 = exp(@1);

@3 = (@3-@2);

@0 = (@0/@1);

@1 = exp(@1);

@0 = (@0-@1);

@3 = (@3*@0);

output[0][0] = @3;

It is also possible to symbolically evaluate SXFunctions using SXFunctionObj.eval(). En-
ter the following commands:

x3=SX(x3)

x4=SX(x4)

print funName.eval([x3,x4])

How to find partial derivatives both symbolically and numerically? Go through the following
code and the results are shown in Figure 2.5:

from casadi import *

x1=SX("x1")

x2=SX("x2")

y=(sin(x1/x2)+x1/x2-exp(x2))*(x1/x2-exp(x2))

funName=SXFunction([x1,x2],[y])

funName.init()

for i in range(funName.getNumInputs()):

funGrad=funName.grad(i)

PD=SXFunction([x1,x2],[funGrad])

PD.init()

print "Symbolic partial derivative w.r.t. "+"x"+\

str(i+1)+" is "+str(PD.outputExpr(0))

PD.setInput(1,0)

PD.setInput(2,1)

PD.evaluate()

print "Numerica partial derivative w.r.t. "+"x"+\

str(i+1)+" is "+str(PD.getOutput())

print "=============================="

funName is a multiple-scalar-input and single-scalar-output function. We can try a multiple-
scalar-input and multiple-scalar-output example now. See below:

10

Figure 2.5: How to find partial derivatives of SXFunction’s objects.

from casadi.casadi import *

x1=SX("x1")

x2=SX("x2")

y2=[x1*x2,x1+x2];

funName2=SXFunction([x1,x2],y2)

funName2.init()

for i in range(funName2.getNumInputs()):

for j in range(funName2.getNumOutputs()):

print funName2.grad(i,j)

It is also possible to create matrices/vectors with their elements as SX objects using ssym

(this creates an SXMatrix as pointed out earlier). Reformulate the same function discussed just
above, with input variable as an SXMatrix:

from casadi import *

x=ssym("x",2,1)

y3=(sin(x[0]/x[1])+x[0]/x[1]-exp(x[1]))*(x[0]/x[1]-exp(x[1]))

funName3=SXFunction([x],[y3])

funName3.init()

funName3.setInput([1,1])

funName3.evaluate()

print funName3.getOutput()

Consider an example: solve dx
dt = f (t, x, u) for a given initial condition x0 using Forward

Euler method for t ∈ [t0, tf]. Let x and u be scalar variables. Divide the time span into N

intervals, hence dt =
(tf−t0)

N . For simplicity, take f (t, x, u) = ax + u where a < 0. Look at the
code given below:

11

from casadi import *

from casadi.tools import *

#

x0 = 1.0

t0 = 0.0

tf = 1.0

N = 2

dt = (tf -t0)/N

#

xk = ssym("xk") # or SX("xk") or ssym("xk",1,1)

uk = ssym("uk")

tk = ssym("tk")

#

a = -1.0

#

xki = x0

tki = t0

#

for i in range(N):

tki = tki + dt

xki = xki + dt*(a*xki+uk)

print xki

xki gives a symbolic expression. As x0 is a floating point number, xki is a function of uk

only (note that I have kept uk as a constant for t ∈ [t0, tf].). Now we can create an SXFunction
keeping xki as the dependent variable and uk as the independent variable. The syntax is:
giveFunName = SXFunction([uk],[xki]). By slightly modifying the last code, we can create
two numeric arrays to store both time and state data. See the code below (and see Figure 2.6
for the results):

from casadi import *

from casadi.tools import *

import numpy as np

import matplotlib.pyplot as plt

#

x0 = 10.0

t0 = 0.0

tf = 10.0

N = 100

t = np.linspace(t0,tf,N+1)

dt = t[1] - t[0]

#

xk = ssym("xk") # or SX("xk") or ssym("xk",1,1)

uk = ssym("uk",N,1)

#

a = -1.0

#

xki = x0

#

X = x0*np.ones(N+1)

U = np.random.rand(N)

#

12

Figure 2.6: Forward Euler solution to Example 1.

13

for i in range(N):

xki = xki + dt*(a*xki + uk[i])

fun = SXFunction([uk],[xki])

fun.init()

fun.setInput(U)

fun.evaluate()

X[i+1] = fun.getOutput()

#

plt.plot(t,X,"r.")

plt.xlabel(’Time’)

plt.ylabel(’State’)

plt.grid(’on’)

plt.legend(’x’)

plt.show()

2.3 MX and MXFunction

We have become familiar with the SX, SXMatrix, SXFunction classes which are used to gen-
erate scalar symbolic variables/expressions, and thereby to create symbolic functions of the
type SXFunction based on symbolic expressions already created as SX/SXMatrix instances.
Any symbolic expression of SX/SXMatrix types associates with ‘a graph of SX nodes’[3].
In order to build expressions, a set unary (ex. () - cast operator, += - increment operator,
etc.) and binary operators (ex. != - inequality, * - multiplication, etc.) are used. Example:
x=SX(‘‘x’’);y=x*x+1;z=y<(-x) produces two symbolic expressions, y and z based on the in-
put node x using three binary operators *, + and < also () and - which are unary operators. For
a given symbolic expression of SX objects, say y, we can use countNodes(y) to get the number
of nodes in the graph and dotdraw(y) to visually inspect it. Remember to import casadi.tools
(use the command from import casadi.tools import *) before using countNodes(y) and
dotdraw(y).

Previously it was pointed out that how to use the SXMatrix instances instead of SX. Exam-
ple: when we have to define f = (x, u), which is the right hand side of an ordinary differential
equation dx

dt = f (x, u), it is convenient to define the state x as x=ssym(’x’,n,1) and access
state variables xn in Python via x[n-1] (similarly, for t and u, we have t=ssym(’t’,1,1)

and u=ssym(’u’,m,1).) This is much more handy, rather than defining SX instances as
x1=SX(’x’);x2=SX(’x2’’); ...; xn=SX(’xn’. Don’t confuse this with that in varName =

SX(’displayName’) or varName = ssym(’displayName’,m,n), it is not necessary varName

and displayName are the same. Example: if x1=SX(’state1’) and x2=SX(’state2’) then
y=x1+x2 is a correct expression while y=state1+state2 is not. On the other hand, if x1=SX(’x1’)
and x2=SX(’x1’) then y=x1+x2 is syntactically correct. Anyway this sort of practice should
be avoided because symbolic expressions are displayed with the display names of symbolic
variables involving but not with variable names. Also remember to insert input/output argu-
ments as Python type list in funName = SXFunction([input list],[output list]). Insert-
ing input/output arguments as casadi.casadi.IOSchemeVectorSXMatrix type, using helper
functions is also a possibility, which would come in Chapter 3. Once a symbolic expression
of SX/SXMatrix instances is given, we can construct an SXFunction as we have done many
times so far. We may also convert an MXFunction object into a SXFunction object using
the command: sxfunctionObject = SXFunction(mxfunctionObject). However the converse,
mxfunctionObject = MXFunction(sxfunctionObject) is not possible!3

3Actually, this makes sense. Consider a matrix expression, Y = f (X) = XT .X where X ∈ Rn×1. X being a
scalar is a special case. Hence, if we create an MXFunction for f, then it could be converted into SXFunction.

14

Figure 2.7: Evaluation procedures of e.

Expressions that are based on SX/SXMatrix symbolics are limited to scalar operations. So
as to facilitate matrix operations, MX symbolics are used. The syntax to generate MX objects
is: x=MX(’x’,m,n) or x=msym(’x’,m,n). After defining MX objects, we can create matrix
expressions. A simple example: let e = Ax− b, where A ∈ Rn×n, x ∈ Rn×1 and b ∈ Rn×1. Find
a symbolic expression for e. See the code below;

from casadi import *

from casadi.tools import *

import pydot

import numpy as np

n = 2

x=msym("x",n,1)

A = DMatrix(np.eye(n))

b = msym("b",n,1)

e = mul(A,x) - b

dotdraw(e)

A couple of comments: the DMatrix class is for creating matrices with elements that are
floating point numbers. Here the numpy package is used to create A using the command A =

DMatrix(np.eye(n)), but there are other ways of creating such matrices. Refer to [4] (avail-
able at http://casadi.sourceforge.net/users_guide/casadi-users_guide.pdf) for more
details. A*x gives an error, but mul(A.x) is fine. * operator in CasADi is identical with .* in
MATLAB. In order to get matrix multiplication in CasADi, use the CasADi function mul().
You may check the graph of e using dotdraw(e), as we did for SX symbolics. See Fig. 2.7. In
the graph, notice that there are 2 input nodes which are MX objects (for x and b in red color),
and one DMatrix object for A (in green). Also the output node is again an MX object and
there is one intermediate MX node for Ax.

15

2.3.1 Solve dx
dt

= f (t, x, u) for a given initial condition x0 using a user defined
integrator function for t ∈ [t0, tf]

In this case, the integrator is based on the forward Euler method. We use SXFunction’s call()
method with its inputs being MX types. See the code given below (for further details refer [2]):

from casadi import *

import numpy as np

import matplotlib.pyplot as plt

Define f

x = ssym("x",3,1)

u = ssym("u",1,1)

f = [(1-x[1]*x[1])*x[0]-x[1]+u, x[0], x[0]*x[0]+x[1]*x[1]+u*u]

#

t0 = 0.0

tf = 10.0

x0 = [0.0,1.0,0.0]

n = len(x0)

#

N = 100

t = np.linspace(t0,tf,N+1)

dt = t[1] - t[0]

Create SXFunction

fcn = SXFunction([x,u],f)

fcn.init()

#

xStart = msym("xStart",3,1)

uStart = msym("uStart",1,1)

#

funList = list()

#

for i in range(n):

fcnStart = fcn.call([xStart,uStart])[i]

xEnd = xStart[i] + dt*fcnStart

funList.append(xEnd)

Define integrator

integrator = MXFunction([xStart,uStart],funList)

integrator.init()

Allocation of storage for states and define input vectors

X = np.ones((N+1,3))

X[0,:] = x0

U = np.random.rand(N,1)

#

xki = x0

Integrate

for i in range(N):

integrator.setInput(xki,0)

integrator.setInput(U[i],1)

integrator.evaluate()

for j in range(n):

X[i+1,j] = integrator.getOutput(j)

xki = X[i+1,:]

16

Figure 2.8: The Forward Euler solution to Example 2.

Plot results

legendList = list()

plt.close()

plt.figure(0)

for i in range(n):

plt.plot(t,X[:,i])

plt.hold(’True’)

legendList.append(’x’+str(i))

plt.xlabel(’Time’)

plt.ylabel(’States’)

plt.grid(’on’)

plt.legend(legendList)

plt.show()

See Figure 2.8 for the results. What is new in this code, compared to the example given
in Section 2.2, is that here we have defined an integrator function (an SXFunction object)
based on the forward Euler method which has xStart and uStart as input arguments and
funList as the output argument which is the right hand side of the ODE given. Evaluat-
ing the integrator function just defined, using integrator.evaluate(), after setting inputs
via integrator.setInput(), will calculate the state at the next sample time instance. Note
that fcn.call([xStart,uStart]) gives a tuple consisting casadi.casadi.MX objects (and
len(fcn.call([xStart,uStart])==len(x0) is equal to true). I have used a for-loop to un-
pack the output of fcn.call([xStart,uStart]).

To consult documentation of the SXFunction class, enter help(SXFunctonObject). You will
see that under ‘List of available options’, there are set of options which can be set using
SXFunctonObject.setOption(). Example: create a SXFunction object named sxfunctionName

and enter sxfunctionName.setOption("name", "MyFunctionName"). Now the "name" prop-

17

erty of sxfunctionName object is set to "MyFunctionName". Verify this fact using the command
sxfunctionName.getOption("name"). In order to have a complete list of all available options,
enter sxfunctionName.getOptionNames(). You will get:

’ad_mode’

’gather_stats’

’inputs_check’,

’jacobian_generator’

’just_in_time’

’just_in_time_opencl’

’just_in_time_sparsity’

’live_variables’

’max_number_of_adj_dir’

’max_number_of_fwd_dir’

’monitor’

’name’

’number_of_adj_dir’

’number_of_fwd_dir’

’numeric_hessian’

’numeric_jacobian’

’regularity_check’

’sparse’

’sparsity_generator’

’store_jacobians’

’topological_sorting’

’user_data’

’verbose’

If you want to get a brief description about any of these SXFunction’s options, use the com-
mand solver.getOptionDescription(propery-name. Ex.‘ad mode’). Example: the result
of solver.getOptionDescription(‘ad mode’) will be: ‘How to calculate the Jacobians’.
The FX class and its derived classes or sub-classes (ex. SXFuncion, etc.) share some common
options. help(FX) gives this common list of options as FX is the base class. Sub-classes of FX
may have options specific to them. Example: compare help(FX) and help(IpoptSolver), and
you will see that there are additional options available in the IpoptSolver class.

2.3.2 A simple discrete state space model

Consider a discrete state space model, xk+1 = Axk +Buk and x0, the initial condition is given.
Find (1) a symbolic expression for xk after N sample intervals, (2) define an MXFunction and
(3) evaluate it. The code is given below, also See Figure 2.9;

from casadi import *

from casadi.tools import *

import pydot

import numpy as np

#

x0 = [1.0,0.0]

n = len(x0)

m = 2 # number of inputs

#

N = 2

#

18

Define input. transpose(u) = [u(0),u(1),...,u(N-1)]

u = msym("u",N,m)

#

Define A and B matrices

A = DMatrix(np.eye(n))

B = DMatrix(np.eye(n,m))

#

x = x0

#

for i in range(N):

x = mul(A,x) + mul(B,trans(u[i,:]))

Graph of x

dotdraw(x)

#

Create a MXFunction

mfun = MXFunction([u],[x])

mfun.init()

#

Set inputs

u_ = np.ones((N,m))

mfun.setInput(u_)

#

Evaluate

mfun.evaluate()

#

Get output

print mfun.getOutput()

The syntax of defining MXFunctions is more or less the same for SXFuntions. The only
difference is that instead of SX/SXMatrix lists, two lists of MX objects are used for the MX-
Function’s input/output arguments. The syntax is: mxfunName = MXFunctioin([list of MX

objects],[list of MX objects]). Function mxfunName.call() is often a useful tool. The
syntax is: [f]=mxfunName.call([list of input arguments]). See the example given be-
low. [ffun] = fun.call([XX]) generates an expression (which is ffun) in MX symbolics.
Noice that fun.call([XX]) gives a tuple type, so it has to be unpacked so that we will avoid
type incompatibilities in the expression YY = XX + ffun. Unpacking is done by [ffun] =

fun.call([XX])[index] or [ffun1,ffun2,...] = fun.call([XX]). Note in this particular
case, fun.call([XX]) is a tuple with single element, hence merely [ffun] = fun.call([XX])

is enough (i. e. no need to specify the index). XX and YY may be used to define a new function,
which is fun2 in this case. Note: the call() function comes in SXFunction class too. We could
use sxfunctionName.call(lsit of MX objects). Additionally, an MXFunction object can
be mapped into an SXFunction object by sxfunName = SXFunction(mxfunction).

from casadi import *

from casadi.tools import *

import pydot

import numpy as np

X = MX("x",2,2)

Y = sin(X) + mul(X,X)

fun = MXFunction([X],[Y])

fun.init()

XX = msym("XX",2,2)

19

Figure 2.9: The evaluation procedure of mfun.

[ffun] = fun.call([XX])

YY = XX + ffun

fun2 = MXFunction([XX],[YY])

fun2.init()

2.3.3 A simple optimal control problem

As a motivating example (inspired by [2]), I will discuss example 4.2 given in [5]. A nonlinear
dynamic model is given below:

ẋ1 = −k1x1 − k3x
2
1 + (v − x1)u

ẋ2 = k1x1 − k2x2 − x2u

y = x2

Define a cost function, say, I = (yf − rf)2. t ∈ [t0, tf] and yf = y (t = tf). t0 and tf are initial
and final time instances. The objective is to find a piece-wise constant control signal such that
I is minimum. We can divide the time span into N intervals (then dt =

tf−t0
N) and u(t) , uk,

t ∈ (dt · k, dt · (k + 1)] and k = 0, 1, . . . , N −1. Once x0 is given, it is possible to find a symbolic
expression for xf == x (t = tf), thereby yf with respect to piece-wise constant input signals
uk. For simplicity assume that the reference signal r is constant. Hence, r = rf ,∀t ∈ [t0, tf].
Consequently, we have I as a nonlinear function of uk. Also assume that the disturbance signal
v is a constant. For given uk’s (for k = 0, 1, . . . , N − 1), we symbolically find xk’s and yk’s
(for k = 1, 2, . . . , N .) To do this we need an integrator. Two options for doing this: (1) use
built-in integrators already interfaced into CasADi (ex. CVodesIntegrator, IdasIntegrator, etc.),
or (2) use a user define integrator (ex. RK method, etc.) If you use a user defined integrator,
some care must to be made about the performance of it. Example: step time, dt should be
small enough and hence should be carefully selected. Chapter 3 will explain how to use built-
in integrators. If we write the optimization problem, it would be: minimize I(U) such that

20

[umin, umin, . . . , umin]T ≤ U ≤ [umax, umax, . . . , umax]T and U = [u0, u1, . . . , uN−1]
T . I will use

a simple explicit ODE solver based on a Runge Kutta method. See the code below and the
results are in Figure 2.10 and Figure 2.11.

from casadi import *

from casadi.tools import *

import numpy as np

import matplotlib.pyplot as plt

#

k1 = 50.

k2 = 100.

k3 = 10.

rf = 0.0

#

t0 = 0.0

tf = 1.0

N = 300

dt = (tf-t0)/N

#

x0 = [2.5,1.0]

n = len(x0)

u0 = 25.0

v0 = 10.0

#

u_max = 30.*np.ones((N,1))

u_min = 20.*np.ones((N,1))

#

x = ssym("x",n,1)

u = ssym("u")

v = v0

#

dxdt = vertcat([-k1*x[0]-k3*x[0]**2+(v-x[0])*u,k1*x[0]-k2*x[1]-x[1]*u])

#

fun_dxdt = SXFunction([x,u],[dxdt])

fun_dxdt.init()

#

U = msym("U",N,1)

Define a simple RK integrator

xk = msym("xk",n,1)

uk = msym("uk")

[a1] = fun_dxdt.call([xk,uk])

[a2] = fun_dxdt.call([xk+(dt/2)*a1,uk])

[a3] = fun_dxdt.call([xk+(dt/2)*a2,uk])

[a4] = fun_dxdt.call([xk+dt*a3,uk])

xkj = xk + (dt/6)*(a1+2*a2+2*a3+a4)

RK_integrator = MXFunction([xk,uk],[xkj])

RK_integrator.init()

Find xf

xf = x0

for j in range(N):

[xf] = RK_integrator.call([xf,U[j]])

21

Find yf

yf = xf[1]

Find I

I = (yf-rf)**2

Create a MXFunction object using helper function for

nonlinear programming. I.e. nlpIn() and nlpOut()

fun_nlp = MXFunction(nlpIn(x=U),nlpOut(f=I))

Create a solver object based on IpoptSolver class

solver = IpoptSolver(fun_nlp)

solver.init()

Set constraints

solver.setInput(u_max,"ubx")

solver.setInput(u_min,"lbx")

Solve

solver.solve()

Get results

U_ = solver.getOutput()

U_opt = U_.toArray().squeeze().tolist()

#

t = np.linspace(t0,tf,N+1).tolist()

U_opt.append(U_opt[-1])

#

yf_opt = list()

yf_opt.append(x0[1])

xf_ = x0

xf = list([x0])

for k in range(N):

RK_integrator.setInput(xf_,0)

RK_integrator.setInput(U_opt[k],1)

RK_integrator.evaluate()

xf_ = RK_integrator.getOutput()

xf_ = xf_.toArray().squeeze().tolist()

xf.append(xf_)

xf = np.array(xf)

Plot results

plt.close()

plt.figure(0)

plt.plot(t,xf[:,0],’.’,t,xf[:,1],’.’)

plt.grid(’on’)

plt.xlabel(’Time’)

plt.ylabel(’x1,x2’)

plt.legend((’x1’,’x2’))

plt.show()

plt.figure(1)

plt.plot(t,U_opt,’.’)

plt.grid(’on’)

plt.xlabel(’Time’)

plt.ylabel(’u’)

plt.legend(’u’)

plt.show()

22

Figure 2.10: A solution to the optimal control problem - Example 4 - states.

Figure 2.11: A solution to the optimal control problem - Example 4 - input signal.

23

Here we used Ipopt solver. IPOPT (Interior Point Optimizer) is an open source software package
which solves nonlinear optimization problems of the form:

minimize
x∈Rn

f(x)

subject to gLi ≤ gi (x) ≤ gUi ; i = 1, 2, . . . ,m.

xL ≤ x ≤ xU

f is a scalar valued function and gi (x) ∈ Rm. f and gi are twice differentiable. To handle
any equality constraint gj (x) = 0, set gLj = gUj . IPOPT is a local optimizer. For a de-
tailed discussion refer to [13][12] [14]. There are many options that we can set before solving
nonlinear problems. To get the names of available options and their respective descriptions
use solver.getOptionNames() and solver.getOptionDescription(‘‘OptionName’’). To
set an option use solver.setOption(‘‘OptionName’’,‘‘OptionValue’’). Casadi API doc-
umentation, example: help(solver) diverts us to Ipopt documentation available at http:

//www.coin-or.org/Ipopt/documentation/. You may also try solver.printOptions() to
get options with more details. To get ‘‘OptionValue’’, you should refer ipopt’s ‘‘Options

Reference’’ section in the URL given above or try the link http://www.coin-or.org/Ipopt/

documentation/node39.html. Ex. to know the alternatives for ‘‘OptionValue’’ for the
option ‘‘nlp scaling method’’ go to ‘‘NLP Scaling’’ section in the last URL mentioned
and click on ‘‘nlp scaling method’’. Then you will see there are 4 alternatives available:
‘‘none’’, ‘‘user-scaling’’, ‘‘gradient-based’’, and ‘‘equilibration-based’’.

24

Chapter 3

FX Derived Functions

3.1 An Overview

In Chapter 2, creating SX/MXFunction classes’ instances using symbolic expressions is dis-
cussed. Let us step forward with other functionalities of FX class (integrators, nonlinear
solvers, etc.). Create a sample SXFunction instance, f and enter f.printOptions() in the
command line. This will give set options that relate to SXFunction objects which we can set
via f.setOptions(). Example: we can set function’s the name property, automatic differenti-
ation mode, etc. via f.setOption(name,myfun), f.setOption(ad mode,forward), and so on.
This is something we discussed already at the end of Chapter2. See the code below:

x = SX("x")

y = sin(x)

f = SXFunction([x],[y])

f.setOption("name","myfunc")

f.setOption("ad_mode","forward")

f.getOption("name")

f.getOption("ad_mode")

Syntax for creating SX/MXFunctions are funName = SXFunction([list of inputs],[list

of outputs]) and funName = MXFunction([list of inputs],[list of outputs]). Up-
coming sub-sections will use a slightly different syntax. The IPOPT solver and two DAEs
integrators will be discussed. A given optimization problem is formulated as either using SX-
Function or MXFunction, the choice depends on the problem context. For simplicity I will brake
down usage of FX derived classes into 3 parts; (1) define the problem description symbolically
(defining the cost function and constraints), (2) create an SX/MXFunction (to be used as an
input argument to a solver) using relevant helper functions to create its input and output ar-
guments, (3) select a suitable solver and solve the problem. What is a “helper function”? If
the problem is, among other choices like linear optimization, quadratic optimization, etc., for
example a nonlinear optimization problem then the corresponding SX/MXFuction, created in
step (2), should reflect the characteristics of the nonlinear optimization problem. An example
is given to elaborate this:

x = SX("x")

y = x*x + x

fun = SXFunction([x],[y])

fun.init()

fun is just a function based on the symbolic expression y based on x. Say, we want to
minimize y (this is quadratic) and use a built-in solver (ex. the IpoptSolver class). Ipopt-
Solver, like other solvers, accepts fun as an input argument, i. e. solver=IpoptSolver(fun).

25

But this will not work! fun must be compatible with what the IpoptSolver input argu-
ment demands. When we define fun, we should have used two helper functions nlpIn()

and nlpOut() which goes with nonlinear solvers, to define input/output arguments to fun.
Type ?nlpIn and ?nlpOut to access the documentation. So the correct way to define the
function, fun is fun = SXFunction(nlpIn(nlpIn arguments),nlpOut(nlpOut arguments))

and solver = IpoptSolver(fun). Here nlpIn arguments and nlpOut arguments are taken
from the documentation of IpoptSolver (enter help(IpoptSolver) and read through ’In-
put scheme’ and ’Output scheme’. So always remember to define the SX/MXFunction func-
tion compatible with the solver requirements. The helper function’s output is in the type of
casadi.casadi.IOSchemeVectorSXMatrix. See below for a list of available helper functions
for various solvers.1 One more example: if you want to solve a quadratic programming problem
using QPSolver, then the corresponding helper functions are qpIn() and qpOut().

ControlSimulator --> controlsimulatorIn, controlsimulatorOut

To define DAEs to be used with integrators --> DAEInput, DAEOutput

DPLE --> not available in my installation.

GradF --> gradFIn, gradFOut

HessLag --> hessLagIn, hessLagOut

Integrator --> integratorIn, integratorOut

JacG --> jacGIn, jacGOut

LPSolver --> lpIn, lpOut

Linsol --> linsolIn, linsolOut

Mayer --> mayerIn

NLP --> nlpIn, nlpOut

NLPSolver --> nlpSolverIn, nlpSolverOut

OCP --> ocpIn, ocpOut

QCQPSolver --> qcqpIn, qcqpOut

QPSolver --> qpIn, qpOut

RDAE --> rdaeIn, rdaeOut

SDP --> sdpIn, sdpOut

SDQP --> sdqpIn, sdqpOut

SOCP --> socpIn, socpOut

StabilizedQPSolver --> not available in my installation.

3.2 Nonlinear Programming

Several examples are given how to solve nonlinear optimization problems using the NLPSolver
class. There are 5 subclasses of the NLPSolver class, namely: IpoptSolver, KnitroSolver, SCP-
gen, SnoptSolver and SQPMethod. Only IpoptSolver will be discussed because more or less the
same procedure will apply for other solvers.

3.2.1 The Rosenbrock’s Function

The problem is taken from page 1-3 of [6]. The problem description is:

minimize
x

100 ·
(
x2 − x21

)2
+ (1− x1)

2

subject to x21 + x22 − 1 ≤ 0

Define x , [x1, x2]
T . Take the initial guess, x0 = [0, 0]T . I will recap the step to be followed: (1)

symbolically define cost and constraints functions, (2) define an SX/MXFunction object using

1Thanks goes to Joris Gillis, he mentioned this list answering one of my questions @CasADi FAQs on January
22, 2014.

26

nlpIn and nlpOut helper functions, and (3) use IpoptSolver to solve the problem. We can
handle this problem in three different ways: method 1 – using SX and SXFunction, method 2
– using SXMatrix and SXFunction, and method 3 – using MX and MXFunction. See the codes
given below.

Method 1: the answer is [0.786415,0.617698].

from casadi import *

x1 = SX("x1")

x2 = SX("x2")

Define cost function

f = 100*(x2-x1**2)**2 + (1-x1)**2

Define constraint

g = x1**2+x2**2-1

Define a SXFunction to be used with IpoptSolver

nlp = SXFunction(nlpIn(x=SXMatrix([x1,x2])),nlpOut(f=f,g=g))

nlp.init()

Define a IpoptSolver object

solver = IpoptSolver(nlp)

solver.init()

Set inputs and solve

solver.setInput([0.0],"ubg")

solver.solve()

Print solution

print solver.getOutput("x")

Method 2: the answer is [0.786415,0.617698].

from casadi import *

x = ssym("x",2,1)

Define cost function

f = 100*(x[1]-x[0]**2)**2 + (1-x[0])**2

Define constraint

g = x[0]**2+x[1]**2-1

Define a SXFunction to be used with IpoptSolver

nlp = SXFunction(nlpIn(x=x),nlpOut(f=f,g=g))

nlp.init()

Define a IpoptSolver object

solver = IpoptSolver(nlp)

solver.init()

Set inputs and solve

solver.setInput([0.0],"ubg")

solver.solve()

Print solution

print solver.getOutput("x")

Method 3: the answer is [0.786415,0.617698].

from casadi import *

x = msym("x",2,1)

Define cost function

f = 100*(x[1]-x[0]**2)**2 + (1-x[0])**2

Define constraint

27

g = x[0]**2+x[1]**2-1

Define a MXFunction to be used with IpoptSolver

nlp = MXFunction(nlpIn(x=x),nlpOut(f=f,g=g))

nlp.init()

Define a IpoptSolver object

solver = IpoptSolver(nlp)

solver.init()

Set inputs and solve

solver.setInput([0.0],"ubg")

solver.solve()

Print solution

print solver.getOutput("x")

3.2.2 The problem given in page 6-50 of [7]

Just try the code given below. The answer is [-9.64096,1.14096].

from casadi import *

x = ssym("x",2,1)

Define cost function

f = exp(x[0])*(4*x[0]**2+2*x[1]**2+4*x[0]*x[1]+2*x[1]+1)

Define constraint

g = vertcat([x[0]*x[1]-x[0]-x[1]+1.5,-x[0]*x[1]-10])

Define a MXFunction to be used with IpoptSolver

nlp = SXFunction(nlpIn(x=x),nlpOut(f=f,g=g))

nlp.init()

Define a IpoptSolver object

solver = IpoptSolver(nlp)

solver.init()

Set inputs and solve

solver.setInput([-1.0,1.0],"ubg")

solver.solve()

Print solution

print solver.getOutput("x")

3.3 Integration of DAEs/ODEs

3.3.1 Solve the system of ODEs given in page 10-16 of [7] using CVodesIn-
tegrator

Solve the following systems of ODEs using the built-in integrator CVodesIntegrator;

ẏ1 = y2y3

ẏ2 = −y1y3
ẏ3 = −0.51y1y3

with the initial condition y0 = [0, 1, 1]T for t ∈ [0, 12]. See the code given below. The results
are in Figure 3.1. The necessary helper functions for fun and creating an integrator object
using CVodesIntegrator are quite clear by now. Use integrator.getOptionNames() to get
available options that we may set. Look at the two options "t0" and "tf". Set them into 0
and 12 respectively. Once we have set these two parameters, the integrator can be used to
integrate for t ∈ [t1, t2] such that t0 < t1 ≤ t2 ≤ tf .

28

from casadi import *

from casadi.tools import *

import numpy as np

import matplotlib.pyplot as plt

#

y = msym("y",3,1)

dydt = vertcat([y[1]*y[2],-y[0]*y[2],-0.51*y[0]*y[1]])

fun = MXFunction(daeIn(x=y),daeOut(ode=dydt))

fun.init()

#

integrator = CVodesIntegrator(fun)

#

t0 = 0.

tf = 12.

N = 100

dt = (tf-t0)/N

x0 = [0.,1.,1.]

#

x = list()

#

integrator.setOption("t0",t0)

integrator.setOption("tf",tf)

Always initialize after integrator.setOption(.)

integrator.init()

integrator.setInput(x0,"x0")

#

integrator.evaluate()

integrator.reset()

#

tspan = np.linspace(t0,tf,N+1)

#

for t in tspan:

integrator.integrate(t)

x0 = integrator.getOutput().toArray().squeeze()

x.append(list(x0))

#

X = np.array(x)

#

plt.close()

plt.plot(tspan,X[:,0],’-’,tspan,X[:,1],’-,’,tspan,X[:,2],’.’)

plt.grid(’on’)

plt.xlabel(’Time’)

plt.ylabel(’States’)

plt.legend((’y1’,’y2’,’y3’))

plt.show()

3.3.2 Solve the system of ODEs (the van der Pol system) given in page 10-13
of [7] using IdasIntegrator

Just run the code below. See also Figure 3.2.

from casadi import *

29

Figure 3.1: A solution to Example 7 - CVodesIntegrator.

from casadi.tools import *

import numpy as np

import matplotlib.pyplot as plt

#

y = msym("y",2,1)

dydt = vertcat([y[1],1000.0*(1-y[0]**2)*y[1]-y[0]])

fun = MXFunction(daeIn(x=y),daeOut(ode=dydt))

fun.init()

#

integrator = IdasIntegrator(fun)

#

t0 = 0.

tf = 3000.

N = 100

dt = (tf-t0)/N

x0 = [2.,0.]

#

x = list()

#

integrator.setOption("t0",t0)

integrator.setOption("tf",tf)

integrator.init()

#

integrator.setInput(x0,"x0")

integrator.evaluate()

integrator.reset()

#

30

Figure 3.2: A solution to Example 8 - using IdasIntegrator.

tspan = np.linspace(t0,tf,N+1)

#

for t in tspan:

integrator.integrate(t)

x0 = integrator.getOutput().toArray().squeeze()

x.append(list(x0))

#

X = np.array(x)

#

plt.close()

plt.figure()

plt.subplot(211)

plt.plot(tspan,X[:,0])

plt.xlabel(’Time’)

plt.ylabel(’y1’)

plt.grid(’on’)

plt.subplot(212)

plt.plot(tspan,X[:,1],’.’)

plt.xlabel(’Time’)

plt.ylabel(’y2’)

plt.grid(’on’)

plt.show()

31

Chapter 4

Linearization of ODEs and
Extraction of Causality of Modelica
Models

4.1 Symbolic/Numeric Linearization

Consider the simple dynamic model given in Chapter 2.11. First, construct a Modelica package
which may contain several Modelica models (ex. ’SimpleNonLinearModel1’, ’SimpleNonLinear-
Model1’, etc.). The Modelica script is given below. It is saved with the file name same with the
package name and the file extension should be ’.mo’.

package MyModels

// Start SimpleNonLinearModel1

model SimpleNonLinearModel1

Define model parameters

parameter Real k1 = 50.0;

parameter Real k2 = 100.0;

parameter Real k3 = 10.0;

Define state variables

Real x1(start = 2.5, fixed = true);

Real x2(start = 1.0, fixed = true);

Define input variables

input Real u;

input Real v;

equation

Define differential equations

der(x1) = -k1*x1 -k3*x1^2 + (v-x1)*u;

der(x2) = k1*x1 - k2*x2 -x2*u;

Define algebraic equations

y = x1;

end SimpleNonLinearModel1;

// Start SimpleNonLinearModel2

model SimpleNonLinearModel2

// To be defined

equation

// To be defined

end SimpleNonLinearModel2;

//

32

end MyModels;

For comparison purposes, analytical Jacobian matrices are derived. The state space form is
written as follows:

ẋ = f(x, u, v) = [f1(x, u, v), f2(x, u, v)]T

u and v are scalars. x = [x1, x2]
T . Define, A , ∂f

∂x , B , ∂f
∂u , and L , ∂f

∂v . Then

A =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
− (k1 + 2k3x1 + u) 0

k1 − (k2 + u)

]

B =

[
(v − x1)
−x2

]
L =

[
u
0

]
Let us find those Jacobian matrices symbolically. Run the following Python script. Note that
MyModels.mo and the Python script files should be in the same directory. The results are given
in Figure 4.1 and note that it shows identical results with analytical Jacobian matrices found
above.

Import casadi packages

from casadi import *

from casadi.tools import *

Import compilers

from pymodelica import compile_fmu

from pymodelica import compile_jmu

from pymodelica import compile_fmux

To load FMUs, JMUs, and FMUXs, use these

from pyfmi import load_fmu

from pyjmi import JMUModel

from pyjmi import CasadiModel

Modelica moodel’s details

model_name = ’JModelica.SimpleNonLinearModel1’

model_file = ’MyModels.mo’

Compile

model_fmu = compile_fmu(model_name,model_file)

model_jmu = compile_jmu(model_name,model_file)

model_fmux = compile_fmux(model_name,model_file)

Load models: FMUs, JMUs, FMUXs

fmuModel = load_fmu(’JModelica_SimpleNonLinearModel1.fmu’)

fmuxModel = JMUModel(’JModelica_SimpleNonLinearModel1.jmu’)

fmuxModel = CasadiModel(’JModelica_SimpleNonLinearModel1.fmux’)

===This Section Is For CasadiModel Objects Only!===

Make fmuxModel model explicit

fmuxModel.ocp.makeExplicit()

Access ocp

a = fmuxModel.ocp

Get RHS of explicit ODE

rhs = a.ode

Get state

n_x = len(a.x) # number of states

x = list()

33

for i in range(n_x):

x.append(a.x[i].var())

Get [u,v] as input

input = a.u

Get u

n_u = 1 # number of inputs

u = list()

for j in range(n_u):

u.append(input[j].var())

Get v

v = list()

for k in range(n_u,len(input)):

v.append(input[k].var())

Create a SXFunction object

f = SXFunction([vertcat(x),vertcat(u),vertcat(v)],[rhs])

f.init()

Find symbolic Jacobian, A

A = f.jac(0)

print "================================"

print A

Find symbolic Jacobian, B

B = f.jac(1)

print "================================"

print B

Find symbolic Jacobian, L

L = f.jac(2)

print "================================"

print L

===End Section On CasadiModel Objects ===

A couple of things should be explained before going further. We have had a quite detailed dis-
cussion on SX, SXMatrix, SXFunction, MXFunction, MX, FX and FX derived classes. The idea
behind from casadi import * and from casadi.tools import * is obvious by now. We can-
not use the function, vertcat() without importing casadi.tools for example. Note also that
vertcat() gives an SXMatrix instance. The reason why I have used vertcat(x), vertcat(u)
and vertcat(v) in f = SXFunction([vertcat(x),vertcat(u),vertcat(v)],[rhs]) is that
input arguments SXFunction, should be given as a Python list of SX/SXMatrix instances. So,
for example f = SXFunction([vertcat(x),u,v],[rhs]) is wrong as u and v are of the type
Python lists, but which should have been SX/SXMatrix class instances! rhs already is in SX-
Matrix type, therefore putting the output argument as [rhs] is correct.

There are several new concepts which need to be discussed. The JModelica.org compilers
deal with code written according Modelica and Optimica standards. Optimica will not be dis-
cussed here. So first, we should have a dynamic model which has been modeled in Modelica.
It is worth to mention that JModelica.org doesn’t support Modelica code containing specific
functions, e.g. delay(), etc. Python is the scripting language used with JModelica.org. JMod-
elica.org, among other modeling and simulation tools, support FMI-Functional Mock-up Inter-
face import and export, hence JModelica can export FMUs as well as FMUs could be imported
into Python using the PyFMI (https://pypi.python.org/pypi/PyFMI) module. According to
FMI standards, a compiler which supports FMI standards will generate, a ’.xml’ file containing
data (ex. parameter/variable names, units, simulation start/end time, etc.) needed for program
execution and several C-codes or binary which represent the mathematical model. Compiled

34

Figure 4.1: Symbolic Jacobian matrices A, B, and L.

model is stuffed in a ’.zip’ file (so called a FMU-Functional Mock-up Unit.) with the extension
’.fmu’. Further details are available in [8]. Also look in https://fmi-standard.org/. We
can access JModelica.org compilers via the PyModelica module. We may use these compilers
(for more options see [9].): (1) compile fmu, (2) compile jmu and (3) compile fmux and these
will import FMUs (use FMUModel to import - available in pyFMI), JMUs (use JMUModel to
import - available in pyJMI) and FMUXs (use CasadiModel to import - available in pyJMI).
Actually, the last option, importing models as CasadiModel objects is at our main interest. As
the name indicates, it links to CasADi. I will come to this later.

This is how we import compilers:

For FMU
from pymodelica import compile fmu

ForJMU
from pymodelica import compile jmu

For FMUX
from pymodelica import compile fmux

Then to compile Modelica models and export them as FMUs, JMUs, and FMUXs the following
commands are used:

For FMU export
model fmu = compile fmu(model name, model file)

For JMU export
model jmu = compile jmu(model name, model file)

For FMUX export
model fmux = compile fmux(model name, model file)

35

According to the example given above, model name = ’JModelica.SimpleNonLinearModel1’

and model file = ’MyModels.mo’. In order to import we may use:

For FMU import
from pyfmi import load fmu

fmuModelObject = load fmu(enter ’.fmu’ file name as a string)

For JMU import
from pyjmi import JMUModel

jmuModelObject = JMUModel(enter ’.jmu’ file name as a string)

For FMUX import
from pyjmi import CasadiModel

casadiModelObject = CasadiModel(enter ’.fmux’ file name as a string)

Note that FMUs are only for simulation purposes while JMUs/FMUXs can be used for both
simulation and optimization. In FMI standards, the model is transferred into an ODE model
while in JMUs it is a Differential Algebraic Equations (DAEs). [9] stated that for simulation
FMUs is better than JMUs in some aspects. But when the collocation algorithms to be used for
optimization, simulating the model as DAE is a necessity, hence JMUs with DAEs integrating
ability is very useful.

The goal is to linearize a given nonlinear model both numerically and symbolically. The
code given above demonstrates how to evaluate Jacobian matrices symbolically. It is obvious
that we can easily go from symbolic Jacobian to numeric Jacobian. We use compile fmux com-
piler and CasadiModel for model import. As we import the model as a CasadiModel object, it
comes with structural information of the system. fmuxModel.ocp is the one we are going use
here.1 There are some limitation of doing this, too (see Chapters 3, 6, and 12; Chapter 12 is
completely about the limitations of JModelica platform, of [9]). Example: “A limitation of the
algorithm is that it currently does not support record and function constructs in the Modelica
code.”

When Modelica models are formulated in Modelica, the identifier ’input’ is used to dis-
tinguish input variables. Example: in above case input Real u and input Real v. There is
no way that we can distinguish them into control and disturbance variables, so we define an
augmented input variables vector instead as [u, v]T . So, the code given above is slightly modified
and given as follows:

Import casadi packages

from casadi import *

from casadi.tools import *

Import compilers

from pymodelica import compile_fmu

from pymodelica import compile_jmu

from pymodelica import compile_fmux

To load FMUs, JMUs, and FMUXs, use these

from pyfmi import load_fmu

from pyjmi import JMUModel

from pyjmi import CasadiModel

Modelica moodel’s details

model_name = ’JModelica.SimpleNonLinearModel1’

model_file = ’MyModels.mo’

1OCP stands for Optimal Control Problem.

36

Compile

model_fmu = compile_fmu(model_name,model_file)

model_jmu = compile_jmu(model_name,model_file)

model_fmux = compile_fmux(model_name,model_file)

Load models: FMUs, JMUs, FMUXs

fmuModel = load_fmu(’JModelica_SimpleNonLinearModel1.fmu’)

fmuxModel = JMUModel(’JModelica_SimpleNonLinearModel1.jmu’)

fmuxModel = CasadiModel(’JModelica_SimpleNonLinearModel1.fmux’)

===This Section Is For CasadiModel Objects Only!===

Make fmuxModel model explicit

fmuxModel.ocp.makeExplicit()

Access ocp

a = fmuxModel.ocp

Get RHS of explicit ODE

rhs = a.ode

Get state

n_x = len(a.x) # number of states

x = list()

for i in range(n_x):

x.append(a.x[i].var())

Get [u,v] as input

input = a.u

Get u

n_u = len(input) # number of inputs,

u = list()

for j in range(n_u):

u.append(input[j].var())

Get free parameters

p = list()

n_p = len(fmuxModel.ocp.pi)

for k in range(n_p):

p.append(fmuxModel.ocp.pi[k].var())

Create a SXFunction object

f = SXFunction([vertcat(x),vertcat(u),vertcat(p)],[rhs])

f.init()

Find symbolic Jacobian, A

print "================================"

A = f.jac(0)

print "Jacobian of A is " + str(A)

print "================================"

Find symbolic Jacobian, B

print "================================"

B = f.jac(1)

print "Jacobian of B is " + str(B)

print "================================"

Find numeric Jacobians of A

===End Section On CasadiModel Objects ===

Now according to the dimension of u and v we could define sub-matrices of B. How to calculate
numerical Jacobian? The procedure is given below;

A_numJac = SXFunction([vertcat(x),vertcat(u),vertcat(p)],[A])

37

A_numJac.init()

A_numJac.setInput([1,0],0)

A_numJac.setInput([1,-1],1)

k1 = fmuxModel.get("k1")

k2 = fmuxModel.get("k2")

k3 = fmuxModel.get("k3")

A_numJac.setInput([k1,k2,k3],2)

A_numJac.evaluate()

print "Numerical Jacobian of A is ", str(A_numJac.getOutput())

print "==="

B_numJac = SXFunction([vertcat(x),vertcat(u),vertcat(p)],[B])

B_numJac.init()

B_numJac.setInput([1,0],0)

B_numJac.setInput([1,-1],1)

B_numJac.setInput([k1,k2,k3],2)

B_numJac.evaluate()

print "Numerical Jacobian of B is ", str(B_numJac.getOutput())

It is also possible to modify the CasadiModel class to obtain Jacobian matrices. We
could compile Modelica models, at the moment with some restrictions, using the compiler
compile fmux and then import the compiled Modelica models as a CasadiModel. Interest-
ingly, CasadiModel objects have access to ocp where DAEs are symbolically represented. If
we can successfully compile and import a Modelica model as a CasadiModel object, then Sym-
bolicOCP (i.e ocp) can be used to linearize the nonlinear model for any given state and input
variables. In order to do this, we have to modify the CasadiModel class. Go to the JMod-
elica installation directory, try to locate /.../jmodelica/Python/pyjmi directory and then
Python script casadi interface.py, where CasadiModel class is defined, is modified. To be
on the safe side, make a copy of it and save it in a different folder with a different name,
say casadi interface2.py. First, importing necessary packages: from casadi import * and
from casadi.tools import *. See Figure 4.2.

Now create CasadiModel class method named symbolicJacobian(). The code is given
below (and Figure 4.3);

def symbolicJacobian(self):

This function symbolically linearise explicit ODE model.

self.ocp.makeExplicit() # make the model explicit

a = self.ocp # access SymbolicOCP

rhs = a.ode # Get RHS of explicit ODE

Get state

n_x = len(a.x) # number of states

x = list()

for i in range(n_x):

x.append(a.x[i].var())

Get [u,v] as input

input = a.u

Get u

n_u = len(input) # number of inputs,

u = list()

for j in range(n_u):

u.append(input[j].var())

Get free parameters

38

Figure 4.2: Editing Python script, casadi interface.py - importing casadi packages.

p = list()

n_p = len(self.ocp.pi)

for k in range(n_p):

p.append(self.ocp.pi[k].var())

Create a SXFunction object

f = SXFunction([vertcat(x),vertcat(u),vertcat(p)],[rhs])

f.init()

Find symbolic Jacobian, A and B

A = f.jac(0)

B = f.jac(1)

return [A,B]

We can similarly define another CasadiModel class method, numericJacobian() to calculate
numeric Jacobian matrices. See the code below. As a summery to this sub-section, the Casadi-
Model has been extended so that we can obtain Jacobian matrices of a given dynamic model
both numerically and symbolically. This modification will benefit on ’extraction of causality of
Modelica models and in analysis of structural properties’ of a given dynamic system.

def numericLinearisation(self,xk,uk):

[A,B,x,u,p] = self.symbolicLinearisation()

A_numJac = SXFunction([vertcat(x),vertcat(u),vertcat(p)],[A])

A_numJac.init()

A_numJac.setInput(xk,0)

A_numJac.setInput(uk,1)

pValList = list()

for i in range(len(p)):

pValList.append(self.get(["{0}".format(p[i])]))

pValList = N.squeeze(pValList)

A_numJac.setInput(pValList,2)

A_numJac.evaluate()

39

Figure 4.3: Editing Python script, casadi interface.py - creating a class method,
symbolicJacobian().

Ak = A_numJac.getOutput()

B_numJac = SXFunction([vertcat(x),vertcat(u),vertcat(p)],[B])

B_numJac.init()

B_numJac.setInput(xk,0)

B_numJac.setInput(uk,1)

B_numJac.setInput(pValList,2)

B_numJac.evaluate()

Bk = B_numJac.getOutput()

Ak = N.array(Ak)

Bk = N.array(Bk)

return [Ak,Bk]

4.2 Extraction of Causality of Modelica Models and Structural
Properties

Consider the dynamic model given in [11] and it has been modeled according to Modelica
standards (with a slight modification by including an input variable). See Appendix-A for
the Modelica Script. The main idea here is to compile the Modelica model, ’myModel.mo’
using compile fmux and load it to Python eviorenment using CasadiModel as explained before.
Before attending into this, a brief idea is given how DAEs are represented in CasADi. Consider
DAEs given below:

fx (ẋ, x, z, p, t) = 0

fz (x, z, p, t) = 0

where, x — differential state, z — algebraic state, p — parameter and t — time. Use, for
example help(?CVodesIntegrator) for more information. The first equation represents a
general implicit ODE while the second one an algebraic constraints. Conditionally, it is possible
to transform an implicit ODE into its explicit companion, i.e. if fx (ẋ, x, z, p, t) = 0 is such that

40

Figure 4.4: A part of the ’modelDescription.xml’ file.

∂fx
∂ẋ is not singular then we can write,

∂fx
∂ẋ
· ẍ +

∂fx
∂x
· ẋ +

∂fx
∂z
· ż +

∂fx
∂t

= 0

and consequently,

ẍ +

[
∂fx
∂ẋ

]−1
· ∂fx
∂x

.ẋ +

[
∂fx
∂ẋ

]−1
· ∂fx
∂z
· ż +

[
∂fx
∂ẋ

]−1
· ∂fx
∂t

= 0.

In short, we could say, fx (ẋ, x, z, p, t) = 0 −→ ˙̂x − f̂x (x̂, z, p, t) = 0, if ∂fx
∂ẋ is invertible.

Here, x and x̂ are may not the same, due to the presence of ẍ and the constraint func-
tion, fz may be differentiated according to the index of the problem. If fx is in the form
of M (x, z, p, t) · ẋ− f̃x (x, z, p, t) and the matrix M (x, z, p, t) is invertible, then we can easily get
the explicit ODE by ẋ = [M (x, z, p, t)]−1 · f̃x (x, z, p, t). In this situation, the number is states
is not changed during implicit to explicit transformation.

Once compilation is done using the compile fmux compiler, it produces a folder with the
extension of ’.fmux’. The file name is the same as the Modelica file name. Example: for ’my-
Model.mo’ it will be ’myModel.fmux’. modelDescription.xml is included in ’myModel.fmux’,
which contains the Modelica model’s information. Some comments about the file ’modelDe-
scription.xml’: all the parameters defined in the Modelica code (ex. parameter Real k1.)
come under two categories: (1) as independent parameters and (2) as dependent parameters.
See Figure 4.4.

When we import the compiled the Modelica model (i.e. ’myModel.fmux’) by fmuxModel

= CasadiModel(’myModel.fmux’), the model details given in the file ’modelDescription.xml’
is used to create DAEs symbolically (use fmuxModel.xmldoc to access the ’.xml’ document.).

41

Figure 4.5: Initialization of CasadiModel objects.

fmuxModel.ocp gives access to the symbolic formulation of DAEs. For simplicity, say that
symOCP=fmuxModel.ocp. Symbolic expression for fx and fz are given by symOCP.ode and
symOCP.alg respectively. symOCP.initial returns specified initial state. In order convert im-
plicit ODEs into explicit we use symOCP.makeExplicit(). But this is not always possible, as ex-
plained earlier. symOCP.pi and symOCP.pd gives independent and dependent parameters. Basi-
cally, the total number of parameters in the model is equal to len(symOCP.pi)+len(symOCP.pd).
The easiest way to get a list of both independent and dependent parameters into a single list,
is to use the command, fmuxModel. parameters. The state, control input, algebraic states
and time are taken respectively from symOCP.x, symOCP.u, symOCP.z and symOCP.t. Also
fmuxModel.dx (but not symOCP.dx.) give variables to the corresponding variable, der(x n) in
the Modelica code. A summery: (1) create DAEs model in Modelica, (2) compile it through
compile fmux — this will create a ‘.xml’ file in a directory with the extension — ‘.fmux’, (3)
load compiled model as a CasadiModel object (in casadi interface.py) — when a Casadi-
Model object initialized, it unpacks the ‘.fmux’ directory, extracts ‘.xml’ file and (3) connects
‘.xml’ file to CasADi via self. load xml to casadi — actually, self. load xml to casadi

creates self.ocp = casadi.SymbolicOCP(). See Figure 4.5 and Figure 4.6.
The following discussion will consider a special family of DAEs,

M (x, z, p, t) .ẋ− fx (x, z, p, t) = 0

z − fz (x, p, t) = 0.

Here M (x, z, p, t) is invertible. Hence the ODE given above can be translated into explicit
form without adding any additional states which means ẋ = [M (x, z, p, t)]−1 · fx (x, z, p, t)).
Let f̃x , [M (x, z, p, t)]−1 .fx (x, z, p, t). z − fz (x, p, t) = 0 means all algebraic variables are
explicitly given as a function of x, u, p and t (i.e. index 0.)2 Now we can define Jacobian

2The idea behind taking a special family of DAEs is: implicit to explicit transformation (if this is possible)

42

Figure 4.6: Connecting to the CasADi interface.

matrices as follows;

A =
∂f̃x
∂x

+
∂f̃x
∂z
· ∂fz
∂x

B =
∂f̃x
∂u

+
∂f̃x
∂z
· ∂fz
∂u

and to get output matrices C and D, we have to isolate sub-matrices from

C =
∂fz
∂x

and

D =
∂fz
∂u

as output variables are included in z.

A couple of couple methods are added to the CasadiModel class in casadi interface.py. Those
are related to finding symbolic/numeric Jacobian matrices and functions needed for structural
analysis of dynamic models. See the code given in Appendix B and this function symbolically
estimates system matrices A, B, C, and D as well as parameter sensitivity matrices on fx and
fz. The syntax is: CasadiModelObj.symbolicLinearization(). Try the code given below
(the Modelica model is given in Appendix A):

of ODEs will ultimately give an ODE in the form of ẋ = fx (x, z, p, t) and constraints function, fz will transform
into z = fz (. . .). Note that fz may contain derivatives of u.

43

import numpy as np

Import compiler

from pymodelica import compile_fmux

Import CasadiModel

from casadi_interface_edited import CasadiModel

Modelica moodel’s name and file

model_name = ’myModel’

model_file = ’myModel.mo’

Compile

compile_fmux(model_name,model_file)

fmuxModel = CasadiModel(’myModel.fmux’)

Symbolically linearize

fmuxModel.symbolicJacobian()

#

As = fmuxModel.symJac_A

print As

Bs = fmuxModel.symJac_B

print Bs

P1s = fmuxModel.symJac_P1

print P1s

Cs = fmuxModel.symJac_C

print Cs

Ds = fmuxModel.symJac_D

print Ds

P2s = fmuxModel.symJac_P2

print P2s

As, Bs, Cs, Ds, P1s, and P2s follow exactly the analytical results. The next function is to esti-
mate Jacobian matrices numerically. CasadiModelObj.numericLinearization() is included.
See Appendix C. See a sample code given below (the Modelica model is given in Appendix A):

Import numpy package

import numpy as np

Import compiler

from pymodelica import compile_fmux

Import CasadiModel. Note that casadi_interface.py has been modified

with new functionilitis and saved it in the working directory

with the name casadi_interface_edited.

from casadi_interface_edited import CasadiModel

Modelica moodel’s name and file

model_name = ’myModel’

model_file = ’myModel.mo’

Compile

compile_fmux(model_name,model_file)

fmuxModel = CasadiModel(’myModel.fmux’)

Linearise numerically

n_x = fmuxModel.n_x

n_u = fmuxModel.n_u

xk = np.arange(n_x)

uk = np.arange(n_u)

[Ak,Bk,Ck,Dk] = fmuxModel.numericLinearization(xk,uk)

#

print Ak,Bk,Ck,Dk

44

Figure 4.7: The graph of system matrices of the model given in [11].

Once we have symbolic system matrices, it may be possible possible to create graphs repre-
senting structure of the system. Refer to [11]. Python packages pygraphviz and networkx

are used here for graphical visualization of graphic networks and for network analysis respec-
tively. Therefore these packages have to be imported in casadi interface.py. Nodes/vertices
of graph corresponds to states, inputs (both control inputs and disturbances) and outputs. So
the total number of nodes in the graph is equal to nx+nu+ny. Edges are constructed as follows
(consider the symbolic system matrices A, B, C, D): (1) state interactions — If A [i] [j] 6= 0
then draw a directed edge from xj to xi, (2) state vs. input interactions — If B [i] [j] 6= 0 then
draw a directed edge from uj to xi, (3) state vs. output interactions — If C [i] [j] 6= 0 then
draw a directed edge from xj to yi, and (4) input vs. output interactions — If D [i] [j] 6= 0
then draw a directed edge from uj to yi. To create nodes and edges, two methods are created
in the CasadiModel class. See Appendix D and Appendix E. CasadiModel.createEdges()

automatically creates directed edges based on symbolic system matrices. To draw a graph
CasadiModel.generateGraph() method is used and the code is given in Appendix F. See a
sample code given below and the result is in Figure 4.7.

Import compilers

from pymodelica import compile_fmux

Modelica moodel’s details

model_name = ’myModel’

model_file = ’myModel.mo’

Compile

compile_fmux(model_name,model_file)

Load FMUX model

fmuxModel = CasadiModel(’myModel.fmux’)

Create nodes and edges

fmuxModel.createNodes()

45

fmuxModel.createEdges()

Generate a graph and save it as ’graph.png’

fmuxModel.generateGraph(’graph’)

In practice we are encountered large complex dynamic systems which often lead to large number
states in the dynamic model. It is not possible to measure all the internal states. What is
normally done is that only few state variables are measured and based on those measurements
complete state is estimated. What we measure via sensors are called output variables. Generally,
states are not independent each other. Therefore it is often enough to measure a sub-set of the
state variables. Using a graph-theoretic approach we can systematically identify the minimum
number of measurements should be made and which variables should be measured to attain the
structural-state observability. More precisely says that structural observability is a necessary
condition to the state observability. That means if the system is not structurally observable
then the system is not observable. For further details refer to [11] [15] [16]. Let us see how to
find minimum number of measurements should be measured so as the dynamic system given in
Appendix A to be structurally observable. See the code below (also see Figure 4.8):

Import compilers

from pymodelica import compile_fmux

Modelica moodel’s details

model_name = ’myModel’

model_file = ’myModel.mo’

Compile

compile_fmux(model_name,model_file)

Load model

from casadi_interface_edited import CasadiModel

fmuxModel = CasadiModel(’myModel.fmux’)

Find strongly connected components

fmuxModel.createNodes()

fmuxModel.createEdges()

fmuxModel.generateGraph(’dotFile’)

fmuxModel.decomposeGraph()

First of all nodes and edges should be created using fmuxModel.createNodes() folllowed by
fmuxModel.createEdges(). See Appendix D and Appendix E. In order to create nodes and
edges Python package pygraphviz is used. fmuxModel.generateGraph(’dotFile’) generates
two files in the working directory: a file with the name ‘doFile.dot’ and a figure file named
‘dotFile.png. You may open ‘dotFile.png and observe the state inter-dependencies. The graph
(see Figure 4.8) may be decomposed into sub-graphs so called strongly connected components.
Here only state nodes are considered. Each state-node in a strongly connected component
has a directed path to any other node in the same sub-graph. fmuxModel.decomposeGraph()

finds strongly connected components. Here we use the Python package networkx. Note that
when we call fmuxModel.generateGraph(’dotFile’), it creates a file named ‘dotFile.dot as
mentioned before and fmuxModel.decomposeGraph() reads ‘dotFile.dot to create a networkx

graph object. This is a way of converting pygraphviz graph objects into networkx graph
objects. Strongly connected components are called root strongly connected components if they
don’t have outcoming edges. Minimum number of sensor measurements should be made to
make the system structurally state observable is equal to number of root strongly connected
components as well as if a root strongly connected component has more than one node then we
can select one of the nodes can be a measurement and if it is a single node one then it must be
measured.

46

Figure 4.8: Strongly connected components of the model given in [11].

47

Chapter 5

Conclusion

There are many efficient free software packages available to handle nonlinear optimization prob-
lems and to integrate DAEs — Differential Algebraic Equations. It is our interest to use them in
Python. IPOPT is such a free nonlinear optimizer and it is our main interest to use it in Python.
It is possible to interface IPOPT with Python as with other software tools like MATLAB, C++,
C, etc. However, as we already use JModelica.org — which is a free Modelica-based simulation
and optimization platform uses Python as the scripting language — there is no need to bother
with interfacing IPOPT with Python. The reason is that CasADi — which is a free optimiza-
tion framework — has already been interfaced to JModelica.org and CasADi comes with the
IPOPT solvers and many other solvers, integrators, etc. As a results we can use the IPOPT
solver in Python via the JModelica.org-CasADi interface. I have shown in Chapters 3 how
to use IPOPT solvers to solve nonlinear optimization problems in Python via JModelica.org.
CasADi is a symbolical framework so Chapter 2 gives necessary basics symbolic manipulations
in CasADi.

Generally, dynamic models are represented by DAEs and it is possible to map them into
a Modelica code. A Modelica model can be translated into a symbolic representation using
JModelica.org-CasADi interface. Then it is possible to obtain symbolic and numeric Jacobian
matrices easily using CasADi. Section 4.1 shows how to do it for a special class of DAEs such
that: (1) constraints function is such that index = 0, and (2) ODEs are converted to explicit
form without adding additional states. A couple of modifications have been made to JMode-
ica.org to do this. As a future work it is expected to modify JModelica.org so that it will handle
any DAE model.

By isolating the structure of a dynamic system it is possible to apply a graph-theoretic
approach to analyse generic properties of the system. Example: structural observability, struc-
tural controllability, system decomposition, etc. In Section 4.2 it is shown how to decompose
a system into strongly connected components and hence deduce minimum number of measure-
ments to be made to make the system to be structurally observable. In the future it is planned
to add more functionalities based on graph-theoretic concepts to JModelica.org.

48

Appendices

49

Appendix A

The Modelica Model Used in
Sub-Section 4.2

model myModel

// Author: Anushka Perera, anushka.perera@hit.no

// Telemark University College, Porsgrunn, Norway

// 16th September 2013

// The model is given in;

// Liu, Y.-Y., Slotine, J.-J., and Barabasi, A.-L.,

// ’’Observability of Complex Systems,’’

// Proceedings of the National Academy of Sciences, 2013.

//

// Define parameters

parameter Real k1 = 1.0;

parameter Real k2 = 2.0;

parameter Real k3 = 3.0;

parameter Real k4 = 4.0;

parameter Real k5 = 5.0;

parameter Real k6 = 6.0;

// Define differential states

Real x1;

Real x2;

Real x3;

Real x4;

Real x5;

Real x6;

Real x7;

Real x8;

Real x9;

Real x10;

Real x11;

// Define algebraic states

Real z1;

Real z2;

Real z3;

equation

// Define algebraic equations

z1 = x5;

z2 = x6;

50

z3 = x7;

// Define input variables

input Real u;

// Define differential equations

der(x1) = -k1*x1*x2*x3 + u;

der(x2) = -k1*x1*x2*x3;

der(x3) = -k1*x1*x2*x3;

der(x4) = k1*x1*x2*x3 - k2*x4 + k3*x5;

der(x5) = k2*x4 -k3*x5;

der(x6) = k1*x1*x2*x3;

der(x7) = k4*x8*x9 - k5*x7 + k6*x10*x11;

der(x8) = -k4*x8*x9 + k5*x7 + k6*x10*x11;

der(x9) = -k4*x1*x2*x3 + k5*x7;

der(x10) = k1*x1*x2*x3 - k6*x10*x11;

der(x11) = -k6*x10*x11;

end myModel;

51

Appendix B

The Python script for
symbolicLinearization()

def symbolicLinearization(self):

’’’

Author: Anushka Perera, PhD candidate, Telemark University College, Porsgrunn.

Email - anushka.perera@hit.no / anushka_mrt@yahoo.com

Tel - 0047 450 19 636

03rd January 2014

This function does:

(1) Implicit to explicit conversion. I.e. fx(xDot,x,u,p,t)-->xdot = fx(x,u,p,t)

(2) Find symbolic Jacobians.

’’’

Make the ODE explicit

self.ocp.makeExplicit()

Get RHS of explicit fx

fx = self.ocp.ode

Get state

n_x = len(self.ocp.x) # number of states

x = list()

for i in range(n_x):

x.append(self.ocp.x[i].var())

x = vertcat(x)

Get u

n_u = len(self.ocp.u) # number of inputs,

u = list()

for j in range(n_u):

u.append(self.ocp.u[j].var())

u = vertcat(u)

Get parameters

p = list()

n_p = len(self._parameters)

for k in range(n_p):

p.append(self._parameters[k].var())

p = vertcat(p)

Get z

z = list()

n_z = len(self.ocp.z)

for l in range(n_z):

52

z.append(self.ocp.z[l].var())

z = vertcat(z)

Create a SXFunction object for fx

fxfcn = SXFunction([x,u,z,p],[fx])

fxfcn.init()

Create a SXFunction object for fz

alg = self.ocp.alg

algfcn = SXFunction([x,u,z,p],[alg])

algfcn.init()

Make fz explicit. I.e. fz(x,u,z,p,t) = 0 --> z = fz(x,u,p,t)

z1 = DMatrix(N.zeros(n_z))

[fz1] = algfcn.eval([x,u,z1,p])

fz1 = fz1*(-1.0) # now fz1 gives an expression for fz w.r.t. x, u, p, and t.

fz = SXFunction([x,u,p],[fz1])

fz.init()

Replace z from fx. I.e. fx(x,u,z,p,t) --> fx2(x,u,p,t)

[z2] = fz.eval([x,u,p])

[fx1] = fxfcn.eval([x,u,z2,p])

fx2fcn = SXFunction([x,u,p],[fx1])

fx2fcn.init()

Find symbolic Jacobian matrices, A, B and P1 (parameter sensitivity on fx)

symJac_A = fx2fcn.jac(0)

symJac_B = fx2fcn.jac(1)

symJac_P1 = fx2fcn.jac(2)

Find symbolic Jacobian matrices, C, D and P2 (parameter sensitivity on fz)

output_eqn = SXMatrix()

for i in range(n_z):

output_eqn.append(fz1[i])

output_fcn = SXFunction([x,u,p],[output_eqn])

output_fcn.init()

symJac_C = output_fcn.jac(0)

symJac_D = output_fcn.jac(1)

symJac_P2 = output_fcn.jac(2)

Define new object properties

self.symJac_A = symJac_A

self.symJac_B = symJac_B

self.symJac_P1 = symJac_P1

self.symJac_x = x

self.symJac_C = symJac_C

self.symJac_D = symJac_D

self.symJac_P2 = symJac_P2

self.symJac_u = u

self.symJac_p = p

self.symJac_z = z

53

Appendix C

The Python script for
numericLinearization()

def numericLinearization(self,xk,uk):

’’’

Author: Anushka Perera, PhD candidate, Telemark University College, Porsgrunn.

Email - anushka.perera@hit.no / anushka_mrt@yahoo.com

Tel - 0047 450 19 636

03rd January 2014

This function does:

(1) Find numeric Jacobians.

Call symbolicJacobian()

self.symbolicJacobian()

Extract symbolic matrices

x = self.symJac_x

u = self.symJac_u

z = self.symJac_z

p = self.symJac_p

P1 = self.symJac_P1

A = self.symJac_A

B = self.symJac_B

C = self.symJac_C

D = self.symJac_D

P2 = self.symJac_P2

Get numeric values of parameters

pValList = list()

for i in range(p.size()):

pValList.append(self.get(["{0}".format(p[i])]))

pValList = N.squeeze(pValList)

Find numerical A

Af = SXFunction([x,u,p],[A])

Af.init()

Af.setInput(xk,0)

Af.setInput(uk,1)

Af.setInput(pValList,2)

Af.evaluate()

numJac_A = Af.getOutput()

Find nuerical B

Bf = SXFunction([x,u,p],[B])

54

Bf.init()

Bf.setInput(xk,0)

Bf.setInput(uk,1)

Bf.setInput(pValList,2)

Bf.evaluate()

numJac_B = Bf.getOutput()

Find numerical C

Cf = SXFunction([x,u,p],[C])

Cf.init()

Cf.setInput(xk,0)

Cf.setInput(uk,1)

Cf.setInput(pValList,2)

Cf.evaluate()

numJac_C = Cf.getOutput()

Find numerical D

Df = SXFunction([x,u,p],[D])

Df.init()

Df.setInput(xk,0)

Df.setInput(uk,1)

Df.setInput(pValList,2)

Df.evaluate()

numJac_D = Df.getOutput()

Convert to numpy arrays

numJac_A = N.array(numJac_A)

numJac_B = N.array(numJac_B)

numJac_C = N.array(numJac_C)

numJac_D = N.array(numJac_D)

return [numJac_A ,numJac_B, numJac_C,numJac_D]

55

Appendix D

The Python script for createNodes()

def createNodes(self):

’’’

Author: Anushka Perera, PhD candidate, Telemark University College, Porsgrunn.

Email - anushka.perera@hit.no / anushka_mrt@yahoo.com

Tel - 0047 450 19 636

03rd January 2014

This function does:

(1) Create nodes of Graph.

Initiate a MultiDiGraph

self.G=pgv.AGraph(strict=False,directed=True)

Number of x’s, u’s, and y’s

n_x = self.n_x

n_u =self.n_u

n_z = self.n_z

xi’s nodes

for i in N.arange(0,nx):

self.G.add_node(’x{0}’.format(i+1))

ui’s nodes

for i in N.arange(1,self.ocp.u.size()+1):

self.G.add_node(’u{0}’.format(i+1))

zi’s nodes

for i in N.arange(1,3+1): # n_y = 3

self.G.add_node(’z{0}’.format(i+1))

Add G as an object property

56

Appendix E

The Python script for createEdges()

def createEdges(self):

’’’

Author: Anushka Perera, PhD candidate, Telemark University College, Porsgrunn.

Email - anushka.perera@hit.no / anushka_mrt@yahoo.com

Tel - 0047 450 19 636

03rd January 2014

This function does:

(1) Create edges of Graph.

Symbolic Jacobians must have evaluated before creating edges!

self.symbolicLinearization()

If G is not defined, implement self.createNodes()

try:

self.G

except NameError:

self.createNodes()

else:

pass

Extract symbolic matrices

symJac_A = self.symJac_A

symJac_B = self.symJac_B

symJac_C = self.symJac_C

symJac_D = self.symJac_D

Find number of nodes

n_x = self.n_x

n_u = self.n_u

n_z = self.n_z

#

xi-xj interactions, symJac_A

for i in N.arange(0,n_x):

for j in N.arange(0,n_x):

aij = symJac_A[i,j].toScalar()

if isZero(aij) == bool(0):

self.G.add_edge(’x{0}’.format(j+1),’x{0}’.format(i+1))

xi-uj interactions, symJac_B

for i in N.arange(0,n_x):

for j in N.arange(0,n_u):

bij = symJac_B[i,j].toScalar()

57

if isZero(bij) == bool(0):

self.G.add_edge(’u{0}’.format(j+1),’x{0}’.format(i+1))

zi-xj interactions, symJac_C

for i in N.arange(0,n_z):

for j in N.arange(0,n_x):

cij = symJac_C[i,j].toScalar()

if isZero(cij) == bool(0):

self.G.add_edge(’x{0}’.format(j+1),’z{0}’.format(i+1))

zi-uj interactions, symJac_D

for i in N.arange(0,n_z):

for j in N.arange(0,n_u):

dij = symJac_D[i,j].toScalar()

if isZero(dij) == bool(0):

self.G.add_edge(’u{0}’.format(j+1),’z{0}’.format(i+1))

58

Appendix F

The Python script for
generateGraph() and
decomposeGraph()

def generateGraph(self,toFile):

’’’

Author: Anushka Perera, PhD candidate, Telemark University College, Porsgrunn.

Email - anushka.perera@hit.no / anushka_mrt@yahoo.com

Tel - 0047 450 19 636

03rd January 2014

This function does:

(1) Generate Graph.

self.G.write(’{0}.dot’.format(toFile))

self.G.layout(prog=’dot’)

self.G.draw(’{0}.png’.format(toFile))

self.Gnx = ntwx.read_dot(’{0}.dot’.format(toFile))

def decomposeGraph(self):

’’’

Author: Anushka Perera, PhD candidate, Telemark University College, Porsgrunn.

Email - anushka.perera@hit.no / anushka_mrt@yahoo.com

Tel - 0047 450 19 636

03rd January 2014

This function does:

(1) Decompose based on stongly connected components.

Find strongly connected components

G0 = self.Gnx

for m in range(1,self.n_u+1):

G0.remove_node(’u{0}’.format(m))

for m in range(1,self.n_z+1):

G0.remove_node(’z{0}’.format(m))

Gnx_scc = ntwx.strongly_connected_component_subgraphs(G0)

n_scc = len(Gnx_scc)

for i in range(n_scc):

G1 = Gnx_scc[i]

Edges = G1.edges()

Nodes = G1.nodes()

#

59

if len(Edges) != 0:

for j in range(len(Edges)):

self.G.get_edge(Edges[j][0],Edges[j][1]).attr[’color’] \

= "#%2x0000"%(255/n_scc*i)

for k in Nodes:

self.G.get_node(k).attr[’style’] = ’filled’

self.G.get_node(k).attr[’fillcolor’] \

= "#%2x0000"%(255/n_scc*i)

self.generateGraph(self.dotFile)

60

Bibliography

[1] Griewank, A., and Walther, A., “Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation,” SIAM, 2008.

[2] Andersson, J., Akesson, J., and Diehl, M., “Dynamic Optimization with CasADi,” 51st
IEEE Conference on Decision and Control, 2012.

[3] Andersson, J., Houska, B., and Diehl, M., “Towards a Computer Algebra System with
Automatic Differentiation for use with Object-Oriented modelling anguages,” 3rd Interna-
tional Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, 2010.

[4] Andersson, J., Kozma, A., Gillis, J., and Diehl, M., “CasADi Users’ Guide (WORKING
COPY),” 2014.

[5] Di Ruscio, D., “Model Predictive Control with integral action,” lecture notes on SCE4106-
Predictive Control with Implementation, 2013.

[6] Coleman, T. F., and Zhang, Y., “MATLAB Optimization Toolbox, User Guide,” The
MathWorks, Inc., 2013

[7] The MathWorks, Inc., “MATLAB, Mathematics,” http: // www. mathworks. se/ help/

releases/ R2013b/ pdf_ doc/ matlab/ math. pdf , 2013.

[8] Blochwitz, T. (ITI), and Otter, M. (DLR-RM), ”The Functional Mockup Interface for Tool
independent Exchange of Simulation Models,” Modelisar, 2011.

[9] JModelica.org, “JModelica.org User Guide Version 1.12,” Modelon AB, Lund, 2013.

[10] Lie, B. and Hauge, T. A., “Modeling of an industrial copper leaching and electrowinning
process, with validation against experimental data,” In Proceedings SIMS 2008, 49th Scan-
dinavian Conference on Simulation and Modeling, Oslo University college, Oct 7-8, 2008.

[11] Liu, Y.-Y., Slotine, J.-J., and Barabasi, A.-L., “Observability of Complex Systems,” Pro-
ceedings of the National Academy of Sciences, 2013.

[12] Vigerske, S. and Wächter, A., “Introduction to Ipopt: A tutorial for downloading, in-
stalling, and using Ipopt,” 2013.

[13] Wächter, A., and Biegler, L. T., “On the implementation of an interior-point lter line-search
algorithm for large-scale nonlinear programming,” Springer-Verlag, 2005.

[14] Nocedal, J., and Wright, S. J., “Numerical Optimization,” 2nd Edition, 2006.

[15] Reinschke, K. J., “Multivariable Control-A Graph Theoretic Approach,” 1988.

[16] Daoutidis, P., and Kravaris, C., “Structural Evaluation of Control Configurations for Mul-
tivariable Nonlinear Processes,” 1991.

61

HiT Report No. 5

ISBN 978-82-7206-380-0
ISSN 1894-1044

Telemark University College
P.O. Box 203
3901 Porsgrunn

Phone 35 57 50 00
Fax 35 57 50 01
www.hit.no

	HiT Report No.5
	Using CasADi for Optimization and Symbolic Linearization/Extraction of Causality Graphs of Modelica Models via JModelica.Org

