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Abstract: 
The aim of this thesis is to investigate the momentum exchange between the phases in a bubbling fluidized bed. The 
momentum exchange can be described by a drag model. Several drag models with different assumptions are developed.  
The drag models investigated in this work is the Syamlal O’Brien model, the Gidaspow model, Hill Koch Ladd model, the 
RUC model and an iterative version of the Syamlal O’Brien called the Richardson Zaki model. The models have been 
derived and studied in detail.  
 
Simulations are performed with the commercial computational fluid dynamic (CFD) code Fluent 6.3. Different models for 
granular material in fluidized beds are available in Fluent 6.3. The models are mostly based on the kinetic theory granular 
flow (KTGF). The Syamlal & O’Brien drag model and the drag model developed by Gidaspow are included in Fluent 6.3. 
The Hill Koch Ladd model, the RUC model and the Richardson Zaki model are implemented in Fluent by the author.  
Implementation of models in Fluent 6.3 is performed by using the user defined functions (UDF). The UDFs are written in 
C-code.   
 
Preliminary simulations of a two dimensional fluidized bed with a central jet, are performed to investigate the effect of 
using turbulence models in the simulations. The laminar model gives results that agree well with experiments, and the 
turbulence models are not included in the further simulations.  
 
Simulations of bubble behaviour in two and three dimensional fluidized bed with uniform inlet gas distribution are 
performed. Simulations in three dimensions are limited to investigate the default settings in Fluent 6.3 for two different 
drag models. The simulations are compared to experimental data, and the results are presented in a paper accepted for 
HEFAT 2008.  
 
The main part of the simulations is done in two dimensions due to the limit of time and computational effort during this 
thesis. The two dimensional simulations with homogeneous air distribution in the bottom of the bed, is divided into five 
cases where different setups are investigated. The simulations are compared to experiments performed on a three 
dimensional fluidized bed, and the results agree well according to bubble frequency. It is found that a setup including 
multiple particle phases, free slip conditions at the walls of the bed, a second order discretization scheme for the 
momentum and the RUC drag model, gives the best agreement with the experimental results. This part of the thesis is 
presented in an abstract submitted to the SIMS 2008 conference. Further work has to be done to verify the suggested setup.   
 

Telemark University College accepts no responsibility for results and conclusions presented in this report.  
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Preface

This work is based on the Doctoral thesis of Britt Halvorsen. The Interest was
to investigate the e¤ect of drag models in simulation of a bubbling �uidized
beds. There was planed to do all the simulations in 3D, but this was chosen
to be simpli�ed to 2D. The reason for this was the limiting factor of time and
computational e¤ort.
One of the goals of this thesis was to implement the RUC drag model into

Fluent 6.3. This model is made at the University of Stellenbosch in South Africa.
This model has shown good results.
Most of the granular properties models is based on the Kinetic Theory of

Granular Flow (KTGF) . This theory has been investigated and tried to describe
as simple as possible. The drag models are explained in detailed in the report.
I like to thank my supervisor Britt Halvorsen for great supervising both in

thesis and life and to inviting me to South Africa. Also I like to tank Professor
Du Plessis and Sonia Wouldberg for taking care of us and guiding us in South
Africa.
So�ane Benyahia at the National Energy Technology Laboratory has also

been very helpful to me.
At the last I like to thank Mr. Knut Vågsæther for having the ability to

always have the correct answer.
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Nomenclature

Latin letters
A Constant in RUC drag model [-]
A Constant in Syamlal O�Brien drag model [-]
A� Constant in Syamlal et al frictional viscosity model [Pa]
Ap Projected area [m2]
Ar Archimedes number [-]
B Constant in RUC drag model [-]
B Constant in Syamlal O�Brien drag model [-]
CD Drag factor on single particle [-]
C 0D Drag factor on multiparticle system [-]
ci A distance in the HKL drag model [m]
ds Diameter of phase s [m]
ess restitution coe¢ cient for phase s [-]
f Kinetic energy loss factor in the Burke-Plummer equation [-]
F Drag factor in HKL drag model [-]
Fdr The general drag force [kg�m/s2]
fi particle distribution function [-]
Fr Friction factor from Johnson et al frictional viscosity [-]
F0,F1,F2,F3 Drag constants in the HKL drag function [-]
g The gravitational acceleration

�
9:81 m=s2

�
[m/s2]

g0 The general radial distribution function [-]
g0;ss The radial distribution function for phase s [-]

I The unit tensor [-]
I2D The second invariant of the deviatoric stress tensor [-]
k Material yield [-]
k�s Conductivity of granular temperature [kg/m�s]
Ksg Drag factor of phase s in phase [kg/m3�s]
Ksp Drag factor of a single particle [kg/m3�s]
l A length [m]
lmf Mean free path for a particle [m]
�l A small length [m]

v



NOMENCLATURE vi

n Coe¢ cient in the Richardson and Zaki drag correlation [-]
n Factor used in the Johnson et al frictional viscosity [-]
np Number of particles or tubes [-]
n� Constant in Syamlal et al frictional viscosity model [-]
p Constant from Johnson et al frictional viscosity [-]
Ps Solids pressure [Pa]
�P Pressure drop [Pa]
Q Volumetric �ow rate [m3/s]
r � qs Di¤usive �ux of �uctuating energy [kg/m�s3]
�!r Position of a lattice node in the Lattice Boltzmann theory [-]
Re The Reynolds number [-]
Rem The modi�ed Reynolds number in the Richardson Zaki correlation [-]
Res The particle Reynolds number [-]
Res;r The particle Reynolds number based on the radius [-]
Ss Deformation rate [1/s]
t Time [s]
�t Interval [s]
U Velocity [m/s]
ui Phase velocity of phase i [m/s]
us;i and us;j Solid phase velocity in the i and j direction [m/s]
ux Velocity in the x direction [m/s]
vr The relative velocity correlation [-]
vsys Terminal settling velocity of a system of particles [m/s]
vsphere Terminal settling velocity of a sphere [m/s]
Vtube Volume of a tube [m3]
Vsolids Volume of solids [m3]
w Factor in the HKL drag correlation [-]
@x A small distance [m]



NOMENCLATURE vii

Greek letters
�g Gas phase volume fraction [-]
�s Solid phase volume fraction [-]

�s

Dissipation of granular temperature [kg/m�s3]
� Kronecker delta [-]
� Change in variable, Final-Initial [-]
� A coe¢ cient for simplifying [-]
r The Dell operator [1/m]
�s Granular temperature [m2/s2]
�s Bulk viscosity [kg/m�s]
� Viscosity [kg/m�s]
�g Gas viscosity [kg/m�s]
�s Granular viscosity [kg/m�s]
� The irrational number � [-]
�g Gas density [kg/m3]
�s Solid density [kg/m3]
�� Density di¤erence [kg/m3]
� The stress-strain tensor [Pa]
� Angle of internal friction [ �]
� Shape factor used in the Ergun equation [-]
� Tortuosity [-]
�0 Radial distribution function for a gas [-]

i Collision term in the Lattice boltzmann equation [-]

Subscripts

col Collisional
dil Dilute
fr Frictional
g Gas or �uid phase
int Internal
k Phase k used as the number k phase
kin Kinetic
m General solid phase m
max Maximum
min Minimum
pores Pores in a porous media
q General phase q
s Solid phase s
st All the solid phases.



Introduction

Fluidized beds are widely used in many industrial applications. In this work the
focus will be to do simulations of experimental equipment at Telemark Univer-
sity College/Tel-Tek. The simulations can be used for scaling the parameters
produced in the experimental equipment into industrial equipment. The main
focus in this work will be to describe the bubbling frequency in the �uidized
bed. This parameter describe the mixing behavior of the �uidized bed and is
important when a �uidized bed with a granular catalyst is described. The econ-
omy of the process is related to how the surface of the granular catalyst is in
contact with the �uid passing through. If the �uidized bed works correctly the
catalytic reactions will be homogeneous in all of the reactor. If the �uidized bed
works incorrect, canalization might occur and the catalyst has to be replaced
before all is used.
In �uidized bed several codes are developed for simulations. This work will

have focus on using a commercial CFD code. The code used is Fluent 6.3. User
de�ned functions are used to describe the models used which is not included in
the software.
Simulations will be both in 2D and 3D. The grid resolution is varied from

case to case.
This work will contain the theory of some di¤erent models used to describe

the properties of a granular material in a �uidized bed. The main investigations
of the models used in this work is the drag models describing the momentum
exchange between the phases. The drag models which are going to be used is:

� Gidaspow

� Syamlal and O�Brien

� RUC

� Hill Koch Ladd

� Richardson and Zaki (Iterative Syamlal and O�Brien)
An evaluation of which drag model who gives the bubble frequency closest

to the experimental data is included.
The e¤ect of more than one particle phase in the simulations to better de-

scribe the real data for the particles used in the experiment will be done, but
the main study will be with one particle phase.
In the University of Stellenbosch a drag model called the RUC model is

developed . This drag model will be implemented in Fluent 6.3 and compared
with the existing drag models.
The results of this work will be used to write a paper to a conference.
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Part I

Theory of multiphase
modeling of bubbling

�uidized bed
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Chapter 1

Multiphase modeling of
granular �ow in Fluent 6.3

In this study the Eulerian multiphase model is used. This model will calculate
one transport equation for the momentum and one for continuity for each phase.
The theory for this model is taken from the reference [1].

1.1 Continuity equation

The volume fraction for each phase is calculated with an continuity equation.
Equation (1.1) is a general example of the qth phase volume fraction equation.

1

�rq

 
@

@t

�
�q�q

�
+r �

�
�q�q

�!u q
�
=

nX
p=1

( _msq � _msp)

!
(1.1)

Equation (1.1) is valid for both the gas phase and the solid phase. The
total continuity will be all the volume fraction equations added. The �rq is
the reference density, or the volume averaged density. The right hand side of
equation (1.1) is used where it is mass transfer between phases.

1.2 Gas phase momentum equation

The momentum equation for the gas is like equation (1.2).

@
@t

�
�g�g

�!u g
�
+r �

�
�g�g

�!u g�!u g
�
= ��grp+r � �g + �g�g�!g

+
Pn

p=1 (Kpg (
�!u p ��!u g) + _mpg

�!u pg � _mgp
�!u gp)

+
��!
F g +

�!
F lift;g +

�!
F vm;g

�
(1.2)

Equation (1.2) can be simpli�ed to a simpler expression when assuming
no mass transfer between the phases and no lift and virtual mass force. The
simpli�ed expression will be like equation (1.3).

2



CHAPTER 1. MULTIPHASEMODELINGOFGRANULAR FLOW IN FLUENT 6.33

@

@t

�
�g�g

�!u g
�
+r�

�
�g�g

�!u g�!u g
�
= ��grP +r� �g+�g�g�!g +Ksg (

�!u s ��!u g)
(1.3)

The �g is the gas phase stress-strain tensor is shown in equation (1.4).

�g = �g�g
�
r�!u g +r�!u Tq

�
+ �g

�
�q +

2

3
�g

�
r � �!u gI (1.4)

1.3 Granular phase momentum equation

The assumptions for the granular phase equation (1.5) is the same as for the
gas phase.

@

@t
(�s�s

�!u s)+r�(�s�s�!u s�!u s) = ��srP+r�� s+rPs+�s�s�!g +Kgs (
�!u g ��!u s)

(1.5)
The momentum equation for gas and granular phase is quite similar except

for the granular pressure in the granular phase. Here the stress-strain tensor � s
is like equation (1.6).

� s = �s�s
�
r�!u s +r�!u Ts

�
+ �s

�
�s +

2

3
�s

�
r � �!u sI (1.6)



Chapter 2

Theory of properties
models in Fluent 6.3

To describe the behavior of the granular material in a �uidized bed the properties
needs to be de�ned. The granular phase is de�ned by property models for the
interactions with other particles and �uid phases.

2.1 Granular viscosity

In Fluent 6.3 the granular viscosity is a summation of three viscosity contribu-
tions. The collisional, kinetic and frictional viscosities is combined in equation
(2.1).

�s = �s;col + �s;kin + �s;fr (2.1)

The collisional viscosity is a viscosity contribution due to collisions between
particles is taken from the kinetic theory of granular �ow of Lun et al [2]. The
collisional viscosity contribution is shown in equation (2.2).

�s;col =
4

5
�s�sg0;ss (1 + ess)

r
�s
�

(2.2)

In equation (2.2), g0;ss is the radial distribution function and is explained in
chapter 2.7, �s is the granular temperature and is explained in chapter 3 and
ess is the restitution coe¢ cient and is explained in chapter 3.6.
In the granular viscosity option in Fluent 6.3 it is possible to choose two

models for the kinetic viscosity, either (2.4) or (2.7). Fluent 6.3 calculate the
frictional viscosity but this is de�ned in another option. The contribution from
the di¤erent viscosities vary in di¤erent regimes. In the dilute regime the prob-
ability of particle collisions is low, and the largest contribution in dilute regimes
is the kinetic viscosity. In very dense particle regimes the frictional viscosity
has the largest contribution. The very dense region will be close to the max-
imum packing limit. In between the dense and dilute regimes its the viscous
regime.The particles will move like a �uid, but the probability of particle colli-
sions is large. Since the particles have a high probability of collisions they will
most probably not get a high speed. This means that the kinetic contribution
will be very small. The particles will not get a high speed cause they collide

4



CHAPTER 2. THEORY OF PROPERTIES MODELS IN FLUENT 6.3 5

all the time. The collisional viscosity will have the highest contribution in the
viscous regime.

2.1.1 Syamlal et al

The model for kinetic viscosity by Syamlal et al shown in equation (2.3) is based
on the modi�ed kinetic theory for smooth, inelastic spherical particles by Lun
et al [2]. This model assumes that the kinetic contribution to the viscosity is
neglectable in the dilute region. [3]

�s;kin =
�sds�s

p
�s�

6 (3� ess)

�
1 +

2

3
(1 + ess) (3ess � 1)�sg0;ss

�
(2.3)

2.1.2 Gidaspow et al

The theory of the Gidaspow et al model for the collisional viscosity is taken
from the reference [4].
The model of kinetic viscosity by Gidaspow et al (2.4) is a extension of the

kinetic theory in the reference [5, 6].

�kin =
2�dil

(1 + ess) g0;ss

�
1 +

4

5
g0;ss�s (1 + ess)

�2
(2.4)

The model is based on the dilute viscosity of a gas and is taken from the
kinetic theory of gasses. It assumed that a molecule is hard spherical particle.
It is also assumed that the particles in the dilute region like a molecule in
low pressures do not collide. The restitution coe¢ cient equal 1 and the radial
distribution function equal 1. This will make the dilute viscosity a function like
equation (2.5).

�dil = (constant) � (bulk density ) � (mean free path) � (oscillation velocity)
(2.5)

According to the reference [4] the constant equal 5
p
�

96 the particle bulk den-

sity for dilute regimes is �dil = �s�s the mean free path is lmf =
�
ds
�s

�
and the

oscillating velocity is
p
�. When multiplying this factors the expression for the

dilute viscosity is (2.6).

�dil =
5
p
�

96
(�s�s)

�
ds
�s

�p
� (2.6)

In Fluent 6.3 the kinetic viscosity is volume averaged which means �kin =
�s;kin�s. By inserting this equation (2.6) into the extensions of the kinetic
theory [5, 6] which is corrected for large volume fractions of particles and non
unity restitution coe¢ cients the expression for the kinetic viscosity becomes
(2.7).

�s;kin =
10�sds

p
�s�

96�s (1 + ess) g0;ss

�
1 +

4

5
g0;ss�s (1 + ess)

�2
(2.7)

If the volume fraction of the solid material approaches zero, and the resti-
tution coe¢ cient approaches one, the kinetic viscosity will be equal the dilute
viscosity.
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2.2 Granular bulk viscosity

The granular bulk viscosity is the resistance the granular particles have to com-
pression or expansion. The model is developed from the kinetic theory of gran-
ular �ow and is taken from Lun et al [2]. This model is like the equation (2.8).

�s =
4

3
�s�sds (1 + ess)

r
�s
�

(2.8)

2.3 Frictional viscosity

The frictional viscosity is the contribution of the friction between particles to
the total shear viscosity. When the solids volume fraction �s gets close to the
maximal packing limit �s;max the particles get very close to each other. The
main stress will be due to friction and rubbing between the particles.
According to the reference [7] the stresses in the frictional regime is described

by the a phenomena rather than the mechanistic models describing the viscous
regime. The theory for the frictional pressure is adopted from the soil mechanics.
This theories is a combination of a yield function and a �ow rule. The yield
function is the function of the stress tensor for a material about to yield. An
example of this can be if a sand castle is build upon a horizontal plate, and one
side of it is lifted. The stress tensor describing the moment right before it will
break and fall down on the opposite side of where it is lifted is the yield function
for the system. The �ow rule is a set of relations between the components of
the stress and the rate of strain.
In Fluent 6.3 it has to be de�ned a limit for the frictional viscosity. This

limit is the volume fraction of solids �s reach a chosen value where the frictional
regime starts to get important. At this limit the calculation of the frictional
viscosity will begin The frictional viscosity will not contribute in the viscous
or dilute regimes. And of this reason this so called "switch" is made to turn
of and on the frictional viscosity calculation. This calculations of the frictional
viscosity takes lots of computational e¤ort to calculate. Of this reason a limit
for the frictional stress calculations is made [3]. Fluent 6.3 has an option to
disable the calculation of the frictional viscosity completely even in the high
fractions of solids [1]. In Fluent 6.3 has two models for the frictional viscosity.

2.3.1 Schae¤er

The Schae¤er expression for the frictional viscosity is shown in equation (2.9).

�s;fr =
Ps;fr sin�

2
p
I2D

(2.9)

In equation (2.9) Ps;fr is the frictional pressure. The constant �, is the angel
of internal friction. The I2D is the second invariant of the deviatoric stress tensor
[1]. When the angle of internal friction goes to zero, the frictional viscosity will
converge zero.
The second invariant of the deviatoric stress tensor can be written as (2.10).
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I2D =
1

6

h
(Ds11 �Ds22)2 + (Ds22 �Ds33)2 + (Ds33 �Ds11)2

i
+D2

s12+D
2
s23+D

2
s31

(2.10)
The Ds::: from equation (2.10) can be written in the general form showed in

equation (2.11).

Ds;ij =
1

2

�
@us;i
@xj

+
@us;j
@xi

�
(2.11)

If the stress tensor is considered and the hydrostatic pressure is subtracted
from it the stresses governing volumetric deformation is left. This gives three
invariants of the stress tensor. The �rst invariant is the hydrostatic stress or
pressure. The second invariant is related to the shear stresses. The third express
the deformation behavior of a formed part. [8, 9] In the von Mises yield criteria
it says at it is a correlation between the second invariant of the stress tensor and
a constant k. This constant k is where the material yield. According to Schae¤er
[10] the constant k equals sin (�) where � is the angle of internal friction.
Drucker and Prager were the �rst to propose a principle of plastic �ow to

granular �ow [11]. They proposed a balance between the hydrostatic pressure
and the square of the second invariant of the deviatoric stress tensor. By com-
bining this with a �ow rule Schae¤er made the model for the frictional viscosity.

2.3.2 Johnson et al.

In the model from [11] for the frictional viscosity it is proposed a model that
relates the normal forces to the shear forces. The model is for fully developed
plane shear of a non-cohesive material. It is assumed that the critical state and
the shear stresses is proportional to the normal stress. The theories for this
model is in equation (2.12) are based on a empirical values cause the problem
is in nature very complicated and is dependent on quantities not directly on
particle diameter or roughness of the particles.
The model for frictional viscosity from [11] is based on the Coulombs law

[11] and is shown in equation (2.12).

�s;fr = Ps;fr sin (�) (2.12)

The angle of internal friction, �, is in the reference [11] set to 28.5 �.

2.4 Frictional pressure

The frictional pressure is the pressure modeled when the particles is so close
that the particles will be in contact all the time. The random motion in the
particles will be minimal. The particles will move very slow compared to the
viscous regime. In the frictional or plastic regime the pressure will get higher
than in the other regimes cause here the particles have very little place to move.
The stresses due to contact between particles is calculated separately from

the pressure due to collisions and kinetics (solids pressure explained in chapter
2.6).
In Fluent 6.3 three models for the frictional pressure is included.
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2.4.1 Johnson et al

The model Johnson et al for the frictional pressure (2.13) is experimental based.
In the [12] they claim that the description of the quasi static behavior of a gran-
ular �ow in a dense region is in nature mostly empirical. This require lots of
experimental data to describe any material to �nd the correct behavior in the
dense or frictional regime. The model from Johnson et al is for a "dry" cohe-
sionless particulate �ow, which means that no �uid is surrounding the particles
and they will not stick to each other. Experimental observations show that
the pressure will increase rapidly with increasing volume fraction in the dense
region, like when liquid is compressed. Johnson et al make a simple algebraic
expression for the solids pressure in the frictional region.

Ps;fr = Fr
(�s � �s;min)n

(�s;max � �s)p
(2.13)

Where Fr, �s;min, n and p is experimental based parameters. In the reference
[11] the parameters proposed for Fr, �s;min, n and p is 3.65 e�32 ,0.5, 0 and 40.
In later work by the reference [12] the parameters where corrected to 0.05, 0.5, 2,
and 5. The �s;min is the frictional limit where the frictional particle interactions
start to occur. This parameters is made for spherical glass particles with the
diameter of 1mm and the density �s = 2900 kg=m3. The parameters used in
Fluent 6.3 is Fr, �s;min, n and p and are modi�ed by [13] to 0.05, 0.5, 2, 3.
Fluent 6.3 uses this modi�cation but �s;min is possible to set in user interface.
The default value for �s;min is 0.61. Fluent have also modi�ed the parameter
Fr to be a function of �s which is shown in equation (2.14).

Fr = 0:1�s (2.14)

2.4.2 Syamlal et al

The model for the frictional pressure from Syamlal et al is a typical power law
which starts at the frictional packing limit. This model has the form like in
equation (2.15).

Ps;fr = A
� (�s � �min;fr)n

�
(2.15)

Where the constants A� and n� is 1025 and 10.

2.4.3 Based-KTGF

The based-KTGF uses the kinetic theory of granular �ow. This theory includes
the radial distribution function and the granular temperature. The radial dis-
tribution will go to in�nity as the solids volume fraction goes to the maximal
packing limit. This can be coupled to the solids pressure by a solids pressure
model. In the based-KTGF model the frictional pressure equals the solids pres-
sure. This model is the default model for frictional pressure in Fluent 6.3. [1]
The based-KTGF model is not appropriate for the Syamlal O�Brien radial

distribution function explained in chapter 2.7.2 because this model do not have
a asymptotic behavior at high volume fractions of particles.
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2.5 Granular conductivity

The granular conductivity describes the di¤usive �ux of granular energy or
granular temperature. The default model in Fluent 6.3 is the model by Syamlal
et al, but a model by Gidaspow is also available.

2.5.1 Syamlal et al

The model for the granular conductivity by Syamlal et al shown in equation
(2.16) is taken from Lun et al�s kinetic theory of granular �ow [3]. The model is
a modi�cation of the granular conductivity of a perfectly elastic particle, to take
into account inelastic collisions between particles when the restitution coe¢ cient
is less than one (ess < 1) [2].
The model is shown in equation (2.16).

k�s
=
15ds�s�s

p
�s�

4 (41� 33�)

�
1 +

12

5
�2 (4� � 3)�sg0;ss +

16

15�
(41� 33�) ��sg0;ss

�
(2.16)

2.5.2 Gidaspow

The other option in Fluent 6.3 is the model for granular conductivity by Gi-
daspow shown in equation (2.17). This is based on kinetic gas theory and
modi�ed to particle �ow [4].
The model by Gidaspow is shown in equation (2.17).

k�s
=

150�sds
p
��

384 (1 + ess) g0;ss

�
1 +

6

5
�gg0;ss (1 + ess)

�2
+2�s�

2
sds (1 + ess) g0;ss

r
�s
�

(2.17)
This model di¤ers signi�cant from the model by Syamlal et al shown in

equation (2.16) at restitution coe¢ cients signi�cant di¤erent from one.

2.6 Solids pressure

In regions where the particle volume fraction �s is lower than the maximum
allowed fraction �s;max, the solids pressure is calculated independently and used
in the pressure gradient term rps. The solid pressure is composed of a kinetic
term and a term due to particle collisions. [1] In dense regions of the �uidized
bed the collisional term is the most dominant. [14] Experiments by Campell
and Wang [14] show that the solids pressure is highest when the �uidized bed is
not �uidized. It will decrease until the minimum �uidization is engaged. When
the gas velocity is further increased the solids pressure is also increased due to
particle collisions. [14]
Fluent 6.3 has three models for calculating the solid pressure.

2.6.1 Lun et al

The Lun et al model shown in equation (2.18) compensate for both kinetic and
the collisional contribution. It is derived from the kinetic theory of granular
�ow. [2]
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ps = �s�s�s + 2�s (1 + ess)�
2
sg0;ss�s (2.18)

2.6.2 Syamlal O�Brien

The Syamlal O�Brien model for solids pressure shown in equation (2.19), is
almost the same as the Lun et al model (2.18) except that the Syamlal O�Brien
model neglect the solids pressure produced by the kinetic term.

ps = 2�s (1 + ess)�
2
sg0;ss�s (2.19)

2.6.3 Ma Ahmadi

The Ma Ahmadi for solids pressure (2.20) is some what similar to the Lun et al
model shown in equation (2.18) but it takes in account the frictional viscosity
which is explained in chapter 2.3. The model is derived using turbulence theory
from a modi�ed k-" turbulence model. The Ma Ahmadi model for solids pressure
should be used together with the Ma Ahmadi model for radial distribution
function which is explained in chapter 2.7.3. [1]

ps = �s�s�s

�
(1 + 4�sg0;ss) +

1

2

�
(1 + ess)

�
1� ess + 2�fric

���
(2.20)

2.7 Radial distribution function

The radial distribution function g0 is a function that modify the probability of
collisions between particles. It can be described as equation (2.21). [1]

g0 =
l + dp
l

(2.21)

In this function (2.21), dp is the particle diameter and l is the length between
the particles. When the particles are very close the length l goes to zero and
the radial distribution function, g0, goes to in�nity. Then no motion is possible.
This is the case when the packing of the particles is very dense. In a dilute
solution the particles have a very low volume fraction and then the probability
of collisions are very low. In such a case the distance between the particles is
large, and the radial distribution function g0 will go to one. This theory is
closely linked to the gas theory [1]. In the gas theory by the reference [15] the
radial distribution is �0. This function can be transformed into a function only
depending the solid phase volume fraction �s. The expression for the radial
distribution is as in equation (2.22).

�0 = 1 +
5

2
�s + 4:5904�

2
s (2.22)

In the granular theory the radial distribution is modi�ed from the �0 to g0
and the expression is in general like equation (2.23). This equation was �rst
given by Ogawa et al [16].

g0 =

"
1�

�
�s

�s;max

� 1
3

#�1
(2.23)
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The comparison between the models is shown in Figure 2.1. It is assumed
that the �s;max = 0:63.

Figure 2.1: Radial distribution from granular theory and gas theory

Equation (2.23) takes only in account one particle phase. To take this into
account Fluent 6.3 has four di¤erent models for the radial distribution function
for more than one particle phase [1]. The g0 is also modi�ed when the number
of solid phases is greater than one as in equation (2.24).

g0;sm =
dmg0;ss + dlg0;mm

dm + ds
(2.24)

This means that it takes into account the direct e¤ect of solid phase s on
solid phase m and also the indirect e¤ect from l on all the other solid phases.

2.7.1 Lun et al

The Lun et al model for the radial distribution showed in equation (2.25) is
quite similar to the general form given by Ogawa et al in equation (2.23) [16]
but it have an extra therm who takes into account more than one particle phase.

g0;ss =

"
1�

�
�st

�st;max

� 1
3

#�1
+
1

2
ds

NX
k=1

�k
dk

(2.25)

In equation (2.25) index st denotes the sum of all the particle phases. The
index s is the s-th solid phase and k is all the solid phases (2.26).

�st =
NX
k=1

�k (2.26)

If the number of solid phases equals one, equation (2.25) will be reduced to
the proposed model by Ogawa et al shown in equation (2.23).
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2.7.2 Syamlal O�Brien

The model by Syamlal and O�Brien (2.27) was derived by Lebowitz [17] and is
for a mixture of hard spheres [3].

g0;ss =
1

(1� �s)
+

3
�PN

k=1
�k
dk

�
(1� �s)2 (dl + dk)

dkdl (2.27)

Here (2.27) the e¤ect of other solid phases is included in the model.

2.7.3 Ma Ahmadi

The model for the radial distribution function by Ma Ahmadi (2.28) is based
on the turbulent kinetic energy in the solid phase. The model is derived from a
modi�ed version of the k-" model. This model takes into account the crowding
e¤ect and is given for a �s;max = 0:64356. [18]

g0;ss =
1 + 2:5�s + 4:5904�

2
s + 4:515439�

3
s�

1�
�

�s
�s;max

�3�0:678021 +
1

2
ds

NX
k=1

�k
dk

(2.28)

2.7.4 Arastoopour

The model for radial distribution by Arastoopour [19] is shown in equation
(2.29).

g0;ss =
1�

1� �s
�s;max

� + 3
2
ds

NX
k=1

�k
dk

(2.29)

This model (2.29) is some what similar to the model by Syamlal O�Brien in
equation (2.27), but it di¤ers in the high solids fractions. This model �ts better
with the data from the molecular dynamic simulator by Alder and Wainwright.
[20]

2.7.5 Comparing the di¤erent models for radial distribu-
tion in Fluent 6.3

A study of the di¤erent radial distribution functions is performed. The result
is shown in Figure 2.2 where �s;max = 0:64356 and the diameter of the solid
phase is set to 490 �m.
This Figure 2.2 show that the Ogawa et al (2.23) and the Lun et al (2.25)

gives similar results, which is reasonable. They also give a high probability for
collisions at high concentrations. The Ma Ahmadi model in equation (2.28)
and the Arastoopour model in equation (2.29) give a quite similar results which
seems reasonable in comparing with data from [20]. The Syamlal O�Brien model
in equation (2.27) seems to under predict the probability of collisions.
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Figure 2.2: Comparison of all the radial distribution functions in Fluent 6.3



Chapter 3

Granular temperature

The granular temperature is a measurement of the random motion in particles.
It is proportional to the mean square of the random motion of particles. Due
to mechanical energy transferred to the granular particles generation of random
motion in the particles is made. This motion will further make internal energy
in the particles. [1, 4] An example is if two particles collide. If the collision is a
perfect inelactic collision, all the kinetic energy is conserved. In one dimension
this means that the velocity of the particles will be the same before and after
the coalition, but in the opposite direction. In real life the coalition is not
perfect and some of the particle will have a increase in thermal temperature. If
more particles are included and in two and tree dimensions, the motion of the
particles will start to get random. The measurement of this motion is called
granular temperature.
It is an option in Fluent 6.3 if the granular temperature shall be solved

as a partial di¤erential equation or a algebraic expression. In the algebraic
expression the di¤usion and the convection is neglected. [1]

3.1 Transport equation for granular tempera-
ture

The transport equation for granular temperature � for solid phase s, can be
written as equation (3.1) [6]

3

2

�
@

@t
(�s�s�s) +r � (�s�s�!u s�s)

�
= � s : r�!u s�r� qs�
�s

�3Ksg�s (3.1)

In words this equation (3.1) can be explained as equation (3.2).

Transient term + Convective term = Solid phase stress -Flux of �uctuating energy
- Collisional energy dissipation
+ Exchange term with phase g

(3.2)
The right hand side of the transport equation for granular temperature is

further explained in the following chapters. All the de�nitions are taken from
the reference [6]

14
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3.2 Solid phase stress

The generation of granular temperature is due to solid stresses.
� s is the solid phase stress and can be written as equation (3.3).

� s = [�Ps + �s�sr � �!u s] I � 2�s�sSs (3.3)

In equation (3.3), ps is the solid pressure and is explained in chapter 2.6,
�s is the granular bulk viscosity and is explained in chapter 2.2, I is the unit
tensor, �s is the granular viscosity and is explained in chapter 2.1 and Ss is the
deformation rate and is written as equation (3.4).

Ss =
1

2

h
r�!u s + (r�!u s)T

i
� 1
3
r � �!u sI (3.4)

3.3 Flux of �uctuating energy

The r � qs term describe the di¤usive �ux of �uctuating or granular energy.
[1] qs can be written as equation (3.5).

qs = k�s
r�s (3.5)

k�s
is the granular conductivity of granular temperature. This coe¢ cient is

further explained in th chapter 2.5.

3.4 Collisional energy dissipation


�s
is the dissipation of granular temperature. Due to collisions between par-

ticles in the phase s, the energy in the particles will dissipate. The algebraic
equation for collisional energy dissipation is derived by Lun et al [2] and showed
in equation (3.6).


�s
=
12
�
1� e2ss

�
g0;ss

ds
p
�

�s�
2
s

p
�3s (3.6)

When the restitution factor e goes to 1, the dissipation of the granular
temperature goes to zero. This means that the particles are perfectly elastic.
[2]

3.5 Exchange term with phase g

The exchange coe¢ cient Ksg is the drag factor of the particles. This is further
explained in chapter 4.

3.6 Restitution coe¢ cient

The restitution coe¢ cient ess specify the the coe¢ cient of restitution for colli-
sions between particles. The coe¢ cient ess is for the collisions between particles
of the solid phase s. It is also possible to specify the coe¢ cient of restitution
between the solid phase s and other particle phases. [1]
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The restitution coe¢ cient compensate for the collisions to be inelastic. In
a completely elastic collision the restitution coe¢ cient will be one. In a colli-
sion between particles some "heat" will be generated. This "heat" will be the
granular temperature.
Further investigation of the parameter ess has not been done and the default

restitution coe¢ cient from Fluent 6.3 has been used. This coe¢ cient is 0.9.



Chapter 4

Drag models

To describe the momentum exchange between phases drag models are made.
The drag models available in Fluent 6.3 suited for a �uidized bed simulation is
the Gidaspow model and the Syamlal O�Brien model. Both are derived in the
following chapters. Some new models are also investigated.

4.1 Syamlal O�Brien

The drag model of Madhava Syamlal and Tomas O�Brien is a correlation between
the drag of a sphere and a multiparticle system. The model is shown in equation
(4.1).

Ksg =
3�g�s�g
4dsv2r

CD j�!us ��!ugj (4.1)

The derivation of this model start with the drag model for a uniform sphere.
This can be derived from the dynamic pressure Pdyn = 1

2�u
2. Where the dy-

namic pressure is a force per a area. The dynamic pressure is multiplied by a
drag factor CD resulting in a drag force shown in like equation (4.2).

Fdr =
1

2
�gCDU

2Ap (4.2)

This expression (4.2) is the total drag force but it is choose to have it on the
form Fdr = KsgU where U is the interracial velocity di¤erence.

Fdr = Ksg (
�!us ��!ug) (4.3)

By using this (4.3) the drag model Ksg is made.
For a volume the number of equally sized particles per volume np will be

(4.4).

np =
6 (1� �g)
�d3p

(4.4)

The next thing to do is to multiply the drag model for one particle with the
number of particles per volume shown in equation(4.5).

Ksg =
1

2
�gCDUA

6 (1� �g)
�d3p

(4.5)

17
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The area used in the drag factor Ap is the projected frontal area of the
particle. And here it is used the super�cial velocity U = �g j�!us ��!ugj. Then
inserting this into the equation (4.5) to make the expression (4.6).

Ksg =
3�g�g (1� �g)

4dp
CD j�!us ��!ugj (4.6)

The model shown in equation (4.6) is the drag for all the particles in the
volume acting alone, but in a �uidized bed they will act as a multiparticle
system. To �nd this model, the drag factor CD can be modi�ed to a drag factor
C 0D for a multiparticle system.
To �nd this a dimensional analyses of both the scenario with single particles

and the multiparticle case is performed. The single particle may be written as
equation (4.7).

f
�
�g;��; g; �g; l

�
(4.7)

This means that the system is a function of the �uid density, �g, the density
di¤erence of the �uid and the particles, ��, the gravitational forces, g, the
viscosity of the �uid surrounding the particles, �g and a length scale. The
dimensions of the properties are

�g = L�3M

�� = L�3M

g = MT�2

�g = ML�1T�1

l = L

Where L is a length, M is a mass and T is a time. By multiplying all the
properties and rise them to the power of [a; b; c; d; e] we get the expression shown
in equation (4.8). �

�g
�a
(��)

b
(g)

c �
�g
�d
(l)

e (4.8)

The matrix for the dimensions will be

a b c d e
L �3 �3 1 �1 1
M 1 1 0 1 0
T 0 0 �2 �1 0

=

r
�5
3
�3

By solving this matrix to get the dimensions correct (all the numbers in the
r-column =0) it is found that d = �2 and e = 3. This will give the dimensionless
size shown in equation (4.9).

�g��gl
3

�2g
(4.9)

The characteristic length scale of this system is the particle diameter and
�� =

�
�g � �s

�
This dimensionless size can be found in the literature to be

the Archimedes number shown in equation (4.10) and relates the gravitational
forces to the viscous forces.

Ar =
�g
�
�g � �s

�
gd3s

�2g
(4.10)
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When the multiparticle system is considered and it is assumed that it is no
solid stress [4]. In The drag model by Syamlal O�Brien, this is assumed [21]. In
this case the Archimedes number is the same for a single particle system and
a multiparticle system. Then with that assumption the drag factor CD in the
single particle can be related to the multiparticle drag factor C 0D. This can be
done by doing a dimension analyses of the drag factor CD and C 0D. This is done
in the reference [21]. The result found is CD = f (Re) and C 0D = f (Res; �g).
Under terminal settling conditions the drag forces will equal the gravitational
force minus the buoyant force of the particle. this is shown in equation (4.11).

Fg � Fb = Vp
�
�s � �g

�
g (4.11)

The momentum balance is Fdr = Fg � Fb. And by writing this in a dimen-
sionless form the correlation for terminal settling of a single particle system will
be

3

4
CD (Re)Re

2 = Ar (4.12)

For a multiparticle system this correlation will be

3

4
C 0D (Res; �g)Re

2
s = Ar (4.13)

Since the Archimedes number is assumed equal for a single and a multi-
particle system, equation (4.12) and (4.13) can be coupled by the Archimedes
number. And by rearranging the correlation between the drag factors will be
like equation (4.14).

C 0D = CD (Re)
Re2

Re2s
= CD (Re)

Re

Res

2

(4.14)

It is introduced a new size which is the ratio between the terminal settling
velocity of a particle in a multiparticle system and a isolated particle. This is
the vr, this is de�ned as (4.15).

vr =
vsys
vsphere

(4.15)

This expression can also relate the Reynolds numbers like equation (4.16).

Re =
Res
vr

(4.16)

By substituting equation (4.16) into equation (4.14) the relation between
CD and C 0D will be like equation (4.17).

C 0D (Res; �g) = CD

�
Res
vr

�
1

v2r
(4.17)

By using the C 0D instead of the CD in the single particle drag model in
equation (4.6) the drag model for the multiparticle system will be like equation
(4.1). Then the drag factor CD in the Syamlal O�Brien model is the single
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particle drag factor given by Dalla Valle [22] modi�ed for the multiparticle
Reynolds number shown in equation (4.18).

CD =

240:63 + 4:8q
Re
vr

352 (4.18)

The velocity ratio vr can be found experimentally from the Richardson and
Zaki [23], but in the Syamlal O�Brien model the vr is taken from the analytical
formula by Garside and Al Dibouni [24]. This model is a curve �tted version of
the Richardson and Zaki equations. The analytical formula is shown in equation
(4.19).

vr �A
B � vr =

0:06Re

vr
(4.19)

If this formula (4.19) is solved for vr the expression will be like equation
(4.20).

vr =
1

2

�
A� 0:06Re+

q
(0:06Re)

2
+ 0:12Re (2B �A) +A2

�
(4.20)

In this equation (4.20) A and B is de�ned as in (4.21).

A = �4:14g

B =

�
0:8�1:28g

�2:65g

�g � 0:85
�g > 0:85

(4.21)

4.2 Gidaspow drag model

The drag model by Gidaspow is made out of two drag models, one for the dense
regime and one for the dilute. This models are the Ergun equation and the Wen
and Yu drag model. The Ergun equation is a model for pressure drop though
a packed bed, and is assumed to be valid for �uidized condition by [4]. This
model is valid for gas volume fractions �g � 0:8 [14]. For �g > 0:8 the drag
correlation by Wen and Yu is used.

4.2.1 Derivation of the Ergun equation

To derive the Ergun equation [25] it is assumed a laminar �ow through a tube.
In this regime the viscose forces is strong. This �ow can be described with the
Poiseuille Law which is found in literature to be like equation (4.22).

Q =
�r4�p

8�gl
(4.22)

In equation (4.22) Q is the volumetric �ow rate, an l is the length of the
tubes. This way of writing the Poiseuille Law is for calculating pressure drop
or volumetric �ow rate in pipes or wanes. This formula is favoured to have it
on a form that can be used a general area rather than the speci�c area of the
cross-sectional area of a tube. The volumetric �ow rate Q is substituted with
Atubeuint where the area is the area of the tube and the velocity is the interracial
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velocity. By doing this substitutions and rewriting, the equation will be as in
equation (4.23).

��p
l
=
uint32�g
D2

(4.23)

Here is D the tube diameter. The interracial velocity vint is a velocity which
has to be rewritten because this is the velocity inside the tubes and when the
porous media is concerned the tubes will not a real tube, but a channel through
the porous media. The length of this tube is not the same as the length of
the porous media. Then a new size is introduced , the tortuosity which is
� = lreal

l where the lreal is the total length of the tube and l is just the length
of the porous media. Using this to describe the the interracial velocity by the
super�cial velocity and the tortuosity the expression for the pressure drop will
be like equation (4.24).

�p

l
=
32�gu�

�gD2
(4.24)

Now u is the super�cial velocity.
By assuming that the area of one side of the porous media can be written

as Vtubes + Vsolid it can be expressed the tubes volume fraction and since this
tubes is the channels in the porous media that is �lled with a �uid the �uid
volume fraction will be like in equation (4.25).

�g =
Vtubes

Vtubes + Vsolids
(4.25)

By solving equation (4.25) for Vtubes the expression will be like equation
(4.26).

Vtubes =
�gVsolids
(1� �g)

(4.26)

The left hand side of equation (4.26) has to be divided by the surface area
of tubes and the right hand side on the surface area of a sphere. Here the tube
volume is the volume of n cylinders and the tube area is the area of n cylinders.
The solids volume is the volume of n spheres and the area is the surface area of n
spheres. The shape factor � is also introduced to compensate for non spherical
solids. The shape factor is de�ned as equation (4.27).

� =
6 (Volume of the particle)

dp (surface area of the particles)
(4.27)

By doing this modi�cations to equation (4.26) the expression will be lie
equation (4.28).

n�D2lpores
4n�Dlpores

=
�d3s��g

6�d2s (1� �g)
(4.28)

This equation (4.28) can be simpli�ed and solved by D and becomes like
equation (4.29).

D =
2ds��g
3 (1� �g)

(4.29)

By inserting the expression (4.29) for the tube diameter into equation (4.24)
the expression for the pressure drop in a given direction say x will be like
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Figure 4.1: Probability tree for the constant in the Kozeny-Carman equation

equation (4.30).

�@p
@x

= 72
�gux (1� �g)

2

(ds�)
2
�3g

� (4.30)

This equation (4.30) is the Kozeny-Carman equation and is used in the
Ergun equation to describe the viscous, low Reynolds regime. The classical way
to write the Ergun equation is to have the constant 72 equals 150. To obtain
this the tortuosity equals a empirical constant 2512 .
Another way to �nd this constant is to do a probabilistic analyses on the tor-

tuosity. Concering a system without particles, the �ow will go straight through.
And when the solids occupy all the space the �ow will not go through. This will
be a asymptotic solution for both maximum and minimum solid fraction. Con-
sidering a length �l that the �uid can move. The probability that it is no solid
particles in the length �l is �g. The probability of particles occupying the space
is (1� �g). Considering a �ow that will go twice the length, the probability for
this will be �g (1� �g). In Figure 4.1 the probability tree for the probabilities
that the �uid will �ow from one to n lengths, �l, in the �ow direction.
By summarizing the probabilities that the probability that the �ow will take

one to n lengths, the expression will be
1X
n=1

n�l�g (1� �g). This will be the

actual length the �ow will move. The tortuosity is the actual length the �ow
move divided by the length of the porous media in the direction the �ow moves
the expression for the tortuosity will be like equation (4.31).

� =

1X
n=1

n�l�g (1� �g)

�l
=
1

�g
(4.31)

The Ergun is valid for �uid volume fractions in the interval h0:4; 0:6i [21].
The values of the tortuosity at the boundaries of the valid interval will be
� (�g = 0:4) =

1
0:4 and � (�g = 0:6) =

1
0:6 . By taking the mean value of this the
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expression for the mean tortuosity will be like expression (4.32).

� =

�
1
0:4 +

1
0:6

�
2

=
25

12
(4.32)

The expression for the high Reynolds number �ow in the Ergun equation
is derived in the same manner but here it is considered turbulent �ow. Here
makes the kinetics of the �ow a more dominant role than the viscous forces in
the �uid [26]. In this �ow regime the pressure drop is due to kinetic energy loss.
This therm will have the form (4.33).

@p

@x
=
1

D

�gu
2
int

2
(4.33)

By multiplying equation (4.33) with a factor, it has the same form as the
Darcy friction factor. For the laminar region the expression for the Darcy fric-
tion factor will be a simple expression of the Reynolds number, but in the
turbulent region this will be a more complex expression. By using (4.33) mul-
tiplied with a factor and deriving in the same manner as the Kozeny-Carmann
equation (4.30) the expression for the kinetic pressure loss will be (4.34).

@p

@x
=
f�23

4

�gu
2 (1� �g)
ds��3g

(4.34)

The �rst part of equation (4.34)
�
f�23
4

�
is hard to evaluate theoretically,

and is therefor a empirical constant equal 1:75 in the Ergun equation. By
substituting this into equation (4.34) the equation will be the Burke-Plummer
equation [27] which the Ergun equation is based on.
By adding the Kozeny-Carman equation (4.30) and the Burke-Plummer

equation (4.34) and using the empirical parameters the combination will be
like equation (4.35).

�@p
@x

= 150
�gu (1� �g)

2

(ds�)
2
�3g

+ 1:75
�gu

2 (1� �g)
ds��3g

(4.35)

The correlation between the drag and the pressure drop in the Ergun equa-
tion is shown in equation (4.36), and is taken from the reference [4].

��g
@p

@x
�Ksg (j�!ug ��!usj) = 0 (4.36)

By substituting equation (4.35) into equation (4.36) and rearranging and
substituting for the interracial velocity in equation (4.36) the expression for the
pressure loss will be like equation (4.37).

Ksg = 150
�g (1� �g)

2

�g (ds�)
2 + 1:75

�g (j�!ug ��!usj) (1� �g)
ds�

(4.37)

This equation (4.37) is the Ergun equation used in the drag model by Gi-
daspow.
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4.2.2 Derivation of the Wen and Yu model

The Wen and Yu model is for the dilute regime and is based on the work
by Richardson and Zaki in the reference [21]. This model is derived in the
same manner as the drag model by Syamlal O�Brien derived in chapter 4.1 by
�nding the drag on several particles acting alone then modify this to a system
of particles. The model for several single particles is shown in equation (4.38).

Ksp =
3�g�g (1� �g)

4dp
CD j�!us ��!ugj (4.38)

The drag factor CD is the drag factor for a single sphere and has to be
substituted with the multiparticle drag factor C 0D by equation (4.39).

CD = f (�g)C
0
D (4.39)

The factor f (�g) is taken from Richardson and Zaki and is a experimental
factor which is valid when the internal forces is negligible which means that
the viscous forces dominate the �ow behavior. The factor is f (�g) = �4:65g .
This factor has to be modi�ed to �t Fluent 6.3 de�nition of particle Reynolds
number. The factor from Richardson and Zaki is based on the relative settling
velocity of a single sphere to a sphere acting in a system. This velocities and
the Reynolds number is based on the super�cial velocities. In Fluent 6.3 this is
based on the interracial velocity. The single sphere drag factor is also corrected.
The single sphere drag model is the Schiller and Neumann model [28] and his
is derived for another de�nition of the Reynolds number. The result of this
modi�cations is implemented in equation (4.38) will be the multiparticle drag
function by Wen and Yu shown in equation (4.40).

Ksg =
3�g�g (1� �g)

4dp
CD j�!us ��!ugj��2:65g (4.40)

where CD is the single particle drag factor by Schiller and Naumann shown
in equation (4.41).

CD =
24

�g Res

h
1 + 0:15 (�g Res)

0:687
i

(4.41)

In the original model by Schiller and Neumann another de�nition for Reynolds
number higher than 1000 is made. In a �uidized bed this Reynolds number is
not possible to achieve since the velocity used is the relative velocity. The com-
bination of large particles and high pressure operation is a case when it can be
encountered. In Fluent 6.3 this high Reynolds drag is not used.

4.3 Richardson and Zaki

Lots of drag models is based on the experimental studies by Richardson and
Zaki [23]. They related the terminal settling velocity of a single sphere in a
in�nite media, to the terminal settling velocity of particles in a system. It has
also been investigated the e¤ect of shape of the particles.
Richardson and Zaki did lots of experiments on relative settling velocities

of both spheric and non-spheric particles particles. In the model whose been
implemented in this work is only the spheric particles.
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The relative settling velocity can be de�ned as equation (4.42).

vs (particle in system)
vs (sphere)

= vr;s = vr (4.42)

In equation (4.42) vr;s is the relative settling velocity. In a �uidized bed
the settling velocity is not a interesting value to investigate. In a �uidized bed
this model is used for modeling a �uid �owing trough particles rather than
particles falling through the �uid. The relative velocity of the particles to the
�uid surrounding it will be the same which means that vr;s = vr. The model
for the relative velocity correlation vr is shown in equation (4.43).

vr = �
n
g (4.43)

This correlation in equation (4.43) is for the interracial velocity and it is
favored to work with the super�cial velocity, so the correlation will be like
equation (4.44).

vr = �
n�1
g (4.44)

The n parameter is the Richardson and Zaki parameter. It is a function of
the particle Reynolds number Res divided by the relative velocity correlation
vr called the modi�ed Reynolds number Rem and is a piecewise function shown
in equation (4.45).

n =

8>><>>:
4:65

4:4Re�0:03m

4:4Re�0:1m

2:4

Rem < 0:2
0:2 > Rem < 1
1 > Rem < 500
Rem > 500

(4.45)

It is not a straight forward way to �nd the correlation because it is given
implicit. It have to be used a iterative algorithm. The steps are:

1. Calculate particle Reynolds number with equation (4.46).

Res =
dp�g j�!ug ��!usj

�g
(4.46)

2. Guess a value for the relative velocity correlation vr e.g. 1.

3. Calculate the modi�ed Reynolds number with equation (4.47).

Rem =
Res
vr

(4.47)

4. Use the calculated Rem to calculate the parameter n in equation (4.45).

5. Calculate right hand side of equation (4.44).

6. Check if the guessed vr and the calculated vr in step 5. match. If not
use the new vr in step 3 and calculate it one more time until convergence.
The error accepted in this work is 10�5.
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It is several ways to use the relative velocity correlation vr for calculating
the drag [21] but in this work the derivation of the Syamlal and O�Brien drag
model is used. The derivation is further described in chapter 4.1. The di¤erence
in the Richardson and Zaki model is that the analytical model for the relative
velocity correlation vr in equation (4.20) from Garside and Al-Dibouni is not
used [21]. This will result in a iterative drag model who is like equation (4.48).

Ksg =
3�g�s�g
4dsv2r

CD j�!us ��!ugj (4.48)

In this equation (4.48) vr is calculated by the Richardson and Zaki parame-
ters from equation (4.45) and CD is calculated with the model from Dalla Valle
[22] which is shown in equation (4.18).
The C-code for the user de�ned function for the Richardson and Zaki drag

function is found in appendix B.

4.4 RUC-drag model

The RUC or Representative Unit Cell model is based on pressure drop through
porous media. It was originally proposed by Du Plessis and Masliyah in 1988
[29] for isotropic spong-like media. The RUC for granular media was made by
Du Plessis and Masliyah in 1991 [??]. The latest version of the RUC who is
used in this work is made by Du Plessis in 1994 [21]. The derivation of this
model is shown in the reference [32]. The model is also better explained in the
reference [32]. In this work the RUC is just brie�y explained.
This model is a modi�cation of the Ergun equation. The Ergun equation is

derived in the chapter 4.2.1. The RUC model uses the same models as the Ergun
equations uses. The Kozeny-Carman equation describe the viscous regime and
the Burke-Plummer equation describe the turbulent regime. The di¤erence is
that the RUC model uses analytically derived constants rather than the semi-
empirical coe¢ cients 150 and 1.75 used in the Ergun equation.
From the viscous regime part of the Ergun equation the particle phase is

assumed to be uniformly distributed smooth spherical particles. The �uid phase
is assumed to �ow though parallel tubes which have a length adjusted by the
tortuosity [32]. In the RUC model the particle phase is assumed to be cubes.
The con�guration of the cubes have two possibilities, either regular or staggered.
By using an average geometry between this positions an expression for the
pattern the �ow will follow is made. The result of this averaging is used with
other relations and a model for the semi-empirical constant 150 in the Kozeny-
Carman is made and called A. This A can be expressed as equation (4.49) and
is shown as a function of the �uid volume fraction in Figure 4.2.

A =
26:8�3g

(1� �g)2=3
�
1� (1� �g)1=3

��
1� (1� �g)2=3

�2 (4.49)

This model might look empirical cause of the number 26:8 but this number
is due to the geometrical averaging and is shown how to �nd in the reference
[32].
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Figure 4.2: The constant A in the RUC model
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Figure 4.3: The constant B in the RUC model

The other coe¢ cient in the RUC model is for the Burke-Plummer equation.
In the Ergun equation this coe¢ cient is 1.75, which is called B in the RUC
model. This coe¢ cient can be written as equation (4.50) and is shown as a
function of �uid volume fraction in Figure 4.3.

B =
�2g�

1� (1� �g)2=3
�2 (4.50)

The RUC drag model will with this models for A and B become like equation
(4.51).

Ksg =
26:8�3g�

1� (1� �g)1=3
��
1� (1� �g)2=3

�2 �g (1� �g)4=3�gds2
+

�2g�
1� (1� �g)2=3

�2 �g (j�!ug ��!usj) (1� �g)ds

(4.51)
The RUC drag model is implemented in Fluent 6.3 by the author with a

user de�ned function and the C-code is shown in appendix A.
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4.5 Hill Koch Ladd Drag correlation

The Hill Koch Ladd drag correlation is based on data from Lattice-Boltzmann
simulations [33]. The Lattice-Boltzmann model, LBM, is a alternative for solv-
ing the Naiver-Stokes equations. This model use statistical �uid dynamic to
describe the �ow behavior. In the LBM the computational domain is build out
of a lattice. This lattice might have di¤erent con�gurations. In the lattice it
is lattice nodes where the "strings" making the lattice cross. Every node holds
a set of variables, which is the particle distribution function fi. This variables
will give information to all the neighbouring nodes. The distance to the neigh-
bouring nodes is �!ci and the position of the lattice node is �!r . The model for
the LBM is like equation (4.52).

fi (
�!r +�!ci ; t+�t)� fi (�!r ; t) = 
i (4.52)

The 
i is the collision term and describe the interaction between the vari-
ables in the lattice compared to the neighboring nodes.[34]
The further theory and solving algorithms of the LBM has not been studied

in this work.
The model by Hill Koch Ladd is build on this LBM and �tted for a model

describing the interphase momentum exchange between the phases (drag) in a
granular multiphase �ow. The model for the drag by Hill Koch Ladd is very
accurate for a limited range of void fractions and Reynolds numbers. Benyahia,
Syamlal and O�Brien has extended this work to cover the full range of void
fractions and Reynolds number expected in a �uidized bed and is valid for one
solid phase. The drag model is de�ned by equation (4.53).

Ksg = 18�g�
2
g�s

F

d2p
(4.53)

The factor F in equation (4.53) is a dimensionless drag factor. This can also
be expressed in the more familiar way for Fluent 6.3 users. This is expressed in
equation (4.54).

Ksg =
3

4

CD�s�g�g j�!ug ��!usj
dp

(4.54)

Where CD can be expressed as (4.55).

CD = 12
�2g
Res

F (4.55)

In the Hill Koch Ladd drag model the characteristic length of the �ow is
the radius of the particles rather than the diameter that is the most used in the
granular models. This will result in that the particle Reynolds number Res will
be de�ned as equation (4.56).

Res =
�g�gdp j�!ug ��!usj

2�g
(4.56)

In the work by Benyahia, Syamlal and O�Brien [33] is the derivation and
blending of the modi�ed Hill Koch Ladd drag model used in this study. The
result of the modi�cation is presented here.
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The model starts with de�ning some factors w, F0, F1, F2 and F3. This is
shown in equation (4.57, 4.58, 4.59, 4.60, 4.61).

w = e(�10(0:4��s)=�s) (4.57)

F0 =

8<: (1� w)
�
1+3
p
�s=2+(135=64)�s ln(�s)+17:14�s
1+0:681�s�8:48�2s+8:16�3s

�
+ w

h
10 �s

(1��s)3

i
0:01 < �s < 0:4

10 �s
(1��s)3

�s � 0:4
(4.58)

F1 =

( q
2
�s

40 0:01 < �s � 0:1
0:11 + 0:00051e(11:6as) �g > 0:1

(4.59)

F2 =

8<: (1� w)
�
1+3
p
�s=2+(135=64)�s ln(�s)+17:89�s
1+0:681�s�11:03�2s+15:41�3s

�
+ w

h
10 �s

(1��s)3

i
�s < 0:4

10 �s
(1��s)3

�s � 0:4
(4.60)

F3 =

�
0:9351�s + 0:03667 �s < 0:0953

0:0673 + 0:212�s + 0:0232= (1� �s)5 �s � 0:0953
(4.61)

This factors are used in the drag model to model the dimensionless drag
factor F which is a piecewise function of Reynolds number and solids volume
fraction. The piecewise functions for F is shown in equation (4.62).

F = 1 + 3=8Res �s � 0:01 and Res �
(F2 � 1)
(3=8� F3)

F = F0 + F1Re
2
s �s > 0:01 and Res �

F3 +
p
F 23 � 4F1 (F0 � F2)

2F1
F = F2 + F3Res Otherwise

(4.62)

This drag model is implemented into Fluent 6.3 by the author. The C-code
for the user de�ned function is shown in appendix C



Chapter 5

Turbulence modeling

Simulations including the di¤erent turbulence models in Fluent 6.3 are per-
formed. They are:

� Laminar (no modeling of turbulence)

� k-" (standard, RNG, realizable)

� dispersed

�mixture

� per phase

� RSM (Reynold stress model)

� dispersed

�mixture

In a bubbling �uidized bed the packing regime will be from dense to dilute.
The dispersed k-" and RSM are only valid for the dilute regime in a bubbling
�uidized bed and will by this reason not be appropriate for usage in �uidized
bed simulations [1]. The mixture model uses mixture velocity and density to
calculate the turbulence. This is appropriate when the density ratio between
the phases close to one [1]. This is not be the case in a bubbling �uidized
bed used in this work where the gas density is approximately 1 kg=m3 and the
particle density is approximately 2500 kg=m3. The k-" -per phase will calculate
the turbulence behavior of all of the phases and then combine them [1]. This
means that two additional transport equations for each secondary phase has to
be calculated [1]. This means that the calculation will be very complex.
k-" with per phase calculation and the laminar or no turbulence model is

the only suitable models in this case. In the reference [36] it is claimed that it
is no need for a turbulence model in a bubbling �uidized bed.
In this study Fluent 6.3 is used to evaluate the bubble behavior with or

without a turbulence model. A two dimensional �uidized bed grid with a central
jet in the bottom of the bed is used to investigate the bubble behavior. By
investigating the bubble behavior the turbulence model was chosen. To choose
the correct version of the k-" model (std, RNG or realizable) is an own �eld and
has not been investigated by theory only simulations.

31
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Figure 5.1: Comparison of bubble behaviour with and without turbulence model

The results show that the turbulence model dispersed the momentum in the
jet and the bubble did not get the appropriate size and form.
For other work at Telemark University College by the reference [35] the LES

(large eddy simulations) and a SGS (subgrid scale)model is used to calculate
the turbulence [35]. The LES models all the large eddies and not average them
and the SGS models the small eddies. Fluent 6.3 has no option for LES when
simulating with multiphase �ow. [1]
The Figure 5.1 show the bubble behavior with and without a turbulence

model.

5.1 Computational setup for the 2D case with
jet

The aim of this study is to evaluate the bubble behavior of one bubble rather
than the bubbling frequency or any other parameter. Di¤erent models and
discretization schemes are used in the simulation. The grid resolution was in-
creased, but the trend of the result did not vary to much. The di¤erent sim-
ulation setups is not shown here cause it was made to investigate the usage of
turbulence models or not. The result shows a similar trend that the k-" was not
appropriate for the case and it was assumed that it was not appropriate to use
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Figure 5.2: The 2D �uidized bed with jet used to investigate the bubble behav-
iour

a turbulence model in the 3D simulations also.
The grid used had a resolution of 1cm x 0.5 cm. It was tried with a mesh

with the resolution of 0.5 cm x 0.25 cm. This is shown in Figure 5.2. In Table
5.1 the data of the bubbling �uidized bed with jet is shown.
All this data in Table 5.1 is taken from the work by the reference [35] but

some are modi�ed.

5.2 Conclusion

The conclusion from this work is that it is best to not use any turbulence models
in the bubbling �uidized bed simulations in Fluent 6.3 because it is not any ideal
model implement in Fluent yet. The bubble form of the laminar simulations
conserves more of the momentum in the jet.
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Jet velocity 4.9 m/s Air density 1.225 kg/m3

Fluidization velocity 0.29 m/s Height of bed 63 cm
Particle diameter 491 �m Width of bed 19.5 cm
Solids density 2485 kg/m3 Initial height of particles 28 cm
Initial solid fraction 0.6 Maximum solid fraction 0.63
Air viscosity 1.7894x10�5 kg/m�s Operating pressure 101325 Pa

Table 5.1: Properties used in the 2D case to investigate the usage of turbulence
models

In the case with the k-" turbulence model, the momentum get dispersed by
the turbulence model, which is a known phenomena with the k-" model. And
the conclusion in the reference [36] has the same opinion as this work has.



Part II

Simulations of bubbling
�uidized bed
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Chapter 6

3D simulations of �uidized
bed

6.1 Computational setup for 3D simulations of
�uidized bed

In the 3D case the domain is made after the work and experimental rig by the
reference [35]. It is a 3D �uidized bed with the height of 2 meters. The cross-
sectional area is 25 cm x 25 cm. This �uidized bed has a uniform gas distribution
in the bottom. Experimental data in this �uidized bed is made by the reference
[35]. This results are used to compare the results from the simulations.
The �rst case investigated was to use the default settings in Fluent 6.3 and

just vary the drag model. The discretization scheme used in this part is the �rst
order upwind scheme.
In the 3D case a hexagonal grid with cubic cells with the side length of 1 cm

was used. A �gure of the �uidized bed is shown in Figure 6.1.
The simulation setup which was used in the 3D case is shown in Table 6.1.
The default settings for Fluent 6.3 for the granular phase properties is shown

in Table 6.2.

Height of bed 200 cm Initial bed height 75 m
Width of bed 25 cm Initial solids fraction 0.6
Length of bed 25 cm Maximum solids fraction 0.64356
Particle diameter 154 �m Fluidization air velocity 0.133 m/s
Particle density 2485 kg/m3 Air viscosity 1.7894x10�5 kg/m�s
Air density 1.225 kg/m3 Operating pressure 101325 Pa

Table 6.1: Simulation setup used in the 3D case

36
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Figure 6.1: The dimensions 3D �uidized bed

Granular viscosity constant = 1x10�5

Granular bulk viscosity constant = 0
Frictional viscosity none
Angle of internal friction na
Frictional pressure na
Granular temperature algebraic
Friction packing limit na
Solids pressure Lun et al
Radial distribution Lun et al

Table 6.2: Defoult settings for the granular properties in Fluent 6.3
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6.2 Review of the simulations of a 3D �uidized
bed

The main interest of this case was to investigate the default settings in Fluent
6.3 and see the result of this in bubble frequency. A bubble is de�ned as volume
fraction of particles lower than 0.35. The results show that the defaults settings
in Fluent 6.3 do not match the bubble frequencies predicted in the experimental
work by the reference [35]. The conclusion from this work is to further investi-
gate which models to use to get the best results and �nd out which parameters
to change to get a better solution.
This work with the build in drag models and the default settings for the

granular properties has resulted in a paper made by Britt Halvorsen and the
author. This paper is found in appendix D.



Chapter 7

2D simulations of �uidized
bed

7.1 Computational setup for 2D simulations of
�uidized bed

In this part of the study the data is based on experimental results in a 3D bub-
bling �uidized bed with uniform air distribution in the bottom by the reference
[35].
Some of the di¢ culties involving 3D simulations is that the computational

resources are limited which result in large computational time. The computa-
tional resources available in this work has resulted in computational time of one
and a half week per case. The study is limited to 2D and assumed to have the
same characteristics as the 3D case.
This study is divided into �ve part which is described individually. All the

cases will have the same computational setup as the 3D simulations in chapter 6
except the case with more than one particle phase. The width of the bed equal
zero because this case is a 2D case. The models used in the di¤erent cases are
varying. A base case for the study is made.
The particle diameter is taken from the work by the reference [35] and is

the mean particle diameter for the particles use in the experimental rig. This
diameter is 154 �m.
A partial di¤erential equation to calculate the granular temperature is used.

This will enable more models to describe the granular �ow. This means that it
is solved a own transport equation for the granular temperature and convection
and di¤usion will not be neglected.
The granular viscosity is chosen to be described by the model of Syamlal

and O�Brien. This model is chosen because it is based on the kinetic theory of
granular �ow (KTGF) by Lun et al.
The granular bulk viscosity is chosen to be described by Lun et al. This

model describes the deformation of the bulk �ow.
The frictional viscosity is set to use Schae¤ers equation. The Schae¤er equa-

tion uses the second invariant of the deviatoric stress tensor and mathematically
describe the phenomena happening in the frictional regime.

39



CHAPTER 7. 2D SIMULATIONS OF FLUIDIZED BED 40

The angle of internal friction is set to 28.50 which is used some references
[12].
The frictional pressure is set to based-KTGF. This means that the pressure

used to calculate the frictional viscosity is the solids pressure. By choosing the
correct model for solids pressure and radial distribution a asymptotic behavior
of the frictional pressure, which is the case when the solids fraction converges
the maximum packing limit.
The frictional limit is set to 0.5 cause this is used some references [12].
The granular conductivity is set to Syamlal and O�Brien. This model is

derived from the KTGF by Lun et al.
The solids pressure is set to Lun et al cause it describe the increase in solids

pressure both by the collisions between particles and the kinetic energy in the
particles.
The radial distribution is set to Lun et al. This model is chosen cause it is

taken from the KTGF and it will have a asymptotic solution when the solids
fraction increase.
The maximum packing of solids in the bed is 0.64356 and is taken from the

reference [35].
The discretization scheme in the base case is �rst order upwind.
The simulation time is set to 30 seconds with time steps of 0.001 seconds.
The drag model used in the base case is the Syamlal O�Brien.

7.2 Case 1: Discretization scheme

Di¤erent discretization scheme was studied in this case of the simulation of a
bubbling �uidized bed and simulated was performed with a �rst and second
order upwind scheme. The case with the second order upwind scheme had the
same computational setup as the base case except the discretization scheme.
The theory behind the discretization scheme can be found in the reference [35].
The main parameter investigated was the bubble frequency. Investigation of the
mean solid fraction where performed.
The results from the simulation is shown in Figure 7.1 where the simulations

with �rst and second order upwind scheme are compared. The experimental
data is included for comparison.
The Figure 7.1 show the results closest to the experimental data is the sim-

ulations with the second order upwind scheme.
Simulations with other higher order discretization schemes like the QUICK-

scheme are performed, but this results were quite similar to the results of the
second order upwind scheme. This higher order discretization schemes is not
further investigated and it is assumed that the behavior of the bubbling �uidized
bed is best described by the second order upwind scheme.
The mean solid fraction in both cases show quite similar results and is not

further investigated.

7.3 Case 2: Usage of frictional regime

Simulations with and without the usage of the frictional regime where per-
formed. The frictional viscosity describing the frictional behavior of the �ow
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Figure 7.1: Comparison of �rst order and second order upwind scheme

will make the granular �ow act plastic. This theories are often based on soil
mechanics and have a empirical nature. The models used in this case for the
frictional regime is mostly based on mathematics and kinetic theory of granular
�ow.
In this case it is also used the result from the �rst case that the �ow is best

described by the second order upwind scheme. Both cases, with and without
frictional regime, is done with second order upwind scheme.
The results from this simulations is shown in Figure 7.2.
Figure 7.2 shows quite similar results with and without a frictional regime.

The calculations for the frictional regime is quite complicated and takes a lot
of computational e¤ort. Since the simulations gave so close results in bubbling
frequency , the frictional regime is not used further in this work .

7.4 Case 3: Drag model

The main interest in this study was to investigate the interfacial momentum
exchange between phases. This can be described by a drag model. In Fluent
6.3 two build in drag models for dense �uidized beds is included, which is the case
in this study. Three other drag models are included by user de�ned functions
in Fluent 6.3. The drag models used in the simulation is

� Gidaspow

� Syamlal O�Brien

� RUC
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Figure 7.2: Comparison between frictional regime and no frictional regime

Diameter 154 �m
Fluidization air velocity 0.133 m/s
Air density 1.225 kg/m3

Air viscosity 1.7894x10�5 kg/m�s
Slip velocity 0.133/�g m/s

Table 7.1: Parametrers used as the input parameters in the drag models

� A modi�ed Syamlal and O�Brien model with iterative Richardson and Zaki
parameters called the Richardson and Zaki.

� A Hill Koch Ladd drag correlation

All this drag models are described in detail in chapter 4.
The di¤erent drag models will predict a drag. Figure 7.3 show the predicted

drag as a function of solids fraction.
The parameters used to make this Figure 7.3, is taken from Table 7.1.
As shown in Table 7.1 the slip velocity is the �uidization air velocity divided

by the volume fraction of air. What is meant with slip velocity is the velocity of
the �uid compared to the solids when the particles are �xed in position. Figure
7.3 show that the drag correlation by Hill Koch Ladd and the RUC predict the
highest drag and Richardson and Zaki predict the lowest. The characteristics
of the drag models are a little bit di¤erent and it seems like they will predict
very di¤erent drag at high solid fractions. The Hill Koch Ladd is very di¤erent
from the other models at low solids fraction.
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Figure 7.3: The di¤erent drag predicted by the di¤erent drag models

The simulations are made with the assumptions from the other cases that
second order upwind discretization scheme and no frictional regime gives the
best results.
Figure 7.3 show the drag as a function of solids fraction and Figure 7.4 is

the mean solids fraction at the height of 39 cm from simulations with Fluent
6.3.
Figure 7.4 show similar results to the one dimensional analyses of the drag

models 7.3.
The bubble frequency of the di¤erent drag models is shown in Figure 7.5.
The bubbling frequencies predicted with the drag models di¤er signi�cantly.

The graph of the results from the simulations show that the RUC and the Hill
Koch Ladd model predict the highest bubbling frequency. The results is actually
very interesting because these models are rather new and are mathematically
developed. The RUC is build on a geometric formulation of the solid phase and
the Hill Koch Ladd is made of Lattice-Boltzmann simulations with a origin in
statistical �uid mechanics.

7.5 Case 4: Multiple particle phases

In the experimental work on the �uidized bed by the reference [35] it is used
particles with the mean size of 154 �m, but the particles have a distribution
shown in Figure 7.6. It means the particles have lots of di¤erent sizes. This will
a¤ect the simulations because of a size distribution.
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Figure 7.4: The mean solids volume fraction at di¤erent radial posisions taken
from the simulation results
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Figure 7.5: Bubble frequency at di¤erent radial posisions for the di¤erent drag
models

Figure 7.6: The size distribution for the particles used in the experiments [35]
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Particle diameter [�m] percentage
100 24%
150 36%
190 40%

Table 7.2: Simpli�ed particle distribution

Figure 7.7: Comparison for simulation results with one and three particle phases

To account for the particle size distribution in the simulations three particle
phases are included. By trial and error a combination of particle sizes and
percentage of each phase that will give a mean diameter of 154 �m is found.
This combination is shown in Table 7.2.
For the simulations in this case it was used the result from earlier cases which

means second order upwind scheme and no frictional regime. The drag model
used in this part of the study is the Gidaspow drag model. This model gave a
acceptable bubbling frequency and it is already build in Fluent 6.3. The Hill
Koch Ladd is just valid for one particle phase so it is not used.
The simulations with three particle phases needs a drag model to describe

the particle-particle drag between the solid phases. The option for particle-
particle drag in Fluent 6.3 is the symmetric Syamlal O�Brien. This model is not
investigated any further just used in this case. For a description read the [1].
The results showed the bubbling frequency increased by including more par-

ticle phases. Figure 7.7 show the bubble frequency predicted by Gidaspow drag
model with one particle phase and the case with three particle phases. The
experimental results is also included in comparison.
The Figure 7.7 show that the bubbling frequency will go up with more par-

ticle phases. This introduction of more particle phases will give a more real
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Figure 7.8: Comparison of no slip and free slip condisions at the walls

result because it will be closer to the real case. The simulations show that the
mean bubbling frequency will go up by approximately 0.2 bubbles per second
with the Gidaspow drag model using three particle phases rather than just one.

7.6 Case 5: Introducing other wall functions

In this case it is used the same computational setup as the setup in case 3 and
the Gidaspow drag model. The di¤erence in this case is that the wall functions
in Fluent 6.3 is changed from no slip to free slip for the solid phase. The results
from case 3 gave the highest bubbling frequencies on both sides of the vertical
center line in the bed, and not in the center as the experimental data.
A theory by the author why the bubble frequency distribution pro�le is not

similar to the experimental data. Because of the grid resolution a thick bound-
ary layer of particles at the boundaries by the walls with make the particles
stand still. This will cause the particles to move easier in the center of the bed
compared to at the walls. This is not a theory veri�ed by other references, but
with simulations. The theory of boundary conditions is not further investigated.
The results of introducing a free slip condition at the walls where the Gi-

daspow with no slip and free slip is compared to the experimental data is shown
in Figure 7.8.
The Figure 7.8 show that the simulations with free slip and no slip have

approximately the same bubbling frequency, but the simulations with free slip
have the some shape as the experimental data.
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7.7 Review of the simulations of a 2D �uidized
bed

The results from the simulations of a 2D �uidized bed show that the Hill Koch
Ladd and the RUC predicted the bubbling frequency closest to the experimental
data. Since the Hill Koch Ladd drag model is only valid for one particle phase
is the most reasonable model for further investigations is the RUC model.
The simulations give the best results with more particle phases. In the case

where the number of particle phases is investigated, the Gidaspow drag model
is used. For further investigation the RUC should be tried implemented for
multiple particle phases.
For the boundary conditions the simulations show that free slip is giving a

better result. The case with free slip is most likely not physically correct but it
is most likely better than no slip.
A modi�ed case of the result is made from the single particle phase Gidaspow

drag model result with free slip boundary conditions at the walls of the �uidized
bed. The di¤erence in the mean bubbling frequency by changing from Gidaspow
to RUC is approximately 0.22 bubbles per second. The di¤erence in the case
with Gidaspow drag model with one particle phase to the case with three particle
phases is approximately 0.2 bubbles per second. By doing this modi�cations to
the free slip simulations with the Gidaspow drag model the modi�ed results from
the simulations will be like Figure 7.9 where it is compared with the experimental
results.
This Figure 7.9 is not showing a actual simulation, but it is a modi�ed version

of on case including contributions from other e¤ect. The simulation time in the
cases used in all of this work is set to 30 seconds. By increasing the time it is
expected to get a smoother curve and the bubbling frequency will match the
experimental results.
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Figure 7.9: The modi�ed results form the simulations made by combining three
results



Chapter 8

Conclusion

This work has resulted in simulations of both 2D and 3D. The main focus
in this work is simulations of the 3D experimental rig. Simulations in 3D was
performed, but this simulations was to computational expensive to do for all the
cases done. With this conclusion it was chosen to assume that 2D simulations
could represent what was happening in the 3D �uidized bed.
The 2D simulation of the �uidized bed with jet, was used to investigate the

usage of turbulence model. The conclusion of the simulations was to use no
turbulence model (laminar) gave the best results.
In the study of the experimental rig in 3D simulations was performed in 2D.

The work was divided into �ve cases to investigate di¤erent aspects of the case.
The cases was:

� Choose of discretization scheme

� Usage of frictional regime

� Comparisons of drag models

� Multiple particle phases

� no slip or free slip conditions at the boundaries

In the �rst case a second order upwind scheme was chosen. This gave the
results closes to the experimental data.
The frictional regime was not used. The conclusion was made cause the

results of the case with and without frictional regime was very similar, and the
case with frictional regime is more computational expensive.
In the case where the drag models was compared the RUC and the Hill Koch

Ladd showed the best results of the bubble frequency. The Richardson and Zaki
model was the one who showed the lowest bubbling frequency. The Gidaspow
drag model showed the highest bubbling frequencies for the build in drag models
for dense �uidized beds in Fluent 6.3.
In the case where multiple particle phases was investigated there was used

the Gidaspow drag model. The reason for this is was because it is build-in in
Fluent 6.3 and the RUC and Hill Koch Ladd is not. The Hill Koch Ladd is just
made for one particle phase. The RUC model is possible to use for multiple
phases but needs to be implemented with a user de�ned functions in Fluent
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6.3. This was not done for more than one particle phase. The results from the
Gidaspow model with more particle phases showed a better result than the case
with just one particle phase.
The e¤ect of boundary conditions in the walls in the �uidized bed was in-

vestigated. It was used free and no slip conditions at the walls, and the case
with free slip gave a more similar bubble frequency distribution compared to
the experimental data than the no slip case.
The theory behind the models used to describe the properties was investi-

gated and assumed by the author that the kinetic theory of granular �ow by
Lun et al gave the best representation of the granular behavior of the �ow and
particles.
The conclusion of this work is that Fluent 6.3 is a good tool to investigate this

type of problem with bubbling �uidized beds. The drag model with the largest
potential to give the best result is the RUC model with free slip conditions at
the walls, second order upwind discretization scheme, multiple particle phases
and no turbulence model.
The work with the 3D simulations with the default properties models has

resulted in a paper for the conference HEFAT2008 conference in South Africa.
This paper is found in appendix D.
The study of drag models in this work will result in a paper for the SIMS2008

conference in Oslo 2008. The focus of this paper will be the comparison of drag
models. The abstract for this paper is in appendix E.
The suggested simulation setup from this work will be further investigated

in later work. The suggestions is found in the chapter 9.



Chapter 9

Future works

With the experience from this works it is made some suggestions for future
works related to this case. This suggestions are:

� Wall functions

It is tried out to change from the default no slip to free slip condition at the
boundaries at the walls. This change has been shown to give better result. The
suggested action in future works is to investigate other wall functions and see
the result of this. It is also suggested to look at the grid resolution at the walls.

� Multiple particle phases

It is tried out to use multiple particle phases and the results got closer to
the experimental results. It is suggested to use multiple particle phases in all
the cases investigated to see the e¤ect on the drag models with the best results
in the single phase simulations. The results from the simulations show that
the RUC and the Hill Koch Ladd drag models gives the results closest to the
experimental data. This drag models are implemented in Fluent 6.3 with user
de�ned functions which is written in C code. This functions are not made for
more than one particle phase and is suggested to be modi�ed for more particle
phases. The Hill Koch Ladd drag model is not valid for more than one particle
phase, but the RUC is valid and suggested to be implemented.

� Comparing 2D and 3D simulations

It is assumed that the 2D presentation of the bubbling �uidized bed gives
similar results to the 3D presentation. This assumption is not investigated if
it is good or not. This can be done by doing the suggested cases from the
conclusion from this work in 3D.

� Averaging time

It is assumed that the simulations time of 30 seconds give a good result.
The result show that this might be to little because the results is not symmet-
ric around the central axes. The problem is assumed to be corrected as the
simulation time is increased.
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Appendix A

Code for RUC drag model
in 2D

/*************************************************************************
The drag model propsed by Du Plessis 1994 and implemented in Fluent 6.3 by
Lundberg and Halvorsen 2008 for one particle phases and 2 dimensions
*************************************************************************/

#include "udf.h"
#include "sg_mphase.h"

#define diam2 0.000154

/*define paricle diamtre for phase*/

DEFINE_EXCHANGE_PROPERTY(drag_ruc, cell, mix_thread, s_col, f_col)
{
Thread *thread_g, *thread_s;
real x_vel_g, x_vel_s, y_vel_g, y_vel_s, abs_v, slip_x, slip_y,

rho_g, mu_g, afac, bfac, void_g, void_s, vfac, k_g_s, he, het;

/* find the threads for the gas (primary) and solids (secondary phases).
These phases appear in columns 2 and 1 in the Interphase panel respectively*/

thread_g = THREAD_SUB_THREAD(mix_thread, s_col);/*gas phase*/
thread_s = THREAD_SUB_THREAD(mix_thread, f_col);/* solid phase*/

/* find phase velocities and properties*/

x_vel_g = C_U(cell, thread_g);
y_vel_g = C_V(cell, thread_g);
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x_vel_s = C_U(cell, thread_s);
y_vel_s = C_V(cell, thread_s);

slip_x = x_vel_g - x_vel_s;
slip_y = y_vel_g - y_vel_s;

rho_g = C_R(cell, thread_g);

mu_g = C_MU_L(cell, thread_g);

/*compute slip*/

abs_v = sqrt(slip_x*slip_x + slip_y*slip_y);

/*get the void fractions*/

void_g = C_VOF(cell, thread_g);/* gas vol frac*/
void_s = C_VOF(cell, thread_s);/* s_phase vol frac*/

/* make a helping size*/

he = pow(1.-void_g, (2./3.));
het = pow(1.-void_g, (1./3.));

/*compute drag and return drag coeff, k_g_s*/

if(void_g>0.99)
afac = 785.0;
else
afac = (26.8*void_g*void_g*void_g)/(he*(1.-het)*(1.-he)*(1.-he));

if(void_g>0.01)
bfac = (void_g*void_g)/((1.-he)*(1.-he));
else
bfac = 2.25;

k_g_s = afac*void_s*(1-void_g)*mu_g/(void_g*pow(diam2, 2.))+bfac*rho_g*void_s*abs_v/diam2;

return k_g_s;

}



Appendix B

Code for Richardson and
Zaki drag model in 2D

/*****************************************************************************
This udf is for customizing the drag model of Syamlal and Tom O�Brien with
the iterative method by Richardson and Zaki
for the velocity ratio Vr.

It works for 2d and one particle phase.

This is made by

Joachim Lundberg

******************************************************************************/

#include "udf.h"
#include "sg_mphase.h"
#include "stdio.h"

#define diam2 0.000154

/*define paricle diamtre for phase*/

DEFINE_EXCHANGE_PROPERTY(rz_drag, cell, mix_thread, s_col, f_col)
{
Thread *thread_g, *thread_s;
real x_vel_g, x_vel_s, y_vel_g, y_vel_s, abs_v, slip_x, slip_y,

rho_g, mu_g, afac, bfac, void_g, void_s, vfac, k_g_s, reyp,
corr, reys, vrn, nn, taup, rho_s, fdrgs;

int counter;
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/* find the threads for the gas (primary) and solids (secondary phases).
These phases appear in columns 2 and 1 in the Interphase panel respectively*/

thread_g = THREAD_SUB_THREAD(mix_thread, s_col);/*gas phase*/
thread_s = THREAD_SUB_THREAD(mix_thread, f_col);/* solid phase*/

/* find phase velocities and properties*/

x_vel_g = C_U(cell, thread_g);
y_vel_g = C_V(cell, thread_g);

x_vel_s = C_U(cell, thread_s);
y_vel_s = C_V(cell, thread_s);

slip_x = x_vel_g - x_vel_s;
slip_y = y_vel_g - y_vel_s;

rho_g = C_R(cell, thread_g);
rho_s = C_R(cell, thread_s);

mu_g = C_MU_L(cell, thread_g);

/*compute slip*/

abs_v = sqrt(slip_x*slip_x + slip_y*slip_y);

/*get the void fraction*/

void_g = C_VOF(cell, thread_g);/* gas vol frac*/

/*calculating reynolds number*/

reyp = diam2*rho_g*abs_v/mu_g;

/*calculating Richardson Zaki parametrers for vr*/

vfac = 1.;
corr=1.;
counter=1;

while(corr>0.0001)
{
reys = reyp/(vfac+SMALL);

if (reys <= 0.2)
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nn = 4.65;

else if (reys > 0.2 && reys <= 1.0 )
nn = 4.4*pow(reys,-0.03);

else if (reys> 1.0 && reys <= 500.)
nn = 4.4*pow(reys,-0.1);

else
nn = 2.4;

vrn = pow(void_g,nn-1.);

corr=sqrt((vfac-vrn)*(vfac-vrn));

vfac=vrn;

counter++;

}

/* compute particle relaxation time */

taup = rho_s*diam2*diam2/18./mu_g;

/*compute drag and return drag coeff, k_g_s*/

fdrgs = void_g*(pow((0.63*sqrt(reyp)/vfac+4.8*sqrt(vfac)/vfac),2.))/24.0;

k_g_s = (1.-void_g)*rho_s*fdrgs/taup;

return k_g_s;
}



Appendix C

Code for Hill Koch Ladd
drag correlation in 2D

/*****************************************************************************
This udf is for usin the Hill Koch Ladd correlation. This correlation is
made out of Lattice-Boltzmann simulations.
Benyahia, Syamlal and O�Brien has modified this correlations and
implemented this in MFIX. Then Mr. Lundberg has implemented
this in Fluent for 2d and one particle phase.

This is made by:

Joachim Lundberg

******************************************************************************/

#include "udf.h"
#include "sg_mphase.h"
#include "stdio.h"

#define diam2 0.000154

/*define paricle diamtre for granular phase*/

DEFINE_EXCHANGE_PROPERTY(drag_HKL, cell, mix_thread, s_col, f_col)
{
Thread *thread_g, *thread_s;

real x_vel_g, x_vel_s, y_vel_g, y_vel_s, abs_v, slip_x, slip_y,
rho_g, mu_g, void_g, void_s, k_g_s, reyp, rho_s,
wfac, f0, f1, f2, f3,fac;

/* find the threads for the gas (primary) and solids (secondary phases).

61
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These phases appear in columns 2 and 1 in the Interphase panel respectively*/

thread_g = THREAD_SUB_THREAD(mix_thread, s_col);/*gas phase*/
thread_s = THREAD_SUB_THREAD(mix_thread, f_col);/* solid phase*/

/* find phase velocities and properties*/

x_vel_g = C_U(cell, thread_g);
y_vel_g = C_V(cell, thread_g);

x_vel_s = C_U(cell, thread_s);
y_vel_s = C_V(cell, thread_s);

slip_x = x_vel_g - x_vel_s;
slip_y = y_vel_g - y_vel_s;

rho_g = C_R(cell, thread_g);
rho_s = C_R(cell, thread_s);

mu_g = C_MU_L(cell, thread_g);

/*compute slip*/

abs_v = sqrt(slip_x*slip_x + slip_y*slip_y);

/*get the void fractions*/

void_g = C_VOF(cell, thread_g);/* gas vol frac*/
void_s = C_VOF(cell, thread_s);/* s_phase vol frac*/

/*calculating reynolds number*/

reyp = diam2*rho_g*abs_v*void_s/(2.*mu_g);

/*compute some factor*/

wfac=exp(-10.*(0.4-void_s)/(void_s+SMALL));

/* computing drag factors fac0, fac1, fac2, fac3*/

if(void_s>0.01 && void_s<0.4)
f0 = (1.-wfac)*((1.+3.*sqrt(void_s/2.)+(135./64.)*
void_s*log(void_s)+17.14*void_s)/
(1.+0.681*void_s-8.48*void_s*void_s+8.16*void_s*void_s*void_s))+
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wfac*(10.*void_s/(void_g*void_g*void_g));
else if(void_s>=0.4)
f0 = (10.*void_s/(void_g*void_g*void_g));

else
f0 =0;

if (void_s>0.01 && void_s<=0.1)
f1 = sqrt(2./void_s)/40.;

else if (void_s>0.1)
f1 =0.11+0.00051*exp(11.6*void_s);

else
f1 = 0;

if (void_s<0.4)
f2 = (1.-wfac)*((1.+3.*sqrt(void_s/2.)+(135./64.)*void_s*
log(void_s+SMALL)+17.89*void_s)/
(1.+0.681*void_s-11.03*void_s*void_s+15.41*void_s*void_s*void_s))+
wfac*(10.*void_s/(void_g*void_g*void_g));

else
f2 = (10.*void_s/(void_g*void_g*void_g));

if(void_s<0.0953)
f3 = 0.9351*void_s+0.03667;

else
f3 = 0.0673+0.212*void_s+0.0232/pow(void_g,5.);

/*finding the correct drag functions*/

if(void_s<=0.01 && reyp<=((f2-1.)/(3./8.-f3)))
fac = 1.+3./8.*reyp;

else if (void_s>0.01 && reyp<=((f3+sqrt(f3*f3-4.*f1*(f0-f2)))/(2*f1)))
fac = f0+f1*reyp*reyp;

else
fac = f2+f3*reyp;

k_g_s = 18.*mu_g*void_g*void_g*void_s*fac/(diam2*diam2);

return k_g_s;
}
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ABSTRACT 
This work presents a computational study of flow behaviour 

in a bubbling fluidized bed. The model is developed by using 
the commercial CFD code Fluent 6.3. The model is based on an 
Eulerian description of the gas and the particle phase. Different 
drag models are used and compared. The computational results 
are validated against experimental results. 

The experimental data are based on measurements 
performed by Britt Halvorsen in 2004. The dimension of the 
lab-scale fluidized bed is 0.25x0.25x2.00 m. The simulations 
are performed with spherical particles with mean particle size 
of 154 m and density 2485 kg/m3. The superficial gas velocity 
is 0.133 m/s. Computational results are compared mutually, as 
well as against experimental data. The discrepancies are 
discussed.    

INTRODUCTION 
Fluidized beds are widely used in industrial operations, and 

several applications can be found in chemical, petroleum, 
pharmaceutical, biochemical and power generation industries. 
In a fluidized bed gas is passing upwards through a bed of 
particles supported on a distributor. Fluidized beds are applied 
in industry due to their large contact area between phases, 
which enhances chemical reactions, heat transfer and mass 
transfer. The efficiency of fluidized beds is highly dependent of 
flow behaviour and knowledge about flow behaviour is 
essentially for scaling, design and optimisation. 

Gravity and drag are the most dominating terms in the solid 
phase momentum equation. The application of different drag 
models significantly impacted the flow of the solid phase by 
influencing the predicted bed expansion and the solid 
concentration in the dense phase regions of the bed. 
Researchers have shown that their models are sensitive to drag 
coefficient [1-4]. In general, the performance of most current 
models depends on the accuracy of the drag formulation.  

A number of different drag models have been proposed in 
modelling of fluidized beds. Ergun [5] developed a drag model 

that was derived empirically for Newtonian flow through 
packed beds in a narrow band of porosities around 0.4. In an 
active fluidized bed the void fraction can vary over the whole 
range from zero to unity and the models used in numerical 
simulations should be equally versatile. Gidaspow [6] 

NOMENCLATURE  

CD [-] Friction coefficient 
ds [m] Particle diameter 
e [-] Coefficient of restitution 
gi [m/s2] Acceleration due to gravity 
g0  Radial distribution function 
Kqm [kg/m3·s] Coefficient for the interface force between the fluid phase 

and the solid phase  
p [Pa] Fluid pressure 
ps [Pa] Solid phase pressure 
Res [-] Particle Reynolds number 
Uqi [m/s] Velocity vector for phase q 
vr [m/s] Terminal velocity  

Special characters 
q [-] Volume fraction of phase q 
ij [-] Kroenecker delta 
q [kg/m3] Density of phase q 

ij

 

[kg/m·s2] Stress tensor 

 

[kg/m·s] Viscosity 

s

 

[kg/m·s] Bulk viscosity 

s [m2/s2] Granular temperature   

Subscripts 
I, j, k  I, j and k directions 
g  Gas phase 
s  Solid phase  

combined the Ergun equation with the equations of Rowe [7] 
and Wen and Yu [8] to get a drag model that can cover the 
whole range of void fractions. Gibilaro et al. [9] proposed a 
model for the friction coefficient that was included in the total 
gas/particle drag coefficient. This model is valid for the whole 
range of particle concentrations. Syamlal and O Brian [10] 



    
have also developed an empirical drag model that that can 
cover the whole range of void fractions.  

The success of numerical computation of bubbling fluidized 
beds critically depends upon the ability to handle dense packing 
of solids. At high solid volume fraction, sustained contacts 
between particles occur and the resulting frictional stresses 
might be accounted for in the description of the solid phase 
stress. Granular flows can be classified into two flow regimes, a 
viscous regime and a plastic regime. In a viscous or rapidly 
shearing regime, the stresses arise because of collisional or 
translational transfer of momentum, whereas in a plastic or 
slowly shearing regime, the stresses arise because of Coulomb 
friction between grains in enduring contact [11]. 

In the present study the Eulerian approach is used to 
investigate gas-solid flow in a three dimensional fluidized bed. 
Gidaspow drag model and the drag model of Syamlal & 
O Brien are the default drag models in Fluent 6.3, and the 
simulations in the present study are based on these two drag 
models. The frictional stresses are not included in the 
simulations.   

PHYSICAL DESCRIPTION OF BED DYNAMICS 
Computational studies have been performed on a 3-

dimensional fluidized bed. Spherical particles with a mean 
diameter of 154 µm and a density of 2485 kg/m3 are used. The 
behaviour of particles in fluidized beds depends on a 
combination of their mean particle size and density. Geldart 
fluidization diagram [12], shown in Figure 1, is used to identify 
characteristics associated with fluidization of powders. The 
current particles are classified as Geldart B particles, but are 
very close to Geldart A particles. The fluidization properties for 
these two groups of particles differ significantly from each 
other.  

Particles characterized in group A are easily fluidized and 
the bed expands considerably before bubbles appear. This is 
due to inter-particle forces that are present in group A powders 
[13]. Inter-particle forces are due to particle wetness, 
electrostatic charges and van der Waals forces. Bubble 
formation will occur when the gas velocity exceeds the 
minimum bubble velocity and the bubbles rise faster than the 
gas percolating through the emulsion. For group B particles the 
inter-particle forces are negligible and bubbles are formed as 
the gas velocity reaches the minimum fluidization velocity. The 
bubble size increases with distance above the gas distributor 
and increases also with increasing excess gas. The bed 
expansion is small compared to group A particles.   

NUMERICAL METHOD 
The computational work is performed by using the commercial 
CFD code Fluent 6.3. The model is based on an Eulerian 
description of the gas and the particle phase. The default 
settings in Fluent 6.3 are used to describe the granular phase 
[14]. The energy equation is not solved, and it is assumed that 
there is no mass transfer between the phases.      

 

Figure 1 Geldart classification of particles according to their 
fluidization behaviour [12]  

The continuity equation for phase q can then be expressed as:   
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The momentum equation in the j direction for phase q is: 
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where the terms on the lower line represent the pressure forces, 
viscous forces, mass forces and drag forces respectively. The 
gas phase stress tensor is expressed by:  
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and the solid phase stress tensor is:   
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In the simulations the bulk viscosity is set to zero, and the 
solid viscosity is set constant. The solid phase pressure is 
modelled based on the kinetic theory of granular flow and is 
expressed by the following equation [14]:   

sssss gep 0121

   

(5)  

where the terms on the right hand side represent the kinetic and 
the collisional contribution to the solid pressure respectively. 
The radial distribution function expresses the probability of 
collisions between the particles. The function will approach 
unity for dilute regions and infinity in the dense regions of the 
bed. The radial distribution function is given by [15]:   
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In a bubbling fluidized bed the concentration of particles 
varies from very low to very high. In dilute regions, the kinetic 
of the particles will dominate the solids viscosity, and the solid 
pressure will be close to zero. In regions with higher 
concentration of particles, the collisions between particles will 
dominate the solids viscosity, and the solid pressure will 
increase. At very high concentration of particles, the frictional 
stresses dominate the solid viscosity. In this study the frictional 
stresses are not accounted for.   

Drag models 
The drag describes the momentum exchange between 

phases and is expressed by the drag coefficient Kqm in the 
momentum equation. In this work two different drag models 
are used, The Gidaspow drag model and the Syamlal & 
O Brien drag model. The Gidaspow drag model is a 
combination of the Ergun equation and the drag model of Wen 
and Yu. The Ergun equation is developed for packed beds and 
is only valid at high particle concentrations. To get a model that 
covers the whole range of particle concentrations, the Wen and 
Yu equation is used for the lower concentrations. The 
Gidaspow model for gas particle drag is:  
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This is the Ergun equation and is valid for g 0.8. The Wen and 
Yu equation is valid for g>0.8, and is expressed by:   
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The friction coefficient is developed by Rowe, and is related to 
the Reynolds number:   
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The Syamlal & O Brien drag model is:   
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The formula for the terminal velocity is developed by Garside 
and Al Dibuouni [14] and is an analytical formula:  

22 2Re12.0Re06.0Re06.05.0 AABAv sssr
(11)    

The constants A and B are:   
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The drag factor is proposed by Dalla Valle [14] and is 
expressed by:   
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The granular temperature is a measurement for the random 
movement of the particles and influences on the solid pressure. 
In Fluent 6.3 there are two options for calculation of the 
granular temperature. The granular temperature can be 
described with a separate conservation equation or with an 
algebraic expression [14]. The algebraic expression is used in 
this work.  

The governing equations are solved by a finite volume 
method, where the calculation domain is divided into a finite 
number of non-overlapping control volumes. The simulations 
are performed using three-dimensional Cartesian co-ordinates. 
The conservation equations are integrated in space and time. 
This integration is performed using first order upwind 
differencing in space and is fully implicit in time.  

COMPUTATIONAL SET-UP  
A computational study of bubble behaviour in a 3-D 

fluidized bed is performed. The cross section area of the bed is 
0.25 m x 0.25 m and the height is 2.0 m. The initial particle 
height is 0.75 m, and the initial void fraction in the packed bed 
is 0.4. A three dimensional Cartesian co-ordinate system is used 
to describe the fluidized bed. The grid resolution is 10 mm in 
horizontal and vertical direction and the total number of control 
volumes is 125000. Spherical particles with a diameter of 154 

m and density 2485 kg/m3 are used.  The coefficient of 
restitution is set to 0.9. The boundary conditions are given as 
velocity inlet and pressure outlet. The inlet superficial gas 
velocity is set to 0.133 m/s and the outlet pressure is 1 atm. The 
simulations are run for about 20 s real time, and the 
computational results are compared to experimental data 
obtained on a corresponding fluidized bed with the same set-up 
and flow conditions. The calculated minimum fluidization 
velocity for particles with diameter of 154 m and density 2485 
kg/m3 is 0.02 m/s [6], and according to Geldart fluidization 
diagram the particles are characterized as B particles.   

RESULTS  
The simulations are run with Syamlal & O Brien drag 

model and with Gidaspow drag model. Figure 2 shows the 
mean void fraction as a function of radial position in the bed. 
The results are presented at height 0.39 m and 0.55 m. The 
results from the two drag models give no significant difference 



    
in void fraction. Both models give lowest void fraction in the 
centre of the bed, and that indicates that the bubble frequency is 
lowest in this area. The variation in void fraction over the bed is 
about 0.01-0.04. Gidaspow at height 0.55 m gives the lowest 
variations and Gidaspow at height 0.39 m gives the highest 
variation.  

The void fraction in the packed bed is 0.4, and according to 
the results shown in Figure 2, the mean void fraction in the 
fluidized bed is about 0.54. That means that the bed has 
expanded significantly, from initial bed height 0.75 m to a bed 
height of about 1.0 m. The mean bed height in the experimental 
fluidized bed was 0.85 m.  

In this study the computational bubbles are defined as void 
fractions higher than 0.65. This definition is used because it 
was observed from the experimental study that parts of the 
bubbles can include high fractions of solids. Another reason for 
using a rather low void fraction in the definition of bubbles is 
that bubbles might occupy only a part of the control volume, 
and the mean void fraction for the control volume will then be 
lower than the void fraction in a bubble but higher than the 
mean void fraction in the bed. Figure 3 shows a plot of void 
fraction as a function of time at one position in the bed.  It can 
be seen that the void fraction in this point varies from 0.4 to 
0.77. The highest peaks represent the bubbles.  
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Figure 2 Void fractions as a function of radial position at 
different bed heights.  

In Figure 4 a time series of solid volume fraction from the 
simulation with Syamlal & O Brien drag model is presented. A 
bubble is assumed to be a region of void fraction greater than 
0.80 [6]. The white areas in the fluidized bed represent void 
fractions greater than 0.8. It can be seen that very few bubbles 
satisfy this criterion. As the bed expands, the bubbles get 
smaller and more diffuse. After about 8 seconds the bed is 
stabilized at a high void fraction and only contours of small 
bubbles can be observed.  

Figure 5 shows a comparison between the computational 
and experimental bubble frequency [16]. The experimental 
bubble frequency is significantly higher than the bubble 
frequencies obtained from the simulations. The Syamlal & 
O Brien drag model gives slightly higher bubble frequency 
than the Gidaspow model.   
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Figure 3 Bubble frequency as a function of time.  

Discussion 
Bubbling fluidized beds need rather long time to obtain 

quasi-steady state. In the experiment referred to in this work, 
the bubble frequency has been 1-3 bubbles per second. In the 
experimental study the bubble frequency was averaged over 20 
minutes, whereas the computational results are averaged over 
18-20 seconds due to long computational simulation time. This 
may explain the unsymmetrical computational void fraction 
profiles.  

The low bubble frequencies in the simulations can be 
explained by the difference in the calculated and the 
experimental minimum fluidization velocity. The theoretical 
minimum fluidization velocity for spherical particles is given 
by: 
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mfp
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U
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where   
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mf

1

3 

is approximately 11 [8] .    

The theoretical minimum fluidization velocity for the 
current particles is 0.019 m/s, whereas in the experimental 
study, the observed minimum fluidization velocity was 0.07 
m/s. In the experimental study, glass particles with a mean 
diameter of 154 m were used. These particles have a particle 
size distribution that will influence on the flow conditions in 
the bed. This is not accounted for in the simulations. To 
account for the particle size distribution, the simulations can be 
run with multiple particle phases with different diameters. The 
particle size distribution in the experimental fluidized bed 
influences on the minimum fluidization velocity, and it was 
also observed that the particles behaved more like Geldart A 
particles, where the bed expands considerably before the 
bubbles appear. For group A particles bubbles appear as the gas 
velocity exceeds the minimum fluidization velocity, whereas 
for group B particles bubbles appear as the gas velocity reaches 
the minimum fluidization velocity.    



                                                  

Figure 4 Volume fractions of solids. Syamlal & O Brien drag 
model.   

The excess gas velocity is defined as the difference between 
the superficial gas velocity and the minimum fluidization 
velocity. In the experiments, the ratio between the superficial 
gas velocity and the minimum fluidization velocity was about 2 
whereas in the simulations this ratio is about 7. The high excess 
gas velocity, results in high bed expansion and thereby high 
mean void fraction in the bed. The conditions for bubble 
formations are then changed, and well defined bubbles may not 
appear.   
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Figure 5 Bubble frequency as a function of radial position at 
different bed heights.  

CONCLUSION  
The CFD code Fluent 6.3 is used to study flow behaviour in 

a 3-dimensional bubbling fluidized bed. The Eulerian approach 
is used to describe the gas and the solid phase. The simulations 
are performed with Gidaspow drag model and the drag model 
developed by Syamlal & O Brian. The results from the 
simulations with these two drag models do not differ 
significantly from each other. Both the models give high bed 
expansion, and a rather low bubble frequency. The bed expands 
from 0.75 m to about 1.0 m, and the bubble frequencies are 
about 0.5 s-1. Well defined bubbles, that means a region of void 
fraction greater than 0.80, are only observed in the first 4 
seconds.  The Syamlal & O Brian drag model gives slightly 
higher bubble frequency than the Gidaspow drag model. 

The simulations are compared to experimental results. The 
experimental study is performed with spherical glass particles 
with mean particle size of 154 m and density 2485 kg/m3. The 
initial particle height is 0.75 m and the superficial gas velocity 
is 0.133 m/s. The same conditions are used for the simulations. 
In the experiments, however, the particles have a size 
distribution that covers particle sizes from about 50 m to 250 

m. In the simulation all the particles are defined with the same 
diameter, 154 m. The simulations give considerably lower 
bubble frequencies than the experiments. The experimental 
bubble frequency is about2 s-1, and that is about 4 times the 
bubble frequencies obtained in the simulations. The bed 
expansion in the experiments is about 0.1 m, whereas it is about 
0.25 m in the simulations. The discrepancies between 
computational and experimental result may be due to the 
different ranges of particle sizes. The observed experimental 
minimum fluidization velocity is about 4 times the calculated 
minimum fluidization velocity for particles with diameter 154 

m. The consequence of this is that the excess gas velocity 
becomes much higher in the simulations than in the 
experiments, and the ideal conditions for a bubbling fluidized 
bed might no longer be present. To get a better agreement 
between simulations and experiments, the simulations should 
be performed with multiple particle phases to account for the 
particle size distribution in the experiments.  
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This work represents a computational study of flow behaviour in a bubbling fluidized bed. 
The simulations are performed by using the commercial computational fluid dynamic (CFD) 
code, Fluent 6.3. The advantage of using a commercial CFD code is that corresponding cases 
for industrial applications can be simulated by using the same model without having very 
deep knowledge about the source code and the solving algorithms. In CFD simulations of 
fluidized beds, it is important to describe the interaction between the particles and the 
momentum transfer between the phases. Different models are developed for this purpose. The 
kinetic theory of granular flow describes the interaction between particles and is based on the 
kinetic gas theory. In a bubbling fluidized bed there are regions with rather low fraction of 
particles and regions with high particle concentrations, and the bed can be described by two 
flow regimes, the viscous regime and the frictional regime. In the viscous regime the kinetic 
and the collisional stresses are dominating. The frictional regime occurs at high particle 
concentrations and in this regime the flow behaviour is described by friction and rubbing 
between particles.   

The interaction between the particles and the continuous gas phase are described by a drag 
model, and several drag models are developed for this purpose. The models describe the 
momentum exchange between the phases. The aim of this work is to study how the different 
drag models influence on the flow behaviour in a bubbling fluidized bed. Five different drag 
models have been studied. The drag models are the Gidaspow drag model, a drag model 
developed by Syamlal & O Brien, a customized iterative version of the drag model by 
Syamlal & O Brien, the modified Hill-Koch-Ladd drag model and the newly developed RUC 
drag model. Two of the drag models are included in Fluent, and the other models are 
implemented by the author. The results from the simulations with the different drag models 
are compared, and the discrepancies are discussed.   
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