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Abstract: 

 

The model predictive control (MPC) have been a remarkable benchmark in many of the control process 

application over past few decades because of its ability to handle constraints and multivariable nonlinear systems 

with time delay and the use of feedback from measurement  using latest information. A MPC application is 

developed and implemented predicting flood gate opening in this thesis work to control the flooding situation 

that normally occurs in Kragerø Waterways.  

The system we have considered herein is the model of lake Toke where we have developed a dynamic model for 

lake Toke using general mass balance equation. The necessary measurements were described and predicted 

model for current turbine flow was developed. The model was linearized and MATLAB simulations were 

performed for validation using historic data provided from Skagerak Energi. The sensitivity of the parameters 

used in the model was analyzed. A quadratic Programming is developed in order to solve the optimization 

problem as well as constraints and slack variables were defined to satisfy the system requirements. 

Both linear and nonlinear MPC were performed using MATLAB. Finally, a simple stochastic MPC analysis was 

done using real values and assumed values by adding random Gaussian noise.  

MPC application was simulated introducing model error where the future inflow of water was unknown gave 

almost desired reference level without any violation of system boundary indicates MPC can handle the unknown 

inflow predictions or big uncertain inputs can be handled by MPC.  
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Nomenclature 

Lists of symbols, abbreviations, and subscripts used in the thesis are included here. 

Symbol SI unit   Description        

AHRV   m                        Limit for highest regulated water level due to operating  

                                     Procedure throughout a year 

ALRV   m             Limit for lowest regulated water level due to operating  

                                     Procedure throughout a year 

HRV   m                               Limit for highest regulated water level   

LRV   m                               Limit for lowest regulated water level   

MPC    -                               Model Predictive Control 

TUC    -                               Telemark University College 

NVE    -                               Norwegian Water Resources and Energy Directorate 

MATLAB        -                                Matrix Laboratory 

QP                    -                               Quadratic Programming 
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1 Introduction 

Flood controls are one of the major challenges among the natural disasters that occur over the 

world as they are affected any time without any notifications and may create severe damages 

for the creatures and environment itself. Meanwhile, the process control advancement in 

technology had made it efficient to some extent and possible to control and predicts the 

flooding environments and troubleshoots these types of natural disasters. This thesis is all 

about the controlling of flood using MPC of the Kragerø waterways. This thesis is carried out 

in TUC in cooperation with a Norwegian utility company Skagerak Energi. 

The advanced control strategies such as Model Predictive Control (MPC), more specifically 

Deterministic MPC and/or Stochastic MPC may be used to predict and control in many 

control and process applications for the current and future state. In this project, a model 

predictive control approach for random flooding environment is assumed and MPC control 

strategy is applied in the flood gates. The flood gates opening are operated by the controller 

measuring the water level. The controller receives the current state information of water level 

and operates each time continuously, minimizing the probability of occurrence of flood. 

1.1 Background 

The Kragerø waterway is located in south-east of Norway. The waterways usually experience 

flooding environment every year in April. The flooding is normally caused by the snow 

melting and rain. The water levels of the lake Toke are strictly regulated by the authorities 

during the different time annually, which may avoid the floods and helps to maintain the 

ecological and economical values. The Skagerak Energi which operates hydropower plants on 

the waterways and is currently handling this project for better operation and fulfillment of 

those requirements with optimum power generation for less wastage of water. 

The aim of the company is to construct a new floodgate for the controlling of floods that 

arises in the waterways. There are already two existing floodgates that are manually operated 

by a specialist operator who is nearly to get retirement and the main emphasis of this work is 

to purpose a new automatic control system that is implemented for a trial period before the 

retirement of operator. 

1.2 Previous work 

It is of great importance to deal with some literatures that have been done previously relating 

to the flood control using MPC of Kragerø waterways. Numerous research have been done on 

the field of flood control using advanced control strategies like MPC and been implemented, 

some of the relevant research work to this thesis are described shortly. 



 10 

Optimization and control of Kragerø waterways was carried out using MPC and PI algorithm 

in MATLAB. A hydrology model had been investigated and model for one state had been 

developed in 2011 by Hege Marie Thorsen in TUC(Thorsen, 2011).A group project work 

„flood control using MPC of Kragerø waterways‟ was carried out by M. Sc. Students in 

Telemark University College, Norway and developed a control system using MPC. The 

linearized dynamic models for one state and two states were developed and validated. The 

developed models were implemented using MPC for the control purpose and found worked 

well for the given requirements(Gøthesen et al., 2013). In my thesis work the future prediction 

of flooding environment and controlling using Stochastic MPC will be purposed; the models 

will be developed, deployed and tested for using MPC for future data models as well. 

Moreover, an adaptive multi model predictive control (AMPC) method was purposed as an 

alternative method for existing flood control technique using multiple models at the flood of 

Wivenhoe Dam, Queensland, Australia in 2011, which used independent MPC controller 

Kalman filter. The set of state space models were developed using disturbances and MPC 

calculated the control in each time sequence on the other hand, Kalmanfliter was used to 

predict the system state at each time stamp(Delgoda et al., 2012). 

The approximate mathematical model instead of hydrodynamic equations of Saint-Venantwas 

developed for the flood control of rivers to reduce the computational complexity by 

approximating the dynamics of every reach with a linear model together with nonlinear model 

of gate equation with high accuracy to use directly the approximate models in the design of 

controller. The set point control was achieved by minimizing the deviation of the most 

important water levels from their set points(Breckpot, 2013). I will use some of these 

mentioned strategies to predict the system state for MPC part and model development. 

1.3 Objectives 

Based on the facts obtained from above discussion, we are going to use the Stochastic MPC 

for the flood control of Kragerø waterways. We will use some of these used methods to find 

the dynamic models and also use more advanced control technique such as Stochastic MPC 

algorithm for the system. Another most important part of this project was development and 

validation of the model of Lake Toke which are actively involved to influence the system. The 

main objectives of this project work can be summed up to following points: 

 Analyzing the level measurements, current and future inflow predictions, current and 

future turbine production flow for managing floods in Lake Toke. 

 Deduce the dynamic model of relevant water levels at Lake Toke and validation 

against experimental/historical data. 

 Development and testing of MPC solution based on purposed deterministic inflow 

from a hydrological model and production flow through the turbine. 

 Use Markowitz Portfolio Optimization for stochastic MPC. 

 Comparison between the use of Stochastic MPC and use of deterministic MPC. 
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1.4 Overview of Report 

The report has been organized according to the objectives of this thesis and work flow. The 

main work starts with the development of dynamic model and ends with the implementation 

of stochastic MPC. The core report is of 52 pages excluding some formal pages (like abstract, 

table of contents, preface, etc.) at the beginning. The main report has been divided in to 6 

chapters and each chapter includes specific task. 

In Chapter 1 I will discuss about the Introduction of the thesis and importance of this thesis 

work, Chapter 2 deals with the System Description, Chapter 3 includes Model development 

and Validation, in Chapter 4 I will discuss about Model Predictive Control (MPC)similarly, 

Chapter 5 includes Stochastic MPC optimization and finally Chapter 6 finishes with 

Discussion and Conclusions. 

At the end of this thesis, appendix of relevant mathematical expressions and MATLAB codes 

are included. 
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2 System Description 

The functional description of the Kragerø waterways illustrates the overview of the system 

that we are going to develop and implement for controlling of flooding situations. We will 

define a system along with inputs, outputs, disturbances and system state from the available 

data/information, level measurements and production plans that are provided by Skagerak 

Enegri and based on these information we further do analysis on the nature of system and 

future predictions and make some assumptions for the development of dynamic model of 

Lake Toke. We will furthermore use some of this relevant information in MPC too. 

In this section we will deal on the details of available data from the authority and functional 

description of the Lake Toke. 

2.1 Lake Toke Overview 

Kragerø waterway also known as Tokevassdraget lies in the south-west of Telemark County 

of Norway covering the catchment area of approximately 1156 km
2
 and surface area of 

approximately 32 km
2
 and can hold about 150 millions m

3
 of water. The average annual water 

inflow to the lake is approx. 24 m
2
/s and the water residence time is about 72 days. For the 

simplicity the lake Toke can be divided into two parts: Upper Toke and Lower Toke as shown 

in Figure 2-1(Lie, 2013a). 

 

Figure 2-1: Map of Lake Toke displaying upper and lower Toke along with available 

measurement points (Lie, 2013) 
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As shown in the Figure 2-1, the Lake Toke can be splitted into two parts where the water 

levels are currently being measured are shown with red starred points: the water level h1 at 

Merkebekk and h2 at Dalsfosss in lower Toke. Also, it is possible to take third level 

measurement h3from the upper Toke in Straume „starred with black‟ in future and can be 

modeled the lake more efficiently for the control purpose of flooding environment. These 

levels h1 and h2 are used to describe the model of the Lake in later chapters.  

Due to the large diversity of water noticed in Lake Toke, an electric power is efficiently being 

produced since 1960 A.D. Skagerak Energi operates 5 hydropower plants in Lake Toke. The 

hydropower plants are located at the water-stream down from the main lake starting from 

Dalsfosss power plant and downwards to the Tveitereidfoss, Langfoss, Vafoss and 

Kammerfoss power plants respectively. Figure 2-2 shows the location of 5 different 

hydropower plants in Kragerø waterways. 

 

Figure 2-2:Kragerø waterways from Lake Toke to Kilsfjorden(Lie, 2013) 
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2.2 Dalsfoss Dam Data Measurements 

Skagerak Energi have provided us data that explains the water level measurement in front of 

turbine (𝑥0) and level after turbine (𝑥𝑢 ) of Dalsfoss dam in meters (overvann and undervann), 

water level of quay in meters (structure on the bank of lake Toke) (𝑥𝑞 ), down streams flow 

from the dam (𝑉𝑜
 ) in m

3
/s and the power produced in three different turbines in megawatts. 

We further add the produced power of all three turbines and use total power production to find 

the turbine flow (𝑉𝑡
 ) which is governed by theoretical/ mathematical formula.  

All these data are provided by Skagerak Energi in the excel file in an hourly format. These 

data are collected for the year 2008-2009 and some of the measurements (from 

1.25.2008,6:00- 1.26.2008, 22:00; 2.2.2008,12:00-2.3.2008,2:00; 2.5.2008,3:00-

2.6.2008,21:00; 2.9.2008,15:00-2.14.2008,14:00; 3.6.2008,3:00-3.6.2008,20:00; 

4.14.2008,10:00-4.15.2008,19:00 to 4.23.2008,0:00) of water level in front of turbine (𝑥0) and 

few for 𝑥𝑢  are missing in the original excel data sheet and in MATLAB these are replaced by 

NaN (not-a-number). 

2.2.1 Level Description of Dalsfoss Dam 

According to the provided data by Skagerak Energi, a general sketch of water level of 

Dalsfoss dam is shown in Figure 2-3.The water level measurement in front of turbine (𝑥0) and 

level after turbine (𝑥𝑢 ) of Dalsfoss dam in meters (overvann and undervann), water level of 

quay in meters (structure on the bank of lake Toke) (𝑥𝑞 ) is shown in Figure 2-3. The 

downstream flow from the dam (𝑉𝑜
 ) is also shown in Figure 2-3. Moreover, we have given 

total power production in terms of megawatts and we can predict the turbine flow 𝑉𝑡
  from 

these input data. 

 

Figure 2-3: General overview of water level of Dalsfoss dam 
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Focusing on the trend of data how they are organized, Figure 2-4shows the nature of height in 

front of turbine (xo) following variation of 6 meters approximately between 57 meters to 63 

meters somehow except with two outliers (values 3 times higher than expected level)  around 

timestamp of approximately 7000 hours and 15000 hours. During MATLAB simulation, these 

outliers are replaced by averaging two neighboring values for all three levels xo, xu and xq. 

 

Figure 2-4: Presentation of actual Level in front of Dalsfoss Dam 

Figure 2-5 represents the water level𝑥𝑞 , 𝑥𝑢  and𝑥𝑞without outliers measured in an hourly basis 

for the year 2008-2009 in meters. In the lower graph the red line showing the quay level 𝑥𝑞  

and blue line presenting the water level after the turbine 𝑥𝑢 , we found an unusual behaviour of 

𝑥𝑢   that the level suddenly falls approx. 2 m at time between 6-7000 and then again climbs 

approx. 2 m around time span 12-13000. We already discussed in Figure 2-3, that 𝑥𝑢  cannnot 

be lower than 𝑥𝑞 (𝑥𝑞≥ 𝑥𝑞 ) this could be due to sensor/measurement error. Also, from 

discussion with operator/ data provider found that the level after turbine xu is not in use and 

checked so far, so we won‟t use 𝑥𝑢  in this project. Because of inaccuracy/ uncertainity of 

𝑥𝑢and being similar to 𝑥𝑢  we further use 𝑥𝑞   instead. 
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Figure 2-5: Level in front of Dalsfoss Dam (𝑥𝑜 ), and at after turbine(𝑥𝑢 ) and at Quay (𝑥𝑞 ) 

On the  other hand, Figure 2-6 shows the downstream flow from the dam (𝑉𝑜
 ). In Figure 2-6 

we can see downstream flow 𝑉𝑜
  relates Quay level 𝑥𝑞 . We have considered only two outliers 

and the curve of 𝑉𝑜
  is almost fitted with 𝑥𝑞 . The 2

nd
 order polynomial for 𝑉𝑜

  is considered and 

the roots of the polynomial are found to be  18, −1.297 × 103 and2.3486 × 104 . According 

to figure, a very regular relation between 𝑉𝑜
  and 𝑥𝑞  can be observed can be said that there are 

no possible independent measurements. Moreover, we can say that measuring level is easier 

than measuring flow of a river. Hence, 𝑉𝑜
  can be calculated using simple formula including 𝑥𝑞  

multiplied with the roots of quadratic polynomial: 

𝑉𝑜
 = 18. 𝑥𝑞

2 − 1.297 × 103 . 𝑥𝑞 + 2.3486 × 104                                                            (2.1)          
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Figure 2-6: Downstream flow from the dam 𝑉𝑜
  relating Quay level 𝑥𝑞  and Quadratic fitting of  

𝑉𝑜
  with 𝑥𝑞  

 

2.3 Functional Description 

The schematic description for the Kragerø waterways includes all the 

measurements/information and can be illustrated as a system/process with inputs, outputs, 

states, disturbances etc. We have assumed inlet flow 𝑉𝑖
  [m

3
/s] and turbine flow 𝑉𝑡

 [m3
/s] as 

system disturbance, height of gate 𝑕𝑔  as control input, water level at Tokevatn 𝑕1and water 

level at Merkebekk 𝑕2 in meters as system states/measurement and finally flow from the dam 

𝑉𝑜
  [m3

/s] and 𝑕1 are the controlled outputs. Figure 2-7 shows the schematic process diagram 

for the model of Kragerø waterways. Each of the measurements available in the excel data set 

that are actively present in the system are described in details in the next section. 
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Figure 2-7: Schematic process diagram for the model of Kragerø waterways 

 

2.3.1 Inlet flow 𝑉𝑖
  

The total water flow from the catchment region and into the lake Toke is defined as inlet flow 

𝑉𝑖
  [m3

/s] and is based on the meteorological predictions of precipitation (of rain and snow) and 

temperature. Temperature is important for calculating the melting rates of snow. Generally we 

need to predict the inlet flow into the lake by considering the meteorological predictions based 

on the hydrology model of the catchment region of the lake. The meteorological predictions 

needed for Skagerak Energi are done by the weather forecasting company on a daily basis to 

compute 𝑉𝑖
   and provides the most likely flow for 10 days prior. These predictions are quiet 

uncertain and thus the use of possible numbers of predictions (ensemble) may be considerably 

used for the prediction. In this project, we will only use these predicted data (15 days prior) 

for the inlet flow. However, a more direct approach for minimizing the uncertainty of 

prediction can be used in future work. 

2.3.2 Turbine Flow 𝑉𝑡
  

As we have already mentioned that measuring the flow is not an easier task, hence to predict 

the flow through the turbine, we assume that the flow through the gate of Dalsfoss Dam is 

made only when the downstream flow 𝑉𝑜
  becomes more than 36 m

3
/s (𝑉𝑜

 ≥ 36 𝑚3/𝑠) and 

there should be minimum turbine flow equal to more than 4 𝑚3/𝑠. Thus we can relate 𝑉𝑡
  as, 

𝑉𝑡
 = max 𝑉𝑜

 , 36 𝑚3/𝑠 
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Also, the assumption that the flow due to production is equal to 36 m
3
/s and all the rest of the 

flow is through the gate leads to deduce gate flow 𝑉𝑔  as, 

𝑉𝑜
 = 𝑉𝑡

 +𝑉𝑔                                                                                                                              (2.2) 

In addition, the turbine flow 𝑉𝑡
  is compared with total power production 𝑊𝑒

  and level 

difference 𝑕𝑡 = (𝑥𝑜 − 𝑥𝑞) as shown in Figure 2-8. This assumption leads to develop a model 

for 𝑉𝑡
  using 𝑊𝑒

  , 𝑥𝑜  and  𝑥𝑞 . We have already mentioned that we will not use  𝑥𝑢  due to 

inaacuracy/uncertainity. 

 

Figure 2-8: Turbine flow (𝑉𝑡
 ) ̇ compared with total power production (𝑊𝑒

 ) ̇ and level 

difference 𝑕𝑡=(𝑥𝑜 − 𝑥𝑞). 

Using concept of energy balance(Lie, 2013a), we have 

𝑊𝑒
 = Ƞ𝜌ɡ. (𝑥𝑜 − 𝑥𝑢)𝑉𝑡

 .                                                                                              (2.3) 

Where, 

Ƞ = efficiency factor of the power 

𝜌 = density of water (1000 m
3
) 

ɡ = gravitational constant (9.81 m/s) 

We have already mentioned that we will not use  𝑥𝑢  due to inaccuracy/uncertainty and thus 

use𝑥𝑞 , so (2.3) now becomes, 

𝑊𝑒
  =F ((𝑥𝑜 − 𝑥𝑞)𝑉𝑡) .                                                                                               (2.4) 
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Where F(.) is a function which should be linear when Ƞ is constant. 

Now our interest is to find the model for 𝑊𝑒
  with a linear fit to (𝑥𝑜 − 𝑥𝑞)𝑉𝑡

  and we have all 

the data required. Using “Polyfit”- in MATLAB, we can fit the linear equation and find the 

values of polynomial using “Polyval”. Thus we find simply 2 polynomial values: 0.075 and -

0.02477, hence using these values (to relate 𝑊𝑒
 , 𝑉𝑡

  ,𝑥𝑜  and 𝑥𝑞 ) we achieved relation for 𝑊𝑒
  as, 

𝑊𝑒
 = 0.0075.  𝑥𝑜 − 𝑥𝑞 . 𝑉𝑡

 − 0.2477                                 (2.5) 

We cannot guarantee that the developed model for is perfect because we have assumed that 

𝑉𝑡
 = max 𝑉𝑜

 , 36 𝑚3/𝑠 and 𝑉𝑜
  is not certain. In spite of this uncertainty we will take a close 

look for the correlation between 𝑊𝑒
 , 𝑉𝑡

  ,𝑥𝑜  and 𝑥𝑞  as shown in Figure 2-9.  

 

Figure 2-9 Correlation of power prediction between measured data (o,blue),linear prediction 

of 𝑊𝑒
  from correlation𝑊𝑒

 = 0.0075.  𝑥𝑜 − 𝑥𝑞 . 𝑉𝑡
 − 0.2477 (black) and 

theoretical value 𝑊𝑒
  = F ((𝑥𝑜 − 𝑥𝑞)𝑉𝑡)  (red) 

2.3.3 Prediction Models 

Now if we assume we have known values of  𝑊𝑒
 , 𝑉𝑔  and 𝑥𝑜  we can compute  𝑉𝑜

 , 𝑉𝑡
  and 𝑥𝑞  

from the developed models as, 

𝑉𝑜
 = 18. 𝑥𝑞

2 − 1.297 × 103. 𝑥𝑞 + 2.3486 × 104 

𝑊𝑒
 = 0.0075.  𝑥𝑜 − 𝑥𝑞 . 𝑉𝑡

 − 0.2477 
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𝑉𝑜
 = 𝑉𝑡

 +𝑉𝑔  

So, to guarantee that the purposed model is good enough we will predict the model parameters 

by re-parameterising as follows: 

𝑉𝑜
 = 𝑐1 𝑥𝑞

2 − 𝑐2 𝑥𝑞 + 𝑐3  

And from (2.5), we can say that, 

𝑉𝑡
 = 𝑎.

𝑊𝑒 

 𝑥𝑜−𝑥𝑞 
+ 𝑏 

So, (2.2) becomes, 

𝑐1 𝑥𝑞
2 − 𝑐2 𝑥𝑞 + 𝑐3  = 𝐶.

𝑊𝑒 

 𝑥𝑜−𝑥𝑞 
+ 𝑏 + 𝑉𝑔  

Where, 

𝑐1 = 18, 𝑐2 =  1.297 × 103, 𝑐3  = 2.3486 × 104, 𝑎 = 0.0075 And  𝑏 = 0.2477 

Or 

𝑊𝑒
 = 

𝑐1 

𝑎 
𝑐1

𝑥𝑞
2. 𝑥𝑜 − 𝑥𝑞  +

𝑐2 

𝑎 
𝑐2

.𝑥𝑞 𝑥𝑜 − 𝑥𝑞  + 
𝑐2−𝑏 

𝑎 
𝑐3

. 𝑥𝑜 − 𝑥𝑞  +
1

𝑎 
𝑐4

.𝑉𝑔  𝑥𝑜 − 𝑥𝑞   

So, after renaming the parameters and adding the possible bias 𝑐5, we may rewrite the 

parameter model as, 

𝑊𝑒
 = 𝑐1𝑥𝑞

2. 𝑥𝑜 − 𝑥𝑞  +𝑐2.𝑥𝑞 𝑥𝑜 − 𝑥𝑞  + 𝑐3.  𝑥𝑜 − 𝑥𝑞  +𝑐4.𝑉𝑔  𝑥𝑜 − 𝑥𝑞 +  𝑐5 

Problem Description 

2.3.4 System Requirements 

 

The Norwegian government authority Norwegian Water Resources and Energy Directorate 

(NVE) provides strict regulations in order to maintain consistent and environmentally 

prospective management of water resources and contribute to the economic utilization of 

energy in Norway
1
; hence Lake Toke is also strictly constrained by NVE with certain 

operating procedures throughout the year to protect the environment and population. The 

operating procedures are the minimum and maximum water levels in meter that should be 

maintained in Lake throughout the year. These procedures are revised with different water 

levels for summer and autumn. The restrictions are governed by highest and lowest regulated 

water level as well as limit for highest and lowest regulated water level throughout a year. 

                                                 

 

1
http://www.nve.no/en/About-NVE/ 
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Moreover, there should always minimum of 4 m
3
/s of water flow in to a Dalsfoss water stream 

even if the power production is stopped either. 

Table 2-1 shows the operating procedure for Lake Toke for a year. There are different water 

level requirements according to the seasons. 

Table 2-1:Operating Procedure of Lake Toke (Thorsen, 2011) 

Date LRV  HRV ALRV AHRV 

1 Jan- 1 May 55,75 60,35 55,75 60,35 

1 May- 1 Sep 55,75 60,35 58,85 59,85 

1 Sep- 15 Sep 55,75 60,35 58,35 59,35 

15 Sep- 1 Nov 55,75 60,35 55,75 59,35 

1 Nov- 15 Nov 55,75 60,35 55,75 59,85 

15 Nov- 31 Des 55,75 60,35 55,75 60,35 

 

From the Table 2-1, we can conclude that as soon as the winter draining starts the ALRV 

increases and the AHRV decreases as the spring starts indicating flooding environment. 

Figure 2-10 shows the water level requirement from NVE for a year along with water level of 

Lake Toke in three different years (2001, 2002 & 2009). 

 

 

Figure 2-10:Requirement for water level of Lake Toke and Lake level (2001, 2002 & 2009) 

((Gøthesen et al., 2013) 
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3 Model Development & Validation 

After the exploration of information we extracted from the data and analysis of Skagerak 

Energi, our goal is to develop the model of Lake Toke and validate/calibrate the model against 

the real data obtained. In this part of my report the detailed explanation and development of 

mathematical model of Lake Toke is done. In the second part of this chapter, the developed 

model is validated/calibrated against the experimental/historical data and finally the chapter 

ends up with the accuracy measurement and precision of model. 

3.1 Introduction 

A model is a simplified system representing how the real system behaves. The model of a 

system describes how the input and output variables interact with the system and the 

surroundings. The dynamic model of a system represents the behavior and a mathematical 

model of a system that makes easier to understand and solve the model complexity. The 

mathematical model includes the mathematical equations (such as: integral equations, 

algebraic equations, ordinary and partial differential equation etc.) that reflects the overall idea 

of a system.  

I will develop mathematical model based on mechanistic model followed by simple mass 

balance/ mass conservation theory that will describe the property of dam. The model of dam is 

so developed that is based on mass balance and first principle approach. Further, we need to 

develop the system model to implement MPC algorithm: which is the core part of this work. 

3.2 Model Description 

We have already mentioned that we have considered two level measurements 𝑕1 and 𝑕2 for 

Lake Toke thus we consider two compartments (upper compartment having index 1 with 

water level 𝑕1 and lower compartment having index 2 with height 𝑕2); so we will have two 

models for the lake. The main water inflow is supplied to the upper compartment𝑕1 and rest 

of the minimal flow is channeled to the lower compartment𝑕2 as shown in the Figure 3-1.The 

flood gate is used to control the out flow of lower compartment𝑕2which ultimately passes 

through the hydropower turbine (𝑉𝑡
 ) and radial flood gate flow (𝑉𝑔 ) when the turbine flow 

𝑉𝑡
 = max 𝑉𝑜

 , 36 𝑚3/𝑠. The gate is only opened when this condition is achieved; it is 

obvious that we are working on the flood control so we generally expect 𝑉𝑔  and hopefully we 

can develop the model for flood gate as well as for the whole system and then implement 

MPC algorithm for control purpose. 



 24 

3.2.1 Model Summary & Model Parameters 

Working on the model development, Skagerak Energi has provided us the various parameters 

of Lake Toke model. Using these parameters and operating conditions to validate the model, 

we will develop and validate the models. The parameters for the Lake Toke is presented in 

Table 3-1 and the operating conditions for validating model is given in Table 3-2. The 

operating conditions are set to validate the developed models and based on the simulation 

results obtained by (Lie, 2014).  

Table 3-1: Parameters for Lake Toke 

Parameter Value Unit Comment 

𝜶 0.05 - Fraction of surface area in compartment 2 

β 0.02 - Fraction of inflow to compartment 2 

𝑲𝟏𝟐 800 - Flow coeffecient  at Merkebekk 

𝑪𝒅 1 - Discharge coeffecient, Dalsfoss gate 

𝒘 11.2 m Width of Dalsfoss gate 

𝒉𝒈
𝒎𝒂𝒙 5.6 m Maximum opening height of Dalsfoss gate 

𝒙𝑯𝑹𝑽
𝒎𝒂𝒙 60.35 m Maximum high regulated level value 

𝒙𝑳𝑹𝑽
𝒎𝒊𝒏 55.75 m Minimum low regulated level value 

 

Table 3-2: Operating conditions for validating model 

Quantity Value Unit Comment 

𝒉𝟏 (𝒕 = 𝟎) 2.5 m Initial level, compartment 1 

𝒉𝟏 (𝒕 = 𝟎) 2.5 m Initial level, compartment 2 

𝑽𝒊
  - m

3
/s Inlet flow jumps from 400 m

3
/s to 24 m

3
/s after 25 × 103𝑠 

𝒉𝒈 - m Gate opening jumps from 0.5𝑕𝑔
𝑚𝑎𝑥  to 𝑕𝑔

𝑚𝑎𝑥  after 25 × 103𝑠 

𝑽𝒕
  36 m

3
/s Volumetric flow through turbines 
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In brief, we sum up the models for the Lake Toke
2
: 

We have already discussed that; the best model can be obtained by including the third 

compartment flow through straume. However, in this work we couldn‟t include third 

compartment and the developed model may not be perfect but we find the solution based on 

these two models. Hence the possible model for two-compartment of Lake Toke is, 

𝑑𝑕1

𝑑𝑡
=

1

 1 − 𝛼 𝐴 𝑕1 
  1 − 𝛽 𝑉𝑖

 − 𝑉12
   

 

𝑑𝑕2

𝑑𝑡
=

1

𝛼𝐴 𝑕2 
 𝛽𝑉𝑖

 − 𝑉 𝑡 − 𝑉𝑔 + 𝑉12
   

 

The area of the Lake is given by a filling curve𝐴 𝑕 , 

𝐴 𝑕 = 28 × 106 . 1.1. 𝑕
1

10 , 

The inter compartmental flow 𝑉12
  is given by, 

𝑉12
 =  𝐾12 𝑕1 − 𝑕2  |(𝑕1 − 𝑕2|, 

The gate flow 𝑉𝑔  is given by, 

𝑉𝑔 =  𝐶𝑑 . 𝑤. min⁡(𝑕𝑔 , 𝑕2) 2𝑔𝑚𝑎𝑥 (𝑕2, 0), 

And the turbine flow 𝑉𝑡
  is given by, 

𝑉𝑡
 = max 𝑉𝑜

 , 36  𝑚3/𝑠 

 

 

 

 

3.3 Model Development 

Figure 3-1 is a geometry of possible  layout of model of lake Toke developed by (Lie, 2013a). 

The water inflow (𝑉𝑖)  in a lake is divided in to two compartments. The main portion of inflow 

(1 − 𝛽)𝑉𝑖
  flows in the upper compartment and the minor portion of inflow (𝛽𝑉)𝑖

  flows to the 

lower compartment. As indicated in the figure 3.1, the flow between two compartments is𝑉12
 . 

The input to the compartment 2 is 𝑉12
  and minor inflow (𝛽𝑉𝑖

 )  resulting the gate flow (𝑉𝑔)  and 

                                                 

 

2
Model based on a SkagerakEnergi report developed by Bjørn Glemmestad from TUC with necessary 

modification 



 26 

turbine flow(𝑉𝑡) . We assume 𝛼as the fraction of surface area in compartment 2 and 𝛽 as the 

fraction of inflow to compartment 2 whereas  𝑉𝑕=0 is the water volume below 𝑕 = 0 in [m
3
]. 

The lowest regulated value is 𝑥𝐿𝑅𝑉
𝑚𝑖𝑛 = 55.75 𝑚 above the sea level and the highest regulated 

value is 𝑥𝐻𝑅𝑉
𝑚𝑎𝑥 = 60.35 𝑚 above sea level. 𝑕 [m] Is the water level above the datum line i.e 

𝑥 = 𝑥𝐿𝑅𝑉
𝑚𝑖𝑛  and𝑕 0, 𝑕𝑚𝑎𝑥   𝑚 .  

Hence, during the simulation of models, we deal with the actual height (relative values) of 

𝑕1and𝑕2.  Skagerak have provided us values of water level at Merkebekk  𝑥𝑜 , water level at 

Dalsfoss  𝑥𝑢 and Quay Level 𝑥𝑞 , hence it is a good idea to use relative value for water 

level:  

Water level at Merkebekk, 𝑕1 =  𝑥𝑜 − 𝑥𝐿𝑅𝑉
𝑚𝑖𝑛 , 

Water level at Dalsfoss Dam, 𝑕2 =  𝑥𝑞 − 𝑥𝐿𝑅𝑉
𝑚𝑖𝑛 , and 

Maximum regulated level, 𝑕𝑚𝑎𝑥 = 𝑥𝐻𝑅𝑉
𝑚𝑎𝑥 − 𝑥𝐿𝑅𝑉

𝑚𝑖𝑛 = 4.6 𝑚 

 

Figure 3-1: Possible layout of model of Lake Toke 
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3.3.1 Assumptions and Clarifications 

 The developed models are based on general mass balance equation and are valid for 

standard chemical reactions. Lake Toke is assumed to be perfectly stirred tank having 

plane surface. 

 The model assumes that the mass flow 𝑚  is slowly varying quantity. 

 Density and temperature are assumed to be constant and is homogenous in the volume. 

 The states of the system are 𝑥 =  𝑕1, 𝑕2 , inputs are 𝑢 = (𝑕𝑔,𝑉𝑖
 , 𝑉𝑡

 ) and parameters are 

𝜃 =  𝛼, 𝛽, 𝑤, 𝐶𝑑 . 

 The obtained models are non linear models; linearization and discretization are done 

further in later. 

3.3.2 Model for h1& h2 

We start to develop the model based on simple mass balance. The general mass balance is 

given by, 

𝑑𝑚

𝑑𝑡
= 𝑚𝑖 − 𝑚𝑜  

Assuming constant density with respect to time, 

𝑚 = 𝜌𝑉 And 𝑚 = 𝜌𝑉  

So, we obtain, 

𝑑𝑉

𝑑𝑡
 = 𝑉𝑖

 − 𝑉𝑜
  

We know, the relation between volume and level is, 

 

𝑉 = 𝐴. 𝑕, 

Or,  
𝑑𝑉

𝑑𝑕
= 𝐴(𝑕) 

Hence, 

𝑑𝑉 = 𝐴 𝑕 𝑑𝑕 

Finally we get, 

𝑑𝑕

𝑑𝑡
 =

1

𝐴 𝑕 
(𝑉𝑖

 − 𝑉𝑜
 ) 

According to Figure 3-1, the input (𝑉𝑖)  to the compartment 1 is  1 − 𝛽 𝑉𝑖
  , output is 𝑉12

  and 

the surface area to be  1 − 𝛼 𝐴 𝑕1  . So, we find the model for compartment 1, 

 

𝑑𝑕1

𝑑𝑡
=

1

 1 − 𝛼 𝐴 𝑕1 
  1 − 𝛽 𝑉𝑖

 − 𝑉12
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Similarly for compartment 2, the input is (𝛽𝑉𝑖
 +𝑉12

 ), output is (𝑉𝑡
 + 𝑉𝑔 )and the surface area to 

be 𝛼𝐴 𝑕2   hence the model becomes, 

𝑑𝑕2

𝑑𝑡
=

1

𝛼𝐴 𝑕2 
 𝛽𝑉𝑖

 − 𝑉 𝑡 − 𝑉𝑔 + 𝑉12
   

 

Figure 3-2: Levels 𝑕1, 𝑕2 in two compartments, 𝑕𝑔𝑚𝑎𝑥 with given parameters and operational 

conditions in initial states (𝑕1(t=0)=2.5, 𝑕2 (t=0)=2.5 ) at time period 40000 sec 

 

We have done the simulation of nominal model under the given operational conditions for 

validating the model of Lake Toke. We started the system in initial states as in Table 3-2,  

𝑕1 𝑡 = 0 = 2.5 𝑚 and 𝑕2 𝑡 = 0 = 2.5 𝑚 and shows somehow reasonable effect to follow 

the steady state as in figure 3-3. Figure 3-2 is the level variations of 𝑕1,𝑕2and 𝑕𝑔
𝑚𝑎𝑥  with given 

parameters and operational conditions. Time used to simulate the models is 40,000 seconds  

11.1 hours. Analyzing Figure 3-2, the output of th system, h1 i.e. level at compartment 1 , the 

level at Merkebekk seeks the same pattern as in past and seems controlled enough. 

Figure 3-3 is the level variation of 𝑕1,𝑕2and 𝑕𝑔
𝑚𝑎𝑥  with given parameters and operational 

conditions in steady state with in the same time i.e. 40,000 seconds.  

The steady state values for h1 and h2 are found by equating the derivatives 
𝑑𝑕1

𝑑𝑡
 and 

𝑑𝑕2

𝑑𝑡
to zero 

and simplifying the equation. We find the steady state values around,𝑕1,𝑠𝑠 = 5.4 𝑚 and 
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𝑕2,𝑠𝑠 = 4.75 𝑚 by matematical calculations. The simulation of steady state seems to have 

quiet similar behavior as in initial state except some more variations in h1 and h2.  

The simulation time really differs the system dynamics resulting slow system behavior, thus 

we can use e.g. hours or days as time unit. Though we have not done this in this simulation, 

we only used seconds as time. 

 

 

Figure 3-3: Levels 𝑕1, 𝑕2 in two compartments, 𝑕𝑔  &𝑕𝑔𝑚𝑎𝑥  with given parameters and 

operational conditions in steady state (h1(t=0)=5.4, h2(t=0)=4.75 ) at time period 40000 sec 

 

It is of great importance that the simulation time really differs the behavior of system. Hence, 

we need to re-simulate the system with more longer time span of 10
5
 or even more longer time 

span 10
6
 to see more specific behavior of the models. Using these different simulation times, 

we can estimate the time constants for the models. Figure 3-4 is the simulation of levels 

variations of 𝑕1, 𝑕2and 𝑕𝑔
𝑚𝑎𝑥  with given parameters and operational conditions. Time used to 

simulate the models is 105 seconds  28.7 hours.  

Similarly, Figure 3-5 is the simulation of levels variations of 𝑕1, 𝑕2and 𝑕𝑔
𝑚𝑎𝑥  with given 

parameters and operational conditions. Time used to simulate the models is 106 seconds  

11.6 days. 

The time constant can be found by calculating the pure real, negative Eigen value (). For a 

system with single, negative Eigen value, the time constant is the length of time from a 

change in the system until new the system reaches to the new steady state making a tangent to 

the initial response (Lie, 2013b).  
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In Figure 3-3, we can approximate the time constant in level h2 (red line). The time constant 

of around 1600-200 seconds  28-30 minutes can be seen around 24500-26500 seconds. 

Similarly, in figure 3-5, we can see the time constants in both of the levels h1 and h2 (because 

both of the curves follows same pattern) at around 50000- 400000 seconds i.e. 350000 

seconds  4 days. These estimations are quiet uncertain and require further analysis to find 

more accurate values. 

 

 

Figure 3-4: Levels 𝑕1, 𝑕2 in two compartments, 𝑕𝑔  &𝑕𝑔𝑚𝑎𝑥  with given parameters and 

operational conditions  at time period 100000 sec. i.e. 28.7hr 
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Figure 3-5: Levels 𝑕1, 𝑕2 in two compartments, 𝑕𝑔  &𝑕𝑔𝑚𝑎𝑥  with given parameters and 

operational conditions  at time period 1000000 sec. i.e. 11.6 days 

 

3.3.3 Model for 𝑉12
  

The flow between compartment 1 and compartment 2 i is given by 𝑉12
 : 

𝑉12
 =  𝐾12 𝑕1 − 𝑕2  |(𝑕1 − 𝑕2|, 

The expression to 𝑉12
 is based on the model to some extent uncertain data. 

Figure 3-6 shows the change in input/disturbance 𝑉𝑖𝑛
  , intercompartmental flow 𝑉12

   and gate 

flow 𝑉𝑔  at time span of 40000 seconds i.e. 11.1 hours. In steady state  1 − 𝛽 𝑉𝑖𝑛
 = 𝑉12

 and 

𝑉12
 = 𝑉𝑡

 +𝑉𝑔 . According to Figure 3-6, we can see that in steady state 𝑉𝑔  is much lower than 

𝑉𝑖𝑛
  beacuse of the constant turbine flow 𝑉𝑡

  and the inflow 𝛽𝑉𝑖𝑛
  directly flows to the 

compartment 2. Similarly, the inter-compartmental flow 𝑉12
  is less than 𝑉𝑖𝑛

  beacuse fraction 

of inflow 𝛽𝑉𝑖𝑛
  is diverted to compartment 2 directly. The inflow 𝑉𝑖𝑛

  is constant with value 400 

m
3
/s throughout the simulation. 
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Figure 3-6: Simulation of inter compartmental flow 𝑉12
 , along with gate flow 𝑉𝑔  and 

disturbance flow 𝑉𝑖𝑛
  in steady state. Time span: 40000 seconds, i.e. 11.1 hr 

 

 

Figure 3-7: Simulation of inter compartmental flow 𝑉12
 , along with gate flow 𝑉𝑔  and 

disturbance flow 𝑉𝑖𝑛
  in steady state. Time span: 100000 seconds, i.e. 28.7hr 
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Figure 3-7 shows the step change in input/disturbance  𝑉𝑖𝑛
  , intercompartmental flow 𝑉12

   and 

gate flow 𝑉𝑔  at time span of 100000 seconds i.e. 28.7 hours. We already stated that in steady 

state  1 − 𝛽 𝑉𝑖𝑛
 = 𝑉12

 and 𝑉12
 = 𝑉𝑡

 +𝑉𝑔 . According to Figure 3-8, we can see that flow 𝑉𝑔  and 

𝑉12
 are lower than 𝑉𝑖𝑛

   until 25000 seconds beacuse of the constant turbine flow 𝑉𝑡
  and the 

inflow 𝛽𝑉𝑖𝑛
  directly flows to the compartment 2 in steady state but after 25000 seconds, both 

flows 𝑉𝑔  and 𝑉12
  suddenly jumps for a while and then decreases slowly. The inflow 𝑉𝑖𝑛

  is 

constant at 400 m
3
/s until 50000 seconds and then jumps down around 24 m

3
/s after 50000 

seconds. 

 

 

Figure 3-8: Simulation of inter compartmental flow 𝑉12
 , along with gate flow 𝑉𝑔  and 

disturbance flow 𝑉𝑖𝑛
  in steady state. Time span:1000000 seconds, i.e. 11.6 days 

 

3.3.4 Free Flood gate &Model for 𝑉𝑔  

The outflow from compartment 2 partially goes through hydro power turbine (𝑉𝑡
 ) and through 

a radial flood gate (𝑉𝑔 ) when needed. The sketch of radial flood gate is shown in Figure 3-9. 

The flow through a gate is assumed to be ‟free flow‟ since the downstream surface from gate 

is not higher than the level of gate. 
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Figure 3-9: Sketch of free flood gate (Lie, 2014) 

 

A model for the free flow gate is based on Bernoulli‟s law. We can find the model as (Lie, 

2014), 

𝑉𝑔 =  𝐶𝑑 . 𝑤. min 𝑕𝑔 , 𝑕2  2𝑔 max 𝑕2, 0  

Where 𝐶𝑑  is the discharge coeffecient and may varies with operating conditions. In our case 

the discharge coeffecient becomes 𝐶𝑑1. 

Figure 3-10 is the gate opening 𝑕𝑔at time stamp 40000 seconds  11.1 hours. The gate 

opening 𝑕𝑔remains stable at around 2.8 m until 25000 seconds and then jumps to the 

maximum opening of gate i.e 5.6 meters. 

Figure 3-11 is the applied gate opening 𝑕𝑔at time stamp 100000 seconds  28.7 hours. 

 

Figure 3-10: Simulation of gate opening 𝑕𝑔  at time span 40000 sec. 
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Figure 3-11: Simulation of gate opening 𝑕𝑔at time span 28.7 hours 

 

Figure 3-12:Simulation of gate opening 𝑕𝑔at time span 11.6 days 

Figure 3-12 is the applied gate opening 𝑕𝑔at time span 11.6 days. 
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3.3.5 Surface Area of Lake Toke 

The surface area (𝐴) for Lake Toke is scaled between height and volume of lake as shown in 

Figure 3-13, normally known as filling curve. We have given, 

𝑉 𝑕 =  28 × 106 . 𝑕1.1 

We know, the relation between Volume, Area and level is, 

 

𝑉 = 𝐴. 𝑕, 

or,  
𝑑𝑉

𝑑𝑕
= 𝐴(𝑕) 

 

So, from filling curve, we find the surface area 𝐴 𝑕 , 

 

𝐴 𝑕 =
𝑑𝑉

𝑑𝑕
=  28 × 106 . 1.1. 𝑕

1

10 , 

 

 

Figure 3-13: Simulation of surface area (A) as function of level h. 
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3.4 Linearization 

The models until now we have discussed in above sections are nonlinear model that contains 

the function of dependent variables. The developed nonlinear model of our system describes 

the behavior of the lake Toke model but may not find the exact solution to predict the future 

behavior of the system and might be complex to interpret how well our system interacts with 

the nonlinear model whereas, in linear system it is relatively easier to predict the future 

behavior and nature of the system.  

To find a linear model, we will in this section perform a linear analysis from the nonlinear 

model. Around the nominal value (operating point), we need a linear model to describe the 

nature of the system. 

 

3.4.1 Linear Analysis 

For a nonlinear system, the operating point 𝑥𝑜 𝑡 ,  𝑢𝑜 𝑡  and  𝑦𝑜 𝑡  must satisfy the nonlinear 

differential equation, 

𝑑𝑥𝑜

𝑑𝑡
= 𝑓(𝑥𝑜 , 𝑢𝑜 ;  𝜃) 

𝑦𝑜 = 𝑔(𝑥𝑜 , 𝑢𝑜 ;  𝜃) 

The operating point can normally be find by choosing the value of  𝑢𝑜 𝑡  and then simplifying 

differential equation to find 𝑥𝑜 𝑡  and  𝑦𝑜 𝑡 . If we have a constant input ( steady input), the 

analysis becomes much more simpler because at infinite time, the nonlinear model reaches to 

a steady state which gives constant output  𝑦𝑠and then we can find the solution to steady state 

𝑥𝑠 equating differential term 
𝑑𝑥𝑜

𝑑𝑡
= 0 =  𝑓(𝑥𝑜 , 𝑢𝑜 ;  𝜃) 

Then, expanding the differential term using Talyor‟s series expansion around operating point, 

the differential nonlinear equations becomes, 

𝑑𝑕1

𝑑𝑡
= 𝑓1 𝑕1, 𝑕2 , 𝑉𝑖

  

≈ 𝑓1 𝑕1
𝑜 , 𝑕2

𝑜 , 𝑉𝑖
𝑜  +  𝜕𝑓1

𝜕𝑕1
 
𝑜

 𝑕1 − 𝑕1
𝑜 +  𝜕𝑓1

𝜕𝑕2
 
𝑜

 𝑕2 − 𝑕2
𝑜 +  𝜕𝑓1

𝜕𝑉𝑖
 
 
𝑜

 𝑉𝑖
 − 𝑉𝑖

𝑜  

+ 𝑕𝑖𝑔𝑕𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑡𝑒𝑟𝑚𝑠(𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑) 

And 
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𝑑𝑕2

𝑑𝑡
= 𝑓2 𝑕1 , 𝑕2, 𝑉𝑖

 , 𝑉𝑡
 , 𝑕𝑔 

≈ 𝑓2 𝑕1
𝑜 , 𝑕2

𝑜 , 𝑉𝑖
𝑜 , 𝑉𝑡

𝑜 , 𝑕𝑔
𝑜  +  𝜕𝑓2

𝜕𝑕1
 
𝑜

 𝑕1 − 𝑕1
𝑜 +  𝜕𝑓2

𝜕𝑕2
 
𝑜

 𝑕2 − 𝑕2
𝑜 

+  𝜕𝑓2

𝜕𝑉𝑖
 
 
𝑜

 𝑉𝑖
 − 𝑉𝑖

𝑜  +  𝜕𝑓2

𝜕𝑉𝑡
 
 
𝑜

 𝑉𝑡
 − 𝑉𝑡

𝑜  +  𝜕𝑓2

𝜕𝑕𝑔
 
𝑜

 𝑕𝑔 − 𝑕𝑔
𝑜 

+ 𝑕𝑖𝑔𝑕𝑒𝑟 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑡𝑒𝑟𝑚𝑠(𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑) 

 

We assume, the operating point satisfies the nonlinear model, then 

𝑓1 𝑕1 , 𝑕2, 𝑉𝑖
  =

𝑑𝑕1
𝑜

𝑑𝑡
 

And, 

𝑓2 𝑕1 , 𝑕2 , 𝑉𝑖
 , 𝑉𝑡

 , 𝑕𝑔 =
𝑑𝑕2

𝑜

𝑑𝑡
 

So, now rearranging the Taylor‟s series approximation we have, 

𝑑

𝑑𝑡
 𝑕1 − 𝑕1

𝑜 =  𝜕𝑓1

𝜕𝑕1
 
𝑜
 𝑕1 − 𝑕1

𝑜 +  𝜕𝑓1

𝜕𝑕2
 
𝑜
 𝑕2 − 𝑕2

𝑜 +  𝜕𝑓1

𝜕𝑉𝑖 
 
𝑜
 𝑉𝑖

 − 𝑉𝑖
𝑜  , 

and 

𝑑

𝑑𝑡
 𝑕2 − 𝑕2

𝑜 =  𝜕𝑓2

𝜕𝑕1
 
𝑜

 𝑕1 − 𝑕1
𝑜 +  𝜕𝑓2

𝜕𝑕2
 
𝑜

 𝑕2 − 𝑕2
𝑜 +  𝜕𝑓2

𝜕𝑉𝑖
 
 
𝑜

 𝑉𝑖
 − 𝑉𝑖

𝑜  +  𝜕𝑓2

𝜕𝑉𝑡
 
 
𝑜

 𝑉𝑡
 − 𝑉𝑡

𝑜  

+  𝜕𝑓2

𝜕𝑕𝑔
 
𝑜

 𝑕𝑔 − 𝑕𝑔
𝑜  

Let us define the deviations from the operating points 𝛿𝑥, 𝛿𝑢 and 𝛿𝑦 as, 

𝛿𝑥 ≜ 𝑥 − 𝑥𝑜 , 𝛿𝑢 ≜ 𝑢 − 𝑢𝑜  and 𝛿𝑦 ≜ 𝑦 − 𝑦𝑜  and similarly we define the deviation of heights 

𝑕1 and 𝑕2 form the operating point as well as for 𝑕𝑔 , 𝑉𝑖
  and 𝑉𝑡

  as 𝛿𝑕1, 𝛿𝑕2, 𝛿𝑕𝑔 , 𝛿𝑉𝑖
  and , 𝛿𝑉𝑡

 . 

Then we find, 

𝑑

𝑑𝑡
𝛿𝑕1 =  𝜕𝑓1

𝜕𝑕1
 
𝑜

𝛿𝑕1 +  𝜕𝑓1

𝜕𝑕2
 
𝑜

𝛿𝑕2 +  𝜕𝑓1

𝜕𝑉𝑖
 
 
𝑜

𝛿𝑉𝑖
  

𝑑

𝑑𝑡
𝛿𝑕2 =  𝜕𝑓2

𝜕𝑕1
 
𝑜

𝛿𝑕1 +  𝜕𝑓2

𝜕𝑕2
 
𝑜

𝛿𝑕2 +  𝜕𝑓2

𝜕𝑉𝑖
 
 
𝑜

𝛿𝑉𝑖
 +  𝜕𝑓2

𝜕𝑉𝑡
 
 
𝑜

𝛿𝑉𝑖
 +  𝜕𝑓2

𝜕𝑕𝑔
 
𝑜

𝛿𝑕𝑔  

 

 

Finally, we can find the linear approximation as in the form of matrix and vectors (state-space 

form) that we will use in discretization and MPC application as follows, 
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𝑑

𝑑𝑡
 
𝛿𝑕1

𝛿𝑕2
 =  

 𝜕𝑓1

𝜕𝑕1
 
𝑜

 𝜕𝑓2

𝜕𝑕1
 
𝑜

 𝜕𝑓1

𝜕𝑕2
 
𝑜

 𝜕𝑓2

𝜕𝑕2
 
𝑜

  
𝛿𝑕1

𝛿𝑕2
 +  

 𝜕𝑓1

𝜕𝑉𝑖 
 
𝑜

 𝜕𝑓2

𝜕𝑉𝑖 
 
𝑜

0
 𝜕𝑓2

𝜕𝑉𝑡 
 
𝑜

0

 𝜕𝑓2

𝜕𝑕𝑔
 
𝑜

  

𝛿𝑉𝑖
 

𝛿𝑉𝑡
 

𝛿𝑕𝑔

  

The above equation is in the form of standard state space equation, 

𝑑

𝑑𝑡
 𝛿𝑥 = 𝐴𝑐 . 𝛿𝑥 + 𝐵𝑐 . 𝛿𝑢 

and, 

𝑦 = 𝐶𝑐𝛿𝑥 

Where, 

𝑥 =  
𝑕1

𝑕2
 , states of the system 

𝑢 =  

𝑉𝑖
 

𝑉𝑡
 

𝑕𝑔

  , inputs to the system 

𝛿𝑥 = 𝑥 − 𝑥𝑜 ,state deviation from operating point 

𝛿𝑢 = 𝑢 − 𝑢𝑜 , control deviation from operating point 

𝐴𝑐 =  

 𝜕𝑓1

𝜕𝑕1
 
𝑜

 𝜕𝑓2

𝜕𝑕1
 
𝑜

 𝜕𝑓1

𝜕𝑕2
 
𝑜

 𝜕𝑓2

𝜕𝑕2
 
𝑜

  

𝐵𝑐 =  

 𝜕𝑓1

𝜕𝑉𝑖 
 
𝑜

 𝜕𝑓2

𝜕𝑉𝑖 
 
𝑜

0
 𝜕𝑓2

𝜕𝑉𝑡 
 
𝑜

0

 𝜕𝑓2

𝜕𝑕𝑔
 
𝑜

  

Using our developed model for linearization, we can find the linearized model matrices 𝐴𝑐  

and 𝐵𝑐 in continuous form. The detailed mathematical calculations are shown in the appendix 

2 in this report along with MATLAB code in appendix 5. 

3.4.2 Discretization 

A linearized discrete time model can be found out by discretizing the continuous time linear 

model that we have obtained in section 3.4.1 as follows: 

𝛿𝑥𝑘+1 = 𝐴𝛿𝑥𝑘 + 𝐵𝛿𝑢𝑘  

𝛿𝑦𝑘 = 𝐶𝛿𝑥𝑘  + D𝛿𝑢𝑘  

Where A, B, C and D are now discrete-time model parameters. Considering discretization 

time 𝑇𝑠(in hours) and solving by MATLAB command using c2d () function we find 

discretized model matrix. One thing is noted during the discretization in MATLAB, that the 

discretization time 𝑇𝑠(in hours) plays an important role to decide the value of matrix; less the 

𝑇𝑠, larger the values of discretized matrix. 
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3.5 Sensitivity of Parameters  

The parameters we have used during the simulation for model are 𝛼, 𝛽, 𝐾12  and 𝐶𝑑 . Using 

these parameters, the models are simulated and validated and the model will further used in 

MPC algorithm, so these parameters plays an important role in the model accuracy. These 

parameters are quiet uncertain so we can have a sensitivity test to find the most sensitive 

parameter. The most sensitive parameter is the most important parameter that contributes in 

our model. 

In order to find the most important parameters among the 3 parameters, we change the 

parameters value by 5% of each and simulate the model one after another. The graph with 

increased parameters values for  𝛼, 𝛽, 𝐾12  are 0.0525, 0.021 & 840 respectively and the 

originally specified parameters values for  𝛼, 𝛽, 𝐾12  are 0.0525, 0.021 & 840 respectively are 

then compared. We choose order of sensitivity by observing the response of plot associated 

with each parameters; plot with more change is the most important one. 

Let us compare the response of original plot of level h1 and h2 as in Figure 3-3 with same 

simulation time i.e. 40000 seconds with the increased parameter values shown in Figure 3-14, 

Figure 3-15 and Figure 3-16. Comparing those plots, we found there is no significant change 

in levels compared with the original plot, so we consider all 3 parameters contribute equally to 

the system model and are equally important. But, doing the analysis in more details we may 

find the most sensitive parameter. 

 

 

Figure 3-14: Levels 𝑕1, 𝑕2 in two compartments with 5% (0.0525)increased 𝛼 parameter and 

operational conditions in steady state (h1(t=0)=5.4, h2(t=0)=4.75 ) at time period 40000 sec 
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Figure 3-15: Levels 𝑕1, 𝑕2 in two compartments with 5% (0.021)increased 𝛽 parameter and 

operational conditions in steady state (h1(t=0)=5.4, h2(t=0)=4.75 ) at time period 40000 sec 

  

 

Figure 3-16: Levels 𝑕1, 𝑕2 in two compartments with 5% (0.021)increased 𝐾12  parameter and 

operational conditions in steady state (h1(t=0)=5.4, h2(t=0)=4.75 ) at time period 40000 sec 
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4 Model Predictive Control (MPC) 

The approach of Model Predictive Control (MPC) has been a new benchmark in the field of 

optimal control applications since 1980‟s. Explicitly, we can say that MPC is an especial case 

of optimal control theory. A new control input vector is calculated and supplied to the system 

every time in an optimization based problem that is governed by the constraints and 

performance index.  

MPC is also known as Receding Horizon Control (RCH) because it is based on the iterative, 

finite horizon optimization of the process model and each time we get the new optimized 

value from optimization, the new control input 𝑢0
∗  is applied to the process model. Hence, the 

prediction horizon (time length) keeps being shifted towards the final horizon (the horizon 

recedes). The basic principle of MPC strategy is that the current state of the process is 

sampled at time 𝑡, and the performance index is minimized using optimization at future time 

𝑡 + 𝑇 which gives a new control input and then we repeat the same process until the final time 

𝑡𝑓𝑖𝑛𝑎𝑙 . We only apply the first value of the computed control sequence and at the next time 

step, we get the system state and the process is repeated. Figure 4-1 shows the standard MPC 

principle. 

 

 

Figure 4-1:Block diagram of MPC  algorithm 

 

  In the very first step of developing MPC algorithm, we need to define the prediction horizon 

and is normally denoted as 𝑁, and we will predict the next output using finite horizon. The 

system state is measured at time 𝑡, and the prediction through optimization solution gives the 

sequence of input 𝑈𝑇(𝑥 𝑡 ) and fed to the dynamic model. The first element of the input 

sequence is applied to the process and finds the controlled output. This step is repeated until 

the desired output is achieved. Figure 4-2 shows the basic idea of MPC receding horizon. 

Then a good performance index (𝐽) (cost function) is needed to define what we are 

controlling. Generally performance index is composed of error signal, control input and 

system constraints with their corresponding weighting matrices. 
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Figure 4-2: Illustration of receding horizon principle along with computed input sequence 

over a deifned prediction horizon. 

 

In our project, our main objective is to control flooding situations, so that the system state 𝑕1 

is to be miniminzed using MPC controller, alternatively we can say that the best control is 

acheived when we are subjected to minimize the flow through gate i.e. 𝑉𝑔  is minimum. So, in 

our perfornamce index, height of gate is kept as much as minimum because we will minimize 

control input 𝑢𝑖 , which contains 𝑕𝑔  too.  In our MPC solution, the performance index is 

limited by the dymanic model of the system. Also, the MPC controller is bounded by the 

system constraints i.e. upper and lower  regulated water levels HRV and LRV. More over, our 

MPC controller considers the possible actuator limits and inflow prediction. 

We have obtained a descritized linear model as in the form of, 

𝛿𝑥𝑘+1 = 𝐴𝛿𝑥𝑘 + 𝐵𝛿𝑢𝑘 + 𝐺𝛿𝑤𝑘                                                                      (4-1) 

𝛿𝑦𝑘 = 𝐶𝛿𝑥𝑘 + 𝐻𝛿𝑤𝑘                                                                                       (4-2) 

Where, 𝐴 matrix is a system state matrix, 𝐵 is a control input matrix 𝐺 and 𝐻 are disturbance 

matrixes in the system.  

A performance tells us how well the system behaves over the prediction horizon. We want to 

minimize the performance index as much as possible with respect to the future input control 

vector. The purposed performance index for our MPC application is based on the performance 

index suggested by (Gøthesen et al., 2013) and is defined as, 

I =
1

2
  𝑒𝑖

𝑇𝑃𝑖𝑒𝑖 + 𝑢𝑖−1
𝑇 𝑄𝑖−1𝑢𝑖−1 + 𝛿𝑢𝑖−1

𝑇 𝑅𝑖−1𝛿𝑢𝑖−1 + (𝑠𝑣)𝑖
𝑇𝑆𝑖(𝑠𝑣)𝑖 

𝑁
𝑖=1          (4-3) 

 

We are applying MPC algorithm in flood control of realistics data, hence we assume that the 

control input changes slowly. So, we replace 𝑢𝑖−1
𝑇 𝑄𝑖−1𝑢𝑖−1 with (𝑢𝑖−1 − 𝑢𝑖−2)𝑇𝑄𝑖−1(𝑢𝑖−1 −

𝑢𝑖−2) during the calculations. 

The performance index consists the optimization parameters of error between reference signal 

and predicted output, control input, rate of change of control input and constraints (soft 

constraint with slack variable) and is always positive. According to our performance index in 

(4-3), the first element 𝑒𝑖 ,  is subjected to minimize the error as, 

𝑒𝑖 = 𝑟𝑖 − 𝑦𝑖                                                                                                        (4-4) 
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Where,  

𝑟 is a reference signal and 𝑦 is predicted output. The reference signal is a value betweeen the 

allowed regulated water level i.e HRV and LRV, 

r = LRV + 𝑎((HRV) − (LRV)), a is a parameter for selecting 𝑟 and is a positive value 

between 0 and 1. 

Similarly, the second term 𝑢𝑖−1 , reflects the input control to the process,the third term reflects 

the rate of change of control input vector as, 

𝛿𝑢𝑖−1 = 𝑢𝑖−1 − 𝑢𝑖−2                     (4-5) 

The control input and rate of change of control input (control deviation) must be in same state. 

Finally, the last term (𝑠𝑣)𝑖 , in our performance index illustrates the system soft constraints 

with slack variable that is to be optimized during the MPC application. The constrains we 

have applied in our application are equality and inequality costraints and will be discussed in 

next section. 

𝑃, 𝑄, 𝑅  and S are the weighting matrices of correponding parameters and are users defined 

values and normally obtained by tuning. The values of weighing matrices  must be in control 

between robustness and control performance. We have used the numerical values 10, 10, 10 

and 1 of 𝑃, 𝑄, 𝑅  and S respectively in MATLAB solution. 

4.1 Optimal control and Quadratic Programming (QP) 

Optimal control deals with the problem of finding a control law for a given system such that a 

certain optimality criterion is achieved. A control problem includes a cost function that is 

a function of state and control variables. An optimal control is a set of differential 

equations describing the paths of the control variables that minimize the cost 

function(Wikipedia, 2014a). 

The purposed performance index 𝐼 in our case has quadratic terms, and hence we require 

quadratic programming to solve the performance index. QP has computational capability of 

controlled variable from a linear model to minimize quadratic performance index subjected to 

constraints over a defined prediction horizon. 

So, rephrasing the above performance index in equation (4-3) to a standard form for QP, 

𝐼 =
1

2
𝑧𝑇𝐻𝑧 + 𝑐𝑇𝑧                                                                                               (4-6) 

Subjceted to the constraints, 

 

𝐴𝑒𝑧 = 𝑏𝑒

𝐴𝑖𝑧 ≤ 𝑏𝑖

𝑧𝑙 ≤ 𝑧 ≤ 𝑧𝑢

                                                                                                       (4-7) 

Where,  
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𝐻 is known as Hessian matrix and is symmetric positive definite (𝐻 > 0), constant diagonal 

matrix. 

𝑐 is a column matrix of independent sequence of unknown present and future inputs and 

outputs and is defined by the model with known inputs and outputs. We define 𝑐 matrix as, 

 

𝑐𝑇 =  𝑐1
𝑇 , 𝑐2

𝑇 , 𝑐3
𝑇  , 𝑐4

𝑇 , 𝑐5
𝑇 , 𝑐6

𝑇 , 𝑐7
𝑇 ,       𝑐 ∈ 0𝑁.(3𝑛𝑢 +.3𝑛𝑦 +.𝑛𝑥 )                   

𝑐 Matrix is zero in our particular condition because the performance index does not include 

any of the linear terms. 

 

 

𝑧 is a vector of unknowns for QP of the model and is assumed as, 

𝑧𝑇 =

 
 
 
 
 

 
 
 
 

𝑢𝑇 = (𝑢1
𝑇 , …… , 𝑢𝑁

𝑇 ),          𝑢 ∈ ℝ𝑁.𝑛𝑢 ×1

𝛿𝑢𝑇 = (𝛿𝑢1
𝑇 , … … , 𝛿𝑢𝑁

𝑇 ),       𝛿𝑢 ∈ ℝ𝑁.𝑛𝑢 ×1

𝑒𝑇 = (𝑒1
𝑇 , … … , 𝑒𝑁

𝑇),       𝑒 ∈ ℝ𝑁.𝑛𝑦 ×1

𝑦𝑇 = (𝑦1
𝑇 , … … , 𝑦𝑁

𝑇),       𝑦 ∈ ℝ𝑁.𝑛𝑦 ×1

𝑥𝑇 = (𝑥1
𝑇 , … … , 𝑥𝑁

𝑇 ),       𝑥 ∈ ℝ𝑁.𝑛𝑥 ×1

𝑠𝑣
𝑇 = (𝑠𝑣1

𝑇 , … … , 𝑠𝑣𝑁
𝑇 ),       𝑥 ∈ ℝ𝑁.𝑛𝑦 ×1

𝑣𝑡
𝑇 = (𝑣𝑡1

𝑇 , … … , (𝑣𝑡𝑁
𝑇 ),       𝑥 ∈ ℝ𝑁.𝑛𝑢 ×1

                                       (4-8) 

We can represent 𝑧𝑇  as, 

𝑧𝑇 =  𝑢𝑇 , 𝛿𝑢𝑇 , 𝑒𝑇  , 𝑦𝑇 , 𝑥𝑇 , 𝑠𝑣
𝑇 , 𝑣𝑡

𝑇 ,       𝑧 ∈ ℝ𝑁.(3𝑛𝑢 +.3𝑛𝑦 +.𝑛𝑥 )                    (4-9) 

Where, 

𝑢𝑇  is a sequence of control input over a prediction horizon 𝑁.Similarly, 𝛿𝑢𝑇 is a sequence of 

deviation of control input, 𝑒𝑇  is a sequence of error, 𝑦𝑇  is a sequence of predicted output, 𝑥𝑇  

is a sequence of states, 𝑠𝑣
𝑇  is a sequence of soft constraints and 𝑣𝑡

𝑇 is a sequence of values of 

predicted turbine flow 𝑉𝑡
 . Thogh we have developed a prediction model for 𝑉𝑡

 in earlier 

chapters ( and may not need to compute again in MPC), we are still interested to find 𝑉𝑡
  

because QP give more presice value for 𝑉𝑡
  in this contex. 

Let us assume that the initial vaules  𝑢0 , 𝑥1 , 𝑟1 …… , 𝑟𝑁 are known, then the performance index 

in equation (4-6) can be in the following form, 

𝐼 =
1  

2

 
 
 
 
 
 
𝑢
𝛿𝑢
𝑒
𝑦
𝑥
𝑠𝑣

𝑣𝑡  
 
 
 
 
 
𝑇

 
 
 
 
 
 
 
𝐻11 0 0 0 0 0 0

0 𝐻22 0 0 0 0 0
0 0 𝐻33 0 0 0 0
0 0 0 𝐻44 0 0 0
0 0 0 0 𝐻55 0 0
0 0 0 0 0 𝐻66 0
0 0 0 0 0 0 𝐻77 

 
 
 
 
 
 

 
 
 
 
 
 
𝑢
𝛿𝑢
𝑒
𝑦
𝑥
𝑠𝑣

𝑣𝑡  
 
 
 
 
 

 +   

 
 
 
 
 
 
 
𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

𝐶7 
 
 
 
 
 
 
𝑇

 
 
 
 
 
 
𝑢
𝛿𝑢
𝑒
𝑦
𝑥
𝑠𝑣
𝑣𝑡  

 
 
 
 
 

        (4-10) 

              z                                       H                                     z            c       z 

Expanding equation (4-10) and putting 𝑐 = 0, we get 
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𝑧𝑇𝐻𝑧 = 𝑢𝑇𝐻11𝑢 + 𝛿𝑢𝑇𝐻22𝛿𝑢 + 𝑒𝑇𝐻33𝑒 + 𝑦𝑇𝐻44𝑦 + 𝑥𝑇𝐻55𝑥 + 𝑠𝑣
𝑇𝐻66𝑠𝑣 + 𝑣𝑡

𝑇𝐻77𝑣𝑡   (4-

11)           

Hence after simplification we define the elements of Hessan matrix, 

𝑢𝑇𝐻11𝑢 =  

𝑢1

⋮
𝑢𝑁

 

𝑇

 
𝑄 … 0
⋮ ⋱ ⋮
0 … 𝑄

  

𝑢1

⋮
𝑢𝑁

                     ⇒  𝐻11 = 𝐼𝑁 ⊗ 𝑄 

𝛿𝑢𝑇𝐻22𝛿𝑢 =  
𝛿𝑢1

⋮
𝛿𝑢𝑁

 

𝑇

 
𝑅 … 0
⋮ ⋱ ⋮
0 … 𝑅

  
𝛿𝑢1

⋮
𝛿𝑢𝑁

           ⇒  𝐻22 = 𝐼𝑁 ⊗ 𝑅 

𝑒𝑇𝐻33𝑒 =  

𝑒1

⋮
𝑒𝑁

 

𝑇

 
𝑃 … 0
⋮ ⋱ ⋮
0 … 𝑃

  

𝑒1

⋮
𝑒𝑁

                     ⇒  𝐻33 = 𝐼𝑁 ⊗ 𝑃                  (4-13) 

𝐻44 = 𝐼𝑁 ⊗ 0𝑛𝑦                                                      ⇒ 𝐻44 = 0𝑁.𝑛𝑦   

             𝐻55 = 𝐼𝑁 ⊗ 0𝑛𝑥                                         ⇒ 𝐻55 = 0𝑁.𝑛𝑥   
                                         

 

𝑒𝑠𝑣
𝑇𝐻66𝑠𝑣 =  

𝑠𝑣

⋮
𝑠𝑣𝑁

 

𝑇

 
𝑆 … 0
⋮ ⋱ ⋮
0 … 𝑆

  

𝑠𝑣

⋮
𝑠𝑣𝑁

             ⇒  𝐻66 = 𝐼𝑁 ⊗ 𝑆   

             𝐻77 = 𝐼𝑁 ⊗ 0𝑛𝑢                                    ⇒ 𝐻55 = 0𝑁.𝑛𝑢   

  

 

In equation (4-13), the output (𝑦𝑇𝐻44𝑦) and input  (𝑥𝑇𝐻55𝑥) terms becomes zero, so 𝐻44  and 

𝐻55  elements are zero. 

Finally, the Hessan matrix is represented as, 

𝐻 = 𝑑𝑖𝑎𝑔 𝐻11 , 𝐻22 , 𝐻33 , 𝐻44 , 𝐻55 , 𝐻66 , 𝐻77                                                       (4-14) 

4.2 Constraints handling 

While developing the MPC solution, the system model is bounded by constraints. We have 

already discussed that the cost function is subjected  the constraints either equality constriant 

or inequality constriant.  

4.2.1 Equality Constraints 

The equality constraint is applied to the linear model of the system, which includes the input 

and output. We have developed equality constraints according to the unknown we have 

defined in equation (4-8). 

The equality constraint is represented as, 

𝐴𝑒𝑧 = 𝑏𝑒                                                                   

Rearranging equation (4-2), up to 𝑁 terms, we find the kronical form as in equation (4-16), 
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𝛿𝑦1 = 𝐶𝛿𝑥1 + 𝐻𝛿𝑤1

𝛿𝑦2 − 𝐶𝛿𝑥2 = 𝐻𝛿𝑤2

⋮
𝛿𝑦𝑁 − 𝐶𝛿𝑥𝑁 = 𝐻𝛿𝑤𝑁

                                                                     (4-15) 

Now, we arrange the above expanded equation in the form of standard equality constraint, 

𝐴𝑒,11 = −𝐼𝑁 ⊗ 𝐻

𝐴𝑒,14 = 𝐼𝑁.𝑛𝑦

𝐴𝑒,15 = −𝐼𝑁,−1 ⊗ 𝐶
                                                                         (4-16) 

𝑏𝑒,1 =  𝐶𝛿𝑥1 + 𝐻𝛿𝑤1 𝐻𝛿𝑤2 … 𝐻𝛿𝑤𝑁 𝑇  

The elements presented in equation (4-16) are only the elements of first row of 𝐴𝑒  and 𝑏𝑒 , the 

other elements in first row of 𝐴𝑒  are zeros.  

Simlilarly rearranging  equation (4-1), up to 𝑖 = 1, … , 𝑁 terms, we find the kronical form as in 

equation (4-18), 

 

𝛿𝑥2 = 𝐴𝛿𝑥1 + 𝐵𝛿𝑢1 + 𝐺𝛿𝑤1

𝛿𝑥3 = 𝐴𝛿𝑥2 + 𝐵𝛿𝑢2 + 𝐺𝛿𝑤2

⋮
𝛿𝑥𝑁 = 𝐴𝛿𝑥𝑁−1 + 𝐵𝛿𝑢𝑁−1 + 𝐺𝛿𝑤𝑁−1

 ⇒

−𝐵𝛿𝑢1 + 𝛿𝑥2 = 𝐴𝛿𝑥1 + 𝐺𝛿𝑤1

−𝐵𝛿𝑢2 − 𝐴𝛿𝑥2 + 𝛿𝑥3 = 𝐺𝛿𝑤2

⋮
−𝐵𝛿𝑢𝑁−1 − 𝐴𝛿𝑥𝑁−1 + 𝛿𝑥𝑁 = 𝐺𝛿𝑤𝑁−1

  (4-17) 

Expanding equation (4-17) in the form of standard equality constraint, 

𝐴𝑒,21 = −𝐼𝑁 ⊗ 𝐵

𝐴𝑒,25 = 𝐼𝑁 ⊗ 𝐼𝑛𝑥 − 𝐼𝑁,−1 ⊗ 𝐴 = 𝐼𝑁.𝑛𝑥 − 𝐼𝑁,−1 ⊗ 𝐴

𝑏𝑒,2 =  𝐴𝛿𝑥1 + 𝐵𝛿𝑤1 𝐵𝛿𝑤2 … 𝐵𝛿𝑤𝑁−1 
𝑇

                                  (4-18) 

The elements presented in equation (4-18) are only the elements of second row of 𝐴𝑒  and 𝑏𝑒 , 

the other elements in second row of 𝐴𝑒  are zeros.  

Again, rearranging  equation (4-4), up to 𝑖 = 1, … , 𝑁 terms, we find the kronical form as in 

equation (4-20), 

𝑒1 + 𝑦1 = 𝑟1

⋮
𝑒𝑁 + 𝑦𝑁 = 𝑟𝑁

                                                                                           (4-19) 

Expanding equation (4-19) in the form of standard equality constraint, 

 

𝐴𝑒,33 = 𝐼𝑁.𝑛𝑦

𝐴𝑒,34 = 𝐼𝑁.𝑛𝑦

𝑏𝑒,3 =  𝑟1 𝑟2 … … 𝑟𝑁 𝑇
                                                                       (4-20) 

The elements presented in equation (4-20) are only the elements of third row of 𝐴𝑒  and 𝑏𝑒 , the 

other elements in third row of 𝐴𝑒  are zeros. 

Finally, rearranging  equation (4-5), up to 𝑖 = 1, … , 𝑁 terms, we find the kronical form as in 

equation (4-22), 
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−𝑢1 + 𝛿𝑢1 = −𝑢0

𝑢1 − 𝑢2 + 𝛿𝑢2 = 0
⋮
⋮

𝑢𝑁−1 − 𝑢𝑁 + 𝛿𝑢𝑁 = 0

                                                                           (4-21) 

Expanding equation (4-21) in the form of standard equality constraint, 

Ae,41 = IN,−1 ⊗ Inu − IN ⊗ Inu = IN,−1 ⊗ In − I
N.nu

Ae,42 = IN ⊗ Inu = IN.nu

be,4 =  −u0 0 … 0 N−1 ,nu 

                                (4-22) 

The elements presented in equation (4-22) are only the elements of fourth row of 𝐴𝑒  and 𝑏𝑒 , 

the other elements in fourth row of 𝐴𝑒  are zeros. 

Now, we have obtained all the values of 𝐴𝑒  and 𝑏𝑒  matrix, so putting all the sub matrices from 

equation (4-16), (4-18), (4-20) and (4-22), we find the 𝐴𝑒  and 𝑏𝑒  matrix as follows: 

𝐴𝑒

=

 
 
 
 
 

0N.nx×N.nu −𝐼𝑁 ⊗ 𝐻 0N.ny×N.nu IN×ny −𝐼𝑁,−1 ⊗ 𝐶 0N.ny×N.ny 0N.ny×N.nu

−𝐼𝑁 ⊗ 𝐵 0N.ny×N.nu 0N.nx×N.ny 0N.nx×N.ny 𝐼𝑁.𝑛𝑥 − 𝐼𝑁,−1 ⊗ 𝐴 0N.nx×N.nu 0N.nx×N.nu

0N.ny×N.nu 0N.ny×N.nu 𝐼𝑁.𝑛𝑦 𝐼𝑁.𝑛𝑦 0N.ny×N.nx 0N.ny×N.ny 0N.nu×N.nu

𝐼𝑁,−1 ⊗ 𝐼𝑛 − 𝐼𝑁.𝑛𝑢 𝐼𝑁.𝑛𝑢 0N.nu×N.xy 0N.nu×N.xy 0N.nu×N.ny 0N.nu×N.xy 0N.xu×N.nu 
 
 
 
 

 

 

𝑏𝑒 =  𝐶𝛿𝑥1 0(𝑁−1)×1 𝐴𝛿𝑥1 0(𝑁−1)×1 𝑟1 … 𝑟𝑁 −𝑢0 0(𝑁−1)×1 
𝑇
 

 

 

4.2.2 Inequality constraints & slack variables 

The MPC solution must satisfy the inequality constraint as well. We will in this section define 

the inequality constraints that the system must satisfy.  

We have a limited level of gate opening which rangers from 0 to 5.6 meters. The value of gate 

opening 𝑕𝑔𝑖  must lie in between the upper bound 𝑕𝑔𝑢 = 5.6 𝑚  and lower bound 𝑕𝑔𝑙 = 0 𝑚 . 

i.e. 𝑕𝑔𝑙 ≤ 𝑕𝑔𝑖 ≤ 𝑕𝑔𝑢                                                                                        (4-23) 

we have already discussed in previous section that the water level at Merkebekk 𝑕1 is 

regulated by NVE, and is vary from time to time. Thus, we define the water level of 

Merkebekk  𝑦𝑖,   as output constraint with in a boundary of lower limit 𝑦𝑙  and upper limit 𝑦𝑢 , 

𝑦𝑙 ≤ 𝑦𝑖 ≤ 𝑦𝑢                                                                                                      (4-24) 

If there is a access of rain fall or the extreme condition when there is long period of rain fall 

occured, then we should extend the output constraint by using slack variable in order to 

handle these situations. Now the constraint becomes soft constraint and the added slack 

varieble must be positive value, 𝑆𝑣 > 0. We can represent the soft constraint as, 
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𝑦𝑙 − 𝑆𝑣 ≤ 𝑦𝑖 ≤ 𝑦𝑢 + 𝑆𝑣                                                                                                       (4-25) 

Rearranging  equation (4-25), up to 𝑖 = 1, … , 𝑁 terms we get, 

𝑦𝑙 − 𝑆𝑖 ≤ 𝑦𝑖   

−𝑦1 − 𝑠1 ≤ −𝑦𝑙         And, 

⋮  

−𝑦𝑁 − 𝑠𝑁 ≤ −𝑦𝑙   

                                                                                 (4-26) 

  𝑦𝑢 + 𝑆𝑖 ≥ 𝑦𝑖   

−𝑦1 − 𝑠1 ≤ 𝑦𝑢          

⋮  

−𝑦𝑁 − 𝑠𝑁 ≤ 𝑦𝑢                                                                          

Comparing and rearranging equation (4-26) to standard inequality constraint, the kronical 

value of the output and slack variable will be: 𝐴𝑖,14 = −𝐼𝑁.𝑛𝑦  and 𝐴𝑖,16 = −𝐼𝑁.𝑛𝑦  , other terms 

in the first row of Ai are zeros.  

Similarly, 𝐴𝑖,24 = 𝐼𝑁.𝑛𝑦  and 𝐴𝑖,26 = −𝐼𝑁.𝑛𝑦  , other terms in the second row of Ai are zeros.  

The 𝑏𝑖  vector: 𝑏𝑖,1 = (−1𝑁.𝑛𝑦 )𝑦𝑙
 and 𝑏𝑖,2 = (1𝑁.𝑛𝑦 )𝑦𝑢  

Moreover, we need to consider the minimum outflow from a lake. We have provided a 

combined outflow from the turbine and flood gate minimum of 4 𝑚3/𝑠 i.e, 

 𝑉 𝑡 + 𝑉 𝑔 ≥ 4𝑚3/𝑠 

And we have, 𝑉 𝑔 = 𝑕𝑔𝑤 2𝑔𝑕2 . 

Solving these above two equations using Euler‟s seires expansion with necessary parameters 

and steady state values we find, 

−𝑕𝑔 ≤
(𝑉 𝑡 − 4)

78.4
 

Expanding up to N
th 

term we have, 

−𝑕𝑔1
≤

(𝑉 𝑡1
− 4)

78.4
⋮

−𝑕𝑔𝑁
≤

(𝑉 𝑡𝑁
− 4)

78.4

 

This yeilds 𝐴𝑖,31 = −𝐼𝑁.𝑛𝑢   and 𝑏𝑖,3 = 1𝑛𝑢 .𝑁 ×
(𝑉 𝑡𝑁−4)

78.4
 

Further, we have put slack variable, so we will consider a constraint to slack variable. The 

slack variable must be always positive, 

𝑆𝑣 ≥ 0 
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𝑠𝑣1 ≥ 0
⋮

𝑠𝑣𝑁 ≥ 0
 

This yeilds 𝐴𝑖,46 = −𝐼𝑁.𝑛𝑦   and 𝑏𝑖,4 = 0𝑛𝑦 .𝑁 

Thus, the matrixces for inequality constraint are: 

𝐴𝑖 =

 
 
 
 
0N.ny×N.nu 0N.ny×N.nu 0N.ny×N.ny IN×ny 0N.ny×N.nx IN×ny 0N.ny×N.nu

0N.ny×N.xy 0N.ny×N.xy 0N.xy×N.ny IN×ny 0N.xy×N.nx −IN×xy 0N.xy×N.nu

−IN×nu 0N.nu×N.xu 0N.nu×N.nu 0N.nu×N.nu 0N.nu×N.nx 0N.nu×N.xu IN×nu

0N.xy×N.ny 0N.xy×N.ny 0N.ny×N.ny 0N.ny×N.ny 0N.ny×N.nx −IN×ny 0N.ny×N.nx 
 
 
 
   

And 

𝑏𝑖 =  (−1𝑁.𝑛𝑦 )𝑦𝑙 (1𝑁.𝑛𝑦 )𝑦𝑢 1𝑁×𝑛𝑢 ,1 ×
(𝑉 𝑡𝑁−4)

78.4
0𝑛,𝑥𝑦 ×1   

 

 

4.2.3 MPC Implementation  

 The MPC solution we have developed  are based on the MATLAB codes developed by 

(Gøthesen et al., 2013)  but with modifiactions.All the related MATLAB files (M-files) are 

atached in the appendix of the report under ‟MPC‟ portion. The results are obtained after 

running MATLAB script files with all necessary parametes and MATLAB functions defined. 

We have developed a m-file in order to run either choosing linear model or nonlinear model 

of the lake Toke. The m-file named ‟nonlinear_model.m‟ is used to describe the nonlinear 

model and ‟linear_model.m‟ describes the linearized model.  

The main MPC program is in the file named ‟MPC.m‟ which takes it input variables from an 

excel file ‟inputs.xlsx‟. the excel file ‟inputs.xlsx‟ contains predicted inflow 𝑉𝑖
  , approximated 

turbine flow 𝑉𝑖
  and HRV as well as LRV defined for lake Toke from NVE. The MPC.m file 

calculates every time a new control vector and the process is repeated until the controlled 

output is acheived. The prediction horizon 𝑁, number of samples 𝑛 ,parameter for selecting 

the reference level 𝑎, selction of linear or nonlinear model 𝐿 𝑜𝑟 𝑁𝐿, weighting matrices 

𝑃, 𝑄, 𝑅, 𝑆 and discretization time 𝑡 were defined by the users.  

We have another file ‟Run_MPC.m‟ associated with the main MPC file which gives the result 

for MPC program. This file reads the data from an excel file ‟inputs.xlsx‟ and calls the 

function MPC.m to execute and gives the output showing the controlled gate height 𝑕𝑔  along 

with corresponding controlled level at Merkebekk 𝑕1, turbine flow  and gate flow. 

We have used the lower bound (𝑧𝑙
𝑇) and upper bound (𝑧𝑢

𝑇) for the unknown variables in 

equation (4-8). The lower and upper bounds are defined from  −∞ to ∞ for 𝛿𝑢𝑇, 𝑒𝑇 , 𝑥𝑇 , 𝑆𝑣
𝑇  

and 𝑉𝑡
𝑇  and the  user defined limit for 𝑢𝑇  and 𝑦𝑇 . The bounds we have used in MATLAB 

program is as follows: 

𝑧𝑙
𝑇 =  𝑈𝑙

𝑇 , 𝛿𝑈𝑙
𝑇 , 𝐸𝑙

𝑇  , 𝑌𝑙
𝑇 , 𝑋𝑙

𝑇 , 𝑆𝑣𝑙
𝑇 , 𝑉𝑡 𝑙

𝑇  
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𝑧𝑢
𝑇 =  𝑈𝑢

𝑇 , 𝛿𝑈𝑢
𝑇 , 𝐸𝑢

𝑇  , 𝑌𝑢
𝑇 , 𝑋𝑢

𝑇 , 𝑆𝑣𝑢
𝑇 , 𝑉𝑡𝑢

𝑇  

And each elementary bounds for lower bound (𝑧𝑙
𝑇) and upper bound (𝑧𝑢

𝑇) are described as: 

Uu 
T 

=(uu1,. . . , uun)
T
                                         Ul 

T 
=(ul1,. . . , ulN)

T
 

δUu 
T 

=(∞,. . . , ∞)
T
                                           δUl 

T 
=(-∞,. . . , -∞)

T
    

Eu 
T 

=(∞,. . . , ∞)
T
                                             El 

T 
=(-∞,. . . , -∞)

T
    

Yu 
T 

=(yu1,. . . , yuN)
T 

     upper bounds             Yl 
T 

= (yl1,. . . , ylN)
T
       lower bounds 

Xu T = ∞,. . . ,∞ T                                                    Xl 
T 

=(-∞,. . . ,-∞)
T
     

 SVU T = ∞,. . . , ∞ T                                                SVl 
T 

=(-∞,. . . , -∞)
T
   

 Vtu T = ∞,. . . , ∞ T                                                Vtl 
T 

=(-∞,. . . , -∞)
T 

 

4.2.4 Result Intrepretation 

The MATLAB simulation of the developed MPC application is analysed and concluded with 

appropriate remarks for our study. We have run the MPC application both in linear and 

nonlinear models and assuming different inflow for the lake Toke. 

During the simulation process, we observed that simulation time depends on the parameters of 

weighting  matrices, number of sample points, type of model used and length of prediction 

horizon. The initial heights of both compartment 𝑕1 & 𝑕2 were assumed 2.5 𝑚. 

We are concerned on the control of flooding situations, so here we have predicted inflow to 

the lake operated under normal and extreme flooding condition (250 − 900 𝑚3/𝑠). After 

number of simulations, we tuned the weighting matrics 𝑃, 𝑄 and 𝑅 to 10, 8 and 10 

respectively and 𝑆 to 1, to obtain acceptable response in MPC. We have used discrete 

sampling time of 4 hours, 70 samples and prediction horizon 10. Though we are provided 

around 8,300 sample points, but we have only used 70 samples among them selecting the 

most relevant data for flooding conditions. If we choose all the data samples, then it requires 

very large compuational time. 
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Figure 4-3:MPC simulation of linear model with predicted inflow 250 m
3
/s  for approximately 

5.5 days  over a time stamp of 10 days. 

 

Figure 4-3 illustrates the MPC simulation of linear model with predicted inflow 250 m
3
/s for 

around 5.5 days. In both Figure 4-3 and Figure 4-4, the gate opening 𝑕𝑔 in meter, controlled 

height of Merkebekk 𝑕1, predicted inflow and turbine flow is shown. According to Figure 4-3 

and Figure 4-4, it can be noticed that when the inflow is increased heavily at around 250 m
3
/s 

(maximum inflow), the gate opening increases immediately by passing the water and 

decreases after the inflow is dropped. MPC controller increases the gate opening in order to 

track the reference level so, thehe gate height depends the inflow to the lake. Mean while, 

when predicted inflow is decreased sharply, the level in the Merkebekk h1 ,tries to deviate 

from reference level but the MPC controller makes to increase gate opening in order to 

maintain the level at around reference level. Hence, due to the MPC controller action, it is 

observed observed that the height at Merkebekk seems controlled enough following the 

reference level at around 2.5 m, even if predicted inflow changes heavily. Moreover, the MPC 

controller is able to handle the constraints easily, non of the bounds are touched through entire 

simulation time even we had fed comparetively large inflow value continuously. 
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Figure 4-4:MPC simulation of nonlinear model with predicted inflow 250 m
3
/s  for 

approximately 2.5 days  over a time stamp of 10 days 

 

Similarly, Figure 4-4 is the MPC simulation of nonlinear model with predicted inflow 250 

m
3
/s for around 5.5 days. The difference in Figure 4-3 and Figure 4-4 is the type of model 

used during the simulation.  

Figure 4-5 is the MPC simulation of linear model with predicted inflow 500 m
3
/s for around 

2.5 days whereas Figure 4-6 is the MPC simulation of nonlinear model with predicted inflow 

500 m
3
/s for around 5.5 days The difference in Figure 4-3 and Figure 4-4 is the type of model 

used during the simulation. 
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Figure 4-5:MPC simulation of linear model with predicted inflow 500 m
3
/s  for approximately 

5.5 days  over a time stamp of 10 days 

 

Due to the nonlinear nature of the model the response of nonlinear model is quiet slow than 

that of linear model. The response seems quiet same in both the models, but actually the the 

response time of output ‟h1‟ towards reference ‟r‟ in a linearzied model is faster than the 

nonlinear model comparing Figure 4-5 and Figure 4-6. The response of linear model is very 

close to reference level in linear model whereas nonlinear model is still following the 

reference. 

During MPC simulation, the turbine flow is same in all the plots. The turbine flow is 

approximated and scaled using the generated power relation that we have developed in 

chapter 2. When  turbine flow is less, the opening of gate is almost zero in all cases. 
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Figure 4-6:MPC simulation of nonlinear model with predicted inflow 250 m
3
/s  for 

approximately 2 days  over a time stamp of 10 days 

 

Figure 4-7 represents the MPC simulation of nonlinear model with excess of inflow 

(predicted) about 900 m
3
/s for approximately 2 days. The upper boundary for the level is 

distroyed and the level jumps when the excess of inflow is treated to the system. The soft 

constraint that we have considered is violated when the very large inflow is feed. On the 

contrary, the water level is still above the lower bound that we had considered as a minimum 

outflow constrain during the entire simulation. This seems that our MPC application througly 

worked on our model and assumptions that we have developed and a considered during the 

project. 

Weighting matrices are very important while developing the MPC application. They play vital 

role on the system response, hence a careful consideration should be carried on during the 

simulation. We noticed that when the value of Q matrix is less, the gate opening is more and 

vice versa. this might happened beacuse the Q matrix is associated with control vector in 

performance index. Also, the value of  
𝑄

𝑃
  effects the system performance. If 

𝑄

𝑃
  is higher, then 

the system behaves faster and if 
𝑄

𝑃
 becomes less, the system becomes slower. 
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Figure 4-7:MPC simulation of nonlinear model with predicted inflow 900 m3/s  for 

approximately 2 days showing the extreme flooding condition over a time stamp of 10 days 

 

From the above MPC simulation, it can be concluded that introducing model error, where 

future inflow of water is unknown or big uncertainities are introdued, MPC can handle it. 
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5 Stochastic MPC 

5.1 Background 

A control problem is applied on a real process where there is a demand of controlling too 

many uncertain variables that are needed to track. We cannot guarantee the pattern of inflow 

to the system neither we can predict the ensemble that likely to happen in adverse situations, 

so basically we can say that in real control problems there is uncertainty. Our main task in this 

thesis work is to do stochastic analysis of the MPC application of Lake Toke. Though we have 

developed a simple MPC application for the Lake Toke, still our main task is to do further 

analysis on random MPC problem. The solutions and simplifications we had made in previous 

chapter may be inadequate for the stochastic phenomena and may lead misconception for the 

random variables that are to be controlled during stochastic process. The stochastic process 

contains sequence of random variables and time series even if the initial value is known 

(Wikipedia, 2014b). So, we can say that to describe stochastic solution in our case the 

probability and statistical considerations should be made. 

5.2 Markowitz Portfolio Optimization 

The Markowitz portfolio theory was developed by an economist Harry Markowitz in 1952 

which mainly uses mathematical models to minimize risk and optimize return depending on 

risk (Marling and Emanuelsson, 2012) . 

The Markowitz portfolio Optimization theory is based up on probability theory and concept of 

random variables. Let us consider the input vector 𝑥 and output vector  𝑦 of random variables 

as, 

𝑋 = (𝑥1, . . . , 𝑥𝑛)𝑇  

𝑌 = (𝑦1, . . . , 𝑦𝑛)𝑇 

 

Then, Markowitz portfolio Optimization theory describes, 

𝑌 = 𝑚𝑖𝑛  𝑝𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝐴𝑒 ≥ 𝑏𝑒  (constraints) 

Where  

𝑝𝑖  is the probability of ensemble of future disturbances (input) to a system. 

We can use this theory in our MPC application with modifications and necessary assumption 

for a stochastic process. 
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5.3  Stochastic analysis 

We have done a simple stochastic analysis in order to observe how well the MPC works with 

different inflow scenario to Lake Toke model. The stochastic process comprises of random 

input variables. Figure 5-1 represents the simulation of real prediction inflow of 300 m
3
/s of 

around 8.5 day. The MPC controller seems worked well tracking the reference level in this 

condition. This implies that our MPC application is able to handle the continuous flooding 

situation to produce a controlled water level giving sufficient gate opening. 

 

Figure 5-1:MPC simulation with assumed inflow of 300 m3/s in linear model 

 

Similarly, Figure 5-2 represents the simulation of randomly assumed inflow throughout the 

entire simulation time. The MPC controller seems worked well tracking the reference level 

until the acceptable inflow of approximately 500 m
3
/s, and then the controlled level started to 

raise towards upper bound as well as the maximum gate opening is achieved in this condition. 

This is the condition where the MPC cannot handle extremely very big inflow and may violate 

the soft constrain but still the lower bound is satisfied. This implies that our MPC application 

is able to handle the continuous randomly assumed flooding situation to produce a controlled 

water level giving sufficient gate opening. 
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Figure 5-2:MPC simulation with random inflow in linear model 

 

To conclude the stochastic MPC analysis, we can summed up that introducing model error 

where the future inflow of water was unknown in a MPC application yields almost desired 

reference level without violating the constraint condition, this indicates that our developed 

MPC application can handle the unknown inflow predictions. 
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6 Conclusion and Future work 

The summary of the main ideas that we have implemented in this thesis work is highlighted in 

this section with recommendation for future work. The thesis is about the stochastic flood 

control using MPC. The main objective of the thesis was to analyze the necessary 

measurements/information and use them to develop the dynamic model of Lake Toke and to 

implement MPC along with stochastic MPC based on Markowitz Portfolio Optimization. 

The relevant measurements/information were analyzed and described. We found that 

measurement error in the data provided by Skagerak Energi in height of Dalsfoss dam so we 

have applied the quay level to simulate and analyze the model during the entire thesis. The 

prediction model for turbine flow was developed. 

The 2-state dynamic model was developed using general mass balance principle and validated 

through simulation to a steady state time response. The developed model were linearized at 

around nominal value and discretized using c2d() MATLAB function. The sensitivity of 

parameters that influence the system model was compared and 

The linearized model is formulated as a quadratic programming problem. A performance 

index was defined  to acheive optimum output.Both the constraints: hard and soft constraints 

were defined. Input flow and minimum outflow were assumed to be hard constraints. Output 

constraints are implemented as soft constraints in order to handle critical conditions (such as: 

excessive rain fall) as much as possible and violate them when it is not possible. 

Both linear and nonlinear Model predictive control (MPC) application using MATLAB was 

developed and implemented. The results from the simulation seems well controlled fulfilling 

all the system requirements. 

Finally, a simple stochastic MPC analysis was done using real values and ramdomly assumed 

inflow by adding random Gaussian noise. MPC application was simulated introducing model 

error where the future inflow of water was unknown seems to track the desired reference level 

without violating any system requirement. This indicates that our MPC applcation can handle 

unknown inflow predictions or big uncertain inputs can be handled by MPC. 

The defined tasks for the thesis is almost fulfilled but the work could have been made more 

effecient with more assumptions and modifications that couldnot have been done in this work 

so far. Some of the recommendation for future work are illustrated below: 

 The accurate data received from Skagerak Engeri could really improve the system 

accuracy, so it is important that the correct information from is received to analyse 

more efficiently and to high accuracy. 

 We have assumed only two state model, a third state model can be developed to get 

more effecient control. 

 The Extended Kalman filter algorith can be used to estimate the system state in 

quadratic proramming and then can be implemented in MPC. 
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 A different method such as DSR method can be used to obtain a linear matrix model 

which is more accurate and can be find the good control in MPC. 

 The Kalman filter algorithm can be used to estimate the  model parameters 𝛼, 𝛽, 𝐾12   

to achieve more accurate result. 

 A sequence of highly uncertain random inflow can be assume to implement Stochastic 

based MPC solution. 

 The optimization problem can be modified using Markowitz Portfolio Optimization 

theory to develop Stochastic based MPC solution. 

 The MPC solution could be implemeted in LabVIEW and can be compared with 

MATLAB simulation results. 
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Appendices 

Appendix 1: Task Description 

 
 

Telemark University College 

Faculty of Technology 
 

FMH606 Master's Thesis 
 

Title:                          Stochastic Flood Control using MPC of the Kragerø Waterways 
 

TUC supervisor:      Bernt Lie, prof., Telemark University College 
 

 

External partner:     Skagerak Energi, contact: Ingvar Andreassen 

 

Task description: 
The following tasks should be carried out: 
1.  A functional description should be given of a planned Kragerø 

Waterways flood control system, and the quality of the information 
should be ascertained. 

2.  Necessary measurements/information for managing floods in Lake Toke 
should be described (level measurements, current and future inflow 
predictions, current and future turbine production flow, etc.). 

3.  A dynamic model of the relevant water levels at Lake Toke should be 
developed. The model should be validated against experimental/historic data, 
and an assessment of the accuracy of the model should be given. 

4.  Managing floods should be posed as an MPC problem, and an MPC solution 
should be developed and tested based on proposed deterministic inflow from a 
hydrological model and production flow through the turbine. 

5.  The method of Markowitz Portfolio Optimization should be considered for 
stochastic MPC based on an ensemble of future disturbances (inflow, 
production flow). Use of stochastic MPC should be compared to use of 
deterministic MPC. 

6.  The work that has been carried out should be documented in a master thesis. 

 

Task background: 
Five hydro power stations in the Kragerø Waterways, starting at the Dalsfoss hydro 

power station, receive their water from Lake Toke in Telemark. The catchment of Lake 
Toke covers ca. 1156 km2; the surface of the lake itself covers 32 km2. The lake holds 
some 150 million m3 of water, and the annual average flow out of the lake is ca. 24 
m3/s; the residence time of the lake is thus ca. 72 days, which is relatively little in a 
hydro power context. The Dalsfoss hydro power turbines can maximally utilize 36 m3/s; 
with a higher flow rate than this, the water must be allowed to bypass the turbine, which 
implies a lost opportunity from a hydro power point of view – it would be advantageous 
to use the buffer capacity of the lake to smooth out some variations in the flow. With a 
relatively heavy rainfall of 10 mm/h, this 

 

Address: Kjølnes ring 56, NO-3918 Porsgrunn, Norway. Phone: 35 57 50 00. Fax: 35 55 75 47. 
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implies ca. 90 m3/s of water hitting the lake surface and ca. 3400 m3/s of water hitting 

the catchment. The Dalsfoss hydro power station will be built out to allow for a maximal 

capacity of 960 m3/s flood bypass. Normally, a flow of 300 m3/s is considered a dramatic 

flood. The main spring flood starts in April each year; floods are caused by snow melting 

and rain, and hydrological models are used to describe the complex flow through the 

catchment and into the lake. 

 

The operation of the hydro power station at Dalsfoss is strictly constrained by maximally 

and minimally allowed levels – these constraints change during the year. The flow out of 

Lake Toke is also constrained. In addition, the operation is constrained by economic 

considerations. 

 

At the moment, the floodgates are operated by a specialist operator who is approaching 

retirement. It is thus of interest to develop an automatic system for controlling the flood 

gates. In an initial attempt, it is reasonable to develop a dynamic model including a mass 

balance for Lake Toke in combination with a hydrological model. The hydrological 

model will describe the flow into Toke, and will be provided by Skagerak Energi. The 

model will be used in a Model based Predictive Control setting, and the initial goal is to 

compute a proposed flood gate opening off-line. This proposed flood gate opening will 

then be evaluated by a specialist operator; this is necessary in a trial period due to the 

consequences if anything goes wrong. This approach will lead to manual closed loop. In 

a later work, it is of interest to close the 

loop automatically, but this will not be done right away. 

 

Thus, a solution should be based on receiving hydrological predictions from Skagerak 

Energi together with production plans. This should be used as input to a dynamic model 

of the lake level, and an MPC controller should be used for on-line computation of flood 

gate opening, which should then be passed back to Skagerak Energi. A short term plan is 

that this solution should be tested during the spring flood of 2014, following this MSc 

theses in the spring of 2014. 

 

References: 
 

Gøthesen, D.-K., Haile, H.K., Khare, B.B., Kuznetsov, A., Njoku, I.O., Rabchuk, K.V. 

(2013). “Flood Control using MPC of the Kragerø Waterways”, MSc project, 

Telemark University College, Porsgrunn. 

Jørgensen, J.B., Capolei, A., Völcker, C. (2013). «Introduction to Economic MPC». 

Presentation at Nordic Process Control Workshop, Oulu, Finland, August 22-23. 

 Thoresen, Hege Marie (2011). “Control and optimisation of “Kragerø-vassdraget””, 

MSc thesis, Telemark University College, Porsgrunn. 

 

 

Student category: 

The project requires background in simple modelling of dynamic systems, some 

understanding of model fitting, and optimization based control (MPC = Model 

based Predictive Control). 
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Practical arrangements: 

 

The work will be carried out at the Kjølnes campus of Telemark University College. It 

will be useful with an excursion to see the physical system (Lake Toke and the Kragerø 

Waterways, including the Dalsfoss hydro power station), as well as some interaction with 

Skagerak Energi in Porsgrunn. 

 

There will be weekly meetings with the supervisor, either face-to-face or by Skype, 

with hand-in of partial reports every 3 weeks. 

 

The work on the thesis will start in the period January 13-24 2014, and the thesis is to 

be handed in by June 4 2014 at 14:00. It is not possible to delay the start-up of the 

thesis work: the supervisors have no possibility to carry out supervision after June 4. 
 

 

 

Signatures: 
 

Student (date and signature): Bhuwan Dhakal 

 

Supervisor (date and signature): Bernt Lie 
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Appendix 2:Linearization and discretization of the model 

The model is of the form  

𝑑𝑕1

𝑑𝑡
=

1

 1 − 𝛼 𝐴 𝑕1 
  1 − 𝛽 𝑉𝑖

 − 𝑉12
   

𝑑𝑕2

𝑑𝑡
=

1

𝛼𝐴 𝑕2 
 𝛽𝑉𝑖

 − 𝑉 𝑡 − 𝑉𝑔 + 𝑉12
   

 

Considering  𝑉 𝑖𝑛  , 𝑉 𝑡𝑎𝑛𝑑𝑉 𝑔as inputs and 𝑉 12as state function. 

Model matrix „‟A‟‟ of continuous time model is, 

A= 

𝜕𝑓1

𝜕𝑕1

𝜕𝑓1

𝜕𝑕2

𝜕𝑓2

𝜕𝑕1

𝜕𝑓2

𝜕𝑕2

  

 

Here, 

dh 1

dt
= 

1

(1−α)×28×106 × h1
−0.1  1 − β V in − 800(h1 − h2)(h1 − h2)1/2  

Or, 
dh 1

dt
= 

 1−β V in ×h1
−0.1

(1−α)×28×106 −
800

(1−α)×28×106 × h1
−0.1 × (h1 − h2)3/2 

Now, 

∂

∂h1
 

dh 1

dt
 = 

𝜕𝑓1

𝜕𝑕1
 =

 1−β V in

(1−α)×28×106

𝜕(𝑕1
−0.1)

𝜕𝑕1
- 

800

(1−α)×28×106   h1 − h2 ×
𝜕(𝑕1

−0.1)

𝜕𝑕1
+ 𝑕1

−0.1 ×

∂(h1−h2)3/2)𝜕(h1−h2)×𝜕(h1−h2)𝜕𝑕1 

Using the values h1=5.4 and h2=4.75 and computing the equation we get, 

 

𝜕𝑓1

𝜕𝑕1
= 0.0227 

Similarly, 

𝜕𝑓1

𝜕𝑕2
 =

 1−β V 
in

(1−0.05)×28×106

𝜕(𝑕1
−0.1)

𝜕𝑕2
-

800

(1−0.05)×28×106   h1 − h2 ×
𝜕(𝑕1

−0.1)

𝜕𝑕2
+ 𝑕1

−0.1 ×
∂(h1−h2)3/2)

𝜕(h1−h2)
×

𝜕(h1−h2)𝜕𝑕2 

∂f1

∂h2
=  −0.0279 

Again, 

𝑑𝑕2

𝑑𝑡
=

1

𝛼𝐴 𝑕2 
(𝑉 12 − 𝑉 𝑡 − 𝑉 𝑔) 

𝑑𝑕2

𝑑𝑡
=

1

α × 28 × 106
𝑕2

−0.1 800 × (h1 − h2)3/2 − 𝑉 𝑡 − 𝑕𝑔𝑤 2𝑔𝑕2  
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Or, 

∂f2

∂h1
=

1

0.05 × 28 × 106
 800 × 𝑕2

−0.1 ×
∂(h1 − h2)3/2

𝜕(h1 − h2)
×

∂(h1 − h2)

𝜕h1
− 0 − 0   

Substituting h1=5.4, h2=4.75, values we found, 

∂f2

∂h1
= 0.5424 

Similarly, 

∂f2

∂h2
=  0.5424 

Therefore the A matrix becomes, 

A= 
0.0279 −0.0279

−0.5424 0.5424
  

For model matrix B, 

As B, input is the function of𝑉 𝑖𝑛  , 𝑉 𝑡𝑎𝑛𝑑𝑕𝑔  

B= 
𝐵1

𝐵1
  where, 

𝐵1 =  
𝜕𝑓1

𝜕𝑕𝑔

𝜕𝑓1

𝜕𝑉 𝑖𝑛

𝜕𝑓1

𝜕𝑉 𝑡
  

𝐵2 =  
𝜕𝑓2

𝜕𝑕𝑔

𝜕𝑓2

𝜕𝑉 𝑖𝑛

𝜕𝑓2

𝜕𝑉 𝑡
  

𝜕𝑓1

𝜕𝑉 𝑖𝑛
=

𝜕 1 − β × h1
−0.1𝑉 𝑖𝑛

𝜕𝑉 𝑖𝑛 [(1 − α) × 28 × 106]
 

Putting values we get   
𝜕𝑓1

𝜕𝑉 𝑖𝑛
=0.0003 

𝜕𝑓1

𝜕𝑕𝑔
= 0 

𝜕𝑓1

𝜕𝑉 𝑖𝑛
= 0.0003 

𝜕𝑓1

𝜕𝑉 𝑡
= 0 

Similarly, for B2 

𝜕𝑓2

𝜕𝑕𝑔
=

1

𝛼𝐴 𝑕2 

𝜕

𝜕𝑕𝑔
 𝑕𝑔𝑤 2𝑔𝑕2  

𝜕𝑓2

𝜕𝑕𝑔
=  −0.6008 

𝜕𝑓2

𝜕𝑉 𝑖𝑛
=  0.0001 
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𝜕𝑓2

𝜕𝑉 𝑡
=

𝜕

𝜕𝑉 𝑡
 

1

𝛼𝐴 𝑕2 
(−𝑉 𝑡)  

𝜕𝑓2

𝜕𝑉 𝑡
= −0.0056 

Which gives the B matrix as, B=  
0 0.003 0

 −0.6008  0.0001 −0.0056
  

For model matrix C, 

Since 𝑦 = 𝐶𝛿𝑕 

𝐶 =  
1 0
0 1

  

And for D matrix, 

D=0 

Hence, the linearized model matrices in continuous form are: 

A= 
0.0279 −0.0279

−0.5424 0.5424
  

B=  
0 0.0003 0

 −0.6008  0.0001 −0.0056
  

C =  
1 0
0 1

  

D= 
0 0 0
0 0 0

  

Therefore 

𝑑 𝛿𝑕 

𝑑𝑡
= 𝐴𝛿𝑕 + 𝐵𝛿𝑢 

𝑦 = 𝐶𝛿𝑕 
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Appendix 3: MATLAB file for simulating the data 

(xo,xq,𝑉𝑡 , 𝑉𝑔   𝑎𝑛𝑑 𝑊𝑒
 ) 

%Matlab file for simulating the data (xo,xq,(V_t,) ?(V_g  ) ?and (W_e ) ?) 
clc 
data=xlsread('dalsfos.xlsx'); 
xo=data(:,1); 
xu=data(:,2); 
xq=data(:,3); 
Vdo=data(:,4); 
Wde=data(:,8); 
% 

  
find(xo>75); 
xo(6968)=(xo(6967)+xo(6969))/2; 
xo(15062)=(xo(15061)+xo(15063))/2; 
xq(6968)=(xq(6967)+xq(6969))/2; 
xq(15062)=(xq(15061)+xq(15063))/2; 
find(xu>50); 
xu(6968)=(xu(6967)+xu(6969))/2; 
xu(15062)=(xu(15061)+xu(15063))/2; 
tm = (1:length(xo))'; 
idx = find(~isnan(xo))'; 
xo1=xo(idx); 
xq1=xq(idx); 
Vdo1=Vdo(idx); 
Wde1=Wde(idx); 
polxq=polyfit(xq1,Vdo1,2); 
xq1s=sort(xq1); 
%for vdt.... 
ix=find(Vdo>36); 
Vdt=Vdo; 
Vdt(ix)=36; 
Vdt1=Vdt(idx); 
tm1=(1:length(xo1)); 
% correlating power 
dx=xo1-xq1; 
z=dx.*Vdt1; 
zs=sort(z); 
polW=polyfit(z,Wde1,1); 
%figure(1) 
%plot(z,Wde1,'bo',zs,polyval(polW,zs),'r-',zs,zs*9.81*1e-3,'k-', 

'linewidth',1.5) 
% calculating the roots for re-parameterizing 
ht=xo1-xq1; 
Vdg1=Vdo1-Vdt1; 
%N=length(Vdg1); 
%Wde1=(c1.*(xq1.^2).*ht)+c2.*(xq1.*ht)+c3.*ht+c4.*Vdg1.*ht;ht) 
for i=1:length(ht) 
    a(i)=1; 
end 

  
Y=[(xq1.^2).*ht xq1.*ht ht Vdg1.*ht a']; 
%Wde1= Y.* C; 
%[c1; c2; c3; c4; c5]=(inv(Y'.*Y)).*Y'.*Wde1 
c=(inv(Y'*Y))*(Y'*Wde1); 

  
% calculation of roots 
n= length(Vdg1); 
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d=zeros(1,4); 
for I=1:n 
d(1)=c(1); 
d(2)=c(2)-(c(1).*xo1(I)); 
d(3)=(c(3)-c(2).*xo1(I)+c(4).*Vdg1(I)); 
d(4)=(Wde1(I)-c(3).*xo1(I)-c(4).*Vdg1(I).*xo1(I)-c(5)); 
r=roots(d) 
end 
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Appendix 4: MATLAB code for model validation and 

simulation 

Defining model: 

% Simulating h1, h2, hg_max, vd_in,vd_12 and vd_g; 
function dy = model(t,y) 
area=@(y) (28*10^6*1.1*y.^(1/10)); 
%parameters 
alfa= 0.05; beta= 0.02;K12=800; 
Vt=36; w=11.2; g=9.8;Cd=1;hg_max=5.6; 
[m,n]=size(y); 
dy= zeros(m,n); 
if t<25000 
    hg=0.5*hg_max; 
else 
    hg=hg_max; 
end 
Vdotg=Cd*w*min(hg,y(2))*sqrt(2*g*max(y(2),0)); 
Vdot12= K12*(y(1)-y(2))*sqrt(abs(y(1)-y(2))); 
if t< 25000 
Vdotin=36; 
dy(1)= (((1-beta)*Vdotin)-Vdot12)/((1-alfa)*area(y(1)));  
dy(2)= (beta*Vdotin+Vdot12-Vt-Vdotg)/(alfa*area(y(2))); 
else 
Vdotin = 24; 
dy(1)= ((1-beta)*Vdotin-Vdot12)/((1-alfa)*area(y(1))); 
dy(2)= (Vdot12-Vt-Vdotg+beta*Vdotin)/(alfa*area(y(2))); 
end 
end 

Calling model file: 

clc 
clear all 
timespan=(0:2000:40000); 
[t,y]= ode15s(@model,timespan,[5.4;4.75]);hg_max=5.6;g=9.8; 
k12=800; Cd=1; w=11.2; 
a=hg_max*ones(length(y),1); 
clf 
%%%%showing hg in fig 1 
hg=zeros(size(t)); 
for i=1:length(t) 
if t(i)<25000 
hg(i)=0.5*hg_max; 
else  
hg(i)=hg_max; 
end 
end 
% 
figure (1) 
plot(t,y(:,1),'g') 
hold on 
plot(t,y(:,2),'r') 
hold on 
plot(t,a, 'b') 
hold on 
stairs(t,hg,'k'); 
grid on 
legend('h1','h2','hgmax','hg') 
xlabel('time[secs]') 
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ylabel('level h1, h2 , hgmax & h_g[meters]') 
title('levels h1 and h2 in two compartments,hgmax & h_g ') 
vdot12=k12.*(y(:,1)-y(:,2)).*sqrt(abs(y(:,1)-y(:,2))); 
vdotg=Cd*w*min(hg,y(:,2)).*sqrt(2*g*max(y(:,2),0)); 
figure(2) 
stairs(t,hg,'r','LineWidth',2);grid on;title('simulating 

h_g');xlabel('time[secs]');ylabel('level[m]'); 
for j=1:length(t) 
if t(j)<50000 
    vdotin(j)=400; 
end 
if t(j)>50000 
    vdotin(j)=24; 
end 
end 
figure(3) 
plot(t,vdot12,'r') 
hold on 
plot(t,vdotg,'b') 
hold on 
plot(t,vdotin,'g') 
grid on 
legend('Vdot12','Vdotg','Vdotin') 
xlabel('Time [s]') 
ylabel('Flow [m^3/s]') 
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Appendix 5: MATLAB file for Linearization and 

discretization
i
 

function [A,B,C,D] = linear_model(h1,h2,hg,Vin,Vt,Ts) 
% parameters 
alpha = 0.05; % surface area fraction in compartment 2 
beta = 0.02; % Inflow fractin to compartment 2 
w = 11.2; % witdth of the gate 
g = 9.81; % gavitational acceleration 
area=28e6;    
k12=800; 

  
Vg =2^(1/2)*hg*w*(g*h2)^(1/2); 
V12 =k12*abs(h1 - h2)^(1/2)*(h1 - h2); 
Ah1 =1.1*h1^(1/10)*area; 
Ah2 =1.1*h2^(1/10)*area; 

  
%function 
f1 = (1/((1 - alpha)* Ah1))* (((1 - beta)* Vin)- V12); 
f2 = (1/(alpha* Ah2))* (beta* Vin + V12- Vt- Vg); 

  
% a11 = df1/dx1; 
a11 =(10*(k12*abs(h1 - h2)^(1/2) + (k12*sign(h1 - h2)*(h1 - h2))/(2*abs(h1 

- h2)^(1/2))))/(11*h1^(1/10)*area*(alpha - 1)) - (Vin*(beta - 1) + 

k12*abs(h1 - h2)^(1/2)*(h1 - h2))/(11*h1^(11/10)*area*(alpha - 1)); 
% a12 = df2/dx2; 
a12 = -(10*(k12*abs(h1 - h2)^(1/2) + (k12*sign(h1 - h2)*(h1 - 

h2))/(2*abs(h1 - h2)^(1/2))))/(11*h1^(1/10)*area*(alpha - 1)); 
% a21 = df2/dx1; 
a21 = (10*(k12*abs(h1 - h2)^(1/2) + (k12*sign(h1 - h2)*(h1 - h2))/(2*abs(h1 

- h2)^(1/2))))/(11*alpha*h2^(1/10)*area); 
% a22 = df2/dx2; 
a22 = (Vt - Vin*beta - k12*abs(h1 - h2)^(1/2)*(h1 - h2) + 

2^(1/2)*hg*w*(g*h2)^(1/2))/(11*alpha*h2^(11/10)*area) - (10*(k12*abs(h1 - 

h2)^(1/2) + (k12*sign(h1 - h2)*(h1 - h2))/(2*abs(h1 - h2)^(1/2)) + 

(2^(1/2)*g*hg*w)/(2*(g*h2)^(1/2))))/(11*alpha*h2^(1/10)*area); 
% b11 = df1/dhg; 
b11 = 0; 
% b12 = df1/dVin; 
b12 = (10*(beta - 1))/(11*h1^(1/10)*area*(alpha - 1)); 
% b13 = df1/dVt; 
b13 = 0; 
% b21 = df2/dhg; 
b21 = -(10*2^(1/2)*w*(g*h2)^(1/2))/(11*alpha*h2^(1/10)*area); 
% b22 = df2/dVin; 
b22 = (10*beta)/(11*alpha*h2^(1/10)*area); 
% b23 = df3/dVt; 
b23 = -10/(11*alpha*h2^(1/10)*area); 
A = [a11 a12; a21 a22] 
Bc = [b11; b21]; 
Bd = [b12 b13; b22 b23]; 
B=[Bc Bd] 
C=[1 0]; 
D=[0 0 0]; 
%Discretization 
[A,B,C,D] = c2dm(A,B,C,D,Ts); 
end 
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Appendix 6: MATLAB file for MPC
ii
 

function [U] = MPC(Vin,Vt,LRV,HRV,Ts,P,Q,R,S,N,n,Select,a) 
%% Parameters 
g=9.81;hg=0.056; 
h1=2.5; 
h2=2.4; 
w=11.2; 
%%Calling Linearization file 
[A,B,C,D] = linear_model(h1,h2,hg,Vin(1),Vt(1),Ts(end)); 
Bc=B(:,1); 
dx1 = [h1,h2]'; 
nx = length(dx1); 
u0=0; 
nu = size(Bc,2); 
ny = size(C,1); 
%%Defining Constraints 
ul = 0; 
uu = 5.6; 
dul = -inf; 
duu = inf; 
el= -inf; 
eu = inf; 
xl = -inf; 
xu = inf; 
yl=LRV; 
yu=HRV; 

  
%% 
uLB = ones(N*nu,1)*ul; 
uUB = ones(N*nu,1)*uu; 
duLB = ones(N*nu,1)*dul; 
duUB = ones(N*nu,1)*duu; 
eLB = ones(N*ny,1)*el; 
eUB = ones(N*ny,1)*eu; 
yLB = -inf(N*ny,1); 
yUB = inf(N*ny,1); 
svLB = -inf(N*ny,1); 
svUB = inf(N*ny,1); 
vtLB = -inf(N*nu,1); 
vtUB = inf(N*nu,1); 
xLB = ones(N*nx,1)*xl; 
xUB = ones(N*nx,1)*xu; 

  
zl = [uLB; duLB; eLB; yLB; xLB; svLB; vtLB]'; 
zu = [uUB; duUB; eUB; yUB; xUB; svUB; vtUB]'; 
%% 
H11 = kron(eye(N),Q); 
H22 = kron(eye(N),R); 
H33 = kron(eye(N),P); 
H44 = zeros(N*ny); 
H55 = zeros(N*nx); 
H66 = kron(eye(N),S); 
H77 = zeros(N*nu); 

  
H = blkdiag(H11, H22, H33, H44, H55, H66, H77); 
% 
c = zeros(1,(3*nu+3*ny+nx)*N); 

  
%% 
Y=zeros(ny); 
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U=zeros(nu); 
V_g=zeros(nu); 
% V_t=zeros(nu); 
% V_in=zeros(ny); 
YL=zeros(ny); 
YU=zeros(ny); 
Re=zeros(ny); 
%%%% 
for I = 1:n-N 

   
    %reference level 
    r =LRV + a*(yu(I)-yl(I)); 
    % Present state and measurements 
    dx = dx1; 
    dy = C*dx1;  

     

     
    %% Equality Constraints 
    Ae1u = zeros(N*ny,N*nu); 
    Ae1du = zeros(N*ny,N*nu); 
    Ae1e = zeros(N*ny,N*ny); 
    Ae1dy = eye(N*ny); 
    Ae1dx  = -kron(diag(ones(N-abs(-1),1),-1),C); 
    Ae1sv = zeros(N*ny,N*ny); 
    Ae1vt = zeros(N*ny,N*nu); 

     
    Ae2u = zeros(N*nx,N*nu); 
    Ae2du = -kron(eye(N),Bc); 
    Ae2e = zeros(N*nx,N*ny); 
    Ae2dy = zeros(N*nx,N*ny); 
    Ae2dx = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A); 
    Ae2sv = zeros(N*nx,N*ny); 
    Ae2vt = zeros(N*nx,N*nu); 

     
    Ae3u = zeros(N*ny,N*nu); 
    Ae3du = zeros(N*ny,N*nu); 
    Ae3e = eye(N*ny); 
    Ae3dy = eye(N*ny); 
    Ae3dx = zeros(N*ny,N*nx); 
    Ae3sv = zeros(N*ny,N*ny); 
    Ae3vt = zeros(N*ny,N*nu); 

     
    Ae4u = kron(diag(ones(N-abs(-1),1),-1),eye(nu)) - eye(N*nu); 
    Ae4du = eye(N*nu); 
    Ae4e = zeros(N*nu,N*ny); 
    Ae4dy = zeros(N*nu,N*ny); 
    Ae4dx = zeros(N*nu,N*nx); 
    Ae4sv = zeros(N*nu,N*ny); 
    Ae4vt = zeros(N*nu,N*nu); 

     
    Ae = [Ae1u Ae1du Ae1e Ae1dy Ae1dx Ae1sv Ae1vt; 
        Ae2u Ae2du Ae2e Ae2dy Ae2dx Ae2sv Ae2vt; 
        Ae3u Ae3du Ae3e Ae3dy Ae3dx Ae3sv Ae3vt; 
        Ae4u Ae4du Ae4e Ae4dy Ae4dx Ae4sv Ae4vt]; 

    
    be1 = [C*dx1; zeros(ny*(N-1),1)]; 
    be2 = [A*dx1 ; zeros((nx*(N-1)),1)]; 
    be3 = ones(ny*N,1)*r(I); 
    be4 = [-u0; zeros(nu*(N-1),1)]; 
    be = [be1; be2; be3; be4]; 
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    %% Inequality Constraints 
    Ai1u = zeros(N*ny,N*nu); 
    Ai1du = zeros(N*ny,N*nu); 
    Ai1e = zeros(N*ny,N*ny); 
    Ai1dy = -eye(N*ny); 
    Ai1dx = zeros(N*ny,N*nx); 
    Ai1sv = -eye(N*ny); 
    Ai1vt = zeros(N*ny,N*nu); 

     
    Ai2u = zeros(N*ny,N*nu); 
    Ai2du = zeros(N*ny,N*nu); 
    Ai2e = zeros(N*ny,N*ny); 
    Ai2dy = eye(N*ny); 
    Ai2dx = zeros(N*ny,N*nx); 
    Ai2sv = -eye(N*ny); 
    Ai2vt = zeros(N*ny,N*nu); 

     
    Ai3u = -eye(N*nu); 
    Ai3du = zeros(N*nu,N*nu); 
    Ai3e = zeros(N*nu,N*ny); 
    Ai3dy = zeros(N*nu,N*ny); 
    Ai3dx = zeros(N*nu,N*nx); 
    Ai3sv = zeros(N*nu,N*ny); 
    Ai3vt = zeros(N*ny,N*nu); 

     
    Ai4u = zeros(N*ny,N*nu); 
    Ai4du = zeros(N*ny,N*nu); 
    Ai4e = zeros(N*ny,N*ny); 
    Ai4dy = zeros(N*ny,N*ny); 
    Ai4dx = zeros(N*ny,N*nx); 
    Ai4sv = -eye(N*ny); 
    Ai4vt = zeros(N*ny,N*nu); 

  

     
    Ai = [Ai1u Ai1du Ai1e Ai1dy Ai1dx Ai1sv Ai1vt; 
        Ai2u Ai2du Ai2e Ai2dy Ai2dx Ai2sv Ai2vt; 
        Ai3u Ai3du Ai3e Ai3dy Ai3dx Ai3sv Ai3vt; 
        Ai4u Ai4du Ai4e Ai4dy Ai4dx Ai4sv Ai4vt]; 

  
    bi = [-ones(nu*N,1)*yl(I); 
        ones(ny*N,1)*yu(I); 
        ones(nu*N,1)*(Vt(I)-4)/78.4; 
        zeros(N*ny,1)]; 

  

     
    %% Use Quadratic Programming 

     
    options = optimset('Display', 'off','LargeScale', 'on','MaxIter',200, 

'Algorithm', 'active-set'); 
    z = quadprog(H,c,Ai,bi,Ae,be,zl,zu,[],options); 
    % optimal value of u 
    u0 = z(1); 
    u = u0; 
    if Select == 'L' 
    dx1=A*dx + B*[u;Vin(I);Vt(I)]; 
    else 

     
    %% Simulate non linear model with optimal u 

     
    mymodel = @(t,h) nonlinear_model(t,h,u,Vin(I),Vt(I)); 
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    [t,y1]=ode15s(mymodel, Ts, dx); 
    % Steady state values from non linear model 
    dx1=[y1(end,1);y1(end,2)]; 
    end 
%     % flow through the gate 
    Vg = w*u*sqrt(2*g*h2); 
    %% Store Values for plotting 

     
    V_g(:,I)=Vg; 
    V_t(:,I)=Vt(I); 
    V_in(:,I)=Vin(I); 
    U(:,I)=u; 
    Y(:,I)=dy; 
    YL(:,I)=yl(I); 
    YU(:,I)=yu(I); 
    Re(:,I)=r(I); 
end 
%% Plotting 
close all 
figure(1) 
index=1:n-N; 
time=index*4/24; 

  
subplot(411) 
plot(time,U); 
ylabel({'Gate';'Opening';'h_g[m]'}) 
hold on  
plot(time,ul,'k'); 
hold on 
plot(time,uu,'r-'); 
title('MPC simulation in linear model with assumed inflow different from 

real prediction in Lake Toke') 

  
subplot(412) 
plot(time,Y,'*-','linewidth',1); 
hold on  
% ylabel('h1[m]') 
ylabel({'Level at';'Merkebek ';'h_1[m]'}) 
plot(time,Re,'g-'); 
hold on 
plot(time,YL,'r-'); 
hold on 
plot(time,YU,'r-');  

  
subplot(413) 
plot(time,V_in,'r'); 
ylabel({'Inflow';'V_i[m^3]'}) 
subplot(414) 
plot(time,V_t); 
ylabel({'Turbine';'Flow';'V_t[m^3]'}) 
xlabel({'Time period in days'}) 

  

  
end 
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Appendix 7: MATLAB file to run MPC 

%% Specify Discretization Time 
Ts = 0:60*60*4;   % Sampling Time 
%% Prediction Horizon and number of samples 
%Prediction Horizon 
N=10; 
% Number of sample points 
n = 70;%% Import the data 
[~, ~, raw] = 

xlsread('C:\Users\Bhuwan\Desktop\Inputs.xlsx','Sheet1','A3:D72'); 
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
% Allocate imported array to column variable names 
Vin = data(:,1); % Inflow 
Vt = data(:,2);   % flow through turbines 
LRV = data(:,3); % LRV 
HRV = data(:,4);%HRV 

  
%Define Weighting Matrices 
P = 10;       % error weighting matrix  
Q = 10;      % input weigting matrix  
R = 10;      % change of input weighting matrix   
S = 1;      % weight slack variable  
%%parameter for selecting reference signa 
a=0.5; 
%% Select the model 
Select = 'L'; 
%% Run MPC 
[U] = MPC(Vin, Vt,LRV,HRV ,Ts,P,Q,R,S,N,n,Select,a); 
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Appendix 8: MATLAB file for Non-linear model 

 

function dhdt = nonlinear_model(t,h,hg,v_dot_in,v_dot_t) 
dhdt = zeros(2,1); 
%%% parameters 
alpha = 0.05;  % Surface are fraction in compartment 2 
beta = 0.02;   % inflow fraction to compatment 2 
omega = 11.2;   % width of the gate 
g = 9.81;       % acceleration due to gravity 
%% 
A_h1 = 2.8e7*1.1* h(1)^0.1; 
A_h2 = 2.8e7*1.1* h(2)^0.1; 
v_dot_12 = 800* (h(1) - h(2))* sqrt(abs(h(1)- h(2))); 
v_dot_g = hg* omega* sqrt(2* g* h(2)); 
dhdt(1) = (1/((1 - alpha)* A_h1))* (((1 - beta)* v_dot_in)- v_dot_12); 
dhdt(2) = (1/(alpha* A_h2))* (beta* v_dot_in + v_dot_12- v_dot_t- v_dot_g); 

  
end 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

 

i
 Based on the MATLAB code developed by GØTHESEN, D.-K., HAILE, U. K., KHAREL, B. B., 

KUZNETSOV, A., NJOKU, I. O. & RABCHUK, K. V. 2013. "Flood Control using MPC of the Kragerø 

waterways". MSc Project, Telemark University College, Porsgrunn. 
ii
 Based on the MATLAB code developed by ibid. 
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