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In Norway 60% of all energy is commonly used for heating, during cold winters this number
is seen to rise even higher. Any reduction in the standby power used for heating will result in
large power savings. In this thesis it has been proven that a good BAS system can reduce the
energy usage with at least 20%. This means large savings can be made both in the power bill

each month but also in a more global environmental perspective.

The first principle house model is found to inadequately predict house heating times.
Augmenting the model with a Kalman filter for estimating disturbances is greatly improving
the estimations. Straight forward OLS regression shows good results during experiments

using similar conditions.

Three controllers are analyzed designed and implemented in Visual Studio (MPC,PID,and
LQR). The Linear Quadratic Regulator is prosed as the optimal controller for the BAS MIMO

system.

Telemark University College accepts no responsibility for results and conclusions presented in this report.
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Nomenclature

This chapter gives a list of symbols, abbreviations, and subscripts used in the thesis.

ADC
BAS
BB
dSSM
eSSM
ED
ENOB
FURPS+
GUI
GW
10

LP
LQR
MPC
MIMO
NaN
OLS
PRO
SS
SSM
SISO
UART
XML
VS
WF

Analogue to Digital Converter

Building Automation System

Battery Board (ZigBee Pro Development kit)
Discrete State Space Model

Extended (augmented) State Space Model
End Device See BB

Effective Number of Bits

Functional Usability Reliability Performance Supportability +
Graphical User Interface

Gateway

Input / Output

Low Pass

Linear Quadratic Regulator

Model Predictive Control

Multiple input Multiple Output

Not a Number

Ordinary Least Squares

Professional

Steady State

State Space Model

Single Input Single Output

Universal asynchronous receiver/transmitter
Extensible Markup Language

Visual Studio

Windows Forms



1 Introduction

1.1 Background

The cold winter months in Northern Europe create a high demand for energy, and thus energy
savings are highly prioritized. In Norway about 60% of the energy used is for heating
purposes, and with prices exceeding 1kr/kW during winter time energy savings are prioritized
[2, 3]. The high prices and the large amount of power needed for heating both contribute to a

high demand for new and smarter ways to save energy.

The Building Automation System (BAS) use sensors to monitor and a model to predict the
heating time. A modeled approach will let the power be turned completely off when the house
is empty and turned back on at the correct time thus saving the most amount of energy [1].

Current available systems only reduce the inside temperature with 5°C at the maximum [1].

This thesis will both be an evaluation on using a model in the BAS system and which control

methods to use in a finished system.

The BAS sensors are needed at several places both inside and outside the building in question

and create the need for a wireless sensor network [1].

1.2 Market overview

In the BAS master project work [1] there was proven that the most power savings to an
automated system could be made by turning the power completely on and off again. There
was done research into this particular area and what was available on the market. This
research concluded two things. Firstly there are very few vendors on the market, and secondly
there seems to be a misconception on how to save the most amount of energy. The few
vendors are due to the relatively small market mainly Scandinavia. Existing methods from
NOB@ [4] work by lowering the temperature during set intervals. The lowering schemes exist
to prevent large heating times and ensure the comfort temperature is reached. Currently there

exists no adaptable BAS system saving the most energy [1].

The basis for this project is to evaluate such an adaptable BAS system using a model to
predict heating time ensuring comfort temperature at the correct time and maximizing the

energy savings.



1.3 Previous work

A master project titled Building Automation Systems was concluded in the fall of 2012 [1]
and creates the basis for the work done in this master thesis. During this project a house
model was created together with Ph.D. student Whatsala Perera [5]. This model will be
implemented in this thesis. Using a house model makes the BAS adaptable to changes.
Adaptable BAS systems are a relatively new area and little information on the subject is
currently available. The high usage of electric energy to heating is also primarily a concern in

the northern regions which is a small market seen in a global perspective.

Klaus Kaae Andersen, Henrik Madsen and Lars H. Hansen published a paper called
'Modeling the heat dynamics of a building using stochastic differential equations' in 1998.
The procedure used in this dissertation is a combination of using the laws of physics and
statistical data for modeling the heating of houses [6]. Their model performed reliably to their
specific conditions. The basis of the model is time consuming since statistical data needs to be
acquired for each building.

Bertil Thomasa, Mohsen Soleimani-Mohsenib and Per Fahle published a paper called “Feed-
forward in temperature control of buildings” where the approach the control problem with
focus on rapid changes in the outside temperature. The feed forward controller model is

proven to increase the inside temperatures stability [7].

The Norwegian building standards have standards on the minimum amount of insulation in
buildings and are denoted using the U’ value [8]. U value properties and measurements are
discussed in several on-line communities for energy savings [9].

The wireless sensor network was set up and tested in a summer job at TUC by the author [10].
The ZigBee ZStack code created in the BAS master project will be the basis for the
communication to from the ZigBee nodes/ sensors to the ZigBee Coordinator /gateway[11]
[12].

! A conduction and convection property



1.4 New work

The new work in this thesis is to employ a model in a BAS creating an adaptable system
estimating heating time based on current environmental data. The model will be from the
BAS master project [1] [5].

In addition the thesis will propose which control algorithms will be best suited for house
temperature control. The controllers are the feedback control (PID) the Model Predictive
Control (MPC), and Linear Quadratic Regulator (LQR). All controllers will be designed using
suitable parameters for the BAS, simulated and tested.

There will be created a data acquisition program used as a ZigBee gateway parsing the
environmental sensor data to file. The ZigBee gateway will be created using Visual Studio
(VS) and C#. The gateway will be used in to gather experiment data from to validate the
model.

A prediction model will be created based on the house model and a Kalman filter for
estimating the disturbances. The prediction model will be tested using the experiment data
before implementation in VS. The BAS control system utilizing the sensor data the controllers

and the predictor will be created in VS and tested.

An interesting perspective is in having a good house model the BAS system will be invertible,
estimating the cooling down period. This would open for energy savings in a much larger
global market.

10



1.5 BAS system description

The Building Automated System (BAS) is a complete house temperature monitoring and
control system. Therefore sensors are needed in order to measure present conditions, a data
acquisition system functioning as a gateway to transform the sensor signals to readable
formats, and a control system using these sensors for controlling the temperature. In the BAS
master project it was proven that shutting the heaters completely off when the house was
empty was the most energy efficient [1]. This creates the need for a prediction model
estimating the time to reach the set point temperature. The complete setup of the BAS system
can be seen in Figure 1-1. The data acquisition is done by the wireless sensor network sent
through a gateway to the prediction system. This data is then used by the predictor to estimate
the heating time based on the remaining time to a comfort interval. The control system uses

the same data to keep the temperature at constant level.

i Building Automated System

]
G Esti .
i Eﬁ-» Data aqusition stimation of
¢ _

heating time

J " ﬂ Control System

i Controller

Figure 1-1 BAS thesis setup showing the three parts of the thesis and their main purpose.

The wireless sensor network has been selected as a ZigBee network due to the fact of
interoperability between different vendors and the low power performance [11]. The ZigBee
nodes will be coded in IAR EW using embedded C [1]. The main system code will be in
Visual Studio and C#. The first principle model will be augmented using a Kalman filter and
used for estimating heating time in paragraph 3.2.3.1. The control output will be run through
software Pulse Width Modulator seen in paragraph 4.5, and the heater power will be set by a
DAQ-6008 device [13]. MATLAB will be used to do data and system analysis.
11



1.6 Report structure

The BAS system will be a comprehensive system and can be viewed as the combination of
the three major parts.

1. Data acquisition and house measurements, the gateway
2. Prediction model and heating time estimates, the predictor
3. Control system implementation, the controller
The parts will be individually completed before the next part is started and added to the

system in the way of Object Oriented Design and Analyses [14]. This way the complete
system can be viewed as the three use cases seen in Figure 1-2.

- =

Figure 1-2 Thesis overview seen as use case diagram

All parts will follow the same basic structure and start with the theoretical background and
end with a completed system test. MATLAB software will be used to do data analysis and
control method simulations before implementation in Visual Studio (VS). The report structure
can be seen in Figure 1-3.

12



Introduction

Model Theory
Part 1 Software development

Data Acquisition

Introduction
Estimation Theory

Part 2 Estimation Simulations
Estimation of

S d Software déveul'opment
heating time

Experiments

Introduction
Control Theory
Part 3 Control Simulations

Control System Software d'eve'l_op ment

Experiments

Figure 1-3 BAS thesis structure seen with major parts on the left and sub parts and sub

chapters on the right.
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Part 1

2 Data acquisition

2.1 Introduction

In order to monitor the temperatures inside a house there is the need for several sensors
located both inside and outside the house measuring temperatures, humidity and ventilation
[1]. To minimize the amount of cabling needed to all these sensors a wireless network has
been selected for communication. The ultra-low power ZigBee will be used as the wireless
sensor communication platform. The control system and data analysis software will be based

on the Windows OS platform.

In order to achieve communication between the Windows OS and the ZigBee protocols a
gateway is needed, where the gateway will work as a translator joining together the two
networks. The gateway should convert the ZigBee sensor information to readable data in the
MATLAB environment and the Windows OS based control system. There are two main

reasons for the need of this software gateway:

1. The ZigBee devices lack the memory and the computational power to compute
optimal control strategies.
2. MATLAB and other programs are needed to do sufficient data analysis.

2.1.1 System description

The Gateway system will be based on data from the sensors connected to the ZigBee nodes,
end devices, and coordinator. The ZigBee Professional development kit from Texas
Instruments has been used to read the temperature sensors in the end devices and send these to
a ZigBee coordinator in the BAS master project [1]. The ZigBee coordinator is connected to
the computer system using the COM port as the communication medium. This can be seen in

Figure 2-1

W End Device
i [BB]

Sensor
Sensor \
Sensor g

Coordinator

Control COM I
System

Figure 2-1 Part one system description - gateway
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2.1.2 Part 1 Structure

The first part in this thesis will address the house measurements and data acquisition software.
In order to understand the system to be monitored some theoretical background is needed.
This will be gathered by analyzing the most important and measurable parameters of the
house model. At the end of part 1 there will be real life experiments further testing the
gateway and the validity of the model. The gateway part of this thesis will follow the structure
seen in Figure 2-2 where the main chapters are seen on the right and the sub chapters are seen
on the left.

The house model

The use cases

Software Configuration

development I

Introductlon

Setup

Experiments
Results

Data processing

Dlscussmn

Figure 2-2 Part I structure progressing in a downwards fashion
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2.2 Theory

2.2.1 The house model

In order to best approach the data acquisition software some theoretical background is needed.
The house model will give a good understanding to what needs to be measured, and what
should be set based on fixed values or theoretical data. The house model was created by PhD
student Degurunnehalage Wathsala Upamali Perera [5] and used in the BAS master project
[1]. It is based on two differential functions, the change in inside temperature seen in
Equation (2-1) and the change in inside air density seen in Equation (2-2). The outside air

density is assumed constant.

d_T:(PVo—PiVL)T_I_

ViH; — pV,H, + Q) (2-1)
—— (Vi — pV,H,
a V(& 7

dp N

—=——"(p;—p) (2-2)

dt 3600

The model parameters are seen in Table 2-1.

Table 2-1 Model configuration parameters

Notation Type Unit
p Inside density [kg/m?]
pi Inlet density [kg/m3]
v Volumetric flow rate of inlet air [m3/s]
/A Volumetric flow rate of outlet air [m3/s]
M Molar mass of outgoing moist air [kg/mol]
o Specific heat of moist air at constant pressure [J/kgK]
T Temperature inside the room [K]
H; Specific enthalpy of inlet air [J/kg]
a, Specific enthalpy of outlet air [J/kg]l
Net heat energy transported into the system U/s]
Q = qupply - Qloss
14 Volume of house [m3]
Gas constant [J]/mol K]
N Number of air changes per hour [m3/h]
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The house model parameters base on inside and outside conditions are visualized in Figure
2-3.

qupp ly

Figure 2-3 Visualization of model parameters

For more specifics on the model the reader is advised to read the BAS master project [1] or

the house model paper [5].

The house model depends on a set of parameters from the building. Understanding these
parameters is important to implement a good model based temperature control system. The

most important parameters will be discussed in the next section.

2.2.1.1 House and model parameters

The model depends on several parameters from a specific building in order to emulate that
building properly. Many of these parameters should be measured directly by a sensor
network. The inside temperature, outside temperature, density, ventilation and pressure are
such parameters. The U- value, the overall heat transfer coefficient, might however be easier

to estimate from tables using known materials and known U-values.
The overall heat transfer coefficient U

One of the major parameters in the building model is the heat loss through convection and
conduction known as the overall heat transfer coefficient U. This value is a measure of how

much heat is lost from building elements to the environment.

A wall with a high U value means that it is leaking a lot of heat, while a low U value means a
high degree of insulation. Figure 2-4 visualizes the difference between a well-insulated low

U-value wall, and a poorly insulated high U-value wall.
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Low U value High U value

Figure 2-4 Low and high U values

The heat loss equation seen in Equation (2-3) is thus based on the U-values, the conduction
and convection through composite materials elements walls, windows, floors, doors, roof and
are based on the difference in inside and outside temperature. The heat loss equation can be

seen in Equation (2-3) where the parameters are seen in Table 2-3.

0,0ss = UAAT (2-3)

Table 2-2 Heat loss equation parameters

Notation Type Unit
AT Overall temperature difference K]
A Area of the element [m?].
U Overall heat transfer coefficient [w/m? - K]

The U values are useful in predicting the behavior of composites materials with regards to
total heat loss from the complete element instead of each of the materials. The U value for a
wall, floor, roof, door, and window will be specific to that wall and that house [8]. The
Norwegian building standards have set regulations for the maximum recommended U values
[8]. Together with a house model these values can be used to predict if a house is up to the
Norwegian standards assuming known or measured ventilation temperature, pressure and
density. If the temperature in the house drops faster than simulated by the model this would
indicate that the elements of the building has a higher U value then specitied. The U-values

may also be measured and this is discussed in the Appendix section 7.2.

The most practical method is to use the standard values for the buildings elements either from
the construction or the Norwegian standards, TEK-10 regulations on technical requirements
for construction [8]. The TEK-10 maximal recommended values will be used further in the
thesis and are seen in Table 2-3
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Table 2-3 TEK-10 U values.

U-Wall U-Window/door U-Floor U-Roof

0.18 W/(m’K) | 0.12W/(m’K) | 0.15W/(m’K) | 0.13 W/(m’K)

In order to test the validity of the model and further test the functionality of the created
Gateway system some experiments were performed. The experiments are found in section
2.4.

2.3 Software Development

The main objective of the gateway is to read several sensors values sent from the ZigBee end
devices to the ZigBee coordinator’ and save these values to file. The maximum number of
sensors for each device is 7 given by the maximum number of inputs on the End Devices
(ED) [15]. The number of end devices, types of sensors, IO channels configuration and the
name of the device should be stored in a configuration file. The configuration file will be
parsed using extensible markup language (XML), which is used to keep the data structured,

organized and promote easy access.

The log file will be a text file with the sensor data and time stamp using the Norwegian CSV,

separating values with a semicolon [16].

The Gateway will be created in Visual Studio, C#, and the Graphical User Interface will be
based on Windows Forms, the ZigBee nodes are coded in IAR workshop and embedded C.
All the requirements of the gateway have been considered using the FURPS+°[14] method,
the FURPS+ sheet can be found in Appendix 3 FURPS+ paragraph 7.3.1

2.3.1 The Use Case Diagram

The FURPS+ analysis of the Gateway are then made into a use case diagram. The use case
diagram gives a good graphical overview of the functionality, and requirements of the system.

The created use case diagram can be seen in Figure 2-5.

® The ZigBee gateway device where the UART/COM port is located.

? Functional, Usability, Reliability, Performance, Supportability + Additional.
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Configuration
XML file
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DisplaySerialData
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COM port /
Text file

Timer

Figure 2-5 Use case diagram of the Gateway

In order to better visualize the inner workings of the gateway, a layered architecture design
diagram has been created and can be seen in Figure 2-6. The layered architecture shows
which use cases are communicating with each other, the operating system (OS) and the user
through the graphical user interface (GUI).

Configuration

Serial data

XML

0S

Figure 2-6 Layered architecture of the gateway system

The next step in the software process is to further analyze, design, code and test a selected use
case, often the one with the highest risk or importance. The configuration use case is needed
by all other use cases in the program, making it important and convenient to finish first. The
progress of the four use cases, following the Unified Process (UP) [14]can be seen in Figure
2-7.



Configuration —> “ —|
Display config data —) n —|
- 3
I—) Display serial data —> “ _‘

A - Analysis L
C - Code
T - Testing

Figure 2-7 Software process following the UP

All the classes will start with the same names as their use case and a separate .cs file is

created for each use case to simplify debugging and updating.

2.3.2 The configuration use case

The configuration class is responsible for storing and retrieving the program configuration.
The configuration will be parsed using the Extensible Markup Language (XML). A fully
dressed use case document will be created this gives good documentation and a good starting
point for the programming. The fully dressed use case document can be found in Appendix 4:
Fully dressed use case documentsparagraph 7.4. Following will be the design of the use case

and its parameters.

2.3.2.1 Designing the configuration use case

The configuration use case is where all the data with changeable parameters are stored. The
gateway program needs to store information about each sensor node, and the serial port
settings. There might also be needed to change the timer saving data to disc, the sample time,
so the timer should also be changeable. The main elements® of information needed can be

seen in Figure 2-8.

* An XML element is consists of a start tag, and end tag, and the content in between.
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Sensor[n]

Timer

Configuration

Serial port

Figure 2-8 Configuration nodes

The elements specific information, nodes, has to be chosen. For the sensors there is needed
information about the network address, name in order to know which End Device, ED is
sending the data. In addition there is needed an Input Output (I0) channel numbering to sort
the sensors connected to each ED. Finally the location and the measured value from the
sensor should be set. For further use it might also be a good idea to add the range and
uncertainty of the sensor and the installed battery date of the ED connected to this sensor.
Lastly there should be a miscellaneous column in order to set additional information not
thought of at the present time. The available sensor information, for one typical sensor, are

summarized in Table 2-4.

Table 2-4 Typical example of one sensor settings in the configuration

Address 10 Type Location | Measureand | Range | Uncertainty | Battery MISC
/ name channel install
date
0AAA 00 PT1000 | Bedroom | Temperature | -50°C to 0.02% 1/1-2013 | Additional
+100°C information

The serial link properties should be changeable to make the program run on different
computers with different setups. The best way to do this let the user choose from the current
available COM ports and COM port settings in Visual Studio (VS). An example of the serial
information needed to run the program can be seen Table 2-5.

Table 2-5 Typical example of COM port settings

COM port

Baud Rate | Parity | Data bits | Stop Bits | Handshake

RTS enable

COM1

34800 none 8 one disabled

enabled
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The selected functions for creating this XML based configuration is the XML serializer
function contained in .NET, which is a straight forward way of creating text based XML files.

For reading, and writing to file the filestream function will be used [17].

The configuration file format will be XML following the template seen in Figure 2-9.

<Config>
<Sensors>
<Sensor>
Sensor 1 information here
</Sensor>
<Sensor>
Sensor N information here
</Sensor>

</Sensors>
<timer>

Timer information here:
</timer>
<sarial>
Serial information here
</serial>
</Config>

Figure 2-9 XML script template

Excerpts of the configuration codes most important algorithms are found with commentary in
Appendix 5 — Source Code from paragraph 7.5.1.1 through 7.5.1.3.

2.3.3 Display Configuration Data use case

The next use case to be further analyzed, designed and added to the code is the display
configuration use case. This use case contains the interface between the configuration data
and the user. The configuration will be entered in a program configuration editor which will
work during runtime, and remove any erroneous type errors from using a text based editor.
The DisplayConfigData use case is created as a windows Form GUI to connect the user to the
XML configuration file without the need for any external editing programs. The created fully
dressed use case document can be found in Appendix 4: Fully dressed use case documents
paragraph 7.4.2.

2.3.3.1Designing the configuration GUI, DisplayConfigData

The DisplayConfigData use case needs to give a good and simple way to add, edit or remove
sensors from the configuration file. Some sensors might break down or for other reasons need
to be changed or new sensors added. The GUI will be made in VS and Windows Forms. The
information in the GUI is as discussed in the configuration use case. The configuration

display will use a data grid view for the sensor information, combo boxes for the serial
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configuration and a text box for the timer. The serial link properties should be selectable from
available parameters in the .NET environment and the computer hardware. In addition an
information button should be included to supply the user information about the configuration,
and the correct way of inserting data. Lastly there should be an exit button and a button for
saving the changes. The created configuration GUI can be seen in Figure 2-10.

Information

Configuration

Sensors

Sensor
Number

Battery install

= MISC

MAC/Adress/name /O Type Location Measureand Range Uncertarty

#*

Timer settings ~ Serial Link Settings -

Save File timer [ms] COM port

o Save Changes |
]

|—’:-: EXIT |

Baud rate
Parity
DataBits
Stop Bits
Handshake
RTS enable

IREEERN ER BN ERE

Figure 2-10 Configuration GUI.

The code is based on reading and saving the configuration data using the config class and the
main code excerpts with explanation, results, testing and error handling can be found in
Appendix 5 — Source Code paragraph 7.5.1.7and 7.5.1.9. Everything was found as working
correctly and should be further checked in the log use case, for this reason the next use case to
be further analyzed designed and added to the code will be the LOG use case.

2.3.4 LOG use case

The log use case main purpose is to parse the raw serial data, add a time stamp and save the
data to file. The text received from the serial port will be a stream of characters that need to be
redistributed in a readable format for MATLAB and other applications. The distribution of the
sensor values should be based on the sensors configuration in the config.xml file. The LOG
fully dressed use case document can be found in Appendix 4: Fully dressed use case

documents paragraph 7.4.

2.3.4.1Designing the log, the LOG use case

The main function of the LOG use case is to parse the serial data into columns containing the
date and time for the message and one column for each of the sensors values. The received

raw data from the serial link contains the message between a start data sign, <, and a stop data
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sign. The message itself first consists of the network address or name of the ZigBee end
device, followed by the 10 address for that specific sensor. The reason for this is that some
end device may have several different sensors connected, but only one sensor for each 10
channel. The maximum numbers of sensors IO addresses are eight, but they are notated in the
same way as in the Texas Instruments ZigBee ZStack® v 2.5.1 as 00 to 07 [15]. In Figure 2-11
a sensor message from the end devices is seen divided up into the specific parts.

Adress Value
——t— [yt
< 0AA4AA00 782 >
e/ Nyt e/
Start 10 Stop

Figure 2-11 Example of sensor data sent from the end devices

The separating character between the columns should be a semicolon. This makes the parsed
data easily readable by MATLAB and other data analysis software. The flow of the LOG use

case can be seen in Figure 2-1.

Raw data Split up data

P dat
<0AAAQ0805 <OAAAQ0S05> RS
><0CCC0070 | _
5><0BBBO0OS ./ <OBBB0080O> ’ DateTime;805;800;705;

00> <0CCC00705> gy

Figure 2-12 Log message flow

There needs to be created an algorithm in order to split the message data into packets with the
information between the two separating signs. This algorithm will work by searching the
incoming data for the end message sign > in order to be sure a complete message has been
sent. Then it will check if the start message sign is the first part of the message. If both are
valid a complete message has been recorded and it will be separated into an array based on the
length between the message start and the message stop sign. This is done until the end of the
message and the new created message array is ready for further processing. The parsing
method will search through all the messages in the message array and pair it with the correct

sensor from the configuration. If a sensor does not have any messages the Not a Number

> For more information on the ZStack and ZigBee reader is adviced to read[10] S. Krogstad, "ZigBee PRO
development kit set up guide,” ed, 2012, [15] T. Instruments, "CC253x System-on-Chip Solution for 2.4-
GHz, IEEE 802.15.4 and ZigBee® Applications, CC2540/41 System-on-Chip Solution for 2.4-GHz Bluetooth®
low energy Applications User's Guide " 2012,
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(NaN) value will be set. Receiving several values from one sensor will only result in the last
value being overwritten. The file will be in TXT format following the template seen in Figure
2-13.

03.02.2013 20:13:39;805;NaN;706;NaN;
03.02.2013 20:14:09;806;NaN;706;NaN;
03.02.2013 20:14:39;804;NaN;708;NaN;
03.02.2013 20:15:09;805;NaN;707;NaN;

03.02.2013 20:15:39;805;NaN;706;NaN;
03.02.2013 20:16:09;805;NaN;707;NaN;
03.02.2013 20:16:39;805;NaN;707;NaN;
03,02.2013 20:17:10;804;NaN;705;NaN;

Figure 2-13 Log data template

2.3.4.2The LOG code

The log code is made up of the algorithm used to split up the raw serial data, and methods to
parse the serial data and save it to file. The main parts of the functions will be gone through
more in detail and testing with error handling will follow the code in Appendix 5 — Source
Code paragraph 7.5.1.7 through 7.5.1.9. The space required for log file saving has been
calculated and can be found in 7.5.1.10

2.3.5 DisplaySerialData use case

The DisplaySerialData use case handles the serial port information and the visual interface
between the received serial data and the user. The use case main property is to read the
current data on the serial port. The current configuration should be available from the
configuration XML file. The user should be prompted for saving a log file, and have the
availability to both view and save the parsed data. There should also be an option for saving
the raw data for debugging purposes. The documentation for the DisplaySerialData use case
can be found in the Appendix 4: Fully dressed use case documents paragraph 7.4.

2.3.5.1Designing serial data GUI, DisplaySerialData

Using a serial port in C# is fairly straight forward it by dragging the serial port from the
toolbox to the windows form. The use case needs two timers, one for the read serial data and
one for saving the log files to disk. Both timers are used directly from the toolbox in VS.
Since the gateway should be running continuously the exit cross action should be changed to
hiding the application in the windows tray rather than closing the application. The created

GUI for the main form of the gateway application can be seen in Figure 2-14.
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Figure 2-14 GUI of the read serial data

The function to read the serial port will be the SerialPort.ReadExisting. The ReadExisting
method works by reading all the available bytes from the serial port, before returning a string.
In addition the save file dialog method will be used to prompt the user for file name and

location.

2.3.5.2GUI and extra functions

In order to create a better GUI several icons were found from www.iconfinder.com freely

available for commercial use. In addition a main gateway icon was modified to fit this
program. The icons can be seen in Figure 2-15.

" ? -The main program icon

< -The startlogicon

<% -Thestoplogicon

is -The open configuration icon

- The save configuration icon

)

7o -Theexiticon

Figure 2-15 Icons used in the GUI of the gateway program
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2.3.5.3Testing and error handling in the gateway system

The complete gateway system was logging data for 14 days consecutively and no problem
arose, and the gateway will be further testing in the experiment part.

All the error handling in the gateway is done by saving the error to an error log containing the
time, date and type of the error including the method name where the error occurred. A

typical error log message in the split message method can be seen in VScode 2-1

LogSave ("error.log", DateTime.Now.ToString() + e.Message + e.Source +
"@splitmessage");

VScode 2-1 Error handling

2.4 Experiments

2.4.1 Introduction

In order to test the validity of the model experimental temperature data are needed. This data
has been logged using the created gateway and can as such be directly imported to the
MATLAB environment for further processing. In the MATLAB environment the data is
easily plotted and compared to the models output with the same circumstances. This will also
introduce additional testing of the data acquisition software. A sketch showing the model
validation process can be seen in Figure 2-16 the simulated data given from the model is

compared to the experimental data.

?

Simulated data e Logged data
===
(I

Model data Experiment data
House and

environmental
Conditions

Figure 2-16 Model verification process
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The created gateway has only been tested in simulations and these experiments will also be a
test on how it will work in a real house monitoring situation. A house was made available for
the experiments from the 21™ of March to the 30™ March 2013, and there was created nine
low power temperature sensors for the temperature monitoring. The experimental data
acquisition hardware consists of a computer with the Gateway software and a COM port for
the connection to the ZigBee Coordinator. The ZigBee Coordinator acts as a hub receiving all
the data from the wireless ZigBee sensor network. The sensor network consists of three
ZigBee end devices each with three temperature sensors. The heaters are used as pure on off
devices, and the used power is read off the power meter. The experiment procedure can be
visualized in Figure 2-17 where the experiment values are read manually from the power
meter and by the computer for the temperature sensors. The bottom level is visualized as
either the heater connected to the power meter or the sensors connected to the end devices.

Connections are noted with an arrow and a label denoting wired or wireless communication.

Power meter
Computer

Coordinator
Heater

fH

| i

Wireless f

End device

—a /

Sensor

Figure 2-17 Experimental hardware

The TAR EW ZigBee based BAS gateway system created for the BAS Master Project was
used as the ZigBee to COM communication, and for more theory on the ZigBee devices the
reader is advised to read [15] and [10].
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2.4.2 Experiment setup

The nine temperature sensors should be spread out with at least one sensor in each of the main
rooms in the house, large rooms should use several sensors in order to get a correct room
average. In addition there should be at least two sensors outside on different sides of the
house to have one always in the shadow. The temperature sensors are silicon devices of type
TMP36 [18].The sensor placement is seen in the building drawing seen in Figure 2-18 In
addition the heaters are marked with name, where red box heater indicates a panel heater and
the tiles indicate a floor heater. The arrows, Vent, indicates where there is a ventilation

opening.

10.7

T |+ ' —] — !

Dining room Logging Living room

ZigBee Gateway
@ Bathroom

5.3 3'}——#‘/
Rk

Floor heater
L

Hallway .
5-" e

Floor heater

Figure 2-18 Temperature sensor locations and house setup

The temperature sensors are seen as the silicon devices connected to the ZigBee nodes /end
devices by 3 cables of 2 and 4 meters. The sensors are numbered according to their numbered
setup in the gateway configuration file. The sensors were placed at approximately 1.5 meter

location from the floor. A picture of such typical placing can be seen in Figure 2-19.
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Figure 2-19 Typical sensor placement, sensor 2 on the left and 3 on the right

The outside sensors outside were placed as seen in Figure 2-20.

Figure 2-20 Outside sensor placement, sensor 7 seen in image

A typical location of the ZigBee node can be seen in Figure 2-21.

Figure 2-21 ZigBee end device placement, dining room node

The 9 temperature sensors were connected to the ZigBee nodes by connectors that fit the 10
header B port 15 on the ZigBee battery board. The slots were connected to the analogue
digital converter (ADC) channel 02, 04 and 07 on the ZigBee nodes. The connection can be
seen in Figure 2-22.
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\® Analogue inputs /h

Figure 2-22 Connection to the ZigBee node (end device)

In addition there was one vent in each room, the vents could be closed and all was of the type
seen in Figure 2-23.

Figure 2-23 Ventilation locations, living room vent seen in image

The uncertainties of the measurements are important to know in order to do any analysis, and
calculating the temperature sensors uncertainty needs to be done. The ADC have 12 effective
number of bits (ENOB) for ADC conversion. The range is from -3V to 3V which gives 2048
bins available on the positive side OV to +3V .This gives as seen in Equation (2-4) and
Equation (2-5)

3V 1.5mV
2048 - 00015 ~ =
1.5mV /bin (2-5)

100 ~ 0.059
3w %

TMP6 Temperature sensor accuracy using worst case scenario will then as seen in Equation
(2-6).
+2°C

— ~ . 0, (2'6)
op * 100 ~ 1.3%

The complete uncertainty budget can be seen in Table 2-6 where the main sources of

uncertainty is the TMP36 device and the manually read power meter.
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Table 2-6 uncertainty budget

Type Sensor Range Accuracy Note
CC2530 EM ADC -3V to 3V +0.05%
Temperature TMP36 -25°C to 140°C +1.3%

The meter only

Power meter N/A N/A +0.9kWh shows kWh

2.4.3 Gateway setup, and data acquisition

The data was gathered using the created gateway organizing the sensor data. The gateway
store all the information in text based log files that can be directly imported into MATLAB.
The sensor data are included in columns separated by a semicolon where the first column is
the Date time stamp. The sensor setup for the house experiments in the gateway can be seen
in Figure 2-24.

izlﬁboér MAC/Adress/name 10 Type Location Measureand Range Uncertanty dB:ti;taery el MISC

- M 02 PG Bechoom Tempeue.  |401o+15  |12% 2032013 4M cable
2 DAAA M TMPE Diningroom Temperature 40 to +125 1.2% 20/3/213 2M cable
3 ORAA 07 TMPE Bathroom Temperaturs 40 to +125 12% 20/3/2013 AM cable
4 OBBB (174 TMPE Outside North side | Temperature 40 to +125 1.2% 20/3/2013 4M cable
5 0BEB 04 TMPE Kitchen Temperature -40 to +125 12% 20/3/2013 2M cable
6 OBEB 07 TMPE Hallway Temperaturs -40 to #125 12% 20/3/2013 AM cable
7 0cce 0z TMPE Outside South side | Temperature 40 to +125 1.2% 20/3/213 4M cable
8 occc 4 TMPE Guestroom Temperature A0 to +125 1.2% 204372013 2M cable
] occc 07 TMPE Livingroom Temperature A0 to +125 1.2% 20/3/2013 4M cable

*

Figure 2-24 Gateway configuration for running the experiments

The sampling time set in the save file timer is set to 3600ms or 6 minutes which should be a

high enough sampling time due to the large time constants of a house.

2.4.4 Data processing

The raw sensor data saved to file using the gateway need some processing in order to be
correctly represented when analyzed. The raw data should be filtered through a low pass
filter, all non-values, NaN, should be removed and there should also be a check for gross
outliers. Several MATLAB functions were created in order to accommodate the data

processing and verification needed and will be further discussed in 2.4.4.1 to 2.4.4.3.

2.4.4.1The NaNremove.m function

The data acquisition system should interpolate between missing values and give the user
information about the number of NaNs that are removed. There are efficient methods for this
in the basic MATLAB setup. Using the find.m function with the isnan.m function any NaN

values position is found. The MATLAB environment 2d interpolation function interpl.m is
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used to interpolate between the known values and the found NaN indexes. The interpolate
function requires values before and after the missing value in order to function. This means
the data needs to be checked for missing values at the start of the data set, these rows are
simply removed from the data set. This is seen in an excerpt of the NaNremove.m function
seen in MATLAB script 2-1.

while (find(isnan(data(j,:)))>0 & j<length(data(:,1)))
J=3+1;
end
$remove all first rows with NaN data
data=data (j:length(data(:,1)), :)

MATLAB script 2-11check of first row NaNs

Then all the NaN values that can be interpolated are found and the data is interpolated. This is
seen in the excerpt of the NaNremove.m seen in MATLAB script 2-2

for i=l:length(data(l,:))
Non=data (:, 1)
NonNan (:,i)=interpl (find (~isnan (Non) ), Non (~isnan (Non)),1l:length(Non))';
NaNs=length (find (isnan (data))) ;

End

MATLAB script 2-2 interpolate between missing values

Finally the data needs to be checked for NaN values at the end of the data file. If found these
end rows are removed following the same principle as removing any NaNs contained in the

first rows. This is seen in the NaNremove.m function excerpt in MATLAB script 2-3

if (find(isnan (NonNan)) > 0 )
[row,col,vals]=find (isnan (NonNan)) ;
EndNaNsRemoved=length (vals) ;
NonNanData=NonNan (1 :min (row) -1, :); %$Remove end rows with NaNs

MATLAB script 2-3 removal of end rows containing NaN

The function is then tested with all the three parameters the result can be found in Appendix
6: MATLAB scripts paragraph 7.6.2.

2.4.4.2Sensor value to Temperature conversion

In order to have the data in degrees Celsius the Analogue to Digital Converters (ADC) values
needs to be converted. The ADC converter receives the voltage output from the TMP36
temperature sensor which is directly correlated to the current temperature. The ADC on the
ZigBee nodes has ENOB of 12bits, ranged from -2048 to 2048, or -3V to 3V [15], and the

conversion is done based on the TMP36 sensor scaling. This is seen in Table 2-7.

Table 2-7 TMP36 temperature sensor scaling parameters

Sensor | Offset voltage (V) | Scaling voltage (mV/°C) | Output voltage at 25°C (mV)

TMP36 0.5 10 750
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For the conversion the data is first converted back to the sensors voltage from the ADC value
as seen in Equation (2-7).

Volts = ADCygpq * 3018 (2-7)
The voltage data is then converted into °C seen in Equation (2-8).
Temperature = (Volts — 0.5) * 100 (2-8)

2.4.4.3The outlier marking function

The outlier removal function will also use MATLAB to interpolation between the gross
outliers. Gross outliers have been selected as values that lay 2 standard deviations from the
mean of the entire data set. This is however an input to the function, and the size of this
standard allowed deviation should be set regarding the length of the sample in question. Since
the Interpl.m function will return NaN if there are outliers found in the end and start of the
data file, this function should be run before the NaN remover. This will ensure that all outliers
and all NaNs are removed before smoothing the data. The standard deviations and the mean
of the data sets are found using the repmat.m function. An excerpt of the outlier detection and
removal function can be seen in MATLAB script 2-4 the complete source code is found in
Appendix 6: MATLAB scripts paragraph 7.6.3

mu = mean (data); %Create a matrix of mean value

sigma = std(data);%Get the standard deviation of the data

[n,p] = size(data);%Get the size of the data matrix

MeanMat = repmat(mu,n,l); % replicating the mu vector for n rows

SigmaMat = repmat (sigma,n,l); $ replicating the sigma vector for n rows
outliers = abs(data - MeanMat) > 2*SigmaMat;% Create a matrix of zeros and

ones, where ones indicate the location of outliers

MATLAB script 2-4 outlier removal excerpt

The outlier removal function was tested with some noisy data gathered during the
experiments and the resulting plots before and after outlier removal can be seen in Figure
2-25.

Temperature readings started at 22 March 2013
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Figure 2-25 Removed outliers using a standard deviation of two, top graph shows the data

before outliers are removed and bottom shows after removal.
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In this plot it may seem as one outlier is remaining at 23:10 March 23" and this may be
discussed, however since it is not removed this means that there are at least 3 consecutive low
samples. With a 6 minutes sampling time this means the samples are over an 18 minute period
on the March 23" and as such should not be seen as outliers. The reason for these samples
seeming erroneous is probably due to a door being kept open for too long letting cold air
inside. The last points that have been interpolated are just single samples and as such can be
seen as outliers. The data should also be run through a LP smoothing function that will take
care of this. The LP filter function can be found in Appendix 6: MATLAB scripts paragraph
7.6.4.

The plots before and after all the data acquisition functions can be seen in Figure 2-26 and
Figure 2-27 respectively. The script loading the log data, running the data processing
functions and creating the correct axis and output format can be found in Appendix 6:
MATLAB scripts paragraph 7.6.1.

Raw data - Temperature readings started at 22 March 2013

(]
g 600 T T T T T T T T T T T T T T Bedroom
E Diningroom
O Bathroom
9: 400 Guestroom
@ Livingroom
& Kitchen
g) 200 1 1 1 1 1 1 1 1 | 1 1 1 | 1 Hallway
N 19:4922:3101:1304:0106:4309:2512:1214:5417:4220:2423:1001:5204:3407:2210:04

Time
w
g 600 T T T T T T T T T T T T T T
©
>
Q —— Outside N
o
< 400 —— Qutside S
o
(0}
2
N

S
=]

:4922:3101:1304:0106:4309:2512:1214:5417:4220:2423:1001:5204:3407:2210:04
Time

Figure 2-26 Raw data received from the ADC of the ZigBee nodes, before data processing

Processed data - Temperature readings started at 22 March 2013
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Figure 2-27 Temperature data after data processing

36



2.4.5 Discussion

The experiments clearly indicated that the model has some problems with estimating the
correct time constants of the house. The cooling and heating times lasted both much longer in
the real house than model simulations [5]. In order to better visualize this difference, the
sensor values has been averaged to yield one inside temperature, and one outside temperature.
Both the “all power on” and “all power off” experiments data will be compared with the
model simulations using the same environmental conditions and house parameters. In the
simulations the temperature in the ground is seen as 5°C higher than in the air for simplicity.

The data used for the all power off simulation is from March 28" and 29™ and gives
representable data from all the “all power off” experiments. Some data colored by noise
should still be removed before comparing with the model simulations. From 07:00 to 09:00
on 29 March the inside temperature data is too colored by the sun which is seen from the
outside temperatures in Figure 2-28. From 18:33 to 19:30 the data is also somewhat colored
by unknown disturbances, probably cold wind from opening the door when leaving the house.

The processed data for the entire power off interval can be seen in Figure 2-28.

Averaged temperatures - Temperature readings started at 28 March 2013
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Figure 2-28 Averaged temperatures, inside temperature seen in top graph and outside

temperature seen in bottom graph.

The removal of this noise colored data results in a 10 hour period of good data quality ready

for comparison. This temperature data is seen plotted together with the non-linear model in

Figure 2-29.
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Experimental data VS. non-linear model
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Figure 2-29 experiment data “all power off” VS non- linear model, inside temperature seen

in top graph and outside temperature seen in bottom graph.

In the same manner an all power on representable data set was found at March 22™ from
09:30 to 19:00 and is plotted next to the non-linear model seen in Figure 2-30.

Experimental data VS. non-linear model
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Figure 2-30 Experiment data “all power on” VS non-linear model, inside temperature seen in

top graph and outside temperature seen in bottom graph.

In Figure 2-29 and Figure 2-30 as the non-linear model fits the experimental data poorly.
There are several reasons for this:

1. The model does not take into account the mass of the house the walls the floor the
furniture etc. All which has a lot of mass and much specific heat capacity.

A statistical U- value has been used TEK10.

The Ventilation is set to a statistical, TEK10, value and is not measured

The effect of the sun i.e. the solar rays are not measured

o kW

The temperature of the ground is unknown

38



The statistical data for the house blocks U-values and the ventilation might contribute
significantly to the erroneous of the non-linear model. Both these parameters are changeable
in the model and an experimental test was devised in order to test the correctness of the
statistical data: All known ventilation was closed and the inside house temperature was kept at

steady state during which the power consumption was monitored.

At March 29" the outside and inside temperatures reached something close to steady state
conditions, this can be seen in Figure 2-31.

Averaged temperatures - Temperature readings started at 29 March 2013
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Figure 2-31 «Steady state» conditions for temperatures

Even though the temperatures seen in Figure 2-31 are not in a completely steady state they
should give a good approximation to the total house heat leakages. The inside temperature
only changes from 21.5 + 0.6, and the outside temperature change is —1 + 0.5 over the
interval of eight hours, and nine kWh of power was used which is approximately 1.1kW per
hour. The temperature difference is taken as the mean of the differences over the length of the
time interval. This gives AT ~ 22.6, and the total area of the house is A = 218.6m?. The total
estimated leakage factor can then be estimated using equation (2-3), under paragraph 2.2.1.1

House and model parameters. The result is seen in equation (2-9).

0. = Qwork _ 1125W
T™ AAT ~ 218.6m2 * 22.6°C

~ 0.228W /m?K (2-9)

The total house U value result of approximately 0.23 was set in the model with the total house
area and the model was run and compared to the TEK 10 U values results. This can be seen in
Figure 2-32.

39



Model with TEK10 standardized U-values VS experimental gained U values

30 : ‘ T T T T T I I
................. TEK 10 U values

— Calculated UT

Temperature [°C]

Time [Hours]

Figure 2-32 TEK10 vs. estimated total U-value

The TEK 10 standardized values show somewhat longer cooling time than the experimentally
gained U — value. This means the TEK-10 used values are probably quite accurate since the
total U-value also will include other leakages®. This also mean that the house mass is
extremely important when creating a house model usable for control, and this heat capacity

factor needs to be included in the model. This will be further discussed in the next part on

creating the heating time estimation in section 3.

® Leakages between elements (door and walls, window walls, etc) and in corners .
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Part 2

3 Estimation of heating time

3.1 Introduction

The main reason for using a model in this BAS system is to have a prediction of how the
inside house temperature will change over time. Specifically the model should be used to
estimate the heating time with current environmental conditions. This heating time estimation
should be accurate in order to both minimize the amount of power used and reach the correct
temperature. In 2.4.5 the house model did not correspond to the experimental data. The house
mass heat capacity will prolong the time used for heating and make any heating time
estimation too short. Therefore a new prediction model needs to be created.

3.1.1 System description

The heating time estimation is based on a temperature reference named comfort intervals. The

comfort intervals are references to when the residents are at home, and not sleeping.

Heating time estimation is needed to reach the comfort temperature when the residents are
home from work or getting up in the morning. The estimation will be made with a prediction
model calculating the present heating time estimate using the environmental conditions from
the gateway seen in part 1 Data acquisition. This heating time estimation will be run each
sampling time and when estimated time corresponds with the time remaining until the
comfort interval, the heaters should be turned on. This is visualized in Figure 3-1 where
heating estimations are seen as the blue dotted lines and the solid blue line is when the
estimation is the same as the time remaining till comfort interval. The red line denotes the

temperature reference.

Heating estiamates

Comfort
Environmental Prediction interval

conditions model

&
r
S
s B
=

-

l ® Time%

Corresponding sampling times >~  Heating time

Figure 3-1 Heating time estimation showing heaters turned on at the correct time based on

the current environmental conditions.
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3.1.2 Contents and structure

Part two will first consider the theory behind the temperature references and prediction model,
before simulations are performed in MATLAB. The temperature prediction system will be
implemented in Visual Studio and then the finished system is tested in an experiment. Lastly
the results from this chapter will be discussed. The structure of part two is seen in Figure 3-2

where the main chapters are seen on the left and the sub chapters are on the right.

Comfort intervals

Prediction of heating time
Prediction model

State estimation

Simulation

The use cases

Software
development

Introduction

Figure 3-2 Part 2: heating time predictions structure main chapters on the left and sub

chapters on the right, and progress proceeds in a downwards fashion.
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3.2 Theory

3.2.1 Comfort Intervals

In order to control the inside temperature of a house there is need for a control reference. In a
home this control reference will be based on when the occupants are at home and what
comfort temperature is preferred. In a completed system the comfort intervals will be based
on the specific residents work schedule, and bed time. In a completed system this can be
learned using the sensors, for this analysis and simulation purposes however “typical” family
workweek will be invented: The residents will go to bed at 23.00 get up at 07.00 go to work
at 08.00 and get home from work at 16.00.

When the house is in use the resident will want a constant comfort temperature of 20°C, this
means on a “typical” weekday for this invented resident will follow this schedule. For a
typical weekend Saturday and Sunday, the residents may get up a little later around 09.00 and
go to bed a little later around 01.00. The temperature references can be seen in Figure 3-3

where the weekday temperature references are seen on the left and weekend on the right.

Reference temperature Weekday Reference temperature Weekend
25 T T T 3 25
20+ - J 20+ —
3 3
E 15+ E 15+
3 3
B B
g g
g 10r g 10r
(0] (0]
[ [
5r~ 5
ok H . . : 0 . . e -
0 5 10 15 20 25 0 5 10 15 20 25
Time hours Time hours

Figure 3-3 Temperature comfort intervals, reference zones weekday on the left and weekend

on the right

In the case of when the temperature may be lower the heater can be turned completely off
saving the most amount of energy, however there should be some limitations making sure the
temperature never reaches below 5°C. The Comfort intervals are created in a MATLAB

function to be used as reference vectors in in part 3 Control System simulations.

In Figure 3-3 the amount of time where the temperature needs to be at comfort level, 20°C, at
weekdays is less than when the heaters can be turned off. This means a lot of power can be
saved using temperature prediction in a control system. Some straight forward calculation
gives that for one complete week there are 72 hours in which the temperature should be at

comfort level seen in Equation (3-1).
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Weekdays 1hour + 7hours *5 = 40
Weekends 16hours * 2 = 32 (3-1)

168hours pr week — 72 hours heater on = 96

This means that there is 96 hours a week, about 7 months of the year where the heaters can be
turned completely off saving power. Even though the heaters will need to be turned on more

than these 44%, this is still a good visualization on how much power can be saved.

3.2.2 Prediction of heating time

In order to save the maximum amount of power in a house a heating time prediction model is
needed, the model will be used to predict future behavior based on future known references
and current environmental data. The temperature estimator will be used as a reference into the
future. The reference will be 1,4, where L the heating time is calculated by the prediction
model, and k is present time. The future references are based on the residents comfort

intervals.

Turning the power completely off and then on again without using a heating time estimation

would result in the temperature being too low in the comfort interval. This is visualized in

Figure 3-4
A
Temp[°C] ] Comfort interval
20 No temperature estimation
™ Using temperature estimation
5 >
< > Time

Estimated heating time

Figure 3-4 Why there is needed a temperature estimator to reach the set point temperature in

time

Another way would be to use a fixed heating time based on the fixed condition parameters,
often included as the temperature lowering systems currently available [4]. This will not be
the most efficient as the set point would be reached too soon in almost all cases. In Figure 3-5

this is visualized where the comfort temperature is reached too soon and power is lost.
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Figure 3-5 Energy loss using fixed heating time, the lowering scheme [4]

This last power saving scheme is not optimal, and the main reason for this being implemented
in current power saving systems [4] is that there is no house model to estimate the heating
time. This thesis is based on a house model and an approximate heating time can be

calculated, resulting in saving the most amount of power.

The house model was shown to be inadequate in its present form since there is no
implementation of the house mass and the house heat capacity. The heat capacity of the
house will be very hard to measure in any direct way, and should if possible be estimated by
an observer. In addition the air densities are not currently measured and should for this reason

be added to the unknown disturbance factor. This will be further discussed in the next section.

3.2.3 Temperature prediction model

The only known parameters for each sampling time is the inside and outside temperature. In
order to have the best possible fit to the experimental data there should be used two states one
for the inside temperature and one for the disturbances. The outside temperature will be
viewed as a slowly varying disturbance and included in the state calculation at each sampling
interval. The remaining disturbance value, mainly the mass heat capacity, should if possible
be estimated by an observer.

The estimation of the heating time is based on the first differential function seen in Equation
(2-1), the house parameters and the current measured values from the sensors.

The house mass heat capacity and other disturbances are added as an extra state, ¥, to the
temperature part of the house model, the outside temperature is denoted v, and the inside
temperature is denoted x;. The disturbances are viewed as constant or slowly varying J,, =
0, v+ = 0. The differential function for inside temperature, f; = x; augmented with the

disturbance mass, 9J,, can be seen in Equation (3-2).
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vV, — piV, 1 0 v 6y
:( T ;’] Vpl l)x1+ B (piVH; —vrVoHy +u—UA*AT) +9,,  (3-2)
T vrV (& —3p)

1

The heat loss equation (2-3) has been expanded into the first differential equation (2-1) where
the difference between the inside and the outsider temperatures are seen as AT, and the heater

power as u, and house area as A. The other parameters are denoted in Table 2-1.

The model is then transformed into a linear state space representation (SSM) in order to
implement the augmented changes and using the model for prediction. The complete set of
differential functions is then seen in Equation (3-3)

_ fl] _ [Inside temperature 3.3
flowvr) = fa _[ Distrubances ] -3

The state matrix A is found as the two first (linear terms) of a Taylor series expansion of the
right hand side around the points X, and uy seen in Equation (3-4) [19].

[ dh]
df dx, dJ
A=—— =|""1 m| 3-4
ol T |df df; | 9
ldx, @9,
The transition matrix B is found as the Jacobin seen in Equation (3-5)
b [
du
B=—| = 3-5
du o % ( )
dulg

The model in Equation (3-2) is then expanded with all parameters [1], and deviated using
symbolic MATLAB the results of this derivation operation can be seen from Equations (3-6)

through (3-11). The complete expanded model can be found in Appendix 7: Expanded model.

NVL( _PM) .
dfy _ 3600\ " Rog)  —Vo(Cpa + frCpw) — UA (3-6)
dx, pi VrpiCy
g (3-7)
dO,,
i _, (3-8)
dx;
4 _ (3-9)
d Oy,
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af, 1

v (3-10)

~ R
UTV(Cp - M)
af2 _, 3-11)
du
Evaluated at the steady state of x; s, = 20°C, vy = —5°C u = 910W the SSM is found as
seen as in Equations (3-12) through (3-14)

-4
0 0 Ig
-5
B, = [0.439273(’)04846 ]055 (3-13)
D=[1 0] (3-14)

The system is discretized using zero order hold and sampling time corresponding to the
experiments sample time of six minutes. The calculation of the discrete matrices using the
zero order hold numerical method can be seen in Equations (3-15) through (3-19) , the

numerical method is based on [20].

AZhZ A3h3 Anhn
— 3-15
Ag=1+Ah+——+ TR (3-15)
Ah? A%h3 An1pn
=I1+A|Ih+ + + .- (3-16)
2! 3! n!
S
=1+AS (3-17)
Ah®  A%h3 A™h"
By=|Ih+ CTRRRET i B (3-18)
S
=SB (3-19)

After running the discretization function using the first ten polynomials the discrete SSM
(dSSM) is seen in Equation (3-20) and Equation (3-21).

0.7263  308.12
_ 3-20
Aa [ 0 1 ] (3-20)

B, = [0.0(())14] 3-21)
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Observability

In order to introduce an observer into the system the system needs to be fully observable. A
SSM system will be fully observable if the rank of the observability matrix is equal to the
number of states in the system [19]. The observability matrix for this two state system is
calculated from the state matrix, A; in Equation (3-20) and the output matrix D in Equation
(3-14). The result can be seen in Equation (3-22) and Equation (3-23).

o113
1

0 ] (3-23)

0= [0.7263 308.12

As seen in Equation (3-23) the rank of the observability matrix is two and equal to the number
of states in the system which means the system is fully observable. This means the system can
implement an observer for the house mass heat capacity and extra disturbances.

The optimal observer Kalman filter will be used for the state estimation and will be discussed

in the next section.

3.2.3.1State estimation

The Kalman filter is a well-known model based algorithm useful to estimate unmeasured
variables. It is seen as an optimal observer in the sense that the variance of the measurement

error is minimized. The Kalman filter will implemented on the apriori-apostriori form and the

i 4

block diagram can be seen Figure 3-6.

—HD—) controller 2 house = I
A
€%
h 4 Kalman filter
> Kalman ¥, _
filter >
Ty Xy

Figure 3-6 Kalman filter block diagram

In Figure 3-6 Xis the apriori state estimate, X) is the apostriori state estimate, y, is the
predicted output, 73is the reference and €, is the error between the predicted output and the

measured output. W is assumed to be slowly varying stochastic process noise and V is
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assumed to be slowly varying stochastic measurement noise. The state space model can be
seen in Equation (3-24) and Equation (3-25).

Xi41 = Axy + Bu, + W (3-24)
Ve =Dx, +V (3-25)

In order to get in the algorithm the apriori state estimate initial values, needs to be specified.
Xreo (3-26)

Then the rest of the algorithm should be run in all other time instances seen in Equation
(3-27), (3-28), and (3-29).
1. Calculate the predicted output measurement
}_]k = ka (3-27)
2. Calculate the aposteriori state estimate

X = X + K (Vi = ¥i) (3-28)

€
3. Update the apriori state estimate

X+1 = ARy (3-29)

K is the constant Kalman filter gain calculated by minimizing x seen in Equation (3-30) ,
where X is the solution to the Riccati equation seen in Equation (3-31).

K=X«DT«w™1 (3-30)

AX + XAT —XDTW™IDX+V =0 (3-31)

The constant Kalman filter gain can be found by the kalman.m function in MATLAB, since
however the Kalman filter should be implemented in a C# control system the best way is to
use an iteration based solution. Constant Kalman filter gain converges fast and is found within
a few iterations [21]. The Kalman filter gain is found iteratively by the following algorithm
seen in Equations (3-32) through (3-35).

1. Specify initial values for the states covariance matrix
Pr—o (3-32)
2. Obtain an estimate of the states covariance matrix before reading the output
P, =AP,_ AT +Q (3-33)
3. Obtain the Kalman filter gain matrix

K, = P,DT(DP,D + R)™! (3-34)

4. Correct the state covariance matrix after reading the output
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Pryr = (I — KxD)Ppyy (3-35)

Where Q is the covariance matrix for the process noise, R is the covariance matrix for the
measurement noise, K is the Kalman filter gain, and A and D are the SSM matrices with
proper dimensions. The Kalman filter gain iterative calculation is based on [22]. The Kalman
filter will be implemented and tested in the next section and further tested in the experiments
in section 3.5.

3.3 Implementation and simulation

Before coding the Kalman filter and using it directly in the temperature predictor some more
analysis is needed. This will be based on implementing the Kalman filter in MATLAB and
simulation using the experimentally gained values from section 2.4. First the weighting
parameters need to be defined. The covariance matrix for the measurement noise R is
normally found as the variance of the time series [21]. Using the var.m function in MATLAB

the result can be seen in Equation (3-37).
R =[2.32] (3-36)

The covariance matrix for the process noise Q is seen as a tuning parameter with each
component responding to the variance of that specific state. The Q matrix is tuned to the
highest value not causing too noisy measurements [19]. The found values can be seen in
Equation (3-37).

0= 21 &)

The Kalman filter algorithm can be seen implemented in MATLAB script 2-1

sKalman galm matrilz calculatlon=s=—cccssoosossooooososonooossomE o s s s o=

Phat=A*Phat*A'+Q; $Estimate of covariance matrix
K=Phat*D'/ (D*Phat*D'+R) %Kalman filter gain matrix
Phat=(I-K*D) *Phat; %$Correct the state covariance matrix
tState estilmaitlon=mmsmmssssssssssssessssosssss e ses e TS s se s o=
Ykbar=D*x; $Predicted output measurement
Yk=AvgInTemp (k) ; %$Read output vector
Xhat=Xbar+K* (Yk-Ykbar) $Aposterori state estimate
Xbar=Ad*Xhat+Bd*u; $Update the apriori state estimate

MATLAB script 3-1 Kalman gain calculation and state estimation

After the simulation has run four iterations the steady state Kalman filter gain is found as seen
in Equation (3-38).

0.998
_ 3.38
K [0.0032 (3-38)

The resulting plots from the predicted output measurement using the estimated states from the

Kalman filter can be seen in Figure 3-7.
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Experimental data and SSM using Kalman filter state estimation
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Figure 3-7 SSM model simulation using Kalman filter state estimation

In Figure 3-7 the SSM model with estimated disturbance states fits the experimental data
nicely. The disturbance estimation is increasing with the increasing inside temperatures

probably due to the increasing amount of thermal energy being stored.

This increase is not negligible due to the large weight the disturbance has on the temperature
state [2.4.5]. The increase is however close to linear and can be fitted using one polynomial
ordinary least squares regression (OLS). In Figure 3-8 the disturbance change is seen plotted

together with the fitted least squares line.

Disturbance and ordinary least squares fit
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Figure 3-8 Disturbance and least square fit

In order to create the fit line and have a good heating time estimation based on the model
there is needed a first heating run where the disturbance parameters can be learned. This
should be done by keeping the temperature at the low point before turning all heaters to the
maximum storing all the values until the set point temperature is reached. The new Kalman
OLS State Space predictor (K-OLS-SSM) together with the non-linear model and pure linear

regression estimation (OLS) can be seen estimating heating time as in Figure 3-9.
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Temperature prediction using same conditions
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Figure 3-9 Temperature predictions using three methods

The temperature estimation is on the same data as used to create the disturbance vector and
the close fitting is to be expected, this is also evident when seen at the close fit to the pure
linear regression fit (OLS). A new test set is gathered from the 24™ of March in order to verify
the prediction model on a different data set with different environmental conditions’. For the
test set the two best estimations will be used, the purely OLS estimate and the K-OLS-SSM.

The heating predictions can be seen in Figure 3-10.

Temperature prediction using different evnironmental conditions
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Figure 3-10 Heating predictions using a real test set

The results shows that the Kalman filter and OLS based estimate produce the best heating
predictions. The SSM model is derived from the present conditions and will make the
predictor more adaptable to change. There should be noted that the test set period only two
hours and the functions should be more tested in the experiments part found in section 3.5.
For this reason both the linear OLS regression and the Kalman estimated predictor will be

implemented in VS.

7 The test sets on all other occasions of heating time is too much colored by the sun. Heating tests should for this

reason in the future be set to run at night.
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3.4 Software Development

The temperature predictor needs to have the current measurements, house and model data in
order to predict the heating time. These parameters are needed to create the discrete state
space model using the current environmental conditions. In addition the temperature
reference, the comfort intervals are needed to know when to send the start heating signal to
the controller. The temperature references, model and house parameters should be stored in
the XML configuration file in the same manner as in paragraph 2.3.2. The user should be able
to set the comfort interval reference from a weekly table and the temperature reference system
should get the current time date information in order to do the prediction into the future. In
order to handle both Single Input Single Output (SISO) and Multiple Input Multiple Output
(MIMO) systems, matrix calculation methods are needed. The FURPS+ sheet can be found in
the Appendix 3 FURPS+ paragraph 7.3.2.

3.4.1 The use case diagram

The use case diagram is made to get a visual representation of the requirements to the
temperature prediction system. The use case diagram can be made based on the found
requirements can be seen in Figure 3-11.

. Configuration for the house, model and comfort intervals.
Rl R Sensor parameters from gateway configuration
saved to hd with gateway P g ¥ 9

- Read Sensor Values Confi _i/

Hard disk Display
Timer intervals C)

The current measured B‘

from gateway When to turn the heaters on, =, __ -
cnnﬁgurahnn The heahng prediction time L

Date Time XML file
Timer

Control System

Figure 3-11 Use case diagram of the Temperature Predictor

There are several classes in some use cases and to have a better visualization of these classes a
layered architecture has been created in Figure 3-12 to visualize the classes in each use case.
The configuration use case consists of three classes and the predictor use case consists of two
classes.
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Figure 3-12 Layered architecture of the heating time estimation

3.4.2 The Configuration use case

The configuration contains the house and model parameter and are responsible for the GUI
between the user and these settings. The configuration is also responsible for storing the
parameters to a configuration file. The configuration file will be based on the XML
configuration used in the gateway from part 1 Data acquisition with additional elements for

the new information.

There are needed many configuration parameters and the GUI is divided into two main

Windows Forms (WF), the house and heater parameters and the model parameters.

The fully dressed use case document can be found in Appendix 4: Fully dressed use case

documents paragraph 7.4.2.

3.4.2.1Designing the house parameters Windows Form

The house parameters WF will give the user a visual representation of the model parameters
needed in the calculation of the inside temperature state. The house parameters are the U-
values, areas and heater power. The house and sensors locations are seen in the house layout
image box. A save button is used to save the new values to the XML file. The GUI of the

house parameters can be seen in Figure 3-13.
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Figure 3-13 GUI of house configuration parameters

3.4.2.2Designing the Model parameters Windows Form

The model parameters file name is ConfigModel.cs and should give a visual representation of
the models parameters. The default values should be set in the .cs file if the user wants to
reload these. The recalculate button will recalculated the parameters based on the new values.
In Figure 3-14 the created GUI can be seen.

Model Configuration Parameters

Model Parameters Inside Temperature Function

Figure 3-14 GUI of model configuration parameters
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3.4.2.3Designing the comfort intervals use case

The comfort intervals use case is mainly a GUI for setting the comfort intervals schedule of
the residents. The user should be able to set his preference for comfort and low temperature,
and when these temperatures are wanted. The intervals at comfort temperature should be set
in a green color for easy visualization. The comfort intervals should for simplicity only accept
integers and should give the user a notice if the temperature is set lower than 5°C or higher
than 25°C. The WF file name is ConfigTemperatures.cs. In Figure 3-15 the GUI created is

seen with the typical invented workweek comfort intervals.

Temperature Reference

Options
Temperature Parameters

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Comfort Temperature ['C]
20
Low Temperature [TC]
5 Set Low Temp

Set comfort interval

e oo o
e o | e
AR AR Rt RN AT
o oo oo oo
e o | e

Reload Configuration

en | oo en
o oo o e o o en

Save

Figure 3-15 Comfort intervals configuration GUI

The user may use the buttons to set comfort temperature or the low temperature or using the

context menu strip, right mouse click option as seen in Figure 3-16.

Set Comfort Ternperature |

Set Low Temperature

Figure 3-16 Context menu strip right click option
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3.4.3 Read sensor values use case

The sensor values are stored to a log file containing the time stamp and the sensors values in a
numbered order as seen in part 1 paragraph 2.3.4. The get sensor values use case should
convert the ADC values to temperature and pass the values through a low pass filter. The
complete fully dressed use case document can be found in Appendix 4: Fully dressed use case
documents paragraph 7.4.2

3.4.3.1Designing the read sensor values use case

In C# there is no option for reading a specific line since this is not how the reader works on
the lower levels. For this reason all lines will be read into an indexed array using the current
index to remember which line to read. This might cause problems with very high sample
times needed for fast systems (small time constants), however with the house system this is
not a problem. The method should also return the date time stamp in order to plot the correct

time values and have some information on the exact time of the specific sample.

The low pass filter is added as a new class filtering the values based on the previous value, the

filter time constant and the sampling time. Each sensor is filtered in turn.

3.4.4 The predictor use case

The predictor use case takes care of the heating time predictions, the predictions are done in
the manner previously specified in paragraph 3.3. The predictor will use the Kalman filter to
calculate the disturbance vector, and a least squares regression to get the direction of this
vector. The estimated disturbance function should be calculated one the first run time from a
stable Kalman filter gain has been achieved to set point. In addition the purely linear

regression estimate will be also be implemented in parallel as a second heating time estimate.

The complete fully dressed use case document can be found in Appendix 4: Fully dressed use

case documents paragraph 7.4.2.

3.4.4.1Designing the predictor use case

The predictor use case utilizes a Kalman filter algorithm and need a Matrix calculation class
to function. The C# and .NET libraries do for some reason not contain any inbuilt Matrix
manipulation functions. A functional Matrix library using the Strassen algorithm for large
matrix manipulations have been created by Ivan Kucirc [23]and will be used for the matrix
manipulations in this thesis. Some additions were made to the library since it could not
facilitate matrix and scalar values together: Scalar values times matrix values, matrix values
times scalar values, matrix divided on scalar values, and scalar values added to matrix

values. The ordinary least squares regression is calculated using the matrix equation found in
[24].
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3.5 Experiments

3.5.1 Introduction

The prediction model and the heating estimation program should be further tested to ensure
the functionality in a real life experiment. Telemark University College has an air heater
system that is based on the same rules as a complete house. The time constant will be much
smaller than a real house due to the very small volume, area, and large U-value. There will
also be a high degree of ventilation and a very large heater in relations to the size. These are

all changeable parameters in the model and the air heater should therefore give a good real

Heater
on

If the comfort intervals are reached at the correct time the heating time estimation will be

house simulation. The experiment is visualized in Figure 3-17.

Time to

Predictor o comfort
rediction :
Gateway pes time

Air Heater Heating time

Figure 3-17 Heating time experiment

working properly.

3.5.2 Experiment setup

The experiments should utilize the code already created in the gateway together with the new
created code from the temperature prediction. The time constant of the air heater will be much
smaller and the sampling time should be set to a much lower value. In addition two
temperature sensors are use inside the air heater to get a good estimation of the inside
temperature. All data will be saved to disk for plotting in MATLAB, and the comfort interval
reference is changed from hour to second. The air heater has a length of 1m and a radius of
7.5cm, the heater power is set by the USB DAQ-6008 device [25]. For more specific

information on the air heater see [13].

The setup for the heating time prediction using the gateway and the air heater can be seen in

Figure 3-1.
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Figure 3-18 Heating time prediction setup

The uncertainty budget for this experiment can be seen in Table 3-1, where the temperature

sensors are the main source of uncertainty. The temperature uncertainty was calculated in

paragraph 2.4.2.
Table 3-1 Uncertainty budget
Type Sensor Range Accuracy Note
CC2530 EM ADC -3V to 3V +0.05%
Temperature TMP6 -25°C to 140°C +1.3%
NI-DAQ 6008 ADC 0-5V $0.01%

Prediction setup

The U value for plexiglas of 5Smm thickness is about 14 [26], and the heater is 15W [13], the
ventilation parameter is unknown and set as a tuning parameter, with the starting value of ten
air changes each second. This parameter creates the continuous model SSM model of the air

heater seen in (3-39).
A=-0.02274,B=4D =1 (3-39)

The Comfort intervals were setup to be between 25 and 40 degrees Celsius since the inside
temperature in the room of 20 is the outside temperature when seen in regards to the air
heater. The predictor will work as an on off controller turning the heater off when the

temperature is at the comfort level, and back on again when the temperature is below.
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3.5.3 Results

When the system was connected the gateway was started at the same time as the learn
function. The learn function is set to wait until the Kalman filter estimates has stabilized. The
learn function saves the data together with both the comfort interval reference and the
predicted reference from the heating time estimations. The saved data is then imported into
MATLAB for analysis. For the straight forward OLS regression model the results were
correct and the predicted reference was hit at exactly the same time as the comfort interval
reference seen in Figure 3-19

Heating time prediction, OLS model
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o 40 R
CI
g 3510 Temperature H
® Comfort interval
2 30+ Predicted reference i
§
= 25 .
20 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Time [seconds]

Figure 3-19 Heating time estimates using linear OLS model

For the K-OLS-SSM model the heating time estimate was too small and resulted in the

comfort interval reference being reached to soon seen in Figure 3-20.

Heating time prediction, K-OLS-SSM model
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Figure 3-20 Heating time estimates with K-OLS-SSM prediction model

The K-OLS-SSM model is under predicting because of the time delay. This time delay lasts
about two seconds and is not modeled in the SSM. The linear OLS model does however take
this time delay into consideration when creating the regression line which resulted in a better
prediction. This time delay factor can be calculated in the learn function from heating is
started to the temperature is seen increasing and added to the K-OLS-SSM model creating a
better and adaptable estimate. The prediction models can be found in Appendix 8: Regression
models for predictor.
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3.6 Discussion

The learn function was tested several times and the prediction models tested. Each time the
best prediction was from the straight forward linear OLS regression model. The K-OLS-SSM
heating time estimate was close but needed an added time delay factor in order to predict
correctly. Testing the model with different outside temperatures was not tested, since the Air
heater should be kept inside the school with a set comfort temperature. Testing with the same
prediction models and different outside temperatures might prove the K-OLS-SSM model to

be more adaptable to change as in the simulation part seen in paragraph 3.3.

From the real house experiments and the comfort intervals there can be created an estimate of
the real power savings. The house heating time was found as roughly 1/3 of the cooling down
time with the same environmental conditions. From the comfort intervals found in paragraph
3.2.1 the heaters can be off 64 hours each week or roughly 60% of the time. In 2/3’s of these
64 hours the heater can be turned off, during the on time however the heater will use more
power than it would during steady state. The experiments steady state power usage was
1.1kW seen in part 1 Data acquisition 2.4.5, and the heating is found to be 2.1kW from the
experiment data. The power savings can then be calculated as seen in equations (3-40) and
(3-41).

steady state consumption = 96hours * 1125W = 108kWh (3-40)

2 1
power of f and on consumption = 96 * 3 * 0+ 96 * 3 * 2100 = 67.2kWh (3-41)

This means that approximately 22% of all the power used for heating can be saved utilizing a
good model based control system in this specific house. This could be increased by adding
more heaters and more power lowering the heating time.

The on-off controller seen in Figure 3-19 and Figure 3-20 is not very good when seen in
regards to both efficiency and comfort. The oscillations indicate the need for a controller to
keep the temperature at set point and avoid oscillations and over or under shooting. For this
reason the next and last part of this thesis will be on designing and testing several controllers
for the BAS system.
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Part 3
4 Control System

4.1 Introduction

In part 2 [3.5] a straight forward and common on-off heater controllers are seen as inadequate
for both resident comfort and power savings. A more advanced control algorithm is needed to
keep the temperature at the comfort level and to avoid oscillations. This controller will use all
the parts of the BAS system to function and is for this reasons included in a main program

GUI binding the system together in a functional control system.

4.1.1 System description

The control system is responsible for reaching the comfort intervals with minimum overshoot,
minimizing power usage. Predicted heating time will be added to the current reference
gathered from the comfort intervals [3.2.2]. The control system will keep the inside
temperature at comfort level, and be responsible for the complete GUI of the BAS.

Several control methods will be tested; the feedback PID controller, the Linear Quadratic
Regulator (LOR) and the Model Predictive controller (MPC).

MPC and LQR rely on a good model for optimal control and for the experiments part a new
model will be created. The new model will be created using the DSR subspace identification
algorithm [27]. The control algorithms will be made applicable both for MIMO and SISO
systems. The complete control system can be seen in Figure 4-1.

Control System

Gateway Predictor

Environmental Predicted

data reference

\/_/

Controller

Figure 4-1 Control system description
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4.1.2 Part 3 Structure

This part follow the same basis as the previous parts and in the object oriented programming
sense each part will be finished before the next is started. The model and control theory will
be explained before performing simulation using MATLAB. The different controllers will be
discussed and compared. This gives a thorough analysis of the needed algorithms before
implementation in VS. After implementation a complete system test will be performed using
the air heater and the created BAS Control System. The progress of this part can be seen in
Figure 4-2 where each main chapter is seen on the left and the sub chapters are seen on the
right.

Model Conversion

Feedback PID control

Control

Linear Quadratic Control
Theory

Model Predictive Control

Feed Forward Control

Simulation

Controller Discussion

Software

development Display Control System

Calculate Control Output

Introduction
Experiments Setup

Results

Discussion

Figure 4-2 -Chapter progress all main chapters on the right and sub chapters on the left,

progress will move in a downwards fashion.
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4.2 Control Theory

4.2.1 Model conversion

For utilizing known control methods the model is converted into linear discrete state space
form as was seen in 3.2.3 Temperature prediction model. The simulations will be based on a
scalar one state system. The discrete state space model is seen in Equation (4-1) and Equation
(4-2)

Xx=Ax+Bu+v (4-1)
y=Dx+w (4-2)

Where x is the state vector, x € R™ ™, u is the control input vector,u € R™™, y is the output
vector, y € R™™ and A, B and D are known system matrices of appropriate dimensions. The
disturbances v and w are both unknown disturbances. The model is discretized in the same
manner as in [3.2.3] resulting in the scalar state space system seen in Equations (4-3), (4-4)
and (4-5)

Ay = 0.7263 (4-3)
B, = 0.0014 (4-4)
D=1 (4-5)

Observability and Controllability

In order to make sure the model can be controlled a study is done on the controllability
matrix. The observability of the system has already been tested found to be fully observable in
[3.2.3]. The controllability matrix defines if the system can be controlled by the control input
to the system. The controllability matrix is found in MATLAB using the ctrb.m function and
the rank is found to be 1. This means the inside temperature state is controllable though B,

which makes sense.

4.2.1.1The state-space model on deviation form

The process noise term v and the measurement noise w are assumed to be constant or slowly
varying. For this reason the model can be reformed using velocity, deviation form removing
the unknown and constant or slowly varying noise terms from the equation. The Linear
Quadratic Regulator (LQR) with integral action also needs the state space matrix on velocity
form and the PID controller is normally included in the velocity form [19].

The state equation is seen in its discrete form in Equation (4-6)

Xps1 = Axp + Buy +v (4-6)
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By using the last time instant, k=k-1 the state equation becomes as in Equation (4-7)

X = Axg_1 + Buy_; +v (4-7)

Inserting Equation (4-6) into (4-7) gives Equation (4-8) and (4-9)
Xps1 — Xk = Axp + Buy + v — Axp_q — Buy_, — % (4-8)
Axy 11 = ADxy + BAuy (4-9)
Where delta x is denoted as the change from last sample time seen in Equation (4-10).

AXpi1 = Xps1 — X and Awy, = Uy, — Up_q (4-10)

The output equation on deviation form following the same principles becomes as seen in
Equations (4-11) through (4-14).

Yk = Dxp +w (4-11)

Yi-1 = DX +w (4-12)
Yi—Yk-1 = Dxp +w —Dxp_1 —w (4-13)
Yk = Yk-1 + DAxy (4-14)

The model has now been transformed into a well-known strictly proper state space model and
several control methods can be implemented and simulated. First the different control
strategies theory will be explained, and designed starting with the most common the PID
feedback control.
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4.2.2 Feedback control

The first control method to be tested is the most common of all the control methods: the
Feedback PID control. This controller is very robust and stable, and is not model dependent.
The standard feedback control block diagram with BAS specific notations can be seen in

Figure 4-3
PID
Controller House
Comfort intervals reference  r_ u y Inside temperature
;\J—} Hc —> Hp »
Heater setting

Figure 4-3 Standard feedback control block diagram

The discrete PID controller discretized using explicit Euler on velocity form can be seen in
Equations (4-15) and (4-16).

U = Ug—1 + Golk + J1€k—1+ 92(Vk — 2Yk-1 + YVi—2) (4-15)
At K,Ta
9o = Kp, 91=_KP*(1_F)’ 92 =~ pAt v G =T T Vi (4-16)
l

Where uy, is the control signal, u;,_; the previous control signal y,the output and y,_1, Vi_»

are the two previous outputs, At is the sampling time, K, is the proportional gain T; is the
integral time and T, is the derivation time.
The SIMC settings will be used to tune the controller [28], and MATLAB will be used to do

test the controller in simulations before implementing in the control system. The SSM model
should be transformed to its transfer function equivalent for tuning purposes.

The PID control parameters will be found in continuous time, we have the continuous state
space model as seen in Equation (4-17) with the scalar numerical values from Equation (3-20)
A, =—-888e™* ,B.=439e°.

x = Ax + Bu (4-17)

The transfer function is found as in Equation (4-18)

1
= (4-18)
hy =k 1+Ts
Where T = — % and k = B * T which gives Equation (4-19)
1
h, = 0.0049 * ———— (4-19)

1+ 1125s
The SIMC tuning rules then gives the PID parameters seen in Equation (4-20) [28].
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K—T—
P k+T,

T,=T,T,=0 (4-20)

Where T, is the user specified time constant from the closed loop set point response.

4.2.3 Linear Quadratic Regulator

In a typical house there will be several rooms and each room will probably have one or more
heater. This means the BAS system will be a Multiple Input Multiple Output (MIMO) system.
The PID controller which only has output feedback does not have state feedback and several
individual tuned PID controllers would have to be used in a buildings control system. This
might prove both advanced to tune correctly and inherently unstable.

The Linear Quadratic Regulator (LQR) controller has both output and state feedback and can
guarantee nominal stability of a MIMO system [29]. The LQ controller is suitable for use on
non-linear systems when a linear state space model is available [29]. The LQR is model
dependent, but can be compared with the feedback PI controller on velocity form. Di Rusccio
[29] proposes a method to obtain integral action on the LQ controller. The state space model
is augmented with the output equation, this means the output is included as a state in the

model. The augmented SSM model on deviation form is seen in Equation (4-21) and Equation
(4-22).

Axpi1| _ |4 Onum [Axk] (4-21
Vi D Im*m V-1 m*r )
Xi+1 A
Axk
=[D Iy -
Vi =] n m] yk—l (4-22)

Introducing the augmented model matrices the model is on strictly proper state space form as
seen in Equation (4-23) and Equation (4-24).

fk+1 = Afk + BAuk (4_23)

i = D%, (4-24)

The LQ regulator needs a cost function, or a cost objective to be minimized, the cost objective
is denoted J;. This cost function is the squared sum of all future output deviations times the
cost factor Q plus the squared sum of all future control outputs times the cost factor P. The

cost objective in its matrix form using the augmented SSM can be seen in Equation (4-25).

1 co
Ji= EZ [%T Q% + Auf PAuy| (4-25)
k=i

The matrix Qis seen as a weighting matrix weighting the cost of the deviation from the
reference set point. In this BAS system the cost of deviation from the set point is seen as high
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and the Q matrix should be given a high value. The Q matrix is seen in both weighting the

output and the states.
5_ [0k O ] 4-26
=% o, (420

The cost factor R denotes the cost of the control outputs and in the BAS system where power
savings is the important factor this factor should also be high, however a high cost of both the
control outputs and reference deviations are not obtainable at the same time, and since the
reference deviations are seen as the primary concern at the comfort intervals the cost factor Q
should be weighted the highest.

Together the performance index seen in Equation (4-25) and the state-space model in
Equations (4-23) and (4-24) defines a standard LQR optimal control problem. A solution to
this optimal control problem, minimizing the cost objective, will exist if P > 0, the pair (4; B)
is stabilizable and that the pair (C; A) is detectable where C is the square root matrix of Q
suchthat 0 = CTC.

Minimizing the performance index in Equation (4-25) with respect to the control deviation is
given by the state feedback seen in Equations (4-26) and (4-27) [29].

Auj, = GX, (4-27)

Where the feedback matrix G is obtained as seen in Equation (4-28), and R is the solution to
the discrete time algebraic Riccati Equation (4-29) [29].

G=—(P+B"RE(P+B"RE) 'B"RA (4-28)
R=0+GTPG+ (A+BG) R(A + BG) (4-29)

The solution to the discrete time algebraic Riccati equation can be solved simply with the
MATLAB digr.m function, however since there is the need for implementation in Visual
Studio (VS) there has been created a recursive solver. The recursive solver needs only be run
at startup and will run until the steady state solution has been found, when the error between

the new value and the previous value is below the set error limit. This is seen in MATLAB

script 4-1.
while (error>le-10 & it<=maxit);
GO= (P+B'*R0O*B) \ (B'*R0O*A) ;
Rl= A'*RO*A + Q - (A'"*RO*B) *GO;
Gl= (P+B'*R1*B) \ (B'*R1*A)
error=max (max (abs (G1-G0))) ;
it=1t+1
RO=R1;
end;
G=-G1;

Gl=G(:,1l:size (A));
G2=G(:,size(A)+1l:size(A)+size(D,1));

MATLAB script 4-1 Recursive Riccati solver

The output from the MATLAB function the constant feedback gain matrix G can be viewed
as seen in Equations (4-30) and (4-31).
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Axk

Au, =[G; Gy [ Vi — Tk] =Up — Up—1, U = Dug + Uy (4-30)
€k

Uk = Up—q + Glek + Gz * €k (4'31)

The created LQR regulator can be seen in block diagram of the optimal LQ controller is seen
with the optimal LQR gain parameters G1 and G2 in Figure 4-4.

La
Regulator House
Comfort intervals r .
> Q—} G2 ___»Q uy Hp Y Inside temperature>
A + A

G1 X

Figure 4-4 Linear quadratic regulator block diagram

This means the controller structure is equivalent with the velocity form of the PI controller
seen in Equations (4-32) and (4-33) [29].

U = Ug—1 + Golk T J1€k-1 (4-32)
At

9o =Ky g1=—Kp+(1-) (4-33)
l
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4.2.4 Model predictive control

Model based Predict Control (MPC) is a very important control method and can be found
implemented in MATLAB, LabVIEW, CENIT and Honeywell’s Profit to mention some [30].
The MPC works with both SISO and MIMO systems making it useful for a complete house
control and there exists also non-linear methods for MPC. MPC works by calculating the
optimal control output based on a specified reference vector into the future [31]. This length
of this reference trajectory into the future is called the prediction horizon, L. The optimal
control output is based on minimizing a cost function based on a prediction model, similar to
the Linear Quadratic Regulator (LQR). The main differences are that LQR uses an infinite
prediction horizon, and that the MPC controller has inbuilt constraints handling [31]. In order
to minimize the cost function based on the given prediction model and constraints there is
needed an optimizer. The MPC controller can be seen in Figure 4-5.

Reference

Trajectory
Past inputs

and outputs

A -
»

Predicted output +
> Model 1 J

Future inputs . Future errors
Optimizer

Cost  Constraints Prediction
function horizon

Figure 4-5 MPC block diagram

The Quadratic Programming problem with constraints can be solved by quadprog.m in
MATLAB or by and an active set method [31].The solution to the QP problem in VS can be
done using the Microsoft Solver Foundation [32] however the computing time to find a
solution might be very high especially in a large house MIMO system. Another solution is to
handle the constraints using if and else statements at a higher level. This can be done in this
BAS system since the only constraints are the maximum and minimum heater capacity saving
computing time and greatly simplify the optimizer. The only drawback of MPC is then the

model dependency; a good model is needed to sustain good control solutions.

The MPC controller needs a prediction model to be minimized subject to a cost function. This
prediction model can be found from the augmented SSM seen in Equations (4-21) and (4-22)

in order to give the controller integral action [33].
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4.2.4.1Finding a prediction model

The prediction model may be obtained from the augmented state space model (eSSM) on
deviation form. The present time is predicted into the future with the prediction horizon L. To
find the prediction model the prediction horizon L is set to be three. Using this prediction
horizon the prediction model is calculated as seen from Equations (4-34) through (4-37).

Yek+1 = Efk+1 = E(Afk + gﬁk) = ngk + 5§Auk (4'34)
Y+t = DXjey, = DA*Xyq + DABAU 1y + DBAU,y (4-36)
= ’DVAGJNCk + ’D{A'Zguk + EAEAUR+1 + EEAuk+2
Verr] [D]. [g)% 0o o[
Yiez| = | DA | A% +|5 %5 DB 0 || (4-37)
ved 52l |22E pap_pa||,
—— 033 — k+3
03 l HE J

Where 05 is the extended observability matrix4, B and D are the extended state space models
and H¢ is the lower block triangular Toeplitz matrix for the triple (D, A4,

B) Error! Bookmark not defined.. The prediction model with a prediction horizon of three is
seen in Equation (4-38).

Yir1ps = O34%, +[03B  H{]* Ay (4-38)

The prediction model can then be defined in the standard form as seen in Equation (4-39)
Yierr L = Py + FLAuy, (4-39)

Where the prediction model parameters are as seen in Equation (4-40) and the extended

observability matrix 0; and the deterministic Toeplitz matrix H can be seen in (4-41).

P, =0,4%., F,=[0,B H]] (4-40)
0, = D:A ,and H® = : wod (4-41)
b DA . DB

The prediction model has been specified and the control objective needs to be set.
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4.2.4.2MPC control objective

In the MPC controller there is also needed a control objective to be minimized with respect to
the found prediction model. A typical control objective guaranteeing stability may be seen in
Equation (4-42) [31]

L
Jk = Z[(yk+i - Tk+i)TQi()’k+i — Tyi) T Au£+i—1RiAuk+i—1] (4-42)

i=1

N| =

The control Objective seen in Equation (4-42) may conveniently be written in more compact
form as seen in Equation (4-43), where ¥, 1), Ay, , and 7y q),, are seen in Equation (4-44).

Q and R are the triangular weighting matrices seen in Equation (4-45).

. T
Jk = (yk+1|L - rk+1|L) Q(yk+1|L - rk+1|L) + Au£|LRAuk|L (4-43)
Yk+1 Auy Tha1
Vi+2 Au Tk+2
e I T e I e (4-44)
yk+L AUk+L_1 rk-l-L—l
Q. 0 0 0 R, 0 0 O
Q= o o =~ o0of"’ R= o o =~ 0 ( )
0 0 0 @ 0 0 0 R,

The prediction model in Equation (4-39) is inserted into the control objective in Equation

(4-43) resulting in a cost objective to be minimized seen in Equation (4-46).

. T
Ji = (P + Fudugy, — Tieeap,) Q(Py + FrBugyy — Tiepapn) + Aufy RAuy; (4-46)

Some rearranging gives the objective in standard from seen in Equation (4-47), where the
quadratic term Hessian matrix , H, is as seen in Equation (4-48), the linear term , f;!, is seen in

Equation (4-49), and the scalar term, J,, can be seen in Equation (4-50).

Ji = Dy, HAugy, + 2T Ay, + Jo (4-47)
H =P, +FFQF, (4-48)
Y = FLTQ(PL - Tk+1|L) (4-49)
T
Jo= (P —1is1n) Q(PL — 1eqapn) (8) (4-50)

72



This control problem is a linear quadratic problem and there exists only one solution. The

optimal unconstrained MPC control u'y is found where J, is minimized, where the derivative

is equal to zero ‘i] = 0. This calculation can be seen in Equations (4-51) and (4-52).
k|L
- d] — T —
Ay, = d_uk = 2HAuy, +2f, +0=0 (4-51)
Auy, = —H 'y = —=H'FLQ(PL — Tie1)) (4-52)

The optimal control deviation can then be calculated as seen in Equation (4-53), where the

gain matrix G = —H~1F,Q may be calculated in advance.

Augy, = G(PL — Tieqqpn) (4-53)

4.2.5 Feed forward control

In this BAS system a rapidly decrease in outside temperature is quickly measured by the
outside temperature sensors, however the feedback controllers will not react until the
temperature decrease/increase has affected the inside temperature. A feed forward (FF)
controller will keep the influence of the outside temperature to a minimum by modeling the
effect of the disturbance on the system. The FF control has previously been tested
successfully in house applications [7]. The controller needs to know when to act based on the
systems time delay, and how much to act based on the disturbance model. In this case the
time delay of the system is not known, but a FF controller can be designed from the current
nonlinear model. The FF block diagram together with a common feedback controller can be
seen in Figure 4-6.

Outside Temperature

v Vi

FF controller
Ger

House

Controller
+

+v
. r X .
Comfort intervals 5 Q > G, | io Uy feater ,+Q Y inside temperaturey,

T

Figure 4-6 Feed forward controller block diagram

In Figure 4-6 the FF controller gain Ggg is seen added to the controller gain from the PID,
LQR or MPC, G..The FF gain is based on the modeled disturbance outside temperature Vr.
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The FF controller needs to be designed based on the model, this means the model must be
solved for the gain u based on the outside temperature. The solution is calculated assuming a

constant reference x = 0 seen in Equations (4-54) through (4-58).

(xz — p; V) N .o .
0= —x 7 (piViH; — x2Vp H, + Q) (4-54)
x,V ~ 2
XZV(Cp M)
0 (sz —p-V) 1 oo~
g =y at ¢ (o~ ) (4-55)
%V (& —3p) 2 XV (& —3p)
: : /(. R o o 456
0 = ~(x2Vs = piV) (& = 37) 11 — eVl + .V, (4-56)

From the heat Equation (7-1) using steady state conditions the FF gain will be as seen in
Equation (4-57)

Q = qupply - Qloss' qupply = Usr (4'57)
Inserting Equation (4-57) into Equation (4-56) gives the control solution seen in Equation

(4-58).
. ~({_. R o~ o~ . 4.58
gy = =(eaVy = piV) (6 = 37) 21 = PVl + 15,y + Qs (4-58)
Since the model was found inadequate in the previous sections this should only be a basis on
how to create a feed forward controller when the important mass factor is added. Some

experiments on the time delay in real house systems should also be performed to time the FF

controller correctly.
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4.3 Control Simulations

Before implementing the more advanced controllers in VS a good idea is to have them
function in the MATLAB environment. The controller calculations are done based on the
integrator model in Equations (4-3), (4-4) and (4-5) before the outputs are fed to the non-
linear model. The specific tuning parameters are seen in Table 4-1.

Table 4-1 Controller parameters

PID controller | K,, = 375 T; = 1126 T, =0

LQR controller | g =1 r=0.01 N/A

MPC controller | L =10 |q=10%*eye(L) |r =0.01 xeye(L)

Where the user specified time constant is three, and eye(L), denotes an identity matrix with

the size of the prediction horizon L.

The controller simulations can be seen in Figure 4-7.
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Figure 4-7 Controller simulations

In Figure 4-7 all controllers and the predicted reference are working properly, the MPC
controller is starting somewhat earlier due to the prediction horizon. Since the predicted
reference will take care of the predictions into the future the MPC prediction horizon should
be set to the smallest stable value on implementation. It is however also seen that the LQR
especially reaches the comfort intervals a little too late due to the need to minimize the
overshoot. This is handled by increasing the predicted reference with a percentage that should

be set based on experimentally gained knowledge, 10% percent is adequate in this case.

The advantage over the LQ regulator over the MPC controller is that because of the infinite
prediction horizon the Controller feedback gain matrix G needs only be computed once, and

not at each sampling interval. This makes the optimal controller much faster than the MPC
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controller. The only disadvantage seen when in regards to the control problem is that no set
basis to handle process constraints. Due to the simplicity of the constraints in the BAS system
this does not propose any problems. The controller simulation function is found in the
Appendix 6: MATLAB scripts paragraph 7.6.6

4.4 Controller discussion

All the control methods have been analyzed, designed and simulated and simulated based on a
SSM model and the non-linear first principles house model seen in Part 1 paragraph 2.2.1.
The finished BAS system will be MIMO systems which should remove the common feedback
PI control as any option. MPC and LQR controller methods are model dependent but the basis
of the thesis is to evaluate a model based BAS system and as such a working model is

expected on implementation.

The MPC controller is much more advanced than the LQR controller and the main reason to
choose MPC over LQR would be the straight forward way of handling constraints. These
constraints can however be handled simply using if-else statements. An overview of the

control methods tested can be seen in Table 4-2.

Table 4-2 Control methods properties overview, (X) included, (-) not included

Properties Feedback PID control | Linear Quadratic Regulator Model Predictive Control
SISO X X X

MIMO - X X

Optimal control - X X

Output feedback X X X

State feedback - X X

Constraints Handling - - X

Model dependent - X X

Complexity Low Medium High

Computing time Low Low High

An important note not is that the only control not model dependent and thus not being limited

by the correctness of the model is the feedback control.

Feed forward control has been found to be a viable option in order to reduce the influence of
the outside temperature [7] . The feed forward controller can in theory be added to all the
controllers mentioned above. Care should be taken when introducing the feed forward

controller to a MIMO system.
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4.5 Heater control

For the BAS control system to be a viable commercial application the control system must
work with existing heaters. In most cases these heaters will probably be simple on-off
thermostat controlled with some power settings. The control output delivered from the
controllers is however a scalar value between zero and the maximum available heater power.
The simplest solution would be to use a socket on-off switch and turning all the heaters to the
maximum settings and letting the on-off controller handle when the heaters should be on. This
is not the best solution as was evident in part 2 paragraph 3.5.3. A better result is achieved by
using a binary on/off Pulse Width Modulation (PWM) signal. This makes the heaters

applicable for all variations in output power settings. In Figure 4-8 the PWM is visualized

II

PWM Power

with the connection to the heaters.

Control System

Pulse Width PWM signal
Modulator , Controllable
Control Signal J on/ off socket

_;.:__,f___:__Power grid

Figure 4-8 PWM control layout

The Pulse Width Modulation of a signal usually refers to rapid pulsing of a digital signal in
order to simulate varying voltage. In this case the PWM is used a little differently, as each
sampling time the PWM is used to have the correct power output from the heaters. The
sampling time interval, (six minutes), is divided into a carrier signal frequency of 10 shifts per
interval; this means 36 seconds’ intervals or 0.0278Hz.

The saw tooth waveform is used to set the correct on-time based on the duty cycle. For a
1000W heater a 20% duty cycle means that the heater will be 1000W 20% of the time and OW
80% of the time making it average 200W over the sampling period. An 80% duty cycle means
that the heater will be 1000W 80% of the time and OW 20% of the time averaging 800W over
the sampling period. The 200W and 800W examples can be seen in Figure 4-9, on the left and
right respectively.
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Figure 4-9 PWM with 20% duty cycle on the left and 80% duty cycle on the right

In addition to the PWM software there needs to be a hardware on-off device connected to the
control system between the heater and the power grid. This controllable socket device should
be made to handle relatively high frequency on/off signals, however if the heaters use a too
high PWM frequency this will create a problem on the power grid. In a large house the BAS
system will control a lot of heaters, utilizing much power. If these loads are turned on and off
at very frequent intervals they will chop up the 50Hz Sinus. This creates a non-linear load and
Harmonics on the power grid which might create severe problems on the power grid. In order
to resolve this issue the heaters will not be turned on and off at any speed near to the 50Hz net
frequency. The selected low frequency carrier signal of 0.0287Hz will be adequate to ensure
no harmonics occur. These low frequency shifts should not be a problem due to the large time
constants of the model. Some additional control should be included to avoid very small duty

cycles. This can be done by dividing the PWM duty cycles into minimum regions, i.e. 5%.

The MATLAB function creating the PWM signal based on the maximum heater power and
the output from the controller can be found in the Appendix 6: MATLAB scripts paragraph
7.6.7.
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4.6 Software development

The control system should be the main GUI of the BAS monitoring and control system using
the predictor and the control methods explained in paragraph 4.2, and the sensor data saved to
file from the gateway system. The control algorithms have several tuning settings that should
be changeable in a configuration, together with the controller type. The SSM model can be
calculated from the model and house configurations or entered directly in the configuration.
The MPC and LQR control algorithms should applicable for MIMO systems, however the

main control system will use the SISO implementation from paragraph 4.1.2.

The heater output will be through a DAQ 6008 device and the experiments will be run on the
air heater using the built in PWM [13]for this reason the PWM will not be included in VS.

All configurations from the control system and the predictor seen in paragraphs 4.6.2 and
3.4.2 are added as tabbed forms to a main configuration form creating a straight forward
GUI, and saved in XML using the XML class from part 1 paragraph 2.3.2.1 appended with

new parameters.

The sensor values will be plotted based on name and location into one outside temperature
graph and one inside temperature graph. The outside sensors will be chosen on the basis that
the location should include outside. The analysis sheet can be found in Appendix 3 FURPS+
paragraph 7.3.3.

4.6.1 The use case diagram

The functionality of the control system is made into a use case diagram to give a good visual
representation. In Figure 4-10 the control systems use cases are seen with the gateway
configuration seen in paragraph 2.3.2, predictor 3.4 and log files 2.3.4 as inputs to the system.

The main outputs to the system are the heaters and the display.

Control System GUI

USB 6008

Figure 4-10 Control system use case diagram
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The control system layered architecture is seen in Figure 4-11, where all main classes in the
system are visualized and connected to the physical layers. The operating system for the
sensor values and configurations. The arrows show the information flow between the

predictor the sensor values and the controllers.

Control System GUI

Configuration Controller

Controller i ] [E

FID LOR MEC alise

Sensor
values
USB-6008

Figure 4-11 Layered architecture of control system

4.6.2 Configuration use case

The configuration use case specific for this last part control system will consist of two main
forms, the first will be the control configuration and the second the sensor configuration. The
sensor configuration will function as a copy of the gateway configuration used to get the
correct sampling time, and sensor specifications. All configuration parameters will be saved
to the control system config. XML file. The analysis documentation of the configuration is

found in Appendix 4: Fully dressed use case documents paragraph 7.4.3

4.6.2.1Designing the sensor configuration form

The sensor configuration form will read the current configuration from the gateway and store
this in the control system configuration. The sensor configuration should not be changeable in
the control system and is set to read only. The sensor configuration GUI will contain the table
with the sensors and the sampling time and the path of the sensor values. There is a button to
prompt the user to select the path of the gateway configuration file and the path of the sensor
log file. The created GUI in the sensor configuration form can be seen in Figure 4-12.
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GateWay/ Sensors

?Jil::t?;r MAC/Adress/name /0 Type Location Measureand Range Unceranty dB:ng L=k MISC =
S 2 02 TMPE Bedroom Temperaturs. |40 to +125 1271 20/3/2013 4M cable
2 DAAA 04 TMPE Diningroom Temperature -40 to +125 12% 204/3/2013 2M cable
3 DAAA o7 TMPE Bathroom Temperature -40 to +125 12% 2043213 4M cable
4 OBEE 0z TMPE Cutside North side | Temperature —40 to +125 1.2% 20/3/2013 4M cable L
5 DBEE 04 TMPE Kitchen Temperature -40 to +125 1.2% 20/3/2013 2M cable 1
6 OBBB o7 TMPE Haltway Temperature -40 to +125 12% 2043213 4M cable
7 occe 0z TMPE Quiside South side | Temperature -40 to +125 1.2% 20/3/2013 4M cable
] occe 04 TMPE Guestroom Temperature -40 to +125 1.2% 20/3/2013 2M cable
9 occe o7 TMPE Livingroom Temperature -40 to +125 12% 2043213 4M cable
*® -
GateWay Parameters QOptions

Sampling Time [min]

8 Load GateWay Sensor
Sensor Values Path Configuration

C:\Users'\Eier\Desktop'\Master Thesis w040

Figure 4-12 Gateway / sensor configuration form GUI seen with sensor and sampling time
values from Part 1 paragraph 2.4

Since the system needs the sensor location file in order to function the main system will not
start if this file is missing and the user will be prompted to enter the location and name of the
file.

4.6.2.2Designing the controller configuration form

The controller configuration should include all the setup needed to calculate the steady state
gains from the Kalman filter seen in paragraph 3.2.3.1, the LQR 4.2.3 and the MPC matrices
4.2.4. These setup algorithms are made into the Kalman filter and controller’s individual
classes. The user should be able to select which controller to use and set the controllers tuning
parameters, the LP filter constant, and the steady state values. The steady state values are used
together with the house and model data to create the SSM model, however the SSM can also
be entered directly in its discrete form. All this is included in the controller configuration GUI

seen in Figure 4-13
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Outside temperature 5
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‘ Save new parameters ‘

Figure 4-13 Controller configuration showing all configurations when run using air heater

and parameters from Part 2 paragraph 3.5

The MPC controller setup needed some new matrix manipulation functions added to the
Matrix library. These extra functions are found in Appendix 5 — Source Code paragraph
7.5.2.5. All parameters are saved in the config. XML file under the added controller element.

New elements are added in the same manner as in paragraph 2.3.2.

4.6.2.3Control system configuration GUI

In order to handle all the configurations needed for the created control system the
configurations were added to a main configuration forms tab control. The BAS logo and the
current date and time are visualized above the tab control. This can be seen in the screen

dump of the configuration at run time in Figure 4-14

Wednesday 22. mai 2013

Configuration Settings iy

Comfort Intervals | Sensors | Confighodel | CorfigHouse | Cortrol | Alarm
Temperature Reference

Figure 4-14 Main control system GUI showing all the configurations needed for the control

system in tab selections

Each configuration parameter is included with a context menu strip giving a right click help
button information option, and can be seen in the Appendix 5 — Source Code paragraph
7.5.3.2. Excerpts of the configuration code primarily the control algorithm setup can be found

with commentary in Appendix 5 — Source Code paragraph 7.5.3.
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4.6.3 Calculate control output use case

The controller use case is based on the parameters set in the configuration and the control
theory in paragraph 4.2. Excerpts of the main code algorithm with commentary can be found
in Appendix 5 — Source Code paragraphs 7.5.3.3 through 7.5.3.3.4.

4.6.4 Display control system use case, the main GUI

The main GUI of the control system should give the user the necessary information currently
available. The main control system GUI is seen in a screen dump in Figure 4-15 while reading
the log file from the data acquisition experiments done in part 1 paragraph 2.4. In Figure 4-15
there are two main graphs; one for the inside and one for the outside temperature. Two
smaller graphs contain the control output and the predicted heating time. The calculated
predicted heating time, average inside temperature and average outside temperature is set in
text boxes on the lower left side. The predicted heating time is seen as 59 minutes using the
average inside temperature of 18°C for prediction. Average heater output from the five

heaters is seen as 500W.
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Figure 4-15 Control system GUI while reading sensor values from log file
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4.7 Experiments introduction

The BAS system should be tested with the control methods and all relevant software. The
MPC and LQR controllers are model dependent and a poor model will result in poor control.
In order to make sure the controllers are working correctly a better model of the air heater will
be gathered using the DSR subspace system identification method [27].

4.7.1 Experiment setup

The setup to the completed BAS experiments is the same as in part 2 Estimation of heating
time and can be found under paragraph 3.5 Experiment setup. The control system is added to
the computer software and including the predictor. Some changes were made to the control
system for these experiments: The outside temperatures graph was changed to show all the
controller outputs at the same time. The steps in the comfort intervals references were set to
be 30 seconds, instead of an hour and only Mondays references was used for simplicity. The
comfort temperature was set to be 40°C and the low temperature was set to be 30°C. The time
stamps were used as the 0.2 second sample time and the MPC prediction horizon was set to

30 samples, or two seconds

To get the best model the air heater was excited using a pseudo random binary reference
between the minimum OV and the maximum 5V outputs [13]. The MATLAB dsr toolbox

resulted in the following SSM matrices seen in Equation (4-59)

A=0.9997 B =0.001459 (4-59)

The experiments tuned weighting parameters are seen in Table 4-3.

Table 4-3 Experiments controller parameters

PID controller | K, = 0.8 T, = 23 T, =0

LQR controller | g = 0.01 r =100

MPC controller | L =30 | q=15=*eye(L), | r = 250 * eye(L)
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4.7.2 BAS experiment results

Using the new model the controllers showed some specific categories. The PID controller was

simple to tune and produced good results, the LQR was somewhat harder to tune but gave the

best results. The MPC controller proved very hard to tune and produced the least good results.

The LQR controller can be seen working in the control system screen dump in Figure 4-16

and all three controller experiments results can be seen plotted together using MATLAB in

Figure 4-17.
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4.8 Discussion

The control system experiments showed the standard feedback controller as a viable option
for the air heater SISO system producing good control results. A complete house will
however be a MIMO system and the correct tuning of several inputs (heaters) and several
outputs (room temperature) will be complex [19]. The two controllers applicable for these
MIMO systems are the LQR and the MPC. The MPC proved however hard to tune correctly
and use complex matrix algorithms in the calculation of the control output. This makes the
MPC controller both harder to understand code and debug. The LQR regulator however
showed great promise during the experiments. Even though the comfort intervals were
reached a little too the LQR both stabilized the system the fastest and also prevented
overshoot.

The MPC controller was shown in simulation to produce as good results in paragraph 4.3;
however the added complexity of tuning the MPC resulted in poorer performance. The
reasons to select the MPC over the LQR is the constraints handling and the future predictions
contained in the prediction horizon. In this BAS system however the future predictions are
taken care of by the predictor and the only constraints in the system are the maximum and
minimum heater power. These constraints are proven handled just as good using if an else

statements.

Adding a feed forward controller to the BAS system will prove an advantage in response to
sudden changes in the outside temperature. The added controller will also increase the
complexity and will rely on a good model. The feed forward controller should be included to
the system when a suitable model is obtained and new experiments should be run to answer

the need for this controller’s added complexity.
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5 Conclusions

The gateway has been thoroughly analyzed, coded and tested. The gateway was running
correctly for 12 consecutive days. The theory behind the main parameters of the house model
was discussed and during the practical experiments part some ways of determining the U
value has been tested.

The model has been proven unsatisfactory in regards to the real experiments data. The model
does not take into account the house mass and heat capacity the time constant will be too
small. Augmenting the model using a Kalman filter has been shown to largely improve the
estimations. The pure OLS regression model proved best when handling systems with time
delayed reactions to the control output. Any time delay in the system added to the Kalman
filter disturbance estimated SSM model should be added as an offset to the heating time

estimations.

Using a simple on-off controller for keeping the temperature at comfort interval was found as
inadequate. Three controllers were tested for reliability, complexity and handling of MIMO
systems. The MPC controller was found as unnecessary complex, the PID controller will
prove advanced to tune in a MIMO system. The optimal controller for the MIMO BAS
system is proposed as the LQ regulator. This selection is based on the fact that this BAS
system will have a working house model.

A subspace system identification method is simple to implement and will create a very good
model when conditions are stable. A first principle model will be more adaptable to changes

and the house model should be augmented with the house mass.

During this thesis it has been proven that an adaptable BAS system will result in large energy

savings for a common working household.
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6 Future work

In order to have a building model predicting correctly the current house model should be
augmented with the house mass heat capacity using first principles. The house model should
also be adapted to handle several rooms, floors and heaters (MIMO). The house mass is

constant and should then be estimated correctly using the Kalman filter.

Implementing a way for measuring the solar radiation is important to get an accurate
estimation of heating time. In addition the sensor network should add sensors for measuring

the ventilation, air density, and pressure.

The ZigBee gateway should include a send method and tests should be performed using the

software PWM together with heaters and the gateway in future experiments.

The control system should add the possibility of MIMO systems configurations, and different
temperature settings in different rooms. In addition a better way of sorting the inside and

outside temperature sensors should be implemented.

A feed forward controller should be implemented to work during the comfort intervals to

minimize the influence of the outside temperature.

The DSR subspace system identification algorithm should be implemented in VS. This
algorithm can be used in parallel with the first principle house model to further test the

functionality.
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7.1 Appendix 1- Thesis text

P 3 iy
o
L[ O) b F 9 7

Telemark University Coliege

Faculty of Technology

FMH606 Master’s Thesis

Title: Heating of buildings based on models with focus on measurement and control.

TUC supervisor: Nils-Olav Skeie
TUC co-supervisor: Carlos Pfeiffer

TUC co-supervisor: Wathsala Perera
External partner: Part of TUC research programme

Task backeround:

In Norway about 75% of the total energy' usage is used for heating purposes, about 60% for
heating buildings and about 15% for making hot water. There is a general request for saving
energy and saving any amount of energy used for heating can be a good contribution.

A BAS has some simple control logic for energy savings based on fixed temperature changes in
a set of time intervals. Using a heating model of a building, calibrated with specific heat transfer
parameters, can be a better approach for controlling the temperature in the building. Energy can
be saved by lowering the temperature when the building is not in use, and maintain the comfort
temperature only when the building is in use.

The heating models will be implemented in software using object oriented analysis and design
methods, and Visual Studio 2010 programming environment,

Task description:
The tasks will be evaluation and developiment of a BAS (Building Automation System) for

heating control. The sub tasks are:
» Extend the heating model from the BAS master project this autumn with modules for;
o estimating the heating time for increasing the temperature,
o configuration of the comfort time intervals during a week,

* Develop a simple gateway in C# for the ZigBee network for logging of sensor
measurements on file. The gateway will be an extension of the sofiware from the BAS
master project,

s Implement the model in C# with temperature measurements from log file, estimation of
time delay for heating and configuration,

' According o info from Enova (www._enova.no)
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JLANTAFE

e The model will depend of a set of parameters from the building, explain these
parameters and make some suggestions how these can be verified by a measurement
system,

e Describe different methods for controlling the inside temperature in the building,
Discuss possible controller strategies that can be used for existing type of heaters for
buildings,

e Develop a controller in C#, based on the model and configuration, to maintain the inside
temperature in the building according to the comfort time intervals from configuration,

Student category:
SCE student who is familiar with;

o the BAS master project,
e developing software for ZigBee sensor network,
e Visual Studio 2010 for developing software.

Practical arrangements:
A ZigBee sensor network with software development kit will be available.

Signatures:

Student (date and signature): . . . R L o, P i

| /MQ %&? I8-FER-13

Supetvisor (Jate dnd STERIIAEEY: . £, L 0 T T s S s A A e r
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7.2 Appendix 2: Measuring the U value

In order to measure the U values directly with the ZigBee sensor network the house and
outside temperatures are needed in a steady state. This might however happen in some
meteorological instances and the U-values can be measured by using a tile with known
resistance and three temperature sensors. This is seen in Figure 7-1.

Outdoors  Wall Tw [°C] Ind?ors
A Tr [°C]
To [*C] \ /
T?" - Tw
U.=U.,x*
w t TW _ TO
°C °C
Uuw Ut
Air  Wall Tile

Figure 7-1 Measuring the U value experimentally

Another way to measure the total house heat leakage value, Uy, or energy leakage would be to
measure the amount of power used over a period of steady state conditions®, with all

ventilation closed, and use that in steady state we have as seen in (7-1) and (7-2).

Qioss = Qwork = UTAAT (7-1)
T — Qwork (7 -2)
T AAT

Where A is the total surface area of the house, and ATis the difference between inside and
outside temperatures and Q,, is the heater power used to keep the inside at constant

temperature.

Both these estimations rely heavily on steady state conditions and while steady state
conditions in the inside temperature is obtainable. Steady state in the outside temperature
rarely happens over any large amount of time. The best way to measure the U value would be
to use a heat flux based measurement as TRSYS01 from Houseflux Thermal sensors. The heat

flux based measurement does not need steady state conditions.

® Steady state means
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7.3 Appendix 3 FURPS+

7.3.1 Gateway FURPS+

Functional

Get sensor values from the ZigBee sensors, and display them to a LCD

Log to file on disc, parsed data and raw data if needed, containing tag

information, current date and time

Configuration; Specify time for saving the sensor data, holding all the
needed information about the sensors, and all the serial link properties

Usability

Language English

Keyboard and mouse

Display (current values, parsed and raw and configuration)

Hard Disk for saving the sensor data, and keeping the configuration

Configuration file should be XML v 1.0 format containing sensors, sampling

time and serial link configuration.

LOG standard is in text format with extension .log as:

[datetime;sensorlvalue;sensor2value;sensor3value....]

Reliability

The system will run 24x7.

Performance

Save file timer set in configuration

Serial read existing parameter timer set in program. [50ms].

Supportability

+

The gateway will run on windows based OS (32/64bit) using C# and

windows forms
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7.3.2 Predictor FURPS+

Functional

Read sensor values from the log file created by gateway

Predictor: Learn the system by logging the data and turning the heater on
full. Learn both using OLS and K-OLS-SSM estimates. Predict the heating
time based on current environmental values, and the prediction models

created from the learn function.

Configuration of the house model, house parameters, and comfort intervals

Usability

Language English

Keyboard and mouse

Display (current values, parsed and raw and configuration)

Hard Disk for reading the sensor data, and keeping the configuration

Configuration file should be XML v 1.0 format containing sensors, sampling

time and serial link configuration.

Set heater output using DAQ 6008 device

Reliability

The system will run when user specified and automatically the first time

Performance

Use sampling time from gateway to get correct prediction regression models

Maximum output values in the DAQ-6008 device is 5V

Supportability

+

The gateway will run on windows based OS (32/64bit) using C# and

windows forms
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7.3.3 Control System FURPS+

Functional Control the temperature and calculate the controller outputs based on the

model and the configurations

Display the complete control system GUI, plot the inside temperature
outside temperature and heater output, and heating time estimation as

graphs, give a clear indication to which controller method has been selected.

Configuration of controllers and sensors including the Predictor
configurations in a main configuration form. All configuration kept in a
static data object and XML file.

Usability Language English

Keyboard and mouse

Display

Hard Disk for the configuration

Configuration file should be XML v 1.0 format
Controller output will be set using DAQ 6008 device

Reliability The system will run when user specified and automatically the first time

Performance | Run each sampling time set in the gateway
Maximum output values in the DAQ-6008 device is 5V

Minimum output is set to be OV

Supportability

+ The gateway will run on windows based OS (32/64bit) using C# and

windows forms
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7.4 Appendix 4: Fully dressed use case documents

7.4.1 Gateway

Use Case # 1 Gateway.

1 | Use Case Name | Configuration
2 | System/Scope Gateway
3 | Level User Goal
4 | Primary Actor HD
5 | Stake Holders Control System
6 | Preconditions NA
7 | Success Configuration created, opened and saved
Guarantee
8 | Main success 1 Open configuration
scenario 2 Edit configuration add sensors
3 Save configuration
9 | Extensions 1A no file to open, create new configuration file
1B Error in file, create new configuration file
3A Save error, give message to user, retry?
10 | Special Want to use XML V1.0 based configuration files
Requirements
11 | Technology List
12 | Frequency of Each time the user needs to change the configuration or the system
occurrence will need the configuration data
13 | MISC The configuration will be broken up in one windows form for

displaying and editing the configuration values and one class file for
the configuration XML based functions. This file will also handle

extensions 1A and 1B
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Use case # 2 Gateway

1 | Use Case Name DisplayConfigData
2 | System/Scope Gateway
3 | Level User Goal
4 | Primary Actor LOG HD and Display, User (keyboard, mouse)
5 | Stake Holders Control System
6 | Preconditions
7 | Success Guarantee Configuration loaded, changed, and saved
8 | Main success scenario | 1 Open Configuration (USER)
2 Display configuration data
3 Edit Configuration data (USER)
4 Save Configuration data to HD
9 | Extensions 4A Save new Configuration data Y/N/C
4A:Y save the information , exit form
4A: N do not save new information, exit form
4A: C Break operation and return to form
10 | Special Requirements | Want to use XML based configuration files
11 | Technology List .NET V, XML Version 1.0
12 | Frequency of @ user request
occurrence
13 | MISC The software will be de the GUI between the user and the

configuration data
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Use case #.3 Gateway

1 | Use Case Name | LOG
2 | System/Scope Gateway
3 | Level User Goal
4 | Primary Actor Harddisc
5 | Stake Holders Control System
6 | Preconditions
7 | Success Raw serial data received, parsed, saved and returned
Guarantee
8 | Main success 1 Raw serial data received
scenario 2 Split up raw serial data in messages
3 Parse the split data into sensor data [datetime;sensorl;sensor2; . .]
4 Save data
9 | Extensions 1A no data received
1B Return empty string
3A return NAN if no value is found for that sensor
4A 10 error, save error in error.log
4B retry
10 | Special
Requirements
11 | Technology List | .NET V, XML Version 1.0
12 | Frequency of @ program request
occurrence
13 | MISC The LOG will be used by the other use cases in order to save error

logs and, parse the raw serial data.
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Use case #4 Gateway

1 | Use Case Name DisplaySerialData

2 | System/Scope Gateway

3 | Level User Goal

4 | Primary Actor ZigBee Coordinator[Serial port], timer

5 | Stake Holders Control System

6 | Preconditions The ZigBee network has been started and is up and running with
all devices. The ZigBee SW is working correctly

7 | Success Guarantee Sensor values read, displayed and saved to file

Main success scenario

1 Get Configuration (serial port, and save file timer)

2 User pressed start log button

3 Disable Configuration button

4 Open COM port

5 Save file dialog, select file to save log

5 Start COM timer

5.1 Read existing serial data into memory, and text box
5.2 Sleep [100ms]

54goto3.1

6 Start save file timer

6.1 Send raw data to the log class, parsed data returned
6.2 Send Parsed data to parsed data text box

6.3 Save Parsed data, and raw data if checkbox is checked
6 .3 Sleep [Save File Timer]

7 Stop log button pressed

7.1 Stop logging to file

7.2 Enable configuration button

8 User press configuration button

8.1 Show DisplayConfigData form

9 User exit using Cross

9.1 Hide application

9.2 Give notice of application still running

10 User exit using exit button

10.1 Application stopped
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Extensions 4A COM port error, give message box warning
4B Save error to error.log

4B Break saving operation

5 No file selected

5B Show message box warning

5C Break operation

Special Requirements Want to use XML based configuration files

Technology List ZigBee Pro Development Kit Gateway device — Coordinator
COM/ Serial port/ or USB to Serial port

Frequency of occurrence | @ Program request (each sampling time)

MISC
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7.4.2 Predictor

Use case #1 Predictor

1 | Use Case Name Configuration (Predictor)

2 | System/Scope Predictor (Control System)

3 | Level User Goal

4 | Primary Actor (ON}

5 | Stake Holders Control System

6 | Preconditions NA

7 | Success Guarantee Configuration created, opened and saved

8 | Main success Model parameters (molar mass, gas constant etc.)

scenario

1 Open configuration

2 Edit configuration

3 Recalculate parameters
4 Load default values

5 Save configuration

House parameters (heater effect, house area, volume ventilation,
etc.)

6 Open configuration
7 Edit configuration

8 Save configuration

Comfort Intervals (comfort temperature, low temperature)
9 Open configuration

10 Set comfort temperature

11 Set low temperature

12 save new configurations
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Extensions

Model parameters (molar mass, gas constant etc.)

1A no file to open, create new configuration file with default values
1B Error in file, create new configuration file

2A only numerical values and one separating sign allowed

3A Save error, save the error to the error log file

House parameters (heater effect, house area, volume ventilation, etc.)
4A no file to open, create new configuration file with default values
4B Error in file, create new configuration file

5A only numerical values and one separating sign allowed

8A Save error, save the error to the error log file

Comfort Intervals (comfort temperature, low temperature)

9A no file to open, create new configuration file with default values
9B Error in file, create new configuration file

10A only numerical values and one separating sign allowed

11A only numerical values and one separating sign allowed

12A Save error, save the error to the error log file

Special
Requirements

Want to use XML V1.0 based configuration files

Technology List

Frequency of

occurrence

Each time the user needs to change the configuration or the system will

need the configuration data

MISC

The configuration will be broken up into three windows forms for
displaying and editing the configuration values and one class file for the

configuration XML based functions.

The configXML class will handle extensions 1A and 1B
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Use case # 2 Predictor.

1 | Use Case Name Get sensor values
2 | System/Scope Predictor (Control System)
3 | Level User Goal
4 | Primary Actor oS
5 | Stake Holders Control System
6 | Preconditions Sensor values saved by the Gateway
7 | Success Guarantee | Sensor values log file open and read to correct line
8 | Main success 1 Using log file (opening and closing at once reading is done)
scenario 2 Read to current line
3 Filter the data through a low pass filter
3 Convert the ADC values to temperature data
9 | Extensions 1A no file to open, prompt user with file missing error message
1B Error in line, create new configuration file
2A End of file
2B Wait one sampling time
3A Non numerical values received
3B Save error log message
3C Jump to next line
10 | Special Want to use XML V1.0 based configuration files
Requirements
11 | Technology List
12 | Frequency of Each time the user needs to change the configuration or the
occurrence system will need the configuration data
13 | MISC The low pass filter function will be created in one class and read

sensor values in another class
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Use case # 3 Predictor

1 | Use Case Name Predictor
2 | System/Scope Predictor (Control system)
3 | Level User Goal
4 | Primary Actor Control System
5 | Stake Holders Control System
6 | Preconditions Sensor values read by Read sensor values
Model, house and temperature data stored in XML file
DAQ-6008 device on line
7 | Success Guarantee Learn function finished and regression models created
8 | Main success scenario Learn part
1 Read configuration
2 Run three sample times to stabilize Kalman gain
3 Set heaters to maximum
4 Comfort temperature reached
5 Save regression models
Prediction part
6 Select OLS or K-OLS-SSM model
7 Run heating time estimations
8 Get comfort intervals reference
9Goto6
9 | Extensions 1A no file to open, prompt user with configuration file
missing
1B Error in configuration, prompt user to create new file
4A Comfort temperature not reached within maximum time
4B Stop predictor and prompt user
5A File save error
5B prompt user and save error in error.log file
10 | Special Requirements Want to use XML V1.0 based configuration files
11 | Technology List DAQ-6008 USB device
12 | Frequency of Learn at fresh startup or user interaction
occurrence Prediction each sampling time
13 | MISC
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7.4.3 Control System

Use case #1 for control system

1 | Use Case Name Configuration

2 | System/Scope Control system

3 | Level User Goal

4 | Primary Actor Display

5 | Stake Holders Control System

6 | Preconditions

7 | Success Guarantee Configurations parameters opened, edited and saved.
8 | Main success scenario | Sensor values configuration

1 Load current configuration from XML file

2 User button pressed load gateway configuration
3 Prompt user for path of gateway configuration
4 Get configuration from gateway config.xml file
5 Prompt user for path of sensor values log file

6 Read sensor.log path

7 Save new values to control system Config. XML file

Controller configuration

8 Load current configuration from XML file

9 Edit configuration parameters set in text boxes

10 Calculate new SSM matrices using set parameters

11 Save button to save new configuration
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Extensions

Sensor values configuration

1A File does not exist, Create new file
1B Error in file, Create new file

2B Prompt user with error message
4A No file selected

4B Prompt user with error message
6A Save error

6B Prompt user with error message

Controller configuration

8A File does not exist, Create new file
8B Error in file, Create new file

6A Save error

6B Prompt user with error message

10

Special
Requirements

Want to use XML V1.0 based configuration files

11

Technology List

12

Frequency of

occurrence

Each time the user needs to change the configuration or the system
will need the configuration data.

13

MISC

This configuration also contains all parameters from the predictor

configuration.
Extensions 1A, B and 8A,B handled by the ConfigXML class

In order to have changes made while running and save time used to
open and read the XML file often the ConfigXML class should be
set as static
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Use case #2 for the control system

1 | Use Case Name Controller

2 | System/Scope Control system

3 | Level User Goal

4 | Primary Actor USB-6008 and Predictor

5 | Stake Holders Control System GUI

6 | Preconditions

7 | Success Guarantee | Configurations parameters opened, control output calculated and

sent to DAQ device.

Main success

scenario

1 Load current configuration from XML file

2 Open DAQ-6008 device

3 Get current reference and sensor values from predictor

4 Get current controller from XML config file

5 Calculate control output

6 Send control output to DAQ-6008 device

7 Go to 3 (loop)

8 At control system GUI request stop control and close DAQ-6008
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Extensions

1A File does not exist or file error, Prompt user for error
1B Break control

1C Open configuration

2A DAQ not connected,

2B Message user

2C Break control operation

4A Goto 1A

5A Error in Calculation

5B Save error message in error log file
6A DAQ-error

6B Send error message user

6C Break control operation

10

Special
Requirements

Using XML V1.0 based configuration files

11

Technology List

DAQ-6008 USB Device

Predictor

12

Frequency of

occurrence

At control system request each sample time 24/7

13

MISC

All control system configuration set as a static value in the main form
Control System GUI to speed up system since reading and parsing
XML file takes too much time during loop.
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Use case #3 for the control system

1 | Use Case Name | Control System GUI

2 | System/Scope Control system

3 | Level User Goal

4 | Primary Actor | Display

5 | Stake Holders

6 | Preconditions

7 | Success Configurations parameters opened, edited and saved.
Guarantee

8 | Main success 1 Load current sensor configuration from XML file

scenario

2 Set up plots with correct sensors one series for each sensor and
outside temperatures in one graph and inside temperatures in another

graph. Separate the inside and outside sensors using the “out” keyword.
3 User button pressed start control

4 Start predictor

5 Start Controller

6 Plot Sensor values

7 Plot Controller values

8 Plot Predicted heating time

9 Go to 4 (loop)
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Extensions

1A Handled by Config. XML class

4A Handled by predictor class

5A Handled by controller class

8A User interaction , stop control button pressed
8B Verify stop control using Y/N

8C Y- Break control operation

8E N — Continue operation

10

Special Requirements

Using XML V1.0 based configuration files

11

Technology List

Software — Gateway and Predictor
USB -6008 device

Display with minimum resolution 1024*768

12

Frequency of occurrence

24/7

13

MISC
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7.5 Appendix 5 — Source Code

7.5.1 Gateway Code Excerpts

7.5.1.1The Configuration Code

Setting the configuration data parameters

The XML serializer function works by enabling conversion of XML documents to common
language runtime objects [1]. In order to use this function all the data needs to be collected in
a class of objects. This class has been called ConfigData and can be seen in VScode 7-1

public class ConfigData
{
public Sensor[] Sensors;
public Timers timer;
public Serial serial;

VScode 7-1 The configdata class

From the VS output there is seen that the sensor is created as a sensor array since it will
include several sensors, the serial and timer are singular properties. The next step is to create
the sub element sensor with the configuration data selected for each sensor. This is done by
setting the type, and sensor data as a struct. This can be seen in VScode 7-2.

[XmlType (TypeName = "Sensor") ]

public struct Sensor

{
public string Macaddr;
public string IO;
public string Type;
public string Location;
public string Measureand;
public string Range;
public string Uncertanty;
public string BatteryDate;
public string MISC;

VScode 7-2 Creating the XML nodes for the sensors

The timer and serial properties are set in same manner and for further information the code

with notations can be found in Appendix.

Writing the XML data to file, ConfigWriteData method

The writing data method will use FileStream with parameter FileMode.Create, the file will be
created on saving, and if the file previously exists it will be overwritten. The using statements
are used to be sure the garbage handler will remove the created FileStream instance after use.
The XML root is set before and the XmiSerializer method is used to create the XML file with
the structure properties from the ConfigData class. This is seen in a code excerpt in VScode
7-3.
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using (var fs = new FileStream(ConfigFileName, FileMode.Create))

{
XmlRootAttribute root = new XmlRootAttribute ("Config");

XmlSerializer xs = new XmlSerializer (typeof (ConfigData), root);
xs.Serialize (fs, Data);
fs.Close();}

VScode 7-3 XML write method

Reading the XML data, ConfigReadData method

It is also important to read the XML configuration data from within the program. The same
file method is used as in the write function with different settings. The XmlSerializer function
deserialize the XML document into data objects, based on the ConfigData class. The main
parts of the read function can be seen in VScode 7-4

using (FileStream fs = new FileStream(ConfigFileName, FileMode.Open))
{
XmlRootAttribute root = new XmlRootAttribute ("Config");

XmlSerializer xs = new XmlSerializer (typeof (ConfigData), root);
Data = (Configbata)xs.Deserialize(fs);
fs.Close () ;

VScode 7-4 Reading from XML file

One important error handling is what will happen if the file contains faulty or missing data.
This would create an file exception and the program would crash. This is handled by using a
try and catch statement set around the function, and the catch will then create a new empty

instance of the configuration XML file. This can be seen in VScode 7-5.

catch (Exception e) Data = new ConfigDatal();

VScode 7-5 Creating a new file if missing or faulty

7.5.1.2 Code results

A new instance of the config class can be created and the ConfigReadData method can be run

giving the program access to the XML data as objects. This is seen in VScode 7-6

config = new Config();

config.ConfigReadData ("config.xml") ;

VScode 7-6 Running the read function

Then the serial port settings can be accessed as is seen in Figure 7-2
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Figure 7-2 Accessing the configuration data

When the correct settings are applied the new data can be saved using the write function, this

can be seen in VScode 7-7.

config.Data.serial.portName = "COM1";
config.Data.timer.SaveTimer = 2000;
config.Data.Sensors[0] .Macaddr = "0AAA";
config.Data.Sensors[0].I0 = "00";

config.ConfigWriteData ("config.xml") ;

VScode 7-7 Running the write function

When the code in VScode 7-7 is run the XML file data was created as can be seen in

XMLscript 1.

<?xml version="1.0"?>
<Config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<Sensors>
<Sensor>
<Macaddr>0AAA</Macaddr>
<I0>00</I0>
</Sensor>
</Sensors>
<timer>
<SaveTimer>2000</SaveTimer>
</timer>
<serial>
<portName>COM1</portName>
</serial>

</Config>

XMLscript 1 Configuration result when using the write function
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7.5.1.3Testing software and error handling

In the configuration use case the testing part is mainly to see how the created functions will
react to false or bad data, either due to the file being tampered with or the configuration file
being deleted to see that these eventualities are taken into account by the program and no
crashes will occur. First the functions will be tested when the config.xml file has been
removed.

Reading configuration file with missing file

If the FileStream function tries to read a file that is not there, an unhandled exception will be
thrown resulting in software crash. This is fixed by the try and catch implemented in the read
function. If a file is removed a new config.xml file will be created with the basic information
given in the ConfigData class.

Reading configuration file with faulty data

If the XmlSerializer function reads data that is not of the type set in the ConfigData class there
will be thrown an exception, and the same catch used for the missing file will create a new

config.xml and overwrite the faulty data.

Error during saving of file

There might also be created an IO error when saving to file, if for instance another program is
using the file at the exact same instance. These amongst other errors are handled by a try and
catch statement around all methods that have the possibility to fail. All catch statements are
included with a function to write the error to an errog.log file. The error.log file contains the
time and date for the error, the type of error and a location notation on where the error occurs.

This can be seen in VScode 7-8for the configuration write method.

using (System.IO.StreamWriter file = new System.IO.StreamWriter (@error.log, true))
{
file.Writeline (DateTime.Now.ToString()+e.Message + e.Source + "@ConfigWriteData");

}

VScode 7-8 Error handling in configuration use case
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7.5.1.4The DisplayConfigData code

The code is based on reading and saving the configuration data using the config class. In
order to get the current available COM ports there is created a code for adding the computers

available COM ports to the combo box. This can be seen in VScode 7-9.

foreach (string s in System.IO.Ports.SerialPort.GetPortNames ())
{
comboBoxComPort.Items.Add (s) ;

}

VScode 7-9 Adding the available COM ports to a combo box

Getting the other serial information is done using the enumerable lists contained in
System.1O.Ports.

Two main methods are created to read and write the displayed configuration information,
DisplayConfigData and DisplaySaveConfig, both will be explained in turn.

Reading the configuration data, the DisplayConfigData() method

In order to display the sensor information in the table” a foreach loop is used looping through
all the sensor objects in Sensors. In order to keep the numbering “out of the user’s hands” the
first column is set as write protected and will only contain the sensor automatic counter. This
can be seen in the VScode 7-10

foreach (Sensor sensor in config.Data.Sensors)
{

ConfigurationSensorTable.Rows.Add (i, sensor.Macaddr, sensor.IO,
sensor.Type, sensor.Location, sensor.Measureand, sensor.Range, sensor.Uncertanty,
sensor.BatteryDate, sensor.MISC);

i++;

}

VScode 7-10 reading the data to the table

The serial and timer configuration is simply read straight into their control containers as can
be seen by the excerpts VScode 7-11

comboBoxComPort.Text = config.Data.serial.portName;
textboxSaveTimer.Text = Convert.ToString(config.Data.timer.SaveTimer) ;

VScode 7-11 reading configuration data into combo boxes

% Data grid view control is used as table
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Saving the configuration information, The DisplaySaveConfig() method

When saving the sensor information a switch case statement is used together with the
configWriteData method. The switch case is used to give the user the ability to cancel saving
changes in the standard windows setup yes is to save and exit, no is to exit without saving and
cancel is break the saving operation and return to the form. The information in the table,
combo boxes and text boxes are set as the data to their corresponding objects. An excerpt of
this can be seen in VScode 7-12

//Sensors

config.Data.Sensors[i] .Macaddr = (string)ConfigurationSensorTable[l, i].Value;
//timer

config.Data.timer.SaveTimer = Convert.ToInt32 (textbox saveTimer.Text);
//serial configuration

config.Data.serial.portName = comboBoxComPort.Text;

VScode 7-12 Excerpt of saving settings

7.5.1.5Testing and error handling

The DisplayConfigData is just a visual representation of the ConfigData class, and should be
tested to work in the same way. There is however several conversions that should be tested
and the testing will be done in the same manner. First the old configuration file is deleted,
then the DisplayConfigData form is run and new sensor information is added. This can be

seen in Figure 7-3.

Sensors

Sensor
Number

MAC/Adress/name. 1D Type Location Measureand Range Uncetarty 2;“:" stk MISC

-50-100 12/02-2013 This is 3 test

-

OFFF 00 Living Room Temperature

Saving faulty senser information will result in loss of data

Proceed?

Timer settings

_

Serial Link Settings

Figure 7-3 Saving configuration

Which results in the following config.xml file seen in XMLscript 2.
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<?xml version="1.0"?>
<Config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<Sensors>
<Sensor>
<Macaddr>0FFF</Macaddr>
<I0>00</I0>
<Type>PT1000</Type>
<Location>Living Room</Location>
<Measureand>Temperature</Measureand>
<Range>-50-100</Range>
<Uncertanty>0.02%</Uncertanty>
<BatteryDate>12/02-2013</BatteryDate>
<MISC>This is a test</MISC>
</Sensor>
</Sensors>
<timer>
<SaveTimer>1000</SaveTimer>
</timer>
<serial>
<portName>COM5</portName>
<baud>38400</baud>
<parity>None</parity>
<handshake>None</handshake>
<databits>8</databits>
<stopbits>One</stopbits>
<rtsenable>false</rtsenable>
</serial>

</Config>

XMLscript 2 new set information

This means that starting the program with an empty configuration file is working properly and
the configuration parameters are saved correctly. In addition several other tests were
performed with missing data and or changed data. These tests resulted in some extra security

being added to the use case:

The combo box settings of the serial configuration are set as read only so the user only has the

ability to select between the values available from the system namespaces.

The sample time text box should be set to only give the user the availability of entering
integers between 1000 and 100000. The minimum length was set to be sure that the save file
timer was not set at a Oms interval making the program stall. The maximum length is just set
to one hour in order to prevent data loss. In order to only allow integers the following code

was added to a new keypressed , as seen in the VScode 7-1.
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if (char.IsNumber (e.KeyChar) != true) e.Handled = true;

VScode 7-13 Only allow numbers

The maximum length was set as 7 digits'® in the form design text box parameters; the
minimum length is checked by the textbox.length property when saving. When it comes to the
sensor information there is only one restriction. The length of the IO address should be 2
digits since the 10 ports of the ZigBee devices are noted using two digits [15].

7.5.1.6The DisplaySerialdata Code

The display serial data form has three main methods, and two timer ticks. The methods
created are the DisplaySerialDataGetConfiguration responsible for retrieving the
configuration from the xml file, the DisplaySerialDatalLogStart method responsible for
starting the logging to file, and the DisplaySerialDataLogStop responsible for stopping the
logging to file. The two timer ticks are the serialport timer responsible for reading the current
bits available on the serial port, and the save file timer which is responsible for sending the

data to the parser, displaying and saving the information.

DisplaySerialDataGetConfiguration method

This method should be run when the start log button is pressed, getting the current
configuration from the user. If there are errors in the configuration the saving is stopped. An
excerpt of the method can be seen in VScode 7-14

SerialPort.PortName = config.Data.serial.portName;
SerialPort.BaudRate config.Data.serial.baud;
SerialPort.DataBits config.Data.serial.databits;
SerialPort.Parity = config.Data.serial.parity;
SerialPort.StopBits = config.Data.serial.stopbits;
SerialPort.Handshake config.Data.serial.handshake;
SerialPort.RtsEnable config.Data.serial.rtsenable;

SaveFileTimer.Interval = config.Data.timer.SaveTimer;

VScode 7-14 excerpt of Display serial data get configuration method.

The DisplaySerialDataLogStart method

This method should be run when the start logging button is pressed to prompt the user for a
filename and location to save the log file. If the user does not select a file the start logging
should be aborted, this is done by using the save file dialog ant the returned DialogResult. OK
parameter. The configuration button is disabled during logging and the save log button is
changed to a stop log button. An excerpt of the method can be seen in VScode 7-15

199999999 ms = 2.8hours
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if (saveFileDialogParsedData.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
ParsedDataFilename = saveFileDialogParsedData.FileName;
SerialTimer.Start();
SaveFileTimer.Start () ;

ButtonStartLog.Text = "Stop Log";
ButtonDisplayConfiguration.Enabled = false;
ButtonStartLog.Image = Resources.gateway cCross;

VScode 7-15 of display serial data log start method

DisplaySerialDataLogStop

The display serial data log stop method is created to give the user the ability to stop saving
and set new configuration parameters without exiting the program. The method closes the
serial port and stops the timers. An excerpt of the method can be seen in VScode 7-16

MessageBox.Show ("Data logging data stopped"):;

ButtonStartLog.Text = "Start Logging";
ButtonStartLog.Image = Resources.gateway down;
firstTime = true;

SerialPort.Close () ;
SerialTimer.Stop () ;
SaveFileTimer.Stop () ;

ButtonDisplayConfiguration.Enabled = true;

VScode 7-16 Excerpt of the stop log method

In addition to this methods the code contained in the timer ticks contains the main
functionality of this use case. The Serial timer use the above mentioned serialport.
ReadExisting method and the return is passed to a text box containing the raw data. The save
file timer make use of the LOG use case, and the raw text data.

7.5.1.7The LOG Code

The splitmessage algorithm

This algorithm is stable and should always return a complete message. The algorithm is
reading to the end of the message by using the IndexOF method that returns the index of the
selected character, >. Next the algorithm checks if the index of the start message is 0. If so the
algorithm knows that a complete message is found. The Substring method reads the data
between the start and end indexes and add it to a messages array. Then this part of the original
message is removed, thus setting up the algorithm for splitting up the next message. If an end
message sign is found but no start message sign, the message up to the end sign is just

removed since this would indicate an incomplete message. This can be seen in VScode 7-17

while ((endpos = message.IndexOf('>")) != -1)
{
if (message.IndexOf ('<') == 0)
{
//check for message length
value = message.Substring(l, endpos - 1);
Array.Resize (ref messages, messages.Length + 1);
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messages [messages.Length - 1] = value;

}

message = message.Substring(endpos + 1);

VScode 7-17 Splitting up the string message

The LogParse method

The log parse method takes the message array returned from the split algorithm and use the
foreach loop counting through all the sensors in the configuration. The address length to the
current sensor being checked is used to get the address of the sensor. Another foreach loop
runs through all the messages in the array returned from the message splitter checking if the
sensor address and the senor 10 are found in the message array. If found the value is added to
the logline with a semicolon as a separator. Several messages from the same sensor will as
mentioned just be overwritten by the newest value, and the date and time is added to each new
line. The NaN value is set to any sensors in the configuration that does not have any

messages. An excerpt of the LogParse method can be seen in VScode 7-18

logline = DateTime.Now.ToString() + ";";
foreach (Sensor sensor in sensors)
{
value = "NaN";
addresslength = sensor.Macaddr.Length;
foreach (string msg in message)
{
mac = msg.Substring (0, addresslength);
IO = msg.Substring(addresslength, 2);
if (mac == sensor.Macaddr && IO == sensor.IO)
{
value = msg.Substring(addresslength + 2);
}

} logline += value + ";"; )

VScode 7-18 Parsing the data

The logsave method

The log save method is a straitgh forward file saving methos using the stremwriter function.
An excerpt can be seen in VScode 7-19

using (System.IO.StreamWriter file = new System.IO.StreamWriter (@FileName, true))
{
file.WritelLine (data);

}

VScode 7-19 Saving the data
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7.5.1.8Log Results

The next step is to test the entire code with the new use case. The new added code was tested
by sending several known raw data messages, and studying the results. A typical message can
be as follows

<0AAA00805><0CCC00706><0BBB00804>
Config date sets sensor 1 as 0AAA 00, sensor 2 as 0BBB 00, and sensor 3 as 0CCC 00

The raw data sent resulted in the following line added to the log file, correctly parsed

09.02.2013 22:32:21;805;804;706;

7.5.1.9LOG testing and error handling

The split message algorithm

The split message algorithm was tested with empty data , faulty data, no start sign and no end
sign and everything was working as it should, returning only valid messages. One problem
was found when the message was not anything, null, a null reference exception was thrown.
This was taken care of by adding a try and catch statements around the parser, saving any
eventual errors to a error log file with the time, date, type and location of the error. The

message should however be set to an empty string in the main program at start up to avoid

The logparse method

When testing the logparse method an exception was thrown if error if the IO is not set in the
code. This should be tested for in the configuration save and the following code is added to
the Save Configuraiton method seen in VScode 7-20.

for (int j = 0; j < ConfigurationSensorTable.RowCount - 1; Jj++)
{
if ((string)ConfigurationSensorTable[2, Jj].Value == null)
{
IOmissing = true;
}
}

VScode 7-20 Added code to save configuration method

Setting a Boolean to true if there is not set a IO value and adding a if IOmissing true then

break to the save configuration switch case.

During the testing of this method no errors occurred, but the StreamWriter method used has
several exceptions including that if the filename is used by another program at saving time. In
accordance with that the gateway should never stall a try and catch statement was also set
around this method.
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7.5.1.10 Space required for log file saving

The gateway will be running 24/7 so it is a good necessary to see what HD space is needed
for saving the log files over several years. This calculation will be done with a large system in
order to use the worst case scenario. There will be 50 sensors logging every minute for one
year. Using the standard text file one character is the same as one byte, 8bit. Each sensor will
have the maximum of 5 characters in parsed data mode. 4 will be the largest data value from
the ADC, and one ; is used to separate the messages. In addition there is used 21characters for

the date and time each minute message.

50sensors * Shytes + 21byte = 271bytes pr minute (7-3)
271bytes _ (7-4)
———— x 60minutes * 24hours * 365days = 1.4GBpr year

minute

1.4GB means that a typical 140GB HD will last for about 10 years using the worst case
scenario. This means that disk space should not be an issue; a larger problem would be
handling the 140GB text file and care should be used to split up the log data for instance each
year, or when the ZigBee devices has a battery change. For this reason the code was changed
in order to set the current year as part of the file name, such that one file will only contain the

data for one specific year.
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7.5.2 Predictor methods and algorithms

7.5.2.1Coding the configuration

The configuration code is based on the XML code from the gateway and the same principles
are applied to the data grid view table as in section [7.5.1.1] and [2.3.3]. The code is for this
reason not commented more on.

7.5.2.2Testing and error handling

The text boxes are only allowed to have one decimal sign and numbered keys in the input;
this is done by restricting the key down event to these parameters. Since there is many text
boxes there is also important to get the information of the current text box in focus. This can
be seen in VScode 7-21.

if (!char.IsControl (e.KeyChar) && !char.IsDigit (e.KeyChar) && e.KeyChar != ',")
e.Handled = true;

//get the current name of the text box in focus
TextBox txb = (TextBox)sender;

// only allow one decimal point
if (e.KeyChar == ',' && txb.Text.IndexOf(',"') > -1)
e.Handled = true;

VScode 7-21 controlling the text input

One important note to this excerpt is that it is set to the Norwegian standard signs for comma

and will need to be changed in order to function with other separating signs.

In addition all save parameters are made using a try and catch clause saving any error to a log

file in the same principles as [7.5.1.3]. For more information on the code see APPENDIX.

7.5.2.3Coding the get sensor values

There are two main functions in the Read sensor values use case the Filter.Cs and the
SensorVal.Cs, The SensorVal.Cs class works by reading the saved sensor information from
the gateway from the last read line as specified. This class also converts the ADC sensor
values from the gateway to temperature. The sensor values are returned as a List of doubles,
and the time stamps are returned as a date time object. This can be seen in the Excerpt in
VScode 7-22.

while ((data = sr.ReadLine()) != null)
{
if (i > LastLine)
{
LastLine = i;
StringArray = data.Split(';'");
//time is returned as out in order to have the correct time stamps

time = Convert.ToDateTime (StringArray([0]);
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//Convert the Values to Temperature values, -1 to remove date time stamp, and add
to list
for (int 1 = 1; 1 < StringArray.Length-1; 1++)
{
ConvData =
Math.Round ( ( (Convert.ToDouble (StringArray[1l]) * 3 / 2048) - 0.5) * 100,2);
//filter the data through a low pass filter
ConvFiltData = filter.LowPassFilter (ConvData, 1-1);
listSensVal.Add (ConvFiltData) ;
}

break;

i++;

VScode 7-22 Reading only the last line.

The low pass filter filtering the values can be seen in excerpt in

public double LowPassFilter(double SensorVal, int SensorNr)

{
a=7Ts / (Ts + Tf);
yFiltered = (1 - a) * yk[SensorNr] + a * SensorVal;
yk[SensorNr] = yFiltered;
return yFiltered;
}

VScode 7-23 Low pass filter excerpt

7.5.2.4Coding the predictor use case

The predictor use case is made up of three main methods, creating and discretizing the State
Space Matrices (SSM), estimating the disturbance state using the Kalman filter algorithm and
the least squares algorithm. The state space matrices are made directly from the derivation of
the model in [3.2.3], and the discretization of this model there is used a Zero Order Hold
method. The function for discretizing the matrices based on the sample time from h, given

from the gateway configuration file can be seen in VScode 7-24.

//Create the S matrix for discretization

Matrix S = (IA*h+ (A*h*h)/ (1*2)+ (A*A*h*h*h)/ (1*2*3)+ (A*AX*A
*h*h*h*h) / (1L*2*3*4)y+ (A*A*A*¥A*h*h*h*h*h)/ (1*2%*3%*4*=*
5) + (A* A* A*A*A*h*h*xh*h*h*h)/ (1*2%*3%4%*5*g));

// Calculate the discrete time matrices based on zero order hold
Ad = IA + A * S;
Bd = S * B;

VScode 7-24 discretizing the state space model

The Kalman filter algorithm is made using the Matrix class and the Kalman filter follows the
algorithm defined in [3.2.3.1], the Kalman filter algorithm is seen in VScode 7-25.
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Matrix xhat = Ad * x + Bd * u;

Matrix I = Matrix.IdentityMatrix (Ad.rows, Ad.cols);

phat = Ad * phat * Matrix.Transpose(Ad) + Qv;

K = phat * Matrix.Transpose (D) / (D * phat * Matrix.Transpose (D) + Rw);

xbar = xhat + K * (Y - (D * xhat) [0, 0]);
yvhat = (D * xbar) [0, 0];
phat = (I - K * D) * phat;

VScode 7-25 The Kalman Filter algorithm

The least squares regression matrixes are calculated using the matrix functions and the known

solution to the OLS matrix equation [24].

The least squares regression algorithm

for (int i = 1; 1 < dataPoints.Count; i++)
{
ti = ti + i;
ti2 = ti2 + i * i;
yi = yi + dataPoints[i];
yiti = yiti + dataPoints[i] * 1i;
}

//Setup the regression Matrices

Alpha[0, 0] = dataPoints.Count;
Alpha[0, 1] = ti;

Alpha[l, 0] = ti;

Alpha[l, 1] = ti2;

Beta[0, 0] = yi;

Beta[0, 1] = yiti;

Alpha = Alpha.Invert();
Regression = Alpha*Matrix.Transpose (Beta);

System Learn function
The system learn function is based on applying the maximal power output to the heaters and

log the data in the predictor until it reaches the set comfort temperature. After the system has
been learned the predictor saves the regression models to the config. XML file and the
controller takes over using the prediction times and the set comfort interval reference to keep
the temperature at comfort level at the correct times. The system learn function can be seen in
VScode 7-26.

public bool PredictorLearn(double Y, int counter)
{
int test = counter;
if (counter ==1)
{
//0nly calculate the discrete state space matrixes the first
time
CalcualteSSM (273, 293);
CalculateDiscreteSSM() ;

}
//run the Kalman filter
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KalmanFilter (Y, out yhat, out xbar);

double setpoint =
ControlSystem.config.Data.Monday.ReferenceTemperature;

if (Y < setpoint && counter>10) //allow some time for system to

stabilize
{
//Store the data in a matrix until the comfort temperature is
reached
Dsaved.Add (xbar[1l, 0]); // the disturbance vector
Ysaved.Add(Y); // the Temperature data
learn = true;
}
//Calculate the Disturbance vector using The least squares method
if (Y >= setpoint) //need to set the comfort temperature as
reference

{
//Read all the current configuration in order to not overwrite
everything with blanks
ControlSystem.config.ConfigReadData ("config.xml") ;

Matrix DisturbanceRegression = Matrix.ZeroMatrix(l, 2);
Matrix yRegression = Matrix.ZeroMatrix(l, 2);

DisturbanceRegression = LeastSquares (2, Dsaved); //The
disturbance regression function
yRegression = LeastSquares (2, Ysaved); //The

Temperature regression function

//Store the learned regression line in the XML file as learned
parameter under predictor

ControlSystem.config.Data.controller.DpredictorAlpha
DisturbanceRegression[0, 0];

ControlSystem.config.Data.controller.DpredictorBeta =
DisturbanceRegression([l, 0];

ControlSystem.config.Data.controller.YpredictorAlpha
yRegression([0, 0];

ControlSystem.config.Data.controller.YpredictorBeta =
yRegression[1l, 0];

ControlSystem.config.Data.controller.All = Ad
ControlSystem.config.Data.controller.Al2
ControlSystem.config.Data.controller.A2l
ControlSystem.config.Data.controller.A22 = Ad

o e
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>
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>
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ControlSystem.config.Data.controller.B11 = Bd[O,
ControlSystem.config.Data.controller.B21 = Bd[1,

o
—
~

//Write the new learned data
ControlSystem.config.ConfigWriteData ("config.xml");
//Return false = Learning finished

learn = false;

VScode 7-26 The Learn function
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7.5.2.5Additions to the Matrix library

In order to facilitate the Kalman filter calculations some additions were needed in the Matrix

class, these additions are seen in VScode 7-27 through VScode 7-29

private static Matrix Add(Matrix ml, double d)

{
Matrix r = new Matrix(ml.rows, ml.cols);
for (int i = @0; i < r.rows; i++)
for (int j = ©; j < r.cols; j++)
r[i, j] = mi[i, j] + d;
return r;
}

VScode 7-27 Adding double to a matrix

private static Matrix Multiply(Matrix m, double n)
Multiplication by constant n
{
Matrix r = new Matrix(m.rows, m.cols);
for (int i = @; i < m.rows; i++)
for (int j = ©; j < m.cols; j++)
r[i, j1 = m[i, j] * n;
return r;

1/

VScode 7-28 Multiplying double to Matrix

private static Matrix Multiply(double n, Matrix m)
Multiplication by constant n

{
Matrix r = new Matrix(m.rows, m.cols);
for (int i = ©; i < m.rows; i++)
for (int j = 0; j < m.cols; j++)
rfi, j1 = m[i, j1 * n;
return r;
}

/!

VScode 7-29 Multiplying Matrix to double

7.5.2.6Testing and error handling

The read sensor values are then tested with the gathered experiment data, the sensor values

are plotted to a Chart using the sensor values names in the configuration of the gateway as the

different time series. In fig the inside temperatures time series are seen Figure 7-4.
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Inside Temperatures
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Figure 7-4 Testing the read sensor values use case

All methods that might crash have been set with a try and catch clause in the same manner as
in the previous sections [2.3.5.3].
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7.5.3 Controller methods and algorithms

7.5.3.1 The main configuration and tab controls

The Tab control is made by using inheritance. All other configuration forms are inherits the
ConfigMainForm in the class setup. This can be seen for the house configuraiton in VScode
7-30

public partial class ConfigHouse : MainFormPage

VScode 7-30 Code excerpt of inheriting the main form

A panel is made to contain each of the configuration forms as seen in the house configuration

example in VScode 7-31

this.pnl = panelConfigHouse;

VScode 7-31 Code for setting the panel of the House configuration form.

A tab control is then created in the main configuration form GUI where the different

configuration pages are added as seen in VScode 7-32

tabControlConfiguration.TabPages.Add(new TabClass(new ConfigTemperatures()));
tabControlConfiguration.TabPages.Add(new TabClass(new ConfigSensors()));
tabControlConfiguration.TabPages.Add(new TabClass(new ConfigModel()));
tabControlConfiguration.TabPages.Add(new TabClass(new ConfigHouse()));
tabControlConfiguration.TabPages.Add(new TabClass(new ConfigControl()))

VScode 7-32 Adding all the configuration settings to the tab control in the main config form

The TabClass created to add the selected forms panel content can be seen in VScode 7-33

private Form frm;
public TabClass(MainFormPage frm_content)

{
this.frm = frm_content;
this.Controls.Add(frm_content.pnl);
this.Text = frm_content.Text;

}

VScode 7-33 Tab class excerpt
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7.5.3.2Configuration help examples

“BAs.
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§ 0BBB 07 THPE Hallwal e
7 acce P THPE Outsid e
8 ocee ™M TMPE Guest ble
9 acce 07 THPE Livingn e
* i i ' i -

GateWay Parameters

Options

Sampling Time [min]

Sensor Values Path

v Load GateWay Sensor
Cortiguration

C:\Users'\Eier\DesktopMaster Thesis v1105"Gateway Finished testinggateway (2)\GateWay'bin'\Debug'Parsed Data log

Figure 7-5 Configuration information example

7.5.3.2.1 Configuration testing and error handling

The main parts of the configuration is the Config. XML file which has already been

thoroughly tested. The error handling is done in the same manner as saving the date time and

place of the error to a log file.

7.5.3.3Controller use case

The controller use case consist of a class for each of the controllers with functions for setting

up the controllers in the LQR and MPC cases, and functions for calculating the control output

in all cases.

In order to calculate the predicted references there was added a function to the Config. XML

class this functions returns a reference vector based on the current date and time using the

comfort intervals configuration and a switch case statement this is seen in VScode 7-34.

public Matrix GetComfortTemperature(DateTime starttime,int 1)

{

Matrix temp = Matrix.ZeroMatrix(l, 1);
DateTime time;
int hour;
for (int i = 0; i < 1; i++)
{
time = starttime + TimeSpan.FromHours(i);
hour = time.Hour;

switch (time.DayOfWeek)
{

case DayOflWeek.Monday:
temp[i, 0] =

Convert.ToDouble(Data.Monday.ComfortIntervals[hour]);

133




break;

return temp;

VScode 7-34 Create reference vector

7.5.3.3.1 PID class

The D term in the PID controller only contributed noise to the system for this reason only a PI
controller has been implemented.

The function for calcualting the PI controllers output can be seen in

public double PiController(double y, double r)
{
double e; // Error between Reference and Measurement
double u; // Controller Output
//PID Algoritm
e=r-y;
u=Kp *e+ (Kp / Ti) * z;
z =2+ Ts * e;

VScode 7-35 Calculate PI controller output

7.5.3.3.2 LQR class

The LQR class is divided into two main functions the controllers setup and calculation of the
steady state gains, i.e. solving the Riccati equation and calculating the controllers output
Controller setup

In order to give the controller integral action the eSSM models are needed calculated in a
function called calculateESSM in the controller class and this can be seen in code excerpt
VScode 7-36

//Get the sizes of the matrices for MIMO systems
int nx = Ad.rows;
int nu = Bd.cols;
int ny = D.rows;

//Create the eSSM models
At = Ad.AddRight(Matrix.ZeroMatrix(nx,
ny)).AddBelow(D.AddRight(Matrix.IdentityMatrix(ny, ny)));

Bt = Bd.AddBelow(Matrix.ZeroMatrix(ny, nu));
Dt = D.AddRight(Matrix.IdentityMatrix(ny, ny));
Qt = Matrix.Transpose(Dt) * q * Dt;

VScode 7-36Calculate the eSSM models
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The Riccati equation solver loop is run until the error between the new and the previous value
is below 0.00000000001 the loop can be seen in VScode 7-37.

while (error > 1le-10 & iterations <= 10000)

¢ fo = (B_ * po * At) / (r + B_ * po * Bt);
pl = A_ * po * At + Qt - (A_ * p@ * Bt) * fo;
f1 = (B_ * pl * At) / (r + B_ * p1 * Bt);
error = Matrix.MaxAbs(fl - f0);
pe = pl;
iterations++;

}

VScode 7-37 Solving the Riccati equation and calculating the SS gain.

The controller gains are set for the scalar system as seen in VScode 7-38

ControlSystem.config.Data.controller.G1
ControlSystem.config.Data.controller.G2

-‘Fl[@, 9];
-'Fl[@, 1]3

VScode 7-38 Saving the scalar SS LQR gain

Calculate control output

The LQR control output for the scalar system is then simply calculated as seen in VScode
7-39.

dx = x - x_old;
u= (uold + G1 * dx + G2 * (x_old - r));

VScode 7-39 Calculating the control output

7.5.3.3.3 MPC class

Since the MPC controller setup is complex the entire function is included with commentary,
this is seen in VScode 7-40

Controller setup

public void InitializeMPCControl(int L, double g, double r)
{

//Calculate the Extended State Space Matrixes
essm.CalculateESSM(q_lqr, out At, out Bt, out Dt, out Qlqgr);

//Get the sizes of the eSSM matrices
int nx = At.rows;



int nu Bt.cols;
int ny = Dt.rows;
int n = Dt.cols;

// Calculate observability matrix
0 = Matrix.Parse(Dt.ToString());
Matrix w = Matrix.Parse(Dt.ToString());

for (int i = 2; i <= L; i++)
{

w *= At;

0 = 0.AddBelow(w);
}

// Calculate extended observability matrix
Matrix OB = O * Bt;

// Calculate the lower block triangular Toeplitz matrix
Matrix Ht = Matrix.ZeroMatrix(OB.rows,1);

for (int i = 1; i < Ht.rows; i++)

{
Ht[i, @] = OB[i-1,0];
}
Matrix HdL = Matrix.Parse(Ht.ToString());
for (int i =1; i < (L - 1); i++)
{
Matrix temp = Matrix.ZeroMatrix(Ht.rows, Ht.cols);
for (int rows = i; rows < L; rows++)
for (int cols = @; cols < Ht.cols; cols++)
{
temp[rows, cols] = Ht[rows - i, cols];
}
HdL = HdL.AddRight(temp);
}

//Calculat the prediction model parameters
F_L = Matrix.Parse(OB.ToString());
F L =F_L.AddRight(HdL);

//Create the weighting matrixes as identity matrices
Qt = Matrix.IdentityMatrix(L, L);
Rt = Matrix.IdentityMatrix(L, L);

//Multipling by weighting factors to create the weighting matrices

Qt = Qt * g;
Rt = Rt * r;

//Create the Hessian Matrix
H = Matrix.Transpose(F_L) * Qt * F_L+Rt;

VScode 7-40 Set up MPC controller matrices

The hessian matrix and the set up eSSM matrices is used as public values within the MPC

class to avoid many out parameters in the methods.

Calculate control output
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The MPC control output is calculated using the reference from the get air heater reference
function contained in the Config. XML. Excerpts of the control output function is seen in
VScode 7-41.

//Create the state deviation parameter
xt = Matrix.ZeroMatrix(2,1);

xt[@, 0] = x - x_old;

xt[1, 0] x_old;

//Create the future reference vectors
Matrix pl = 0 * At * xt;

//Get reference from config using the correct prediction horizon
Matrix rll = ControlSystem.config.GetAirHeaterReference(startReference, L);

//Calculate future outputs

Matrix £ = Matrix.Transpose(F_L) * Qt * (pl - ril);
duf = -H.Invert()*f;

//0nly use 1.st output as control output

u = u_old + duf[e, 0];

VScode 7-41 Calculate the MPC controller output

7.5.3.3.4 PID class

The PID controller needs no setup and is simply calculated as seen in

public double PiController(double y, double r)
{
double e; // Error between Reference and Measurement
double u; // Controller Output
//PID Algoritm
e=r-y;
u=Kp *e+ (Kp / Ti) * z;
zZ =2+ Ts * e;

VScode 7-42 Calculate PID controller output

7.5.3.4 Control system GUI

The control system GUI is mainly graphical user interface and not much is needed discussed
or explained on the code. The two functions creating the plots and time series is however

worth a mention. The plot creation function can be seen in code excerpt in VScode 7-43

foreach (Sensor sensor in config.Data.Sensors)

{

//Set up the two main graph series
var seriesOutside = new Series();
var seriesInside = new Series();

//Add outside sensors to outside plot
if (sensor.Location.Contains("Outside"))

{
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seriesOutside.Name = sensor.Location;
seriesOutside.ChartType = SeriesChartType.FastLine;
seriesOutside.XValueType = ChartValueType.Time;
chartOutsideTemperature.Series.Add(seriesOutside);

}

else
//Add inside sensors to inside plot
if (!sensor.Location.Contains("Outside™"))

{
seriesInside.Name = sensor.Location;
seriesInside.ChartType = SeriesChartType.FastlLine;
seriesInside.XValueType = ChartValueType.Time;
chartInsideTemperature.Series.Add(seriesInside);
}
//Set up axis
chartOutsideTemperature.ChartAreas[0].AxisX.Title = "Time";
chartInsideTemperature.ChartAreas[0].AxisY.Title = "Temperature";
chartInsideTemperature.ChartAreas[0].AxisX.Title = "Time";
chartInsideTemperature.ChartAreas[0].AxisY.Title = "Temperature";

VScode 7-43 Setting up graphs with correct sensory information

The plots were createt to display one day at a time, this is seen in VScode 7-44

////Kepp X axis displaying last 24 hours
this.chartInsideTemperature.ChartAreas[0].AxisX.Minimum
TimeSpan.FromHours(24)).ToOADate();
this.chartInsideTemperature.ChartAreas[0].AxisX.Maximum
sensorTime.ToOADate();

(sensorTime -

VScode 7-44 Creating moving plots

7.5.3.4.1 Additions to the MATRIX class

The four additions needed in the matrix class is seen in functions from VScode 7-45 through
VScode 7-48

public Matrix AddRight(Matrix m2)
{
if (rows != m2.rows)

{
}

Matrix r = new Matrix(rows, cols + m2.cols);
for (int i = @; i < rows; i++)
for (int j = @; j < cols; j++)
r[i, j] = mat[i, j];
for (int i = @; i < m2.rows; i++)
for (int j = @; j < m2.cols; j++)
r[i, j + cols] = m2[i, j];
return r;

throw new MException("Different rows!");

VScode 7-45 Add one matrix to the right of another matrix

public Matrix AddBelow(Matrix m2)
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if (cols != m2.cols)

{
}

Matrix r = new Matrix(rows+m2.rows, cols);
for (int 1 = @; i < rows; i++)
for (int j = ©; j < cols; j++)
rli, j1 = mat[i, jI;
for (int i = @0; i < m2.rows; i++)
for (int j = @; j < m2.cols; j++)
r[i + rows, j] = m2[i, jI;
return r;

throw new MException("Different cols!");

VScode 7-46 Add one matrix below another matrix

public Matrix SubMatrix(int rowfrom, int rows, int colfrom, int cols)
{
Matrix m = new Matrix (rows,cols);
for (int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
m[i, j] = mat[rowfrom + i, colfrom + J];
return m;

VScode 7-47 Create a sub matrix from a matrix

public static double MaxAbs(Matrix ml)

{
double max = 0;
for (int i = ©; i < ml.rows; i++)
for (int j = @; j < ml.cols; j++)
{
if (Math.Abs(ml[i,j]) > max)
max = Math.Abs(mi[i,j]);
}
return max;
}

VScode 7-48 Calculating the Absolute difference between two matrices

7.5.3.5 Testing and error handling

Testing the complete system is done in the Experiments part in paragraph [4.7]. Error

handling is done in the same manner as in the gateway system paragraph [2.3.5.3]
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7.6 Appendix 6: MATLAB scripts

7.6.1 The data processing script

clear all;

close all;

Ypm—mmmmmmmmmm S TN (6 S e e e e
Yo —mmmmmmm - —— Set which data to plot

DorawPlot=true; %true will plott the raw data
DoavgPlot=true; %true will plot the average data
%DoavgPlot=false;

DooutlierPlot=true; %true will plot the outlier data
%DbooutlierPlot= fa]se

Yo —mmmmmmmm - Set interval for date time stamps on X axis
Xstamps=15;

Y= mmmmmmmmmm Set the Approved Standard deviation for outliers

StdFactor=2.0;

%-———————== import the data---------——-—-——"—""“--—

A = importdata('cC:\Users\Stian skole\Desktop\Master Thesis v0904\Experiments\LOG
fi]es\oneday.1og')

%A = importdata('cC:\Users\Stian sko]e\Desktop\Master Thesis v0904\Experiments\LOG
f11es\ParsedData2803 1826-all1-power-off.Tlog

%A = importdata('C:\Users\Stian sko1e\Desktop\Master Thesis v0904\Experiments\LOG
files\Parsedbata2903-1944-ss-ventsclosed.log')

data=A.data;

rowheaders=A.rowheaders;

interval=Tlength(data) /Xstamps;

Y%-————- Create Titles and Axis values based on the rowheader----------—-————-
%convert date time string into num vectors
[year,month,day,hour,minute,~] = datevec(rowheaders, 'dd.mm.yyyy HH:MM:SS')
Y=year(l);
m=month (1) ;
%get Month name from month name function
M=Monthname (m) ;
D=day(1);
%create the title based on the row headers data
TitleString = sprintf('Temperature readings started at %d %s %d',D,M,Y);
%remove year and seconds for beter plotting
Time=(datestr(rowheaders, "HH:MM"))
%if there is much data the month™i also plotted on the X axis
if Tength(rowheaders)>470
for k=1:1ength(rowheaders)

D=day (k)

H=hour (k)

C=sprintf('D %d H %d',D,H)

Time(k,1l:Tength(C))=C;

interval=10;

%—————- create the x axis values based on the Time data---------------—-—-——-——-
Xaxisvalues=Time(1l:interval:length(Time),:);

count=1ength(xaxisva1ues)

Xtickvalues=1:Tlength(data)/count:length(data);

e Convert ADC data to temperature data--------------————————————
VoltData=(data*(3/2048));

TempData=((vVoltbata-0.5)*100);

e Remove the Outliers---—--—----mmmmmm o
dataRemovedoutliers=0utlierRemover(TempData,StdFactor,DooutlierPlot, XaxisValues,Xtickvalues,
TitleString);

e Run the NaNremoval function.-----------—-—-———~———
[RemovedRows ,NaNs ,dataRemovedNaNs]=NaNremove (dataRemovedoutliers) ;

%----Smooth the data thorugh a low pass filter-----—-——--------oo—————
dataFiltered = LPfilt(dataRemovedNaNs);

%----Split up TempData in inside and outside temperatures------------——-————-
TempData=dataFiltered;
insideTemperatures=[TempData(:,1),TempData(:,2),Tempbata(:,3),Tempbata(:,5),TempData(:,6),Temp
Data(:,8),Tempbata(:,9)];

outs1deTemperatures [TempData( ,4) ,Tempbata(:,7)];

Y%———————————— Plot the New TempData--—---———————————————
figure('units', 'normalized', 'position',[.1 .1 .4 .4])
TitleProcessedPlot = sprintf('Processed data - %s',TitleString);
subplot(2,1,1)

p1ot(1ns1deTemperatures)

%set date time on X axis

xmin=0;

Xmax= 1ength(data)

xTim([xmin xmax])

set(gca, 'XTick',Xtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)

set(gcf, 'color','w")

%set(gcf, 'Position', [100 100 150 150])
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title(TitleProcessedPlot)

legend('Bedroom', 'Diningroom', 'Bathroom', 'Guestroom', 'Livingroom', 'Kitchen', 'Hallway', 'Eastout
side', "Location', 'EastOutside’)

ylabel (' Temperature [AoC]')

xlabel('Time');

subplot(2,1,2)

plot(outsideTemperatures)

set(gca, 'XTick',Xxtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)

%set(gcf, 'Position', [100 100 150 150])

x1im([xmin xmax])

legend('outside N', 'oOutside S','Location','Eastoutside')
ylabel (' Temperature [AoC]')

xlabel('Time');

%=———~ DIGE REW CRiAl====ss=ssssssssssosssssssssosossossosssoososoososossos oS

if DorawPlot
insideRawData=[data(:,1),data(:,2),data(:,3),data(:,5),data(:,6),data(:,8),data(:,9)]
outsideRawData=[data(:,4),data(:,7)]

TitleRawPlot = sprintf('Raw data - %s',TitleString);

figure('units', 'normalized', 'position',[.1 .1 .4 .4])

subplot(2,1,1)
plot(insideRawData)

%set date time on X axis

xmin=0;

xmax=1ength(data)

xTim([xmin xmax])

set(gca, 'XTick',Xxtickvalues)
set(gca, 'XTickLabel',Xaxisvalues)
set(gcf, 'color','w")

title(TitleRawPlot)

legend('Bedroom', 'Diningroom', 'Bathroom', 'Guestroom', 'Livingroom', 'Kitchen', 'Hallway', 'Eastout
side', "Location', 'Eastoutside’)

ylabel('zigBee ADC values')

xlabel('Time');

subplot(2,1,2)

plot(outsideRawData)

set(gca, 'XTick',xtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)¥%set(gcf, 'Position', [100 100 150 150])
xTim([xmin xmax])

legend('outside N', 'Outside S','Location','Eastoutside')

ylabel('zigBee ADC values')

xTabel('Time');

end

Hmmmmmmmas Plot averaged inside and outside data-------------------—--—————\——
if DoavgPlot

insideAveragedTemperatures=mean(insideTemperatures,?2);
outsideAveragedTemperatures=mean(outsideTemperatures,?2);

TitleAvgPlot = sprintf('Averaged temperatures - %s',TitleString);

figure('units', 'normalized', 'position',[.1 .1 .4 .4])
subplot(2,1,1)

plot(insideAveragedTemperatures)

%set date time on X axis

xmin=0;

xmax=1ength(data)

xTim([xmin xmax])

set(gca, 'XTick',Xtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)

set(gcf, 'color','w")

title(TitleAvgPlot)

legend('Inside Temperatures')
ylabel (' Temperature [AoC]')
xlabel('Time');

subplot(2,1,2)
plot(outsideAveragedTemperatures)
set(gca, 'XTick',Xxtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)¥%set(gcf, 'Position', [100 100 150 150])
xTim([xmin xmax])

legend('oOutside Temperatures')
ylabel (' Temperature [AoC]')
xTabel('Time');

title('Averaged outside temperatures')

end
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7.6.2 NaN removal function

function [ RemovedRows, NaNs, NonNanData] = NaNremove(data)
%NaN removal and interpolation of data

% Data to be interpolated and NaN removed is input parameters
%  The outpout parameters is the "filtered data"

%first check if the first value is NaN if so remove until first not nan in
%all rows in order to be able to do interpolation

data; )
% ————————————— Check forn NaNs in the first rows------------——-—————\—————————

7 (f12d(15na“(data(1 02)>0);

wh11e £f1nd(1snan(data(3, :)))>0 & j<length(data(:,1)));
j=j+1;

end

%remove all first rows with NaN data

data=data(j:length(data(:,1)),:);

R=—=im——==————————— check: fior iintenrpoilatabilel NaNS——=—==———————————————\————————
if length(data(:,1))>2 %if not all values are removed

for i=1: 1ength(data(1 1))

Non= data(

NonNan(: 1) 1nterp1(f1nd(~isnan(Non)),Non(~1snan(Non)),1:1ength(Non))';
Nags:]ength(find(isnan(data)));

en

H——=———m————————— check for NaNs at the end----—\-—\———\-—"-""-"-"—"-"-"-"—"—"—-"—\—~—~—~\—~—~—~—~——_—
if (find(isnan(NonNan)) > 0 )

[row,col,vals]=find(isnan(NonNan));
EndNaNsRemoved=1ength(vals);
row
%Remove end rows with NaNs by us1ng the Towest value left with NaNs
NonNanData=NonNan(l:minCrow)-1,:);

else

. NonNanData=NonNan;
en
$emovedRows=1ength(data)—1ength(NonNanData)+j;
else
RemovedRows=Tlength(data(:,1))+j;
NonNanData—O
NaNs=0
. disp(' A1l data has been removed due to NaNs' )
en

end

7.6.2.1Testing the NaN removal function

>> [RemovedRows,NaNs,NonNaNdata]=NaNremove (dataTest)
data =

438 NaN 483 341 469 474 358 480 490
438 475 483 341 469 474 358 480 490
437 477 NaN 343 469 472 353 481 NaN
439 478 NaN 335 472 477 355 483 491
438 479 487 339 472 478 350 483 492
438 479 489 342 NaN 479 351 485 492

RemovedRows = 2

NaNs = 4

NonNaNdata =
438.0000 475.0000 483.0000 341.0000 469.0000 474.0000 358.0000 480.0000 490.0000
437.0000 477.0000 484.3333 343.0000 469.0000 472.0000 353.0000 481.0000 490.5000

439.0000 478.0000 485.6667 335.0000 472.0000 477.0000 355.0000 483.0000 491.0000
438.0000 479.0000 487.0000 339.0000 472.0000 478.0000 350.0000 483.0000 492.0000
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7.6.3 The Outlier Removal function

function [ dataRemovedoutliers ] = outlierRemover(data, Factor,DoPlot, XaxisValues,
Xtickvalues, TitleString)

%This function finds and removes outliers based on the Factor value which

%is a factor of the standard deviation of the data set

%inputs data, StdFactos and Boolean value plot

Nydata=data;

%Create a matrix of mean values by

mu = mean(Nydata);

sigma = std(Nydata);

[n,p] = size(Nydata);

% Create a matrix of mean values by

% replicating the mu vector for n rows

MeanMat = repmat(mu,n,l1);

% replicating the sigma vector for n rows

SigmaMat = repmat(sigma,n,1);

% Create a matrix of zeros and ones, where ones indicate
% the Tocation of outliers

outliers = abs(Nydata - MeanMat) > Factor*SigmaMat

% Calculate the number of outliers
nout = sum(sum(outliers))
%Mark the outliers

for i=1:length(data(l,:))

:
potential_outlier=outliers(:,i);
X=1:length(Nydata(:,i));
Y=Nydata(:,i);

if DoP1ot
gure( un1ts , 'normalized', 'position',[.1 .1 .4 .4])
p1ot(2

p1ot(Y 'b! )
xmin=0;
xmax 1ength(data)
X 1m([xm1n xmax])
xlabel ('Time [hours]')
ylabel('Temperture (A{\circ}c)')
set(gca, 'XTick',Xxtickvalues)
set(gca, 'XTickLabel',Xaxisvalues)
set(gcf, 'color', 'w'")
title(TitleString)

hold
sgatter(x(potent1a1 _outlier),Y(potential_outlier), '"*r','Linewidth',5)
1==
legend('Bedroom', 'outliers');
elseif i==2
Tegend('Diningroom', 'outliers');
elseif i==3
Tegend('Bathroom', 'outliers');

elseif i==4

legend('outside N','outliers');
elseif i==

lTegend('Guestroom', 'outliers');
elseif i==

Tlegend('Livingroom', 'outliers');
elseif i==7

legend('outside S', 'outliers');
elseif i==8

Tegend('Kitchen', "outliers');
elseif i==9

lTegend('Hallway', 'outliers');

hold
end
end

%interpolate the the outliers
InterP(:,i)=interpl(find(~potential_outlier),Y(~potential_outlier),X)"’

if DoPlot

subplot(2,1,2)

xmax=1ength(data)

xTim([xmin xmax])
scatter(X(potential_outlier),Y(potential_outlier), '*r','Linewidth',5)
set(gca, 'XTick',Xxtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)

hold

plot(InterP(:,i),'b")

xTim([xmin xmax])

xlabel('Time")

ylabel('Temperture (A{\circ}c)')

title('Temperature data with marked removed outliers')
set(gca, 'XTick',Xxtickvalues)

set(gca, 'XTickLabel',Xaxisvalues)

if sum(potential_outlier)>0

143




legend('Removed outliers')
en
hold
end
end

dataRemovedoutliers=InterP;
end

7.6.4 The LP filter function

function [ y] = LPfilt( data )
%Smoothing function
% Low pass filter

t=zeros(length(data),1);

for i=2:1ength(t)
tGi)=t(i-1)+1;

end

ToS=zeros(length(data),9);
Ts=t(2)-t(1);

Tf=5*Ts;

a=Ts/(Ts+Tf);
oldToS=data(l,:);
ToS(1,:)=data(l,:);

for 1=1:9
for i=2:1ength(ToS)
Tos(i,1)=(1-a)*01dTos(1,1)+a*data(i,1);
0ldTos(1,1)=Tos(i,1);
end

end

y=TO0S;

end

7.6.5 The month to name month function

function [ MonthName ] = MonthName( m )
%UNTITLED13 Summary of this function goes here
% Detailed explanation goes here
for i=1:1
switch m
case 1
m="'January';
break;

case 2
m="'Febuary';
break;

case 3
m="March';
break;

case 4
m="April'
break;

case 5
m="'May'
break;

case 6
m="June';
break;

case 7
m="July"';
case 8
m="'August';
break;

case 9
m="'September';
break;

case 10
m="0ktober";
case 11
m="November'
break;

case 12
m="december";
break;

end

end
MonthName=m;
end
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7.6.6 The control simulation function

[}

% Simulating all controls with prediction horizon

clear all
%= ==~ Continous State Space Model------—-————————— -

Ac=-8.81*10"-4;
Bc=0.439246148*10"-5;
Dc=1;

Fom=== DigSErete Cime MoCtElo-mmmssoooososoooososoooososoooooooooeoo s o oe e oD ===
h=60; %$sampling time of 6 minute

[Ad, Bd, Dd]=c2dm (Ac,Bc,Dc, zeros (1) ,h, "zoh') ;

[o)

% Simulation time horizon
dt=0.001; t=0:dt:24; t=t'; N=length(t);

Femmmmmm== Optimal L PEralEter s m oo mm s e o o e e e o e e ) = e e e = e
a=1;
Rdu=0.001;

[G1l,G2,At2,Bt2,Dt2]=dlqgdu pi (Ad,Bd, Dd, g,Rdu) ; % MPC with infinite horizon

[}

———————— AR b ) H St i B e B E e o e e S e e L B e B S

Kp=805;

Ti=10000;

Td=0;

S ——————— MPE—-Prediction modell matrilces————————————————————— —————— i ————

1=10; %Prediction Horizon
0=10; R=0.001; %Weighting parameters

nx=size (Ad,1l); nu=size (Bd,2); ny=size(Dd,1);
[HAL,OL,OLB]=ss2h (At2,Bt2,Dt2, zeros (ny,nu) ,L,0) ;
F_L=[OLB HdAL] ;

Qt=g2qt (Q, L) ;

Rt=g2qt (R, L) ;

H=F L'*Qt*F L + Rt;

$Steady state nominal values
us=258.7252;

xs=292.44; %

v=258.7;

r=292.44;

x old=x;
y _old=ys;
u_old=us;
e 0ld=0;
z=xs (1) ;

$get refernce vector from comfort interval function
[WdRef, WeRef, t]=ComfortRef () ;

MPCref=WeRef';

N=length (t)

[}

% Type of controller:1 PID controller, 2-(QP optimal controller),3 MPC
Cntrl=3;

L1=0;
for k=1:N-200

$step change in disturbance outside temperature
if k==1900

v=250;
end
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7.6.7 The PWM function
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7.7 Appendix 7: Expanded model

ar 1’\7T(1 piMi)+

NpiMi(l - xi)( T + Hdar) + (pr + ler + th) pN(l - x)( T + Hdar) + (pr + ler + th) + qupply UA(T - Ti)

pv((1- ’;’\é]’f) * Coq +

le xl

« (C W>—M>

Where N = N*V/3600, and T; is inlet temperature ,Cp is heat capacity of dry air, Cpw is heat capacity of humid air, x is fraction of water in air the rest of the

parameters are seen in Table 2-1. For more information the reader is advised to read the BAS master project.

The MATLAB model used for the derivation is

dx (1)=Nt*x1*(x2- (P*M_AH/ (R*V)))/(x2)+(Vi*(P*M_AH/ (R*V))* (Cpa* (v-273)+Fr*(Cpw* (v-273)+H_wv_ref))-Vo*x2*(Cpa* (x1-273)+fr*(Cpw* (x1-273)+H_wv_ref))+(u- (UA* (x1-
v))))/(Vr*x2*Cp)+mMd;




7.8 Appendix 8: Regression models for predictor

The regression parameters as seen in the configuration XML file

<DpredictorAlpha>1.1984954138447921</DpredictorAlpha>
<DpredictorBeta>0.0020909035984212621</DpredictorBeta>
<YpredictorAlpha>27.786336336336362</YpredictorAlpha>
<YpredictorBeta>0.3766537966537955</YpredictorBeta>

<A11>0.99203191483706066</A11>

<A12>0.19920212907348425</A12>
<A21>0</A21>

<A22>1</A22>
<B11>0.031808516293937</B11>
<B21>0</B21>

The Kalman filter disturbance model;

Temperature

* | Dpredictor alpha + DpredictorBeta « i| T B * Temperature

Temperature = A

The OLS regression model:

Temperature =YpredictorAlpha+YpredictorBeta*i

Where i is the loop counter running each sampling time of 200ms.



