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Abstract: 

 

Model predictive controller is one of the most advanced control approaches which because of its good features 

like: ability to explicitly include constraints in its formulation, multivariable control, ability to look in to the 

future and act proactively has become popular in the industry. Although it was first introduced in the control of 

power production and in the petroleum industry, it has recently among others have been used in the automotive 

industry and medical applications like the artificial pancreas. It is thus worth making some research on the 

modern control system with good prospects for the future. 

 

This thesis focuses on evaluating and comparing MPC algorithms (linear and nonlinear model predictive 

controller algorithms) applied to simulated processes. An air-heater model and a model for an anaerobic 

digestion reactor are considered as case studies. Linear and nonlinear model predictive controller algorithms are 

developed and used to control each of the models. Robustness, stability and computation time of each of the 

controller algorithms under disturbance, measurement noise and model errors are evaluated and compared.  

 

 

Telemark University College accepts no responsibility for results and conclusions presented in this report. 
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Abbreviations 
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       Matrix Laboratory 
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   Quadratic programming 
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Nomenclature 

 

   Acidity constant [(g VFA/L)/ (g BVS/L)] 

b Retention time ratio [d/d] 

   Biodegradability constant[(g BVS/L)/ (g VS/L)] 

e Control error 

                         Influent or feed flow or load rate, assumed equal to effluent flow 

(constant volume) [L/d]. 

          Methane gas flow[L CH4/d] 

                   Objective function 

   Yield constant[g BVS/(g acidogens/L)] 

   Yield constant[g VFA/(g acidogens/L)] 

   Yield constant[g VFA/(g methanogens/L)] 

   Yield constant[L/g methanogens] 

                     C/V] 

   Specific death rate of acidogens[d
−1

] 

    Specific death rate of methanogens[d
−1

] 

   Monod half-velocity constant for acidogens[g BVS/L] 

    Monod half-velocity constant for methanogens[g VFA/L] 

  Reaction(growth) rate of acidogens[d
−1

] 

   Reaction(growth) rate of methanogens[d
−1

] 

   Maximum reaction rate of acidogens[d
−1

] 

    Maximum reaction rate of methanogens[d
−1

] 

P Weighting matrix for control error 

 ̂                     state estimation error covariance 

Q Weighting matrix for input signal 

 ̂  Process noise covariance 

R Weighting matrix for rate for change of signal 

 ̂  Measurement noise covariance 
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                    Concentration of BVS in influent [g BVS/L]. 

      
                    Concentration of volatile solids in influent [g VS/L]. 

                         Concentration of BVS in reactor [g BVS/L]. 

                         Concentration of VFA in reactor [g VFA/L]. 

                                   

         time-constant 

        Heater temperature[℃] 

                                                      

                         Reactor temperature[℃] 

                      Sampling time 

                     Time delay 

    Control signal[V] 

    Measurement noise 

   Effective reactor volume [L] 

    Process distubance  

                       Cost(weight) factor for control error 

                       Cost(weight) factor for input signal 

  ̇                     Cost(weight) factor for the rate of change of input signal  

                        Concentration of acidogens[g acidogens/L]. 

                       Concentration of methanogens [g methanogens/L]. 

 ̂ Initial state estimate; initial aposteriori state estimate 
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1 Introduction 

During the last three decades or so, the number of applications where control techniques 

based on dynamic optimization led to improved performance has significantly increased; for 

example, maximizing output or minimizing the energy use or raw material consumption 

Ferreau (2011). In order to make use of such control techniques, a mathematical model of the 

system to be controlled is required. The mathematical model helps for predicting future 

behavior of the system and for calculating optimal control actions. The optimal control 

actions can be calculated offline before the runtime of the process; however, some unknown 

disturbances require a feedback controller that repeatedly solves the optimal control problems 

during the runtime of the process. This repetitive optimal control refers to model predictive 

control (MPC). 

There are important features that make MPC different from traditional control approaches. 

MPC gives the possibility to directly specify the control objective and the desired limitations 

on the process in an optimal control problem. Predictive information can also be directly 

included while formulating the MPC problem; this enables the MPC to react proactively to 

future changes. Moreover, MPC can handle processes with multiple inputs and outputs. 

In many industries MPC is used to reduce energy and raw material consumption thereby 

saving natural resources. In the automotive industry, for example, it is not only used to save 

fuel and reduce emission, but is also expected to play a key role in new innovations like 

autonomous driving. In the health care sector, there are prospects of using MPC for optimal 

dose of insulin injections. 

In order to enjoy the benefits of MPC, solving challenging optimal control problems in real-

time is a must. Different algorithms are used to solve optimal control problems. Some of the 

algorithms are linear and nonlinear. Evaluation and comparison of these algorithms is the 

subject of this thesis. 

1.1 Literature review 

The MPC research area is vast and numerous reviews are available. The past present and 

future technology of MPC is widely discussed in M. Morari (1997). Tuning, constraints 

handling; both soft and hard are well discussed in Rossiter (2003) and Wang (2009). 

Maciejowski (2002) and Wang (2009) also give simplified ways of implementation in 

MATLAB and SIMULINK. Lie (2013) and Wang (2009) provide a detailed step by step 

MPC formulation. 

As a number of references in the literature indicate using linear or nonlinear MPC has its own 

pros and cons. According a number of reviews that are mentioned in the following paragraphs 

the main contrast between linear and nonlinear MPC lies in computational speed which is the 

characteristic of LMPC against more realistic response which is the characteristic of NMPC. 
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It is easy to reduce the MPC problem for linear plants to simple quadratic or linear programs 

for which efficient software exists. By using a linear model and quadratic cost function, the 

problem becomes a highly structured convex problem and can be solved fastYuebin Yu 

(2013)  . Thus, it is not surprising to see that majority of MPC applications are based on the 

linear dynamic model, mainly to take the computational advantages of linear MPC  So-Ryeok 

Oh (2010), Bingfeng Gu (2008) . 

However, Linear MPC can be inefficient for controlling nonlinear systems Andrey 

Alexandrovich Tyagunov (2004). If a realistic model is considered, the nonlinearities cannot 

be avoided and the capability of a linear model to approximate the nonlinear process 

diminishes and so does the quality of the linear MPC Chen (2009). Because for a linear MPC 

it can be difficult to directly handle nonlinear problems Yuebin Yu (2013) . In some cases, the 

influence of nonlinear dynamics effects is so important that the use of nonlinear model 

predictive control (NMPC) is unavoidable Chen (2009) 

On the other hand application of MPC to nonlinear systems generally leads to nonlinear 

programming problems Andrey Alexandrovich Tyagunov (2004) which incur high 

computational cost Weiguo Xie (2011) . In fact, conventional approach with a global search 

solver and a detailed model simulator or direct nonlinear model predictive control incurs 

prohibitive computational cost Yuebin Yu (2013)  . More details about optimization in 

nonlinear non-convex problems which can lead to local minima and the difficulties they pose 

to implementation in MPC can be found in Andrey Alexandrovich Tyagunov (2004) as well 

as in  Weiguo Xie (2011).   

1.2 Thesis objective 

The aim of this thesis is to evaluate and compare the linear and nonlinear MPC algorithms as 

applied to simulated processes. A linear laboratory scale air-heater model Haugen (2012) and 

a nonlinear pilot reactor used for anaerobic digestion Haugen (2013) are selected for use with 

the linear and nonlinear MPC algorithms. The air-heater model is relatively simpler than the 

AD reactor model. Taking, the discussion on section 1.1 into consideration, the variation in 

complexity of these two models is expected to give good test on the applicapility of both 

LMPC and NMPC.   

1.3 Thesis organization 

The first part of the thesis namely chapters 2 to 5 discuss about the air heater model, 

formulation of LMPC, NMPC and Kalman filter along with the comparison of the results 

from LMPC and NMPC. Chapters 6 to 8 Discuss similar topics as applied to the AD reactor 

model.  
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Chapter 2: Linear MPC applied to the air-heater model 

In chapter 2, the algorithm for the linear MPC is developed. The continuous time air heater 

model is discretized, a quadratic objective function with linear constraints is defined. The 

objective function is written in such a way that it is possible to use the built-in quadratic 

programming (QP) solver in MATLAB. Then, the algorithm is implemented in MATLAB 

and the MPC is tuned.  

Chapter 3: Nonlinear MPC applied to the air-heater model 

In chapter 3, the algorithm for the nonlinear MPC is developed. An objective function, similar 

to the one used in chapter 2 for the linear MPC is defined. However discretizing the 

c        s   d   w s       c ss  y       s c s .     ‘f   c  ’ s  v   f    M  L B 

toolbox which that does not require discretization is used for the nonlinear optimization in this 

case. The algorithm is implemented in MATLAB and the MPC is tuned. 

Chapter 4: Kalman filter 

The temperature at the outlet of the air heater, which is the output from the process, is affected 

by an unknown ambient temperature. This unmeasured value of ambient temperature had to 

be estimated. Thus, in both the LMPC and NMPC algorithms, a Kalman filter is used. The 

Kalman filter is discussed in chapter 4.  

Chapter 5: Comparing LMPC and NMPC results from the air-heater model 

Based on some criteria like: tolerance to changes in process disturbance, measurement noise, 

gain, time constant, time delay, and computation time; the results from the LMPC and NMPC 

are compared. Effects of the various parameters are discussed in chapter 5.  

Chapter 6: Linear MPC applied to the AD reactor model 

The AD reactor model is a nonlinear one. In order to use a linear MPC, the model had to be 

linearized and discretized. Linearization and discretization, imposing equality, inequality and 

bounded constraints for the AD reactor model are explained in chapter 6. 

Chapter 7: Nonlinear MPC applied to the AD reactor model 

The nonlinear MPC applied to the AD reactor model which also uses fmincon solver from the 

MATLAB toolbox for solving the optimization problem is discussed in chapter 7. 

Chapter 8: Comparing LMPC and NMPC results from the AD reactor model 

Results obtained from simulation of the linear and nonlinear MPC algorithms used for 

controlling the AD reactor model are compared in chapter 8. Important points like 

computation time and inequality constraints are some of the points of discussion. 

Chapter 9: Discussion and conclusion 

The general discussion and conclusion of the thesis is given in chapter 9. 

Chapter 10: Suggestions to future cork 

Some suggestions for future work are stated in chapter 10. 
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2 Linear MPC applied to the air-heater model 

The behavior of industrial processes is nonlinear. However, in a certain limited range of 

operation, it can be approximated by a linear model. The linear MPC takes advantage of this 

approximation in order to control the nonlinear processes. Controlling a nonlinear process 

using linear MPC requires linear model of the process. The linear model could be found by 

linearizing the nonlinear model or using system identification techniques from input and 

output data of the process. In the sections that follow the linear MPC for the air-heater model 

will be designed and implemented in MATLAB. 

2.1 The air-heater model 

The air heater model as described by Haugen (2012) is shown in equations (2-1) and (2-2). 

 

 
         

  
 

  

      
         

 

      
       

 

(2-1) 

 
 

 
                

 

(2-2) 

 
 

Where: u is the control signal to the heater. 

      is the total air temperature at the tube outlet         

       is the additive contribution to the total temperature Tout due to the heater         

        is time-constant in seconds 

K is heater gain in    C/V 

τ is time-delay representing air transportation and sluggishness in the heater. 

      is the ambient temperature         

Thus, the air-heater model has one input, the control signal; one output, the total temperature 

at the tube outlet; three parameters: time constant, time delay, and heater gain; one state, the 

additive temperature contribution due to the heater; and one disturbance which is the ambient 

temperature. The ambient temperature is assumed to be unmeasured disturbance and treated 

as an augmented state so that it can be estimated using Kalman filter. A simplified model of 

the air-heater is shown in Figure 2.1. 
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Parameters 

                             Tconst                      τ                              K 

 

      u (input)                                                                                                   Tout (output) 

Air-Heater Model 

 

                      Theat                                     Tamb (augmented state) 

 

States 

 

 

 

2.2 Discretizing the model 

As described in equations (2-1) and (2-2) the air heater model is linear model with time delay. 

The model is first discretized without the time delay; then, the time delay is incorporated in to 

the system using the same method used in Haugen (2014). The ambient temperature which is 

assumed to be unmeasured disturbance is treated as an augmented state and is estimated using 

Kalman filter. Assuming that the ambient temperature varies slowly its derivative is 

approximated to zero. 

 

 
     

  
   

 

(2-3) 

 
 

Thus, augmenting the ambient temperature in (2-3) to equation (2-1) as a state gives (2-4). 

 

 

 [

         

  
     

  

]  [
 

      
⁄  

  
] [

     

    
]  [

 

      

 

]      

 

(2-4) 

 

Equation (2-4) can then be written as: 

Figure 2.1 Air-Heater Model 
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 ̇            

 ̇        

Where:  [
     

    
],   is process disturbance,   is measurement noise, and      ,    are 

continuous time system matrices of compatible dimensions. The corresponding discrete time 

model can be expressed as: 

               

         

  

Where:    

          is the state vector which represents the heater temperature in this case,           

is the control input vector which represents the sequence of actual control signals in volts, 

         is the output vector which represents the total temperature at the tube outlet. A, B 

and C are discrete time system matrices of appropriate dimensions, and    is the initial 

temperature of the heater.   and   represent process disturbance vector and measurement 

noise vector respectively. Both   and   are assumed to be constants or slowly varying.  

The aim is to design an MPC algorithm which is not affected by the measurement noise or the 

process disturbance. In order to achieve that we use the deviation variables     ,     and     

in the MPC algorithm Ruscio (2013). 

Assuming that            ,             and evaluating the deviations in state 

variables         gives:  

                                  

       ⏟      
     

          ⏟      
   

            ⏟      
   

  

Thus the deviation in state variables can be expressed as shown in (2-5).  

  

 
                

 

(2-5) 

 
 

Similarly, evaluating the deviation in output variables         gives: 

                         

       ⏟      
   

          ⏟      
   

   

This expression for     is the same as the expression in equation (2-6). 
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(2-6) 

 

In addition to the discrete model shown in equations (2-5) and (2-6), the control error and the 

rate of change of the input signal which also are part of the equality constraints are shown in 

equations (2-7) and (2-8). The objective is to produce output    that follows the reference 

values     which means the control error    should be as close to zero as possible. The control 

error is weighted in the performance index. The rate of change of the control signal should 

neither be very slow nor abrupt one. In order to achieve a reasonable rate of the change of the 

control signal the rate of change of the control signal is also weighted in the performance 

index. 

          

 

(2-7) 

 
 

 

  

 

             

 

(2-8) 

 
 

 

  

 

2.3 Control objective 

The cost function J that reflects the control objective is defined as in (2-9) 

   
 

 
∑[  

         
            

       ]

 

   

 
(2-9) 

 

Where the first term (  
      is linked to the objective of minimizing the errors between the 

predicted output and the set-point, the second term      
        reflects the consideration 

given to the amplitude of the input; the third term       
         corresponds to the rate of 

change of the input. 

The error or the difference between the output and ref    c  s     , ‘ ’,            d   f     

      s     , ‘ ’,           f c       f           s     , ‘δ ’ are to be optimized. P, Q and R 

are corresponding weighting matrices. The aim is to minimize the cost function J subject to 

the equality constraints specified in equations (2-5) to (2-8) while keeping the control signal 

in the range of 0 to 5 volts. The range of the input signal is determined by the physical 

limitations of the device, constraints that are governed by the physical limitations of the 

system are hard constraints. Hard constraints are constraints that cannot be violated. In this 

case it is not possible to get a supply below zero volts or above five volts, for instance. Thus, 

the controller should always satisfy this requirement.  
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2.4 Quadratic programming (QP) 

I    d           z      ‘QP’ s  v   f        M  L B       z            x,           z      

problem formulated in section 2.3 is rewritten as a quadratic programming problem. 

Quadratic programming (QP) problem involves minimizing or maximizing an objective 

function like the one shown in (2-9), subject to bounds, linear equality and inequality 

constraints Mathworks (2014b). It can be described as the mathematical problem of finding a 

vector z that minimizes a quadratic function J as in (2-10).  

    
 

 
          

 

(2-10) 

 
Subject to: 

                               

 

 

 

 

                                  

                              

 

 

H is a constant matrix which is referred to as the Hessian matrix. It is assumed that H is 

symmetric, positive definite (i.e. H > 0)Ruscio (2001) . c is a vector which is independent of 

the unknown present and future inputs. c is defined by the model, a sequence of known past 

inputs and outputs. 

Assuming that the vectors                                  (2-11). 

 

 

{
 
 

 
 

      
       

                      

        
        

                    

      
       

                   

      
       

                   

      
       

                   

 (2-11) 

The cost function in (2-9) needs to be rewritten in a quadratic program form as in (2-10) as a 

function of the column vectors specified in (2-11). In order to do that, the unknown vectors 

are stacked in z as in (2-12). 

                                                  (2-12) 

It is further assumed that                   are known and then the quadratic program 

representation of  the performance index interms of the unknown vectors according to Lie 

(2013) is calculated as in (2-13). 
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(2-13) 

Where: 
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]                                

(2-14) 

Here the variables         are not contributing to the performance index  .  Therefore, the 

values of     and     are zeros. 

 

 {
                            

                                         
 (2-15) 

There is no any linear term in the performance index. The absence of any linear term in z in 

the performance index implies that          . 

The symbol   represents the Kronecker product. 
1
 

2.5 Constraints 

To complete the representation of the QP, it is required to formulate the constraints. The 

constraints can be bounded constraints (upper and/or lower limits), equality constraints and 

inequality constraints. 

                                                 

 

1
 If A is an  m × n matrix and B is a p × q matrix, then the Kronecker product A   B is the mp × nq block 

matrix: 

     [

             

   
             

] 
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The equality constraints from equations (2-5) to (2-8) can be rewritten as shown in (2-16). 

        

 

(2-16) 

 
Where: 

   

(

 

                         

                         

                         

                         )

   and     

(

 
 

    

    

    

    )

 
 

 

Each of the components of matrix    and vector    are described in equations (2-17) to 

(2-24).  

The measurement equation (2-6) can be expanded as shown in (2-17) where the unknowns are 

placed on the left hand side of the equality sign while the known values are kept on the right 

hand side of the equality sign. 
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(2-18) 

 

 

Similarly, from the state equation shown in (2-5) we get: 
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(2-19) 
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(2-20) 
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The equation in (2-7) representing the control error can be expressed as in (2-21) and (2-22). 
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(2-22) 

 

     [        ]  

Finally, equation (2-8) which represents the rate of change of the control signal can be 

rewritten as in (2-23). 
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(2-23) 

 

 

 

 

                                     

                  

                

                

                

     [              ]
 

 

(2-24) 

 

     [       ]  

In this case there are no any inequality constraints. However, there is one bounded constraint; 

the input signal should be limited between 0 and 5 volts. All the other variables are assumed 

to vary from minus infinity to infinity as shown in (2-25).  
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(2-25) 

 

2.6 Implementation in MATLAB 

The idea described in sections 2.1 to 2.5 are implemented in MATLAB. See the code on 

Appendix 2. The continuous time matrices of the air heater model shown in (2-1) and (2-2) 

are used in the state space form in MATLAB. The values for the heater gain, time constant, 

and time delay are 3.5, 19   C and 3 seconds respectively and are taken from Haugen (2012). 

    c        s        d    s d sc    z d  s    ‘c2d ’ f  c        MATLAB at a sampling 

time of one second. In this linear MPC the optimization algorithm used is QP and ambient 

temperature is estimated using unscented Kalman filter discussed in chapter 4.  

2.7 LMPC Tuning 

Tuning the LMPC was not easy. It was done by trial and error method. However, some sort of 

useful trend was observed while retuning the LMPC repeatedly. It is important to keep the 

ration of the weighting matrix for the rate of change of the input signal(R) to the weighting 

matrix for the control error small, and then adjust the weighting matrix for the amplitude of 

the control signal (Chen), between the values of R and P. The ration of R to P may vary from 

one problem to the other. In this case a ratio of 1:1000 gave good results. It is easier to start 

by setting Q to zero and keeping R/P very small. Then, the output can be tuned to track the set 

point by just varying Q between the values of P and R without changing the values of P and 

R.  

An example is shown below to illustrate how the ration of R to P and changing Q affects the 

value of the output temperature in relation to the set point temperature. In Figure 2.2 Q is set 

to zero while the ratio of R to P is set to 1:1000. It can be seen that the output has steady state 

error and the output temperature is greater than the set point. Increasing the weighting matrix 

of the control signal is supposed to reduce the output temperature. This is tried in Figure 2.3 

where Q is raised to 900 while R and P are kept at their original values (1 and 1000 

respectively). Increasing Q has lowered the output below the set point which again has 

resulted in a steady state error again. However, this time the value of the output is lower than 

the reference value as shown in Figure 2.3. After some adjustments of Q a value of 777 gave a 

steady state error of zero, see Figure 2.4. In all of the cases the val    f             

            w s               .  This method of tuning was found useful as it has only two 

important steps to remember. 
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i. Keep the ration R to P small.  

ii. Adjust Q between the values of R and P until you get satisfactory result 

During this simulation, the prediction horizon is set to 10; the discretization time is set to 1 

second. The weighting matrices for the amplitude of the input signal, the rate of change of the 

input signal and control error are set to 777, 1 and 1000 respectively. These values gave the 

best result and will be used in all tests of the air-heater model that follow.  

 

Figure 2.2 LMPC tuning, R:P =1:1000 , Q =0 , output > set point 

 

 

Figure 2.3 LMPC tuning, R:P =1:1000 , Q =900 , output < set point 

 

Figure 2.4 LMPC tuning, R:P =1:1000 , Q =777 , output = set point 
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3 Nonlinear MPC applied to the air-heater model 

In the nonlinear MPC the built-   M  L B s  v   ‘f   c  ’  s  s d      d      s  v      

optimization. To use this solver, two functions need to be provided: the objective function and 

a function that calculates the constraints. Moreover, the initial state needs to be specified. 

When using the nonlinear solver, linearization and discretization are not required. The 

continuous time air-heater model described in equations (2-1) and (2-2) is also used in this 

chapter. Here, discretizing the model is not required.  

3.1 Control objective 

The following control objective is defined 

    ∫     
        

    
    

 

   ̇ ̇
        

 

(3-1) 

 

Such that:                  

Where:   represents the control error 

   represents the amplitude of the control signal 

  ̇ represents the rate of change of the control signal 

   is the present time 

    is the prediction horizon 

             ̇ are weights for          ̇ respectively.  

 

The forward (explicit) Euler method is used for solving the ODEs in the objective function. 

The forward Euler method is simple ODEs integrator Tallent (2012). The simulation that uses 

the forward Euler method only depends on the past values of state variables and state 

derivatives.  

Let: 

     be the time at     time-step 

     be the computed solution at the     time-step 

           be the step size 

Then, the forward Euler method can be summarized as: 

              
     

    ̇ ̇
     

 

The MATLAB code for the objective function is in Appendix 5. 
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3.2 Implementation in MATLAB 

Implementing the nonlinear MPC in MATLAB is relatively easy. There is no need to write all 

the linear equations using the Kronecker product as in the linear MPC. Equations (2-1) and 

(2-2) are directly used with the ‘fmincon’ solver. The MATLAB code can be found in 

Appendix 3 

3.3 NMPC Tuning 

The NMPC is tuned in the same way as the LMPC. The ratio   ̇  to    (see section 3.1) is 

kept low (1:1000) and    is varied between the values of   ̇ and   . Results which are 

similar to the results of LMPC are obtained and are illustrated in Figure 3.1, Figure 3.2, and 

Figure 3.3. Although there is no big difference between the three figures as in the LMPC case, 

it can be observed that Figure 3.3 gave better result than the other two. It was observed that 

the NMPC gave quite good results to a wider range of values of    unlike the LMPC. The 

LMPC requires fine tuning of the weighting matrices in order to give good results.     

                     s                       s    w y  s        LM         . I  section 5.2, 

effect of changing ambient temperature on both NMPC and LMPC will be analyzed.  

During this simulation, the prediction horizon is set to 10; the discretization time is set to 1 

second. The weighting matrices for the amplitude of the input signal, the rate of change of the 

input signal and control error are set to 777, 1 and 1000 respectively. These values gave the 

best result and will be used in all air-heater model related tests that follow.  

 

Figure 3.1 NMPC tuning,   ̇   =1:1000 , Q =0 
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Figure 3.2 NMPC tuning,   ̇   =1:1000 , Q =900 

 

 

Figure 3.3 NMPC tuning,   ̇   =1:1000 , Q =777t 
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3.4 Summary of MATLAB files used in the air-heater 

model 

The following MATLAB functions are used in the Air-heater model: 

1. Air_Heater_LMPC.m (Appendix 2) 

This function represents the LMPC for the Air-heater model and is invoked by the 

Air_Heater_LMPC_and_NMPC_plot.m 

2. Air_Heater_NMPC.m (Appendix 3) 

This function represents the NMPC for the Air-heater model and is invoked by the 

Air_Heater_LMPC_and_NMPC_plot.m 

3. Air_Heater_objective.m (Appendix 5) 

This function represents the objective function for the NMPC of the Air-heater model 

and is invoked by Air_Heater_NMPC.m 

4. Air_Heater_constraint.m (Appendix 10) 

This function represents the constraint function for the NMPC of the Air-heater model 

and is invoked by Air_Heater_NMPC.m . This function has only empty matrices for 

the constraints it is just added so that the fmincon solver in Air_Heater_NMPC.m 

works properly. 

5. Air_Heater_ukf.m (Appendix 4) 

This function represents the unscented Kalman filter for the NMPC of the Air-heater 

model and is invoked by Air_Heater_NMPC.m and Air_Heater_LMPC.m 

6. Air_Heater_LMPC_and_NMPC_plot.m (Appendix 12) 

This script calls the Air_Heater_LMPC.m and the Air_Heater_NMPC.m and plots the 

results from the LMPC and NMPC functions. 
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4 Kalman filter 

Kalman filter is used in order to estimate the states and disturbances in the air-heater model 

and the AD reactor model. The unscented Kalman filter (UKF) is used in this report. 

According to Simon (2006), the UKF does not need linearization and is less erroneous than 

the extended Kalman filter (EKF) which is the most widely used state estimation algorithm 

for nonlinear systems. As described in section 2.6 the parameters for the air heater model, 

namely:            and   are 23 seconds, 3 seconds and 3.5 respectively. For the values of the 

parameters of the AD reactor model see Table 6-2. 

4.1 Tuning the Kalman Filter 

The Kalman filter is tuned using the parameters like the initial aposteriori state estimate,  ̂; 

the initial state estimation error covariance,  ̂  ; measurement noise covariance ,  ̂  and 

process noise covariance,  ̂ .  In both the air-heater model and the AD reactor model, the 

Kalman filter was tuned by trial and error.  

In the air-heater model, the initial aposterior state estimate,  ̂ is set to [
 
  

]  ; initial state 

estimation error covariance,  ̂  is [
    
      

]  ; measurement covariance,  ̂  is scalar as 

we have one measured value (      ) and is       ; and process noise covariance,  ̂  is  

[
   
     

]. The MATLAB code for the Kalman filter used in the air heater model is in 

Appendix 4. 

In the AD reactor model, the same tuning parameters as in Finn Haugen (2014)  are used. The 

initial aposterior state estimate  ̂, is set to [                  ] ; initial state 

estimation error covariance,  ̂  is set to diagonal matrix as :      [(     ̂)
 
] ; measurement 

covariance ,  ̂  is normally a diagonal matrix. As we have only one measurement ( Fmeth ),  ̂   

is reduce to a scalar and is set to 1.44 (representative value from real time series ); and process 

noise covariance,  ̂  is set to     (   ̂)
 
 , where                [           ]  The 

MATLAB code for the Kalman filter used in the AD reactor model is in Appendix 11. 
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5 Comparing LMPC and NMPC results from the 

air-heater model 

A number of criteria can be considered to compare the performance of a controller algorithm. 

Some of the criteria can be: robustness, stability and sensitivity. In this chapter, analysis of 

these criteria in connection with the air-heater shall be carried out. Some data and plots from 

the simulation results are also provided. 

5.1 Introduction 

In general, the term sensitivity refers to the effect that a change in one variable has on another 

variable Dale E. Seborg (2004). With this respect, the effect of some variables in the air-

heater model, for example, effect of disturbance on output, effect of measurement noise on 

output or execution time, etc. shall be discussed.  

If a control system designed using a model is to function properly, it should not be 

disproportionately sensitive to small changes in the process or to inaccuracies in the process 

model. A control system that satisfies this requirement is said to be robust or insensitive Dale 

E. Seborg (2004). This part will be analyzed by deliberately using different parameters in the 

process model and in the controller. For example, what happens when the heater gain, time 

constant or time delay of the process model or the real process are different from the values 

used in the controller? It is answered in the following sections. 

Stability is also another important criteria to consider, the ratio of the amplitudes of 

subsequent peaks in the same direction (due to a step change of the disturbance or a step 

change of the set point in the control loop) is approximately ¼ Haugen (2010). Step changes 

are applied in both the ambient temperature (disturbance) and set point. The stability is 

quantified using the ¼ decay ratio.  

All in all the bases for comparison of LMPC and NMPC used in the air-heater model can be 

summarized as: 

i. Tolerance to changes in ambient temperature(section 5.2) 

ii. Tolerance to measurement noise (section 5.3) 

iii. Tolerance to model error (section 5.4) 

a. Sensitivity to changes in Heater gain 

b. Sensitivity to changes in time constant 

c. Sensitivity to changes in time delay 

iv. Execution time(section 0) 

v. Integral of absolute error, (IAE) (section 5.6) 
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5.2 Tolerance to changes in ambient temperature 

The ambient temperature is c     d f                     while plotting the simulation results 

and recording the execution time. In most of the cases a bigger overshoot is observed in the 

NMPC than in the LM   d              s     s    .                         w s              

C when tuning LMPC (section 2.7) and NMPC (section 3.3). Now, there is a slight difference 

in the output especially                      w                             s c     d    2    

C, see Figure 5.1. From the simulations conducted, both the LMPC and NMPC have shown 

good tolerance to changing ambient temperature. However, a slightly bigger overshoot (red 

line for NMPC) compared to smother one (blue line for LMPC) is shown in Figure 5.1. Apart 

from the slightly bigger overshoot in the NMPC, both LMPC and NMPC outputs track the 

reference very well, while the ambient temperature changes. 

Figure 5.1 is a representative to a number of similar simulations that are conducted and gave 

similar results. From Figure 5.1 it can be seen that ambient temperature is   c   s d f    2    

C to 31                     s c  ds   d  s d     d   c     2         time t = 400 seconds. The 

figure shows that the LMPC is less oscillating and has slightly shorter settling time than then 

NMPC when the same perturbation is applied to both of them.  

 

Figure 5.1 LMPC and NMPC simulation result when ambient temperature changes 
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The transient overshoot after about 10 seconds and the overshoot due to increased disturbance 

150 seconds are magnified as shown above. If we see successive peaks that are pointing down 

at points A and B in the first sketch or successive peaks that are point up at points A and B in 

the second sketch, the decay ratio becomes zero in both cases. Which means the system is 

stable.  

5.3 Tolerance to measurement noise 

In the simulations shown in Figure 5.1, the measurement noise was set to zero. Here a random 

measurement noise with amplitude  f 2      s  dd d               in both the LMPC and 

NMPC in order to test their sensitivity to measurement noise. The simulations conducted 

show that the LMPC is slightly less sensitive to measurement noise than the NMPC, although 

both have quite similar sensitivity to measurement noise. Figure 5.2 may help to visualize the 

slight difference in the results in the presence of the same amount of noise in both the LMPC 

and NMPC.      M   s  ws f      .2   C to 37.07   C which means     x             

     v          f  .       w         LM          v    s f      .            .       w  c  

      s     x                  v          f 2.      .  
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Figure 5.2 LMPC and NMPC simulation result when noise is added 

 

5.4 Tolerance to model error 

However accurately analyzed, the model can never be a perfect representation of the real 

process. There will always be model errors. Thus, it becomes important to evaluate the 

capability of the controller in situations where the actual process and the model parameters 

mismatch. In this section the robustness of both LMPC and NMPC against model errors is 

analyzed. The controller sensitivity to changes in model errors is analyzed by changing the 

process parameters: heater gain, time constant and time delay. In order to see the effect of the 

parameter under consideration, all the other parameters are kept at their nominal values while 

the one under test is subjected to change.  

5.4.1 Tolerance to changes in heater gain 

The heater gain was allowed to change from 75% to 200% of its nominal value while plotting 

the simulation results and recording the execution time at each change. The LMPC showed 

more tolerance to changes in the heater gain than the NMPC. The plot in Figure 5.3 shows 

results from the LMPC and NMPC when the heater gain is raised to 175% of its nominal 

value. The figure shows that the LMPC is more stable and less sensitive to changes in the 

heater gain than the NMPC in this case.  
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Figure 5.3 NMPC and LMPC simulation result when heater gain is 175% of its nominal value 

If we consider peaks at points A and B in Figure 5.3 for example, the decay ratio can be 

summarized as in Table 5-1 

Table 5-1 decay ration in NMPC and LMPC when heater gain is 175% of its nominal value 

Controller Decay Ratio Remarks 

LMPC         

         
 

 

    
   

Stable 

NMPC         

         
 

    

    
             

Unstable 

5.4.2 Tolerance to changes in time constant 

Changing the time constant did not affect the controllers in general compared to the changes 

in the other parameters. The LMPC became unstable when the time constant reduced to and 

below 25% of its nominal value while the NMPC became unstable when the time constant is 

reduced to and below 50% of its nominal value. As the time constant increases the output 

response takes more time to come to a steady state value in both LMPC and NMPC. The 

simulation results shown in Figure 5.4 are taken when the time constant is increased to 150% 

of its nominal value.  
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Figure 5.4 NMPC and LMPC simulation results when time constant is 150% of its nominal 

value 

 

5.4.3 Tolerance to changes in time delay 

Both LMPC and NMPC have shown good tolerance for values of time delay from 0(no delay) 

to below 300% of its nominal value. When the time delay is increased to 300% of its nominal 

value, the output from the LMPC became oscillating as shown in Figure 5.5. However, the 

oscillations die out with time and eventually it reaches steady state. On the other hand, the 

NMPC became unstable when the time delay reached 300% of its nominal value. Although 

both controllers have shown good results to a wider range of time constant, the LMPC was 

found to be more robust against the changes in time delay.  
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Figure 5.5 NMPC and LMPC simulation results when time delay is 300% of its nominal value 

According to the decay ration comparison shown in Table 5-2, the NMPC becomes unstable 

when the time delay in the process model becomes double of that used in the controller. 

However, LMPC is stable when the value of time delay in the process model becomes twice 

of the time delay in the controller. Considering points A, B, C and D in Figure 5.5, the decay 

ration for the NMPC is 0.4 while the decay ratio of the LMPC is 0.  

 

Table 5-2 decay ration in NMPC and LMPC when time delay is 300% of its nominal value 

Controller Decay Ratio Remarks 

LMPC          

         
 

 

    
        

Stable 

NMPC         

         
 

    

   
          

Unstable 
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5.5 Execution time 

The execution time was computed while each of the parameters mentioned in sections 5.2 to 

5.4 , namely: ambient temperature, measurement noise, heater gain, time constant, and time 

delay were changing. In Table 5-3 to Table 5-7 the average, maximum and minimum 

execution times represent the time elapsed during a single iteration. The total execution time 

however, represents the duration from the start of the program to the finish.  

Table 5-3 displays the execution time in both LMPC and NMPC with respect to changing 

ambient temperature. In the LMPC the average execution time is 7.7 seconds while in the 

NMPC the average execution time is 19.5. The execution time in NMPC is 2.6 times the 

execution time in LMPC. It means LMPC is about 3 times faster than NMPC.  

Table 5-4 shows execution time in LMPC and NMPC with respect to increasing measurement 

noise. The execution time in LMPC did not show much variation while the measurement 

noise increases, and the average execution time is 7.5. In the NMPC however, the average 

execution time has increased to about three times its value without noise. As a result the 

average execution time in LMPC in the presence of measurement noise has become 8 times 

faster than the average execution time in NMPC. 

 

Table 5-3 Execution time of LMPC and NMPC with respect to changing ambient temperature 

Execution time in Linear MPC Ambient  

Temp. 

Execution time in Nonlinear MPC 

 

       

       

 

Average 

Per cycle 

Max 

Per 

cycle 

Min 

Per 

cycle 

Total 

 

Average 

Per cycle 

Max 

Per 

cycle 

Min 

Per 

cycle 

Total 

 

0.0148 0.6717 0.0089 8.4978 18 0.0676 1.4097 0.0157 22.9095 2.6959 

0.0130 0.6637 0.0084 7.8504 19 0.0667 1.3973 0.0173 22.6783 2.8888 

0.0111 0.6530 0.0061 7.5714 20 0.0635 1.3977 0.0155 22.1335 2.9233 

0.0144 0.7362 0.0065 7.5391 21 0.0599 1.4748 0.0148 20.7334 2.7501 

0.0114 0.6629 0.0061 7.7147 22 0.0589 1.3946 0.0154 20.3849 2.6423 

0.0110 0.6578 0.0068 7.3350 23 0.0594 1.4662 0.0162 20.5319 2.7992 

0.0108 0.6618 0.0065 7.3275 24 0.0588 1.6297 0.0160 20.3180 2.7728 

0.0111 0.7611 0.0068 7.4485 25 0.0577 1.8666 0.0169 19.9875 2.6834 

0.0111 0.7515 0.0059 7.5248 26 0.0547 1.7762 0.0153 19.1869 2.5498 

0.0105 0.6200 0.0061 7.2969 27 0.0572 1.7776 0.0176 19.8705 2.7231 

0.0107 0.5526 0.0071 7.3585 28 0.0575 2.1059 0.0167 19.7166 2.6794 

0.0101 0.5498 0.0060 7.4476 29 0.0552 1.9517 0.0157 19.4131 2.6066 

0.0121 0.6588 0.0062 8.0607 30 0.0558 1.5312 0.0165 19.5021 2.4194 

0.0103 0.5973 0.0063 7.2536 31 0.0561 1.9780 0.0166 19.4896 2.6869 

0.0102 0.5689 0.0062 7.2374 32 0.0530 1.9082 0.0164 18.6379 2.5752 

0.0111 0.5829 0.0076 7.8120 33 0.0487 1.8994 0.0171 17.6589 2.2605 

0.0103 0.5625 0.0069 7.1689 34 0.0475 1.5625 0.0179 17.4077 2.4282 

0.0185 0.7005 0.133 9.6340 35 0.0248 1.2828 0.0168 10.3956 1.0791 

0.0118 0.6452 0.0137 7.6710  0.0557 1.6561 0.0164 19.4976 2.5647 
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Table 5-4 Execution time of LMPC and NMPC with respect to changing measurement noise 

Execution time for Linear MPC Measurement 

Noise 

Execution time for Nonlinear MPC 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

0.0110 0.6612 0.0059 7.2683 0.0 0.0598 1.5042 0.0162 20.7273 

0.0107 0.6667 0.0060 7.4045 0.5 0.1765 1.4797 0.0729 54.6043 

0.0108 0.6595 0.0065 7.3735 1.0 0.1941 1.5290 0.0719 59.5685 

0.0113 0.7696 0.0060 7.4956 1.5 0.2003 1.5251 0.0987 61.3508 

0.0114 0.6503 0.0060 7.4964 2.0 0.1956 1.4752 0.0314 59.9552 

0.0114 0.6662 0.0060 7.5793 2.5 0.1970 1.5119 0.0249 60.4228 

0.0115 0.6483 0.0059 7.6433 3.0 0.2001 1.5253 0.412 61.2649 

0.0119 0.6517 0.0067 7.5803 3.5 0.1952 1.5591 0.0279 59.8223 

0.0123 0.6865 0.0070 7.8503 4.0 0.1988 1.5594 0.0230 61.0857 

 

The execution time was also recorded to check if an error in the heater gain affects it. As can 

be seen from Table 5-5 the execution time in the LMPC does not vary so much. The 

execution time of the NMPC on the other hand increased with increasing heater gain. As the 

heater gain increased from 75% to 200% of its nominal value, the execution time in NMPC 

increased from 3 times to 6 times the execution time in LMPC. 

 

Table 5-5 Execution time of LMPC and NMPC with respect to changing heater gain 

Execution time for Linear MPC Heater 
Gain 

Execution time for Nonlinear MPC 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

0.0146 0.7649 0.0082 8.8973 75% 0.0606 1.5367 0.0184 20.7352 

0.0105 0.6628 0.0061 7.3814 100% 0.0610 1.6609 0.0158 21.0890 

0.0108 0.7720 0.0064 7.7445 125% 0.0739 1.5417 0.0164 24.5876 

0.0103 0.6642 0.0067 7.2447 150% 0.1129 1.4973 0.0183 35.9913 

0.0104 0.6644 0.0066 7.2412 175% 0.1659 1.4989 0.0906 51.3128 

0.0106 0.7002 0.0059 7.6758 200% 0.1810 1.5167 0.0177 55.6202 

 

Table 5-6 shows execution time in LMPC and NMPC as the time constant changes from 25% 

to 400% of its nominal value. Total execution time in the LMPC is almost constant with an 

average value of 0.01 seconds. Total execution time in NMPC increases as the time constant 

deviated from its nominal value. When the heater reached twice its nominal value, execution 

time has become 2.7 times the value it had at the nominal value of heater gain. This can be 

seen from Table 5-5 where total execution time increased from 20.7 to 55.6 seconds.  
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Table 5-6 Execution time of LMPC and NMPC with respect to changing time constant 

Execution time for Linear MPC Time 
Constant 

Execution time for Nonlinear MPC 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

0.0109 0.6757 0.0064 7.2220 25% 0.1904 1.5374 0.0253 58.6525 

0.0103 0.6807 0.0066 7.1607 50% 0.1791 1.6078 0.0753 55.1015 

0.0105 0.6689 0.0064 7.1812 75% 0.0775 1.6013 0.0184 25.6501 

0.0106 0.7020 0.0065 7.2883 100% 0.0602 1.5237 0.0157 20.5457 

0.0104 0.6632 0.0059 7.1972 125% 0.0611 1.5045 0.0159 20.8813 

0.0109 0.6737 0.0064 7.6424 150% 0.0676 1.4603 0.0162 22.7328 

0.0111 0.6566 0.0068 7.3319 175% 0.0711 1.5117 0.0161 23.8164 

0.0113 0.7472 0.0068 7.8192 200% 0.0786 1.9545 0.0168 25.9299 

0.0115 0.6817 0.0068 7.4491 250% 0.0907 1.6701 0.0165 29.5000 

0.0116 0.6562 0.0064 7.4853 300% 0.0999 1.5591 0.0184 32.1957 

0.0118 0.6602 0.0060 7.5299 350% 0.1121 1.5144 0.0265 35.6527 

0.0119 0.7074 0.0061 7.6373 400% 0.1215 1.5196 0.0340 38.3689 

 

Similarly to the effects of the other parameters on execution time, LMPC did not show any 

change in execution time with increasing time delay; and NMPC showed an increase in 

execution time with increasing time delay as can be seen from Table 5-7 

Table 5-7 Execution time of LMPC and NMPC with respect to changing time delay 

Execution time for Linear MPC Time 
Delay 

Execution time for Nonlinear MPC 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 
 

Average 
Per cycle 

Max 
Per 
cycle 

Min 
Per 
cycle 

Total 

0.0109 0.6506 0.0058 7.7250 0% 0.0443 1.5921 0.0165 16.3103 

0.0108 0.6522 0.0058 7.8042 100% 0.0590 1.5035 0.0165 20.2590 

0.0107 0.6580 0.0058 7.7979 200% 0.01185 1.4986 0.0254 37.4363 

0.0110 0.6474 0.0058 7.6566 300% 0.1628 1.4468 0.0820 50.2641 

0.0106 0.6549 0.0058 7.8101 400% 0.1604 1.4475 0.0852 49.6402 

0.0116 0.6526 0.0071 7.4627 500% 0.1586 1.4585 0.0842 49.1297 

 

As can be seen from the LMPC and NMPC plots on Figure 5.6, it is the first iteration which 

takes much time. The average computation time in the first iteration was calculated from the 

collected data and compared with the average computation time per cycle. The time elapsed 

during the first iteration was found out to be approximately 56 to 63 times greater than the 

average elapsed time per iteration in the LMPC, and 10 to 35 times greater than the average 

elapsed time in the NMPC.   
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Figure 5.6 Elapsed time per cycle Vs number of cycles for LMPC and NMPC 

 

Another important factor to look at is the number of iteration that the optimizations solver 

makes before it converges to a solution. Figure 5.7 shows the maximum number of iteration 

in the LMPC and NMPC. It can be clearly seen that the NMPC makes more iteration before it 

converges than the LMPC. The average number of iterations in the NMPC is 7 whereas the 

average number of iteration in the LMPC is1.4.  

 

Figure 5.7 Maximum number of iteration vs number of cycles in LMPC and NMPC 

 

There is an important thing to remember when simulating the NMPC – updating the initial 

sequence of optimal control signals. If the initial guessed vector of optimal control signals is 

not updated, the simulation works fine. However it takes about 3 times longer time than when 

the initial vector of control signals is updated. In Figure 5.8, the initial value of the optimal 

control sequence is not updated and the solver takes a random guess every time. Thus, it has 

to make much iteration to converge throughout the simulation loop. If the initial guess 

supplied to the objective function is updated by the optimal sequence from the previous 

iteration as in Figure 5.7, the number of iteration that the solver makes before it converges to 

the solution reduces dramatically and the controller becomes faster.    
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Figure 5.8 Maximum number of iteration vs number of cycles in NMPC and LMPC when u is 

not  updated 

Some additional information is also obtained from the iterative display. Iterative display is a 

table of statistics describing the calculations in each iteration of a solver Mathworks 

(2014a).The LMPC solver in this case is using QP , active set  algorithm and it does not have 

the option for making iterative display. So, the iterative display is made only for the NMPC. 

Just for comparison the iterative display from the first and the last iterations are shown in 

Table 5-8 andTable 5-9. In the tables: Iter represents the iteration number, F_count represents 

the number of times the objective function is evaluated, and f(x) shows the value of the 

objective function etc. Table 5-8 shows that the solver took 27 iteration to converge while 

Table 5-9 shows that the solver actually converged in one iteration. Similarly, the objective 

function is evaluated 340 times in the first iteration and only 34 times in last iteration. 
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Table 5-8 Iterative display during the first iteration 

 

 

Table 5-9 Iterative display during the last iteration; u_guess is updated 

 

Table 5-10 is basically the same like Table 5-9 it shows the results during the last iteration. It 

takes more number of iterations and function counts only because the initial guess of control 

signal is not updated by the optimal sequence.   
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Table 5-10 Iterative display during the last iteration; u_guess is not updated 

 

5.6 Integral of absolute value of the error (IAE) 

The integral of absolute error which is a measure of set point tracking Haugen (2014) is given 

by : 

       ∫         
 

 

 

 

(5-1) 

 

The      measures the disturbance compensation and is given by: 

 

 

 

 

      ∫         
 

 

 

 

 

 

 

(5-2) 

 

 

 

 

 

In Figure 5.9 a step change is applied at 300 seconds. The      is calculated from zero to 300 

seconds while the      is calculated from 300 to 600 seconds and the results are given in 

Table 5-11. 
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Table 5-11 IAE results for LMPC and NMPC 

 LMPC NMPC LMPC/NMPC 

IAEs 0.9117 1.6191 0.5631 

IAEd 9.4459 9.9231 0.9519 

 

From Table 5-11it can be seen that the IAEs of the LMPC is 56% of the IAEs of the NMPC. 

This shows that the set point tracking of LMPC is much better than that of NMPC in this case. 

The IAEd  of  LMPC is 95% of the IAEd of NMPC. Both have comparable disturbance 

compensation. 

 

 

 

Figure 5.9 Disturbance rejection and set point tracking in LMPC and NMPC 
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6 Linear MPC applied to the AD reactor model 

In this chapter linear MPC is designed for a pilot reactor used for anaerobic digestion (AD) of 

dairy manure and compared against a nonlinear MPC results already designed by Finn 

Haugen (2013).  Many of the techniques used to develop the LMPC for the air-heater model 

in chapters 2 to 4 are also applicable for the AD reactor model. So, some topics are referenced 

to the relevant chapters whenever applicable. 

6.1 Modified Hill’s Model  

The anaerobic digestion reactor model is taken from Finn Haugen (2013) . In the article the 

  d    s         d  s   d f  d     ’s   d  . The equations that constitute the model are 

presented below: 

The portion of the raw waste that can serve as substrate is defined as: 

 
               

 

 

(6-1) 

 

The portion of the biodegradable material which is initially in the acid form is defined as: 

 
                

 

 

(6-2) 

 

Mass balance of biodegradable volatile solids: 

  ̇                    
     

 
          

 

(6-3) 

 

Mass balance of total volatile fatty acids (VFA): 

  ̇                    
     

 
                    

 

(6-4) 

 

Mass balance of acidogens: 

 
 ̇             

     
 
 

       

 

(6-5) 

 

Mass balance of methanogens:  

 
 ̇              

     
 
 

       

 

(6-6) 
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Methane gas flow rate (gas production) 

 

 
                  

 

(6-7) 

 

Where the reaction rates with Monod kinetics, are: 

     

    

       
 

(6-8) 

 

 

       

    

        
 

(6-9) 

 

The maximum reaction rates    and     are functions of the reactor temperature and are 

given as: 

                                       
(6-10) 

 

 2         reac          

 

 

The simplified representation of the model is given in Figure 6.1.  

 

Figure 6.1 AD reactor model 

Ffeed is the control variable and Fmeth is the controlled variable. Svsin is augmented as a state 

and its rate of change is assumed to be zero. Reactor temperature is considered as a parameter.  



 46 

6.2 Linearizing and discretizing the AD reactor model 

The linear MPC algorithm requires a linear model. Thus, the nonlinear AD reactor model 

(shown in equations (6-1) to (6-10)) needs to be linearized. The linearization is briefly 

described here based on Lie (2005).  

Assuming a nonlinear model given by (6-11): 

 
  

  
        

 

(6-11) 

 

 

Where x represents the states and u represents inputs and is further assumed that an operating 

point         is chosen and Taylor series expansion of         is valid at         . 

Then, 

                 [
       

  
]
    
    

       [
       

  
]
    
    

       

For simplicity define A as in (6-12): 
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]
    
    

 
(6-12) 

 

And B as in (6-13): 
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]
    
    

 
(6-13) 

 

 

 

Thus: 

  

  
                            

Assuming constant    leads to 
   

  
   , such that 

  

  
 

  

  
 

   

  
                            

       

  
                            

 

Defining:         and          we get: 
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Choosing the operating point        such that  

  

  
            

Gives an equation that defines the deviation between          as shown in (6-14) 

 
   

  
         

 

(6-14) 

 

 

Similarly we can linearize the equation from input variable x to output variable y as: 

       

             
  

  
   

        

Defining          and 

   
  

  
   

 
(6-15) 

 

 

and         we get the equation that defines the deviation between          as in (6-16) 

 
       

 

(6-16) 

 

In the AD reactor model the input          , the output         and the vector of states  

  [                            ]
 
 . Following the same method as in equations (6-11) to 

(6-16),  the AD reactor model is linearized around a steady state operating point values shown 

in Table 6-1. 

Table 6-1 steady state operating point taken from Finn Haugen (2014) 

Ffeed = 35.3L/d 

Treac = 35 ℃ 

Sbvs = 4.14 g/L 

Svfa = 0.8 g/L 

Xacid = 1.80g/L 

Xmeth = 0.39g/L 

Svsin = 30.2 g/L 

Fmeth = 174.2 L CH4/d 
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Defining the ODEs mentioned in equations (6-3) and (6-6) as             and augmenting 

    ̇    
  as zero rate of change of      

 assuming constant or slowly varying      
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    ̇                    
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Then, from equation (6-12) A is given by: 
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Similarly following equation (6-13) B is given by: 
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And from equaiton (6-15) C is given by: 
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 ) 

The values of the parameters in the AD reactor model are shown in Table 6-2. 

 

Table 6-2 Parameters in the AD reactor model Finn Haugen (2013) 

Parameter Value  Unit Comment 

   0.69 (g VFA/L)/ (g BVS/L) Acidity constant 

b 2.90 d/d Retention time ratio 

   0.25 (g BVS/L)/ (g VS/L) Biodegradability constant 

   3.89 g BVS/(g acidogens/L) Yield constant 

   1.76 g VFA/(g acidogens/L) Yield constant 

   31.7 g VFA/(g methanogens/L) Yield constant 

   26.3 L/g methanogens Yield constant 

   0.02 d
− 

 Specific death rate of acidogens 

    0.02 d
− 

 Specific death rate of methanogens 

   15.5 g BVS/L Monod half-velocity constant for 

acidogens 

    3 g VFA/L Monod half-velocity constant for 

methanogens 

  250 L Effective reactor volume 
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Now that the model is linearized, the steady state operating point and the parameters are 

known, the model can be discretized and implemented in MATLAB. The AD reactor model is 

MATLAB software and The MATLAB code for linearization and discretization is shown in 

Appendix 6 

6.3 Constraints 

Once the AD reactor model is linearized and discretized it has the same form as the linear air 

heater model shown in equations (2-5) and (2-6). The only difference is that the model has 

become more complicated with more number of states and parameters. Thus, the control 

objective (section 2.3), quadratic programming (section 2.4), equality constraints (section 2.5) 

described for the LMPC of the air-heater model are also applicable for the AD reactor model. 

They are not thus repeated here. In this AD reactor model an inequality constraint on one of 

the states is added. In Finn Haugen (2014) it is assumed that Svfa  ≤  .  defines safe operation 

of the reactor. The same assumption is made here and an inequality constraint is added in the 

LMPC in order to keep the Svfa at safe level.  In order to do that, the inequality matrix    and 

vector    need to be supplied to the quadratic programming (see section 2.4).  Similar to the 

equality constraints, four equations that correspond to the states, output, error and input are 

constructed and are stacked in a matrix as shown below. 

   

(

 
 

                          

                          

                          

                          )

 
 

  and     

(

 
 

    

    

    

    )

 
 

 

 

All the sub matrices of matrix    are zeroes of appropriate dimensions except       which is 

given by:  

      [       (         )         (         )         (         )]  

Therefore    is given by: 

   

(

 
 

                                             

                                                  

                                                  

                                                  )

 
 

 

In the equality matrix   , the first to the fourth raw correspond to the state, output, error and 

input equations while the first to the fifth columns correspond to the five variables, namely: 

input, state, output, error, and error increment respectively. The input, error and error 

increment are weighted in the performance index (the same performance index as in section 

2.3 is used) while the state and output are not.  
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The     vector is given by: 

   

(

 
 

    

    

    

    )

 
 

 

(

 

         

        

        

        )

  

The input signal is constrained between 0 volts and 40 volts.  

6.4 Implementation in MATLAB 

The control objective, quadratic programming and equality constraints which are formulated 

in the same way as in section 2.5 along with the formulations added in chapter 6 are 

implemented in MATLAB. The parameters of the AD reactor model are set to the values 

shown in Table 6-2.  The MATLAB code for the LMPC as applied to the AD reactor model is 

shown in Appendix 7. 
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7 Nonlinear MPC applied to the AD reactor model 

Similar to the nonlinear MPC in the air-heater model, fmincon solver is also used here.  The 

objective function which is used for the AD reactor model is shown in equation (7-1). The 

AD reactor model shown in equations (6-1) to (6-10) is used where Ffeeed is the input and Fmeth 

is an output. In addition to the objective function a constraint function is needed by the solver. 

An unscented Kalman filter is also used to estimate the states and Svsin which is augmented as 

state. The code for objective function is shown in Appendix 9. The initial values and the 

parameters are set to the values shown in Table 6-2. When using the nonlinear solver, 

linearization and discretization are not required.   

7.1 Control objective 

The following control objective is defined for the AD reactor model 

    ∫     
        

    
    

 

   ̇ ̇
        

 

(7-1) 

 

Such that:                  

Where:   represents the control error 

   represents the amplitude of the control signal 

  ̇ represents the rate of change of the control signal 

   is the present time 

    is the prediction horizon 

             ̇ are weights for          ̇ respectively.  

 

The forward (explicit) Euler method is used for solving the ODEs in the objective function. 

The forward Euler method is simple ODEs integrator Tallent (2012). The simulation that uses 

the forward Euler method only depends on the past values of state variables and state 

derivatives.  

Let: 

     be the time at     time-step 

     be the computed solution at the     time-step 

           be the step size 

Then, the forward Euler method can be summarized as: 

              
     

    ̇ ̇
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7.2 Summary of the MATLAB functions used in the AD 

reactor model 

The implementation in MATLAB for the AD reactor model is similar to the air-heater model 

and the following MATLAB functions are used in the AD reactor model: 

7. AD_reactor_Linearize_and_Discretize.m (Appendix 6) 

This function linearizes and discretizes the nonlinear AD reactor model and is used by 

the AD_reactor_LMPC.m 

8. AD_reactor_LMPC.m (Appendix 7) 

This function represents the LMPC for the AD reactor model and is invoked by the 

AD_reactor_LMPC_and_NMPC_plot.m 

9. AD_reactor_NMPC.m (Appendix 8) 

This function represents the NMPC for the AD reactor model and is invoked by the 

AD_reactor_LMPC_and_NMPC_plot.m 

10. AD_reactor_objective.m (Appendix 9) 

This function represents the objective function for the NMPC of the AD reactor model 

and is invoked by AD_reactor_NMPC.m 

11. AD_reactor_constraint.m (Appendix 10) 

This function represents the constraint function for the NMPC of the AD reactor 

model and is invoked by AD_reactor_NMPC.m . This function has only empty 

matrices for the constraints it is just added so that the fmincon slover in 

AD_reactor_NMPC.m works properly. 

12. AD_reactor_ukf.m (Appendix 11) 

This function represents the unscented Kalman filter for the NMPC of the AD reactor 

model and is invoked by AD_reactor_NMPC.m 

13. AD_reactor_LMPC_and_NMPC_plot.m (Appendix 13) 

This script calls the AD_reactor_LMPC.m and the AD_reactor_NMPC.m and plots 

the results from the LMPC and NMPC functions. 
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8 Comparing LMPC and NMPC results from the 

AD reactor model 

In this chapter a brief comparison of the results from the AD reactor LMPC and NMPC is 

done. Topics like: inequality constraints, IAE and computation time are discussed in the 

sections that follow.  

8.1 Handling inequality constraints 

The Svfa is assumed to be limited to a maximum value of 0.8 for safe reactor operation. In the 

nonlinear model this is fulfilled by controlling Svfa indirectly though other variables. Such 

control action will be effective if the model is good and if the reference is not set so high that 

Svfa does not pass its maximum limit. However if the model is erroneous or somehow 

reference is set very high, then, Svfa can pass its maximum limit as shown in Figure 8.1.  

 

Figure 8.1 one sample of Svfa simulation in AD reactor NMPC 

Thus it would be advantageous if the concentration of VFA can be explicitly constrained to its 

maximum level. In fact in Finn Haugen (2014) it is mentioned that it will be safer to define 

Svfa maximum limit explicitly instead of relying on the model alone(as it was done in the 

NMPC) to predict a possible failure. In the LMPC the constraint is directly applied to Svfa 

(section 6.3) and it can be limited to a save level as shown in Figure 8.2 regardless of the 

values of the other variables in the model.  
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Figure 8.2 one sample of Svfa simulation in AD reactor LMPC 

8.2 AD reactor LMPC and NMPC simulation results 

The simulation results for the AD reactor LMPC and NMPC are shown in Figure 8.3. Both 

LMPC and NMPC show comparable set point tracking. However, it can be noticed that the 

LMPC uses more input to give the same output as the NMPC. It is not clear why the LMPC 

uses bigger amount of input to produce the same output as the NMPC produces.  
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Figure 8.3 AD reactor LMPC and NMPC simulation result 

 

8.3 Computation time and IAE 

 

Other important factors to look at are the computation time and the IAE. As far as the 

execution time is concerned the LMPC has a clear advantage over the NMPC. On the other 

hand the NMPC is better on IAE basis, see Table 8-1. The IAE for the simulation result 

shown in Figure 8.3 are calculated from 0 to 7 days and the results are shown in Table 8-1. 

Table 8-1 Comparing computation time and IAE for the AD reactor LMPC and NMPC 

 LMPC NMPC NMPC/LMPC 

Total execution time 8.322879 seconds 414.849299 seconds 49.8444 

IAE(0 to 7 for Figure 8.1) 48.9200 26.6288 1.8371 

 

The results in Table 8-1 show that the LMPC is about 50 times faster than the NMPC but the 

IAE value of the LMPC is approximately twice of that of NMPC for the simulations under 

consideration; i.e. Figure 8.3.  
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9 Discussion and Conclusion 

In this thesis linear and nonlinear MPC algorithms are developed and evaluated as applied to 

an air-heater model and AD reactor model. In the linear case the model is linearized, 

discretized and formulated in to a quadratic programming problem in such a way that it is 

possible to use the QP solver in MATLAB. In the nonlinear case, the fmincon solver is used 

which directly optimizes the model without linearization. An unscented Kalman filter is used 

to estimate the states and disturbances.  

The LMPC and NMPC are compared based on their ability to tolerate process disturbance, 

measurement noise and model error. Moreover, their computation time ease of tuning and 

implementation are considered. 

In the case of the air-heater model, both LMPC and NMPC are simulated while the ambient 

temperature changes from 18   C         C. Some overshoot was observed in the NMPC with 

changing ambient temperature while the simulation results from LMPC did not show 

significant overshoot. Generally speaking both MPC algorithms have shown good tolerance to 

process disturbance.  

Another factor used for comparison of LMPC and NMPC in the air heater model was 

measurement noise. Both MPCs have shown quite similar responses under the same effect of 

measurement noise. 

For the air heater model, the effect of model error is more visible in the nonlinear MPC 

applied to the air-heater model. The NMPC became unstable at 175% of nominal gain, and at 

300% of nominal value of the time delay while the LMPC remained stable in both cases. 

Execution time was about 3 times slower in the NMPC and gets slower and slower with 

increase of model error. In the LMPC the execution time was not affected by model error. It 

remained constant while the model error increases. 

Two important qualities were observed in the case of LMPC for the AD reactor model. 

Firstly, the computation time was about 50 times shorter than in the NMPC. Secondly, it was 

easier to add inequality constraint to the state variable Svfa to keep it at safe level. This helps 

to directly impose the required maximum limit on Svfa instead of relying on the model to keep 

VFA concentration at safe level. It is good that an explicit inequality constraint is added in the 

LMPC as it is not clear to what extent the model is able to predict a possible failure of the real 

reactor due to high concentration of VFA (Finn Haugen, 2014)  . The LMPC, however uses 

more input to produce the same output as the NMPC. 

The NMPC applied to the AD reactor, on the other hand has its own good qualities. Its IAE is 

half of that of the LMPC and has shown stable response over a wider operation range than the 

LMPC.  
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In both the air-heater model and the AD reactor model, it is easier to implement the NMPC 

than the LMPC. It does not require linearization and discretization. When tuning the NMPC 

gives good results over a wide range of the tuning parameters as a result it is easier to tune it.  

Therefore, when dealing with relatively simple models that the linearized approximation of a 

nonlinear process can be acceptable, and when execution time is a priority, the LMPC appears 

to be the better choice. On the other hand, when speed does not matter much, and the model is 

believed to be less erroneous, but relatively complex or highly nonlinear where it will be 

difficult to accurately approximate it by a linear model, the NMPC can be better alternative as 

it can retain the nonlinearities of the process and is easier to implement and tune it.  
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10 Suggestions for future work 

1. Investigating why the LMPC uses more Ffeed to produce the same amount of Fmeth as 

the NMPC. Trying another way of formulating the LMPC could probably be a 

solution to this, for example treating Treac and Svs,in as input disturbances may help 

improve the LMPC.  

2. As the results from the simulations of the AD reactor model show, it is vital having a 

constraint on the VFA consecration. Introducing a constraint on the state variable Svfa 

in the case of the NMPC, is thus recommended.  

3. It is recommended to research on reducing the excessively large computation time in 

the NMPC. Using paraller search with multis start option from the MATLAB toolbox 

could probably reduce the computation time in the NMPC. 
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Appendices 

Overview of appendices  

Appendix 1 Task Description 

Appendix 2 MATLAB code for linear model predictive control  

Appendix 3 MATLAB code for nonlinear model predictive control  

Appendix 4 MATLAB code for Kalman filter  

Appendix 5 MATLAB code for the objective function  

Appendix 6 MATLAB code for linearization and discretization of AD reactor model 

Appendix 7 MATLAB file for the LMPC applied to the AD reactor model 

Appendix 8 MATLAB file for the NMPC applied to the AD reactor model 

Appendix 9 MATLAB file for the objective function which is invoked by the fmincon in 

NMPC applied to the AD reactor  

Appendix 10 Constraint function added to complete the NMPC applied to both air-heater 

model and AD reactor model. This function is invoked by the fmincon solver 

used in the NMPC. 

Appendix 11 MATLAB code for the Kalman filter used for the AD reactor model  

Appendix 12 MATLAB script for plotting LMPC and NMPC simulation results from the air-

heater model  

Appendix 13 MATLAB script for plotting LMPC and NMPC simulation results from the 

AD reactor model 
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Appendix 1 

Task Description 
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Appendix 2 

MATLAB code for linear model predictive control used for the air-heater model 

function [Input_signal,Output_Temperature, 

T_amb_array,Reference,tElapsed,it,ul,uu,e_mpc]=MPC_KF42(T_amb_init,std_T_ou

t_noise, ... 
    K,K_real,T_const,T_const_real,Timedelay_real_process, 

Timedelay_mpc,Ts,N,Np,Nsim,t,Set_Point) 
%% Linear Model Predictive Controller for the Air Heater Model 
%%------------------------------------------------------------------------- 
% tic 
% % clear all 
% % close all 
% clc 
% ------------------------------------------------------------------------- 
%% Parameters 
% K = 3.5; % heater gain 
% T_const = 23; % time constant 
p = [K, T_const]; 
% ------------------------------------------------------------------------- 
%% Parameters 
% K_real = 3.5; 
% T_const_real = 23; 
p_real = [K_real, T_const_real]; 
% Ts=1; 

  
% ------------------------------------------------------------------------- 
% %% Continous Time System Matrices 
% Ac = [-K/T_const 0; 0 0] ; 
% Bc = [K/T_const; 0]; 
% Cc = [1 1]; 
% Dc = 0; 
%% Continous Time System Matrices 
Ac = [-K/T_const, 0;0 0]  ; 
Bc = [K/T_const;0] ; 
Cc = [1 1]; 
Dc = 0; 
% ------------------------------------------------------------------------- 
%% Discretizing the Continous time model 
[A, B, C, D]=c2dm(Ac,Bc,Cc,Dc,Ts,'zoh'); 
% [Ad,Bd,Cd,Dd] = pade_approximation() 
% A=blkdiag(Ad,1) 
% B=[Bd;0] 
% C=[Cd 0] 
% D=Dd 
% [Ad,Bd,Cd,Dd] = c2dm(A,B,C,D,Ts,'zoh') 
%% Dimension of system matrices 
nx = size(A,1); 
nu = size(B,2); 
ny = size(C,1); 
%-------------------------------------------------------------------------- 
% N=10; 
% Np=N/Ts; 
% t_start=0; 
% t_stop=600; 
% Nsim=(t_stop-t_start)/Ts; 
% t=[t_start:Ts:t_stop-Ts]'; 
%-------------------------------------------------------------------------- 
%Initial states: 
T_heat_init = 4; 
% T_amb_init = 21; 
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T_out_init = 25; 
u0=1; 
% std_T_out_noise=0; 

  
%% Weighting Matrice 
We = 10000;       % error weighting matrix 
Wu = 7754;      % input weigting matrix 
Wdu = 1;      % change of input weighting matrix 
% ------------------------------------------------------------------------- 
% %Initial guessed optimal control sequence: 
% u_guess=0*zeros(Np,1)+u0; 
%-------------------------------------------------------------------------- 
%% State-space model implementing time-delay 
% Timedelay_real_process=3; 
nd=ceil(Timedelay_real_process/Ts); 
Ad=diag([ones(nd-1,1)],-1); 
Bd=[nd>=1;zeros(nd-1,1)]; 
Cd=[zeros(1,nd-1),nd>=1]; 
Dd=[nd==0]; 
x_delay_k=zeros(length(Ad),1)+u0; 

  
%-------------------------------------------------------------------------- 
%% Kalman Filter Tuning 
x_init=[T_heat_init, T_amb_init]'; 
x_apost_k_minus_1=x_init; 
k_P=10; 
P_init=diag((x_init*k_P).*(x_init*k_P)); 
P_apost_k_minus_1=P_init; 
k_Q=5*diag([1 1]); 
Q_cont=diag(x_init.*x_init)*k_Q^2; 
Q=Q_cont; 
T_out_noise_ukf=1.5; 
R_cont=T_out_noise_ukf^2; 
R=R_cont;%Likn (8.15) i Simon. 
%-------------------------------------------------------------------------- 
%% Lower and upper bounds 
ul = 0; 
uu = 5; 
dul = -inf; 
duu = inf; 
el= -inf; 
eu = inf; 
xl = -inf; 
xu = inf; 
yl=-inf; 
yu=inf; 
uLB = ones(N*nu,1)*ul; 
uUB = ones(N*nu,1)*uu; 
duLB = ones(N*nu,1)*dul; 
duUB = ones(N*nu,1)*duu; 
eLB = ones(N*ny,1)*el; 
eUB = ones(N*ny,1)*eu; 
yLB = -inf(N*ny,1); 
yUB = inf(N*ny,1); 
xLB = ones(N*nx,1)*xl; 
xUB = ones(N*nx,1)*xu; 

  
zl = [uLB; duLB; eLB; yLB; xLB]; 
zu = [uUB; duUB; eUB; yUB; xUB]; 
% ------------------------------------------------------------------------- 
%% Hessian matrix 
H11 = kron(eye(N),Wu); 
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H22 = kron(eye(N),Wdu); 
H33 = kron(eye(N),We); 
H44 = zeros(N*ny); 
H55 = zeros(N*nx); 

  
H = blkdiag(H11, H22, H33, H44, H55); 

  
c = zeros(1,(2*nu+2*ny+nx)*N); 

  

  
%% Memory allocation 
Output_Temperature=zeros(ny); 
Input_signal=zeros(nu); 
Reference=zeros(ny); 
Control_signal=zeros(nu); 
tElapsed=zeros(ny); 
T_out=zeros(Nsim-Np,1)+T_out_init; 
T_heat=zeros(Nsim-Np,1)+T_heat_init; 
T_out_est=zeros(Nsim-Np,1)+T_out_init; 
T_amb=zeros(Nsim-Np,1)+T_amb_init; 
u=zeros(nu); 
% ------------------------------------------------------------------------- 
%% For-loop for calculating optimal control sequence applied to simulated 

process: 
for k=1:Nsim-Np 
    %% Reference 
    %     r = 25; 
    %     if k<=100 || k>=200 
    T_out_sp=ones(length(t),1)*Set_Point; 
    %     else 
    %         T_out_sp=ones(length(t),1)*Set_Point+10; 
    % 
    %     end 

     
    if k<=300 
        T_amb(k)=T_amb_init; 
    else 
        T_amb(k)=T_amb_init+1; 

         
    end 

     

     
    %% Equality Constraints 
    % measurement equation 
    Ae1u = -kron(eye(N),D); 
    Ae1du = zeros(N*ny,N*nu); 
    Ae1e = zeros(N*ny,N*ny); 
    Ae1dy = eye(N*ny); 
    Ae1dx  = -kron(diag(ones(N-abs(-1),1),-1),C); 

     
    % state equation 
    Ae2u = -kron(eye(N),B); 
    Ae2du = zeros(N*nx,N*nu); 
    Ae2e = zeros(N*nx,N*ny); 
    Ae2dy = zeros(N*nx,N*ny); 
    Ae2dx = eye(N*nx)-kron(diag(ones(N-abs(-1),1),-1),A); 

     
    % error equation 
    Ae3u = zeros(N*ny,N*nu); 
    Ae3du = zeros(N*ny,N*nu); 
    Ae3e = eye(N*ny); 
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    Ae3dy = eye(N*ny); 
    Ae3dx = zeros(N*ny,N*nx); 

     
    % input equation 
    Ae4u = kron(diag(ones(N-abs(-1),1),-1),eye(nu)) - eye(N*nu); 
    Ae4du = eye(N*nu); 
    Ae4e = zeros(N*nu,N*ny); 
    Ae4dy = zeros(N*nu,N*ny); 
    Ae4dx = zeros(N*nu,N*nx); 
    %matrix Ae 
    Ae = [Ae1u Ae1du Ae1e Ae1dy Ae1dx; 
        Ae2u Ae2du Ae2e Ae2dy Ae2dx; 
        Ae3u Ae3du Ae3e Ae3dy Ae3dx; 
        Ae4u Ae4du Ae4e Ae4dy Ae4dx]; 

     
    % vector be 
    be1 = [C*x_apost_k_minus_1; zeros(ny*(N-1),1)]; 
    be2 = [A*x_apost_k_minus_1 ; zeros((nx*(N-1)),1)]; 
    be3 = ones(ny*N,1)*T_out_sp(k); 
    be4 = [-u0; zeros(nu*(N-1),1)]; 

     
    be = [be1; be2; be3; be4]; 

     
    %% Use Quadratic Programming 
    tStart = tic; 
    options = optimset('Display', 'off','LargeScale', 'on','MaxIter',10000, 

'Algorithm', 'active-set'); 
    [z,fval,exitflag, output,lambda] = 

quadprog(H,c,[],[],Ae,be,zl,zu,[],options); 
    tElapsed(k) = toc(tStart); 

     
    u(k)=z(1); 
    %     u0=z(1); 
    du(k)=z(11); 

     
    %% Time Delay 
    in_delay_real_process_k=u(k); 
    x_delay_real_process_k_plus_1=Ad*x_delay_k+Bd*in_delay_real_process_k; 
    out_delay_real_process_k=Cd*x_delay_k+Dd*in_delay_real_process_k; 
    Control_signal(k)=out_delay_real_process_k; 
    x_delay_k=x_delay_real_process_k_plus_1; 

     
    %% Upadate state equation 
    dT_heat_dt = -(1/T_const_real)*T_heat(k) + 

(K_real/T_const_real)*Control_signal(k); 
    T_heat(k+1) = T_heat(k) + Ts*dT_heat_dt; 
    T_out(k)=T_heat(k) + T_amb(k); 

     
    %----------------------------------------------------------------------

---- 
    %% Store values for plotting 
    % output 
    it(k)=output.iterations; 
    %    fc(k)=output.funcCount; 
    %e_mpc(k)=T_out_sp(k)-T_out(k); 
    Input_signal(k)=u(k); 
    Reference(:,k)=T_out_sp(k); 
    e_mpc(k) = Reference(k)-T_out(k); 
    T_amb_array(:,k) =T_amb(k); 
    T_heat_array(:,k)=T_heat(k); 
    Output_Temperature(k)=T_out(k); 
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    %----------------------------------------------------------------------

---- 
    %% Call Kalman Filter 

     
    y_k=T_out(k)+std_T_out_noise*randn; 
    control_signal_k=u(k); 

     
    [P_apost_k,x_apost_k,y_pred_k,K_k]=... 
        

Air_Heater_ukf(y_k,P_apost_k_minus_1,x_apost_k_minus_1,Ts,control_signal_k,

p,Q,R); 
    T_out_est(k)=y_pred_k; 
    % K_k 

     
    %Time shift: 
    x_apost_k_minus_1=x_apost_k; 
    P_apost_k_minus_1=P_apost_k; 

     
    T_heat(k)=x_apost_k(1); 
    if k<=100 && k> 200 
        T_amb(k)=x_apost_k(2); 
    end 
end 
t_iae_s_init=0;%d 
t_iae_s_final=300;%10;%d 
index_iae_s=find(t>t_iae_s_init&t<t_iae_s_final); 
iae_s_LMPC=Ts*sum(abs(e_mpc(index_iae_s))) 

  
% 
t_iae_d_init=300;%10;%d 
t_iae_d_final=600;%17;%d 
index_iae_d=find(t>t_iae_d_init&t<t_iae_d_final); 
iae_d_LMPC=Ts*sum(abs(e_mpc(index_iae_d))) 

  
%    tElapsed; 
%    tAverage = sum(tElapsed)/(Nsim-Np) 
%    tMax=max(tElapsed) 
%    tMin=min(tElapsed) 

  
%% Plotting: 
t_plot=t(1:Nsim-Np); 
t_plot_start=t_plot(1); 
t_plot_stop=t_plot(end); 
i_plot=[1:length(t_plot)]; 
% ------------------------------------------------------------------------- 
% close all 
% figure(1) 
% subplot(211) 
% plot(t_plot,Input_signal(i_plot),'k-');%,'LineWidth',1.5); 
% ylabel({'Control';'Signal';'in Volts'}) 
% xlabel('Time in seconds') 
% hold on 
% plot(t_plot,ul,'k:'); 
% hold on 
% plot(t_plot,uu,'k:'); 
% % grid 
% % axis([0 300 -1 6]) 
% title('Linear Model Predictive Control Simulation Results') 
% legend('Control Signal','Lower and upper limits','Location','best') 
% subplot(212) 
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% plot(t_plot,Output_Temperature(i_plot),'k-');%,'LineWidth',1); 
% hold on 
% ylabel({'Temperature';'At Tube Outlet';'in \circ C'}) 
% xlabel('Time in seconds') 
% plot(t_plot,Reference(i_plot),'k-.'); 
% 
% hold on 
% plot(t_plot,T_amb_array(i_plot),'r-'); 
% legend('Measured Temeperature','Set Point','Location','best') 
% % hold on 
% % plot(t_plot,T_heat_array(i_plot),'c-'); 
% % legend('Measured Temeperature','Set Point','Location','best') 
% grid minor 
% axis([0 300 20 36]) 

  
% figure(2) 
% plot(t_plot, tElapsed(i_plot),'k-') 
% title({'Linear Model Predictive Control Simulation Results';' Execution 

time Vs Number of cycles'}) 
% xlabel('Number of cycles') 
% ylabel('Elapsed Time per cycle [s]') 
%  axis([-5 300 0 1.2]) 
% % grid 
% % figure(3) 
% % plot(t_plot, fc(i_plot),'k*') 
% % title({'Linear Model Predictive Control Simulation Results';'Maximum 

Function Count Vs Number of cycles'}) 
% % xlabel('Number of cycles') 
% % ylabel('Maximum Function Count') 
% %  axis([-5 300 0 3]) 
% figure(3) 
% plot(t_plot, it(i_plot),'k-') 
% title({'Linear Model Predictive Control Simulation Results';'Maximum 

Number of iterations Vs Number of cycles'}) 
% xlabel('Number of cycles') 
% ylabel('Maximum Number of iterations') 
%  axis([-5 300 0 8]) 
% toc 
end 

 

 

Appendix 3  

MATLAB code for nonlinear model predictive control used for the air-heater model 

 
function [u_mpc,T_out_mpc_array,T_amb_array,T_out_sp,tElapsed,fc,it,e_mpc] 

=Air_Heater_NMPC(T_amb_init,std_T_out_noise,... 
    

K,K_real,T_const,T_const_real,Timedelay_real_process,Timedelay_mpc,Ts,~,Np,

Nsim,t,Set_Point) 
%% Nonlinear Model Predictive Controller for the Air Heater Model 
%-------------------------------------------------------------------------- 
% tic 
% clear all 
% close all 
% clc 
%-------------------------------------------------------------------------- 
% K = 3.5; 
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% T_const = 23; 
p = [K, T_const]; 
%-------------------------------------------------------------------------- 
% K_real = 3.5; 
% T_const_real = 23; 
% p_real = [K_real, T_const_real]; 

  
%-------------------------------------------------------------------------- 
% Ts=1; %Time-step 
% t_pred_horizon=10; 
% Np=t_pred_horizon/Ts; 
% t_start=0; 
% t_stop=600; 
% Nsim=(t_stop-t_start)/Ts; 
% t=[t_start:Ts:t_stop-Ts]'; 
%-------------------------------------------------------------------------- 
%Init states: 
T_heat_init = 4; 
% T_amb_init = 21; 
T_out_init = 25; 
Cotrol_signal_const = 1; 
% std_T_out_noise=0; 
% 
%-------------------------------------------------------------------------- 
%% Weights 
we=10000; 
wu=7754; 
wdu=1; 
wN=0; 
wde=0; 
costs=[we wu wdu wN wde]; 
%-------------------------------------------------------------------------- 

  
%Initial guessed optimal control sequence: 
u_const=Cotrol_signal_const; 
u_guess=0*zeros(Np,1)+u_const; 
%-------------------------------------------------------------------------- 
%State-space model implementing time-delay in "real" process for MPC: 
% Timedelay_real_process=3; 
nd_real_process=ceil(Timedelay_real_process/Ts); 
Ad_real_process=diag([ones(nd_real_process-1,1)],-1); 
Bd_real_process=[nd_real_process>=1;zeros(nd_real_process-1,1)]; 
Cd_real_process=[zeros(1,nd_real_process-1),nd_real_process>=1]; 
Dd_real_process=[nd_real_process==0]; 
x_delay_real_process_k=zeros(length(Ad_real_process),1)+u_const; 

  
% %State-space model implementing time-delay in MPC: 
% Timedelay_mpc=3; 
nd_mpc=ceil(Timedelay_mpc/Ts); 
Ad_mpc=diag([ones(nd_mpc-1,1)],-1); 
Bd_mpc=[nd_mpc>=1;zeros(nd_mpc-1,1)]; 
Cd_mpc=[zeros(1,nd_mpc-1),nd_mpc>=1]; 
Dd_mpc=[nd_mpc==0]; 
x_delay_mpc_k=zeros(length(Ad_mpc),1)+u_const; 
%-------------------------------------------------------------------------- 
%% Kalman filter tuning 
x_init=[T_heat_init, T_amb_init]'; 
x_apost_k_minus_1=x_init; 
k_P=10; 
P_init=diag((x_init*k_P).*(x_init*k_P)); 
P_apost_k_minus_1=P_init; 
k_Q=5*diag([1 1]); 
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Q_cont=diag(x_init.*x_init)*k_Q^2; 
Q=Q_cont; 
T_out_noise_ukf=1.5; 
R_cont=T_out_noise_ukf^2; 
R=R_cont;%Likn (8.15) i Simon. 
%-------------------------------------------------------------------------- 
%% Memory allocation 
u_mpc=zeros(Nsim-Np,1)+T_out_init; 
T_out_mpc_array=zeros(Nsim-Np,1)+T_out_init; 
T_out_sp_array=zeros(Nsim-Np,1)+T_out_init; 
tElapsed=zeros(Nsim-Np,1)+T_out_init; 
T_out=zeros(Nsim-Np,1)+T_out_init; 
T_heat=zeros(Nsim-Np,1)+T_heat_init; 
T_out_est=zeros(Nsim-Np,1)+T_out_init; 
T_amb=zeros(Nsim-Np,1)+T_amb_init; 
Control_signal=zeros(Nsim-Np,1)+u_const; 
u=zeros(Nsim-Np,1)+u_const; 
%-------------------------------------------------------------------------- 
%Matrices defining linear constraints for use in fmincon: 
A=[]; 
B=[]; 
Aeq=[]; 
Beq=[]; 
%-------------------------------------------------------------------------- 
%Lower and upper limits of optim variable for use in fmincon: 
lb=u_guess*0; 
ub=u_guess*0+5; 
% ul=0; 
% uu=5; 
%-------------------------------------------------------------------------- 
%% For-loop for calculating optimal control sequence applied to simulated 

process: 
for k=1:Nsim-Np 
    %     %     t(k) 
    %     if k<=100 || k>=200 
    T_out_sp=ones(length(t),1)*Set_Point; 
    %     else 
    %         T_out_sp=ones(length(t),1)*Set_Point+10; 
    %     end 

     
    if k<=300 
        T_amb(k)=T_amb_init; 
    else 
        T_amb(k)=T_amb_init+1; 

         
    end 
    %Updating future setpoint profile as time elapses: 
    T_out_sp_to_optim=T_out_sp(k:k+Np); 

     
    %Time-shift of state: 
    x_mpc_init=x_apost_k_minus_1; 

     

     
    tStart = tic; 
    %Using fmincon for Calculating optimal future control sequence: 
    optim_options=optimset('Algorithm','active-

set','LargeScale','on','MaxIter',10000,'MaxFunEvals',1000*length(u_guess),'

Display','off'); 
    [u_opt,fval,exitflag,output,lambda,grad,hessian] =... 
        fmincon(@(u) 

Air_Heater_objective(Ad_mpc,Bd_mpc,Cd_mpc,Dd_mpc,u,T_out_sp_to_optim,p,cost
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s,x_mpc_init,Np,Ts),u_guess,A,B,Aeq,Beq,lb,ub,@Air_Heater_constraint,optim_

options); 
    tElapsed(k) = toc(tStart); 
    %     output(k)=output; 
    %     toc 
    %     k 
    u_guess=u_opt; %Using optimal control sequence as guessed optim 

solution in next iteration. 
    u(k)=u_opt(1); %Applied controller output set as first sample of 

optimal control sequence. 

     

     
    %Applying optimal control signal to simulat "real" process: 

     
    in_delay_real_process_k=u(k); 
    

x_delay_real_process_k_plus_1=Ad_real_process*x_delay_real_process_k+Bd_rea

l_process*in_delay_real_process_k; 
    

out_delay_real_process_k=Cd_real_process*x_delay_real_process_k+Dd_real_pro

cess*in_delay_real_process_k; 
    Control_signal(k)=out_delay_real_process_k; 
    x_delay_real_process_k=x_delay_real_process_k_plus_1; 

     
    dT_heat_dt = -(1/T_const_real)*T_heat(k) + 

(K_real/T_const_real)*Control_signal(k); 

     
    T_heat(k+1) = T_heat(k) + Ts*dT_heat_dt; 

     
    T_out(k)=T_heat(k) + T_amb(k); 
    T_amb_array(k) =T_amb(k); 
    e_mpc(k)=T_out_sp(k)-T_out(k); 
    %     e_mpc(k)=T_out_sp(k)-T_out(k); 
    %----------------------------------------------------------------------

---------------------------------------- 
    %% Call Kalman Filter 

     
    y_k=T_out(k)+std_T_out_noise*randn; 
    Control_signal_k=Control_signal(k); 

     
    [P_apost_k,x_apost_k,y_pred_k,K_k]=... 
        

Air_Heater_ukf(y_k,P_apost_k_minus_1,x_apost_k_minus_1,Ts,Control_signal_k,

p,Q,R); 
    T_out_est(k)=y_pred_k; 
    %     K_k 
    %Time shift: 
    x_apost_k_minus_1=x_apost_k; 
    P_apost_k_minus_1=P_apost_k; 

     
    T_heat(k)=x_apost_k(1); 
    T_amb(k)=x_apost_k(2); 
    %---------------------------------------------------------------------- 
    %% Store values for plotting 
    u_mpc(k)=u(k); 
    T_out_mpc_array(k)=T_out(k); 
    T_out_sp_array(k)=T_out_sp(k); 
    %     Output(k)=output(k); 
    it(k)=output.iterations; 
    fc(k)=output.funcCount; 
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    % Display Results 

     
    % fprintf('Iterations:         \t%4.0f \n',Output.iterations); 
    % fprintf('Function Count:       \t%4.0f\n',Output.funcCount); 
    % fprintf('Output.lssteplength:\t%4.0f\n\n',Output.lssteplength); 

     
end 
t_iae_s_init=0;%d 
t_iae_s_final=300;%10;%d 
index_iae_s=find(t>t_iae_s_init&t<t_iae_s_final); 
iae_s_NMPC=Ts*sum(abs(e_mpc(index_iae_s))) 

  
% 
t_iae_d_init=300;%10;%d 
t_iae_d_final=600;%17;%d 
index_iae_d=find(t>t_iae_d_init&t<t_iae_d_final); 
iae_d_NMPC=Ts*sum(abs(e_mpc(index_iae_d))) 

  
%    tAverage = sum(tElapsed)/(Nsim-Np) 
%    tMax=max(tElapsed) 
%    tMin=min(tElapsed) 

  
%    Output.iterations; 
%    fc=Output.funcCount 
%    Output.lssteplength; 
%    Output.stepsize; 
%    Output.firstorderopt; 
%    Output.constrviolation; 
%    Output.message; 
% 

  
%    T_out 
% %Plotting: 
% t_plot=t(1:Nsim-Np); 
% t_plot_start=t_plot(1); 
% t_plot_stop=t_plot(end); 
% i_plot=[1:length(t_plot)]; 
% close all 
% figure(1) 
% subplot(211) 
% plot(t_plot,u_mpc(i_plot),'k-'); 
% ylabel({'Control';'Signal';'in Volts'}) 
% xlabel('Time in seconds') 
% hold on 
% plot(t_plot,ul,'k-.'); 
% hold on 
% plot(t_plot,uu,'k-.'); 
% axis([0 300 -1 6]) 
% % grid 
% 
% % axis([0 60 -1 6]) 
% title('Nonlinear Model Predictive Control Simulation Results') 
% legend('Applied Control Signal','Lower & Upper 

Limit','Location','SouthEast') 
% subplot(212) 
% plot(t_plot,T_out_mpc_array(i_plot),'k-'); 
% hold on 
% ylabel({'Temperature';'At Tube Outlet';'in \circ C'}) 
% xlabel('Time in seconds') 
% plot(t_plot,T_out_sp_array(i_plot),'k-.'); 
% hold on 
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% plot(t_plot,T_amb_array(i_plot),'r-'); 
% legend('Measured Temeperature','Set Point','Location','best') 
% grid minor 

  
% axis([0 300 16 36]) 
% figure(2) 
% plot(t_plot, tElapsed(i_plot),'k-') 
% title({'Nonlinear Model Predictive Control Simulation Results';' 

Execution time Vs Number of cycles'}) 
% xlabel('Number of cycles') 
% ylabel('Elapsed Time per cycle [s]') 
% %  axis([-5 300 0 3]) 
% % % grid 
% figure(3) 
% plot(t_plot, fc(i_plot),'k-') 
% title({'Nonlinear Model Predictive Control Simulation Results';'Maximum 

Function Count Vs Number of cycles'}) 
% xlabel('Number of cycles') 
% ylabel('Maximum Function Count') 
% %  axis([-5 300 0 355]) 
% figure(4) 
% plot(t_plot, it(i_plot),'k-') 
% title({'Nonlinear Model Predictive Control Simulation Results';'Maximum 

Number of iterations Vs Number of cycles'}) 
% xlabel('Number of cycles') 
% ylabel('Maximum Number of iterations') 
% %  axis([-5 300 0 35]) 
% toc 
end 

 

 

Appendix 4 

MATLAB code for Kalman filter used for the air-heater model 

%% Unscented Kalman filter 
function [P_apost_k,x_apost_k,y_pred_k,K_k]=... 
    

Air_Heater_ukf(y_k,P_apost_k_minus_1,x_apost_k_minus_1,Ts,Control_signal_k,

p,Q,R) 
% parameters 
K=p(1); 
T_const=p(2); 

  
%-------Time updates: 
%Calculation of sigma points 
n=length(x_apost_k_minus_1); 
m=length(y_k); 
M1=real(sqrtm(n*P_apost_k_minus_1)); 
x_tilde_matrix_1=zeros(n,2*n); 
for i=1:n 
    x_tilde_matrix_1(:,i)=M1(i,:)'; 
    x_tilde_matrix_1(:,i+n)=-M1(i,:)'; 
end 
x_sigma_i_k_minus_1_matrix=zeros(n,2*n); 
for i=1:(2*n) 
    

x_sigma_i_k_minus_1_matrix(:,i)=x_apost_k_minus_1+x_tilde_matrix_1(:,i); 
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end 

  
%Transformation of sigma points using dynamic model 
x_sigma_i_k_matrix=zeros(n,2*n); 
for i=1:(2*n) 
    x_sigma_i_k_minus_1=x_sigma_i_k_minus_1_matrix(:,i); 
    T_heat_sigma_i_k_minus_1=x_sigma_i_k_minus_1(1); 
    T_amb_sigma_i_k_minus_1=x_sigma_i_k_minus_1(2); 
    T_heat_sigma_i_k =T_heat_sigma_i_k_minus_1 +... 
        Ts*((-1/T_const)*T_heat_sigma_i_k_minus_1 + 

(K/T_const)*Control_signal_k); 
    T_amb_sigma_i_k=T_amb_sigma_i_k_minus_1+Ts*0; 
    x_sigma_i_k_matrix(:,i)=[T_heat_sigma_i_k, T_amb_sigma_i_k ]'; 
end 

  
%Calculation of apriori state estimate at time k 
%x_apri_k=(1/(2*n))*(sum(x_sigma_k_vec'))'; 
x_apri_k=zeros(n,1); 
for i=1:(2*n) 
    x_apri_k=x_apri_k+(1/(2*n))*x_sigma_i_k_matrix(:,i); 
end 

  
%Calculation of apriori covariance at time k 
P_apri_k=zeros(n,n); 
for i=1:(2*n) 
    P_apri_k=P_apri_k+(1/(2*n))*(x_sigma_i_k_matrix(:,i)-x_apri_k)*... 
        (x_sigma_i_k_matrix(:,i)-x_apri_k)'; 
end 
P_apri_k=P_apri_k+Q; 

  
%Measurement-based updates: 
%Calculation of sigma points 
M2=real(sqrtm(n*P_apri_k)); 
x_tilde_matrix_2=zeros(n,2*n); 
for i=1:n 
    x_tilde_matrix_2(:,i)=M2(i,:)'; 
    x_tilde_matrix_2(:,i+n)=-M2(i,:)'; 
end 
x_sigma_meas_update_i_k_matrix=zeros(n,2*n); 
for i=1:(2*n) 
    x_sigma_meas_update_i_k_matrix(:,i)=x_apri_k+x_tilde_matrix_2(:,i); 
end 

  
%Transformation of sigma points using the measurement equation 
y_sigma_i_k_matrix=zeros(m,2*n); 
for i=1:(2*n) 
    x_sigma_meas_update_i_k=x_sigma_meas_update_i_k_matrix(:,i); 
    T_heat_sigma_meas_update_i_k=x_sigma_meas_update_i_k(1); 
    T_amb_sigma_meas_update_i_k=x_sigma_meas_update_i_k(2); 
    T_out_sigma_i_k=T_heat_sigma_meas_update_i_k + 

T_amb_sigma_meas_update_i_k; 
    y_sigma_i_k_matrix(:,i)=[T_out_sigma_i_k]'; 
end 

  
%Calculation of predicted measurement at time k 
y_pred_k=zeros(m,1); 
for i=1:(2*n) 
    y_pred_k=y_pred_k+(1/(2*n))*y_sigma_i_k_matrix(:,i); 
end 

  
%Calculation of covariance of y at time k 
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P_y_k=zeros(m,m); 
for i=1:(2*n) 
    P_y_k=P_y_k+(1/(2*n))*(y_sigma_i_k_matrix(:,i)-y_pred_k)*... 
        (y_sigma_i_k_matrix(:,i)-y_pred_k)'; 
end 
P_y_k=P_y_k+R; 
%Calculation of cross-covariance of x apri and y pred at time k 
P_xy_k=zeros(n,m); 
for i=1:(2*n) 
    P_xy_k=P_xy_k+(1/(2*n))*(x_sigma_i_k_matrix(:,i)-x_apri_k)*... 
        (y_sigma_i_k_matrix(:,i)-y_pred_k)'; 
end 
%Calculation of Kalman filter gain and aposteriori estimates 
K_k=P_xy_k/P_y_k; 
x_apost_k=x_apri_k+K_k*(y_k-y_pred_k); 
P_apost_k=P_apri_k-K_k*P_y_k*K_k'; 
end 

 

Appendix 5 

MATLAB code for the objective function of the air-heater model 

function f = 

Air_Heater_objective(Ad_mpc,Bd_mpc,Cd_mpc,Dd_mpc,u,T_out_sp,p,costs,x_mpc_i

nit,Np,Ts) 

  
K=p(1); 
T_const=p(2); 

  
%Weights: 
c_e=costs(1); 
c_u=costs(2); 
c_du=costs(3); 
c_final=costs(4); 
c_de=costs(5); 

  
%Preallocation and initialization: 
T_heat=zeros(1,Np)+x_mpc_init(1); 
T_amb=zeros(1,Np)+x_mpc_init(2); 
x_delay_mpc_k=zeros(length(Ad_mpc),1)+u(1); 
Control_signal=zeros(length(Ad_mpc),1)+u(1); 
T_out=zeros(1,Np); 
e=zeros(1,Np); 
J1=zeros(1,Np); 
u_km1=u(1); 
e_km1=e(1); 
for k=1:Np 
in_delay_mpc_k=u(k); 
x_delay_mpc_k_plus_1=Ad_mpc*x_delay_mpc_k+Bd_mpc*in_delay_mpc_k; 
out_delay_mpc_k=Cd_mpc*x_delay_mpc_k+Dd_mpc*in_delay_mpc_k; 
Control_signal(k)=out_delay_mpc_k; 
dT_heat_dt = -(1/T_const)*T_heat(k) + (K/T_const)*Control_signal(k); 

  
T_heat(k+1) = T_heat(k) + Ts*dT_heat_dt; 
T_out(k)=T_heat(k) + T_amb(k); 

  
e(k)=T_out_sp(k)-T_out(k); 
du_dt_k=(u(k)-u_km1)/Ts; 
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de_dt_k=(e(k)-e_km1)/Ts; 
J1(k+1)=J1(k)+Ts*(c_e*e(k)*e(k)+c_u*u(k)*u(k)+c_du*du_dt_k*du_dt_k+c_de*de_

dt_k*de_dt_k); 
u_km1=u(k); 
e_km1=e(k); 
x_delay_mpc_k=x_delay_mpc_k_plus_1; 
end 
J=J1(end)+c_final*e(end)*e(end); 
f = J; 
end 

 

 

Appendix 6  

MATLAB code for linearization and discretization of AD reactor model 

function [A,B,C,D]=AD_reactor_Linearize_and_Discritize(x,Ffeed,Ts) 
%% parameters 
Af = 0.69; 
b = 2.90; 
B0 = 0.25; 
k1 = 3.89; 
k2 = 1.76; 
k3 = 31.7; 
k5 = 26.3; 
Kd = 0.02; 
Kdc = 0.02; 
Ks = 15.5; 
Ksc = 3; 
V = 250; 
Treac = 35; 
um = 0.013*Treac-0.129; 
umc = um; 
%% 
% x =[5.2155;1.0094;1.3128;0.3635;30.2]; 
% Ffeed=45; 
% Ts=0.025; 
%% 
%Naming states 
Sbvs = x(1); 
Svfa = x(2); 
Xacid = x(3); 
Xmeth = x(4); 
Svsin = x(5); 
% A[(Sbvs*Xacid*k1*um/(Ks+Sbvs))-((Xacid*k1*um)/(Ks+Sbvs))-(Ffeed/V), 0, -

(Sbvs*k1*um)/(Ks+Sbvs),0,B0*Ffeed/V; 
% linearizing the model 
Ac =[((Sbvs)*(Xacid)*(k1)*(um))/((Ks) + (Sbvs))^2 - 

((Xacid)*(k1)*(um))/((Ks) + (Sbvs)) - (Ffeed)/(V), 0, -

((Sbvs)*(k1)*(um))/((Ks) + (Sbvs)),0,((B0)*(Ffeed))/(V); 
    ((Xacid)*(k2)*(um))/((Ks) + (Sbvs)) - ((Sbvs)*(Xacid)*(k2)*(um))/((Ks) 

+ (Sbvs))^2, ((Svfa)*(Xmeth)*(k3)*(umc))/((Ksc) + (Svfa))^2 - 

((Xmeth)*(k3)*(umc))/((Ksc) + (Svfa)) - 

(Ffeed)/(V),((Sbvs)*(k2)*(um))/((Ks) + (Sbvs)), -((Svfa)*(k3)*(umc))/((Ksc) 

+ (Svfa)), ((Af)*(B0)*(Ffeed))/(V); 
    (Xacid)*((um)/((Ks) + (Sbvs)) - ((Sbvs)*(um))/((Ks) + (Sbvs))^2), 0, 

((Sbvs)*(um))/((Ks) + (Sbvs)) - (Kd) - (Ffeed)/((V)*(b)),0, 0; 
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    0, (Xmeth)*((umc)/((Ksc) + (Svfa)) - ((Svfa)*(umc))/((Ksc) + 

(Svfa))^2),0, ((Svfa)*(umc))/((Ksc) + (Svfa)) - (Kdc) - (Ffeed)/((V)*(b)), 

0; 
    0,  0,  0,  0, 0]; 

  

  
Bc = [ -((Sbvs) - (B0)*(Svsin))/(V); -((Svfa) - (Af)*(B0)*(Svsin))/(V);-

(Xacid)/((V)*(b)); -(Xmeth)/((V)*(b)); 0]; 

  

  

  

  

  

  
Cc =[ 0, (V*Xmeth*k5*umc)/(Ksc + Svfa) - (Svfa*V*Xmeth*k5*umc)/(Ksc + 

Svfa)^2, 0, (Svfa*V*k5*umc)/(Ksc + Svfa), 0]; 
Dc=0; 
% Discritizing the model 
[A, B, C, D]=c2dm(Ac,Bc,Cc,Dc,Ts,'zoh'); 

  

  
end 

 

Appendix 7  

MATLAB file for the LMPC applied to the AD reactor model 

function [ U,ul,uu,Y,R ] = AD_reactor_LMPC(  ) 
tic 
clear all 
clc 
%---------------------------------------------------- 

  
% x0=[5.81, 0.8672, 1.32, 0.39, 30.2]'; 
% x0 =[4.14;0.8;1.8;0.39;30.2]; 
% x0 =[4.14;0.8;1.8;150;30.2]; 
% x0=0.73*[3.6438, 0.7160, 1.9225, 0.3874, 30.2]'; 

  
% x0=[5.81 0.8672 1.32 0.39 30.8] 
x0=[3.416868358475480   0.661329359704896   2.029485253109554 

0.387435040175433,30.2]';%x_end with Fmeth = 150 
% x =[5.2155;1.0094;1.3128;0.3635;30.2]; 
% Ffeed=35.3; 
Ffeed= 28.190831337510776;%F_feed_end with Fmeth = 150; 

  
Ts=0.025; 

  
%linearizing and discritizing the model 
[A,B,C,D]=AD_reactor_Linearize_and_Discritize(x0,Ffeed,Ts); 
% Svsin = 30.2; 
% Treact = 35; 
% xs =[5.2155;1.0094;1.3128;0.3635]; 
% us=[Ffeed, Svsin, Treact]; 
% [A,B1,C,D]=linearizing_using_syms(x0,us,Ts) 
% B=B1(:,1) 
%% 
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% x0 = [1,1,1,1,1]'; 
x0 = [0,0,0,0,0]'; 
% x0 =[4.14;0.8;1.8;0.39;30.2]; 
% 

x0=0.55*[3.416868358475480,0.661329359704896,2.029485253109554,0.3874350401

75433,0]'; 
nu = size(B,2); 
nx = length(x0); 
ny = size(C,1); 
% Initial u 
u0 = 20; 
% n=16; 
N=1;                        % Prediction horizon 
Np=N/Ts;                    % Number of steps 
t_start=0; 
t_stop=16; 
Nsim=(t_stop-t_start)/Ts; 
t=[t_start:Ts:t_stop-Ts]'; 
% 
P = 1e5;      % error weighting matrix 
Q= 1;       % input weighting matrix 
R=0;     % input increment weighting matrix 

  
%----------------------------------------------- 

  
F_feed_const= 28.190831337510776; 
u_const=F_feed_const; 
Timedelay_real_process=0.0; 
nd_real_process=ceil(Timedelay_real_process/Ts); 
Ad_real_process=diag([ones(nd_real_process-1,1)],-1); 
Bd_real_process=[nd_real_process>=1;zeros(nd_real_process-1,1)]; 
Cd_real_process=[zeros(1,nd_real_process-1),nd_real_process>=1]; 
Dd_real_process=[nd_real_process==0]; 
x_delay_real_process_k=zeros(length(Ad_real_process),1)+u_const; 
% 
H1 = diag(Q*ones(1,N)); 
H2 = zeros(N*nx,N*nx); 
H3 = diag(P*ones(1,N)); 
H4 = zeros(N,N); 
H5 = diag(R*ones(1,N)); 
H = blkdiag(H1,H2,H3,H4,H5); 
% 
f = zeros(1,(2*nu+2*ny+nx)*N); 
% 
Ae11 = -kron(eye(N,N),B); 
Ae12 = kron(eye(N,N),eye(nx,nx)) - kron(diag(ones(N-abs(-1),1),-1),A); 
Ae22 = -kron(eye(N,N),C); 
Ae24 = eye(N*ny,N*ny); 
Ae33 = eye(N*ny,N*ny); 
Ae34 = eye(N*ny,N*ny); 
% 

  
Aixu=zeros(N*nx,N*nu); 
Aixx=[zeros(N*nx,N*1) ones(N*nx,N*1) zeros(N*nx,N*3)]; 
% Aixx=[zeros(N*nx,N*(nx-(nx-1))) ones(N*nx,N*(nx-(nx-1))) 

zeros(N*nx,N*(nx-(nx-2)))]; 
Aixe=zeros(N*nx,N*ny); 
Aixy=zeros(N*nx,N*ny); 
Aixdu=zeros(N*nx,N*nu); 

  
Aiyu = zeros(N*ny,N*nu); 
Aiyx = zeros(N*ny,N*nx); 
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Aiye = zeros(N*ny,N*ny); 
Aiyy = zeros(N*ny,N*ny); 
Aiydu = zeros(N*ny,N*nu); 

  
Aieu = zeros(N*ny,N*nu); 
Aiex = zeros(N*ny,N*nx); 
Aiee = zeros(N*ny,N*ny); 
Aiey = zeros(N*ny,N*ny); 
Aiedu = zeros(N*ny,N*nu); 

  
Aiuu = zeros(N*nu,N*nu); 
Aiux = zeros(N*nu,N*nx); 
Aiue = zeros(N*nu,N*ny); 
Aiuy = zeros(N*nu,N*ny); 
Aiudu = zeros(N*nu,N*nu); 

  
Ai=[Aixu Aixx Aixe Aixy Aixdu 
    Aiyu Aiyx Aiye Aiyy Aiydu 
    Aieu Aiex Aiee Aiey Aiedu 
    Aiuu Aiux Aiue Aiuy Aiudu]; 

  
Ae = [Ae11,Ae12,zeros(nx*N,ny*N),zeros(nx*N,ny*N),zeros(N*nx,N*nu) 
    zeros(ny*N,nu*N),Ae22,zeros(ny*N,ny*N),Ae24,zeros(N*ny,N*nu) 
    zeros(ny*N,nu*N),zeros(ny*N,nx*N),Ae33,Ae34,zeros(N*ny,N*nu) 
    kron(diag(ones(N-abs(-1),1),-1),eye(nu)) - 

eye(N*nu),zeros(N*nu,N*nx),zeros(N*nu,N*ny),zeros(N*nu,N*ny),eye(N*nu)]; 
% Lower and upper bounds 
ul = 0; 
uu = 40; 
dul = -inf; 
duu = inf; 
el= -inf; 
eu = inf; 
xl = -inf; 
xu = inf; 
yl=-inf; 
yu=inf; 
uLB = ones(N*nu,1)*ul; 
uUB = ones(N*nu,1)*uu; 
duLB = ones(N*nu,1)*dul; 
duUB = ones(N*nu,1)*duu; 
eLB = ones(N*ny,1)*el; 
eUB = ones(N*ny,1)*eu; 
yLB = -inf(N*ny,1); 
yUB = inf(N*ny,1); 
xLB = ones(N*nx,1)*xl; 
xUB = ones(N*nx,1)*xu; 

  
zl = [uLB; xLB; eLB; yLB;duLB]; 
zu = [uUB; xUB; eUB; yUB;duUB]; 

  
Y=zeros(ny); 
X=zeros(nx); 
R=zeros(N,1); 
U=zeros(nu); 

  
for k = 1:Nsim-Np 
    %     k 
    %      r0 =170; 
    if k<=200 ||k>400 
        r0=75; 
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    else 
        r0=120; 
    end 

     
    % Present state and measurements 
    x = x0; 
    y = C*x0; 

     
    rN = r0*ones(N,1); 
    be = [A*x0;zeros(nx*(N-1),1);zeros(ny*N,1);rN;-u0; zeros(nu*(N-1),1)]; 
    bix=ones(N*nx,1)*0.8; 
    %     bix=ones(N*1,1)*0.8; 

     
    biy=zeros(N*ny,1); 
    bie=zeros(N*ny,1); 
    biu=zeros(N*nu,1); 
    bi=[bix; biy; bie; biu]; 

     
    %   bi=[zeros(N*1,1);bix;zeros(N*3,1); biy; bie; biu]; 
    % Calculate present u 
    options = optimset('Display', 'off','LargeScale', 'on','MaxIter',10000, 

'Algorithm', 'active-set'); 
    U0 = quadprog(H,f,Ai,bi,Ae,be,zl,zu,[],options); 
    u0 = U0(1:nu); 
    u = u0; 

     
    %Time delay: 
    in_delay_real_process_k=u; 
    

x_delay_real_process_k_plus_1=Ad_real_process*x_delay_real_process_k+Bd_rea

l_process*in_delay_real_process_k; 
    

out_delay_real_process_k=Cd_real_process*x_delay_real_process_k+Dd_real_pro

cess*in_delay_real_process_k; 
    ud=out_delay_real_process_k; 
    x_delay_real_process_k=x_delay_real_process_k_plus_1; 

     
    % Update state 
    x0 = A*x + B*ud; 
    % error 
    e_mpc(k)=r0-y; 

     
    % store values 
    R(:,k)=rN; 
    Y(:,k)=y; 
    U(:,k)=u; 
    X(:,k)=x(2); 
end 
t_iae_s_init=0;%d 
t_iae_s_final=7;%10;%d 
index_iae_s=find(t>t_iae_s_init&t<t_iae_s_final); 
iae_s_mpc=Ts*sum(abs(e_mpc(index_iae_s))) 

  
t_iae_d_init=7;%10;%d 
t_iae_d_final=14;%17;%d 
index_iae_d=find(t>t_iae_d_init&t<t_iae_d_final); 
iae_d_mpc=Ts*sum(abs(e_mpc(index_iae_d))) 

  
close all 
t_plot=t(1:Nsim-Np); 
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t_plot_start=t_plot(1); 
t_plot_stop=t_plot(end); 
i_plot=[1:length(t_plot)]; 
figure(1) 
subplot(211) 
plot(t_plot,U(i_plot),'k-');%,'LineWidth',1.5); 
ylabel({'F_{feed} [L/d]'}) 
xlabel('Time in days') 
hold on 
plot(t_plot,ul,'k:'); 
hold on 
plot(t_plot,uu,'k:'); 
% % grid 
% axis([0 7 -1 41]) 
title('Linear Model Predictive Control Simulation Results for the AD 

reactor model') 
legend('Control Signal','Lower and upper limits','Location','best') 
subplot(212) 
plot(t_plot,Y(i_plot),'k-'); 
hold on 
ylabel({'F_{meth} [L/d]'}) 
xlabel('Time in days') 
plot(t_plot,R(i_plot),'k-.'); 
legend('output','Set Point','Location','best') 
figure(2) 
plot(t_plot,X(i_plot),'k-'); 
ylabel({'S_{vfa}'}) 
xlabel('Time in days') 
title('AD reactor Linear Model Predictive Control directly limiting state 

variable S_{vfa}') 

  

  

  
% index=1:Nsim-Np; 
% t_plot=index*0.6/24; 
% subplot(211) 
% plot(t_plot,U,'k-'); 
% % ylabel('hg[m]') 
% ylabel({'Gate';'Opening';'in meters'}) 
% hold on 
% plot(t_plot,ul,'k-.'); 
% hold on 
% plot(t_plot,uu,'k-.'); 
% title('Model Predictive Control Simulation Results') 
% 
% subplot(212) 
% plot(t_plot,Y,'k-'); 
% hold on 
% ylabel('h1[m]') 
% ylabel({'Level at';'Merkebek';'in meters'}) 

  

  
% plot(time,R,'g-'); 
% hold on 
% plot(time,YL,'r-'); 
% hold on 
% plot(time,YU,'r-'); 

  
% subplot(513) 
% plot(time,V_in,'*-'); 
% ylabel({'Inflow';'in cubic';'meters'}) 
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% 
% % ylabel('$\dot{Vin[m^3/s]}$') 
% 
% subplot(514) 
% plot(time,V_t,'*-'); 
% ylabel({'Flow';'Through';'Turbine';'in cubic';'meters'}) 
% 
% subplot(515) 
% plot(time,V_g,'*-'); 
% ylabel({'Flow';'Through';'Gate in';'cubic';'meters'}) 
% xlabel('Time in Days') 
% % % ---------------------------------------------------------------------

---- 
% close all 
% figure(1) 
% subplot(211) 
% plot(,U,'k-');%,'LineWidth',1.5); 
% ylabel({'Control';'Signal';'in Volts'}) 
% xlabel('Time in seconds') 
% hold on 
% plot(time,ul,'k:'); 
% hold on 
% plot(time,uu,'k:'); 
% grid 
% % axis([0 7 -1 41]) 
% title('Linear Model Predictive Control Simulation Results') 
% legend('Control Signal','Lower and upper limits','Location','best') 
% subplot(212) 
% plot(time,Y,'k-'); 
% hold on 
% ylabel({'output'}) 
% xlabel('Time in seconds') 
% plot(time,R,'k-.'); 
% legend('output','Set Point','Location','best') 
% figure(2) 
% plot(time,X,'k-'); 
% ylabel({'Svfa'}) 
% xlabel('Time in seconds') 
toc 

 

Appendix 8  

MATLAB script for the NMPC applied to the AD reactor model 

function [ u_mpc,ul,uu,F_meth,r ] = AD_reactor_NMPC(  ) 

  
%---------------------------------- 
tic 
clear all 
close all 
%---------------------------------- 
% parameters 
b = 2.9; 
K_s = 15.5; 
K_sc = 3; 
K_d = 0.02; 
K_dc = 0.02; 
V = 250; 
k1 = 3.9; 



 82 

k2 = 1.76; 
k3 = 31.7; 
k5 = 26.3; 
Af=0.69; 
B0=0.25; 
p=[b,K_s,K_sc,K_d,K_dc,V,k1,k2,k3,k5,Af,B0]; 
%--------------------------------------------------------------------------

------ 
%parameters representing "real" process 
b_real = 2.9; 
K_s_real = 15.5; 
K_sc_real = 3; 
K_d_real = 0.02; 
K_dc_real = 0.02; 
V_real = 250; 
k1_real = 3.9; 
k2_real = 1.76; 
k3_real = 31.7; 
k5_real = 26.3; 
Af_real=0.69; 
B0_real=0.25; 

  
p_real=[b_real,K_s_real,K_sc_real,K_d_real,K_dc_real,... 
    V_real,k1_real,k2_real,k3_real,k5_real,Af_real,B0_real]; 
T_reac=35; 
std_F_meth_noise=1.2*0; 
%------------------------------------------------ 
Ts=0.025; 
t_pred_horizon=1; 
Np=t_pred_horizon/Ts; 
t_start=0; 
t_stop=16; 
Nsim=(t_stop-t_start)/Ts; 
t=[t_start:Ts:t_stop-Ts]'; 
%--------------------------------------- 
%Initial states: 
x_final=[3.416868358475480   0.661329359704896   2.029485253109554 

0.387435040175433];%x_end with Fmeth = 150 
% x_final = [1,1,1,1,1]'; 
S_bvs_init= x_final(1); 
S_vfa_init= x_final(2); 
X_acid_init = x_final(3); 
X_meth_init = x_final(4); 
F_meth_init = 150; 
S_vs_in_init=30.2; 
F_feed_const= 28.190831337510776;%F_feed_end with Fmeth = 150; 
%Initial guessed optimal control sequence: 
u_const=F_feed_const; 
u_guess=0*zeros(Np,1)+u_const; 
%---------------------------------------------------- 
%State-space model implementing time-delay in "real" process: 
Timedelay_real_process=0.0; 
nd_real_process=ceil(Timedelay_real_process/Ts); 
Ad_real_process=diag([ones(nd_real_process-1,1)],-1); 
Bd_real_process=[nd_real_process>=1;zeros(nd_real_process-1,1)]; 
Cd_real_process=[zeros(1,nd_real_process-1),nd_real_process>=1]; 
Dd_real_process=[nd_real_process==0]; 
x_delay_real_process_k=zeros(length(Ad_real_process),1)+u_const; 

  
%State-space model implementing time-delay in MPC: 
Timedelay_mpc=0.2; 
nd_mpc=ceil(Timedelay_mpc/Ts); 
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Ad_mpc=diag([ones(nd_mpc-1,1)],-1); 
Bd_mpc=[nd_mpc>=1;zeros(nd_mpc-1,1)]; 
Cd_mpc=[zeros(1,nd_mpc-1),nd_mpc>=1]; 
Dd_mpc=[nd_mpc==0]; 
x_delay_mpc_k=zeros(length(Ad_mpc),1)+u_const; 
%----------------------------------------------------- 

  
F_meth_sp=ones(length(t),1)*F_meth_init; 

  
S_vs_in=ones(length(t),1)*30.2; 

  
%------------------------------------------------- 

  
%Tuning of UKF: 
x_init=[S_bvs_init,S_vfa_init,X_acid_init,X_meth_init,S_vs_in_init]'; 
x_apost_k_minus_1=x_init; 

  
k_P=0.01; 
P_init=diag((x_init*k_P).*(x_init*k_P)); 
P_apost_k_minus_1=P_init; 

  
% k_Q=0.0005*diag([1 1 1 1 20]); 
k_Q=0.0005*diag([10 1 1 1 10]); 
Q_cont=diag(x_init.*x_init)*k_Q^2; 
Q=Q_cont; 
% Q_UKF_augm_vs_in=Q_UKF_augm_vs_in_cont*Ts; 
std_F_meth_noise_ukf=1.2; 
R_cont=std_F_meth_noise_ukf^2; 
R=R_cont 
%-------------------------------------------- 
%Preallocation of arrays: 
S_bvs=zeros(Nsim-Np,1)+S_bvs_init; 
S_vfa=zeros(Nsim-Np,1)+S_vfa_init; 
X_acid=zeros(Nsim-Np,1)+X_acid_init; 
X_meth=zeros(Nsim-Np,1)+X_meth_init; 
F_meth=zeros(Nsim-Np,1)+F_meth_init; 
F_meth_est=zeros(Nsim-Np,1)+F_meth_init; 
%-------------------------------------------- 
%Matrices defining linear constraints for use in fmincon: 
A=[]; 
B=[]; 
Aeq=[]; 
Beq=[]; 
%-------------------------------------------- 
%Lower and upper limits of optim variable for use in fmincon: 
ul=0; 
uu=40; 
lb=u_guess*0; 
ub=u_guess*0+40; 
%-------------------------------------------- 
%MPC costs: 
c_e=1; 
c_u=0; 
c_du=0.01; 
c_final=0; 
costs=[c_e c_u c_du c_final]; 
%-------------------------------------------- 

  
%For-loop for calculating optimal control sequence applied to simulated 

process: 
for k=1:Nsim-Np 
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    t(k) 
    %   r0 =250; 
    if k<=200 ||k>400 
        F_meth_sp=ones(length(t),1)*(F_meth_init-F_meth_init/2); 
        r(k)=F_meth_init-F_meth_init/2; 
        %      r(k)=250; 
    else 
        F_meth_sp=ones(length(t),1)*120; 
        r(k)=120; 
    end 

     
    %Updating future setpoint profile as time elapses: 
    F_meth_sp_to_optim=F_meth_sp(k:k+Np); 

     
    %Time-shift of state: 
    x_mpc_init=x_apost_k_minus_1; 

     

     
    %Using fmincon for Calculating optimal future control sequence: 
    optim_options=optimset('Algorithm','active-

set','LargeScale','on','MaxIter',10000,'MaxFunEvals',1000*length(u_guess),'

Display','off'); 
    [u_opt,fval,exitflag,output,lambda,grad,hessian] =... 
        

fmincon(@(u)AD_reactor_objective(Ad_mpc,Bd_mpc,Cd_mpc,Dd_mpc,u,T_reac,F_met

h_sp_to_optim,p,costs,x_mpc_init,Np,Ts),u_guess,A,B,Aeq,Beq,lb,ub,@AD_react

or_constraint,optim_options); 

     
    u_guess=u_opt; %Using optimal control sequence as guessed optim 

solution in next iteration. 
    u(k)=u_opt(1); %Applied controller output set as first sample of 

optimal control sequence. 

     
    %Applying optimal control signal to simulat "real" process: 
    mu_m=0.013*T_reac-0.129; 
    mu_mc=mu_m; 
    mu=mu_m/(K_s_real/S_bvs(k)+1); 
    mu_c=mu_mc/(K_sc_real/S_vfa(k)+1); 

     
    in_delay_real_process_k=u(k); 
    

x_delay_real_process_k_plus_1=Ad_real_process*x_delay_real_process_k+Bd_rea

l_process*in_delay_real_process_k; 
    

out_delay_real_process_k=Cd_real_process*x_delay_real_process_k+Dd_real_pro

cess*in_delay_real_process_k; 
    F_feed(k)=out_delay_real_process_k; 

     
    dS_bvs_dt=(B0_real*S_vs_in(k)-S_bvs(k))*F_feed(k)/V_real-

mu*k1_real*X_acid(k); 
    dS_vfa_dt=(Af_real*B0_real*S_vs_in(k)-

S_vfa(k))*F_feed(k)/V_real+mu*k2_real*X_acid(k)-mu_c*k3_real*X_meth(k); 
    dX_acid_dt=(mu-K_d_real-(F_feed(k)/b_real)/V_real)*X_acid(k); 
    dX_meth_dt=(mu_c-K_dc_real-(F_feed(k)/b_real)/V_real)*X_meth(k) 

     
    S_bvs(k+1)=S_bvs(k)+Ts*dS_bvs_dt; 
    S_vfa(k+1)=S_vfa(k)+Ts*dS_vfa_dt; 
    X_acid(k+1)=X_acid(k)+Ts*dX_acid_dt; 
    X_meth(k+1)=X_meth(k)+Ts*dX_meth_dt; 

     
    x_delay_real_process_k=x_delay_real_process_k_plus_1; 
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    % store values for plotting 
    u_mpc(k)=u(k); 
    F_meth(k)=V*k5_real*mu_c*X_meth(k); 
    e_mpc(k)=F_meth_sp(k)-F_meth(k); 

     
    %------------------------------------------------------- 
    %Kalman Filter: 

     
    y_k=F_meth(k)+std_F_meth_noise*randn; 
    F_feed_k=F_feed(k); 

     
    [P_apost_k,x_apost_k,y_pred_k,K_k]=... 
        

AD_reactor_ukf(y_k,P_apost_k_minus_1,x_apost_k_minus_1,Ts,F_feed_k,p,T_reac

,Q,R); 

     
    F_meth_est(k)=y_pred_k; 
    %Time shift: 
    x_apost_k_minus_1=x_apost_k; 
    P_apost_k_minus_1=P_apost_k; 
    K_k 

     
    % S_bvs_est(k)=x_apost_k(1); 
    % S_vfa_est(k)=x_apost_k(2); 
    % X_acid_est(k)=x_apost_k(3); 
    % X_meth_est(k)=x_apost_k(4); 
    % S_vs_in_est(k)=x_apost_k(5); 
    %------------------------------------------------------- 
    % F_meth_mpc_array(k)=F_meth(k); 
end 
% %IAE: 
t_iae_s_init=1;%d 
t_iae_s_final=7;%10;%d 
index_iae_s=find(t>t_iae_s_init&t<t_iae_s_final); 
iae_s_mpc=Ts*sum(abs(e_mpc(index_iae_s))) 

  
t_iae_d_init=7;%10;%d 
t_iae_d_final=14;%17;%d 
index_iae_d=find(t>t_iae_d_init&t<t_iae_d_final); 
iae_d_mpc=Ts*sum(abs(e_mpc(index_iae_d))) 
% %% Plotting: 
% t_plot=t(1:Nsim-Np); 
% t_plot_start=t_plot(1); 
% t_plot_stop=t_plot(end); 
% i_plot=[1:length(t_plot)]; 
% % -----------------------------------------------------------------------

-- 
% close all 
% figure(1) 
% subplot(211) 
% plot(t_plot,u_mpc(i_plot),'k-');%,'LineWidth',1.5); 
% ylabel({'Control';'Signal';'in Volts'}) 
% xlabel('Time in seconds') 
% hold on 
% plot(t_plot,ul,'k:'); 
% hold on 
% plot(t_plot,uu,'k:'); 
% grid 
% % axis([0 300 -1 6]) 
% title('Linear Model Predictive Control Simulation Results') 
% legend('Control Signal','Lower and upper limits','Location','best') 
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% subplot(212) 
% plot(t_plot,F_meth(i_plot),'k-');%,'LineWidth',1); 
% hold on 
% ylabel({'Temperature';'At Tube Outlet';'in \circ C'}) 
% xlabel('Time in seconds') 
% plot(t_plot,r(i_plot),'k-.'); 
% % hold on 
% % plot(t_plot,T_amb_array(i_plot),'k*'); 
% legend('Measured Temeperature','Set Point','Location','best') 
% %------------------------------------------------------- 
% figure(2) 
% plot(t_plot,S_vfa(i_plot),'k-'); 
% ylabel({'S_{vfa}'}) 
% xlabel('Time in days') 
% title('AD reactor Noninear Model Predictive Control') 
% toc 
end 

 

Appendix 9 

MATLAB file for the objective function which is invoked by the fmincon in NMPC 

applied to the AD reactor  

function f = 

AD_reactor_objective(Ad_mpc,Bd_mpc,Cd_mpc,Dd_mpc,u,T_reac,F_meth_sp,p,costs

,x_mpc_init,Np,Ts) 
% p=[b,K_s,K_sc,K_d,K_dc,V,k1,k2,k3,k5,Af,B0]; 
b=p(1); 
K_s=p(2); 
K_sc=p(3); 
K_d=p(4); 
K_dc=p(5); 
V=p(6); 
k1=p(7); 
k2=p(8); 
k3=p(9); 
k5=p(10); 
Af=p(11); 
B0=p(12); 

  
%Weights: 
c_e=costs(1); 
c_u=costs(2); 
c_du=costs(3); 
c_final=costs(4); 

  
%Preallocation and initialization: 
S_bvs=zeros(1,Np)+x_mpc_init(1); 
S_vfa=zeros(1,Np)+x_mpc_init(2); 
X_acid=zeros(1,Np)+x_mpc_init(3); 
X_meth=zeros(1,Np)+x_mpc_init(4); 
S_vs_in=zeros(1,Np)+x_mpc_init(5); 
x_delay_mpc_k=zeros(length(Ad_mpc),1)+u(1); 

  
F_meth=zeros(1,Np); 
F_feed=zeros(1,Np); 
e=zeros(1,Np); 
J1=zeros(1,Np); 
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u_km1=u(1); 

  
for k=1:Np 
    mu_m=0.013*T_reac-0.129; 
    mu_mc=mu_m; 
    mu=mu_m/(K_s/S_bvs(k)+1); 
    mu_c=mu_mc/(K_sc/S_vfa(k)+1); 

     
    in_delay_mpc_k=u(k); 
    x_delay_mpc_k_plus_1=Ad_mpc*x_delay_mpc_k+Bd_mpc*in_delay_mpc_k; 
    out_delay_mpc_k=Cd_mpc*x_delay_mpc_k+Dd_mpc*in_delay_mpc_k; 
    F_feed(k)=out_delay_mpc_k; 

     
    dS_bvs_dt=(B0*S_vs_in(k)-S_bvs(k))*F_feed(k)/V-mu*k1*X_acid(k); 
    dS_vfa_dt=(Af*B0*S_vs_in(k)-S_vfa(k))*F_feed(k)/V+mu*k2*X_acid(k)-      

mu_c*k3*X_meth(k); 
    dX_acid_dt=(mu-K_d-(F_feed(k)/b)/V)*X_acid(k); 
    dX_meth_dt=(mu_c-K_dc-(F_feed(k)/b)/V)*X_meth(k); 

     
    S_bvs(k+1)=S_bvs(k)+Ts*dS_bvs_dt; 
    S_vfa(k+1)=S_vfa(k)+Ts*dS_vfa_dt; 
    X_acid(k+1)=X_acid(k)+Ts*dX_acid_dt; 
    X_meth(k+1)=X_meth(k)+Ts*dX_meth_dt; 

     
    F_meth(k)=V*k5*mu_c*X_meth(k); 

     
    e(k)=F_meth_sp(k)-F_meth(k); 
    du_dt_k=(u(k)-u_km1)/Ts; 
    J1(k+1)=J1(k)+Ts*(c_e*e(k)*e(k)+c_u*u(k)*u(k)+c_du*du_dt_k*du_dt_k); 
    u_km1=u(k); 

     
    x_delay_mpc_k=x_delay_mpc_k_plus_1; 
end 
J=J1(end)+c_final*e(end)*e(end); 
f = J; 
end 

 

Appendix 10  

Constraint function added to complete the NMPC applied to both air-heater model and 

AD reactor model. This function is invoked by the fmincon solver used in the NMPC. 

function [cineq,ceq]=AD_reactor_constraint(F_feed) 
cineq =  [];    
ceq = [];    
end 

 

Appendix 11  

MATLAB code for the Kalman filter used for the AD reactor model  

function [P_apost_k,x_apost_k,y_pred_k,K_k]=... 
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AD_reactor_ukf(y_k,P_apost_k_minus_1,x_apost_k_minus_1,Ts,F_feed_k,p,T_reac

,Q,R) 
% p=[b,K_s,K_sc,K_d,K_dc,V,k1,k2,k3,k5,Af,B0]; 
b=p(1); 
K_s=p(2); 
K_sc=p(3); 
K_d=p(4); 
K_dc=p(5); 
V=p(6); 
k1=p(7); 
k2=p(8); 
k3=p(9); 
k5=p(10); 
Af=p(11); 
B0=p(12); 
%Calculation of sigma points 
n=length(x_apost_k_minus_1); 
m=length(y_k); 
M1=real(sqrtm(n*P_apost_k_minus_1)); 
x_tilde_matrix_1=zeros(n,2*n); 
for i=1:n 
    x_tilde_matrix_1(:,i)=M1(i,:)'; 
    x_tilde_matrix_1(:,i+n)=-M1(i,:)'; 
end 
x_sigma_i_k_minus_1_matrix=zeros(n,2*n); 
for i=1:(2*n) 
    

x_sigma_i_k_minus_1_matrix(:,i)=x_apost_k_minus_1+x_tilde_matrix_1(:,i); 
end 
%Transformation of sigma points using dynamic model 
x_sigma_i_k_matrix=zeros(n,2*n); 
for i=1:(2*n) 
    x_sigma_i_k_minus_1=x_sigma_i_k_minus_1_matrix(:,i); 

     
    S_bvs_sigma_i_k_minus_1=x_sigma_i_k_minus_1(1); 
    S_vfa_sigma_i_k_minus_1=x_sigma_i_k_minus_1(2); 
    X_acid_sigma_i_k_minus_1=x_sigma_i_k_minus_1(3); 
    X_meth_sigma_i_k_minus_1=x_sigma_i_k_minus_1(4); 
    S_vs_in_sigma_i_k_minus_1=x_sigma_i_k_minus_1(5); 

     
    mu_m=0.013*T_reac-0.129; 
    mu_mc=mu_m; 
    mu=mu_m/(K_s/S_bvs_sigma_i_k_minus_1+1); 
    mu_c=mu_mc/(K_sc/S_vfa_sigma_i_k_minus_1+1); 

     
    VS_in_k_minus_1=B0*S_vs_in_sigma_i_k_minus_1; 
    VFA_in_k_minus_1=Af*VS_in_k_minus_1; 

     
    S_bvs_sigma_i_k=S_bvs_sigma_i_k_minus_1+... 
        Ts*((VS_in_k_minus_1-S_bvs_sigma_i_k_minus_1)*F_feed_k/V-... 
        mu*k1*X_acid_sigma_i_k_minus_1); 
    S_vfa_sigma_i_k=S_vfa_sigma_i_k_minus_1+... 
        Ts*((VFA_in_k_minus_1-S_vfa_sigma_i_k_minus_1)*F_feed_k/V+... 
        mu*k2*X_acid_sigma_i_k_minus_1-mu_c*k3*X_meth_sigma_i_k_minus_1); 
    X_acid_sigma_i_k=X_acid_sigma_i_k_minus_1+... 
        Ts*((mu-K_d-(F_feed_k/b)/V)*X_acid_sigma_i_k_minus_1); 
    X_meth_sigma_i_k=X_meth_sigma_i_k_minus_1+... 
        Ts*((mu_c-K_dc-(F_feed_k/b)/V)*X_meth_sigma_i_k_minus_1); 
    S_vs_in_sigma_i_k=S_vs_in_sigma_i_k_minus_1+Ts*0; 

     
    x_sigma_i_k_matrix(:,i)=... 
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        [S_bvs_sigma_i_k,S_vfa_sigma_i_k,X_acid_sigma_i_k,X_meth_sigma_i_k 

S_vs_in_sigma_i_k]'; 
end 
%Calculation of apriori state estimate at time k 
x_apri_k=zeros(n,1); 
for i=1:(2*n) 
    x_apri_k=x_apri_k+(1/(2*n))*x_sigma_i_k_matrix(:,i); 
end 
%Calculation of apriori covariance at time k 
P_apri_k=zeros(n,n); 
for i=1:(2*n) 
    P_apri_k=P_apri_k+(1/(2*n))*(x_sigma_i_k_matrix(:,i)-x_apri_k)*... 
        (x_sigma_i_k_matrix(:,i)-x_apri_k)'; 
end 
P_apri_k=P_apri_k+Q; 
%Calculation of sigma points: 
M2=real(sqrtm(n*P_apri_k)); 
x_tilde_matrix_2=zeros(n,2*n); 
for i=1:n 
    x_tilde_matrix_2(:,i)=M2(i,:)'; 
    x_tilde_matrix_2(:,i+n)=-M2(i,:)'; 
end 
x_sigma_meas_update_i_k_matrix=zeros(n,2*n); 
for i=1:(2*n) 
    x_sigma_meas_update_i_k_matrix(:,i)=x_apri_k+x_tilde_matrix_2(:,i); 
end 
%Transformation of sigma points using the measurement equation 
y_sigma_i_k_matrix=zeros(m,2*n); 
for i=1:(2*n) 
    x_sigma_meas_update_i_k=x_sigma_meas_update_i_k_matrix(:,i); 

     
    S_bvs_sigma_meas_update_i_k=x_sigma_meas_update_i_k(1); 
    S_vfa_sigma_meas_update_i_k=x_sigma_meas_update_i_k(2); 
    X_acid_sigma_meas_update_i_k=x_sigma_meas_update_i_k(3); 
    X_meth_sigma_meas_update_i_k=x_sigma_meas_update_i_k(4); 
    S_vs_in_sigma_meas_update_i_k=x_sigma_meas_update_i_k(5); 

     
    mu_m=0.013*T_reac-0.129; 
    mu_mc=mu_m; 
    mu=mu_m/(K_s/S_bvs_sigma_meas_update_i_k+1); 
    mu_c=mu_mc/(K_sc/S_vfa_sigma_meas_update_i_k+1) 

     
    F_meth_sigma_i_k=V*k5*mu_c*X_meth_sigma_meas_update_i_k; 

     
    y_sigma_i_k_matrix(:,i)=[F_meth_sigma_i_k]'; 
end 
%Calculation of predicted measurement at time  
y_pred_k=zeros(m,1); 
for i=1:(2*n) 
    y_pred_k=y_pred_k+(1/(2*n))*y_sigma_i_k_matrix(:,i); 
end 
%Calculation of covariance of y at time  
P_y_k=zeros(m,m); 
for i=1:(2*n) 
    P_y_k=P_y_k+(1/(2*n))*(y_sigma_i_k_matrix(:,i)-y_pred_k)*... 
        (y_sigma_i_k_matrix(:,i)-y_pred_k)'; 
end 
P_y_k=P_y_k+R; 
%Calculation of cross-covariance of x apri and y pred at time k 

P_xy_k=zeros(n,m); 
for i=1:(2*n) 
    P_xy_k=P_xy_k+(1/(2*n))*(x_sigma_i_k_matrix(:,i)-x_apri_k)*... 
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        (y_sigma_i_k_matrix(:,i)-y_pred_k)'; 
end 
%Calculation of Kalman filter gain and aposteriori estimates 
K_k=P_xy_k/P_y_k; 
x_apost_k=x_apri_k+K_k*(y_k-y_pred_k); 
P_apost_k=P_apri_k-K_k*P_y_k*K_k'; 
end 

 

Appendix 12 

MATLAB script for plotting LMPC and NMPC simulation results from the air-heater 

model 

clear all 
close all 
T_amb_init = 21; 
std_T_out_noise=0; 
K = 3.5; 
T_const = 23; 
%-------------------------------------------------------------------------- 
K_real = 3.5; 
T_const_real = 23; 
Timedelay_real_process=3; 
Timedelay_mpc=3; 

  
Ts=1; 
t_pred_horizon=10; 
Np=t_pred_horizon/Ts; 
t_start=0; 
t_stop=610; 
Nsim=(t_stop-t_start)/Ts; 
t=(t_start:Ts:t_stop-Ts)'; 
Set_Point=25; 

  
[u_NMPC,T_out_NMPC,T_amb_array,T_out_sp,tElapsed_NMPC,fc_NMPC,it_NMPC,e_NMP

C] =Air_Heater_NMPC(T_amb_init,std_T_out_noise,... 
    

K,K_real,T_const,T_const_real,Timedelay_real_process,Timedelay_mpc,Ts,t_pre

d_horizon,Np,Nsim,t,Set_Point); 

  
[u_LMPC,Output_Temperature_LMPC,T_amb_LMPC,Reference,tElapsed_LMPC,it_LMPC,

ul,uu,e_LMPC]=Air_Heater_LMPC(T_amb_init,std_T_out_noise, ... 
    

K,K_real,T_const,T_const_real,Timedelay_real_process,Timedelay_mpc,Ts,t_pre

d_horizon,Np,Nsim,t,Set_Point); 
%-------------------------------------------------------------------------- 

  
%% Plotting: 
t_plot=t(1:Nsim-Np); 
t_plot_start=t_plot(1); 
t_plot_stop=t_plot(end); 
i_plot=1:length(t_plot); 
% ------------------------------------------------------------------------- 
close all 
figure(1) 
subplot(211) 
plot(t_plot,u_LMPC(i_plot),'b-'); 
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hold on 
plot(t_plot,u_NMPC(i_plot),'r-'); 
hold on 
plot(t_plot,ul,'k:'); 
hold on 
plot(t_plot,uu,'k:'); 
ylabel({'Control';'Signal';'in Volts'}) 
xlabel('Time in seconds') 
legend('LMPC control signal','NMPC control signal','Lower & Upper 

Limit','Location','East') 
title({'Linear and nonlinear';' Model Predictive Control Simulation 

Results';'For the air-heater model'}) 

  
subplot(212) 
plot(t_plot,Output_Temperature_LMPC(i_plot),'b-'); 
hold on 
plot(t_plot,T_amb_LMPC(i_plot),'g-'); 
hold on 
plot(t_plot,T_out_NMPC(i_plot),'r-'); 
hold on 
plot(t_plot,Reference(i_plot),'k-.'); 
% hold on 
% plot(t_plot,36.31,'k:'); 
% hold on 
% plot(t_plot,33.45,'k:'); 
% hold on 
% plot(t_plot,33.2,'k:'); 
% hold on 
% plot(t_plot,37.01,'k:'); 

  
ylabel({'Temperature';'At Tube Outlet';'in \circ C'}) 
xlabel('Time in seconds') 
legend('LMPC output','Ambient Temperature','NMPC 

output','Reference','Location','East') 
% legend('LMPC output','NMPC output','Reference','Ambient 

Temperature','Location','East') 

  
% grid minor 

  
figure(2) 
subplot(211) 
plot(t_plot, tElapsed_LMPC(i_plot),'b-') 
hold on 
plot(t_plot, tElapsed_NMPC(i_plot),'r-') 

  
title({'Linear and nonlinear';' Model Predictive Control Simulation 

Results';'For the air-heater model'}) 
legend('Execution time in LMPC','Execution time in NMPC','Location','best') 
xlabel('Number of cycles') 
ylabel('Elapsed Time per cycle [s]') 
axis([-5 300 0 2]) 
subplot(212) 
plot(t_plot,Reference(i_plot),'g-'); 
legend('Reference','Location','best') 
ylabel({'Reference';'Temperature';'in \circ C'}) 
xlabel('Time in seconds') 
% plot(t_plot,T_amb_LMPC(i_plot),'g-'); 
% legend('Ambient Temperature','Location','best') 
% ylabel({'Ambient';'Temperature';'in \circ C'}) 
% xlabel('Time in seconds') 
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figure(3) 
subplot(211) 
plot(t_plot, it_LMPC(i_plot),'b-') 
hold on 
plot(t_plot, it_NMPC(i_plot),'r-') 
%  axis([-5 300 0 40]) 
% hold on 
% plot(t_plot,T_amb_LMPC(i_plot),'g-'); 
title({'Linear and nonlinear';' Model Predictive Control Simulation 

Results';'For the air-heater model'}) 
legend('Iterations in LMPC','Iterations in NMPC','Location','best') 
xlabel('Number of cycles') 
ylabel('Maximum Number of iterations') 
subplot(212) 
% plot(t_plot,Reference(i_plot),'g-'); 
% legend('Reference','Location','best') 
% ylabel({'Reference';'Temperature';'in \circ C'}) 
% xlabel('Time in seconds') 

  
% plot(t_plot, it_NMPC(i_plot),'r-') 
%  axis([-5 300 0 40]) 
% legend('Iterations in NMPC','Location','best') 
% xlabel('Number of cycles') 
% ylabel('Maximum Number of iterations') 

  
plot(t_plot,T_amb_LMPC(i_plot),'g-'); 
legend('Ambient Temperature','Location','best') 
ylabel({'Ambient';'Temperature';'in \circ C'}) 
xlabel('Time in seconds') 
%  axis([-5 300 0 40]) 

  
% figure(4) 
% % plot(t_plot, fc_LMPC(i_plot),'b-') 
% % hold on 
% plot(t_plot, it_NMPC(i_plot),'r-') 
% 
% title({'Nonlinear Model Predictive Control';' Simulation Results for the 

air heater model';'Maximum Function Count Vs Number of cycles'}) 
% xlabel('Number of cycles') 
% ylabel('Maximum Function Count') 
figure(4) 
plot(t_plot, e_LMPC(i_plot),'b-') 
hold on 
plot(t_plot, e_NMPC(i_plot),'r-') 

  
title({'Linear and nonlinear';' Model Predictive Control Simulation 

Results';'For the air-heater model'}) 
legend('error in LMPC','error in NMPC','Location','best') 
xlabel('Time in seconds') 
ylabel('Error ') 

 

 

  



 93 

Appendix 13 

MATLAB script for plotting LMPC and NMPC simulation results from the AD 

reactor model 

% function [  ] = AD_reactor_LMPC_and_NMPC(  ) 

  
[ u_LMPC,ul,uu,F_meth_LMPC,Reference ] = AD_reactor_LMPC(  ); 
[ u_NMPC,ul,uu,F_meth_NMPC,r ] = AD_reactor_NMPC(  ); 

  
%% Plotting: 
Ts=0.025; 
t_pred_horizon=1; 
Np=t_pred_horizon/Ts; 
t_start=0; 
t_stop=16; 
Nsim=(t_stop-t_start)/Ts; 
t=[t_start:Ts:t_stop-Ts]'; 
t_plot=t(1:Nsim-Np); 
t_plot_start=t_plot(1); 
t_plot_stop=t_plot(end); 
i_plot=[1:length(t_plot)]; 
% ------------------------------------------------------------------------- 
close all 
figure(1) 
subplot(211) 
plot(t_plot,u_LMPC(i_plot),'b-'); 
hold on 
plot(t_plot,u_NMPC(i_plot),'r-'); 
ylabel({'F_{feed} [L/d]'}) 
xlabel('Time in days') 
hold on  
plot(t_plot,ul,'k-.'); 
hold on 
plot(t_plot,uu,'k-.'); 
grid 
% axis([0 300 -1 6]) 
title({'Linear and Nonlinear Model Predictive Control Simulation 

Results';'for the AD reactor model'}) 
legend('LMPC','NMPC','Limits','Location','NorthEast') 
subplot(212) 
plot(t_plot,F_meth_LMPC(i_plot),'b-'); 
hold on  
plot(t_plot,F_meth_NMPC(i_plot),'r-'); 
hold on 
plot(t_plot,Reference(i_plot),'k-.'); 
ylabel({'F_{meth} [L/d]'}) 
xlabel('Time in days') 
legend('LMPC','NMPC','Set Point','Location','NorthEast') 
% end 
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