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An approach to use system identification is explained in the thesis, relating to energy density. The system identification 
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The MPC was simulated based on the test set data sets from plant B, transporting dextrose in dilute phase. The MPC was 
used as a validation method, seeking out how realistic the MPC optimal controls would act on the real process. The MPC 
simulations gave an indication that the main air is not accurate enough as a control input using the DSR model. At the 
moment the MPC is usable as a mass flow rate of solids adjustor, controlling the bypass air.  
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Chapter 1

Introduction

This is a master thesis performed at the Telemark University-College in cooperation with POSTEC/Tel-Tek.
The work will be on model predictive control of mass �ow rate of solids in pneumatic conveying. In order to
do this a su¢ ciently accurate model of the mass �ow rate of solids has to be attained. System identi�cation
has been chosen as the approach to get a model. The combined deterministic stochastic realization method
(DSR) has been chosen as system identi�cation method.
A particulate �uid in a pneumatic conveying is essentially a solids-gas two-phase mixture. However it

is the mass �ow rate of the solids phase that is of primary interest to operators of a pneumatic conveying
system. From a �ow measurement point of view, pneumatically conveyed solids can be regarded as single
phase solids �ow. Problems encountered in solids �ow measurement are not normally associated with gas or
liquid �ows. Looking at the history of gas or liquid �ow measurement, the most successful �ow sensors have
been restrictive/intrusive, with the exception of the electromagnetic �ow meter which is non-restrictive/non-
intrusive but measures only electrically conductive liquids. Since restrictive methods are unacceptable under
pneumatic conveying conditions due to the highly abrasive nature of fast moving particles, reliable non-
restrictive measurements techniques have to be sought out.
As with single-phase liquid or gas �ow measurement, methodologies of metering the �ow rate of solids

in a pneumatic pipeline can be divided into two main categories, direct and inferential. A direct solids �ow
meter has a sensing element that responds directly to the mass �ow rate of the solids through the instrument.
An inferential solids �ow meter is a soft sensor using direct measurements and then process them through
a mathematical relationship to calculate the mass �ow rate of solids. An inferential approach using system
identi�cation will be tried out in this thesis.
Many conveying systems do not have a measurement of the mass �ow or an accurate measurement of

the mass �ow. A common way of measuring the mass �ow is to use a load cell for weighing the mass in the
blow tank or receiving tank. For large scale conveying systems using a load cell is not an accurate method
for measuring the mass �ow. This is because the accuracy of the load cells decreases as the weight of the
mass in the blow tank or receiving tank is increasing. Load cells designed for 50 tons are considerably less
accurate than a load cell designed for 1 ton.
The researchers at POSTEC/Tel-Tek are working on making inferential models for mass �ow rate calcu-

lation of solids. The mass �ow rate of solids is then measured by a virtual sensor/soft sensor using the direct
pressure and air �ow rate measurements and by then processing them through a mathematical relationship.
The load cells in the pneumatic conveying rigs at POSTEC/Tel-Tek are used as an indicator of how accurate
the inferential models prediction of the mass �ow are.
Present data available is air �ow measurements and pressure measurements collected during the trans-

portation of solids. The aim will be to �nd the measurements that describe the system best and make a
model on state space form using system identi�cation.
To get a steady �ow of particulate solids in pneumatic conveying, a control system is needed. Model

predictive control is a control method using optimization over a prediction horizon. The model predictive
controller is giving optimal control inputs for the process to be controlled. The problem is that such a
controller needs a model to be implemented. To control "blind", that is using a soft sensor as measurement,
the model has to estimate the real value with high accuracy. The goal will be to attain such a model that

1



2 CHAPTER 1. INTRODUCTION

is accurate enough for model predictive control. The model has to be simulated using the measured data
using model predictive control, before being implemented on the real system. This thesis does not aim for
implementation of the real system, but implementation of the model predictive control simulations.
There are two pneumatic conveying systems at the research facility at POSTEC/Tel-Tek. For simplicity

they have been referred to as "plant A" and "plant B". Both systems are positive pneumatic conveying
systems, using a blowtank without any form of feeding device. The conveying systems have an air inlet for
controlling the blowtank pressure and �uidizing the particulate solids. They also have a support air inlet
for regulation of the transport of solids. This support air is called the bypass air throughout the thesis.
Both pneumatic systems are relatively small compared to industrial sized conveying systems. Plant A has a
blowtank volume capacity of 3m3 and plant B 0:3m3: The pipeline of plant A is approximately 140m long
and plant B 26m. Both systems have pressure transducers placed along the pipeline. The measurement data
available is of transporting the bulk material baryte in dense phase for plant A and dextrose in dilute phase
for plant B. The description of the process and conditions of the tests will be given its own chapter called
"Measurements setup".
The aim of the thesis is to make a model of the mass �ow rate of solids in the pneumatic conveying

systems situated at the POSTEC/Tel-Tek research facility to be used for the testing of model predictive
control of the pneumatic conveying systems. Model predictive control is able to control unstable processes
and handles cross couplings well. For limiting physical properties of the process, model predictive control
can implement constraints with ease.
The second chapter in the thesis is dedicated to literature reviews of pneumatic conveying, system

identi�cation and model predictive control. Chapter three introduces the background behind selecting inputs
for the system identi�cation method. The fourth chapter is the measurement setup chapter, �ve discuss the
results of the system identi�cation model, chapter six discusses the model predictive control simulation on
the tests and chapter seven is rounding of with the conclusion chapter.



Chapter 2

Literature reviews

2.1 Background of pneumatic conveying

Pneumatic comes from the word "pneumatikos", which means coming from the wind. Pneumatics means
the use of pressurized air in science and technology [1]. Pneumatic conveying involves the transportation of
a wide variety of dry powdered and granular solids in a gas stream. In most cases the gas is normally air.
However, where special conditions prevail (e.g. risk of explosion, health, �re hazards, etc.), di¤erent gases
are used [2]. One of the aims in this literature review chapter is to review essential pneumatic conveying
concepts like the major parts of a conveying system, classi�cation of conveying systems, modes of �ow and
classi�cation of powders. Another aim is to shortly review some techniques for measuring the mass �ow and
the importance of such measurements. At the end of the chapter, a model for control and some proposed
control strategies are mentioned [2].

2.1.1 History of pneumatic conveying

The concept of pipeline transportation of �uids is by no means modern. The history of its use dates back
to antiquity. The Romans, for instance, used lead pipes for water supply and sewerage disposal, whilst
the Chinese conveyed natural gas through bamboo tubes [2]. The record of pipeline transportation of
solids in air is more recent. In the Peugot plant in France, the conveying principle was used for exhaust
of dust from a number of grindstones using a exhaust fan in 1847. In 1864, an experimental pneumatic
railway was built at Crystal palace with the intention of using the principle of vacuum applied to a railway
tunnel to move a carriage, which had been �tted with a sealing diaphragm. Another application of vacuum
pneumatic transport was reported in a ship unloading plant in London in 1890 [1]. The �rst large-scale
application of pneumatic conveying was the vacuum conveying of grain in the late 19th century. By the
mid 1920�s, negative and positive pressure conveying of grain was common [2]. During the First World War,
the development of pneumatic conveying was in�uenced by the high demand for foods, labour scarceness
and risks of explosion. Since the pneumatic conveying systems were seen as the answer for those situations,
a huge evolution of pneumatic transport was achieved during that time period. In the post-war period,
pneumatic conveying systems were used for more industrial related materials like coal and cement. The
development of theoretical approaches, invention of blowers, introduction of batch conveying blow tanks,
etc., were among the highlighted milestones of the evolution of pneumatic transport systems during this era.
Nowadays, pneumatic transport is a popular technique in the particulate material handling �eld. It has been
reported that some plants have transport distances of more than 40 km, material �ow rate of few hundreds
tons per hour and solid loading ratio (the mass �ow rate ratio between solid and air ) of more than 500 [1].

2.1.2 Applications of pneumatic conveying

According to Ratnayake [1], the applications of pneumatic conveying systems can be seen in many industrial
sectors. Some industrial �elds where it has extensively been used are given below :

� Chemical process industry

3



4 CHAPTER 2. LITERATURE REVIEWS

� Pharmaceutical industry

� Mining industry

� Agricultural industry

� Mineral industry

� Food processing industry

Virtually, all powders and granular materials can be transported using this method. In Ref. [3], a list
of more than 380 di¤erent products, which have been successfully conveyed pneumatically is presented.
It consists of very �ne powders, as well as big crystals such as quartz rock of size 80 mm. Even some
strange products like prairie dogs, live chicken and �nished manufactured parts of irregular shapes have
been successfully conveyed through pipeline systems. Recently, some speculations have arisen about a
transport method for human beings with the help of pneumatic conveying principles. This method is termed
as capsule/tube transport, which has already been tested for lots of materials. Pneumatic capsule pipeline
(PCP) uses wheeled capsules (vehicles) to carry cargoes through a pipeline �lled with air. The air is used
to push the capsules through the pipeline.

2.1.3 General description of pneumatic conveying

Pneumatic conveying is a material transportation process. Bulk particulate materials are moved within a
piping system by a compressed air stream [1]. The transport of bulk particulate materials can be described
according to di¤erent classi�cations of the pneumatic transport system, classi�cations of the transported
particulate solid and modes of particulate solids �ow. The transport systems can be classi�ed into systems
that use positive (blow), negative (vacuum) pressure or a combination of both to transport the particulate
solids. Klinzing, Marcus, Rizk, and Leung [2] also introduce a closed loop system for transporting particulate
solids, where the air is reused.
The particulate solids can be conveyed in di¤erent modes. The modes refer to the ratio between the

particulate solids mass �ow rate and the supplied gas mass �ow rate, during transport. This ratio is referred
to as solids loading ratio. The modes are often divided into dense phase and dilute phase. Conveying
systems can also be classi�ed into dilute and dense phase, this is often related to the feeding of the solids
into the pipeline. Di¤erent particulate solids have di¤erent �ow characteristics. A commonly used method of
classi�cation of particulate solids �ow characteristics is the Geldart diagram. The Geldart diagram takes into
account the particulate solids particle density and size, when characterizing the �uidization of the particulate
solid.

2.1.4 Advantages and disadvantages of pneumatic conveying

Pneumatic conveying has a lot of advantages over other methods like mechanical conveyers. Some advantages
can be listed as mentioned by Klinzing et al [2]:

1. Dust free transportation of a variety of products.

2. Flexibility in routing �can be transported vertically and horizontally by the addition of a bend in the
pipeline.

3. Distribution to many di¤erent areas in a plant and pick-up from several areas.

4. Low maintance cost and low manpower costs.

5. Multiple use �one pipeline can be used for a variety of products.

6. Security �pipelines can be used to convey high-valued products.

7. Ease of automation and control.
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When conveying health hazardous material a negative pressure system gives a dust free transportation
of the particulate solids, since pneumatic systems are completely enclosed. Pneumatic conveying is specially
used to deliver dry, granular or powdered materials via pipelines to remote areas that would be hard to reach
economically with mechanical conveyors. This gives �exibility of installation by pneumatic conveying over
other methods like mechanical conveyors. Pneumatic systems can be adopted to pick up the conveying bulk
material from multiple sources and/or distribute them to several di¤erent destinations. In addition, reduced
dimensions, progressive reduction of capital and installation costs, low maintenance costs (due to the small
number of moving parts), repeated usage of conveying pipelines, easiness in control and automation are
among the favorable advantages of pneumatic conveying over other methods of particulate material handling
[1].
Although pneumatic conveying has been increasingly used in particulate material handling, it still has

some disadvantages. These can be listed as mentioned by Klinzing et al [2] :

1. High power consumption.

2. Wear and abrasion of equipment.

3. Incorrect design can result in particle degradation.

4. Limited distance.

5. By virtue of the complex �ow phenomena which take place, there is a requirement for high levels of
skill to design, operate and maintain systems.

Specially, in dilute phase transport, high energy consumption, excessive product degradation and system
erosion (pipelines, bends etc.) are some of the major problems. In dense phase conveying the occurrence of
unstable plugging phenomena, severe pipe vibration and repeated blockages are experienced frequently [1].
Because of high power consumption, pneumatic systems are generally more suited to the conveyance of �ne
particles over shorter distances. The limitations are usually economic rather than technical. However, the
economic factor is changing and recent developments have ensured the transportation of materials at lower
energies [2]. Further, the lack of simple procedures for the selection of an optimal system is a major problem
in pneumatic transport system design [1].

2.1.5 The major parts of pneumatic conveying systems

A pneumatic conveying system consists of several components. The pneumatic system is usually divided into
four operative zones that carries out tasks that are important for the system to give the desired e¤ect. Each
zone has some specialized equipment. The four zones in a pneumatic system can be set up like mentioned
by Klinzing et al [2] and Ratnayake [1] :

1. Conveying gas supply (prime mover):

� To provide the necessary energy for the conveying gas, various types of compressors, fans, blowers
and vacuum pumps are used as the prime mover. To get enough energy to move the solids in
the system it is important when designing this zone, that it meets the requirements for reliable
transportation.

2. Feeding mechanism :

� In this zone the solids are introduced into the �owing gas stream. To feed the solid to the conveying
line, a feeding mechanism such as a rotary valve, screw feeder, etc. is used.

3. Conveying line :

� This consists of all straight pipe lines of horizontal and/or vertical sections, bends and other
auxiliary components such as valves.

4. Separation equipment :
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� At the end of the conveying line, solids have to be separated from the gas stream in which it has
been transported. For this purpose, cyclones, bag �lters, electrostatic precipitators are usually
used in the separation zone.

2.1.6 Classi�cation of pneumatic conveying systems

Pneumatic conveying systems can be classi�ed according to two criteria. One criterion is related to pressure
and the other criterion is related to the �ow pattern (also called the mode). When classifying according to
pressure, there are three di¤erent kinds of systems as mentioned by Ratnayake [1] :

1. Positive pressure systems :

� In this type of conveying system the absolute pressure is always above atmospheric pressure.
This kind of system pushes the particulate solids through the conveying pipeline. This type of
conveying system is often used for multiple discharge systems, where the particulate solids are
picked up at a single point and distributed to several receiving stations.

2. Negative pressure systems :

� This type of conveying system is also termed vacuum/suction system, where the absolute pressure
is below atmospheric pressure. This kind of conveying system is often used for systems with
multiple feeding points that connect to a common collection station. The most simple application
of this system is the domestic vacuum cleaner. The more advanced applications are when handling
toxic and hazardous materials. Here, this system o¤ers dust free feeding and leak free material
handling.

3. Combined positive and negative pressure systems :

� This type of conveying system combines the properties from the positive pressure and negative
pressure systems. This implies that this type of conveying system is able to have multiple feeding
points for particulate solids into the pneumatic pipeline and multiple collection stations. This
type of system is also often referred to as a "suck-blow" system.

A fourth system is introduced by Klinzing et al [2]. It is a closed loop system where the conveying gas
is recycled. This type of system is suitable for handling toxic and radioactive materials. Since the system is
reusing the gas, this kind of system is also suited for systems using other gases than air.

2.1.7 Di¤erent modes in pneumatic conveying

The modes of �ow is based on the ratio between the particulate solids mass �ow rate and the gas mass
�ow rate, as mentioned earlier. A common classi�cation of modes is dense phase and dilute phase, where
the dilute phase has a low concentration of particulate solids in the suspension and dense phase has a high
concentration of particulate solids in the suspension. There is di¤erent views amongst the researchers when
it comes to de�ning the modes of pneumatic conveying transport. There is not an established clear de�nition
of the modes yet. Klinzing et al [2] de�nes two modes for transport of particulate solids, dense phase and
dilute phase. Where the dilute phase has a solids loading ratio ranging from 0-15 and the dense phase has
a solids loading ratio greater than 15. Klinzing also mentions that some researchers has de�ned a third
"medium" mode. Mills [4] de�nes the dilute phase as 0-10 and dense phase as greater than 10. In general
dilute and dense phase can be described as mentioned by Ratnayake [1] :

1. Dilute phase conveying systems :

� By employing large volumes of gas at high velocities, particulate solids transportation in suspen-
sion mode is usually termed dilute phase conveying.

2. Dense phase conveying systems :

� By reducing the gas velocity, particulate solids can be transported through the pipeline as a plug
or a moving bed.
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2.1.8 Classi�cation of powders, (the Geldart diagram)

There are many material characteristics that in�uence the �ow behavior in pneumatic conveying. Some of
them is mentioned by Ratnayake [1], like particle size and size distribution, particle shape, cohesiveness,
Hardness and electrostatic charging. Geldart [5] worked out a classi�cation of particulate solids and their
behavior. The Geldart diagram is often referred to for classi�cation of particulate solids in pneumatic
conveying. The di¤erent groups are shown in �gure (2.1).

Figure 2.1: Powder classi�cation diagram for �uidization by air (as in the original publication by Geldart
[5]).

Geldart organized the di¤erent particulate solids behavior when subjected to �uidization by a gas. The
diagram can brie�y be explained like mentioned by Ratnayake [1] :

1. Group A

� Materials having a small mean size and/or low particle density will generally exhibit considerable
bed expansion before bubbling commences. When the gas supply is suddenly cut o¤, the bed
collapses slowly.

2. Group B

� Naturally occurring bubbles start to form in this type of material at, or slightly above, the
minimum �uidizing velocity. Bed expansion is small and the bed collapses very rapidly when the
gas supply is shut o¤.

3. Group C

� This group contains powders, which are of small particle size and cohesive in nature. Consequently,
normal �uidization is very di¢ cult. The powder lifts as a plug in small diameter tubes or,
preferentially channels.

4. Group D

� This group contains large and/or high density particles. It is believed that the bubble sizes may
be similar to those in group B and if gas is introduced only through a centrally located hole, this
group can be made to spout.
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The problem is related to conveying of particulate solids in dense phase. Group A and D products are
suitable for dense phase conveying, while group B products can cause problems and group C products are
the least suitable for dense phase conveying. Group C products will most probably plug the system in dense
phase conveying.

2.1.9 Mass �ow measurement in pneumatic conveying

According to Yan [6], a particulate �uid in a pneumatic conveying is essentially a solids-gas two-phase
mixture. However it is the mass �ow rate of the solids phase that is of primary interest to operators of a
pneumatic conveyor. From a �ow measurement point of view, pneumatically conveyed solids can be regarded
as single phase solids �ow. Problems encountered in solids �ow measurement are not normally associated
with gas or liquid �ows. Looking at the history of gas or liquid �ow measurement, the most successful
�ow sensors have been restrictive/intrusive, with the exception of the electromagnetic �ow meter which is
non-restrictive/non-intrusive but measures only electrically conductive liquids. Since restrictive methods
are unacceptable under pneumatic conveying conditions due to the highly abrasive nature of fast moving
particles, reliable non-restrictive measurements techniques have to be sought out. Although substantial
research has demonstrated that restrictive �ow sensors are applicable to mass �ow measurements of gravity-
fed solids in many cases, they are unsuitable for metering of bulk solids in pneumatic pipelines [6].
As with single-phase liquid or gas �ow measurement, methodologies of metering the �ow rate of solids

in a pneumatic pipeline can be divided into two main categories, direct and inferential. A direct solids �ow
meter has a sensing element that responds directly to the mass �ow rate of the solids through the instrument.
An inferential solids �owmeter determines both the instantaneous volumetric concentration of solids and the
instantaneous velocity of solids over the pipe cross section, from which the mass �ow rate can be deduced
according to equation (2.1).

The importance of inferential measurement of mass �ow in pneumatic conveying

Many conveying systems do not have a measurement of the mass �ow or an accurate measurement of the
mass �ow. A common way of measuring the mass �ow is to use a load cell for weighing the mass in the blow
tank or receiving tank. For large scale conveying systems using a load cell is not an accurate method for
measuring the mass �ow. This is because the accuracy of the load cells decreases as the weight of the mass in
the blow tank or receiving tank is increasing. Load cells designed for 50 tons are considerably less accurate
than a load cell designed for 1 ton. The researchers at POSTEC/Tel-Tek is working on making inferential
models for mass �ow measurement using pressure measurements. The mass �ow is then measured by a virtual
sensor/soft sensor using the direct pressure measurements and then process them through a mathematical
relationship. The K-model of Ratnayake is one such model [1]. The load cells in the pneumatic conveying
rigs at POSTEC/Tel-Tek are used as an indicator of how accurate the inferential models prediction of the
mass �ow are.
Yan [6] presents a practical example of a coal-�red power station. Where the coal is fed into a pulverizer

mill and the coal is crushed to powder. This powder is then transported by pneumatic conveying to the
furnace. He states the importance of having the right mass �ow, solids velocity and particle distribution.
These factors are important for energy e¢ ciency while burning the coal in the furnace, reducing the wear
on the pipeline and breakage of the bulk material. This is an example of the importance of measuring the
mass �ow, the solids velocity and particle distribution in pneumatic conveying.

Inferential measurement of mass �ow using the velocity and concentration measurement

An example of direct measuring technique in pneumatic conveying is mentioned by Klinzing et al [2]. A soft
sensor solution to measuring the mass �ow is given by merging the measurements from a solids concentration
sensor and a solids velocity sensor, through a relationship set up in an equation. The mass �ow can be put
up like in equation (2.1)

_ms = _Vs�sCs (2.1)



2.1. BACKGROUND OF PNEUMATIC CONVEYING 9

where

_ms = Mass �ow of solids
_Vs = Volumetric �ow of solids

�s = Solids density

Cs = Volume concentration

Klinzing et al [2] gives an example of the use of two precision capacitors. The capacitance will change
during transport of particulate solids. The measured capacitance in capacitor 1 x1 is then cross correlated
with the measured capacitance in capacitor 2 x2. Using discrete cross correlation, it can be set up as in
equation (2.2).

r12 (k) =
1

N

N�1X
n=0

x1(n) � x2(n+ k) (2.2)

where

k = Discrete time step delay (multiply with sampling time (dt) to get time delay)

r12 (k) = Cross correlation factor

N = Number of samples/discrete time steps

By normalizing the signals a cross correlation factor in percentage can be presented (2.3). This factor
tells how similar the signals are in percentage.

�12 (k) =
r12(k)

1
N

qPN�1
n=0 x

2
1(n) �

PN�1
n=0 x

2
2(n)

� 100% (2.3)

�12 (k) = 100% : 100% correlation

�12 (k) = 0% : 0% correlation

�12 (k) = �100% : 100% correlation in opposite phase

Using the time delay and the distance between the two capacitors gives the velocity of the solids (2.4).

d = Distance between capacitors

� = k � dt : Time delay

v =
d

�
(2.4)

The distance between the two capacitors is crucial for getting a good correlation. If they are too far away
from eachother the correlation will be too low, because of the stochastic behavior of the particulate solids
�ow. Klinzing et al [2] states that a cross correlation factor between 60-80% is obtained in actual practice,
when capacitors are placed properly.
The concentration sensor proposed by Klinzing et al [2], was a capacitance sensor. This capacitance sensor

measures the change in capacitance during transport. The ratio between the capacitance during transport
and the capacitance when not conveying is proportional to the volume concentration Cs. A downside to
this method of measuring concentration is that it needs calibration for the speci�c particulate solid to be
conveyed during conveying. Another disadvantage is that this method is not suitable for measuring solid
loading ratios below 5. This excludes measurement of the lower part of dilute phase conveying.
Merging the velocity measurement and the concentration measurement through the mass �ow equation

(2.1) gives a measurement of the mass �ow rate.

Inferential measurement of mass �ow using pressure drop �ow meter

A di¤erential pressure measuring device has been developed by Cabrejos and Klinzing [2] to measure the
solids mass �ow rate. The speci�c pressure drop de�ned as the ratio of di¤erential pressure drop across a
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straight section of pipe for dilute phase pneumatic conveying divided by the pressure drop due to the �owing

gas alone is found to be linearly related to the solids loading ratio,
�
mass of solids
mass of gas

�
. Equation (2.5) shows this

relationship.

� =
�Ptotal
�Pgas

(2.5)

Klinzing [2] further mentions the importance of measuring pressure �uctuations and analyze the infor-
mation given in these �uctuations.

2.1.10 The pressure drop coe¢ cient model for mass �ow estimation

The pressure drop coe¢ cient method also called the K-model was developed at TEL-TEK/POSTEC by
Ratnayake [1]. Arakaki, Ratnayake, Datta and Lie [7] explained the K-model brie�y like introduced below.

The K-model

If a small quantity of material is fed into a gas stream at a steady rate there is an increase in the conveying
line pressure drop if the gas �ow rate remains constant. The magnitude of this increase depends upon the
concentration of the material in the gas. In a two-phase �ow system, consisting of a gas and solid particles
conveyed in suspension, part of the pressure drop is due to the gas alone and part is due to the conveying of
the particles in the gas stream. In such a two-phase �ow the particles are conveyed at a velocity below that
of the conveying gas, a drag force being exerted on the particles by the gas for suspension modes of �ow [4].
The model for the calculation of mass �ow rate used in this paper has been derived from a model for

the calculation of pressure drop [1]. The model for the pressure drop calculation was developed from the
equation of Darcy which is in the simplest way as follows (2.6):

�P = 4
f�av

2L

2D
(2.6)

where �P is the pressure drop, f is the friction factor which is a function of the Reynolds number for
the �ow and the pipe wall roughness, �a is the density of air, v represents the mean velocity of �ow, L is
the length of the pipe section and is the diameter. This model relates to turbulent �ow only. Laminar �ow
models have little or no application to �ows encountered in pneumatic conveying pipelines. It can be seen
from this mathematical model that pressure drop follows a square law relationship with respect to velocity
i.e. if velocity is doubled, the pressure drop increases by a factor of four [4].
However, the equation of Darcy is a model for pressure drop in single-phase �ow only. Some researchers

have tried to modify Darcy�s theory to suit multiphase �ow situations. Ratnayake [1], modi�ed the above
mentioned equation for the two-phase �ow experienced when pneumatic conveying. The principle applied in
this modi�ed equation is considering the two-phase �ow, gas-solid system as a mixture having its own �ow
characteristics, instead of recognizing the two components separately. Therefore, a pressure drop coe¢ cient;
K, the solid suspension density; �sus, and the entry velocity; ventry were introduced to Equation (2.6) instead
of 4f , �a, v respectively.
The pressure drop was addressed in a discrete way by considering horizontal and vertical straight pipe

sections, bends and other pipe accessories separately. For a straight section the equation has the following
form (2.7):

�pst =
1

2
Kst�susv

2
entry

�L

D
(2.7)

where ventry is the gas velocity at the entry section of the concerned pipe section or pipe component, Kst

is the pressure drop coe¢ cient for straight pipe sections whether they are horizontal or vertical and �sus can
be de�ned as the density of the mixture when a short pipe element is considered. The equation to calculate
�sus is shown below (2.8):

�sus =
_ms + _ma

_Vs + _Va
(2.8)
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where is the _ms mass �ow rate of solids, _ma is the mass �ow rate of air, _Vs is the volume �ow rate of
solids and _Va is the volume �ow rate of air. Equation (2.8) could be re-arranged in order to get the mass
�ow rate of solids, as shown below (2.9):

_ms =
�a _Q� �sus _Va

�sus
�s

� 1 (2.9)

where _Q is the volume �ow rate of air obtained by adjusting the experimentally measured air volume
�ow rate according to the true pressure value at the concerned section of the pipeline. This is done in order
to take into account the compressibility e¤ect .

2.1.11 Control of pneumatic conveying systems

Klinzing et al [2] has written about pneumatic conveying and control systems. This chapter is a brief
replication of his modelling of a positive pressure blowtank system for the use of PID-control.

Modelling a positive pressure blowtank system

A positive pressure conveying system with a blowtank, assuming the output of the particulate solids in the
tank can be measured, can be modeled as a mass balance (2.10) as mentioned by Klinzing et al [2]

dm

dt
= � _mo (2.10)

where

dm

dt
= change in mass in storage tank

_mo = mass �ow out of tank

By setting a reference point in the mass �ow of particulate solids out of the tank , the error to control is
then like in equation (2.11).

" = _moref � _mo (2.11)

Where

" = error in mass �ow to control

_moref = Reference point for mass �ow

_mo = Measured mass �ow

The output can be modeled as a function of blowtank pressure and the amount of mass of particulate
solids in the tank. Assuming a linear relationship between the out�ow of particulate solids and the pressure
in the blowtank and the amount of mass of particulate solids in the blowtank gives the relationship in
equation (2.12) as shown by Klinzing et al [2].

_mo = �m+ �ptank (2.12)

where

ptank = Pressure in blowtank

� = Linear relationship factor for blowtank pressure relating to out�ow

� = Linear relationship factor for mass in blowtank relating to out�ow

Using a proportional relationship between the pressure in the blowtank and the error gives equation
(2.13).

ptank = K � "
ptank = K ( _moref � _mo) (2.13)
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Combining equation (2.12) and (2.13) gives equation (2.14).

dm

dt
= � _mo

dm

dt
= � (�m+ �ptank)

dm

dt
= � [�m+ �K ( _moref � _mo)] (2.14)

By applying the Laplace transform on equation (2.14) the transfer function is like in equation (2.15).

dm

dt
+ �m = ��K ( _moref � _mo)

sm(s) + �m(s) +m(0) = ��K ( _moref (s)� _mo(s))

m(s) =
1

s+ �
[m(0)� �K ( _moref (s)� _mo(s))] (2.15)

where
m(0) = The initial mass in the blowtank

Applying a transport delay e��s gives the transfer function (2.16).

m(s) = e��s
1

s+ �
[m(0)� �K ( _moref (s)� _mo(s))] (2.16)

This transfer function of the process can then be controlled by for instance a PID-controller. To avoid
unnecessary oscillations in the control relating to noise, a PI-controller would be a good choice. Further on
Klinzing et al [2] mentions that modelling by neural networks and control by fuzzy logic is also an alternative
control option. He also mentions that the ultimate control system will use an adjustable Laval nozzle for
supply of the conveying air �ow rate and an ejector for line cleaning purposes.

2.2 Background of system identi�cation

The process of going from observed data to a mathematical model is fundamental in science and engineering.
In the control area this process has been termed �System Identi�cation�and the objective is then to �nd
dynamic models (di¤erence or di¤erential equations) from observed input and output signals. Its basic
features are however common with general model building processes in statistics and other sciences. [8].
System identi�cation is used when there is insu¢ cient measurements or knowledge to model a process based
on physical parameters and properties alone.
The area of system identi�cation begins and ends up with real data. Data are required to build and

to validate models. The result of the modelling process can be no better than what corresponds to the
information contents in the data [8].
There is a wide variety of black box models in use today. A simple form of model for system identi�cation

is Finite Impulse Response (FIR) models. FIR models is made by introducing a change in the inputs , then
the change in the outputs is recorded. A function of the changes is the made based on the observations.
Other methods like Auto-regression with eXtra inputs (ARX) models and Auto-Regressive Moving Average
with eXtra inputs (ARMAX) models, were early introduced to the �eld of system identi�cation. Ordinary
least square (OLS) gives an ARX model and recursive ordinary least square gives an ARMAX model.
The models above has the problem of structure identi�cation, that is identifying the relationships within

the observation data. This is because the methods above focuses on estimating the output and does not give
information about how the inputs interact with eachother within the observation data. The methods above
is multivariable methods.
Subspace identi�cation focuses both on estimating the output of the model and identifying the structure

within the observation data. The system identi�cation method used in this thesis is a subspace identi�cation
method, the Deterministic Stochastic Realization method (DSR) [9]. This model use the state space form
to describe the model. The main focus in this chapter will be related to the DSR-model.
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Optimal estimation is the minimization of the prediction error (PE). This has resulted in, that in the �eld
of control theory there has been an extensive research in Prediction Error Methods (PEM) for optimization
of the predicted output. In this chapter some di¤erent methods of optimizing the predicted output will be
discussed.

2.2.1 History of system identi�cation

As told by Ljung [8], System identi�cation has its roots in standard statistical techniques and many of
the basic routines have direct interpretations as well known statistical methods such as Least Squares and
Maximum Likelihood. The control community took an active part in the development and application of
these basic techniques to dynamic systems right after the birth of "modern control theory" in the early
1960�s. Maximum Likelihood estimation was applied to di¤erence equations (ARMAX models) by Åstrøm
and Bohlin in a paper 1965. Later a wide range of estimation techniques and model parameterization
�ourished. By now, the area is well matured with established and well understood techniques. Industrial use
and application of the techniques has become standard. In the MatLab , The N4SID subspace identi�cation
algorithm is such an algorithm for modelling industrial processes. The N4SID algorithm is a part of the
system identi�cation toolbox in MatLab, based on an algorithm by Ljung [10]. Di Ruscio has developed
a MatLab software package for DSR [9], which is a system identi�cation toolkit for modelling industrial
processes.

2.2.2 Applications of system identi�cation

System identi�cation has a wide range of usages in the industry. Many industry processes have not yet
been modelled. Here system identi�cation is a good tool for �nding a model that gives an estimate of
the real process. System identi�cation is in the �eld of control theory and can be applied to numerous
industry processes. In this thesis a subspace identi�cation method is used to get a model of mass �ow
of particulate solids in pneumatic conveying. The observation input data are pressure measurements and
air�ow measurements and the observation output data is the measured mass �ow. The goal is to estimate
the mass �ow without using a load cell. To put it in another way : To make a virtual measurement (soft
sensor) of the mass �ow instead of the physical measurement given by the load cell.

2.2.3 Advantages and disadvantages of system identi�cation

Some advantages :

� Easy and fast to model complex processes

� Gives opportunity for advanced control systems where no physical model exists

Some disadvantages :

� model never better than real data, a representative data set needed

� Always an approximation, never as good as a representative physical model

2.2.4 Multivariate and univariate data

The system is called univariate when one input parameter is in�uencing one output parameter [11]. An
example of univariate modelling is a simple ordinary least square using scalars, giving one input variable
and one output variable. The system is called multivariable when a system has several input parameters
that in�uence one or more output parameters. In statistics,methods handling multivariable systems are
called multiple linear regression methods (MLR) [11]. Ordinary least squares and recursive least squares
are examples of MLR. Problems arise when there is collinearity in the data. According Esbensen [11],
collinearity means that the observation input variables (X-variables) are intercorrelated to a non-neglectable
degree. That gives that the X-variables are linearly dependent to some degree. Multivariate methods handles
these structural issues within the observation data set. Principal component regression (PCR) and partial
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least square (PLS) are examples of multivariate methods. These methods handles the issue of collinearity
by performing a principal component analysis (PCA). In system identi�cation, a PCA can be performed
by applying a singular value decomposition (SVD) to the observation data. The control theory �eld of
system identi�cation and the statistical �eld of chemometrics handles processes with multivariate data. An
important note is that in the �eld of chemometrics versus the �eld system identi�cation, there is often
di¤erent de�nitions of what is multivariate and what is univariate. The most most important issue is that
PCR,PLS and subspace identi�cation handles identifying the structure within the observation data.

2.2.5 General description of system identi�cation and optimal estimation

According to Di Ruscio [12], system identi�cation can be de�ned as building mathematical models of systems
based on observed data. Traditionally a set of model structures with some free parameters are speci�ed and
a prediction error (PE) measuring the di¤erence between the observed outputs and the model outputs is
optimized with respect to the free parameters. In general, this will result in a non-linear optimization
problem in the free parameters even when a linear time invariant model is speci�ed. A tremendous amount
of research has been reported, resulting in the so called prediction error methods (PEM).
Ljung [8], sets up four points as the essence of system identi�cation.

1. The observed data

� This part includes removing trends and noise from observed data.

2. A set of candidate models

� Selecting the proper method or model for the process to identify. Some models that can be
chosen from is : Auto-regression with eXtra inputs (ARX), Auto-Regressive Moving Average
with eXtra inputs (ARMAX), Output Error (OE), Box Jenkins (BJ). Subspace identi�cation
is another system identi�cation method and two methods will be mentioned, N4SID and DSR.
N4SID is a inbuilt MatLab system identi�cation algorithm and DSR is a custom built system
identi�cation algorithm made by Di Ruscio[9].

3. A criterion of �t

� Usually a prediction error criterion. Prediction error methods (PEM) are used for solving the
problem of minimizing the prediction error criterion. An example of how to apply PEM to
ordinary least square and recursive least square will be discussed. The Kalman �lter algorithm
will also be explained brie�y.

4. Validation

� There are several methods for validating the model, like leverage validation, cross validation and
test set validation. There is also di¤erent methods for explaining the model accuracy, a common
method used is the root mean square error of prediction (RMSEP). The validation methods and
the RMSEP will be described brie�y.

Subspace identi�cation

Subspace identi�cation resolves the problem of structure identi�cation. This can be done by singular value
decomposition (SVD) and projections of noise onto the matrices in a state space model. The DSR and
N4SID methods are subspace identi�cation methods.

Optimal estimation

Optimal estimation uses Prediction Error Methods (PEM) for optimizing the prediction error criterion.
The ordinary least square (OLS) and recursive ordinary least square (ROLS) minimize a prediction error
criterion to optimize the estimation of the resulting model. The DSR and N4SID methods gives Kalman
�lter estimates as a tool for optimizing the prediction error.
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Parameter vector

A parameter vector � is the unknown parameters in the process model. The parameter vector is used to set
up an prediction error (PE) criterion. An example for a scalar deterministic system is shown in (2.17).

�xk+1 =
a

�1�xk +
b

�2uk; �x0 = �5

�y (�)k = �xk +
e

�4uk (2.17)

where

�x0 = Initial predicted state

�xk = Predicted state

�xk+1 = Prediction of next state

uk = Input signal

� = Parameter vector of unknown parameters

�y (�)k = Predicted output as a function of the unknown parameters �

and

� =

2664
�1
�2
�3
�4

3775 =
2664
a
b
e
�x0

3775
See sub chapter in this chapter about state space model for more about state space models.

Prediction error (PE)

The prediction error is the error between the predicted output and the measured output. The prediction
error can be put up as in equation (2.18).

"k = yk � �y (�)k (2.18)

Prediction error criterion

Prediction error methods often uses a prediction error criterion VN (�) like shown in equation (2.19) for single
output systems and (2.20) for multiple output systems.

VN (�) =
1

N

N�1X
k=0

"2k (2.19)

VN (�) =
1

N

N�1X
k=0

"Tk�"k (2.20)

where
� may be a weighting matrix, usually � = I

Prediction error methods (PEM)

Prediction error methods is the term used for the methods that minimize the prediction error criterion. One
such method is the recursive ordinary least squares (ROLS) method. Another method is using a Kalman
�lter. To minimize the prediction error, a prediction error criterion has to be sat up. The objective is to
minimize the prediction error VN (�) with regards to the parameter vector estimate. This objective can be
put up as in (2.21).

�̂N = argminVN (�) (2.21)

where
�̂N = The parameter vector that minimize the prediction error criterion
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Validation of the resulting model

Validation of the model attained from performing a system identi�cation on process data is an important
part for �nding out and explain how good the model estimates the real process. Some methods for validation
of the resulting model is mentioned below. Leverage and cross validation is mentioned brie�y, but test set
validation will be used as validation method in this thesis.

Leverage validation Leverage is a measure of the e¤ect of an object on the model, which to a large extent
is related to its distance from the model center. The leverage is scaled so that it always has a value between
0 and 1. An extreme object, far away from the model center, will have a high e¤ect. A typical object, close
to the model center will have a small e¤ect. To be compared , the leverage validation apparently gives better
results than cross validation. But Esbensen [11] states that the leverage corrected validation is a �quick and
dirty�method. And he states that there are several situation in which grave distortions may arise, especially
when dealing with special data structures where there is a strong colinearity. Leverage corrected validation
is never to be used for the really important �nal validation. Leverage correction should only be used as a
preliminary validation procedure and never for the �nal model assessment. Consequently it is often only
used in the initial modeling stages to screen outliers, establish a homogenous data set for further calibration
work. A usual choice is to use either test set or cross validation to validate the �nal model. For more details
on leverage validation see Esbensen [11].

Cross validation When there is not enough data present to do test set validation, cross validation is a
preferred method according to Esbensen [11]. Cross validation leaves out a part of the calibration data in a
sequence to validate against the rest of the calibration data. Two methods of doing cross validation is full
cross validation and segmented cross validation. Full cross validation is leaving out one object at the time
in a sequence of running through all the objects. Segmented cross validation leaves at a segment of objects
for each iterative step. For more details about cross validation see Esbensen [11].

Test set validation Test set validation is using a new data set for testing the model gotten from system
identi�cation. The data set used for making the model is called the calibration set. The data set used for
testing or validating the model is called the test set. Esbensen [11] states that whenever possible, test set
validation should be used for validating the model.

Measure of the prediction error There are many ways to describe the prediction error in the �eld of
statistics and this is a large and advanced �eld. Going into detail in this subject is out of the scope of this
thesis. A simple method for explaining the deviation between estimated output and the measured output
will be used. A commonly used method for explaining the deviation of the model from the real data is the
root mean square error of prediction (RMSEP). This method (2.22) is a way of de�ning how well a model
corresponds to the real process.

RMSEP =
p
residual variance (2.22)

where

residual variance =
1

n

nX
k=1

("k)
2

and the prediction error (PE) is
"k = ŷk � yk

and
n = Number of samples (objects)

2.2.6 The state space model

According Lie [13], a state space model is a set of �rst order ordinary di¤erential state equations, describing
the change in the states in the process. A state space model can be divided into a set of states (x), a set
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of inputs (u), a set of known constants (�) and a set of selected states as outputs (y). This can brie�y be
expressed as shown in (2.23) :

dx

dt
= f (x; u; �) (2.23)

Models on this form can be non-linear and needs an Ordinary Di¤erential Equation (ODE) solver to
compute a solution. The sets of ordinary di¤erential state equations can be put up on matrix form for
computational simplicity, when the problem can be considered linear. A state space model on matrix form
can be made, assuming linear transition between the states.

Stochastic systems

Most real processes can be considered stochastic. Stochastic comes from the Greek word "stochastikos",
which means : skillful in aiming [14]. A stochastic process is a process that has variables that can be
considered random, like noise. The noise is often assumed to be fully stochastic, that means that the mean
value of the noise is zero, giving that the noise is totally random. This sort of noise is called white noise.
The noise can also be colored, that means that the noise can follow some pattern, but this is out of the
scope of this thesis. A state space model on discrete matrix form, describing a stochastic process is shown
in equation (2.24).

xk+1 = Axk +Buk + Cvk

yk = Dxk + Euk + Fwk (2.24)

where

xk = Current states at discrete timestep k

xk+1 = Next states at discrete timestep k + 1

uk = Control inputs

vk = Process noise

wk = Measurement noise

and

A = The state transition matrix

B = The input matrix

C = The external input matrix

D = The output matrix

E = The direct input to output matrix

F = The direct external input to output matrix

The process noise is often assumed to be white noise, that is E
�
vkv

T
k

�
= 0 and measurement noise

E
�
wkw

T
k

�
= 0: The transition matrix A; gives the linear transition/gradient for the states for each timestep

k. The input matrix B, is a weighting matrix for the control inputs. The external input matrix C, is the
weighting matrix for the process noise. The output matrix D; is used for determining/weighting the selected
set of state/states as outputs. The direct input to output matrix E, is the feedforward matrix, describes the
direct e¤ect of the control input on the output. Not all systems has this direct e¤ect from the input to the
output, then this matrix is ignored. The direct external input to output matrix F , is the weighting matrix
for the measurement noise.

Deterministic systems

A deterministic system, is a system where the outputs can be determined based on the initial states and the
present control inputs. A deterministic system can be put up like in equation (2.25).

xk+1 = Axk +Buk

yk = Dxk + Euk (2.25)
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Autonomous systems

Autonomous systems are systems that stabilize themselves. An autonomous system can be put up like in
equation (2.26).

xk+1 = Axk

yk = Dxk (2.26)

Observable, controllable, detectable and stabilizable control systems

According to Di Ruscio [12], an observable system is a system where a change in the process states can be
observed in the output states. The observability matrix can be put up like in (2.27), if this matrix is non-
singular then the system is observable. This can be checked by checking that the rank of the observability
matrix (2.28) equals n:

OL =

2666664
D
DA
DA2

...
DAL�1

3777775 2 RLm�n (2.27)

where
L = Number of block rows

rank(OL) = n (2.28)

L � Lmin
where the minimal number of block rows Lmin is de�ned by (2.29)

Lmin
def
=

�
n� rank(D) + 1 when m < n
1 when m > n

(2.29)

If the system is not observable and the states that is not observable is stable, then the system is called
detectable.
According to Di Ruscio [12], a system is called controllable when a change is the inputs, gives a change

in the states. The controllability matrix (2.30) is a combination of the state transition matrix A and the
input matrix B for deterministic systems. For stochastic systems, the external input matrix C (2.31) has to
be added. The system is controllable when the rank of the controllability matrix (2.32) equals n:

CL =
�
B AB A2B � � � AL�1B

�
(2.30)

CL =
�
BC ABC A2BC � � � AL�1BC

�
(2.31)

where
L = Number of block rows

rank(CL) = n (2.32)

L � Lmin
where the minimal number of block rows Lmin is de�ned by (2.33) or (2.34).

Lmin
def
=

�
n� rank(B) + 1 when m < n
1 when m > n

(2.33)

Lmin
def
=

�
n� rank(BC) + 1 when m < n
1 when m > n

(2.34)

If the system is not controllable and the states that are not controllable is stable, then the system is
stabilizable.
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2.2.7 Prediction error methods

Prediction error methods is the term used for the methods that minimize the prediction error criterion. One
such method is the recursive ordinary least squares (ROLS) method. Another method is using a Kalman
�lter. To minimize the prediction error, a prediction error criterion can to be put up.
PEM often uses a PE criterion VN (�) like shown in equation (2.35) for single output systems and (2.36)

for multiple output systems.

VN (�) =
1

N

N�1X
k=0

"2k (2.35)

VN (�) =
1

N

N�1X
k=0

"Tk�"k (2.36)

where
� may be a weighting matrix, usually � = I

The objective is to minimize the prediction error VN (�) with regards to the parameter vector estimate.
This objective can be put up as in (2.37).

�̂N = argminVN (�) (2.37)

where
�̂N = The parameter vector that minimize the prediction error criterion

The Least Squares method

The Ordinary Least square method The Ordinary Least Square (OLS) method is a common curve
�tting method. The OLS method is a method for �nding the curve that has the smallest squared error
related to the measurement points. The data matrix X is a matrix that includes all in�uencing inputs
relating to the output. The output matrix Y is the matrix or vector containing the measured outputs. In
this manor the OLS method gives a function that explains the equipment/process that is being modeled,
based on measured inputs and outputs. This equipment can be valves or any equipment/process with static
properties. The OLS method can describe any curve given enough regression coe¢ cients. The OLS method
is shown in equation (2.38)

Y = X �B + e
XTY =

�
XT �X

�
B +XT e

E
�
XT � eT

�
= 0

XTY =
�
XT �X

�
B

B =
�
XT �X

��1 �
XTY

�
(2.38)

where

Y = Measured output data matrix

X = Measured input data matrix

e = Noise, here assumed to be white noise

B = Vector containing regression coe¢ cients

This kind of OLS gives a model on polynomial form, like (2.39) :

�yk = b1 � x1 + b2 � x2 + :::+ bN � xn (2.39)

where

�yk = Predicted output

N = Row number for regression coe¢ cient

n = Column number of the input matrix X
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Another way of doing an OLS is to de�ne a prediction error criterion and then try to minimize it. This
is the same as above, trying to �nd the least square �t. The similarity can be explained through equation
(2.40), where the objective is to minimize the square of the prediction error.

VN (�) = jjyk � �yk (�) jj2 = (Y �X�)T (Y �X�) (2.40)

where

yk = Y

'k = X

� = B

�yk (�) = 'k�

If a real measurement parameter vector �0 is introduced, the regression coe¢ cients are put into a parameter
vector called � and a matrix containing both inputs and outputs are put into a matrix 'k; then it is possible
to put up a OLS for the state space form. The OLS for the real measurement can then be put up like in
equation (2.41).

yk = 'k�0 + ek (2.41)

where

yk = Measured output

'k = Matrix of measured inputs and outputs

�0 = Real process parameters

ek = Noise, assumed to be white noise

The prediction error can now be introduced (2.42) as the squared error between measured and predicted
output.

"k = yk � �yk (�)
"k = yk � 'k� (2.42)

by using the prediction error criterion (2.36), an OLS estimate can be found by setting the partial derivative
of the prediction error with regards to parameter vector � to be zero.

VN (�) =
1

N

N�1X
k=0

"Tk�"k

@ (VN (�))

@�
= 0

Solving this gives, start with setting up the expression :

@ (VN (�))

@�
=
1

N

N�1X
k=0

@"k
@�

�
@
�
"Tk�"k

�
@"k

Solving each partial derivative term :

@
�
"Tk�"k

�
@"k

= 2�"k

"k = yk � 'k�
@"k
@�

=
@ (yk � 'k�)

@�
= �'Tk
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Setting the solution of the partial derivatives into the equation again :

@ (VN (�))

@�
=

1

N

N�1X
k=0

�'Tk (2�"k)

@ (VN (�))

@�
= �2 � 1

N

N�1X
k=0

'Tk� (yk � 'k�)

Solving the prediction error criterion for when it is put to zero :

�2 � 1
N

N�1X
k=0

'Tk� (yk � 'k�) = 0

�2 � 1
N

N�1X
k=0

'Tk�yk � 'Tk�'k� = 0

� 2
N

N�1X
k=0

'Tk�yk +
2

N

N�1X
k=0

'Tk�'k� = 0

Solving for the OLS estimate of the parameter vector �

2

N

N�1X
k=0

'Tk�'k� =
2

N

N�1X
k=0

'Tk�yk

N�1X
k=0

'Tk�'k� =

N�1X
k=0

'Tk�yk

� =

 
N�1X
k=0

'Tk�'k

!�1 N�1X
k=0

'Tk�yk

!

The OLS estimate of the parameter vector �̂N using a prediction error method then gives (2.43).

�̂N =

 
N�1X
k=0

'Tk�'k

!�1 N�1X
k=0

'Tk�yk

!
(2.43)

Recursive Ordinary Least Squares (ROLS) method The recursive ordinary least square (ROLS)
method is a method for optimizing the ordinary least square (OLS) result. The OLS method gives an
ARX model, while the ROLS gives an ARMAX model. The ROLS and the Kalman �lter has similarities,
they will only be discussed brie�y. The ROLS method starts with the result of the OLS (2.43). To stress
the dependence for �̂ with regards to time t, the N is replaced with t like in equation (2.44) below. For
convenience the discrete timestep k is shifted to start at k = 1 instead of k = 0.

�̂t =

 
tX

k=1

'Tk�'k

!�1 tX
k=1

'Tk�yk

!
(2.44)

A covariance matrix Pt can be de�ned like in (2.45). The covariance matrix Pt can be divided into a
series of the past input observation data from Pt�1 ranging from k = 1 to k = (t� 1) (2.46) and a part
containing the present input observation data. Combining them gives equation (2.47).

Pt =

 
tX

k=1

'Tk�'k

!�1
(2.45)
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Pt�1 =

 
t�1X
k=1

'Tk�'k

!�1
(2.46)

Pt =

 
t�1X
k=1

'Tk�'k + '
T
t �'t

!�1
(2.47)

The covariance matrix Pt can be computed recursively through the equation for the inverse of Pt (2.48) at
each discrete timestep.

P�1t =
t�1X
k=1

'Tk�'k + '
T
t �'t (2.48)

The equation for P�1t can be written as (2.50) through the relationship of (2.48) and (2.49).

P�1t�1 =
t�1X
k=1

'Tk�'k (2.49)

P�1t = P�1t�1 + '
T
t �'t (2.50)

The basic idea is to compute the optimal parameter estimate �̂t with the help of an optimized covariance
matrix Pt (2.51).

�̂t = Pt

tX
k=1

'Tk�yk (2.51)

By dividing the parameter estimate �̂t into a series of the past observation data from �̂t�1 ranging from
k = 1 to k = (t� 1) (2.52) and a part containing the present observation data. Combining them gives
equation (2.54).

�̂t�1 = Pt�1

t�1X
k=1

'Tk�yk (2.52)

P�1t�1�̂t�1 =

t�1X
k=1

'Tk�yk (2.53)

�̂t =

 
Pt

t�1X
k=1

'Tk�yk + '
T
t �yt

!
(2.54)

The parameter estimate �̂t can be put up as (2.55) through the relationships (2.53) and (2.54).

�̂t = Pt

�
P�1t�1�̂t�1 + '

T
t �yt

�
(2.55)

The relationship given in (2.50) can be rewritten to (2.53) for simplicity.

P�1t�1 = P
�1
t � 'Tt �'t (2.56)

Substituting (2.56) into (2.55) gives (2.57).

�̂t = Pt

��
P�1t � 'Tt �'t

�
�̂t�1 + '

T
t �yt

�
(2.57)

Rearranging (2.57) gives (2.58).

�̂t = PtP
�1
t �̂t�1 � 'Tt �'t�̂t�1 + Pt'Tt �yt

�̂t = I�̂t�1 � Pt'Tt �'t�̂t�1 + Pt'Tt �yt
�̂t = �̂t�1 + Pt'

T
t �yt � Pt'Tt �'t�̂t�1

�̂t = �̂t�1 + Pt'
T
t �
�
yt � 't�̂t�1

�
(2.58)
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This can rewritten as (2.59).

�̂t = �̂t�1 +Kt

�
yt � 't�̂t�1

�
(2.59)

where
Kt = Pt'

T
t �

The ROLS algorithm is an two step iterative process. Step 1 involves setting the initial values of covariance
matrix Pt and the parameter estimate �t: Step 2 involves updating the values of covariance matrix Pt and
the parameter estimate �t:Step 2 is repeated until �nished. At each timestep the inverse of the covariance
matrix Pt (2.60) is computed.

Pt =
�
P�1t�1 + '

T
t �'t

��1
(2.60)

The computation of the inverse of the covariance matrix Pt (2.60) can be done by using the matrix inversion
lemma (2.61).

(A+BCD)
�1
= A�1A�1B

�
C�1 +DA�1B

��1
DA�1 (2.61)

This gives (2.62).

Pt =
�
P�1t�1

��1 �
P�1t�1

��1
'Tt

�
��1 + 't

�
P�1t�1

��1
'Tt

��1
't
�
P�1t�1

��1
Pt = Pt�1Pt�1'

T
t

�
��1 + 'tPt�1'

T
t

��1
'tPt�1 (2.62)

The parameter estimate �̂t (2.59) can then be updated. It can be proved that the optimal weighting
matrix � is the inverse of the measurements noise covariance matrix W . This can be proved through a
comparison with the Kalman �lter. See Di Ruscio [15] chapter 12.7.1 "Comparing ROLS and the Kalman
�lter" for proof.

Kalman �lter The Kalman �lter is a prediction error method. The aim is to minimize the prediction
error given by the innovation process "k (2.63): The innovation form can be put up like (2.64).

"k = (yk � �yk) (2.63)

The innovation form

�yk = D�xk
�xk+1 = A�xk +Buk + ~K"k

�
(2.64)

where

�xk+1 = A (�xk +K (yk � �yk)) +Buk
�xk+1 = A�xk +AK (yk � �yk) +Buk
�xk+1 = A�xk + ~K (yk � �yk) +Buk

The apriori-aposteriori method The apriori-aposteriori form is a kalman �lter method that esti-
mates the states using the present output and input parameters. First we need an estimated initial state �x0:
A usual choice of the initial estimated states is �x0 = 0 or the estimated states value for steady state of the
process �x0 = xs; if the steady states are known.
The algorithm for calculating the estimates is like the following :

� Step 1 : Calculating the estimated output based on the estimated states �xk. The estimated states �xk
is called the apriori estimates.

�yk = D�xk

� Step 2 : Get an updated optimal estimate of the states x̂k by adjusting the present estimate of the
states �xk: This is done by adding an adjusting factor ~K (yk � �yk). Where ~K is the innovation kalman
gain for the innovation process (yk � �yk) : The innovation process is the prediction error "k = (yk � �yk)
between the real measured output yk and the estimated output �yk: x̂k is called the aposteriori estimate
and is the optimal estimate.

x̂k = �xk + ~K (yk � �yk)
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� Step 3 : Get a prediction of the next apriori estimated state �xk+1: This is done by using the present
optimal aposteriori estimate x̂k: This prediction of the next apriori estimated state �xk+1, will then be
used as �xk in the next iteration of this iterative process starting at step 1 again.

�xk+1 = Ax̂k +Buk

The apriori-aposteriori kalman �lter method gives the present optimal aposteriori estimate x̂k.

2.2.8 Principle Component Regression (PCR)

This small sub chapter on principal Component regression (PCR) is based on lecture notes in system identi�-
cation, given by professor David Di Ruscio in the spring semester 2007 at the university college of Telemark.
Before doing PCR a principle component analysis (PCA) of the data matrix x needs to be performed. PCA
is done by doing a singular value decomposition and choosing appropriate realization of the scores and load-
ings of the data matrix x. PCA and PCR are least squares methods which can be used when xTx is singular
and when OLS estimate does nor exists. (BOLS =

�
xTx

��1
xTx).

Singular value decomposition (SVD)

Singular value decomposition is a method for breaking down a data matrix X. The eigenvalue decomposition
(2.65) uses the same basis Ev for row and column space, but the SVD uses two di¤erent bases V , U . The
eigenvalue decomposition generally does not use an orthonormal basis, but the SVD does. The eigenvalue
decomposition is only de�ned for square matrices, but the SVD exists for all matrices.

X = Ev�E
�1
v (2.65)

For symmetric positive de�nite matrices A, the eigenvalue decomposition and the SVD are equal [16].
Doing a SVD on a data matrix X will give an orthogonal matrix U , a diagonal singular value matrix S
and an orthogonal matrix V T . The relationship between the eigenvalue decomposition and the SVD can be
explained as in (2.66), (2.67), (2.68) and (2.69), when matrix X is symmetric positive de�nite.

X = USV T (2.66)

where
The columns of U is the eigenvectors (Ev) of X �XT (2.67)

and
The columns of V is the eigenvectors

�
E�1v

�
of XT �X (2.68)

and

The diagonal of S consists of the squareroot of the eigenvalues (�) of X �XT or XT �X (2.69)

The matrices U and V T are orthogonal, this gives that one can use the relationship (2.70) and (2.71).

U � UT = I (2.70)

V T � V = I (2.71)

Otherwise if X is a m� n matrix the SVD can be explained as decomposing X, into a m�m orthogonal U
matrix, a m� n diagonal S matrix and a n� n orthogonal V matrix. An example is shown in (2.72)

Xz }| {24x11 x12
x21 x22
x31 x32

35 =
Uz }| {24u11 u12 u13

u21 u22 u23
u31 u32 u33

35 �
Sz }| {24s1 0

0 s2
0 0

35 �
V Tz }| {�

v11 v21
v12 v22

�
(2.72)

The diagonal singular value matrix S, gives the singular values for the model. The rank of this matrix gives
the number of singular values. This can be related to number of principal components in chemometrics.
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Chemometrics focus more on the covariance related to the principal components than the actual decomposing
of the data and also use other techniques for decomposition of the data like for instance total least square.
Usually the diagonal singular value matrix S contains small singular values, which is consider noise. This
noise is often called residuals. The SVD is therefore often dived in two parts, one relating to the model
(2.74) and one relating to noise (2.75). This splitting can be shown as in equation (2.73).

X = USV T =
�
U1 U2

� �S1 0
0 S2

� �
V1 V2

�T
(2.73)

this can be rewritten as :

X = U1S1V
T
1 + U2S2V

T
2

X � U1S1V
T
1

where

U1S1V
T
1 is considered the data used for building the model (2.74)

and

U2S2V
T
2 is considered the residual data, and discarded for usage in the model (2.75)

Principal component analysis (PCA)

Principal component analysis (PCA) can be done by performing SVD, like mentioned above. PCA is simply
an data analysis of the data matrix X. PCA is, when used for the purpose of using principal component
regression (PCR), used to analyze the rank of the diagonal singular matrix S. In chemometrics PCA is used
more extensively for interpreting relationships in the data. As a curiosity the relationship with chemometrics
can be shown as in (2.76) and (2.77).
Relationship between SVD and PCA in chemometrics :

X = U1S1V
T
1 + U2S2V

T
2 (2.76)

X = T � PT +G (2.77)

where

T = U1S1� > score vector
P = V T1 � > loading vector
G = U2S2V

T
2 , considered as residuals

2.2.9 PCR

Principal component regression (PCR) is the building of a system identi�cation model after performing a
PCA. The problem can now be put up (2.78) as with the ARX-model (OLS).

y = XBPCR + E (2.78)

use the PCA approximation of x, i.e., x � U1S1V T1

y = U1S1V
T
1 �BPCR + E
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Then solve the equation with regards to the regression coe¢ cient vector BPCR :

UT1 � jy = U1S1V
T
1 �BPCR + E

UT1 y = UT1 U1S1V
T
1 �BPCR + UT1 E

UT1 U1 = I

UT1 y = S1V
T
1 �BPCR + UT1 E

S�11 � jUT1 y = S1V
T
1 �BPCR + UT1 E

S�11 UT1 y = S�11 S1V
T
1 �BPCR + S�11 UT1 E

S�11 S1 = I

V1 � jS�11 UT1 y = V T1 �BPCR + S�11 UT1 E

V1S
�1
1 UT1 y = V1V

T
1 BPCR + S

�1
1 UT1 E

V1V
T
1 = I and S�11 UT1 E � 0

Finally the PCR regressors can be found in the regression vector BPCR

BPCR = V1S
�1
1 UT1 y

2.2.10 Partial Least Squares Regression (PLS)

According to Esbensen [11], PLS claims to do the same job as PCR, only with fewer bilinear components.
Further Di ruscio [15] states that the PLS method for univariate data (usually denoted PLS1) is optimal
in a prediction sense. Unfortunately (or not), the PLS algorithm for multivariate data (usually denoted
PLS2 in the literature) is not optimal in the same way as PLS1. It is often judged that PLS has good
predictive properties. This statement is based on experience and numerous applications. This may well be
true. Di Ruscio further states that he believes the predictive performance of PLS1 and PLS2 is di¤erent.
The reason for this is that PLS1 is designed to be optimal on the identi�cation data, while PLS2 is not. If the
model structure is correct and time invariant, then PLS1 would also be good for prediction. Di Ruscio [15]
propose a new method that combines the predictive properties of PLS1 and PLS2. This method combines
the conjugate gradient method and PLS. This new method, called CPLS has better prediction properties
than both PLS1 and PLS2.
Di Ruscio [15] propose this CPLS method :

BCPLS = Ka

�
KT
a X

TX
��1

KaX
TY

where

Ka =
�
A AB A2B ::: Aa�1B

�
A = XTX

B = XTY

2.2.11 MatLaB N4SID system identi�cation algorithm

The N4SID algorithm is a part of the MatLab system identi�cation toolbox [17]. The N4SID is a subspace
identi�cation method. It estimate state space models on innovations form (2.79). Both time-domain and
frequency-domain input signals are supported.

xk+1 = Axk +Buk +K"k
yk = Dxk + Euk + "k

�
(2.79)

where

K = Kalman innovations gain

"k = The innovation process (yk � �yk)
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The N4SID has the opportunity to set the direct input to output matrix E = 0, when there is no direct
coupling in the process from the inputs to the outputs. The order of the model can be set, with the option
to choose the "best" model order by giving a range of orders as input. Time delays can be set, when using
time-domain data. An indication of the uncertainty can be stored in a hidden state space model containing
covariance information. The algorithm has the option to make the model focus on prediction, simulation or
stability. It is possible to choose from two methods of weighting the matrices in the SVD. The construction
of the algorithm is based on a paper by Ljung[10].

2.2.12 The combined Deterministic and Stochastic system identi�cation and
Realization (DSR) method

The DSR method is a subspace identi�cation method like N4SID. The DSR divides the data into a horizon
J to the past and a prediction horizon L into the future. The DSR uses the state space form on innovation
form like in equation (2.80). The reason for this is that the DSR can estimate the C and F matrices, while
the N4SID cannot. Equation (2.80) can easily be rewritten to (2.81), where the Kalman innovation gain can
be attained through the relationship shown in(2.82).

xk+1 = Axk +Buk + Cek
yk = Dxk + Euk + Fek

�
(2.80)

xk+1 = Axk +Buk + ~K"k
yk = Dxk + Euk + "k

�
(2.81)

where
~K = CF � F�1 (2.82)

where

CF = Covariance matrix for F

F = External direct input to output

"k = yk � �yk, innovation process
~K = AK; Kalman innovation gain

K = Kalman gain

A = State transition matrix

From the state space on innovation form (2.80) it is possible to set up a matrix equation (2.83).

YJjL = OLXJ +H
d
LUJjL +H

s
LEJjL (2.83)

Setting up the extended output matrix equation

xk+1 = Axk +Buk + Cek; x0 = known

yk = Dx+ Euk + Fek

With a prediction horizon of L = 4 this stochastic state space model can be put up like an iterative
process :

x0 = known

y0 = Dx0 + Eu0 + Fe0

x0+1 = Ax0 +Bu0 + Ce0

y1 = Dx1 + Eu1 + Fe1 = D (Ax0 +Bu0 + Ce0) + Eu1 + Fe1

x1+1 = Ax1 +Bu1 + Ce1 = A (Ax0 +Bu0 + Ce0) +Bu1 + Ce1

y2 = Dx2 + Eu2 + Fe2 = D (A (Ax0 +Bu0 + Ce0) +Bu1 + Ce1) + Eu2 + Fe2

x2+1 = Ax2 +Bu2 + Ce2 = A (A (Ax0 +Bu0 + Ce0) +Bu1 + Ce1) +Bu2 + Ce2

y3 = Dx3 + Eu3 + Fe3 = D (A (A (Ax0 +Bu0 + Ce0) +Bu1 + Ce1) +Bu2 + Ce2) + Eu3 + Fe3



28 CHAPTER 2. LITERATURE REVIEWS

Summarize this :

x0 = known

y0 = Dx0 + Eu0 + Fe0

x1 = Ax0 +Bu0 + Ce0

y1 = DAx0 +DBu0 +DCe0 + Eu1 + Fe1

x2 = A2x0 +ABu0 +ACe0 +Bu1 + Ce1

y2 = DA2x0 +DABu0 +DACe0 +DBu1 +DCe1 + Eu2 + Fe2

x3 = A3x0 +A
2Bu0 +A

2Ce0 +ABu1 +ACe1 +Bu2 + Ce2

y3 = DA3x0 +DA
2Bu0 +DA

2Ce0 +DABu1 +DACe1 +DBu2 +DCe2 + Eu3 + Fe3

Can see that the model can be set up as an iterative function of the initial state x0 and the past and
present inputs and the past and present noise. Putting this up on matrix form gives (2.84).

y0j4z }| {2664
y0
y1
y2
y3

3775 =
O4z }| {2664
D
DA
DA2

DA3

3775x0 +
Hd
4z }| {2664

E 0 0 0
DB E 0 0
DAB DB E 0
DA2B DAB DB E

3775 �
u0j4z }| {2664
u0
u1
u2
u3

3775+
Hs
4z }| {2664

F 0 0 0
DC F 0 0
DAC DC F 0
DA2C DAC DC F

3775 �
e0j4z }| {2664
e0
e1
e2
e3

3775 (2.84)

where

u0j4 = The input vector

e0j4 = The noise vector

x0 = Initial state

O4 = The observability matrix

Hd
4 = Lower triangular Toeplitz matrix for (A,B,D,E)

Hs
4 = Lower triangular Toeplitz matrix for (A,C,D,F)

y0j4 = The outputs

By extending the output vector yJjL,the input vector uJjL and the noise vector eJjL to the hankel matrices
YJjL; UJjL and EJjL respectively, we will end up with the extended output matrix equation (2.83).

YJjL = OLXJ +H
d
LUJjL +H

s
LEJjL

where YJjL is a hankel matrix containing the past outputs and future outputs. The matrix has the form
(2.85).

YJjL =

26664
yJ yJ+1 � � � yJ+K�1
yJ+1 yJ+2 � � � yJ+K
...

...
. . .

...
yJ+L�1 yJ+L � � � yJ+K+L�2

37775 (2.85)

OL is the extended observability matrix (2.86)

OL =

26664
D
DA
...

DAL�1

37775 (2.86)

XJ is the past states to the future states(2.87)

XJ =
�
xJ xJ+1 � � � xJ+K�1

�
(2.87)
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Hd
L is a toeplitz matrix for the output matrix D, the transition matrix A, the input matrix B and the direct

input to output matrix E (2.88).

Hd
L =

2666664
E 0 0 � � � 0
DB E 0 � � � 0
DAB DB E � � � 0
...:

...
...

. . .
...

DAL�2B DAL�3B DAL�4B � � � E

3777775 (2.88)

UJjL is a hankel matrix containing the inputs from the past to the future(2.89)

UJjL+g =

2664
uJ uJ+1 ::: uJ+K�1
uJ+1 uJ+2 ::: uJ+K
::: ::: ::: :::

uJ+L+g�1 uJ+L+g ::: uJ+K+L+g�2

3775 (2.89)

Hs
L is a toeplitz matrix for the output matrix D, the transition matrix A, the external input matrix C and

the direct external input to output matrix F (2.90).

Hs
L =

266664
F 0 0 ::: 0
DC F 0 ::: 0
DAC DC F ::: 0
::: ::: ::: ::: :::

DAL�2C DAL�3C DAL�4C ::: F

377775 (2.90)

EJjL is a hankel matrix containing the is the noise from the past to the future(2.91)

EJjL =

2664
eJ eJ+1 ::: eJ+K�1
eJ+1 eJ+2 ::: eJ+K
::: ::: ::: :::

eJ+L�1 eJ+L ::: eJ+K+L�2

3775 (2.91)

Estimating the state space matrices using DSR

A stochastic system has both a deterministic part and a stochastic part. First start with identifying and
removing the noise based on past and future data. A stochastic system can be written as shown below (2.92).

xk+1 = Axk +Buk + Cek
yk = Dxk + Euk + Fek

�
(2.92)

The output data matrix has now deterministic and stochastic terms ()

YJjL = OLXJ +H
d
LUJjL+g�1 +H

s
LEJjL (2.93)

The system has a direct input to output matrix E, hence g = 1. This gives the extended output matrix
equation (2.94)

YJjL = OLXJ +H
d
LUJjL +H

s
LEJjL (2.94)

The stochastic term can be removed by a projection of the future outputs onto the future inputs, past inputs
and past outputs. This is done by (2.95).

YJjL=

24UJjLU0jJ
Y0jJ

35 = OLXJ=
24UJjLU0jJ
Y0jJ

35+Hd
LUJjL=

24UJjLU0jJ
Y0jJ

35+Hs
LEJjL=

24UJjLU0jJ
Y0jJ

35 (2.95)

The projection of future noise onto future inputs, past inputs and past outputs removes the noise term (2.96),
while the projection does not e¤ect the future inputs (2.97).

E(ekuk)=0z }| {
EJjL=

24UJjLU0jJ
Y0jJ

35 = 0 (2.96)
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UJjL=

24UJjLU0jJ
Y0jJ

35 = UJjL (2.97)

This then gives a deterministic system (2.98) (removed the noise).

ZdJjLz }| {
YJjL=

24UJjLU0jJ
Y0jJ

35 = OL
Xd
Jz }| {

XJ=

24UJjLU0jJ
Y0jJ

35+Hd
LUJjL (2.98)

This can be rewritten on a more convenient form (2.99).

ZdJjL = OLX
d
J +H

d
LUJjL (2.99)

The the C and F matrix can be computed from this equation (2.100) by QR decomposition. For more details
about this see Di Ruscio [9].

YJjL � ZdJjL = Hs
LEJjL (2.100)

Can now perform an orthogonal projection of the deterministic system (2.99). ZJjL is found by �nding a
projection matrix P so ZJjL is on the form ZJjL = OL ~XJ . This is done as in (2.101).

ZJjLz }| {
ZdJjLP =

~XJ

OL

z }| {
Xd
JP (2.101)

It is desirable to remove the deterministic part Hd
LUJjL , this is done by �nding a projection matrix P that

gives UJjLP = 0: this means that the P matrix must be 90� on the UJjL matrix for the result to be 0. This
can be done by setting P to be orthogonal to UJjL: This is shown in equation (2.102).

P = U?JjL = I � UTJjL

pseudo inversz }| {�
UJjLU

T
JjL

�+
UJjL (2.102)

One can also use inverse instead of pseudo inverse as long as
�
UJjLU

T
JjL

�
is invertible. That is the

�
UJjLU

T
JjL

�
is non-singular, which means that det

�
UJjLU

T
JjL

�
6= 0 and that none of the eigenvalues are zero.

Can prove this :

UJjLP = UJjL

�
I � UTJjL

�
UJjLU

T
JjL

�+
UJjL

�
UJjLP = UJjL � UJjLUTJjL

�
UJjLU

T
JjL

�+
UJjL

UJjLU
T
JjL

�
UJjLU

T
JjL

�+
= I

UJjLP = UJjL � I � UJjL
UJjLP = UJjL � UJjL = 0

Now use the projection matrix to project the deterministic part into the output data matrix ZdJjL and the

state matrix Xd
J ; which gives (2.103).

ZJjLz }| {
ZdJjLP = OL

~XJz }| {
Xd
JP +

=0z }| {
Hd
LUJjLP

+
ZJjL = OL ~XJ (2.103)
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All the projections can now be put up for ~XJ(2.104) and ZJjL(2.105).

~XJ = Xd
JU

?
JjL (2.104)

ZJjL = ZdJjLU
?
JjL (2.105)

where

Xd
J = XJ=

24UJjLU0jJ
Y0jJ

35
ZdJjL = YJjL=

24UJjLU0jJ
Y0jJ

35
U?JjL = I � UTJjL

�
UJjLU

T
Jjl

�+
UJjL

The aim is now to �nd the states transition matrix A and the input matrix B. By shifting the ZJjL one
step forward to ZJ+1jL(2.106), it is possible to �nd the ~AL and ~BL matrices.

ZJ+1jL = ~ALZJjL + ~BLUJjL+1 (2.106)

where the A and B matrices could be found through the relationship of (2.107) and (2.108), respectively.
For more details see Di Ruscio[9].

~AL = OLA
�
OTLOL

��1
OTL (2.107)

~BL =
�
OLB Hd

L

�
� ~AL

�
Hd
L 0Lm�r

�
2 RLm�(L+g)r (2.108)

Finding the system order and the extended observability matrix

The systems order n can be estimated by use of singular value decomposition (SVD) on the ZJjL matrix to
cut it up into an orthogonal matrix U , a diagonal matrix S of singular values and a orthogonal V T matrix.
The diagonal matrix S decides the system order. The size of S depends on the noise level. The SVD is
divided into a data part and a noise part. The rank of the S matrix of data part of the SVD decides the
system order.

ZJjL =
�
U1 U2

� �S1 0
0 S2

� �
V1 V2

�T
ZJjL = U1S1V

T
1 + U2S2V

T
2 � U1S1V T1

U2S2V
T
2 � 0

where U1S1V T1 is the data part and U2S2V T2 is the noise part. The system order can be found by

n = rank(S1)

It is needed to �nd the extended observability matrix in order to �nd the A and B matrices in the
relationship (2.107) and (2.108) mentioned above. The extended observability matrix OL can be estimated
by dividing the SVD matrices U1,S1 and V T1 into a extended observability OL part and a state matrix ~XJ
part. There are three ways of dividing the SVD. The output normal realization (2.109), the input normal
realization (2.110) and the balanced realization (2.110).

OL = U1
~XJ = S1V

T
1

�
(2.109)

OL = S1V
T
1

~XJ = U1

�
(2.110)

OL = U1
p
S1

~XJ =
p
S1V

T
1

�
(2.111)

For more details about the DSR method, see Di Ruscio [9].
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2.3 Background of Model Predictive Control

2.3.1 Introduction

"The process industry is characterized by ever tighter product quality speci�cations, increasing productivity
demands, new environmental regulations and fast changes in the economical market. Over the last two
decades predictive control has proven to be a very successful controller design strategy, both in theory and
practice. The main reason for this acceptance is that it provides high performance controllers that can easily
be applied to di¢ cult high-order and multivariable processes. Process constraints are handled in a simple
and systematic way. However a general stability and robustness theory is lacking. Predictive control is a
class of control strategies based on the explicit use of a process model to generate the predicted values of the
output at future time instants, which are then used to compute a sequence of control moves that optimize the
future behavior of a plant. Predictive control is rather a methodology than a single technique. The di¤erence
in the various methods is mainly the way the problem is translated into a mathematical formulation. The
explicit use of a model is the main di¤erence between predictive control and the classical PID controller.
Its advantage is that the behavior of the controller can be studied in detail, simulations can be done and
performance can be evaluated. One of the drawbacks is the need of an appropriate model of the process. The
bene�ts obtained are a¤ected by the discrepancies existing between the real process and the model. According
to some researchers 80% of the work done is in modeling and identi�cation of the plant. The results almost
always show that the e¤ort is paid back in short time. Another drawback is that although the resulting control
law is easy to implement and requires little computation, its derivation is more complex than that of the PID.
If the process dynamics do not change, the derivation can be done beforehand, but in the adaptive control
case all the computation has to be carried out at each sampling time. When constraints are considered, the
amount of computation is even higher." [18]
In this thesis MPC has been applied to a system identi�cation model of the mass �ow rate of particulate

solids. The MPC is using a state space model as the basis for the prediction model in the object function.
A general description of the building of the MPC matrices is given in this literature review. The results and
calculations is done in the "MPC results & discussion" chapter.

2.3.2 History of Model Predictive Control

"The development of modern control concepts can be traced back to the work of Kalman in the early 1960s
with the linear quadratic regulator (LQR) designed to minimize an unconstrained quadratic objective function
of states and inputs. The in�nite horizon endowed the LQR algorithm with powerful stabilizing properties.
However it had little impact on the control technology development in the process industries. The reason for
this lies in the absence of constraints in its formulation, the nonlinearities of the real systems, and above
all the culture of the industrial process control community at the time, in which instrument technicians and
control engineers either had no exposure to optimal control concepts or regarded them as impractical. Thus
the early proponents of MPC for process control proceeded independently, addressing the needs of the industry.
In the late 1970s various articles reported successful applications of model predictive control in the in-

dustry, principally the ones by Richalet et al. (1978) presenting Model Predictive Heuristic Control (later
known as Model Algorithmic Control (MAC)) and those of Cutler and Ramaker (1980) with Dynamic Matrix
Control (DMC). The common theme of these strategies was the idea of using a dynamic model of the process
(impulse response in the former and step response in the later) to predict the e¤ect of the future control
actions, which were determined by minimizing the predicted error subject to operational restrictions. The op-
timization is repeated at each sampling period with updated information from the process. These formulations
were algorithmic and also
heuristic and took advantage of the increasing potential of digital computers at the time. Stability was

not addressed theoretically and the initial versions of MPC were not automatically stabilizing. However, by
focusing on stable plants and choosing a horizon large enough compared to the settling time of the plant,
stability is achieved after playing with the weights of the cost function.
Later on a second generation of MPC such as quadratic dynamic matrix control (QDMC; Garcia, Mor-

shedi, 1986) used quadratic programming to solve the constrained open-loop optimal control problem where
the system is linear, the cost quadratic, the control and state constraints are de�ned by linear inequalities.
Another line of work arose independently around adaptive control ideas developing strategies essentially for
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mono-variable processes formulated with transfer function models (for which less parameters are required
in the identi�cation of the model) and Diophantine equation was used to calculate future input. The �rst
initiative came from Astron et al. (1970) with the Minimum Variance Control where the performance index
to be minimized is a quadratic function of the error between the most recent output and the reference (i.e. the
prediction horizon Ny = 1 ). In order to deal with non-minimum phase plants a penalized input was placed
in the objective function and this became the Generalized Minimum Variance (GVM) control. To overcome
the limitation on the horizon, Peterka (1984) developed the Predictor-Based Self-Tuning Control. Extended
Prediction Self�Adaptive Control (EPSAC) by De Keyser et al. (1985) proposes a constant control signal
starting from the present moment while using a sub-optimal predictor instead of solving a Diophantine equa-
tion. Later on the input was replaced by the increment in the control signal to guarantee a zero steady-state
error. Based on the ideas of GVM Clarke et al. (1987) developed the Generalized Predictive Control (GPC)
and is today one of the most popular methods. A closed form for the GPC is given by Soeterboek. State-space
versions of unconstrained GPC were also developed.
Stability has always been an important issue for those working with predictive control. Due to the �nite

horizon stability is not guaranteed and is achieved by tuning the weights and horizons. Mohtadi proved spe-
ci�c stability theorems of GPC using statespace relationships and studied the in�uence of �lter polynomials
on robustness improvement. However a general stability property for predictive controllers, in general, with
�nite horizons was still lacking. This lead researchers to pursue new predictive control methods with guar-
anteed stability in the 1990s. With that purpose a number of design modi�cations have been proposed since
then including the use of terminal constraints (Kwon et al., 1983; Meadows et al. 1995), the introduction of
dual-mode designs (Mayne and Michalska, 1993) and the use of in�nite prediction horizons (Rawlings and
Muske, 1993), among others. Clarke and Scattolini (1991) and Mosca et al. (1990) independently developed
stable predictive controllers by imposing end-point equality constraints on the output after a �nite horizon.
Kouvaritakis et al. (1992) presented a stable formulation for GPC by stabilizing the process prior to the
minimization of the objective function. Many of these techniques are specialized for state-space representa-
tions of the controlled plant, and achieve stability at the expense of introducing additional constraints and
modifying the structure of the design. Practitioners, however, avoid changing the structure of the problem
and prefer to achieve stability by tuning the controller. For that a good doses of heuristics is used.
Recently a theoretical basis for MPC has started to emerge. Researchers have revisited the LQR problem

arguing that model predictive control essentially solves standard optimal control problems with receding hori-
zon, ideas that can be traced back to the 1960s (Garcia et al., 1989). MPC is characterized as a mathematical
programming problem since the slow dynamics of process industry plants allow on-line solution to open-loop
problems in which case the initial state is the current state of the system being controlled. Determining the
feedback solution, on the other hand, requires the solution of the Hamilton-Jacobi-Bellman (a dynamic pro-
gramming problem) di¤erential or di¤erence equation which turns out to be more di¢ cult. Riccati equation
appears as a particular case to some optimal control problems. It is shown (Mayne et al., 2000) that the
di¤erence between MPCs approach and the use of dynamic programming is purely one of implementation.
This line of research has an early representative in the work of Kwon and Pearson (1983) and Keerthi and
Gilbert (1988) and has recently gained popularity through multiple advocates, such as the work of Muske and
Rawlings (1993). More recently two major approaches to the control problem are very popular. The �rst
one employs the optimal cost function, for a �xed horizon, as a Lyapunov function and the second approach
takes advantage of the monotonicity property of a sequence of the optimal cost function for various horizons.
Note that for linear systems the presence of hard constraints makes the design of the controller a nonlinear
problem so that the natural tool for establishing stability is Lyapunov theory. Obtaining a formulation which
can relate the tuning parameters of MPC to properties such as stability and performance is the major goal
of this line of work and recent advances show promising results. Solving the dynamic programming problem,
however, is not practical and this can be accounted for the resistance of the industry to adopt these new
methods."[18]

2.3.3 Applications of Model Predictive Control

Model Predictive Control, or MPC, is an advanced method of process control that has been in use in the
process industries such as chemical plants and oil re�neries since the 1980s. Model predictive controllers rely
on dynamic models of the process, most often linear empirical models obtained by system identi�cation [19].
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Model predictive control (MPC) has had an enormous impact in the process industry over the last 20
years. It is an e¤ective means of dealing with multivariable constrained control problems and the many
reports of industrial applications con�rm its popularity [18].

2.3.4 General description of Model Predictive Control

"The methodology of all predictive controllers consists in predicting, at each time t, the future outputs for a
determined horizon Ny , called the prediction horizon. This prediction of the outputs, ŷ(t + ijt) for i = 1
to Ny , is based on the model of the process and depends on the known values of past inputs and outputs up
to instant t. The set of future control signals is calculated by optimizing a given criterion (called objective
function or performance index) in order to keep the process as close as possible to the reference trajectory
r(t+ i), which can be the set point or an approximation of it. Di¤erent algorithms present di¤erent forms of
objective functions, which usually take the form of a quadratic function of the errors between the predicted
output signal and the predicted reference trajectory. Some algorithms use the states of the process as opposed
to the outputs. The control e¤ort is included in the objective function in most cases. Weights are used to
adjust the in�uence of each term in the equation. The solution to the problem is the future control sequence
that minimizes the objective function equation. For that, a model is used to predict future outputs or states.
A typical objective function equation of a single-output single-input process is (2.112)

J =

Ny2X
i=Ny1

q(i) (r (t+ i)� ŷ(t+ ijt))2 +
NuX
i=2

r(i)�u (t+ i� 1)2 (2.112)

It is a quadratic function of future inputs, u(t +i), and the error between future values of reference
r(t+ i) and predicted outputs, ŷ(t+ ijt). Weights q and r are used to adjust the in�uence of the error and
inputs respectively. The sequences of predicted outputs and future inputs are limited to horizons Ny2 and Nu
respectively. The limitation on the sequence of inputs, u(t+i) from i = 1 to Nu , comes from the assumption
that the control action is constant after Nu steps ahead. The prediction horizon, on the other hand, limits
the sequence of predicted output considered in the objective function equation. The control horizon has to
be smaller than the prediction horizon. Weights and horizons are tuning parameters of the controller. The
optimization of the objective function requires a prediction of the future outputs. The predicted output is the
addition of two signals (2.113)

ŷ(t+ ijt) = y0(t+ ijt) +G�u(t+ i) (2.113)

the constant forcing response and forced response. The constant forcing response, y0(t+ ijt), corresponds
to the prediction of the evolution of the process under the consideration that future input values will be
constant. The forced response, G�u(t+ i) where G is the dynamic matrix of the process, corresponds to the
prediction of the output when the control sequence is made equal to the solution of the minimization of the
objective function. The expression for the predicted outputs can be substituted in the objective function and
the solution to the minimization problem leads to the desired control sequence. Once the control sequence
has been obtained only the �rst control move is implemented. Subsequently the horizon is shifted and the
values of all sequences are updated and the optimization problem is solved once again. This is known as the
Receding Horizon Principle and is adopted by all predictive control strategies. It is not advisable to implement
the entire sequence over the next Nu intervals because it is impossible to perfectly estimate the unavoidable
disturbances that cause the actual output to di¤er from the predictions made. Furthermore the operation
might decide to change the set point over the next Nu intervals. The various predictive control algorithms
only di¤er themselves in the model used to represent the process, the model for the noise and the objective
function to be minimized. The models used can be Impulse/Step response models, transfer function models
or state space models." [18]

2.3.5 Advantages and disadvantages of Model Predictive Control

There is numerous advantages with the MPC controllers. Advanced controllers like linear quadratic (LQ)
and linear quadratic-gaussian controllers are similar with the unconstrained MPC. LQ and LQG controllers
are better than unconstrained MPC for an in�nite horizon.
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Some advantages for MPC can be listed [15]:

� The main advantage and motivation of using an MPC controller is the ability to cope with constraints
on the process variables in a simple and e¢ cient way. Linear models, linear constraints and a linear
quadratic objective results in a quadratic programming (QP) problem, which can be e¢ ciently solved.

� An algorithm which is based on a state space model can be used to control unstable systems. The
extended model predictive control (EMPC) algorithm is based on the extended state space model
(ESSM) given by the DSR method. The EMPC algorithm works similarly on stable as well as on
unstable systems. However it may be important to tune the prediction horizon and the weighting
matrices properly.

� MPC controllers are perfect to control multivariable systems with cross-couplings.

� Another application of the MPC algorithm is to use it for operator support. The MPC algorithms
can be used to only compute and to propose the future process controls. The operators can then use
the control u�k, which is proposed by the MPC algorithm, as valuable information for operating the
process. This is not possible by conventional controllers like the PID-controller.

� The DSR algorithm can build both the prediction model and the state observer to be used in MPC
algorithms. The DSR algorithm is in use with some commercial MPC controllers. The use of the DSR
method for MPC will improve e¤ectiveness considerably. First of all due to the considerable amount
of time reduced spent on model building.

Some disadvantages for MPC can be listed [15] :

� A dynamic model for the process is needed to implement a MPC controller. This dynamic model is
used for the prediction model used in the objective criterion to minimize.

� Most MPC algorithms are using quadratic control objective functions Jk. However, di¤erent methods
may be di¤erent because they are using di¤erent quadratic functions with di¤erent weights. MPC
control theory is advanced and needs personnel with knowledge of MPC to implement the controller
and tune the weighting matrices.

Nunes further mentions :"Most industrial plants have many outputs and manipulated variables. In certain
cases a manipulated variable mainly a¤ects the corresponding controlled variable and each of the input-output
pairs can be considered as a single-input single-output (SISO) plant and controlled by independent loops. In
cases where the interaction between the di¤erent variables is not negligible the plant must be considered as
a multiple-inputs and multiple-outputs (MIMO) process. These interactions may result in poor performance
and even instability if the process is treated as multiple SISO loops. In practice all processes are subject to
restrictions and these can be considered in the objective function equation as constraints on the inputs and
outputs. In many industrial plants the control system will operate close to the boundaries due to operational
conditions. This has lead to the widespread belief that the solution to the optimization problem lies at the
boundaries. On the other hand the design of multivariable predictive controllers requires the speci�cation of
horizons and weights for all inputs and outputs. Therefore a big number of parameters must be selected, a task
that may prove challenging even for systems of modest size. Badly tuned predictive controllers tend to take
the plant to extreme and sometimes unstable conditions, frequently unnoticed because of physical constraints
such as valve opening, maximum �ow rate, etc., masking the instability problem and fooling operational
groups into concluding that the plant has been optimized." [18].

2.4 MPC control in pneumatic conveying

Plant B was selected as the conveying rig for using model predictive control. The reason for this is that this
rig has measurements of the controllable inputs to the pneumatic conveying rig. In plant B at POSTEC/Tel-
Tek, there are only two controllable variables. These are the main air and the bypass air inlet. Both variables
are controlled by controlling an air�ow. There is only one state in the system identi�cation model and that
is the mass �ow rate of solids. The inputs are 5 pressure measurements and two air �ow measurements. The
pressure measurements are passive inputs and consists of :
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� the pressure at the main air inlet (Pm)

� the pressure at the bypass air inlet (Pby)

� the blowtank pressure (P0)

� the pressure at the lowest elevation of the conveying line (P8)

� the pressure transducer that explains the elevation of the pneumatic conveying line the best (P11) :

See �gure (....) under the "measurement setups" chapter for details about the rig setup. The development
of the state space model used for the MPC control is explained in the chapter "Modelling pneumatic systems
by the energy density approach using system identi�cation".
Model Predictive Control (MPC) have to have a model to make a prediction model. A prediction model

is a model that is looking one step and the length of a prediction horizon into the future for the output
states. A prediction model can be written on the form shown in equation (2.114).

yk+1jL = FLukjL + PL (2.114)

where

yk+1jL = Future outputs with prediction horizon L

FL =
�
OLB Hd

L

�
OL = Observability matrix

Hd
L = Lower triangular toeplitz matrix

ukjL = Present input

PL = OLAxk

xk = Present state

and

yk+1jL =

2666664
yk+1
yk+2
yk+3
...

yk+L+1

3777775 and ukjL =

2666664
uk
uk+1
uk+2
...

uk+L

3777775

OL =

2666664
d
da
da2

...
daL�1

3777775 and Hd
L =

266664
0 0 0 ::: 0
dB 0 0 ::: 0
daB dB 0 ::: 0
::: ::: ::: ::: :::

daL�2B daL�3B daL�4B ::: 0

377775
This prediction model is related to system identi�cation theory, where a model can be extracted from a

data set with known inputs and outputs to get a state space model. The model gotten from the Determin-
istic Stochastic Realization method (DSR) made by professor David Di Ruscio at the University-College of
Telemark was a deterministic model. A deterministic model means that the outputs can be determined by
knowing the present inputs. Di¤erent types of models like autonomous and stochastic models are described
in the literature review for system identi�cation. The deterministic model given by DSR was (2.114).

xk+1 = Axk +Buk; x0 = known
yk = Dxk

�
(2.115)
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where

xk+1 = The next state (here: state=mass �ow)

A = The transition matrix (here: scalar a)

B = The input matrix

D = Output matrix (here: D = d = 1)

xk = The present state (here:state=mass �ow)

x0 = Initial state (Here: start value for mass �ow)

uk = Present inputs (here: Pm; Pby; P0; P8; P11; _Vm; _Vby)

and

x0 = �0:1291
a = 0:0341

B =
�
0:0033 0:1245 �0:0295 0:3358 �0:3999 �0:0951 �0:2011

�
� 10�3

The pressures can not be manipulated directly, but the air inlets can be controlled. The pressures can
be put into a disturbance vector vk and the air inlets can remain in the control vector uk: The model can
now be rewritten as (2.116).

xk+1 = Axk +Buk + vk; x0 = known
yk = dxk

�
(2.116)

where

x0 = �0:1291
a = 0:0341

B =
�
�0:0951 �0:2011

�
� 10�3

v =
�
0:0033 0:1245 �0:0295 0:3358 �0:3999

�
� 10�3

2.4.1 MPC as a PI-controller

A pure proportional controller (P-controller) gives a steady state error. To get rid of this steady state
error an integration e¤ect can be added (PI-controller), giving zero steady state error. This can be done
by augmenting the model with the previous output as a state in the state vector xk. To remove known
disturbances, the model can be put up on deviation form (2.117). Already have the model (2.116), on
deviation form this model is (2.117) :

xk+1 � xk = (axk +Buk + vk)� (axk�1 +Buk�1 � vk)
yk � yk�1 = dxk � dxk�1

+
�xk+1 = a�xk +B�uk
yk = yk�1 + d�xk

�
(2.117)

Augmenting the model gives (2.118) :

~xk+1z }| {�
�xk+1
yk

�
=

~Az }| {�
a 0
d I

�
�

~xkz }| {�
�xk
yk�1

�
+

~Bz}|{�
B
0

�
�uk

yk =

~Dz }| {�
d I

�
�

~xkz }| {�
�xk
yk�1

�
+

~xk+1 = ~A~xk + ~B�uk
yk = ~D~xk

�
(2.118)
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This now gives a new prediction model (2.119):

yk+1jL = FL�ukjL + PL (2.119)

where

FL =
�
OL ~B Hd

L

�
pL = OL ~A~xk

and
�ukjL = S

�1ukjL � S�1cuk�1

2.4.2 The MPC control objective criterion

The control criterion gives the control objective. It is an optimization problem. The objective is to control
the state to a desired set point. This gives that the di¤erence between a measured or estimated output
and the set point should be as close as possible to zero. In MPC the control objective criterion relates
the di¤erence between set point value and measured/estimated value and a cost function. The di¤erence
between known future set points and measured/estimated output can be put up in a control deviation term
in the objective criterion. The cost function is used to minimize the control signal with regards to the control
signal. The prediction horizon gives a interval into the future where the control inputs are optimized with
regards to the objective criterion.
This cost function can be a minimizing of:

� the input amplitude

� change in input amplitude

The cost function tells that the control signal has a cost and gives it a weighting. The cost functions
purpose is to minimize the control signal and reduce the energy cost of a control signal. In pneumatic
conveying the cost function can be chosen to be a rate of change of the inputs. This then gives a minimization
of the control signal with regards to rapid changes in the control signal. This slows down the control, but
conserves the energy cost related to the control of the pneumatic conveying. The control objective criterion
can then be set up as a linear quadratic (LQ) problem (2.120) :

Jk =

deviation termz }| {�
rk+1jL � yk+1jL

�T
Q
�
rk+1jL � yk+1jL

�
+

cost functionz }| {
�uTkjLR�ukjL (2.120)

where

rk+1jL = Known future set points over the prediction horizon L

yk+1jL = Prediction model (PM)

�ukjL = Change in control signal

Q = Diagonal weighting matrix for the deviation in output from set point

R = Diagonal weighting matrix for the rate of change of the inputs

L = Prediction horizon

Q =

26664
q1 0 0 0
0 q2 0 0

0 0
. . .

...
0 0 � � � qL

37775 ; R =
26664
r1 0 0 0
0 r2 0 0

0 0
. . .

...
0 0 � � � rL

37775
usually : q1 = q2 = qL and r1 = r2 = rL
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2.4.3 Computing the optimal unconstrained control signal

First it is convenient to set up the objective criterion as a more general linear quadratic relationship. Start
with setting in the prediction model into the objective criterion (2.121) :

Jk =
�
rk+1jL � yk+1jL

�T
Q
�
rk+1jL � yk+1jL

�
+�uTkjLR�ukjL

+
Jk =

�
rk+1jL � FL�ukjL + pL

�T
Q
�
rk+1jL � FL�ukjL + pL

�
+�uTkjLR�ukjL (2.121)

Can now expand:

Jk =
��
��ukjL

�T
FTL +

�
rk+1jL

�T � pTL�Q ��FL�ukjL + rk+1jL � pL�+�uTkjLR�ukjL
+

Jk =
�
��ukjLFL

�T
Q
�
�FL�ukjL

�
can be written �uTkjL

�
FTLQFL

�
�ukjL

+
�
��ukjLFL

�T
Q
�
rk+1jL � pL

�
can be written

�
FTLQ

�
pL � rk+1jL

��
�ukjL

+
�
rk+1jL � pL

�T
Q
�
�FL�ukjL

�
can be written

�
FTLQ

�
pL � rk+1jL

��
�ukjL

+
�
rk+1jL � pL

�T
Q
�
rk+1jL � pL

�
+�uTkjLR�ukjL

The expression can now be set up like (2.122) :

Jk = �uTkjL

Hz }| {�
FTLQFL +R

�
�ukjL

+2

fz }| {�
FTLQ

�
pL � rk+1jL

��
��ukjL

+

J0z }| {�
rk+1jL � pL

�T
Q
�
rk+1jL � pL

�
this gives:

Jk = �u
T
kjLH�ukjL + 2f�ukjL + J0 (2.122)

where

H = The quadratic term

f = The linear term

J0 = The constant term

The control objective criterion needs to be minimized. This can be done by taking the partial derivative
of the objective criterion with regards to the control signal (2.123).

@Jk
@�ukjL

= 0 (2.123)

This is then set to zero since the desired state of the process is the set point. When at set point, the change
in the process should be close to zero. This is called the �rst order necessary condition for minimum.
Now compute the �rst order necessary condition for minimum:

@Jk
@�ukjL

= 2H�ukjL + 2f = 0

Can now compute the unconstrained optimal control �u�kjL (2.124) :

2H�ukjL + 2f = 0

�u�kjL = �H�1f (2.124)
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Can rewrite this to (2.125).

�u�kjL =

Gz }| {
�
�
FTLQFL +R

��1
FTLQ

�
pL � rk+1jL

�
�u�kjL = G

�
pL � rk+1jL

�
(2.125)

where
G = The unconstrained optimal gain

2.4.4 Adding constraints to the control objective criterion Jk
The inputs are volumetric �ow of air in pneumatic plant B. The constraints should be within the maximum
volumetric �ow the air compressor can give. Plugging is a problem in pneumatic conveying and this is
related to the mass �ow of solids. Instead of adding an output constraint on the mass �ow it is better to
implement a plug detector and change the volumetric �ow of air accordingly. A rate of change constraint can
be applied since there is restrictions in how fast a valve can open or close. Then the characteristics of the
valve needs to be known. Constraints can be equality constraints or inequality constraints. Three di¤erent
types of inequality constraints that are commonly used are:

1. input amplitude constraints
umin � ukjL � umax (2.126)

2. rate of change constraints
�umin � �ukjL � �umax (2.127)

3. output amplitude constraints
ymin � yk+1jL � ymax (2.128)

The input amplitude and rate of change constraints are chosen as constraints for the pneumatic conveying
MPC. The output amplitude is not chosen as a constraint. The inequality constraints can be put up on the
form (2.129).

�ukjL � b (2.129)

The the rate of change constraints can be written as in (2.130) and (2.131).

�ukjL � �umax (2.130)

��ukjL � ��umin (2.131)

Have the relationship between the input amplitude ukjL and change �ukjL (2.132).

ukjL = S�ukjL + cuk�1 (2.132)

where

S =

2666664
I 0 0 0 0
I I 0 0 0
I I I 0 0
...

...
...

. . . 0
I I I � � � I

3777775 and c =

2666664
I
I
I
...
I

3777775
Set up the rate of change constraints umax (2.133) and �umin (2.134).

ukjL � umax

S�ukjL + cuk�1 � �umax

S�ukjL � umax � cuk�1 (2.133)

�ukjL � �umin
�
�
S�ukjL + cuk�1

�
� �umin

�S�ukjL � �umin + cuk�1 (2.134)
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Now we can set the constraints up on the form (2.129) again

�ukjL � b
and get all the inequality constraints in a � matrix and b vector (2.135).

�z }| {2664
I
�I
S
�S

3775ukjL �
bz }| {2664

�umax
��umin

umax + cuk�1
�umin � cuk�1

3775 (2.135)

In this thesis only the input amplitude constraints was implemented. See "MPC results & discussion"
for more details about the results of the MPC constraints.

2.4.5 The Lagrangian method for adding constraints to the objective criterion

Already have the optimal unconstrained objective criterion

Jk = �u
T
kjLH�ukjL + 2f

T�ukjL + J0

this gives that the minimized optimal objective criterion has no constraints attached to it. To include
constraints like input amplitude constraints and rate of change constraints, they have to be included in the
optimal objective criterion. This can be done by the use of a Lagrange multiplier �:Adding the constraints
into the objective criterion gives the Lagrange function (2.136).

Lk = �u
T
kjLH�ukjL + 2f

T�ukjL + J0 + �
T
k

�
��ukjL � b

�
(2.136)

Then minimize the Lagrange function with regards to the control vector �ukjL (2.137) and the Lagrange
multiplier �k (2.138).

�Lk
��ukjL

= 2H�ukjL + 2f + �
T�k = 0 (2.137)

�Lk
��k

= ��ukjL � b = 0 (2.138)

Start �rst with �nding the optimal control vector �u�kjL (2.139).

2H�ukjL + 2f + �
T�k = 0

H�ukjL = �f � 1
2
�T�k

�u�kjL = �H�1
�
f +

1

2
�T�k

�
(2.139)

Using this calculation (2.139) for the optimal control vector �u�kjL and put it into the minimized function
(2.138) for the Lagrange multiplier �k will give the optimal Lagrange multiplier �

�
k (2.140).

��u�kjL � b = 0

�

�
�H�1

�
f +

1

2
�T�k

��
� b = 0

��H�1f � 1
2
�H�1�T�k = b

��k = �1
2

�
�H�1�T ��1 ��H�1f + b

�
(2.140)

Can now compute the optimal control vector �u�kjL (2.141) based on the optimal Lagrange vector �
�
k (2.140).

�u�kjL = �H�1
�
f +

1

2
�T��k

�
(2.141)

This optimal control vector �u�kjL takes into account the constraints. To solve the constraints, the active
set method can be used or MatLabs �quadprog�command, which is a QP solver that also handles constraints.
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2.4.6 Active set method

The active set method is used for inequality constraints. Use a Lagrange multiplier �i to solve the inequalities.
if �i < 0 then the constraint is considered inactive and �i = 0: If �i > 0 then the constraint is considered
active and �i = the solution.



Chapter 3

The Energy Density approach to
modelling pneumatic systems

Pneumatic conveying can be viewed as a multiphase �ow problem, consisting of air and particulate solids.
The energy density concept is based on calculating the energy transfer between the energy stored in the air
to move the particulate solids. Conveying solid particles by air, gives that the energy stored in the air is
transferred to kinetic energy to move the solids. In the research facility at POSTEC/Tel-Tek this is done by
�lling a tank with solids and pressurize the tank by �lling it with air. This tank is called the blowtank. At
the research facility at POSTEC/Tel-Tek there are two di¤erent rigs with blowtanks of two di¤erent sizes.
The energy density concept is based on the energy per unit volume stored in the air. Pressure can be viewed
as energy density. The conventional approach to describe pressure, is to set it up as a force per unit area.
By expanding it like in equation (3.1) pressure can be viewed as energy density.

P =
F � l
A � l =

E

V
(3.1)

That is energy per unit volume. Compressed air can be viewed as a stored energy in a volume, like stored
energy in a spring. A pressure transducer can measure this stored energy density by a pressure measurement.
As the air expands through a pipe, the stored energy density in the air converts to kinetic energy density.
In other words the compressed air expands and set the air into motion, the pressure drops and the velocity
of the air increases. Elevation of the pipe gives that the velocity of the air drops due to gravity, this gives
that some of the kinetic energy density is converted into potential energy density. The total pressure can be
put up like in the Bernoulli equation (3.2).

Pt =

static energy densityz}|{
P1|{z}

static pressure

+

kinetic energy densityz }| {
1

2
�1v

2
1| {z }

dynamic pressure

+

potential energy densityz }| {
�1gh1 (3.2)

If pressure is viewed as a force, the total pressure gives the force produced by the air in the pipe. If
pressure is viewed as energy density, the total energy density gives the amount of energy per unit volume
produced by the air in the pipe. This may look like the same way of thinking, but it is not. The reason
is that when the pressure is viewed as a force that push the particulate solids, other forces needs to be
calculated as well. Forces like drag, pipewall friction and particle collisions. In pneumatic conveying these
forces can be quite di¢ cult to measure or calculate.
By viewing the pressure as energy density, it will describe how the energy density of the air is transferred

into energy to move the particulate solids. The energy density in the air is changing accordingly to the mass
�ow. This is due to the fact that the air is compressible and the solids is treated as incompressible. The
mass of particulate solids in the pipe prevents the air from �owing freely and the air compresses, increasing
the static pressure and decreasing the air velocity. If then the mass of particulate solids are reduced in the
pipe, this leads to less compression of the air and the static pressure decreases and the air velocity increases.

43
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This gives that the pressure �uctuations is due to expansion and compression of the air. The �uctuations is
caused by the amount of solids in the pipe and characteristics of the solids. The change in pressure and the
air �ow rate gives an indication of change in energy density of the air. By measuring the pressure at places
in the pipeline that describes the elevation of the pipeline, the potential energy density is also accounted for.
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3.1 Modelling the pneumatic conveying pipeline by the energy
density approach

A simple example can be given, calculating the total energy density at the start of the pipe and at the end
of the pipe. See �gure (3.1) for a sketch of the pressure transducers position in the conveying line. Figure
(3.1) is a sketch of "Plant A" at POSTEC/Tel-Tek.

Figure 3.1: Layout og the pressure transducers along the pipeline.

The total energy density at the start of the pipe can be put up as in (3.3).

P1tot = P1 +
1

2
�1v

2
1 + �1gh1 (3.3)

Where

P1tot = Total energy density at position of P1
P1 = Measured static pressure at position of P1
�1 = Density of air at position of P1
v1 = Velocity of air at position of P1
g = Gravitational force

h1 = Elevation of pipeline at position of P1

The total energy density at the end of the pipe can be put up as in (3.4).

P21tot = P21 +
1

2
�21v

2
21 + �21gh21 (3.4)
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Where

P21tot = Total energy density at position of P21
P21 = Measured static pressure at position of P21
�21 = Density of air at position of P21
v21 = Velocity of air at position of P21
g = Gravitational force

h21 = Elevation of pipeline at position of P21

The energy density loss can be found by subtracting the total energy density at the end of the pipe from
the total energy density at the start of the pipe (3.5).

Eloss = P1tot � P21tot (3.5)

This energy density loss can be divided into a loss Em relating to setting the particulate solids into
motion and a loss Ef due to pipe wall friction and particle collisions plus other particle forces (3.6).

Eloss = Em + Ef (3.6)

The energy density loss Em due to setting the particulate solids into motion, can be used for calculating
the mass �ow rate of the particulate solids.

Em =
1

2
msv

2
s +msgh21

Where

Em = Is the energy used to set the particulate solids into motion

ms = Is the mass of the solids

vs = Average velocity of the solids at the end of the pipeline

g = Gravitational force

h21 = Total Elevation of the pipeline, given at position of P21

The problem here is that the velocity needs to be measured or calculated. Somehow the velocity of
the solids has to be found, or else the mass �ow rate cannot be estimated. One way is to measure the
mass �ow rate of the particulate solids by a load cell, the velocity has to be calculated since there is no
direct measurement of the velocity of the particulate solids. This gives that this model is dependent on
measurement of mass �ow rate and is not able to estimate the mass �ow rate without this measurement.
The average velocity at the end can be calculated (3.8) through the relationship of the measured mass �ow
rate (3.7).

_ms =
dm

dt
=
kg

s
(3.7)

_ms

�s
=

�s � dV
dt � �s

=
dV

dt
=

kg
m3 �m3

s � kgm3

=
m3

s

vs =
_Vs
A
=

dV

dt �A =
dx

dt
=

m3

s �m2
=
m

s
(3.8)

Using this approach gives a prediction of the mass �ow, but a measurement by a load cell is needed. In
many cases a load cell in pneumatic conveying systems is not possible or for large systems not accurate
enough. The example above gives a rough estimate of the �ow using the energy density approach for the
pipeline based on load cell measurement of the mass �ow rate. A black box model approach can be used
to �nd the energy transfer from air to particulate solids using system identi�cation. The black box model
is then identifying the relationships relating to the Bernoulli equation within the measured data. A black
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box model can be attained using the energy density approach for the pipeline by using P0; P1; P2; P13 and
_Vair as input variables and the measured mass �ow rate as the output variable. These variables can then be
used for making a calibration model. A sketch showing how the variables is related is shown in �gure (3.2).
After the calibration model is attained, the mass �ow rate can be estimated without the use of a load cell. A
disadvantage is that to attain the calibration model, a direct measurement of the mass �ow rate is needed.

Figure 3.2: Simple sketch of system identi�cation model for estimating the mass �ow rate.

Since the model is based on how the particulate solids travel in the pipeline, none of the input variables is
directly controllable. This gives that the model gotten from this approach is not usable for control purposes.
The inlet main air and inlet bypass air is not taken into account. This gives that this kind of modelling
predicts the mass �ow rate based on measurements, but it does not help for control purposes. The problem
is to �nd the initial velocity of the solids related to have much main air and bypass air that is given. The
acceleration of the solids through the pipeline can then be found by selecting proper pressure measurements.
The �nal velocity of solids at the end of the conveying line can then be calculated.
To do this, the energy density approach must take into account the blowtank. The velocity of particulate

solids out of the blowtank can be considered as the initial velocity of the particulate solids. To model the
blowtank a mass balance is needed to �nd the mass of air into the blowtank and the mass of air out of the
blowtank. The initial mass of solids in the blowtank and the volume of the blowtank is also needed. Further
an energy balance of the energy density into the blowtank and out of the blowtank is also needed.
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3.2 Modelling the blowtank by the energy density approach

Figure (3.3) shows a simple sketch of a blowtank. The blowtank has a stored static energy density, that
can be measured by a pressure transducer. This energy density is the driving energy for conveying of solids.
This energy density in the blowtank is mainly controlled by a air inlet called main air inlet.

Figure 3.3: Simpli�ed sketch of the blowtanks at the POSTEC/Tel-Tek research facility.

The main air inlet has a pressure transducer Pm, this pressure transducer gives the static energy density
outside the blowtank, where the main air �ow comes into the blowtank. The main air�ow gives the kinetic
energy density added to the blowtank. Both rigs at POSTEC/Tel-Tek have an bypass air inlet, the purpose
of this air inlet is to prevent plugging by diluting the suspension and to give a support back pressure to
the blowtank preventing to much solids to come out and create a plug. The bypass air inlet also have a
pressure measurement Pby which gives an indication of the compression of air, which gives the static energy
density given by the bypass air. The bypass air�ow gives the added kinetic energy density given by the
bypass air. Pressure transducer P1 is the �rst transducer after the blowtank and bypass air inlet. This
measurement point is describing the total energy density in the pipeline at the start of the pipeline. This
pressure transducer should be as close as possible to the juncture where the bypass air is coupled to the
pipeline. This is because, then the total amount of energy density transferred into the pipeline can be
measured as accurately as possible. Both rigs should have an extra pressure transducer PP as close as
possible to the blowtank outlet, since this point describes the total energy density out of the blowtank. This
energy density is useful for describing the initial velocity of the particulate solids.



3.2. MODELLING THE BLOWTANK BY THE ENERGY DENSITY APPROACH 49

Figure 3.4: Simple sketch of system identi�cation model for estimating the mass �ow rate.

A system identi�cation model can be attained as shown in �gure (3.4). This model will give an approxi-
mated output value of the mass �ow rate of particulate solids at the end of the pipe. This model also needs
a measurement of the mass �ow rate of solids for the calibration model. To get the initial velocity of the
particulate solids, a mechanistic model has to be put up. That is a model based on mass balances and an
energy balance. This is out of the scope of this thesis and is an ongoing doctoral thesis at POSTEC/Tel-Tek.
Instead a system identi�cation model for the whole system is made. This model includes both measurements
in the pipeline and the measurements around the blowtank.
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3.3 Modelling the whole pneumatic conveying system by the en-
ergy density approach (hybrid of conveying line and blowtank
model)

This approach treats the whole system as one unit, using the approach of modelling the pipeline and the
blowtank into one model. By measuring all the air into and out of the pneumatic conveying rig, pressure
measurements around the blowtank as described earlier and pressure measurements describing the total
elevation of the conveying pipeline, a system identi�cation model can be attained. The information in the
measured inputs for the pneumatic conveying system, of the change in energy density, is then correlated
with the measured mass �ow rate of solids. This gives that the calibration model needs a measurement of
the mass �ow rate. This model have controllable inputs and is usable in MPC. Figure (3.5) shows a sketch
of such a system identi�cation calibration model with input and output variables.

Figure 3.5: Simple sketch of system identi�cation model for estimating the mass �ow rate.



Chapter 4

Measurement setup

There are two rigs at POSTEC/Tel-Tek . Both are positive pressure pneumatic systems. This means that
both rigs use air to blow the particulate solids from the blowtank through a pipeline to a receiving tank.
Both rigs uses �uidization air to �uidize the particulate solids in the blowtank. One rig is bigger than the
other, for simplicity the biggest rig will be called "plant A" from now on and the smaller rig "plant B". The
air �owing into the blowtank is called the main air. The main air for plant A is divided into two parts. One
part of the main air is �owing in at the bottom, �uidizing the particulate solids. The other part of the main
air is �owing in at the top part of the blowtank, accelerating the particulate solids set into motion by the
�uidization air. The ratio between these two air�ows is currently used for controlling the mass �ow rate of
the particulate solids. The control system for the ratio control is a Fuzzy logic controller. Plant B does not
have �uidization air in the same sense as plant A. Plant B has a main air inlet from one pipe that is split into
a juncture. The juncture splits the main air into a air inlet at the top and the bottom of the blowtank, with
no valves making it impossible to control the ratio. The rigs have di¤erent pipeline construction, pipeline
diameter and elevation. None of the rigs have any form of feeding device into the pipeline, the particulate
solids are just blown through the pipeline by the air in the blowtank and an adjustor �ow called bypass air.
The bypass air is a support air�ow to prevent plugs during conveying. The bypass air gives back pressure to
the blowtank, preventing too much particulate solids �owing into the pipeline. The bypass air also dilutes the
suspension of particulate solids and air, this also prevents plugs. The two rigs were tested for two di¤erent
powders. Baryte was conveyed in dense phase in plant A and dextrose was conveyed in dilute phase for plant
B.
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4.1 The measurement setup for plant A

Plant A is a positive pressure pneumatic conveying system. The exhaust air is measured for calculation of
air velocity. The exhaust air is measured at the end of the conveying line and is a measurement of all the air
travelling through the pipeline. The pressure transducers are placed all around the pipeline, like shown in
�gure (4.2). Figure(4.1) shows a picture of the blowtank and receiving tank for plant A. The air supply was
an air compressor able to deliver an air �ow up to 1000Nm3=h. This is a limitation for control purposes of
the pneumatic conveying, since this is the maximum limit for air �ow in the pneumatic conveying system.
The blowtank has a 3m3 capacity and can withstand a maximum pressure of 10bar.

Figure 4.1: Picture of the blow tank and the receiving tank for plant A.

The conveying line was a constant diameter pipeline which was approximately 140m long and of 75mm
diameter. The pipeline made a closed loop conveying system by mounting the receiving tank just on top of
the blow tank, so that the conveying material could be re-circulated after each test run. Pressure transducers,
as shown in �gure (4.2), were placed on the conveying line in positions, so that the pressure drop values
could be determined across di¤erent features, like straight pipe sections, bends, etc. All bends used in
the conveying line were 90� standard bends, while there was a fully open butter�y valve between pressure
transducers P19 and P20. A load cell in the receiving tank was used for measuring the transported mass of
solids.
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Figure 4.2: Layout og the pressure transducers along the pipeline for plant A.

The main air and bypass air was not recorded in the data set. This resulted in a model of the pipeline,
with the blowtank as a starting point. The blowtank pressure is kept as stable as possible at a constant
pressure. Later it was installed a PID-controller for controlling the blowtank pressure. The data used in
this thesis does not have a controller for the blowtank pressure, this control was done manually by valves.
This resulted in variations in the blowtank pressure data. The blowtank pressure data given in table (1) is
an rough average of the blowtank pressure data as an indication of the blowtank pressure during conveying.

4.1.1 Test procedure for plant A

The average blowtank pressure is ranging from 3 to 4.5 bar for the di¤erent test runs. The inlet air velocity
was calculated as an average during conveying at the location of P1. This is because P1 is right after the
juncture where the bypass air is attached to the pipeline, giving the �rst measurement where all the air is
pumped into the pipeline. The suspension density is a term used at POSTEC/Tel-Tek in relationship with
the K-model. The average suspension density at the inlet at position P1 was calculated as an indication of
the conveying mode at the start of the pipeline. For more details on calculation of the suspension density,
see Ratnayake [1]. Solids loading ratio was calculated as an indication of the overall conveying mode for
the conveying. The solids loading ratio for the baryte was ranging from 28.1 to 79.2 and this is conveying
in dense phase. According to Mills[3] dense phase is when the solids loading ratio is larger than 10 and
according to Klinzing[2] et al, dense phase conveying is when the solids loading ratio is larger than 15. Six
data sets from six di¤erent test runs were used. One was used as a calibration set and the other �ve as test
sets. Table (1) shows the conditions for each test run.
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Table 1 Test conditions for pneumatic conveying test runs of baryte
Test number Blowtank Inlet air Solids Suspension

pressure (bar) velocity (m/s) loading ratio density (kg/m3)
30110505 �Calibration set 3.5 5.5 79.3 289
01120501 �Test set 4.0 6.3 50.3 275
01120502 �Test set 3.5 6.1 60.8 312
01120504 �Test set 3.0 8.4 28.1 216
30110502 �Test set 4.5 8.3 48.9 218
30110507 �Test set 3.0 5.9 68.2 256

During the test runs, all the data including the pressure values have been recorded using a data logging
system. The signals from all the pressure transmitters were recorded every 0.5 second. After the test runs,
the variation of air mass �ow rate and the di¤erent pressure readings were studied, using the data logging
and retrieving software program. During test runs, samples were collected online and tested for particle size
distribution in order to check any size degradation. As soon as size degradation could be noticed, the bulk
powder was always replaced with a fresh powder. For those interested, the details of the test procedure is
reported elsewhere [1].

4.1.2 Test material for plant A

The material used for the tests was baryte, which is used in oil industry as a weighting material. The tested
quality of baryte has a mean particle size of 12�m and a particle density of 4200kg=m3. For each test,
approximately 0:5 � 1:0m3 of bulk material was used. Baryte is classi�ed as a group C material according
to the Geldart classi�cation of materials. This gives that baryte is not suitable for dense phase conveying,
but during conveying it was conveyed in dense phase. This implicates that baryte behaves more like a class
A material.
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4.2 The measurement setup for plant B

Plant B is also a positive pressure pneumatic conveying system. The main air and bypass air is measured
for calculation of air velocity. The main air and bypass air is measured at the start of the conveying line
and together they are measurements of all the air travelling through the pipeline. The pressure transducers
are placed all around the pipeline, like shown in �gure (4.4). Figure(4.3) shows a picture of the blowtank
and the receiving tank for plant A. The air supply was an air compressor able to deliver an air �ow up to
1000Nm3=h. This is a limitation for control purposes of the pneumatic conveying, since this is the maximum
limit for air �ow in the pneumatic conveying system. The blowtank has a 0:34m3 capacity and can withstand
a maximum pressure of 8bar.

Figure 4.3: 1. Air �lter, 2. Receiving tank, 3. Bypass air juncture, 4. Blow tank
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Figure 4.4: Layout of the pressure transducers placement in the small pneumatic conveying rig.

The conveying line was a constant diameter pipeline which was approximately 26m long and of 58mm
diameter. The pipeline made a closed loop conveying system by mounting the receiving tank just on top of the
blow tank, so that the conveying material could be re-circulated after each test run. Pressure transducers,
as shown in �gure (4.4), were placed on the conveying line in positions so that the pressure drop values
could be determined across di¤erent features, like straight pipe sections, bends, etc. All bends used in the
conveying line were 90� standard bends. An arrangement of load cells in the receiving tank was used for
measuring the transported mass of solids.
The main air and bypass air was measured. This resulted in a model for the whole pneumatic conveying

system, which has controllable inputs making model predictive control possible. The model attained from
plant B data was used for the MPC which is described later in its own chapter. The blowtank pressure is
kept as stable as possible at a constant pressure. This was done by an on-o¤ controller. The on-o¤ controller
gives a more stable pressure than the manual control for plant A. Still the on-o¤ controller is not an ideal
controller and has pressure variations during conveying of approximately 200mbar: The blowtank pressure
data given in table (2) is an average of the blowtank pressure data as an indication of the blowtank pressure
during conveying.

4.2.1 Test procedure for plant B

The average blowtank pressure is ranging from 1.6 to 2.1 bar for the di¤erent test runs. Pressure transducer 1
(PT1) is used as the starting point for calculating the inlet air velocity. The inlet air velocity was calculated as
an average during conveying at the location of PT1. The suspension density is a term used at POSTEC/Tel-
Tek in relationship with the K-model. The average suspension density at the inlet at position P1 was
calculated as an indication of the conveying mode at the start of the pipeline. For more details on calculation
of the suspension density, see Ratnayake [1]. Solids loading ratio was calculated as an indication of the overall
conveying mode for the conveying. The solids loading ratio for the dextrose was ranging from 3.22 to 9.15
and this is conveying in dilute phase. Four data sets from four di¤erent test runs were used. One was used
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as a calibration set and the other three as test sets. Table (2) shows the conditions for each test run.

Table 2 Test conditions for pneumatic conveying test runs of dextrose
Test number Blowtank Inlet air Solids Suspension

pressure (bar) velocity (m/s) loading ratio density (kg/m3)
16110704 �Calibration set 1.7 33.6 3.23 4.5
20110707 �Test set 2.1 30.3 4.41 4.8
19100701 �Test set 1.6 35.2 3.22 4.4
19100708 �Test set 2.1 21.1 9.15 7.1

During the test runs, all the data including the pressure values have been recorded using a data logging
system. The signals from all the pressure transmitters were recorded every 0.1 second. After the test runs,
the variation of air mass �ow rate and the di¤erent pressure readings were studied, using the data logging
and retrieving software program. During test runs, samples were collected online and tested for particle size
distribution in order to check any size degradation. As soon as size degradation could be noticed, the bulk
powder was always replaced with a fresh powder.

4.2.2 Test material for plant B

The powder used for the experiments was dextrose monohydrate provided by Tate & Lyle, Belgium. Crys-
talline dextrose monohydrate contains 91% dry substance, 99% dextrose content and 0:5% other sugars in
the dry substance. It can be used as a sweetening agent or fermentable sugars source in a wide range of food
and fermentation applications. In addition it can be used as an excipient in pharmaceutical applications
particularly for powdered and tabletted dosage forms. It provides sweetness in confectionery and a cooling
e¤ect in tablets and panned products and it can also be used to produce fondants. In spices and seasoning
mixes it provides sweetness, bulk, fermentable sugars and a source of reducing sugars which can promote
Maillard browning reactions and �avor development in cooked meat products. In bakery mixes it is a source
of fermentable sugars to promote yeast activity and it may be used to substitute sucrose economically. In
addition it can contribute to a �ner crumb structure in cakes and biscuits. Crystalline dextrose monohydrate
may be used as a sucrose substitute or a readily available energy source in sports drinks, isotonic drinks and
baby foods. It may be used in industrial applications as a chemical building block (chemically pure dextrose
or glucose) and it is widely used for the production of ecologically sound surfactants [19].
The tested quality of dextrose monohydrate had a mean particle size of 138�m and a particle density of

1522kg=m3. For each test, approximately 0:1 � 0:15m3 of bulk material was used. Dextrose is classi�ed as
a group A material according to the Geldart classi�cation of materials. This gives that dextrose is suitable
for dense phase conveying, but during conveying it could only be conveyed in dilute phase. This implicates
that dextrose behaves more like a class C material.
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Chapter 5

Results & discussion of model results

5.1 Modelling pneumatic systems by the energy density approach
using system identi�cation

The modelling of the positive pressure pneumatic systems at TEL-TEK/POSTEC resulted in two approaches.
One approach focusing on the pipeline and one approach focusing on the blowtank. A third hybrid approach,
combining them was then introduced. In this chapter the pipeline and hybrid approaches with results will
be discussed. The model predictive control results of the hybrid model will be discussed in the next chapter.

5.2 System identi�cation model of the mass �ow rate with em-
phasis on the pipeline (mass �ow rate model for plant A)

For modelling plant A with the energy density approach, it is needed to have measurement of the total air
�ow rate and pressure measurements describing the energy density change at key points in the conveying
system. The key points that was measured in the plant A data for baryte, was the pressure in the blowtank,
the pressure at the bypass air intersection, the pressure at the earliest lowest elevation of the pipeline and the
pressure at the point in the pipeline that describes the total elevation best. Together these measurements
describes the energy density changes at these key points during transport of particulate solids. By comparing
the changes in energy density at the key points with the measured mass �ow rate at the end of the conveying
line, a model describing the mass �ow rate can be found by using system identi�cation.

5.2.1 Selecting the proper inputs and outputs for use in the mass �ow rate
model for plant A

The selection of measurement input variables for the DSR method is based on conservation of energy related
to the air and the Bernoulli e¤ect. System identi�cation was used to �nd the relationship between the change
in energy density (i.e., Energy per unit volume) of air and the mass �ow of solids.

Input measurement, air �ow rate

For plant A the exhaust air (air) was measured at the end of the pipeline. This measurement gives information
of the total mass �ow rate of air used for transporting the particulate solids. This measurement carries
information about the kinetic energy density at the end of the conveying line.

Input measurement, blow tank pressure (P0)

The blowtank pressure (P0) was measured and this pressure gives the energy density stored in the blowtank.
This static pressure consists of compressed air. When the compressed air expands through the pipeline this
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pressure is gradually converted into kinetic energy density. The pressure measurements along the pipeline
gives information of how the energy density is changing through the pipeline.

Input measurement, bypass air intersection pressure (P1)

The bypass air is support air pumped into the pipeline. This air gives back pressure to the blowtank,
reducing the mass �ow rate of the particulate solids. The bypass air also increase the amount of air in the
pipeline, increasing the energy density of the air. In other words, the bypass air reduce the mass �ow rate of
particulate solids and increase the mass �ow rate of air. This gives that the bypass air increase the energy
density in the air for transporting the particulate solids and reduce the amount of particulate solids to be
transported. The intersection where the bypass air is introduced to the conveying pipeline is a key point to
measure pressure in the conveying pipeline. This intersection has a pressure transducer (P1).

Input measurement of vertical conveying, pressure transducers P2 and P13

To take into account the vertical conveying, a pressure measurement of the earliest lowest elevated point
in the pipeline and the point describing the total elevation is needed. These measurement points gives
an indication of the conversion from kinetic energy density to potential energy density of the air during
conveying. The pressure transducer measuring the earliest lowest elevated point in the pipeline was pressure
transducer P2. The pressure transducer measuring the total elevation of the pipeline was pressure transducer
P13.

Output measurement, measurement of mass �ow rate of solids

The mass of solids was measured by a load cell in the receiving tank. By calculating the change in measured
load cell data (dm/dt), a measured mass �ow was obtained. This measured mass �ow was chosen as output
variable for the calibration set, using DSR.

Model errors related to measurements

The transference from energy density of air into kinetic energy of solids generates a loss in energy density of
the air. Due to forces like drag, pipe wall friction and particle collisions there is an additional loss in kinetic
energy of the transported solids. This loss of kinetic energy for the solids also causes a loss in the energy
density of the air. These losses are hard to distinguish from eachother and approximate correctly and leads
to an error in the model. Turbulence is hard to model by system identi�cation and also leads to an error in
the model.

5.2.2 Results and discussion for the model for plant A

The model was made from a calibration set (30110505) and the rest of the data sets were used as test
sets. Test sets are data sets used for validation of the calibration model. The model gotten from system
identi�cation was a state space model (5.1).

xk+1 = axk +Buk; x0 � given (5.1)

yk = xk
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where

x0 = 19:9815 The initial state at discrete time step k = 0

xk = The present state, which is the mass �ow of solids at present discrete time step k

xk+1 = The next state, which is the mass �ow of solids at the next discrete time step k + 1

a = 0:2548 The transition matrix, which is a scalar here since there is only one state

uk =

266664
p0 � Blowtank pressure
p1 � Juncture pressure
p2 � Lowest elevation pressure
p13 � Total elevation pressure
air � Conveying air

377775
0@ The control vector, which consists of
all the inputs to the process
at present time step k

1A
B =

�
0:0013 0:0031 �0:0049 0:0033 �0:0041

�
The input control matrix, which is a row vector since there is only one state

The input control row vector consists of a weighting of the inputs to the process

yk = The predicted output state at present time step k,

which is the mass �ow of solids at present time step k

In �gure (5.1) and �gure (5.2) the measured cumulative mass �ows are plotted against the predicted
cumulative mass �ows, using the DSR-model for 5 di¤erent experiments on transport of baryte with a mean
particle size of 12�m. For comparison, the estimation of the cumulative mass �ow by the K-method for the
same experiments are also plotted in �gure (5.1) and �gure (5.2). The whole line in �gure (5.1) and (5.2)
shows the measured mass in the receiving tank. The dotted line shows the predicted cumulative mass for
the K-method and the thick line shows the prediction for the DSR-method.
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Figure 5.1: Comparison of the mass �ow estimations for the DSR- and K-method models.
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Figure 5.2: Comparison of the mass �ow estimations for the DSR- and K-method models.

Figure (5.3a) shows the root mean square error of prediction (RMSEP) for the predicted cumulative mass
of solids conveyed for the K-method and the DSR-model in percentage of the total measured cumulative mass
conveyed. This plot shows how good the prediction of the cumulative mass follows the measured mass, i.e.
how good the model follows the real process. The RMSEP of the predicted cumulative mass in percentage
of total mass of solids conveyed was calculated by equation (5.2). The cumulative prediction error is shown
in �gure (5.3b), this plot shows how well the prediction ends up compared to the measured cumulative mass.

RMSEP of cum in % =

0BBBBBB@

vuut 1
N

NX
i=1

(ŷi � yi)2

mass conveyed

1CCCCCCA � 100% (5.2)

RMSEP of cum in % = RMSEP of predicted cumulative mass in percentage of total conveyed mass

ŷ = predicted cumulative mass of solids

y = measured cumulative mass of solids

N = number of samples

mass conveyed = Total mass of solids conveyed under test run

Table (2) shows the root mean square error of prediction (RMSEP) for the K-method and the DSR-
model against the measured mass �ow. The RMSEP was calculated by equation (5.2). Table (3) shows the
cumulative error in conveyed mass of solids in percentage for the K-method and DSR model predictions.
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Table 3 : RMSEP
Experiment nr. K-method DSR model
01.12.05.01 13:0098 9:0136
30.11.05.02 12:9826 8:3481
01.12.05.02 10:3070 7:4739
01.12.05.04 8:1714 5:9370
30.11.05.07 9:0002 6:5170

Table 4 : Cumulative error [%]
Experiment nr. K-method DSR model
01.12.05.01 0:61 �4:40
30.11.05.02 5:55 1:21
01.12.05.02 4:16 �3:48
01.12.05.04 18:28 �3:70
30.11.05.07 �1:25 7:48

Figure (5.3) shows a graphical presentation of the RMSEP and cumulative error in conveyed mass of
solids in percentage.

Figure 5.3: a) RMSEP of predicted cumulative mass in percentage of measured total mass conveyed. b)
Total cumulative error in transport in percentage.

Figure (5.3a) gives that the cumulative RMSEP expressed in percentage of total conveyed mass for the
DSR model ranges from 1:3 � 5:8% error in mass estimation, while the error for the K-method ranges
from 3:2 � 14:5% error in mass estimation. It is evident from the experimental data that the DSR model
follows the measured cumulative mass better than the K-method for these experiments. From �gure (5.3b)
the cumulative error for the DSR model is ranging from �1:2 � 7:5%, while the K-method ranges from
�1:3�18:3%. It is evident from the experimental data that the DSR model has a smaller range of cumulative
error than the K-method for these experiments.
The model based on system identi�cation by DSR is robust considering di¤erent blowtank pressures

compared to the K-method which has a di¤erent model for di¤erent blowtank pressures. The reason for
this is that the DSR model takes into account the blowtank pressure �uctuations in the model. This makes
the DSR model more robust regarding variations in the blowtank pressure than the K-method. The DSR
model data is un�ltered while the K-method needs �ltering of the raw data to give a good estimation. This
is due to the sensitivity of the pressure gradient �pst, using the K-method. This sensitivity to noise in the
pressure measurements is a weakness in the K-method, since a small deviation in pressure gradient a¤ects
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the calculation of the suspension density. The DSR model is more robust to such noise variations in the
pressure measurements. This can explain the reason why the DSR method has a smaller range of cumulative
error than the K-method. The DSR model is based purely on the relationships within the measurement data
and is sensitive to boundary conditions for the process, like saturation of inlet air�ow and large variations
in blowtank pressure, unless a model is made from a data set that takes this into account. Such a model
may su¤er from less accuracy under normal conditions. The K-method uses an estimation of the mass �ow
at an earlier stage in the pneumatic conveying process rather than at the end, this results in a time delay
in the estimation of the mass �ow. This time delay can be seen in �gure (5.1) and �gure (5.2). The DSR
model makes a model that takes this into account by making an estimation based on when the change at
the end of the conveying line occurs. This almost eliminates the time delay in the estimation of the mass
�ow of solids by the DSR method. This time delay increases the RMSEP for the K-method and is a reason
why the RMSEP is larger for the K-method compared to the DSR model. The K-method has successfully
been implemented in industry by using a scaling up technique. This means that experiments can be run at
a research facility test rig and then scaled up to industrial size scales.

5.3 System identi�cation model of the mass �ow rate with em-
phasis on the whole rig as a unit (hybrid model for plant B)

For modelling plant B with the energy density approach, it is needed to have measurement of the total air
�ow rate and pressure measurements describing the energy density change at key points in the conveying
system. The air �ow measurements was the main air and bypass air, together these measurements gave the
total air added to the system at the start of the conveying system. The key points that was measured in the
plant B data for transporting dextrose, was the pressure in the blowtank, the pressure at the main air inlet,
the pressure at the bypass air inlet, the pressure at the lowest elevation of the pipeline and the pressure at
the point in the pipeline that describes the total elevation best. Together these measurements describes the
energy density changes at these key points during transport of particulate solids. By comparing the changes
in energy density at the key points with the measured mass �ow rate at the end of the conveying line, a
model describing the mass �ow rate can be found by using system identi�cation.

5.3.1 Selecting the proper inputs and outputs for use in the mass �ow rate
model for plant B (hybrid model)

System identi�cation was used to �nd the relationship between the change in energy density (i.e., Energy
per unit volume) of air and the mass �ow of solids as for plant A, but here the whole plant B including
pipeline and blowtank was included in the model. This model was further on used for the MPC since it has
controllable inputs, which the model for plant A do not have.

Input measurement, air �ow rate

For plant B the main air (airm) was measured at the start before the blowtank. This measurement gives
information about the kinetic energy density sent into the blowtank and controls the �uidization of the
particulate solids and the blowtank pressure. The bypass air (airby) was measured at the start before the
pipeline. This measurement gives information about the dynamic back pressure to the blowtank and the
addition of extra energy density for transporting solids. Together the main air and bypass air gives the total
mass �ow rate of air used for transporting the particulate solids. These measurements carries information
about the kinetic energy density at the start of the conveying line.

Input measurements, blow tank pressure (P0), main pressure (Pm) and bypass pressure (Pby)

The blowtank pressure (P0) was measured and this pressure gives the energy density stored in the blowtank.
The main pressure (Pm) carries information about the compression of the main air. The bypass pressure
(Pby) carries information about the compression of the bypass air and the back pressure to the blowtank.
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Input measurement, bypass air intersection pressure (P1)

Pressure transducer (P1) was situated to far away from the bypass intersection to give any information about
the bypass intersection. P1 was tried out in the model and it decreased the accuracy of the model. P1 was
therefore discarded as a input to the model.

Input measurement of vertical conveying, pressure transducers P8 and P11

To take into account the vertical conveying, a pressure measurement of the earliest lowest elevated point in
the pipeline and the point describing the total elevation is needed. The pressure transducer measuring the
earliest lowest elevated point in the pipeline was pressure transducer P8. The pressure transducer measuring
the total elevation of the pipeline was pressure transducer P11.

Output measurement, measurement of mass �ow rate of solids

The mass of solids was measured by a load cell in the receiving tank. By calculating the change in measured
load cell data (dm/dt), a measured mass �ow was obtained. This measured mass �ow was chosen as output
variable for the calibration set, using DSR.

Model errors related to measurements

The reasons for model errors is related to the same phenomena as for plant A. The reasons for model errors
will be discussed under "MPC results & discussion" where the e¤ect of turbulent air �ow gives control
problems.

5.3.2 Results and discussion for the model for plant B

The model was made from a calibration set (16110704) and the rest of the data sets were used as test
sets. Test sets are data sets used for validation of the calibration model. The model gotten from system
identi�cation was a state space model (5.3).

xk+1 = axk +Buk; x0 � given (5.3)

yk = xk

where

x0 = �0:1291 The initial state at discrete time step k = 0
xk = The present state, which is the mass �ow of solids at present discrete time step k

xk+1 = The next state, which is the mass �ow of solids at the next discrete time step k + 1

a = 0:0341 The transition matrix, which is a scalar here since there is only one state

uk =

2666666664

Pm �Main pressure
Pby � Bypass pressure
P0 � Blowtank pressure
P8 � Lowest elevation pressure
P11 � Total elevation pressure
airm �Main air
airby � Bypass air

3777777775
0@ The control vector, which consists of
all the inputs to the process
at present time step k

1A

B =
�
0:0033 0:1245 �0:0295 0:3358 �0:3999 �0:0951 �0:2011

�
� 10�3

The input control matrix, which is a row vector since there is only one state

The input control row vector consists of a weighting of the inputs to the process

yk = The predicted output state at present time step k,

which is the mass �ow of solids at present time step k
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In �gure (5.4), �gure (5.5) and �gure (5.6) the measured cumulative mass �ows are plotted against the
predicted cumulative mass �ows, using the DSR-model for 3 di¤erent experiments on transport of dextrose
with a mean particle size of 138�m. For comparison, the estimation of the cumulative mass �ow by the
K-method for the same experiments are also plotted in the �gures (5.4), (5.5) and (5.6). The whole line
in the �gures (5.4), (5.5) and (5.6) shows the measured mass in the receiving tank. The dotted line shows
the predicted cumulative mass for the K-method and the thick dotted line shows the prediction for the
DSR-method.
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Figure 5.4: Comparison of the mass �ow estimations for the DSR- and K-method models for dextrose.
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Figure 5.5: Comparison of the mass �ow estimations for the DSR- and K-method models for dextrose.
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Figure 5.6: Comparison of the mass �ow estimations for the DSR- and K-method models for dextrose.

Figure (5.3a) shows the root mean square error of prediction (RMSEP) for the predicted cumulative mass
of solids conveyed for the K-method and the DSR-model in percentage of the total measured cumulative mass
conveyed. The RMSEP of the predicted cumulative mass in percentage of total mass of solids conveyed was
calculated by equation (5.2). The cumulative prediction error is shown in �gure (5.7b). Table (5) shows the
root mean square error of prediction (RMSEP) for the K-method and the DSR-model against the measured
mass �ow. Table (6) shows the cumulative error in conveyed mass of solids in percentage for the K-method
and DSR model predictions.

Table 5 : RMSEP
Experiment nr. K-method DSR model
20.11.07.07 7:6826 6:8853
19.10.07.01 3:1788 4:5096
19.10.07.08 10:6897 2:8718

Table 6 : Cumulative error [%]
Experiment nr. K-method DSR model
20.11.07.07 �6:2202 �7:3653
19.10.07.01 11:1763 �4:4845
19.10.07.08 �14:4488 �1:9432

Figure (5.3) shows a graphical presentation of the RMSEP and cumulative error in conveyed mass of
solids in percentage.

The cumulative RMSEP in percentage for DSR model is ranging from 2:9 � 6:9%, while the K-method
gave a range of 3:2% � 10:7%. For these experiments the DSR model has a smaller range of cumulative
RMSEP than the K-method. This gives that the DSR model follows the measured mass �ow rate, as an
average of these experiments, better than the K-method. The cumulative error for the DSR model is ranging
from �1:9� 7:4%, while the K-method has a range from 6:2� 14:4%. This gives that the DSR model ends
up with a better estimation of the total mass conveyed than the K-method, for these experiments.
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Figure 5.7: a) RMSEP of predicted cumulative mass in percentage of measured total mass conveyed. b)
Total cumulative error in transport in percentage.

5.4 System identi�cation model results discussion

As depicted in �gures (5.1), (5.2), (5.4), (5.5), (5.6), it is clear that the solids mass �ow rate can be predicted
using DSR method. With the minor statistical analysis shown in �gure (5.3) and (5.7), it is also clear over the
range of conditions tested under this investigation that this method gives better accuracy than �K�method,
which has been used as an on-line solids mass �ow rate measurement technique. Under this investigation,
the DSR model has not been tried out for scaling up purpose and the model is at the moment rig dependent
and has been tried out for two rigs. The tests carried out in plant A conveyed baryte in dense phase. The
tests for plant A had a solid loading ratio ranging from 28:1�79:3. The tests for plant B had a solid loading
ratio ranging from 3:22� 9:15, this is dilute phase conveying. This gives that the DSR model based on the
energy density approach also works for dilute phase as well as dense phase. It also gives an indication that
this approach for a model of the mass �ow rate of particulate solids works for di¤erent powders and di¤erent
rigs. A DSR model has to be attained for each rig. A measurement of the mass �ow rate is needed for
a calibration set to get a DSR model, while the K-method uses a scaling up technique from pressure drop
factors (K) gotten from pilot plant test runs. This gives that the K-method is the only choice for estimating
the mass �ow rate of particulate solids where it is not possible to measure the mass �ow rate. Where it
is possible to run a test with a measurement of the mass �ow rate of particulate solids, the DSR model is
better than the K-method. Both the K-method and the DSR model are at the moment powder dependent,
consequently each powder needs a model. The K-method is more like a procedure for estimating the mass
�ow, while the DSR model is on state space form. This gives an advantage to the DSR model for control
purposes of the process, since a model on state space form makes it possible to implement control strategies
like model predictive control (MPC), which must have a model to be implemented. The DSR model is based
on the energy density approach and indicates that it is possible to attain a mechanistic model from the
energy density relationships in the pipe line and the blowtank.
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Chapter 6

MPC results & discussion

The model used for the MPC was the one attained from plant B, since controllable inputs were available.
The controllable inputs were the volumetric �ow of main air and bypass air. The measurement data of the
air�ows were measured in Normal cubic meter per hour [Nm3=h]: That means that the volumetric air �ow
is normalized with regards to atmospheric pressure. Controlling the air �ows gives control of the energy
density into the pneumatic system. The pressure measurements are considered as disturbances, since they
are indirectly controllable through the air �ows. Since the MPC was not tried out on the real process,
simulations on measured data was performed. This gives that the set point of mass �ow of particulate solids
had to be set to the measured mass �ows of the test sets, using the model attained from the calibration set.
The measured pressure measurements in the test sets were then used as the disturbances to the process

model. If the model is good, the optimal control given by the MPC should follow the original measured
air �ows in the test sets data. In this thesis, the cost function is the reduction of the rate of change in the
control. The weighting matrix for the rate of change cost function is R. The weighting matrices Q and R are
important parameters in the MPC controller algorithm. Q is the weighting matrix for the control deviation
term and R is the weighting matrix for the cost term. The control deviation term is the term giving the
di¤erence between the output value and the set point. The cost term is the term that is reducing the cost of
the control signal, conserving energy relating to control of the process. The ratio between the Q matrix and

the R matrix is an important factor for the MPC. A high ratio between Q and R
�
Q
R

�
gives high weighting

of the deviation term and low weighting of the cost term. The optimal control signal will then focus more
on bringing the process to the set point, than reducing the energy cost. A high ratio gives fast control of
the process, but for unconstrained MPC control this brings the optimal control to often unrealistic values.
A low ratio gives slow control and a high weighting to the cost function. The prediction horizon L is an
important parameter. Lowering the prediction horizon gives that the Q weighting has to be adjusted higher
to achieve the same result for the optimal controls. A longer prediction horizon gives a smaller Q weighting.
The prediction horizon during the simulations here were set to L = 10. If the process time delay is known,
the prediction horizon should be longer than the time delay. To implement a time delay the delays can be
augmented into the model as states. The e¤ect of the prediction horizon has been studied. Time delays has
not been considered in this thesis, but should be considered for further studies since the prediction horizon
and time delays are often linked. For more about time delays and prediction horizon, see other work on
MPC performed at the Telemark University-College, like Bartziokas [21].

6.1 Discussion of the weighting matrices Q and R

The process model has one state which is the mass �ow rate of solids and two inputs which are the main air
and bypass air. This gives that the weighting matrix Q is a scalar q and the R matrix is a 2� 2 matrix. The
main air and bypass air can be weighted di¤erently, but in the experiments performed in this thesis they
were weighted equal and set to be one(6.1).

R =

�
1 0
0 1

�
(6.1)
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The q scalar was tried for di¤erent values intuitively. For values tried out, see table (7).

Table 7 : Weighting table for q

�gure numbers
weighting
value for q

�gures : (6.1), (6.2) 5� 1060
�gures : (6.5), (6.6), (6.7), (6.8) 4� 105
�gures : (6.4), (6.3) 1

The maximum air �ow the air compressor at POSTEC/Tel-Tek can give is 1000Nm3=h and the minimum
is 0Nm3=h. Figure (6.1) shows unconstrained MPC with an enormous q weighting of 5� 1060, it is possible
to see that the unconstrained optimal control suggested is unrealistic. The same weighting tried out with
MatLab QP solver �quadprog�is shown in �gure (6.2). The constraints are input amplitude constraints and
are set according to (6.2).

0 � umain � 300
300 � uby � 1000

�
(6.2)

The inequality constraint (6.3) was also implemented, since the compressor cannot give more than
1000Nm3=h.

umain + uby � 1000 (6.3)

Figure 6.1: Unconstrained MPC control simulating the test 19100708 with q weighting of 5� 10^60
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It is possible to see that the optimal control given by �quadprog�is better than the optimal unconstrained
control given by the MPC algorithm given in the literature review of the MPC. Because of the hard weighting
of the q scalar, the �quadprog�algorithm uses a long time computing the optimal control. This is because
of constraints being active almost constantly and the time for computing was timed to be 912:0520 seconds
(approximately 15min and 12sec). Further the optimal control, given by �quadprog�with the given con-
straints, gives an optimal control that has an unrealistic rate of change of the control. It is obvious that the
q weight has to be tuned down.

Figure 6.2: Constrained MPC control using �quadprog�, simulating the test 19100708 with q weighting of
5� 10^60
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The q weight was then tuned down to 1, giving a ratio between q and R of 1. This is the same as weighting
the deviation term and the cost term equally. By using the custom made algorithm in the literature review of
MPC, the results are constant optimal controls during the simulation. The computation time was timed to
1.5420 seconds. See �gure (6.3) for plot of the simulation of test set 19100708. The same test was performed
using �quadprog�and gave the same result, except that the main air was computed to be 3:719Nm3=h and
bypass air to 504:8Nm3=h compared to 3:712Nm3=h and 504:7Nm3=h respectively by the custom made
algorithm. The computation time used by quadprog was 29:1020 seconds.

Figure 6.3: Unconstrained MPC control simulating the test 19100708 with q weighting of 1
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A closer look at the control of the mass �ow of solids show that this control is too slow to follow the
dynamics of the process. This results in a deviation in mass �ow of solids from the desired set point. Figure
(6.4) shows this deviation in accumulated mass during transport. This is because the q scalar is set to be
too low giving the deviation term too low priority. The q weighting has to be tuned up.

Figure 6.4: Plot showing the deviation in accumulated mass using MPC controls with a q weighting of 1
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The q weighting was found intuitively by adjusting a q that gave a reasonable result for the unconstrained
optimal controls. A reasonable q was found to be q = 4 � 105. See �gure (6.5) for the unconstrained MPC
simulation of test 19100708. Computation time was 1:3720 seconds.

Figure 6.5: Unconstrained MPC simulation of test 19100708 with a q weighting of 4 � 105

From �gure (6.5), it is possible to see that the unconstrained optimal control gives a slightly unrealistic
main air �ow rate that is negative. Comparing the computed unconstrained optimal control inputs with the
measured volumetric �ows for the test set 19100708, gives that the computed unconstrained optimal control
inputs follows the trend in the measured air �ows, except for the start and end of the simulation. The reason
for this will be explained later. See �gure (6.6) for the comparison between measured air �ows and suggested
unconstrained optimal control inputs.
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Figure 6.6: Comparison of Suggested MPC unconstrained optimal control inputs and the measured inputs
to the process for test 19100708.
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Figure (6.7) shows this deviation in accumulated mass during transport.

Figure 6.7: Plot showing the deviation in accumulated mass using unconstrained MPC controls with a q
weighting of 4 � 105 for test 19100708.
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Figure 6.8: Comparison of Suggested MPC constrained optimal control inputs and the measured inputs to
the process for test 19100708.

The same weighting of q = 4 � 105 was then applied to a constrained MPC using MatLab �quadprog�.
The constraints applied is the same as above. The plot of the suggested optimal controls is shown in �gure
(6.8). The computation time was 54:798 seconds. From now on all the MPC controls will have constraints
and use �quadprog�and computation time will not be mentioned for every plot. Computation time has been
mentioned earlier for comparison and to give an indication of proper weighting. The q weighting was tuned
down a bit to q = 105 for the rest of the simulations.



82 CHAPTER 6. MPC RESULTS & DISCUSSION

6.2 Constraints for the process of pneumatic conveying

the q weighting was set to (6.4) and the R weighting set to (6.5) for the simulations.

q = 105 (6.4)

R =

�
1 0
0 1

�
(6.5)

Prediction horizon for the simulations was set to (6.6).

L = 10 (6.6)

The inequality constraints for the simulations was set according to table (8).

Table 8 : Inequality constraints for the simulations
Test set number Constraints

20110707
0 � umain � 100
400 � uby � 805
umain + uby � 875

19100701
0 � umain � 100
400 � uby � 742
umain + uby � 822

19100708
0 � umain � 200
300 � uby � 530
umain + uby � 715

The rate of change constraints (6.7) relating to valve characteristics was not included, since no such data
was available at the time. How fast a valve close and opens is an important parameter for calculating an
optimal control, if not the valves sluggishness will work as a �lter for the original computed optimal control.

min# � �umain � max#
min# � �uby � max#

�
(6.7)

The MPC algorithm was set up on deviation form (6.8) and augmented (6.9). The �quadprog�QP solver
needs constraints on the form (6.10), while the deviation form gives constraints on the form �ukjL.

�xk+1 = a�xk +B�uk
yk = yk�1 + d�xk

�
(6.8)

~xk+1 = ~A~xk + ~B�uk
yk = ~D~xk

�
(6.9)

ukjL = S�ukjL + cuk�1 (6.10)

Conversion of �ukjL to ukjL for use of �quadprog�can be done according to (6.11) and (6.12) giving (6.13)
for input amplitude constraints.

ukjL = S�ukjL + cuk�1

ukjL � umax

S�ukjL � umax � cuk�1 (6.11)

ukjL � umin

�ukjL � �umin
�S�ukjL � �umin + cuk�1 (6.12)�
S
�S

�
�ukjL �

�
umax � cuk�1
�umin + cuk�1

�
(6.13)
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6.3 Using MPC for model validation

As mentioned earlier, if the model is good, the optimal control given by the MPC should follow the original
measured air �ows in the test sets data. So far, the plots that have been shown has used simulation of the
whole data set. In other words, this means the data before transport of solids, during transport of solids
and at the end of transport of solids. The data can be given a time axis like shown in �gure (6.9). During
transport the constrained optimal control inputs follow the original measured air �ow rates. At the end of
transport, turbulent �ow of air occurs and the model only follows the trend of the original measured �ows.
This gives that the model attained from system identi�cation does not model turbulent �ow well. One reason
for the turbulent �ow is the on-o¤ controller for the blowtank. At the end of transport more air is escaping
the blowtank at higher velocity than during transport. The on-o¤ controller tries to compensate for this by
pumping in more main air, this results in oscillations in the air �ow, giving turbulent �ow. Even with the use
of a PI-controller for the blowtank pressure, the �ow of air will be turbulent at the end of transport. This is
because the velocity of air escaping the blowtank at the end of transport will have a velocities reaching up
to the velocity of sound. The use of a PI-controller will still be an improvement, especially during transport.
By modelling the blowtank, MPC can be applied to control blowtank pressure. Modelling the blowtank
pressure gives a non-linear model and leads to non-linear MPC (NMPC) or a non-linear model linearized
around an operating point. For more about non-linear model linearized around an operating point, see other
work on MPC performed at the Telemark University -College, like Bedelbayev [22].

Figure 6.9: Time axis of simulation of test sets.

Figure (6.10), (6.13) and (6.16) shows the constrained optimal control inputs given by �quadprog�com-
pared with the test set data sets for transporting dextrose in plant B during transport. One reason for
deviation between MPC suggested optimal control inputs and the measured control inputs, is related to
model error. Another reason for the deviation can be due to that the MPC set point is constant and slightly
o¤ the measured mass �ow rate. Another issue is the e¤ect of too short prediction horizon. This will be
explained more later.
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Three subchapters are dedicated to plots of the simulations. The accumulative plots (6.11), (6.14) and
(6.17) shows how close the MPC set point is set to the real process. Given optimal control inputs, the
controlled mass �ow should follow the MPC set point. If the model is good, the MPC optimal controls
should follow the original measured controls. Normalized cross correlation, giving a correlation coe¢ cient in
percentage, was used for validation of how well the measured and MPC suggested controls follows eachother.
MatLab �xcorr�function was used (6.14).

>>[C,lags]=xcorr(air_main,u_opt,�coe¤�) (6.14)

Cross validation does not give any information about the deviation or magnitude of error, but gives how
equal the compared signals are. From �gure (6.12), (6.15) and (6.18) it is possible to see that the MPC
optimal control for bypass air correlates from 98:5�99:3% with the measured bypass air. This gives that the
model is able to mimic the e¤ect of changing the bypass air well. The MPC suggested main air, correlates
poorly and is between 46:2 � 66:7% with the measured main air. The indication of a lag in the correlation
for main air is large and ranging from 359 samples to 555 samples and indicates that the prediction horizon
needs to be adjusted. The lag in the correlation plot for bypass air is zero, which gives that a prediction
horizon of L = 10 is enough for bypass air. This gives that the bypass air can be used for MPC control with
good accuracy, while the prediction horizon has to be larger with regards to the main air for MPC control.
See �gure (6.20) for a plot of the unconstrained MPC optimal control inputs with a prediction horizon of
L = 600. RMSEP was calculated to take into account the magnitude of the deviation of the MPC optimal
control inputs from the measured inputs. See �gure (6.19) in subchapter "RMSEP of the optimal control
inputs with regards to measured inputs".
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6.4 MPC validation of simulation test 20110707

Figure 6.10: Comparison between MPC suggested optimal control inputs and measured inputs for test
20110707.
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Figure 6.11: Plot showing how close the MPC setpoint is set to the real process for test 20110707.

6.5 MPC validation of simulation test 19100701
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Figure 6.12: Cross correlation between MPC suggested optimal controls and measured controls. Plot is
showing how well the model is able to mimic the e¤ect of changing the control inputs with regards to the
real process for test 20110707.

6.6 MPC validation of simulation test 19100708
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Figure 6.13: Comparison between MPC suggested optimal control inputs and measured inputs for test
19100701.

6.7 RMSEP of the optimal control inputs with regards to mea-
sured inputs

Figure (6.19) shows the deviation of the computed optimal MPC control inputs and the measured control
inputs in terms of RMSEP. The RMSEP for the bypass air had a range from 71 � 106Nm3=h and main
air 73 � 115Nm3=h. From �gure (6.19) it is possible to see that the RMSEP for the main air and bypass
air is close to equal in magnitude. One reason for the deviation is that the model has an error. Another
is that the bypass and main air does not follow the last part of the simulation well. The model does not
describe turbulent �ow well. The applied constraints can also be a reason for deviation. The main air is not
modelled good enough, and the constraints is reducing bypass air and increasing main air. This can also
be seen from the unconstrained plot, where the optimal main air is calculated to be slightly negative. The
cross correlation for the main air has a large lag in the correlation plot, the prediction horizon needs to be
set larger before a good cross correlation of the main air can be attained.
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Figure 6.14: Plot showing how close the MPC setpoint is set to the real process for test 19100701.

6.8 E¤ect of the prediction horizon

In the cross correlation plots, the main air is poorly correlated and mildly suggest a correlation lag of around
390 samples for test 19100708. Figure (6.20) show the unconstrained MPC suggested optimal control inputs
with a prediction horizon of L = 600. The q weighting was kept to be q = 105: It could probably have been
tuned down a bit. Figure (6.21) shows how close the simulation was to the real process and �gure (6.22)
shows the new cross correlation plot.
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Figure 6.15: Cross correlation between MPC suggested optimal controls and measured controls. Plot is
showing how well the model is able to mimic the e¤ect of changing the control inputs with regards to the
real process for test 19100701.

Figure (6.22) shows that the main air is negatively correlated and still has what occurs to be a lag. This
indicates a slightly larger prediction horizon and that constraints has to be applied. The time of computation
for the unconstrained MPC simulation with a prediction horizon of L = 600 was approximately 1hour using
the custom made algorithm. Doing a constrained MPC simulation gives large computation time due to large
data matrices to handle. No computer was available at the time, that was powerful enough to handle the
MPC with constraints with such a large prediction horizon. Using a more powerful PC would probably solve
the problem, but still use a long time computing the simulation. So no simulation was available to give a
good cross correlation of the main air. Further studies are needed before any conclusion of how good the
main air is as a control input. Still, the indication is that the model should be rearranged with regards to
control using the main air as an input.

6.9 Discussion of MPC results

The ratio between the q and R matrices are important when it comes to MPC. The weighting matrices was
tuned intuitively and found to be (6.15) for q and (6.16) for R for the simulations.

q = 105 (6.15)
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Figure 6.16: Comparison between MPC suggested optimal control inputs and measured inputs for test
19100708.

R =

�
1 0
0 1

�
(6.16)

The prediction horizon was initially set to L = 10. The MPC was used as validation for the model attained
by system identi�cation. This was done by simulating test sets of real process data. The pressures was seen
as disturbances and the volumetric air �ows was the considered inputs. Accumulative plots were shown
to visualize how close the MPC set point was to the real process and that the MPC output corresponded
according to the set point. All the simulations was close to the real process. The MPC suggested optimal
inputs was plotted against the measured control inputs. If the model is describing the process well, the
optimal control inputs should follow the measured inputs. Cross correlation was performed and showed in
plots to show how well the MPC suggested optimal inputs can mimic the e¤ect of changing the air �ow rates
on the real process. It was found that the MPC suggested optimal bypass air had a cross correlation between
98:5 � 99:3% with the measured bypass air. The RMSEP for the MPC suggested optimal bypass air was
between 71�106Nm3=h. The cross correlation was good and the deviation was high for the MPC suggested
optimal bypass air. Reasons for the high deviation is model error, that the MPC set point is constant and
slightly of the real process and that the applied constraints incorporates the poorly model estimated main
air. The main air has poor cross correlation between 46:2� 66:7% and a deviation of 73� 115Nm3=h. The
cross correlation of the main air indicated that the prediction horizon should be larger, with cross correlation
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Figure 6.17: Plot showing how close the MPC setpoint is set to the real process for test 19100708.

lags ranging from 359 � 555samples. It is still a bit early to say something about the cross correlation of
the main air, since constrained MPC with large prediction horizon was not done. Still, it is an indication
that the main air is not accurate enough as control input using the DSR model. A way to use the main air
as a control input, can be to change the model. The main air has direct e¤ect on blowtank pressure and
�uidization of the particulate solids. By introducing the blowtank pressure as a state with the main air as an
input, while using the bypass air as a �ow adjustor, a model for full model predictive control of the process
can be achieved. At the moment the MPC is usable as a mass �ow rate of solids adjustor, controlling the
bypass air. Meanwhile a PI-controller can be used as a controller for the blowtank pressure and MPC as
a mass �ow rate of solids adjustor. The model itself can also be used for prediction of mass transported
during conveying. For those interested, other works on MPC performed at Telemark University-College is
on MPC for oil water separators with slugging in�ow by Bartziokas [21] and linearized non-linear process of
absorption tower for CO2 capture by Bedelbayev [22].
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Figure 6.18: Cross correlation between MPC suggested optimal controls and measured controls. Plot is
showing how well the model is able to mimic the e¤ect of changing the control inputs with regards to the
real process for test 19100708.
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Figure 6.19: Plot showing the RMSEP between the suggested optimal MPC controls and the measured
controls for the 3 simulations on transporting dextrose in dilute phase.
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Figure 6.20: Comparison between unconstrained MPC suggested optimal control inputs and measured inputs
for test 19100708 using a prediction horizon L = 600.
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Figure 6.21: Cumulative mass plot for test 19100708 using unconstrained MPC with prediction horizon of
L = 600.
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Figure 6.22: Cross correlation between MPC suggested optimal controls and measured controls for test
19100708 using a prediction horizon of L = 600.
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Chapter 7

Conclusion

The K-method uses a pressure drop coe¢ cient for calculating the mass �ow rate of solids. The K-method
does not give a model suitable for model predictive control. An expansion of the K-method was done,
relating pressure to energy instead of force. Under the pneumatic test runs performed at POSTEC/Tel-Tek
in plant A and B, the blowtank pressure was kept close to constant and the air �ow rate was kept within
a range. This gives close to constant energy into the system, which results in a close to constant linear
average �ow, justifying the use of system identi�cation for such a non-linear process. This approach has
been explained roughly in the thesis and was called the energy density approach to modelling. The system
identi�cation method was applied to the energy density approach. The system identi�cation method used
was the subspace method "combined Deterministic and Stochastic Realization method" (DSR). The DSR
method was compared with the K-method and found to give a slightly better prediction of mass �ow rate
of solids for the test runs. The cumulative RMSEP expressed in percentage of total conveyed mass for the
DSR model was ranging from 1:3� 5:8% error in cumulative mass estimation for 5 tests on baryte conveyed
in dense phase in plant A, while the cumulative error was ranging from �1:2� 7:5% of total conveyed mass.
For plant B transporting dextrose in dilute phase, the cumulative RMSEP expressed in percentage of

total conveyed mass for the DSR model was ranging from 2:9�6:9% error in cumulative mass estimation for
3 tests, while the cumulative error was ranging from �1:9� 7:4% of total conveyed mass. This means that
the DSR model using the energy density approach could be used for dense phase conveying as well as dilute
phase and that it could be applied to the same type of conveying system of di¤erent size and dimension.
The DSR method gave a model on state space form, which was later used for Model Predictive Control

(MPC). The DSR model based on the energy density approach is easy to implement and only one test run
with descriptive data is needed to attain a model. The K-method needs numerous runs and a lot of data
processing before it can be used properly. The disadvantage of the DSR model is that it has to have a
measurement of the mass �ow rate of solids for the calibration set. The parameters necessary for the K-
method can be found at a pilot plant and then scaled up. This implies that, where there is no measurement
available, the K-method is the only option between the two methods. The use of the DSR model based on
the energy density approach, indicated relationships usable for later on making a rough mechanistic model.
The DSR model was used for MPC simulations. The MPC was simulated based on the test set data

sets from plant B, transporting dextrose in dilute phase. The MPC was used as a validation method,
seeking out how realistic the MPC optimal controls would act on the real process. With an accurate model,
simulating the real process, the MPC optimal control inputs should be close to the real measured control
inputs. The MPC optimal control for bypass air was cross correlated with the measured bypass and gave
cross correlation between 98:5% to 99:3%. The RMSEP for the MPC suggested optimal bypass air was
between 71�106Nm3=h. The cross correlation was good and the deviation was high for the MPC suggested
optimal bypass air. Reasons for the high deviation is model error, that the MPC set point is constant and
slightly o¤ the real process and that the applied constraints incorporate the poorly correlated main air. The
main air had poor cross correlation between 46:2 � 66:7% and a RMSEP of 73 � 115Nm3=h. The cross
correlation of the main air indicated that the prediction horizon should be larger, with cross correlation lags
ranging from 359 � 555 samples. At this point, it is not possible to give a de�nite conclusion about the
cross correlation of the main air, since constrained MPC with large prediction horizon was not done. An
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indication can be given by the unconstrained MPC simulation, which gave a cross correlation of �66:8%.
This is an indication that the main air is not accurate enough as control input using the DSR model. The
e¤ect of the prediction horizon has been studied. Time delays have not been considered in this thesis, but
should be considered for further studies since the prediction horizon and time delays are often linked. A
way to use the main air as a control input, can be to change the model. The main air has a direct e¤ect
on blowtank pressure and �uidization of the particulate solids. By introducing the blowtank pressure as a
state with the main air as an input, while using the bypass air as a �ow adjustor, a model for full model
predictive control of the process can be achieved. At the moment, the MPC is usable as a mass �ow rate of
solids adjustor, controlling the bypass air.
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Appendix A

Conference paper : " Mass �ow rate
measurement in a pneumatic conveyor
using a system identi�cation
modelling approach"

This paper was presented at the conference and published in the proceedings of the international symposium
reliable �ow of particulate solids IV held in Tromsø, Norway, 10th - 12th June 2008.
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Accurate measurements of solids flow rate in pneumatic conveying systems has been a   – Abstract
need for the different industries in which these systems are used. In this study, a system 
identification approach, which is termed as  the Deterministic Stochastic Realization (DSR) method 
is used to obtain a model on state space form. The selection of inputs to the system identification 
model is based on conservation of energy related to the Bernoulli effect. Under this investigation, 
attempts were made to predict the mass flow rate of conveying solids in real time, by using pressure 
data obtained from 3 different pressure sensors located on the conveying line, blow tank pressure 
and inlet air volume flow rate. To evaluate the performance of the DSR model, the results were 
compared with one published method based on a scaling up technique of pneumatic conveying [1]. 
The Root Mean Squared Error of Prediction (RMSEP) of the cumulative mass of transported solids 
as a percentage of the total conveyed mass using the system identification model was between 1.3-
5.8%.                                                                                                                                                       

                                                                                                                                                    
INTRODUCTION. 1 

 
Pneumatic conveying systems are suitable for transporting of dry powdered and granular materials 
in different kind of situations. The quantity of mass of solid particles in gas that flow through the 
cross sectional area of a pipe per unit time can be defined as mass flow rate of solids. With the aim 
of running reliable pneumatic conveying systems it is of fundamental importance to measure and 
monitor the mass flow conditions. Industry has looked for alternatives for this purpose in the single 
phase flow experience and has adapted some of them. Unfortunately, two-phase processes often 
present additional instrumentation problems, since mass flow rates, solids concentrations and solids 
composition may vary widely with time at a given position in the plant as mentioned by Williams et 
al., [2]. For this reason, there has been a need to develop new  instrumentation and techniques 
suitable for this purpose. As a result, some of the instrumentation available measure mass flow 
directly but most of them do it in an indirect way combining two separate parameters measured 
simultaneously i.e. solids concentration and velocity. The techniques currently available make use 
of different kinds of sensors, such as ultrasonics, capacitance, microwave, optical, electrical and so 
on. In addition, there are mechanical devices available to measure mass flow in pneumatic 
conveying lines. Finally, there are combinations of sensors with different measurement principles. 
These techniques have been reviewed elsewhere by Green and Thorn [3]; Klinzing [4]; Pugh [5]; 
Williams et al. [2]; Yan et al. [6]; Yan [7]. Nevertheless, the techniques available are not 
completely satisfactory for all the applications and more research needs to be done. In this paper, a 
model has been developed by using system identification and it is compared with a model that has 
been patented (Patent application no. 20063698) and is currently used for commercial applications. 
The patented model is derived from an empirical model based on the flow properties for the 
calculation of pressure drop developed by Ratnayake [1]. The system identification method is based 
on a MatLab code developed by David Di Ruscio [8] at Telemark University-College. The 
requirements for the application of the patented model in terms of instrumentation are pressure 
sensors and an air flow meter in any position of the pneumatic conveying system. The DSR-model 



needs a selected set of pressure measurements in the pipeline, blowtank pressure and inlet air 
volume flow rate. Pressure waves and fluctuations behavior in a two-phase gas-solid system can 
give much information about the flow condition within the flow line. The use of transducers to 
measure these pressure waves is essential since almost instantaneous readings can be obtained as 
mentioned by Klinzing et al. [9]. 

 
2. THEORY OF MASS FLOW CALCULATION 

 
2.1 Pressure drop coefficient method ‘K-method’ [1] 
The pressure drop was addressed in a discrete way by considering horizontal and vertical straight 
pipe sections, bends and other pipe accessories separately. For a straight section the equation has 
the following form: 
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where entryν is the gas velocity at the entry section of the concerned pipe section or pipe component, 

stK  is the pressure drop coefficient for straight pipe sections whether they are horizontal or vertical 
and susρ  can be defined as the density of the mixture when a short pipe element is considered. The 
equation to calculate susρ is shown below: 
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where sm is the mass flow rate of solids, am is the mass flow rate of air, sV is the volume flow rate 
of solids and aV  is the volume flow rate of air. Equation 3 could be re-arranged in order to get the 
mass flow rate of solids, as shown below: 
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where Q  is the volume flow rate of air obtained by adjusting the experimentally measured air 
volume flow rate according to the true pressure value at the concerned section of the pipeline. This 
is done in order to take into account the compressibility effect [10]. 

 
2.2 The Deterministic Stochastic Realization (‘DSR’) method  [8] 
The DSR is a system identification method. The process of going from observed data to a 
mathematical model is fundamental in science and engineering. In the control area this process has 
been termed “System Identification” and the objective is then to find dynamical models (difference 
or differential equations) from observed input and output signals. Its basic features are however 
common with general model building processes in statistics and other sciences. [11]. 



The DSR method is a system identification black box model, where a linear model is found based 
on measured inputs and outputs. The DSR method  gives a model on state space form. A state space 
model is a set of first order ordinary differential state equations, describing the change in the states 
in the process. A state space model can be divided into a set of states (x), a set of inputs (u), a set of 
known constants (θ) and a set of selected states as outputs (y). This can briefly be expressed as 
shown in 5 :  
             
            (5) 
 
 
Models on this form can be non-linear and needs an Ordinary Differential Equation (ODE) solver to 
compute a solution. The sets of ordinary differential state equations can be set up on matrix form for 
computational simplicity, when the problem can be considered linear. The process of pneumatic 
conveying itself is dynamic and non-linear, due to compression and expansion of the air/gas 
through the pipe. A state space model on matrix form can be made, assuming linear transition 
between the states. 

 
3. EXPERIMENTAL TEST SET-UP 
 
For this investigation, the pipeline configuration shown in Figure 1, was used to perform the 
pneumatic conveying tests. 

 

Figure 1: Schematic view of the pneumatic conveying test rig including pressure transmitter locations. 

The conveying line was a constant diameter pipeline which was approximately 140 m long and of 
75 mm diameter. The pipeline made a close loop conveying system by mounting the receiving tank 
just on top of the blow tank, so that the conveying material could be re-circulated after each test run. 
Few pressure transducers, as shown in Figure 1, were placed on the conveying line in discrete 
positions, so that the pressure drop values could be determined across different features, like 
straight pipe sections, bends, etc. All bends used in the conveying line were 90° standard bends, 
while there was a fully open butterfly valve between pressure transducers P19 and P20. A load cell 
in the receiving tank was used for measuring the transported mass of solids. 
 
3.1 Test Material 
The material used for the tests was baryte, which is used in oil industry as a weighting material. The 
tested quality of baryte has a mean particle size of 12 μm and a particle density of 4200 kg/m3. For 
each test, approximately 0.5 - 1.0 m3 of bulk material was used. 

( , ; )dx f x u
dt

θ=



3.2 Test Procedure  
  
 
 
 
 

 
 
 
 
 
 
 
 
 
, using the data logging and retrieving software program. During test runs, samples were collected 
on line and tested for particle size distribution in order to check any size degradation. As soon as 
size degradation could be noticed, the bulk powder was always replaced with a fresh powder. For 
those interested, the details of the test procedure is reported elsewhere [1]. The inlet air velocity was 
calculated at transducer P1. The solids loading ratio was ranging from 24 to 43, this gives that these 
test runs was conveying in dense phase. The suspension density was calculated at transducer P1 
using the K-model [1]. 
 
4. DSR METHOD RESULTS AND COMPARISON WITH THE K-METHOD RESULTS 
 
The selection of  measurement input variables for the DSR method is based on conservation of 
energy related to the air and the Bernoulli effect. System identification was used to find the 
relationship between the change in energy density (i.e, Energy per unit volume) of air and the mass 
flow of solids. The blow tank pressure is seen as the driving force in the system. The energy density 
in the blow tank is transferred into kinetic energy density of air for transporting solids. The 
transference from energy density in air into kinetic energy of solids generates a loss in energy 
density in the air. Due to forces like drag,  pipe wall friction and particle collisions there is an 
additional loss in kinetic energy of the transported solids. This loss of kinetic energy for the solids 
also causes a loss in the energy density of the air. These losses are hard to distinguish from 
eachother and approximate correctly and leads to an error in the model. After the blow tank there is 
a juncture where the bypass air is pumped into the pipeline. This juncture is the point in the pipeline 
where the total energy density of air in the pipeline describes the flow of solids best. Pressure 
transducer “P1” describes this juncture best, since it is closest to the juncture. The pressure 
transducer “P2” is mounted at the first horizontal section of the pipeline. Pressure transducer “P2” 
is at a point in the pipeline that has the lowest elevation in the pipeline. The pressure difference 
between “P1” and “P2” is descriptive for the horizontal conveying in the test-rig. A pressure 
measurement describing the total elevation of the pipeline gives an indication of the total change in 
potential energy density for the air due to vertical conveying, consequently pressure transducer 
“P13”, was selected to represent the change in potential energy density. By calculating the change 
in measured load cell data (dm/dt), a measured mass flow was obtained. This measured mass flow 
was chosen as output variable for the calibration set, using DSR. A system identification model on 
state space form was then obtained by finding the relationship between the pressure at selected 
points in the pipe line and air flow against the measured mass flow. The measurement points chosen 
give information about the change in energy density at  given points. The model was made from a 
calibration set (30110505) and the rest of the data sets were used as test sets. Test sets are data sets 
used for validation of the calibration model. 

The tests were conducted at
different start pressures at the
blow tank and the corresponding
pressure for each test run is as
shown in table 1. During the test
runs, all the data including the
pressure values have been
recorded using a data logging
system. The signals from all the
pressure transmitters were
recorded every 0.5 second. After
the test runs, the variation of air
mass flow rate and the different
pressure readings were studied 

Table 1: Corresponding blow tank pressures for different test runs 

Test No. 

T=test set 

C=Calibration set 

Blow 
Tank 

Pressure 
(bar) 

Avarage 
inlet 

suspension 
density 

] 3m/kg[ 

Solids 
loading 

ratio 

Avarage 
inlet air 
velocity 

(m/s) 

01120501 T 4.0 275 50.3 6.3 

01120502 T 3.5 312 60.8 6.1 

01120504 T 3.0 216 28.1 8.4 

30110502 T 4.5 218 48.9 8.3 

30110505 C 3.5 289 79.3 5.5 

30110507 T 3.0 256 68.2 5.9 



 
The DSR model presented on discrete state space form is stated in 6: 
             

1 0,k k k

k k

x ax Bu x given
y x

+ = + −
=

        (6) 

 
0

1

19.9815 The initial state at discrete timestep 0
The present state, which is the mass flow of solids at present discrete timestep 

The next state, which is the mass flow of solids at the n
k

k

x k
x k
x +

= =

=

=

0

ext discrete timestep 1
0.2548 The transition matrix, which is a scalar here since there is only one state.

This scalar is describing the change in the state for a discrete timestep 
Blow tank

k

k
a

k
p

u

+

=

−

=
1

2

13

 pressure
Juncture pressure The control vector, 
Lowest elevation pressure  which consists of all the inputs to the
Highest elevation pressure
Conveying air (volumetric flow)in

p
p
p
air

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦
[ ]

 process 
at the present timestep 

0.0013 0.0031 0.0049 0.0033 0.0041
The input control matrix, which is a row vector since there is only one state
The input control row vector consists of a we

k

B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − −

ighting of the inputs to the process
The predicted output state at present timestep , which is the mass flow of the solids at present timestep ky k k=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 Comparison of mass flow predictions for the DSR- and K-method models. 



In figure 2 and figure 3 the measured cumulative mass flows are plotted against the predicted 
cumulative mass flows, using the DSR-model for 5 different experiments on transport of baryte 
with a mean particle size of 12μm. For comparison, the estimation of the cumulative mass flow by 
the K-method for the same experiments are also plotted in figure 2 and figure 3.The whole line in 
figure 2 and 3 shows the measured mass in the receiving tank. The dotted line shows the predicted 
cumulative mass for the K-method and the thick line shows the prediction for the DSR-method.    
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4a shows the root mean square error of prediction (RMSEP) for the predicted cumulative 
mass of solids conveyed for the K-method and the DSR-model in percentage of the total measured 
cumulative mass conveyed. This plot shows how good the prediction of the cumulative mass 
follows the measured mass, i.e how good the model follows the real process. The RMSEP of the 
predicted cumulative mass in percentage of total mass of solids conveyed was calculated by 
equation 7. The cumulative prediction error is shown in figure 4b , this plot shows how well the 
prediction ends up compared to the measured cumulative mass.  
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Figure 3 Comparison of mass flow predictions for the DSR- and K-method models 
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where
    % RMSEP of predicted cumulative mass in percentage of total conveyed mass

y Predicted cumulative mass of solids
Measured cumulative mass of solids
Number of samples
 

RMSEP of cum in

y
N
mass conveyed

=

=
=
=

= Total mass of solids conveyed during test run
  
Figure 4a gives that the cumulative RMSEP expressed in percentage of total conveyed mass for the 
DSR model ranges from 1.3-5.8% error in mass estimation, while the error for the K-method ranges 
from 3.2-14.5% error in mass estimation. It is evident from the experimental data that the DSR 
model follows the measured cumulative mass better than the K-method for these experiments. From 
figure 4b the cumulative error for the DSR model is ranging from ±1.2-7.5%, while the K-method 
ranges from ±1.3-18.3%. It is evident from the experimental data that the DSR model has a smaller 
range of cumulative error than the K-method for these experiments. 

 
Figure 4 a) RMSEP of predicted cumulative mass in percentage of measured total mass conveyed. 4 b) Total 
Cumulative error in transport in percentage. 

 
The model based on system identification by DSR is robust considering different blowtank 
pressures compared to the K-method which has a different model for different blowtank pressures. 
The reason for this is that the DSR model takes into account the blowtank pressure fluctuations in 
the model. This makes the DSR model more robust regarding variations in the blowtank pressure 
than the K-method. The DSR model data is unfiltered while the K-method needs filtering of the raw 



data to give a good estimation. This is due to the sensitivity of the pressure gradient Δpst, using the 
K-method. This sensitivity to noise in the pressure measurements is a weakness in the K-method, 
since a small deviation in pressure gradient affects the calculation of the suspension density. The 
DSR model is more robust to such noise variations in the pressure measurements. This can explain 
the reason why the DSR method has a smaller range of cumulative error than the K-method. The 
DSR model is based purely on the relationships within the measurement data and is sensitive to 
boundary conditions for the process, like saturation of inlet airflow and large variations in blowtank 
pressure, unless a model is made from a data set that takes this into account. Such a model may 
suffer from less accuracy under normal conditions.The K-method uses an estimation of the mass 
flow at an earlier stage in the pneumatic conveying process rather than at the end, this results in a 
time delay in the estimation of the mass flow. This time delay can be seen in figure 2 and figure 3. 
The DSR model makes a model that takes this into account by making an estimation based on when 
the change at the end of the conveying line occurs. This almost eliminates the time delay in the 
estimation of the massflow of solids by the DSR method. This time delay increases the RMSEP for 
the K-method and is a reason why the RMSEP is larger for the K-method compared to the DSR 
model.The K-method has succesfully been implemented in industry by using a scaling up 
technique. This means that experiments can be run at a research facility test rig and then scaled up 
to industrial size scales.  

 
5. CONCLUSIONS 
 
As depicted in figures 2 and 3, it is clear that the solids mass flow rate can be predicted using DSR 
method with high accuracy. With the statistical analysis shown in figure 4, it is also clear over the 
range of conditions tested under this investigation that this method gives better accuracy than ‘K’ 
method, which has been used as an on-line solids mass flow rate measurement technique.  Under 
this investigation, the DSR model has not been tried out for scaling up purpose and the model is at 
the moment rig dependent. Both the K-method and the DSR model are at the moment powder 
dependent, consequently each powder needs a model. The K-method is more like a procedure for 
estimating the mass flow, while the DSR model is on state space form. This gives an advantage to 
the DSR model for control purposes of the process, since a model on state space form makes it 
possible to implement control strategies like model predictive control (MPC), which must have a 
model to be implemented.  
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