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Abstract: 

System Identification in control engineering has been the field of interest for the research and development to find the 

optimal model of dynamic system. Both MIMO and SISO systems can be modeled using different system 

identification techniques with satisfactory result using input and output data and easy to implement the control 

strategies. 

System identification of a quadruple Tank which is a MIMO system with two user inputs and two outputs and 

adjustable zero. Using first principle, non-linear mathematical model is developed and it is linearized. Input and output 

data are taken from the real system using LabVIEW and Stability, observability and controllability are analyzed. Both 

minimum and non-minimum phase with the change in valve parameters are analyzed. 

Using input and output data from the real process system identification model is developed by DSR, PEM and N4SID 

methods. All these identification analysis are done using MATLAB software while the input and output data taken 

using model developed in LabVIEW. Model developed using all three methods are compared against each other both 

by simulation and experimentally. Model developed are validated individually using new set of data and the quality 

of methods are again compared against each other using indices such as MAE, RMSE. 

Finally, DSR method of identification is found out to be the best method among all three methods and it is suggested 

to proceed for the implementation of control strategies and further analysis 
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1 Introduction 

Identifying the system properties with computational efficiency and help the user to choose the 

correct system order are considered as the advantages using system identification methods. The 

process of constructing a mathematical model of a dynamic system. Models are used to extract the 

essentials from complicated evidence and to quantify the Implications aiming to increase the 

understanding of the mechanism by making the complicated system simpler. 

Precise representation of a real world system dynamics developed via analysis and simulation can 

be defined as a model, though there may be multiple models/methods for a single physical system 

depending on the problem we want to solve.  

1.1 System Identification Historical approach 

The rule of system identification tries to build mathematical models of systems with certain 

purpose, guided by measurements and some other criterion depending on the process. These 

models are different from others like mental models or graphical models (Pajonk, 2009) as we can 

evaluate them using a computer they tend to be highly complex. Thus creating such a model can 

be a very challenging task. We have seen that many different types of systems exist and that there 

is essentially no limit in complexity for both the relations inside the system and the entities that 

interact in and out of the system. So the mathematical models that we create to describe certain 

aspects of a system can become arbitrarily complex too. 

The problem of system identification is also pervasive in science and engineering, thus many 

different applications have resulted in a multitude of different approaches, model types and 

methods to solve the problem. Some of the methods are specific to the respective application or 

purpose while some have their broader use. 

As it is the case with many modern methods, also the birth of system identification can be noticed 

back quite a long time. As an example the famous Gauss-Newton-method was developed by Carl 

Friedrich Gauss aimed to solve the system of equations arising in his non-linear least squares 

method for regression (Gevers, 2006). With the help of this method he found values of parameters 

in a model of the trajectory for the dwarf planet Ceres - which clearly is a system identification 

problem. This happened between 1795 and 1802, so more than 200 years ago. The method of least 

square Gauss developed is well known and, of course, still in use. It took another 150 years before 

the advent of electronic computers, and with it came the rise of (computational) system 

identification. According to (Gevers, 2006) the modern discipline of system identification started 

around 1960 as part of control theory. It was part of model-based control design, which was very 

much en vogue at that time due to the development of the Kalman filter. 
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System identification went from deterministic methods to maximum likelihood methods and 

finally to stochastic methods until the 1970. A various and confusing amount of approaches were 

developed until that time, so that structuring them became more and more necessary. The 

inevitable clean up period of 1975 to 1985 resulted in the first edition which was released in 1987 

together with a MATLAB toolbox for system identification. 

Then important steps were made in closed-loop identification, subspace based identification and 

non-linear identification. According to (Gevers, 2006) which contains a lot more detailed historical 

account of system identification, this is the current state of development. 

1.2 Important uses of identification 

There are several use cases for system identification procedures in industry and science. System 

identification is known for its important aspects listed below (Pajonk, 2009). 

System Analysis We want to obtain more insight in a certain system. 

Prediction with the current state of a system, to be able to predict the behavior of a certain system. 

The popular example is weather forecast, to predict. 

Simulation Simulate the behavior of a system with given input. 

Optimization Optimize a certain aspect of the true system (operate directly on it might not be 

possible) to find this optimum. Reasons may be cost, safety, security or time constraints. 

Control Develop an advanced controller for a real process which involves a model of that process. 

Fault Detection Detect false behavior of a true system by comparing the model output with the 

output of the true system. 

1.3 Objectives 

The main aim of system identification is to determine a mathematical model of a physical/dynamic 

system which is the Quadruple Tank Laboratory Process from observed data. The main objectives 

of this thesis is to develop a mathematical model, get input and output data from LabVIEW 

connecting it to the real process. Using the input and output data from the real process we will 

identify the model. Model developed using different system identification methods will be 

compared. Key steps that are involved in system identification process can be listed as: 

 (1) Develop an approximate analytical model of the structure, stability, observability and 

controllability. 

(2) Establish levels of structural dynamic response which are likely to occur using the analytical 

model and characteristics of anticipated excitation sources. 

(3) Determine the instrumentation requirements needed for quadruple tank (MIMO) process model 

to sense the process with prescribed accuracy. 
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(4) Perform experiments and record data, input and output data from real system. 

(5) Apply system identification techniques to identify the dynamic characteristics such as system 

matrices, modal parameters using different identification methods like PEM, DSR and N4SID and 

(6) Analysis the analytical models based on identified results using MATLAB. 

1.4 Identification Process  

Simplification as the initial step and followed by Parameterization we identify and consider the 

quantities that we need to describe the system as clearly as possible. Forward modelling as the next 

step where it depends on the available data and the use of the model. Finally inverse modelling 

using different methods basically using computer technology.  

Forward modelling is simply done by deriving the model from first principle or using general 

purpose model and adopt it to our system (Pajonk, 2009). White box model is an example of it 

where the initial knowledge dominates the model but still something left after for the inverse 

modelling step (Pajonk, 2009). Thus the model do not depend at all on data and this might 

invalidate the inverse modelling step which is the central part of system identification. Black box 

model choose a generic model structure with number of parameters and follows different steps 

taking the measurements into account (Pajonk, 2009). Static black box models are used for the 

simpler linear equations to complex models that use Neural Networks and Neuro-Fuzzy models. 

Grey Box Model is introduced with the combination of White Box and Black Box Models (Pajonk, 

2009). White Box Modelling is time consuming in comparison to Black Box and detailed domain 

knowledge is needed which helps the developer to understand the true system which is more 

reliable. Black box models, on the other hand, tend to be easily derived, even without explicit 

domain knowledge, by simply incorporating the measurements into a generic model structure 

(Pajonk, 2009). A big advantage is that we can use these models even if we do not have better 

understanding of the true system. 

In inverse modelling actual model parameters values will be determined taking into considerations 

that the measurements of true system involves uncertainties and modelling issues (Pajonk, 2009). 

The main separation here will be between the deterministic and stochastic methods. Figure 1-1 

below shows the schematic diagram of the system identification process. 
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Figure 1-1: System identification process schematic diagram 

Practically the above given flow chart describes the complete identification process in following 

steps (Pelckmans, 2012a)  : 

1) System description and research based on the criterion of the model, the purpose of the 

model. Properties that need to be focused on during the identification experiments and 

decide the identified model is satisfactory at the end. 

2) Initial data is taken by understanding the effects of crucial importance. Knowing the 

challenges present in the task pinpoint the phenomenon displaying the graph of data. 

3) Performance analysis with some initial experiments in order to compare the outcome. 

Possible analysis of correlation and random effects appear during the experiment. Collect 

some ideas of the form of disturbances.  

4) Experimental design enumerates key challenges for identification and guide where to focus 

on during the experiment. Get as much information as possible that can be extracted from 

the observations of the experiment. Keeping the system in the ‘’operation mode’’ during 

the experiment make sure the dynamics are sufficiently excited. 

5) Model structure, what is the good model structure for the system is the key point to know. 

The parameters that can explain the behavior of the system. Model structure can be refined 

and the parameter estimation to compensate the effects that couldn’t be expressed, 

example: order of dynamic model. 

6) Validate model by observing if it gives the satisfactory results, explaining the important 

effects. Finally implement the model and get the work done. 
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1.5 Identification Methods 

From the observed input-output data of the quadruple tank process we build a mathematical model 

which is the System Identification (SID) of the Process. The known inputs, outputs of the dynamic 

system can be measured and collected where these outputs are generally affected by the process 

error like process noise, disturbances and measurement noise. Due to this reason the model 

developed from the system identification process is considered more efficient as it includes all 

possible disturbances of the system. Thus, Identified model can then be used to implement various 

control strategies like Model Predictive Control (MPC), LQ Control etc. 

Different methods for the system identification has been used and modified depending on the 

process structure.  Several subspace identification methods, such as PEM, CCA, N4SID, MOESP 

and DSR are in use based on performance quality criteria and requirements of the process, in order 

to select the best-reduced model. We are going to use these three methods, DSR, PEM and N4SID 

and compare the results of our process control and select the best one for the further analysis. The 

selected model is validated with a data set not used in the identification procedure called validation 

data set to describe the complex dynamics of the process. This model is asymptotically stable and 

it can be used for control, optimization, prediction and monitoring purposes. 

Subspace Identification Method (SIM) and Prediction Method (PEM) (Ljung, 1976) are the most 

used system identification methods where it optimizes the difference between predicted output and 

model output (Ljung, 2002). PEM, the idea is that rather than a plain least squares approach, or a 

statistical maximum likelihood approach there is a third important principle in use for estimating 

the parameters of a dynamic model based on recorded observations (Pelckmans, 2012b). This 

approach considers the predictions accuracy computed for the observations, rather than the model 

mismatch are the possibility of the corresponding statistical model. This approach perhaps is most 

tightly connected to systems theory as it explicitly exploits the dynamical structure of the studied 

system. 

A subspace system identification method, based on observed input and output data, which 

estimates the system order as well as the entire matrices in the Kalman filter including the Kalman 

filter gain matrix, K, and the square root of the innovations covariance matrix, F, was presented in 

(Ruscio, 1995). This algorithm is implemented in the DSR function in the D-SR Toolbox for 

MATLAB. The DSR estimate of the innovation square root covariance matrix F is consistent both 

for open loop as well as for closed loop data. The DSR method was compared with other algorithms 

and found to give the best model in comparison to the other methods, based on validation, and on 

a real world waste and water example in (Sotomayor, 2003). The DSR e method presented in David  

Di Ruscio (2003) and used in the thesis by (Nilsen, 2006) is a simple subspace system 

identification method for closed and open loop systems. DSR e is a two stage method where the 
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innovations process is identified consistently in the first step. The second step is simply a 

deterministic system identification problem. 

Numerical Algorithms for subspace state space system identification (N4SID) are viewed and used 

as another alternative in the system identification history. This seems to be good method especially 

for higher-order multivariable systems, for which it is not trivial to find a useful parameterization 

among all (Peter Van Overschee, 1994). This parameterization is needed for the start of classical 

identification algorithms which signifies that a-priori knowledge of the order, controllability and 

observability indices is required. 

Using N4SID method of system identification most of this a-priori parameterization can be 

avoided and only the system order is needed where it can be obtained by inspection of dominant 

singular values of a matrix calculated during identification (Peter Van Overschee, 1992). State 

space matrices are not calculated in canonical forms rather as full state space matrices in optimally 

conditioned basis which means there is no problem in identification. Another advantage of using 

N4SID can be their non-iterative process without non-linear optimization. This is because this 

method is free from the disadvantage of iterative algorithms like, local minima of the objective 

criterion sensitivity to initial estimators.  
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2 Model development 

In this section the four tank process (Quadruple Tank), a model developed by Johansson et al., 

1990 and constructed in Telemark University College is described in detail. Mathematical non-

linear model for the quadruple tank process is derived using first principle and linearized around 

some nominal values.  

2.1 Characteristics of Experimental (Quadruple) tank  

Certain characteristics and parameters of the quadruple tank were calculated during the experiment 

process. Among them correlation of the discharge flow through the tank and the correlation of the 

flow rate of pump were studied to minimize the error. 

Tank discharge flow correlation was simply calculated by taking the level of the appropriate tank 

to the steady level. Measuring the water level and total volume of water discharged in known time 

we estimate the flow rate. Measurement from each tank is taken and using the relation shown in 

Equation (2-1) parameters are calculated using Ordinary Least Square (OLS) method. 

𝑞𝑜𝑢𝑡(𝑡) = 𝐶1ℎ1(𝑡) + 𝐶
0 (2-1) 

𝑌 = 𝑋𝜃 

Where, 

 𝐶0 = 𝑓𝑙𝑜𝑤 𝑖𝑛 

𝐶1 = 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡 

𝑌 =

[
 
 
 
𝑞1
𝑜𝑢𝑡

𝑞2
𝑜𝑢𝑡

.
𝑞𝑛
𝑜𝑢𝑡]
 
 
 
,  𝑋 = [

ℎ1 1
ℎ2 1
.
ℎ3

.
1

],  𝜃 = [𝐶
1

𝐶0
]        ∀  𝑖 = 1,2,3… .𝑁 (𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑟𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠) 

Unknown parameter vector 𝜃 can be calculated as  

𝜃 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Parameters for each of the tank are calculated and are listed in Table 2-1 below. 
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Table 2-1: Rate of inflow and out flow for each tank by experiment 

4-Tanks 𝑪𝟏(𝒄𝒎𝟐.𝟓/𝒔) 𝑪𝟎(𝒄𝒎𝟑/𝒔) 

Tank 1 6.5123 8.7126 

Tank 2 4.5143 10.9821 

Tank 3 4.1312 14.8761 

Tank 4 4.4206 7.7298 

Flow rate by the pump is considered as an important characteristics for the efficiency of the model. 

This is done simply by giving different input (Voltage) at different known time stamps in the 

laboratory model developed in LabVIEW and the level in the tank is measured. 

Relation in Equation (2-2) shows that the flow generated by each pump is directly proportional to 

the voltage applied. 

 𝐹1 = 𝑘1𝑢1 (2-2) 

Parameters obtained from the experiment are used to calculate the correlation with the help of the 

expression in Equation (2-2). MATLAB script polyfit() was used to find the solution and the code 

is attached in Appendix A. 

Table 2-2 below shows the pump characteristics obtained from the experiment. 

Table 2-2: Characteristics of pump1 and pump 2 

Characteristics 

of pump 

𝒄𝒎𝟑/s 𝒄𝒎𝟑/s 

Pump 1 k1 =9.3894 c1 = -9.8774 

Pump 2 k2 =8.9727 c2 = -8.0986 

 

2.2 System Description 

A quadruple tank process (Johansson, 2000) was designed and constructed to give the 

multivariable control concept for the academic students. It was used mainly for constructing 

transfer functions of multivariable systems and linearizing the nonlinear dynamics and selecting 

control structure based on multivariable process (Johansson, 2000). 

Identification of the real process begins with the mathematical model development of the system. 

We develop the model in LabVIEW connecting to the DAQ system. The real 4-Tank process is 
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than connected to the LabVIEW model developed in the personal computer. Every process of the 

experiment was completed in PLS Laboratory of Telemark University College. Figure 2-1 below 

shows the connection and the experimental rigs used. 

 

 

Figure 2-1: Real 4-Tank system connected to the computer system 

 

A full physical system of the quadruple tank process is illustrated in Figure 2-1. Our task is to 

control the level of the liquid in the lower two tanks (tank 1 and tank 2) with two pumps available 

to pump the water from the basement. The process inputs are 𝑢1 and 𝑢2, input voltages to the pump 

1 and pump 2 and the outputs are the level of liquid at tank 1 and tank 2. 

Process is designed in such a way that the liquid through the pump 1 goes to both tank 1 and tank 

4 and that of pump 2 goes to tank 2 and tank 3 using three way valve (Samson 5824-10). The ratio 

can be manipulated by the operator using voltage signal of 0-5V. Lower tanks (tank 1 and tank 2) 

also receive the gravity flow i.e. flow from tank 3 and tank 4 respectively. Output 𝑦1 and 𝑦2 from 

the process which is the level of the tank 1 and tank 2 is measured using the level sensors (BD 

SENSORS LMK 351, 0-40 mbar, 4-20 mA) which gives the signal in voltage. 

As each of the pumps affects both of the outputs this system exhibits multivariable dynamics with 

adjustable multivariable zero where the position can be changed by the valve settings of the 

experiment. The process with the schematic diagram is given in Figure 2-2 below. 
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This process has been designed and studied in control courses in many universities. The research 

and investigation of this system has also yielded plenty of conference and journal papers. A number 

of these reports, can be (S. Dormido, 2004), (R.Suja Mani Malar, 2009). 

2.3 Development of mathematical model 

As shown in the Figure 2-2, the schematic diagram of the 4 tank process and its operating 

procedure is described. With the aim to control the lower two tanks of the process using the 

controller input signals 𝑢1 and 𝑢2 (voltage signals to the pump) which gives the process outputs 

as 𝑦1 and 𝑦2, voltage signal from the level sensors.  

 

Figure 2-2: Schematic diagram of the 4 tank process 

Sensors read the level of the tank 1 and tank 2 only out of 4 tanks and we are to control them but 

the input signal given is divided in two by a valve in a pump. Input u1 is divided to tank 1 and tank 

4 in a ratio of 𝛾1 and u2 gives the input to tank 2 and tank 3 in a ratio of 𝛾2. Moreover, the input 

to the lower tanks tank 1 and tank 2 also adds the outflow from the upper tanks, tank 3 and tank 4 

respectively. Thus, the experiment can be carried out in two different phases, the minimum phase 

and the non-minimum phase. This state can be chosen by adjusting the position of the valves 

(Johansson, 2000). Minimum phase where the majority of input goes to the lower two tanks (𝛾1 +
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𝛾2 ≥ 1) and the non-minimum phase where majority goes to upper tanks (𝛾1 + 𝛾2 ≤ 1). Non-

minimum phase is relatively complex to control in real life. This thesis will mainly focus on the 

minimum phase of the system though the non-minimum phase will also be studied partly later in 

chapter 3. 

2.3.1 Nonlinear system 

Dynamic model of the process can be developed by starting with the simple mass balance equation 

for the cylindrical tank as shown in Equation (2-3). This will lead to the nonlinear model for the 

quadruple tank process. 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑚̇𝑖𝑛 − 𝑚̇𝑜𝑢𝑡 

(2-3) 

Where, 

𝑑𝑚(𝑡)

𝑑𝑡
= rate of change mass inside the tank 

𝑚̇𝑖𝑛 =  mass flow of water into the tank 

 𝑚̇𝑜𝑢𝑡= mass flow of water out of the tank. 

Assuming the constant density of liquid the equation above can be expressed in volumetric flow 

as in (2-4). 


𝑑𝑉(𝑡)

𝑑𝑡
= (𝑞̇𝑖 − 𝑞̇𝑜) 

(2-4) 

Using 𝑑𝑉(𝑡)=𝐴𝑑ℎ(𝑡), (2-4) can be written as, 

𝑑ℎ(𝑡)

𝑑𝑡

1

𝐴
(𝑞̇𝑖 − 𝑞̇𝑜) 

(2-5) 

Where, A is the cross section area of each tank.  

Using Bernoulli’s law, expression for the flow out can be expressed as in Equation (2-6). 

𝑞𝑖
𝑜𝑢𝑡 = 𝑎𝑖√2𝑔ℎ𝑖 ,         𝑖 ∀ 1,2 (2-6) 

Where, ‘a’ is area of outlet hole and the ‘g’ is acceleration due to gravity. 

Flow generated by the pump is then divided in the ratio given by the relation,  [𝛾1, 𝛾2] where, 

0 ≤  ≤ 1. Characteristics of the process and some assumptions made are shown in Table 2-3. 
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Table 2-3: Assumptions made for the easy mathematical model development 

Assumptions  Functions  

1 and 2 split ratio for valve 1 and valve 2 

F1 and F2 flow through Pump 1 and Pump 2 

𝐾1 and 𝐾2 Pump characteristics 

𝑐1and 𝑐2 Pump characteristics 

 

Now the flow through the each outlet of the pipe can be shown as in Equation (2-7) 

{
 
 

 
 𝑞1

𝑖𝑛 = 𝛾1𝐹1 = 𝛾1(𝐾1𝑢1 + 𝑐1)

𝑞2
𝑖𝑛 = 𝛾2𝐹2 = 𝛾2(𝐾2𝑢2 + 𝑐2)

𝑞3
𝑖𝑛 = (1 − 𝛾2)𝐹2 = (1 − 𝛾2)(𝐾2𝑢2 + 𝑐2)

𝑞4
𝑖𝑛 = (1 − 𝛾1)𝐹1 = (1 − 𝛾1)(𝐾1𝑢1 + 𝑐1)

 

 

(2-7) 

Using Equation (2-6) and Equation (2-7) in Equation (2-5) the final nonlinear model for the 

quadruple tank (Tank 1, Tank 2, Tank 3 and Tank 4) can be expressed as in Equation (2-8). 

{
 
 
 
 

 
 
 
 𝑑ℎ1
𝑑𝑡

=
𝛾1(𝐾1𝑢1 + 𝑐1)

𝐴1
+
𝑎3√2𝑔ℎ3

𝐴1
−
𝑎1√2𝑔ℎ1

𝐴1

𝑑ℎ2
𝑑𝑡

=
𝛾2(𝐾2𝑢2 + 𝑐2)

𝐴2
+
𝑎4√2𝑔ℎ4

𝐴2
−
𝑎2√2𝑔ℎ2

𝐴2

𝑑ℎ3
𝑑𝑡

=
(1 − 𝛾2)(𝐾2𝑢2 + 𝑐2)

𝐴3
−
𝑎3√2𝑔ℎ3

𝐴3

𝑑ℎ4
𝑑𝑡

=
(1 − 𝛾1)(𝐾1𝑢1 + 𝑐1)

𝐴4
−
𝑎4√2𝑔ℎ4

𝐴4

 

 

 

 

(2-8) 

 

2.3.2  Steady state analysis of the model 

Applying the steady state condition to the nonlinear system, all time varying variables settled to 

some constant value. It gives that ℎ̇𝑖 = 0   𝑖 ∀ 1, 2, 3, 4 for each tank. Now we lead to the four 

equations for the six steady state values ℎ1
𝑠, ℎ2

𝑠 , ℎ3
𝑠 , ℎ4

𝑠 , 𝑢1
𝑠 𝑎𝑛𝑑 𝑢2

𝑠. We are to control the level of 

the tank 1 and tank 2, thus selecting ℎ1
𝑠 and ℎ2

𝑠  and solving the Equation (2-8) in section 2.3.1 gives 

the Equation (2-9). 
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{
 
 
 
 

 
 
 
 0 ==

𝛾1(𝐾1𝑢1
𝑠 + 𝑐1)

𝐴1
+
𝑎3√2𝑔ℎ3

𝑠

𝐴1
−
𝑎1√2𝑔ℎ1

𝑠

𝐴1

0 =
𝛾2(𝐾2𝑢2

𝑠 + 𝑐2)

𝐴2
+
𝑎4√2𝑔ℎ4

𝑠

𝐴2
−
𝑎2√2𝑔ℎ2

𝑠

𝐴2

0 =
𝑑ℎ3
𝑑𝑡

=
(1 − 𝛾2)𝐾2𝑢2

𝑠

𝐴3
−
𝑎3√2𝑔ℎ3

𝑠

𝐴3

0 =
(1 − 𝛾1)𝐾1𝑢1

𝑠

𝐴4
−
𝑎4√2𝑔ℎ4

𝑠

𝐴4

 

 

 

 

(2-9) 

Thus the steady state equation for the tank 3 and tank 4 can be presented as in Equation (2-10) and 

Equation (2-11). 

(1 − 𝛾2)𝐾2𝑢2
𝑠 = 𝑎3√2𝑔ℎ3

𝑠  (2-10) 

(1 − 𝛾1)𝐾1𝑢1
𝑠 = 𝑎4 √2𝑔ℎ4

𝑠  (2-11) 

 

System of two linear equations can be developed using the steady state equation for tank 1 and 

tank 2 and the above derived equation for tank 3 and tank 4. It can be expressed in the form as in 

Equation (2-12). 

[
𝑎1√2𝑔ℎ1

𝑠

𝑎2√2𝑔ℎ2
𝑠
] = [

𝛾1𝐾1 (1 − 𝛾2)𝐾2
(1 − 𝛾1)𝐾1 𝛾2𝐾2

] [
𝑢1
𝑠

𝑢2
𝑠]  Or 

[
𝑢1
𝑠

𝑢2
𝑠] = [

𝛾1𝐾1 (1 − 𝛾2)𝐾2
(1 − 𝛾1)𝐾1 𝛾2𝐾2

]
−1

[
𝑎1√2𝑔ℎ1

𝑠

𝑎2√2𝑔ℎ2
𝑠
] 

 

(2-12) 

 

Following the steady state values for ℎ3
𝑠  and ℎ4

𝑠  are, 

ℎ3
𝑠 = (

(1 − 𝛾2)𝐾2𝑢2
𝑠

𝑎3√2𝑔
)

2

 𝑎𝑛𝑑 ℎ4
𝑠 = (

(1 − 𝛾1)𝐾1𝑢1
𝑠

𝑎4√2𝑔
)

2

  

Note: for 𝛾1 + 𝛾2 = 1 steady state voltage cannot be computed with the above given expression 

since matrix in equation is not invertible and the determinant is equal to 0. We cannot choose 

ℎ1 𝑎𝑛𝑑 ℎ2 independently. 
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2.3.3  Linearization of the model 

We have discussed the nonlinear dynamics of the model (quadruple tank) in section 2.2.1 above 

as the basic for the control problem. Further analysis like frequency response, stability analysis 

etc. depends on the linear model (Haugen, 2010) which describes the behavior of the system 

around nominal or operating values. 

Nonlinear model mentioned in above section can be presented in the form Equation (2-13) and 

Equation (2-14). 

  𝑥̇ = 𝑓(𝑥, 𝑢) (2-13) 

 𝑦 = 𝑔(𝑥, 𝑢) (2-14) 

Where 

𝑥 ℝ𝑛    is state vector 

𝑢 ℝ𝑟   control input vector 

𝑦 ℝ𝑚   output vector 

For our quadruple tank process we have four state variables, two control variables and two output 

variables which can be represented as: 

State Variables (𝑥) = [ℎ1, ℎ2, ℎ3, ℎ4]
𝑇 

Input variables (𝑢) = [𝑢1, 𝑢2]
𝑇 

Output variables (𝑦) = [𝑦1, 𝑦2]
𝑇 

Now the linearization of the non-linear model above will be done by taking the first two linear 

terms of the Taylor series expansion, linear model is obtained as shown in Equation (2-15). 

𝑓(𝑥, 𝑢) = 𝑓(𝑥0, 𝑢0) +
𝜕𝑓

𝜕ℎ𝑇
|(𝑥0,𝑢0) ∙ (𝑥 − 𝑥0) +

𝜕𝑓

𝜕𝑢𝑇
|(𝑥0,𝑢0) ∙ (𝑢 − 𝑢0) 

(2-15) 

Considering the initial values 𝑥0 and 𝑢0 are known. 

Deviation variables and matrices can be defined as: 

(𝑥 − 𝑥0) = 𝛥𝑥 ,          (𝑢 − 𝑢0) = 𝛥𝑢   

State matrices and Input matrices 

𝜕𝑓

𝜕𝑥𝑇
|
(𝑥0,𝑢0)

= 𝐴𝑐 ,         

 
𝜕𝑓

𝜕𝑢𝑇
|
(𝑥0,𝑢0)

= 𝐵𝑐 
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Here 𝐴𝑐 and 𝐵𝑐 are state and input matrix respectively, now the linearized State Space model can 

be written as in Equation (2-16). 

∆𝑥̇ = 𝐴𝑐𝛥𝑥 + 𝐵𝑐𝛥𝑢 +  𝑣 (2-16) 

But, 𝑣 here is usually zero since 𝑥0and 𝑢0 are constant value. 

𝑣 =  𝑓(𝑥0, 𝑢0) − 𝑥0̇ 

Thus, 

                                                            𝑥0̇ =  𝑓(𝑥0, 𝑢0) = 0 

And finally linearized state space equation can be written as, 

∆𝑥̇ = 𝐴𝑐𝛥𝑥 + 𝐵𝑐𝛥𝑢 (2-17) 

Output of our process are the level of tank 1 and tank 2 and the equation of it can be obtained by 

Taylor series expansion which is given as, 

𝛥𝑦 = 𝐷𝛥𝑥 (2-18) 

Now linearized state space equation in matrix form 𝐴𝑐, 𝐵𝑐 and D can be given as shown below. 

Complete linearization process is attached in Appendix B. 

𝐴𝑐 =

(

 
 
 
 
 
 
−
1

𝑇1
0

𝐴3
𝐴1 ∙ 𝑇3

0

0 −
1

𝑇2
0

𝐴4
𝐴2 ∙ 𝑇4

0 0 −
1

𝑇3
0

0 0 0 −
1

𝑇4 )

 
 
 
 
 
 

 

 

𝐵𝑐 =

(

 
 
 
 
 
 

𝛾1 ∙ 𝑘1
𝐴1

0

0
𝛾2 ∙ 𝑘2
𝐴2

0
(1 − 𝛾2) ∙ 𝑘2

𝐴3
(1 − 𝛾1) ∙ 𝑘1

𝐴4
0

)

 
 
 
 
 
 

 

 

𝐷 = (
1 0 0 0
0 1 0 0

) 
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And the time constants are defined as 

𝑇𝑖 =
𝐴𝑖
𝑎𝑖
∙ √2 ∙

ℎ𝑖
𝑔
                                𝑖 = 1,2,3,4 

 

2.4 Stability analysis 

Study of system stability is important for the analysis of control strategy. However, we will briefly 

discuss about the Operating point, controllability and the observability of the model and validate 

it in order to make the analysis easier for the upcoming problems. 

2.4.1 Zero location and Operating point 

Changing the valve position of the tank, for both minimum phase and non-minimum phase the 

multiple zero dynamics can be studied has been presented by (Johansson, 1999). It is clearly 

mentioned that the system is non-minimum phase for 0 < 𝛾1 + 𝛾2 < 1 and minimum phase 

for 1 < 𝛾1 + 𝛾2 < 2. Which implies the system 𝑦(𝑠) = 𝐻𝑃(𝑠)𝑢(𝑠) which has zeros in the right 

half plane is called non-minimum phase. 

Minimum phase is quite easier to control as the flow (majority) goes to the lower tank in 

comparison to the non-minimum phase where the valve position are set to pump the flow in the 

upper tank than in lower one which is hard to control in real. 

We have selected minimum phase setting for the system identification of the model. Due to the 

inequality of the flow in the upper tank, though experiment was done and data were taken for both 

phases. Setting the valve position and input and input voltage experiment was done till the process 

state variable becomes steady and the nominal values of linearized system are collected as listed 

below. 

Table 2-4: Nominal values of the linearized system 

Valve position (𝜸) 𝛾1 = 0.7 𝛾2 = 0.7 

Input (u) 𝑢1 = 3.2 𝑢2 = 3.3 

level (h) ℎ1 = 13.36 & 

ℎ2 = 2.3 

ℎ3 = 8.53 & 

ℎ4 = 5.63 
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2.4.2  Controllability and Observability of the model 

According to the (Ruscio, 1995b), The pair (A, B) is said to be controllable if and only if the 

controllability matrix 𝐶𝑛 Equation (2-19) holds the rank 𝑛. 

𝐶𝑛 = [𝐵 𝐴𝐵 𝐴2𝐵 . . 𝐴𝑛−1𝐵]      ∈ ℝ𝑛×𝑛.𝑟 (2-19) 

Rank (𝐶𝑛) = 𝑛 

This is valid for both continuous and discrete time models and it is calculated (𝐶𝑛) = 4 for our 

system. 

Checking the observability of the system is very important as it is possible to compute the state 

vector elements x(t), by using the known system input vector u(t) and the system output vector 

y(t). From the theorem described by (Ruscio, 1995b). The pair (A, D) is said to be observable if 

and only if the observability matrix 𝑂𝑛 in Equation (2-20) holds the rank 𝑛. 

𝑂𝑛 =

[
 
 
 
 

𝐷
𝐷𝐴
.
.

𝐷𝐴𝑛−1]
 
 
 
 

 ∈ ℝ𝑛.𝑚×𝑛 

 

(2-20) 

Rank (𝑂𝑛) = 𝑛 

This is valid for both continuous and discrete time models. Calculation done and it shows that 

(𝑂𝑛) = 4 for our system. 
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3  System identification of the process using different 

methods 

In this section of the report we will deal with different identification process applied on quadruple 

tank system. Individual methods like using PEM and DSR were studied in Telemark University 

College by some master students under the supervision of David Di Ruscio in their Master’s thesis 

and even in Master’s project. Here we will discuss on three different identification methods, DSR, 

PEM and N4SID. We will then be able to compare the results of the process for the implementation 

of various control strategies like MPC, LQ etc. Implementation of control strategies will not be 

the part of this report though will be the suggestion for future work. 

3.1 Experimental design 

Experimental Model of quadruple tank process was designed in LabVIEW so that the data of the 

real process can be implemented to design the model. Our experiment is open loop experiment 

where we don’t have any feedback and no any control to get the minimum correlation between 

input and output. Open loop experimental design of our system is shown in Figure 3-1. 

 

Figure 3-1: Experimental design 

Real process data (input data and output data) from four tank process is collected using model 

designed in LabVIEW program. NI-DAQ devices are connected to the tank for input and output 

signals from sensors connected to the process. Flow chart of the complete process to extract input 

and output data is shown in Figure 3-2. 
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Figure 3-2: figure showing the flow diagram of input experimental design 

Computer Design includes designing of LabVIEW model for reading of input signals, output 

signals, scaling, converting the voltage signal to corresponding level measurements. User Interface 

designed in LabVIEW is shown in Figure 3-3. 

 

 

Figure 3-3: User Interface of LabVIEW design 
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3.2  Data collection 

As mentioned in earlier section data is collected using the model developed in LabVIEW. It is 

important that the model depends on better experiment with various data and it is required that 

input signal excite the process with different inputs knowing the structure of process.  

In quadruple tank process Input signal is in voltage ranging from 0-5 Volts, both u1 and u2 input 

for Tank 1 and Tank 2 respectively range the same. After testing the model developed in LabVIEW 

it was implemented on four tank process. In order not to let the tank overflow the maximum input 

went up to 75 (5V=100) in maximum considering both input pump on working stage. Minimum 

input for the pump to pump the water in the tank is 50 but we have minimum input used for our 

experiment is 54 for the operation. Different input signal for each tank is selected at the mean time 

in order to capture different states of the process. Figure 3-4 showing the graph of input signal is 

attached below and the MATLAB code is attached in Appendix C. 

 

Figure 3-4: Figure showing the input signal of the process 

 

It is still important that an operator give certain time for specific input in order for the system to 

reach the steady state for that input. Using Pseudo-Random Binary Signals (PRBS), inbuilt 

MATLAB function we generate random binary signal to modify according to the requirements. 

Input signal
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These signals are periodic, deterministic signals including the properties of white noise with ad 

advantage that they are easy to implement in real, suitable for system identification experiment. 

The period of the PRBS is as large as possible and equals M = 2n − 1 if the coefficients are chosen 

correctly (Aarts, 2011/2012). The binary signal s(t) can be transformed into a signal u(t) with 

amplitude c and mean m with u(t) = m + c(− 1 + 2 s(t)) (Aarts, 2011/2012). 

 PRBS signal generated from MATLAB is shown in Figure 3-5 while similar input signal is used 

to generate input data.  

 

Figure 3-5: An example of PRBS signal 

Input signal is adjusted according to the output in order not to let the level above and below the 

limit (0-20 cm), since the level in lower tank depends on the input given and the outflow from the 

upper tank. Here the split ratio (𝛾1 𝑎𝑛𝑑 𝛾2) plays an important role for the input we choose. Thus 

non-minimum phase is considered complicated in real process, though it is studied briefly in this 

thesis. 

Now the constant trends like mean values and linear terms will be removed from the raw 

measurements. Trends can be nonzero constants or mean values and low frequency noises (Ruscio, 

1995b). For the scaling and centering of raw data an inbuilt function is used, this improves the 

performance of the output model. Technical approach is to remove the mean from the individual 

samples for removing the trends. 

Again the plot of the input and output signal from the real process is as shown in Figure 3-6 and 

the MATLAB code is attached in the Appendix C. 
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Figure 3-6: Input and Output signal from the real process 

Scaling for the plot is done just by adding the mean values to the trended data. In the figure upper 

two red lines represents the output and input from Tank 1 while the lower two green lines 

represents the level and input at Tank 2 respectively. This set of data represents total of 35,000 

samples which will later be divided in experimental set to develop model and validation set to 

validate the model. 

3.3 System identification using simulated data 

In order to validate model we first check the model using simulated data. Figure 3-7 below shows 

the simulated output and the identified model from the simulated data using nonlinear 

mathematical model of the quadruple tank. Identification is done using DSR method giving PRBS 

input signal with red color plot is for input 1 and black color shows the input 2 with the model 

order 4 and horizon L=4 and J=L. MATLAB code used for the process is attached in Appendix D. 
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Figure 3-7: Identification of simulated data 

The result from the identification model of simulated data is satisfactory as shown in Table 3-1. 

Solid red line shows the simulated plot for level at tank 1 while the dashed red line is for identified 

model for level at tank 1, similarly solid black is for simulated output for tank 2 and dash black 

line for identified model of level at tank 2. 

Giving the order (n) =4 and horizon of 4, MAE for level at Tank 1 and Tank 2 are 1.1584 and 

1.1946 respectively, where the Root Mean Square Error for level at Tank 1 is 0.1154 and Tank 2 

is 0.1094 which seems good enough. Zeros are 0.9983 and 0.9849 keeps the system stable as they 

are within the unity circle. Observing the result from the simulated model we decided to proceed 

with the model we have developed. 

Table 3-1: Result from simulated identified model using DSR method. 

Order 

(n) 

Mean 

Absolute 

Error (MAE) 

Root Mean 

Square Error 

(RMSE) 

 

Poles  

 

Zeros  

Remarks 

 

4 

h1= 1.1584 

 

h2= 1.1946 

h1= 0.1154 

 

h2= 0.1094 

 

0.9624           

 0.9938 + 0.0065i 

 0.9938 - 0.0065i 

 0.9931 

 

0.9983 

    

0.9849 

Minimum phase 

with  
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Discrete state space model using DSR algorithm for the minimum phase can be given as in 

Equation (3-1). 

{
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣

𝑦
𝑘
= 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝑤

 
(3-1) 

Where, 𝑢𝑘  and 𝑦𝑘 are measured input and output and 𝑥𝑘 is state. 

A, B, D and E matrices are: 

𝐴 = [

0.9893 −0.0173 −0.8397 −0.2983
0.0023 0.9825 0.2921 −0.8223
0.0001 0.0004 0.9949 0.0345
−0.0000 −0.0002 0.0015 0.9763

] 

𝐵 = [

−0.1868 −0.1853
0.2095 −0.1486
−0.0041 0.0046
0.0015 −0.0018

] 

𝐷 = [
−0.3316 0.3815 −0.5843 0.3364
−0.3848 −0.3437 −0.3272 −0.5778

] 

𝐸 = [
−0.0001 −0.0014
−0.0003 −0.0002

] 

 

3.4 System Identification using real data 

In this section of the report data collected from the real system will be used to develop the model. 

From the total samples 25,000 samples will be used to develop model and 12,000 samples will be 

used to validate the models. Both minimum and non-minimum phase will be experimented only 

by DSR method and compare to each other. 

3.4.1 DSR method of identification 

In DSR there are four parameters g, n, L and J that can be chosen by the user (Ruscio, 2003). If 

the structure parameter g is 0, usually default in DSR, data matrix E is identified. E is zero matrix 

if the value of g is zero. Parameter n specifies the model order and L is the number of block rows 

in extended observability matrix. Order is chosen in the interval of , where m is the 

number of outputs. J finally is the number of tie instants in the past horizon used to define the 

instrument variable matrix to remove noise. Minimum error is detected by using the MATLAB 

code for the values of J and L from 2 to 10, running the ‘’for loop’’ in MATLAB executes the best 

MAE result using best suitable values of L and J. 
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Figure 3-8: Figure showing the optimal values of J and L executed in MATLAB 

Quadruple tank process is an open loop case so we should choose the L parameter as small as 

possible to reduce the variance of the estimates especially if the input signals are poorly excited.  

Identification of real data using DSR method is carried out after the successful completion of 

identification of simulated data. Executing the system with different order value (n) and also with 

different numbers of block rows in extended observability matrix (L), error between the model of 

real data and the DSR model were evaluated. Optimal values of L and n used and the evaluation 

of model is shown in Table 3-2 below. 

Table 3-2: Table showing the errors given by DSR method using optimal value of L and n for 

minimum phase. 

 

L 

 

J 

Order 

(n) 

Mean Absolute Error 

(MAE) 

Root Mean Square 

Error (RMSE) 

Remarks 

 

3 

 

2 

 

3 

 

h1= 0.6987 

h2=0.7173 

 

h1=0.1988 

h2=0.3441 

Minimum phase with  

Split ratio 𝛾1 = 0.7 

 𝛾2 = 0.7  

 

After executing the MATLAB code with different values of L, n and J, result with L=3,  n=3 and 

J=3 gives the best suitable (minimum) error, MAE for level in Tank 1 is 0.6987 and for Tank 2 is 

0.7173 which is relatively a good model as shown in Table 3-2.  Also the RMSE value for level in 

Tank 1 is 0.1988 and Tank 2 is 0.3441 is satisfactory result too. This is the case for the minimum 

phase, non-minimum phase is followed later in this section. DSR method of identification is 

compared with other methods in chapter 4. 

The resultant graph of the real process output data and the identified DSR model for both level in 

Tank 1 and Tank 2 is plotted and shown in Figure 3-9 using code in MATLAB and the code are 

attached in Appendix E of the report. 
_ !"# ____  __ ____ _ _ _____ - _ ( _ .   __ / _   _ __ _____ __ __ _____ 
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Figure 3-9: Graph of the process output and predicted output using DSR method for minimum 

phase. 
_ __ ______ _ _ ____ - __ +_ ____ __ __ ___ __ __ !"#_ __ _   _ __' .  

Discrete state space model using DSR algorithm for the minimum phase can be given as in 

Equation (3-1). 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣
𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝑤

 

Where, 𝑢𝑘  and 𝑦𝑘 are measured actual input and output and 𝑥𝑘 is state. Equation (3-1) may arise 

from linearizing non-linear models around some nominal steady state and input variables or from 

system identification based on trend variables (Ruscio, 2012). Thus in our case external noise 

variables v and w are known. Moreover, in these case noise variables are considered insensitive 

but the system and the measurements may be influenced by drifts in which the noise variables will 

be varying slowly and also unknown. 

A, B, D and E matrices are: 

A = [
0.9985 0.0001 1.1399
0.0001 0.9998 0.3541
−0.0000 −0.0000 0.9518

] 
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B = [
−0.0029 −0.0041
0.0004 −0.0004
−0.0000 −0.0000

] 

D = [
−0.4827 −0.3178 0.6330
−0.3183 0.4822 0.3123

] 

E= [
0 0
0 0

] 

 Similar experiment is done for the non-minimum phase of the experiment and compare the 

performance. Figure 3-10 shows the plot of the identified model using DSR for the non-minimum 

phase and the real data. 

 

Figure 3-10: Graph of the process output and predicted output using DSR method for Non-

minimum phase. 

New set of process data are collected for the non-minimum phase 20,000 number of samples are 

used to develop the model. 

Comparison between minimum and non-minimum phase using DSR method from the result from 

both phases are compared and shown in the Table 3-3 below. 
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Table 3-3: Minimum and Non-minimum phase comparison using DSR method 

 

Phase 

 

J 

 

L 

 

n 

 

 MAE 

  

RMSE 

 

Poles 

 

Zeros 

 

Remarks 

Minimum 

phase 

 

2 

 

3 

 

3 

h1= 0.6987 

 

h2= 0.7173 

h1=0.1988 

 

h2=0.3441 

0.9522 

0.9982 

 0.9996 

 

0.9531 

Minimum phase with  

Split ratio 𝛾1 = 0.7 𝑎𝑛𝑑 

 𝛾2 = 0.7  

Non-

minimum 

phase 

 

10 

 

10 

 

3 

h1 =1.3662 

 

h2 =1.0629 

h1=0.2535 

 

h2=0.0291 

0.9143 

0.9986 

0.9988 

 

1.6559 

Non-minimum phase 

with 𝛾1 = 0.4 𝑎𝑛𝑑 

 𝛾2 = 0.4 

 

As mentioned in Section 2.3 system is said to be in minimum phase if 𝛾1 + 𝛾2 ≥ 1 and non-

minimum phase if 𝛾1 + 𝛾2 ≤ 1. Both cases were studied experimentally setting the values of  𝛾1 =

0.7, 𝛾2 = 0.7 and 𝛾1 = 0.4, 𝛾2 = 0.4 respectively. Comparing the identified model using DSR 

method as shown in Table 3-3 for Minimum and non-minimum phase we can simply analyze that 

MAE is less in minimum phase and even comparing the zeros, non-minimum phase is unstable as 

the zeros value is 1.6559 which lies out of the unity circle. This shows non-minimum phase is 

quiet unrealistic and difficult to control as it makes the process slower. 

3.4.2  PEM method of Identification 

Prediction Error Method (PEM) is widely used in comparing the measurement data vector y(t) 

with the predicted output of the dynamic model 𝑦̃(t) using the last t-1 measurements data vector 

and the difference between the measurement and prediction is called prediction error (Kimon P. 

Randal, 2009). 

State space model structure of our system as described in Equation (3-1) is given as: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 

Where, 

𝑢𝑘 and 𝑦𝑘 are measured input and output and 𝑥𝑘 is state. 

In order to determine the states (𝑥𝑘) of the system we will follow the steps below: 

 Determine the ‘’n’’ order from a Singular Value Decomposition (SVD) of the “correct” matrix. 

Getting the estimator for the states. 
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 After the states( 𝑥𝑘), input (𝑢𝑘) and output (𝑦𝑘) are known we will compute matrices A, B, D and 

E  

Note: All these computations are done in MATLAB 

Using 25,000 samples from the process, input and output data to develop an identification model 

by PEM method in MATLAB. After testing the model with different order (n) the best suitable 

PEM model was executed at n=3 where MAE for level in tank 1 and tank 2 are 0.8639 and 1.1233 

respectively while the RMSE of the level at tank 1 is 0.2862 and tank 2 is 0.3409 as listed in Table 

3-4. PEM identification model for our system with zero of 0.9999 describes the system is stable 

(minimally). Since the identified system is stable, we can relate the pole-zero plot to the frequency 

response of our real system. A stable system that produces a bounded output and input to our real 

system is possible using PEM identification method. 

Table 3-4: Table showing the properties of the model developed using PEM method 

Order 

(n) 

Mean 

Absolute 

Error (MAE) 

Root Mean 

Square Error 

(RMSE) 

 

Poles  

 

Zeros  

Remarks 

 

3 

h1= 0.8639 

 

h2=1.1233 

h1=0.3328 

 

h2=0.0213 

 

0.9835 

 0.9982 

 0.9998 

 

 

0.9447 

Minimum phase 

with  

Split ratio 

 𝛾1 = 0.7 𝑎𝑛𝑑 

 𝛾2 = 0.7  

 

Characteristics of the PEM model are given in Table 3-4 above and the graphical representation 

of the real output and the identified model using PEM method is as shown in Figure 3-11. 

Respective MATLAB code used to develop model is attached in Appendix F. 
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Figure 3-11: Real process data vs predicted output using PEM method. 

 

Discrete state space model using PEM algorithm for the minimum phase as described in Equation 

(3-1) is: 

 

 

Where, A, B, C and E matrices are: 

A = [
0.99897 0.00026081 −0.0016741

0.00054099 0.99972 0.00034344
0.0061327 −0.00022647 0.98283

] 

B = [
2.0788e − 006 2.4858e − 006
−1.1762e − 006 −2.0783e − 007
−4.7784e − 005 −5.795e − 005

] 

C = [
 282.22 31.552 −0.17078
143.4 −173.16 −0.030524

] 

D= [
0 0
0 0

] 
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3.4.3  N4SID method of Identification 

This method of system identification estimates a state-space model using a sub-space method. 

Model developed by N4SID method mainly depends on input and out data from the real process 

and the order of the model which is the dimension of the state vector. It focus on the properties 

like prediction, simulation, filter and stability of the model (Peter Van Overschee, 1992). It is 

important that the model developed is stable. 

Input and output data from the real quadruple tank process were used to implement the N4SID 

method of identification. Selecting the different values of system order (n) to execute the 

MATLAB code, n=3 gives the minimum error but the system with zero 1.2504 is unstable. MAE 

for level in tank is 0.7167 and tank 2 is 0.7533 which is relative a good result while RMSE between 

the real process output and the identified model for tank 1 and tank 2 are 0.7167 and 0.7533 

respectively. Poles are still within the unity circle (less than 1) though it is very close to 1 but zeros 

are greater than 1 implies that the system is unstable. Parameters from the identified model this 

method are listed in Table 3-5. Loss function is 1.08472e-007 and FPE 1.08654e-007, Sampling 

interval: 1, N4Horizon =Auto and DisturbanceModel =None. 

Table 3-5: Error, Poles and Zeros by Identified N4SID method. 

Order 

(n) 

Mean 

Absolute 

Error (MAE) 

Root Mean 

Square Error 

(RMSE) 

 

Poles  

 

Zeros  

Remarks 

 

3 

h1= 0.7167 

 

h2= 0.7533 

h1= 0.7167 

 

h2=0.7533 

 

0.8996 

0.9985 

0.9997 

 

 

1.2504 

Minimum phase with  

Split ratio 𝛾1 = 0.7 𝑎𝑛𝑑 

 𝛾2 = 0.7  

Graphical representation of the model executed using MATLAB shows the plot between the real 

process input and the identified model using inbuilt N4SID method of system identification as 

shown in the Figure 3-12 below. MATLAB script of the process is attached in Appendix G. 
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Figure 3-12: Real process data vs predicted output using N4SID method. 

Discrete state space model using N4SID algorithm for the minimum phase as described in 

Equation (3-1). 

 

 

Where, A, B, C and E matrices are: 

 A = [
0.99864 0.00027749 −0.0039519

0.00045002 0.9996 −0.00054868
0.001993 −4.7288e − 006 0.89956

] 

B = [
4.0103e − 007 −1.6177e − 006
−2.7082e − 006 −1.5783e − 006
−0.00014776 −0.00022617

] 

C = [
 282.22 31.552 −0.17078
143.4 −173.16 −0.030524

] 

D= [
0 0
0 0

] 

Where D is a  zero matrix. 
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4 Results from different methods 

We have used and studied the different methods of identification and their properties in chapter 3. 

In this section of the report, we will try to compare the different methods used to identify the model 

of Quadruple Tank using different properties of the model. 

Technically a good model depends on the requirements or the goal, dose it fulfill the most 

important dynamic behavior of the system or is the model ready to design a controller? According 

to our study a good model set is required for a small bias in the model so as to give flexible model 

structure of the system for further analysis.  

4.1 Comparing different models 

Quality of system performance is achieved through a performance index. The performance of the 

model selected depends on the process under consideration and is chosen such that emphasis is 

placed on specific aspects of system performance. Furthermore, performance index is used as a 

quantitative measure to depict the performance of the dynamic system. An ‘optimum system’ can 

be compared between different methods using this technique designed to meet the required 

specification.  For a controlled system, we can use one of the four indices to depict the system 

performance like Integral Square Error (ISE), Integrated Absolute Error (IAE), Mean Absolute 

Error (MAE) and Mean Square Error (MSE). They can be formulated as (Ahmad M. El-Nagar, 

2014): 

𝐼𝑆𝐸 = ∫ (𝑒(𝑡))2
𝑁

0

𝑑𝑡 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑁

0

 

𝑀𝐴𝐸 =
1

𝑁
∫ |𝑒(𝑡)|𝑑𝑡
𝑁

0

 

𝑀𝑆𝐸 =
1

𝑁
∫ (𝑒(𝑡))2𝑑𝑡
𝑁

0

 

 

Where,  

N is the total number of samples, Error (e) is the difference between measured and the predicted 

output. 

𝑒 =∑(𝑦 − 𝑦̂)2
𝑁

1
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In this section we are going to evaluate the different methods of identification used in chapter 3 

with respect to Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) values. Table 

4-1 below shows the differences for the minimum phase comparing with different errors mentioned 

above. 

Table 4-1: Comparing PEM, DSR and N4SID methods based on MAE, RMSE, ISE, and IAE 

indices. 

        Errors  

 

  Methods 

 

MAE 

 

RMSE 

 

DSR 

h1= 0.6987 

h2= 0.7173  

 

h1= 0.1988 

h2= 0.3441 

 

PEM 

h1= 0.8639  

h2= 1.1233 

 

h1= 0.2862 

h2= 0.3409 

 

 

N4SID 

h1= 0.7167 

h2= 0.7533 

h1= 0.7167 

h2= 0.7533 

On comparing the different error values calculated using different identification methods as shown 

in Table 4-1, DSR method gives minimum error both in MAE and RMSE comparing to both PEM 

and N4SID methods. It gives the Mean Absolute Error for level at tank 1, h1=0.6987 and tank 2, 

h2= 0.7173 which symbolize relatively a good model by DSR method though other methods are 

also not too bad. While the RMSE of level at tank 1 is h1= 0.1988 and tank 2 is h2= 0.3441. In 

fact DSR and N4SID are giving more or less the same MAE model error, while N4SID seems not 

suitable to proceed as the RMSE error is too high. Also if we see Table 3-5, zeros by N4SID 

method is 1.2504 which symbolize the system is not stable. From this error evaluation of different 

methods it can be clearly seen that DSR methods can be used for the further analysis. 

4.2 Model Validation 

We will now use the new set of data from the real process, originally a set of data was divided into 

experimental data and validation set data to validate against the model developed by PEM, DSR 

and N4SID methods. To check the quality of methods we will use indices as the IAE indices, MAE 

and RMSE etc.  
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From the model developed using different methods, we will use the properties of newly developed 

model and validate new set of data in order to check the quality of the model and validate the 

respective model. Validation graph for PEM and N4SID are shown in Figure 4-2 and validation 

graph for DSR is shown in Figure 4-3 respectively and the respective MATLAB code are attached 

in Appendix H. Figure 4-1 shows the plot of input and output for the validation set of data. 

 

Figure 4-1: Input vs Output for the validation data set 
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Figure 4-2: Validating the model developed using N4SID method (left) and PEM method (right) 

    

Figure 4-3: DSR model validation using validation data set 
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Quality of the model developed using different method is evaluated comparing the different 

residuals criterion using the validation data. Table 4-2 below shows the residual analysis of 

different System Identification methods. 

 

Table 4-2: Table showing the residual analysis of different methods 

        Errors  

 

  Methods 

 

MAE 

 

RMSE 

 

IAE 

 

 

DSR 

h1= 1.2845 

h2= 1.2969 

h1= 0.1068 

h2= 0.3363 

h1= 1.6103e+005 

h2= 1.1946e+005 

 

PEM 

h1= 1.2187 

h2= 2.3910 

h1= 0.4311 

h2= 0.1511 

h1= 1.3645e+004 

h2= 2.6770e+004 

 

N4SID 

h1= 1.8202 

h2= 1.6100 

h1= 0.5007 

h2= 0.3365 

h1= 2.0379e+004 

h2= 1.8025e+004 

 

From the result obtained by validating different identification methods used, we have seen as in 

Table 4-2 MAE from DSR model (h1= 1.2845, h2= 1.2969) seems to be better than both the PEM 

and N4SID methods but none of the methods give too bad result except the PEM model for level 

at Tank 2, may be because of some process error. RMSE from the validation of DSR model (h1= 

0.1068, h2= 0.3363) seems the best among all three methods. Error for the model of tank 2 is 

slightly higher than that of tank 1 may be due to the pump characteristics as the pumping rate from 

pump 2 was fluctuating. Thus, from this observation it is seen that DSR model can be used for the 

control strategy as it is slightly better than both the PEM method and N4SID method. 
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5 Summary and conclusion 

The main idea of this report is to compare the different system identification methods on the basis 

of the collected input and output data from the experiment on quadruple tank process. Starting 

with the general introduction of system identification and their types, individual identification 

methods are used to develop a model and are compared, residual analysis to select a better model 

for the implementation of control strategy. 

General conclusion from the report can listed as: 

1. General introduction of system identification and their historical approaches were listed. It 

mainly gives the brief introduction of the identification process, objectives and the 

importance of identification and their types mainly to the new users.  

2. Model development or the process modeling describes the system briefly. Characteristics 

of the quadruple tank were studied along with the process parameters based on the 

experimental data. Non-linear mathematical model based on (Johansson, 2000) was 

developed. Model was linearized and the steady sate of the model was studied. Model 

stability, zero location, operating point controllability and observability were studied using 

linearized continuous model. 

3. Experimental design of the model and data acquisition was done and input and output data 

were collected successfully using LabVIEW. Multiple zeros which can be adjusted by 

changing the physical position of the valve was studied. In order to check the model and to 

validate it, MATLAB code was generated for the simulation and model was developed 

using DSR method which gives satisfactory result to proceed. Real input and output data 

were collected from the process and different identification methods (DSR, N4SID and 

PEM) methods were used to develop the model and their properties were studied. DSR 

method as the best method in this individual identification method comparison. 

4. Model identified using DSR, PEM and N4SID from experimental data set were compared 

to each other based on computational error analysis, stability analysis etc. Using the new 

set of validation data and validating different models, RMSE and MAE for PEM, DSR and 

N4SID were compared. DSR method with MAE (h1= 1.2845, h2= 1.2969) and RMSE 

(h1= 0.1068, h2= 0.3363) shows that this method is better than both PEM and N4SID. 

While MAE is more or less the same for all.   

Finally, the conclusion from the report and the result obtained from the identified models of 

all three methods, DSR, PEM and N4SID fits real data somehow in their own way. Both the 

identification methods PEM and DSR fit the real data comparatively better than the N4SID 

method of identification. From the simulated result (Table 4-1) to the result from validation 

(Table 4-2) PEM and DSR methods gives more or less the similar results but DSR is marginally 
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better in both RMSE and MAE. Thus model developed using DSR method can be further 

implemented in control strategies like MPC, LQ optimal control etc. or any further analysis. 

However, the result has shown that the model identified is more accurate as the practical 

circumstances from the physical system like water flow, split ratio by valves, level accuracy etc. 

Thus, the controller applied on identified model will be more accurate than other methods. 
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6 Future recommendations 

Planned task for this project are completed successfully. However, research and development in 

science can never end. This report could have been made even more effective but of some 

limitations. Thus, my experience after the completion of this projects recommends some task to 

improve the result for those who wish to work in the field of system identification and with 

quadruple tank process. 

 Quality of the pump can be improved for the stable performance. Moreover, calibration of 

the experimental rig must be done before the experiment as it is not used regularly.  

 Two tank process can be studied by adjusting both input, one to the lower tank and the 

other to the upper tank only. Controlling the two lower tanks individually at different times 

can be something new to study. For this the pump inflow and the outflow should be reduced 

slightly for the better study, though the existing system should also work well. 

 System identification of the quadruple tank process can be improved and even better results 

can be achieved, so different existing methods like first principle, PO-MOESP, CVA can 

be used to compare result with the result in this report. Combination of two different 

methods or the new method can also be studied. 

 Finally, advanced control strategies like MPC, LQ controller etc. can be implemented to 

the best identified model suggested from this report  
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Appendix A 

Pump flow rates 

%pump characteristics 
r=3; % radius of tanks are given 
%for tank 1 

  
voltage1=[5 5 4 3.5 3]; 
time1=[14.41 11.92 12.95 18.27 17.99]; 
height1=[20 15 12 15 12]; 
vdott1=(pi*r^2.*height1)./time1; 
p=polyfit(voltage1,vdott1,1); 
k1=p(1) 
c1=p(2) 

  
% for tank 2 
voltage2=[ 5 4.5 4 3.5 4]; 
time2=[15.11 9.13 11.98 18.19 15.20]; 
height2=[20 10 12 15 15]; 
vdott2=(pi*r^2.*height2)./time2; 
q=polyfit(voltage2,vdott2,1); 
k2=q(1) 
c2=q(2) 
plot(voltage1,vdott1) 

Appendix B 

Linearization  

For linearized model in matrix form  

𝐴𝑐 matrix can be given as 

𝐴𝑐 =

(

 
 
 
 
 
 
 

𝜕𝑓1
𝜕ℎ1

𝜕𝑓1
𝜕ℎ2

𝜕𝑓1
𝜕ℎ3

𝜕𝑓1
𝜕ℎ4

𝜕𝑓2
𝜕ℎ1

𝜕𝑓2
𝜕ℎ2

𝜕𝑓2
𝜕ℎ3

𝜕𝑓2
𝜕ℎ4

𝜕𝑓3
𝜕ℎ1
𝜕𝑓4
𝜕ℎ1

𝜕𝑓3
𝜕ℎ2
𝜕𝑓4
𝜕ℎ2

𝜕𝑓3
𝜕ℎ3
𝜕𝑓4
𝜕ℎ3

𝜕𝑓3
𝜕ℎ4
𝜕𝑓4
𝜕ℎ4 )

 
 
 
 
 
 
 

 

𝜕𝑓1
𝜕ℎ1

=
𝜕

𝜕ℎ1
(−

𝑎1
𝐴1
∙ √2 ∙ g) ∙ ℎ1

1
2   

    −
𝑎1
𝐴1
∙ √2 ∙ 𝑔 ∙

1

2 ∙ √ℎ1
= −(

𝑎1
𝐴1
) ∙ √

𝑔

2 ∙ ℎ1
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𝜕𝑓1
𝜕ℎ1

= −
1

𝑇1
 

𝜕𝑓1
𝜕ℎ2

= 0 

𝜕𝑓1
𝜕ℎ3

=
𝜕

𝜕ℎ3
[(
𝑎3
𝐴1
∙ √2 ∙ g) ∙ ℎ3

1
2] 

 

𝑎3
𝐴1
∙ √2 ∙ g ∙

1

2 ∙ √ℎ3
=
𝑎3
𝐴1
∙ √

𝑔

2 ∙ ℎ3
= 𝑎3 ∙

𝐴3
𝐴3 ∙ 𝐴1

∙ √
𝑔

2 ∙ ℎ3
 

 

𝜕𝑓1
𝜕ℎ3

=
𝐴3

𝐴1 ∙ 𝑇3
 

 

𝜕𝑓1
𝜕ℎ4

= 0 

Similarly, 

𝜕𝑓2
𝜕ℎ1

= 0 

𝜕𝑓2
𝜕ℎ2

=
𝜕

𝜕ℎ2
∙ [(−

𝑎2
𝐴2
∙ √2 ∙ g) ∙ ℎ2

1
2]       

    
𝜕𝑓2
𝜕ℎ2

= −
𝑎2
𝐴2
∙ √2 ∙ g ∙

1

2 ∙ √ℎ2
= −

𝑎2
𝐴2
∙ √

g

2 ∙ ℎ2
 

𝜕𝑓2
𝜕ℎ2

= −
1

𝑇2
 

𝜕𝑓2
𝜕ℎ3

= 0 

𝜕𝑓2
𝜕ℎ4

=
𝜕

𝜕ℎ4
∙ [(

𝑎4
𝐴4
∙ √2 ∙ g) ∙ ℎ4

1
2] 
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𝜕𝑓2
𝜕ℎ4

=
𝑎4
𝐴2
∙ √2 ∙ g ∙

1

2 ∙ √ℎ4
= 𝑎4 ∙

𝐴4
𝐴4 ∙ 𝐴2

∙ √
𝑔

2 ∙ ℎ4
 

 

𝜕𝑓2
𝜕ℎ4

=
𝐴4

𝐴2 ∙ 𝑇4
 

𝜕𝑓3
𝜕ℎ3

= −
1

𝑇3
 

𝜕𝑓4
𝜕ℎ4

= −
1

𝑇4
 

Rest of the terms for ℎ3 and ℎ4 are zero, which gives the matrix in the form of : 

𝐴𝑐 =

(

 
 
 
 
 
 
−
1

𝑇1
0

𝐴3
𝐴1 ∙ 𝑇3

0

0 −
1

𝑇2
0

𝐴4
𝐴2 ∙ 𝑇4

0 0 −
1

𝑇3
0

0 0 0 −
1

𝑇4 )

 
 
 
 
 
 

 

𝐵𝑐 matrix can be given as 

𝐵𝑐 =

(

 
 
 
 
 
 
 

 

𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

𝜕𝑓3
𝜕𝑢1
𝜕𝑓4
𝜕𝑢1

𝜕𝑓3
𝜕𝑢2
𝜕𝑓4
𝜕𝑢2 )

 
 
 
 
 
 
 

 

 

Where, 

𝜕𝑓1
𝜕𝑢1

= 𝛾1 ∙
𝑘1
𝐴1

 

𝜕𝑓4
𝜕𝑢1

= (1 − 𝛾1) ∙
𝑘1
𝐴4
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𝜕𝑓2
𝜕𝑢2

= 𝛾2 ∙
𝑘2
𝐴2

 

𝜕𝑓3
𝜕𝑢2

= (1 − 𝛾2) ∙
𝑘2
𝐴3

 

And the rest are zero. 

𝜕𝑓2
𝜕𝑢1

=
𝜕𝑓3
𝜕𝑢1

=
𝜕𝑓1
𝜕𝑢2

=
𝜕𝑓4
𝜕𝑢2

= 0 

Appendix C 

Input signal 

clc 
[data,txt]=xlsread('data2.xlsx'); 
%[data2,txt]=xlsread('tan2min.xlsx'); 
u1=(data(:,1)); %input for tank1(h1) 
u2=(data(:,2)); %input for tank2(h2) 
y1=(data(:,3)); % h1 
y2=(data(:,4)); %h2 
figure(1) ;clf 
subplot(411);plot(y1,'r','LineWidth',2);grid on; 

legend('Level(h1)');ylabel('h1[m]');xlabel('samples for h1') 
subplot(412);plot(u1,'r','LineWidth',2);grid on; 

legend('input(u1)');ylabel('u1[V]');xlabel('samples for u1') 
subplot(413);plot(y2,'g','LineWidth',2);grid on; 

legend('Level(h2)');ylabel('h2[m]');xlabel('samples for h2') 
subplot(414);plot(u2,'g','LineWidth',2);grid on; 

legend('input(u2)');ylabel('u2[v]');xlabel('samples for u2') 
suptitle('Input and Output plot of validation Data') 
figure (2) 
plot([u1, u2]) 
legend ('input u1', 'input u2') 
ylabel('5V=5*20'); xlabel ('Time (s)') 
grid on 
suptitle ('Input signal') 

 

 

 

 

 

Appendix D 

System identification using simulated data 

t_min=0; 
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t_max=6000; 
%%%parameters for simulation 
delta_t= 0.5; 
N= (t_max-t_min)/delta_t; 
D=[1 0 0 0 ; 0 1 0 0]; 

  
gamma1=input('Please give the GAMMA1 value:'); 
gamma2=input('Please give the GAMMA2 value:'); 
gamma=[gamma1 gamma2]; 

  
%% state matrix X where, h1=X(1), h2=X(2)....to initialize. 
%when tank is empty 
X=zeros(4,1); 
a=round(N/3); 
X_data1=zeros(a,4); 
Y_data1=zeros(a,2); 
U_data1=zeros(a,2); 
U=[3 3]'; % initial input before system reaches steady state 
for k=1:a % 3333 
    Y=D*X; 
    Y_data1(k,1:2)=Y'; 
    U_data1(k,1:2)=U'; 
    X_data1(k,1:4)=X'; 
    X= X+delta_t*nonlinearmodel(X,U,gamma); 
end 
% 

plot(1:a,X_data1(:,1),'r',1:a,X_data1(:,2),'b',1:a,X_data1(:,3),'c',1:a,X_dat

a1(:,4),'k') 
%  legend('Tank 1','Tank 2','Tank 3','Tank 4') 
%  xlabel('Time(s)'); 
%  ylabel('Height (cm)') 
 %figure 
%% real data collection 
b=N-a; 
X_data2=zeros(b,4); 
Y_data2=zeros(b,2); 
U_data2=zeros(b,2); 
U_1= prbs1(b,500,800) + 4; 
U_2= prbs1(b,600,1000) + 3; 
for l=1:b %% 3334-10000 
    Y=D*X; 
    Y_data2(l,1:2)=Y';   
    U_new=[U_1(l) U_2(l)]'; 
    U_data2(l,1:2)=U_new'; 
    X_data2(l,1:4)=X'; 
    X=X+delta_t*nonlinearmodel(X,U_new,gamma); 
end 

  
figure(1) 
subplot(2,1,1) 
%title('Simulated and Identified (DSR) Output from Mathematical 

model(nonlinear) ') 
plot(1:b,Y_data2(:,1),'r',1:b,Y_data2(:,2),'k') 
% hold on 
% plot(t(a+1:N),X_data2(:,3),'c',t(a+1:N),X_data2(:,4),'k') 
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xlabel('Time(s)'); 
ylabel('Height (cm)') 
grid on 
hold on 
figure(2) 
%% system identification using dsr method 
% sid from simulated data 
[A_sim,B_sim,D_sim,E_sim,CF,F,x0]= dsr(Y_data2,U_data2,4) 
Y_dsr_sim=dsrsim(A_sim,B_sim,D_sim,E_sim,U_data2,x0); 
figure(1) 
title('System Identification using Simulated Data') 

  
%title('Output identified model(DSR)using simulated data and input signal') 
subplot(2,1,1) 
plot(1:length(Y_dsr_sim),Y_dsr_sim(:,1),':r',1:length(Y_dsr_sim),Y_dsr_sim(:,

2),':k') 
legend('h1, Simulated','h2, Simulated','h1, Identified','h2, Identified') 
xlabel('Time(s)'); 
ylabel('level of tank (cm)') 
grid on 
hold off 
subplot(2,1,2) 
plot(1:b,U_data2(:,1),'r',1:b,U_data2(:,2),'k') 
title('PRBS (input) Signal') 
legend('u1', 'u2') 
xlabel('Time(s)'); 
ylabel('Amplitude(V)') 

  

  
% validation 
% error11=norm(Y_dsr_sim(:,1)-Y_data(:,1)); 
% error21=norm(Y_dsr_sim(:,2)-Y_data(:,2)); 
% error_criterion_dsr=max(error11,error21)/N 
MAE_DSR_h1= 1/N*(sum(abs(Y_dsr_sim(:,1)-Y_data2(:,1)))) 
MAE_DSR_h2= 1/N*(sum(abs(Y_dsr_sim(:,2)-Y_data2(:,2)))) 

  
RMSE_pem_h1= 1/N*sqrt((sum((Y_dsr_sim(:,1)-Y_data2(:,1))).^2)) 
RMSE_pem_h2= 1/N*sqrt((sum((Y_dsr_sim(:,2)-Y_data2(:,2))).^2)) 

  
% poles and zeros 
sys_zeros=tzero(A_sim,B_sim,D,zeros(2)) 
pole=eig(A_sim) 

 

Appendix E 

Using DSR method 

%system order 3 (6iw3-iydz-zljs) 
RealData= importdata('data2.xlsx'); 
u1_data=RealData.data(1:25000,1); 
u2_data=RealData.data(1:25000,2); 
h1_data=RealData.data(1:25000,3); 
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h2_data=RealData.data(1:25000,4); 
Y_data=detrend([h1_data h2_data]); 
U_data=detrend([u1_data u2_data]); 

  
 a=mean(h1_data); 
 b=mean(h2_data); 

  
% Y_data_trended=[normc(h1_data) normc(h2_data)]; 
% U_data_trended=[normc(u1_data) normc(u2_data)]; 
N=length(Y_data); 

  
MAE_h1=zeros(9,9); 
MAE_h2=zeros(9,9); 
for J=2:10 
    for L=2:10 
%% sid from real data 
[A_dsr,B_dsr,D_dsr,E_dsr,CF,F,x0]=dsr(Y_data,U_data,L,0,J,1,3); %non-minimum 

L=15, Minimum L=3 
%% simulation of dsr model 

  
Y_dsr_sim=dsrsim(A_dsr,B_dsr,D_dsr,E_dsr,U_data,x0); 
error_h1=(Y_dsr_sim(:,1)-Y_data(:,1)); 
error_h2=(Y_dsr_sim(:,2)-Y_data(:,2)); 
MAE_dsr_h1= 1/N*(sum(abs(error_h1))); 
MAE_dsr_h2= 1/N*(sum(abs(error_h2))); 
MAE_h1(J-1,L-1)= MAE_dsr_h1; 
MAE_h2(J-1,L-1)=MAE_dsr_h2; 
    end  
end 
o=(MAE_h1+MAE_h2)/2; 
p=min(o); 
[minimum_mean_error,L]=min(p); 
q=o(:,L); 
[d,J]=min(q); 
optimal_L=L+1 
optimal_J=J+1 

  
%% sid from real data 
[A_dsr,B_dsr,D_dsr,E_dsr,CF,F,x0]=dsr(Y_data,U_data,optimal_L,0,optimal_J,1,3

) %non-minimum L=15, Minimum L=8 
%% simulation of dsr model 

  
Y_dsr_sim=dsrsim(A_dsr,B_dsr,D_dsr,E_dsr,U_data,x0); 

  
error_h1=(Y_dsr_sim(:,1)-Y_data(:,1)); 
error_h2=(Y_dsr_sim(:,2)-Y_data(:,2)); 

  
IAE_dsr_h1= (sum(abs(error_h1))) 
IAE_dsr_h2= (sum(abs(error_h2))) 

  
MAE_dsr_h1= 1/N*(sum(abs(error_h1))) 
MAE_dsr_h2= 1/N*(sum(abs(error_h2))) 

  
ISE_dsr_h1= ((sum(error_h1).^2)) 
ISE_dsr_h2= ((sum(error_h2).^2)) 
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RMSE_dsr_h1= 1/N*sqrt((sum(error_h1).^2)) 
RMSE_dsr_h2= 1/N*sqrt((sum(error_h2).^2)) 

  

  
%poles and zeros 
sys_zeros_dsr=tzero(A_dsr,B_dsr,D_dsr,zeros(2)) 
pole_dsr=eig(A_dsr) 

  
%ploting 
figure 
subplot(211) 
plot([h1_data Y_dsr_sim(:,1)+a]),grid 
% ,legend('Tank 1 real data','b','Tank 1,DSR','r'); 
legend('Tank 1, real output','Tank 1, DSR model') 
xlabel('Time(s)'); 
ylabel('Height (cm)') 
title('Identified model for ''tank 1'' using DSR') 
subplot(212) 
plot([h2_data Y_dsr_sim(:,2)+b]),grid 
% legend('Tank 2 real data','b', 'Tank 2 DSR','r'); 
legend('Tank 2, real output','Tank 2, DSR model') 
title('Identified model ''tank 2'' using DSR') 
xlabel('Time(s)'); 
ylabel('Height (cm)') 
% THE END 

 

Appendix F 

PEM system Identification 

%system order 3 
RealData= importdata('data2.xlsx'); 
u1_data=RealData.data(1:25000,1); 
u2_data=RealData.data(1:25000,2); 
h1_data=RealData.data(1:25000,3); 
h2_data=RealData.data(1:25000,4); 
Y_data=detrend([h1_data h2_data]); 
U_data=detrend([u1_data u2_data]); 

  

  
% Y_data_trended=[dtrend(h1_data) dtrend(h2_data)]; 
% U_data_trended=[dtrend(u1_data) dtrend(u2_data)]; 
N=length(Y_data); 

  
 a=mean(h1_data); 
 b=mean(h2_data); 

  
%pem for system identification 
Data=iddata(Y_data,U_data,1); 
pem_model=pem(Data,3) 
A_pem=pem_model.A; 
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B_pem=pem_model.B; 
D_pem=pem_model.C; 
E_pem=pem_model.D; 
x0_pem=pem_model.x0; 

  
Y_pem_sim=dsrsim(A_pem,B_pem,D_pem,E_pem,U_data,x0_pem); 

  
error_h1= Y_pem_sim(:,1)-Y_data(:,1); 
error_h2= Y_pem_sim(:,2)-Y_data(:,2); 

  
IAE_pem_h1= (sum(abs(error_h1))) 
IAE_pem_h2= (sum(abs(error_h2))) 

  
MAE_pem_h1= 1/N*(sum(abs(error_h1))) 
MAE_pem_h2= 1/N*(sum(abs(error_h2))) 

  
ISE_pem_h1= ((sum(error_h1).^2)) 
ISE_pem_h2= ((sum(error_h2).^2)) 

  
RMSE_pem_h1= 1/N*sqrt((sum(error_h1).^2)) 
RMSE_pem_h2= 1/N*sqrt((sum(error_h2).^2)) 

  
sys_zeros_pem=tzero(A_pem,B_pem,D_pem,zeros(2)) 
pole_pem=eig(A_pem) 

  
%plot 
figure 
subplot(211) 
plot([h1_data Y_pem_sim(:,1)+a]),grid 
% ,legend('Tank 1 real data','b','Tank 1,DSR','r'); 
legend('Tank 1, real output','Tank 1 PEM model') 
xlabel('Time(s)'); 
ylabel('Height (cm)') 
title('Identified model for ''tank 1'' using PEM') 
subplot(212) 
plot([h2_data Y_pem_sim(:,2)+b]),grid 
% legend('Tank 2 real data','b', 'Tank 2 DSR','r'); 
legend('Tank 2 real output','Tank 2 PEM model') 
title('Identified model ''tank 2'' using PEM') 

  
xlabel('Time(s)'); 
ylabel('Height (cm)') 

  
% THE END 

  

 

 

Appendix G 

N4SID Method of Identification 
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%system order 3 for minimum phase 
RealData= importdata('data2.xlsx'); 
u1_data=RealData.data(:,1); 
u2_data=RealData.data(:,2); 
h1_data=RealData.data(:,3); 
h2_data=RealData.data(:,4); 
Y_data=[h1_data h2_data]; 
U_data=[u1_data u2_data]; 

  
Y_data_trended=[dtrend(h1_data) dtrend(h2_data)]; 
U_data_trended=[dtrend(u1_data) dtrend(u2_data)]; 
N=length(Y_data); 

  
%n4sid for system identification 
Data=iddata(Y_data,U_data,1); 
n4sid_model=n4sid(Data,3) 
A_n4sid=n4sid_model.A; 
B_n4sid=n4sid_model.B; 
D_n4sid=n4sid_model.C; 
E_n4sid=n4sid_model.D; 
x0_n4sid=n4sid_model.x0; 

  
Y_n4sid_sim=dsrsim(A_n4sid,B_n4sid,D_n4sid,E_n4sid,U_data,x0_n4sid); 
N4Horizon = 'Auto' 

  
%ERROR calculations  
error_h1=abs(Y_n4sid_sim(:,1)-Y_data(:,1)); 
error_h2=abs(Y_n4sid_sim(:,2)-Y_data(:,2)); 

  
IAE_n4sid_h1= (sum(abs(error_h1))) 
IAE_n4sid_h2= (sum(abs(error_h2))) 

  
MAE_n4sid_h1= 1/N*(sum(abs(error_h1))) 
MAE_n4sid_h2= 1/N*(sum(abs(error_h2))) 

  
ISE_n4sid_h1= ((sum(error_h1).^2)) 
ISE_n4sid_h2= ((sum(error_h2).^2)) 

  
RMSE_n4sid_h1= 1/N*(sum(i.*error_h1(i,:).^2)) 
RMSE_n4sid_h2= 1/N*(sum(i.*error_h2(i,:).^2)) 

  
 %poles and zeros 
sys_zeros_n4sid=tzero(A_n4sid,B_n4sid,D_n4sid,zeros(2)) 
pole_n4sid=eig(A_n4sid) 

  
subplot(2,1,1) 
plot(1:length(Y_n4sid_sim),Y_data(:,1),'b',1:length(Y_n4sid_sim),Y_n4sid_sim(

:,1),'r') 
legend('Tank 1 real data','Tank 1,n4sid') 
grid on 
subplot(2,1,2) 
plot(1:length(Y_n4sid_sim),Y_data(:,2),'b',1:length(Y_n4sid_sim),Y_n4sid_sim(

:,2),'r') 
legend('Tank 2 real data', 'Tank 2 n4sid') 
grid on 
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% 

plot(1:length(Y_n4sid_sim),Y_n4sid_sim(:,1),'r',1:length(Y_n4sid_sim),Y_n4sid

_sim(:,2),'b') 
% title('Identified model using n4sid') 
% legend('Tank 1, Identified n4sid','Tank 2, Identified n4sid') 
% xlabel('Time(s)'); 
% ylabel('Height (cm)') 
% grid on 

Appendix H 

Validation code for DSR 

data_valid=xlsread('validation_data.xlsx'); 
U1_valid=(data_valid(:,1)); 
U2_valid=(data_valid(:,3)); 
Y1_measured=(data_valid(:,2)); 
Y2_measured=(data_valid(:,4)); 
U=([U1_valid U2_valid]); 
Y=([Y1_measured Y2_measured]); 
A_dsr =[0.9998 0.0013 1.2154; -0.0001 0.9997 -0.1155; -0.0000 0.0000 0.9946]; 
B_dsr=1.0e-003*[0.1535   -0.1076; -0.1538    0.0955; 0.0011   -0.0014]; 
D_dsr =[-0.4546    0.3565    0.5941;   -0.3559   -0.4543    0.3837]; 
E_dsr =[-0.0085    0.0042; 0.0976   -0.0532]; 
%x0 =[-34.6565; -1.4233; 0.0044]; 
x0 =[-34.6565; -1.4233; 0.0044]; 
Y_valid=dsrsim(A_dsr,B_dsr,D_dsr,E_dsr,U,x0); 
N1=length(Y1_measured); 

  
%Computational error 
 error_h1=(Y1_measured-Y_valid(:,1)); 
 error_h2=(Y2_measured-Y_valid(:,2)); 

  

  
MAE_dsr_h1= 1/N1*(sum(abs(error_h1))) 
MAE_dsr_h2= 1/N1*(sum(abs(error_h2))) 

  
RMSE_dsr_h1= 1/N1*sqrt((sum(error_h1).^2)) 
RMSE_dsr_h2= 1/N1*sqrt((sum(error_h2).^2)) 

  
IAE_dsr_h1= (sum(abs(error_h1))) 
IAE_dsr_h2= (sum(abs(error_h2))) 

  

  
subplot(211) 
plot([Y1_measured Y_valid(:,1)]),grid,legend('measured','valid'); 
legend('Tank 1 real data','Tank 1,model') 
xlabel('Time(s)'); 
ylabel('Height (cm)') 
title('DSR model validation') 
subplot(212) 
plot([Y2_measured Y_valid(:,2)]),grid,legend('measured','valid'); 
legend('Tank 2 real data','Tank 2,model') 
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xlabel('Time(s)'); 
ylabel('Height (cm)') 
% 

plot(1:length(Y_dsr_sim),Y_dsr_sim(:,1),':b',1:length(Y_dsr_sim),Y_dsr_sim(:,

2),':g') 
% legend('h1, Sim','h2, Sim','h1, Ident','h2, Ident') 
% xlabel('Time(s)'); 
% ylabel('Height (cm)') 

 

Validation code for PEM 

data_valid=xlsread('validation_data.xlsx'); 
U1_valid=(data_valid(:,1)); 
U2_valid=(data_valid(:,3)); 
Y1_measured=(data_valid(:,2)); 
Y2_measured=(data_valid(:,4)); 
U=([U1_valid U2_valid]); 
Y=([Y1_measured Y2_measured]); 
A =[0.99998 0.00015016 -0.00035968; -0.00066789 0.99971 -7.0167e-005; 0.0014535  

-0.00018314 0.99791]; 
B=[1.5076e-006  1.9606e-006; 7.7852e-007  1.4637e-007;  1.0013e-005  1.0256e-

005]; 
C=[808.05 -53.599 -0.30415; 606.35  227.85 -0.11962]; 
D=[0 0; 0 0]; 

  
%x0 =[-34.6565; -1.4233; 0.0044]; 
x0_pem =[ 0.019891; 0.016888; 0.64549]; 
Y_pem_sim=dsrsim(A,B,C,D,U,x0_pem); 

  
N1=length(Y1_measured); 

  
%Computational indices error 
 error_h1=(Y1_measured-Y_pem_sim(:,1)); 
 error_h2=(Y2_measured-Y_pem_sim(:,2)); 

  
MAE_pem_h1= 1/N1*(sum(abs(error_h1))) 
MAE_pem_h2= 1/N1*(sum(abs(error_h2))) 

  
RMSE_pem_h1= 1/N1*sqrt((sum(error_h1).^2)) 
RMSE_pem_h2= 1/N1*sqrt((sum(error_h2).^2)) 

  
IAE_pem_h1= (sum(abs(error_h1))) 
IAE_pem_h2= (sum(abs(error_h2))) 

  

  
subplot(211) 
plot([Y1_measured Y_pem_sim(:,1)]),grid,legend('measured','valid'); 
legend('Tank 1 real data','Tank 1,model') 
xlabel('Time(s)'); 
ylabel('Height (cm)') 
title('PEM model validation') 
subplot(212) 
plot([Y2_measured Y_pem_sim(:,2)]),grid,legend('measured','valid'); 
legend('Tank 2 real data','Tank 2,model') 
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xlabel('Time(s)'); 
ylabel('Height (cm)') 

  

  
% 

plot(1:length(Y_dsr_sim),Y_dsr_sim(:,1),':b',1:length(Y_dsr_sim),Y_dsr_sim(:,

2),':g') 
% legend('h1, Sim','h2, Sim','h1, Ident','h2, Ident') 
% xlabel('Time(s)'); 
% ylabel('Height (cm)') 

 

Validation code for N4SID 

data_valid=xlsread('validation_data.xlsx'); 
U1_valid=(data_valid(:,1)); 
U2_valid=(data_valid(:,3)); 
Y1_measured=(data_valid(:,2)); 
Y2_measured=(data_valid(:,4)); 
U=([U1_valid U2_valid]); 
Y=([Y1_measured Y2_measured]); 
A = [1.0001    0.0003055   -0.0014701; -0.00055351      0.99968 -1.4336e-005;  

0.00037891   -0.0003587      0.98989]; 

  
B=[4.6869e-007   1.026e-006; 5.2155e-007 -2.9432e-007; 5.7725e-006  5.1173e-

006]; 

  
C= [808.05  -53.599  -0.30415; 606.35 227.85     -0.11962]; 

  
D=[0 0; 0 0]; 

  
%x0 =[-34.6565; -1.4233; 0.0044]; 
x0_n4sid =[ 0.019692; 0.01712;  0.073826]; 
Y_n4sid_sim=dsrsim(A,B,C,D,U,x0_n4sid); 

  
N1=length(Y1_measured); 

  
%Computational indices error 
 error_h1=(Y1_measured-Y_n4sid_sim(:,1)); 
 error_h2=(Y2_measured-Y_n4sid_sim(:,2)); 

  
MAE_n4sid_h1= 1/N1*(sum(abs(error_h1))) 
MAE_n4sid_h2= 1/N1*(sum(abs(error_h2))) 

  
RMSE_n4sid_h1= 1/N1*sqrt((sum(error_h1).^2)) 
RMSE_n4sid_h2= 1/N1*sqrt((sum(error_h2).^2)) 

  
IAE_n4sid_h1= (sum(abs(error_h1))) 
IAE_n4sid_h2= (sum(abs(error_h2))) 

  

  
subplot(211) 
plot([Y1_measured Y_n4sid_sim(:,1)]),grid,legend('measured','valid'); 
legend('Tank 1 real data','Tank 1,model') 



58 

 

xlabel('Time(s)'); 
ylabel('Height (cm)') 
title('N4SID model validation') 
subplot(212) 
plot([Y2_measured Y_n4sid_sim(:,2)]),grid,legend('measured','valid'); 
legend('Tank 2 real data','Tank 2,model') 
xlabel('Time(s)'); 
ylabel('Height (cm)') 

  

  
% 

plot(1:length(Y_dsr_sim),Y_dsr_sim(:,1),':b',1:length(Y_dsr_sim),Y_dsr_sim(:,

2),':g') 
% legend('h1, Sim','h2, Sim','h1, Ident','h2, Ident') 
% xlabel('Time(s)'); 
% ylabel('Height (cm)') 

 

 

 

 

 

 


