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Abstract:

Model Predictive Control (MPC) is the most widely used strategy in process industries due to remarkable features. It
has the capability to control the non-minimum phase, unstable processes and handle the constraints in a systematic
way. MPC with integral action is an effective method to achieve the offset free control which can remove the
unknown slowly varying process and measurement noise respectively.

In this thesis, a multivariable four-tank process has been developed for simulation experiments and it is controlled at
two operating conditions i.e. minimum and non-minimum phase setting. The mathematical models are constructed
from the both physical and simulation data. Theoretical background of the state space model based MPC is
described and the deviation variables are used to achieve the integral action in MPC. The proposed optimal
controller has been implemented to control the level in lower tanks. The ‘quadprog’ function and ‘if-else’ technique
are demonstrated to handle process constraints in MPC with integral action. The execution time for simulation is
reduced using ‘if-else’ method compared to ‘quadprog’ function. The states are estimated by using the Kalman
filter. A comparison in reducing control horizon in optimal control is also performed. The decentralized PI controller
has been implemented to control the four-tank process and results are compared with MPC method.

Deterministic and Stochastic system identification and Realization ‘DSR’ algorithm has been proposed to formulate
model free MPC. A linearized state space model is identified by the ‘DSR’ method and used in MPC algorithm. The
proposed optimal control is more robust and faster than the traditional PI controller. Simulations are performed in

MATLAB software.

Telemark University College accepts no responsibility for the results and conclusions presented in this report.
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Nomenclature
The symbols, subscripts and abbreviations used in the thesis are listed.

Symbols
a, Cross-section area of the outlet hole in Tank i
arg min Minimizing argument
A Cross-section area of the tank i
(A,B,D,E) State space model matrices
( A , B , 13) Augmented model matrices
g The acceleration of gravity
G (s) Transfer function of minimum phase process
G, (s) Transfer function of non-minimum phase process
h The water level in the tank ;
H Hessian matrix
H! Toeplitz matrix
Identity matrix
J, Cost/ Objection function
k, The pump gain
K Kalman Filter gain
K Kalman filter gain in innovation form
K, Proportional gain in PI control
L Prediction horizon
Lu Control horizon
h System order

Observability matrix

Symmetric and positive semi-definite weighting matrix
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q in
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rk+1|L

Subscripts
i
k
k+1

Volumetric flow rate into the tank

Volumetric flow rate out of the tank

Symmetric and positive semi-definite weighting matrix
Specified reference signal vector

Symmetric and positive semi-definite weighting matrix
Time constant

Integral time in PI control

The voltage applied to the pump i

Actual control signal

Optimal future control signal vector

Optimal future deviation control signal vector

Input data matrix

Unknown slowly varying process disturbance
Unknown slowly varying measurement disturbance
Output data matrix

Process output vector

Valve constant

RGA matrix

Index i=1,2,3,4,.......
Discrete time
Next sampling time
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Abbreviations

CARIMA
CARMA
Ccv
DARMA
DMC
DSR
EMPC
FCCU
GPC
IMC

LQ

LQR
MAC
MATLAB
MIMO
MPC
MV

PID

PM

prbs
PVC
quadprog
RGA
SCE
SISO
SQP
TUC
UPC

Controller Auto Regressive Integrated Moving Average
Controller Auto Regressive Moving Average

Control Variables

Deterministic Auto Regressive Moving Average
Dynamic Matrix Control

Deterministic and Stochastic system identification and Realization
Extended Model Predictive Control

Fractionator Column of Fluid Catalytic Cracking Unit
Generalized Predictive Control

Internal Model Control

Linear Quadratic

Linear Quadratic Regulator

Model Algorithmic Control

Matrix Laboratory

Multiple Input and Multiple Output

Model Predictive Control

Manipulated Variables

Proportional Integral Differential

Prediction model

pseudo-random binary sequence

Poly-Vinyl Chloride

Quadratic programming

Relative Gain Array

Systems and Control Engineering

Single Input and Single Output

Sequential Quadratic Programming
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Unified Predictive Control
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1. Introduction

In this chapter, the overview of the thesis topic is introduced with Model Predictive Control
(MPC) background. The objective of the thesis and the main required tasks for successful

completion of the work are listed. The outline of the thesis is also provided in this last part.

1.1 Overview

Classical proportional-integral-derivative (PID) Controllers have been used in the industries for
decades and playing an important role to fulfill the operational demands of the industries. They
ruled the process industries and the most widely used strategy due to their simple structure [1].
Due to the environmental regulations and fast changing economic market, industries were
looking for an optimal controller that can increase the productivity of goods and reduce the
operating cost. These requirements lead to the development of the Model Predictive Control
which is an advanced control strategy that meet the requirement of the process industries [2].
MPC is the most widely used controller at present due to its ability to handle multivariable
process and constraints in a simple way [3]. The ideas for developing predictive started since
1960’s and first successful implementation of MPC reported by Richalet et al [4].

MPC belongs to a class of optimal control that uses a process model to compute future predicted
outputs. These predicted outputs are then used to calculate a sequence of control inputs that are
sent to the system for optimizing the plant future behavior [5]. An MPC algorithm consists of the
cost function, constraints and a prediction model. The cost function measured the difference
between the future output and specified reference and also find the control signals. The
constraints are limitation of the process. The constraints for the MPC are an input amplitude
constraint, input rate constraint and output constraint.

The prediction model is constructed from the process model that describe the relationship
between the future outputs and control inputs. The difference between the predicted and
classical controller is the use of the model. The process model can be finite impulse/step
response model, state space models, or transfer function models [5]. The MPC can be classified
into linear and nonlinear model predictive control based on the model used to construct the
prediction model. Using a linear model lead to formulate a linear MPC and on the other hand, a

nonlinear model resulted in nonlinear MPC.



There are several methods within MPC algorithms that differ from each other based on the
process model used [6]. However, these algorithms have some problems with offset i.e. the
process output is not equal to the specified reference at steady state. This offset problem can be
solved by introducing the integral action. There are different methods to obtain integral action in
MPC. In this thesis, it is achieved by using the deviation variables such that the output from the
process is equal to the reference in steady state [7].

MPC with integral action method is formulated and implemented in benchmark process. Four-
tank process is used as benchmark process, and simulation experiment is performed. System
identification is a method to construct a mathematical model of the process based on the process
input-output known data. System identification algorithm as Deterministic and Stochastic system
identification and Realization (DSR) is used to identify the state space model of the four-tank
process and then used it in the MPC with the integral action algorithm. The data for the four-tank
process is generated by the simulation. The model formulation from the known input-output data
and then using this model in MPC method is defined as model free MPC algorithm. This method

is useful when the process model is not formulated by first principle.

1.2 Objective

The master thesis is a mandatory part of the master’s degree in Systems and Control Engineering
(SCE) at Telemark University College (TUC). The objective of this work is to give a theoretical
description of model predictive control with integral action as well as perform simulation
experiment on benchmark process. The well known nonlinear four-tank process is used for this
purpose. The MATLAB software is used for the simulation experiments and the main tasks of

the thesis are listed as,

e A short overview of the state space model based Model Predictive Control (MPC).

e Overview of different methods to achieve integral action in MPC algorithm.

e Theoretical description of MPC optimal controller with integral action method.

e Performance simulation experiments of MPC with integral action on the four-tank
benchmark process.

e Performance comparison in reducing control horizon in MPC method.

e Identify the linearized state space model by using a system identification algorithm as

DSR and use the identified model in the MPC method.



1.3 Thesis outline
The title of the thesis is “Model Predictive Control (MPC) with integral action: Reducing the
control horizon and model free MPC”. The work is divided into different chapters and tasks are

completed in a sequential way. In this section, a short overview of all the chapters is included.

In chapter 1, the overview of the thesis topic is introduced with Model Predictive Control (MPC)
background. The objective of the thesis and the main required tasks for successful completion of

the work are listed. The outline of the thesis is also provided in this last part.

In chapter 2, the basic ideas about the model predictive control is introduced. First of all, theory
behind MPC is given and then the structure of the controller is summarized which consists of the
cost function, constraints and prediction model. Finally, the working principle of the MPC is

explained.

In chapter 3, state space model based predictive control is presented and different methods of
achieving integral actions in the MPC optimal control algorithm are discussed. The formulation
of MPC with integral action is described that will be used for simulation experiments of the four-

tank process. Finally, the Kalman Filter algorithm steps are explained.

In chapter 4, the four-tank benchmark process is described and its physical model is formulated
by writing down mathematic equations using the basic laws of physics as presented by many
researchers. The nonlinear model is linearized for use in MPC with the integral action algorithm.
The operating condition of the four-tank process as minimum and non-minimum phase are

discussed at the end.

The chapter 5 is one of the main chapters, simulation experiments of MPC method on benchmark
process is discussed. The parameter values for both operating conditions are taken from the
literature. First of all, stability, observability and controllability of the linearized model of the
four-tank process is analyzed. Constrained and unconstrained MPC with integral algorithm is
implemented in the linearized model of four-tank minimum and non-minimum phase process.
Constrained MPC is further explored with different constraints handling technique i.e. ‘quadprog’
function and ‘if-else’ method. A decentralized PI controller is implemented to control the four-
tank process for comparing the results with the MPC optimal controller. In the last part,
simulation using different values of the control horizon in the MPC algorithm is performed. The

experimental results for all the simulations are plotted and compared with each other.
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In chapter 6, the system identification method is used to identify the model of the process and
formulate a model free MPC algorithm. First of all, short overview of system identification
algorithm as Deterministic and Stochastic system identification and Realization ‘DSR’ is
introduced. The input-output data of the four-tank process is generated by simulation for both
minimum and non-minimum phase setting. The collected data is used in the ‘DSR’ algorithm to
construct a linearized state space model. The identified model is validated and then used in MPC

with integral action to control the four-tank process.

The brief summary of all the simulation results obtained in this work is outlined in chapter 7, and

some recommendations for the future work are given in the end.

The conclusions are pointed out in chapter 8.



2. Model Predictive Control

In this chapter, the basic ideas about the model predictive control are introduced. First of all,
theory behind MPC is given and then the structure of the controller is summarized which
consists of the cost function, constraints and prediction model. Finally, the working principle of

the MPC is explained.

2.1 Introduction

Model predictive control belongs to a class of optimal control and the most commonly used
technique in process industries. Model predictive control has a history of more than five decades
and it is one of the challenging fields both in industrial and academic sectors. Several
publications associated with MPC methodology provide a good introduction to practical issues.
Design formulation, ability to handle constraints, online process optimization and simplicity of
the design are the major aspects of model predictive control that make it attractive to

practitioners and researchers [3].

2.2 Theory behind MPC

The conventional proportional-integral-differential (PID) controllers ruled the process industries
for decades. Today’s advance computing technology allows implementing more advanced
control algorithms, but the most of the practitioner’s preferred method is to design the robust and
transparent process control structure which uses simple controller. This is the reason why the
PID controllers are mostly used in the industry although many other sophisticated control
algorithms have been developed, however, this strategy of control structure cases some limitation
in process performance [3]. In the advance computing technology, the industry was looking for
optimal control strategy. This demand leads to the development of model predictive control
which is an effective optimal control strategy that fulfills the control requirement of process
industries. MPC is an optimal model based control algorithm and it is regarded as the most
advanced technique among all the control algorithms present today [2].

The development of modern control concepts has been started from the work of Kalman with the
linear quadratic regulator (LQR) designed to minimize a quadratic cost function of states and
inputs. The reason why the LQR was not the best choice for process industries because the

nonlinearities of the real systems and the absence of constraint in its formulation and at the same



time not much handy for instrument technicians and control engineers as mentioned
by Nunes [5].

The ideas for developing model predictive control which is a special case of the optimal control
theory have been started since 1960’s according to Garcia et al [8]. The successful
implementation of model predictive control in the industry reported by the researcher in late
1970’s [5]. Particularly the one by Richalet et al. [4] presenting Model Predictive Heuristic
Control (MPHC) which later known as Model Algorithmic Control (MAC [9]). It was
implemented on a main fractionator column of Fluid Catalytic Cracking Unit (FCCU) in poly-
Vinyl Chloride (PVC) plant, in the late seventies [2].

The theory of predictive control has been developed almost in all feature such as stability,
nonlinearity and robustness [3]. Within the framework of predictive control, there are many
different ways to design a predictive controller. There are different predictive controllers, each
with different properties such as a Generalized Predictive Control (GPC, [10-12]), Dynamic
Matrix Control (DMC, [13]), Unified Predictive Control (UPC, [14]), Internal Model Control
(IMC, [8]) and Extended model based predictive control (EMPC, [15]) etc. After the successful
implementation of model predictive control (MPC), it has become the most popular control
strategy for process industries. The applications for MPC have now extended from
petrochemicals and refining fields to food processing, automotive, metallurgy, aerospace and
defense industries according to an industrial survey presented by Qin et al. [6].

MPC became the standard control strategy due to its constraints handling abilities and numerous
advantages over traditional controllers. It is suitable for multivariable control designs where the
interaction between manipulated variables (MV) and control variables (CV) is taken into
consideration. It also has the ability to manage long time delay and non-minimum phase problem

as discussed by Eng et al.[2].

2.3 Structure of Model Predictive Control

A Model predictive control algorithm consists of a cost function, constraints and a prediction
model or model of the process [16]. It is a computer control algorithm that uses a model of the
process which generally represents the complex behaviors of the dynamic systems. This model is
used to predict the system’s future response over a future time interval or normally known as the
prediction horizon [2]. The future response of the system based on the current and past values of

system output and on the future control actions. This information is used to calculate the optimal
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control signals for future actions [17]. Then the main concept of the optimization is to compute a
vector of control inputs to be fed into the system in an optimal way and at the same time process
constraints taken into concern [16]. The structure of the MPC is illustrated in the diagram shown

in Figure 2.1 and below its main components are described.

Cost function  Constraints

Future Inputs

-
| _

Figure 2.1: Structure of MPC [17].

Process Output

Setpoint Q Future error
> >

A

Predicited Output

2.3.1 Cost function
Cost function also called as objective or optimization function which is denoted by J, in this

thesis. It is a scalar criterion that measures the difference between the future outputs y,,,, and

some specified future reference r,,,, and at the same time finds the control signal u,. This cost

function is the measure of process behavior over the prediction horizon such that it is minimized

with respect to the future control vector u,,,, and only the first input is used. At the next time

instant, % := & +1the optimization process is repeated again which is known as a receding control
horizon problem and mathematical derivations in this chapter are referenced from Ruscio [15].
The generally used cost function with MPC in scalar form is given in equation 2.1,
L
Jk = Z ((yk+i TV )T Qi (yk+i B rk+i) + uliri—lBukJri—l + Auliri—lRiAukJri—l) (2- 1)
i=1
Where
QI- c Rm><m
B c Rr><r
Rl- c Rr><r



are the user specified symmetric and positive semi-definite weighting matrices and L is

prediction horizon. For simplicity, these matrices could be chosen as, Q. =qlI_, P =pl and
R =1 1 where g, p and rjare taken as positive parameters. In the general case Q,P. andR;are

diagonal weighting matrices, where P. is taken as zero in order to obtain MPC with integral
action such that output is equal to the reference signal i.e. y =r[15]. The cost function can be
written in matrix form as,

Jy = (yk+1\L e )" Q(yk+1|L - rk+1\L) +ukT\LPuqu +AukT|LRAuk\L (2.2)
Where
Q c RmeLm
P e RM
R c RerLr
are symmetric and positive semi-definite weighting matrices. MPC with offset free control, in
other words MPC with integral action can be achieved by choosing P = 0. The control problem

subjected to prediction model and process variable constraints is specified as equation 2.3.

“Z\L =argmin J, () (2.3)
Uk |

The objective of the cost function is to minimize the difference between the process output y,

and specified reference r,,, and at the same time minimize the control u,, [15].

2.3.2 Constraints

The limitations to a process are known as constraints, and MPC became the standard control
strategy due to its constraints handling abilities. Common types of constraints for model
predictive control are the input amplitude constraint, input rate constraint and output constraint
that can be written by following linear inequality form as in equation 2.4 [15].

AAu,, <b (2.4)

Where Ais a matrix and b is the vector. The more details about the common constraints is given
below,

e Input amplitude constraint

It is amplitude constraints on the input signal which can be mathematically written as shown in

equation 2.5,



u™ <uy, <ug” (2.5)
The relationship between u,, and Au,, can be defined as follows,
U, =SAu,, +cu, (2.6)

Rearranging the above equation as SAu,, =u,, —cu,_, and the equation (2.5) is equivalent to

equation (2.7),

. (2.7)
SAu,, <-uy” +eu,
S ug —cuy I : .
Where A= and b = : , substituting Aand b in equation (2.4) we have,
-S —U ey,
> |au,, <| e~ 2.8)
-S —u,‘jﬁ“ +cu, ,

The input amplitude constraints in linear inequality form are given in the above equation.
e Input rate constraint
The limitations on the rate of change are stated as input rate constraints. Mathematically it can be

written as,

Au™ <u,, < Au™ (2.9)

KL k|IL k|L
The above equation is equivalent to
max
Auy, < Auyy

. (2.10)
—Au,, < —Aum

I A max
The equation (2.10) can be written in linear inequality form, where A={ J and b :{ Hiw :I

min
—Auk‘ .

A, <) @11)
-1 —Au;

The limitations on the output are defined as output constraints that can be written as

¢ Output constraints

ymin Syk+1\L S.Ymax (212)

The prediction model in terms of control variable v, is given in equation (2.13),



Vi = P HFruy, (2.13)
From equation (2.6) we haveu,, such that,
Uy, = SAule +cu,

Substituting the u,, in equation (2.13) we have,

Vi = Py +Fp (SAuk\L + Cuk—l) (2.14)
Vi = b T SAy, +Fieu, (2.15)
Y =F.SAu, +p, +Fcuyy (2.16)

Further summarizing equation (2.16) gives,

Year = F Auy, +p° (2.17)
Where
F=F,S
pLA =p, +F,cu,_,
Combining the output constraint and prediction model in term of control change variable as
given in equation (2.12) and (2.17) respectively, we have

ymjn < FLAAUHL + l)LA < ymax (218)

The above equation is equivalent to

F Auy, < Yoo =P}
P ' (2.19)
_FLAAUHL S~ Yin T pLA
Writing above equation in linear inequality form AAu,, <b, we have
F} Yonsx = P,
[ " }Aum < X (2.20)
_FL _.ymin + pL
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Input amplitude, input change and output constraints from equations (2.8), (2.11) and (2.20) can

be combined and written as linear inequality of the form AAu,, <b respectively.

— —_ max
S Uy, —CU,
min
-S —Uy," +cu,
max
I Ay < Auyy
—I uk\L - A min
—AlUy;
F* _ pb
LA Yinax pL
-F A
- L __yrnin + pL i
Where
— —_ max
S Uy, —CU,
min
_S —Up," +cuy
I Au,fllz"
A= and b= o
-1 —Auy,
F* g
LA Yimax pL
-F A
L __ymin + pL

(2.21)

The solution to constraint problem can be solved by the quadratic programming. The control

objective criterion and prediction model are given as,
T T
Ji=W ke k+1\L) QY ki — T k+1|L) +Au,, PAu,,

Prediction model,

Yiar = FLAuk\L + D

By substituting equation (2.23) into (2.22) gives,
Jio = (FAuy + pp =Ty )’ Q(F Auy; + pp =T ) + AU;LPAUML

J, = Aug, FTQF, Ay, +Aug FTQ(p, — 1) + (P — oy ) QF, Auyy, +
(L —Ten) Q(P, —Tiyn) + Aty PAU,

Jy = AUI{\L (FLTQFL + P)Auk|L + Au;LFLTQ(pL e )+(p, - s ) QFLAuqu +J,
Equation (2.26) can be written as

J, =Auy, HAuy +2f" Auyy, +J,

11

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)



Where,
H =F/QF, +P
S=FO(p, 1)
Jy=(p, _rk+l|L)TQ(pL ~Fear)
Subjected to 4Au,, <b the quadratic programming problem can be formulated as follows,
%ZE(Au,zLHAule +2f"Auy,) (2.28)
Using the “quadprog” function in MATLAB, the problem can be solved such that,
Au,, = quadprog(H, [, 4,b) (2.29)
And the control single u,, can be computed as u,, = Au,, +u, ,, where u, ,, must be known
however it can be specified in the start [15].
2.3.3 Prediction model
Model predictive control requires a process model that describes the input to the output behavior
of the process. Prediction model (PM) is usually constructed from the process model that

describes the relationship between the future outputs and future control inputs. A linear dynamic

process model can be written in the standard prediction model form as,

Vewnr = P+ F iy, (2.30)
Where F, € R is a constant matrix derived from the process model, L is a prediction horizon,
and p, e " is a vector that depends on model parameters and a number of inputs and outputs
that are older than time & . The prediction model in equation (2.30) is used in the MPC algorithm

to compute the actual control vector u;L [15].

In some MPC algorithm process deviation variables are computed, such as MPC with integral

action computing the vector of future control deviation variables Au,, . The prediction model in
this case can be written as,

Ve = FLAA”ML + pLA (2.31)
In the MPC algorithm, this prediction model can be used to compute the control vector Au;L .The

main purpose of using a prediction model given in equation (2.30) and (2.31) is to express the
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future predictions as a function of unknown future control vectors which MPC algorithm will

compute [15].

2.4 Model Predictive Control principle

Current measurements and future outputs predicted by using the process model are the bases of
the MPC calculations. At each sampling time, the MPC algorithm computes a sequence of
control signals over the prediction horizon. The purpose of these control signals is to minimize
the difference between the predicted controlled outputs and set point of the outputs or in other
words predicted output reached set point in an optimal way [18].

The general principle of MPC control calculation is illustrated in Figure 2.2 for a SISO* control,
where y,  and u are actual output, predicted output and manipulated input respectively. The
MPC algorithm computes a sequence of control signals u(k +i—1) for i =1,2,...., L at the current
sampling time k . This sequence consists of the current control input u(k)and (L—1) future
control inputs [19]. The first input of optimal sequence computed by the MPC is implemented,
and the rest of control inputs are discarded. At the next sampling instance k+1, a new set of
control signals u(k+L+1) is calculated and again only the first is sent into the system. The
entire process is repeated at subsequent sampling intervals.

In order to find the optimal control input vector, a cost function J is to be minimized over a
receding horizon consists of a finite number of steps L in the future as mention by Byeongil
Kim [17]. The number of samples the MPC controller predicts in the future called the prediction
horizon L,and a number of control moves within the prediction horizon is called the control

horizon [17].

! Single Input and Single Output
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k-1 k k#l  k+2 k+L-1 kL Time

Control horizon |
1

Prediction horizon L |

Figure 2.2: Model Predictive control concept [19]

In MPC algorithm prediction, the horizon is being shifted forward and for this reason MPC is
also known as receding horizon control [20]. The basic idea of shifting forward prediction
horizon from the present time instance k to next time interval k +1 is illustrated in the diagram
shown in Figure 2.3. At time instance k an MPC controller predicts the k+ L outputs, and at

the next sampling interval k+1, the prediction horizon moves forward as a result, the MPC

controller predicts k + L +1outputs [5].

k k+1 k+l  k+L+1 Time ~

{ Prediction horizon at time k I
| |

Prediction horizon at time k+1
Figure 2.3: MPC receding prediction horizon [16]
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3. State space model based MPC and integral action

In this chapter, state space model based predictive control is presented and different methods of
achieving integral actions in the MPC optimal control algorithm are discussed. The formulation
of MPC with integral action is described that will be used for simulation experiments of the four-

tank process. Finally, the Kalman Filter algorithm steps are explained.

3.1 Introduction

Most of the MPC applications using prediction model based on a linear dynamic model of the
process that will lead to the linear model predictive control. However, using the nonlinear
process model for prediction will be resulted in the nonlinear model predictive control and it is a
nonlinear optimization method that can be solved by Sequential Quadratic Programming (SQP)
[21]. The problems with nonlinear MPC optimization are local minima, and there is no guarantee
of nonlinear MPC to converge within the specified computation time. Hence, the model
predictive control can be categorized into the linear model predictive control and nonlinear
model predictive control by using the linear and nonlinear models in the prediction model
respectively [15]. There are various methods to formulate the predict control algorithms that only
different from each other based on the process model used for the cost function. MPC algorithms
are using finite impulse response models, step response models, transfer function models or state
space models for computing the future output predictions [5]. The general approach is to use a
state space model as it is easy to convert any linear dynamic model into the state space

model [15].

e Impulse/Step response model:

Impulse/ Step models are a special case of input and output models that can be formulated by
simple experiments but required a large amount of parameters to be considered. These model
parameters related to the impulse response matrices of the state space model. Matrix Algorithm
Control (MAC [9]) and Dynamic Matrix Control (DMC [13]) algorithms use these models.
However, these methods are not common because they rely on the model that describes only
special case linear dynamic systems e.g. stable systems and systems without integrator, as

mention by Ruscio [15].
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e Transfer function model:

Transfer function models are preferred when it is easy to formulate a good model using physical
laws or by system identification methods. It required fewer parameters to be estimated as
compared to the Impulse/ Step response models. Generalized Predictive Control (GPC) is a class
of predictive control that uses a transfer function model of the system [15, 22]. It uses different
types of the transfer function models, examples are Controller Auto Regressive Integrated
Moving Average (CARIMA), Deterministic Auto Regressive Moving Average (DARMA) or
Controller Auto Regressive Moving Average (CARMA) model [5].

e State space model:

State space model similar to transfer function model can be formulated on the basis of physical
laws or system identification methods. These models are mostly used for a time invariant system.
In this thesis, the state space model based Model Predictive Control is in the main focus, hence

its formulation is described in more details.

3.2 Extended Model Predictive Control (EMPC)

The prediction model can be formulated by using the state space model that leads to the
Extended Model Predictive Control (EMPC) algorithm as presented by Rusico [23]. It can
classify into EMPC; and EMPC, based on prediction model that uses the process actual variables
and process deviation variables respectively. The formulation of the state space model based
MPC is described below and the mathematical derivations in this chapter are referenced from

Ruscio [15].

3.2.1 Extended Model Predictive Control (EMPC,)
Prediction model is based on the actual variable in EMPC;. A deterministic linear dynamic
system can be written as a state space model given in Equation (3.1) and (3.2) as mention by
Ruscio [15].
X, = Ax, + Bu, (3.1)
y, =Dx, (3.2)
Using the above state space model , the prediction model can be formulated for L =4, where L

is prediction horizon.

For k=k+1
yk+1 = ka+1 (33)
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Substituting the equation (3.1) into (3.3), gives
Yin = D(Ax, + Bu,)

For k=k+2

For k=k+3

V.o =DAx, + DBu,

yk+2 = D(A‘xk+1 + Buk+l)

Ve, = DA’x, + DBu, + DBu,

yk+3 = D(A'xk+2 +Buk+2)

V.3 = DA’x, + DA*Bu, + DABu, ,, + DBu,,

Equations (3.2), (3.5), (3.7) and (3.9) can be written in matrix form as,

Vi
Yin
Y2

Yil4

_yk+3 n
—

- —

D
DA
DA?
DA

04

X, +

' DA’B DAB DB |

0 0
DB 0
DAB DB

0
0
0

Hy

U

Ui

U3

(34

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Where y,, is data matrix of output variables, u,;is data matrix of input variables, O, extended

observability matrix for the pair (D, A), and H_ is lower block triangular Toeplitz matrix for

(D,A,B) matrices [24]. The equation (3.10) can be written as,

d
Yia = O,x, + Hj Ups

The above equation when the prediction horizon is equal to L becomes,

d
Yur = Ox, +H,; Up

Formulating the equation when &k =k +1, the equation (3.12) becomes,

_ d
Yiar = O,x,,+H; U i

From equation (3.1) x,,, = Ax, + Bu, , substituting in the above equation gives,

d
Ve = O,4x, +O,Bu, + H; Ui

Writing the equation (3.14) in matrix form gives,
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(3.12)

(3.13)

(3.14)



d U
Yir =0,A% +| OB H ]{ } (3.15)
Ui
Where,
p. =0, Ax,,

F,=[0,B H],

u = Uk
KL = >
Uy i

Substituting p,, F, and u,, , the equation (3.15) becomes,

Vi = Pp+ Frly, (3.16)
The equation (3.16) is the prediction model that will be based for an MPC algorithm to compute
the predicted outputs. The term p, in the above equation depends upon the x, which is the
present state and resulting MPC will be a state feedback type algorithm [15].
T = O = Tieon)" QU =~ Thn) + Ui Pt (3.17)

Substituting prediction model from the equation (3.16) into the cost function given in equation

(3.17), we have

Jio = (FUy, + Pp =l ) Q(F Uy, + P, — Ty )+ ukT|LPuk|L (3.18)
Jy = ukT\L (FLTQFL +Puy, + 2FLTQ(pL — e U, +(P; _rk+1|L)T Q(p, — N  (3:19)
J =ug, Huy +2f u, +J (3.20)

Where
H = FLTQFL +P
f=F'Q(p, ~Tiyr)
Jo=(P, ~Ti) QP —Tiyr)

Minimizing the cost function given in equation (3.20) with respect to u,;, i.e, minJ, ,

Uk L

oJ
—~ =u Huy, +2f uy, +J, (3.21)

KIL
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The equation (3.21) becomes the future optimal control, where only the first element u of

control vector u: . is used for control purpose [15].

*

=-H '*f (3.22)

kIL

3.2.2 Extended Model Predictive Control (EMPC,)
The EMPC,; is based on the process deviation variables and prediction model can be derived

from the equations (3.1) and (3.2) by introducing the relationship u,, = SAu,, +cu, , [15]. The
prediction model will be of the form,

Year = DL+ F Auy, (3.23)
p, and F, are given by equation (3.15), where FLA and pLA are,
FLA =FS

A
p, =p,+Fcu,

The cost function,
Jy, = (yk+1|L e ) Q(ykJr]JL - rk+uL) + uszPuk\L + A“kT|LRAuk|L (3.24)

Substituting prediction model from the equation (3.23) into the cost function given in equation
(3.24), becomes

J, = (FLAAule + pf — ) Q(FLAAukIL + pf — o) Uy Py, + A RAU, (3.25)
Jo=Au! (F* QF"+R+S"PS)Au,, +2(F" Q(p" —r,,) +S"Peu, )" Auy, +J, (3.26)
Jo=Au? HAuy, +2f" Auy, +J, (3.27)

Where
Uy, = SAukIL +cu, ,,
H=(F" QF*+R+S"PS),
f= (FLA Q(pLA — ) +S' Pey, ),
Jo= (PLA — ) Q(pLA )+ ukT_lcTPcuk_1
Minimizing the cost function given in equation (3.27) with respect to Ay, i.e, minJ,,

Auy IL
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o7,

= Auy, HAuy, +2 " Auy, + T, (3.28)
Uy,

The equation (3.28) becomes the future optimal control as,

*

AU =—H'*f (3.29)

kIL

Where only the first element Au,,, of control vector Au: is used for control purpose and

|L

actual control signal u, for MPC optimal control can be calculated as u, = Au, +u, ,[15].

3.3 Integral action in MPC
Model predictive control has several algorithms that differ from each other based on the process
model used for the cost function. These formulations have some problems with offset i.e. the

process output y is not equal to the set point r in steady state. In order for the controllers to

handle the offset problem, integral action is an effective method. Different methods have been
presented to achieve offset free control or integral action in MPC algorithms. A short overview
of these methods is discussed here, and formulation of MPC optimal controller with integral
action used in the simulation experiments is present in the next section.

Akesson [25] suggested a disturbance observer approach to obtain offset free control. There are
always modeling error and disturbance that affect the proper working of the controller. These
problems can be handled by introducing the integral action as a result, error free tracking of
reference signal is obtained [25].

According to Muske and Bedgwell [26], most of the MPC algorithms use a constant output step
disturbance model to achieve the integral action. The same approach was discussed by Rawling
[27] to formulate the controller that effectively handles the steady state offset. Another method to
achieve the offset free control is by the addition of integrating disturbance to the process model
presented by Pannocchia and Rawlings [28]. A velocity form state-space method to get an offset
free control pointed out by Pat and Garcia [29] which is a similar approach to augmenting the
system model with a disturbance. In this method, state acts as a change in the original state, and
outputs of the original system are the augmented states. Davison and Smith [30] pointed out that
disturbance formulation as the standard approach to achieve integral action.

Morten [31] formulated the MPC with integral action by using the input changes as free
variables in the optimization instead of using the input itself and presented the augmented model

formulation as given below using the model in the equations (3.1) and (3.2),
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Ax, A B|- |B
= X, + Au,
u, 0 1 1

D T (3.30)
v =[D I]%,
D

Where Au, =u, —u,_,.
In this work, the integral action in the MPC algorithm is achieved by using the deviation

variables mention by Rusico [7] and described in the next part with details derivation.

3.4 Formulation of MPC optimal controller with integral action

The model of the process with disturbance can be written as
X, =Ax, +Bu, +v (3.31)

v, =Dx, +Eu, +w (3.32)

The equation (3.32) has a direct term from the input signal u, to the output signal y, , however in

MPC due to receding horizon control principle, the current information about the process is used

for prediction and control. Therefore, in process model the term E is set to zero because the

input signal u, can not affect the output signal y, at the same time as mention by Wang [3].
Then the process model will be as

X, =Ax, +Bu, +v (3.33)

¥, = Dx+w (3.34)

Where 4,B and D are known system matrices, x, € R"is a state variable vector, u, € R"is

control input vector, y, € R™is output (measurement) vector. In equation (3.33) and (3.34), v

represent an unknown constant or slowly varying process disturbance and wis an unknown
constant or a slowly varying measurement noise vector [7, 32]. The disturbance v and w both

are not known and the MPC algorithm required model free from unknown disturbances [15]
which can be eliminated by introducing the terms x,and y, ;.
Where

x, =Ax,_, +Bu,  +v (3.35)

Vo, =Dx_ +w (3.36)
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Subtracting the equation (3.35) from (3.33) and equation (3.36) from (3.34), gives
X, —X =Ax, +Bu, +v—(Ax_, +Bu, +v)
V.=V, =Dx +w—(Dx,_ +w)

After simplifying above two equations,
X — X, = A(X, =X, )+ B(u, —u,_,)
Vi = Vea =D(x, = x,,)

Where,

AXy g =X — %,

Ax, =X, —x,

Au, =u, —u,_,

(3.37)

(3.38)

(3.39)

(3.40)

By substituting the above terms in equations (3.39) and (3.40), then write them in a matrix form.

Ax,,, = AAx, +BAu,

Vi =V +DAx,
Ax A 0| Ax B
Vi Yia 0
%/_/ %f_/ B N
i/ﬁ-l A Xk B
Ax
o
T Yia

Writing equations (3.43) and (3.44) in more compact form,
Ax, = AAx, + BAu,

Yk :[)Mk

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

The prediction model from the equations (3.45) and (3.46) can be formulated by same method

presented in section (3.2.1). The prediction model will be in the form as,
Ve =P+ F Ay,

Where,

pr= OL‘a)zk

22

(3.47)



F, = I:OLE H ZI ]
Where O, is extended observability matrix for the pair (5, 1), and H_ is a Toeplitz matrix for

([), gl,é) matrices [15]. The cost function from the equation (3.24) is

Jip= (yk+l|L Nz )T Q(yk+l|L - ’;c+l|L) + ukT|LP Uy + AulgLRAuku (3.48)

The control weighting matrix P =0, to obtain an MPC with integral action such that y =r in
steady state. Then substituting the prediction model equation (3.47) into the cost function
equation (3.48) gives,

S =(F Ay, + pp—1y,) QF Ay, + py =1y ) + A Ry, (3.49)

After simplifying the above equation, it is minimized with respect to Aw,, i.e. minJ, ,

AMHL

oJ,

=Aul, HAuy, +2f" Ay, +J, (3.50)

U,
Where,

H=F "OF, +R

S=F'O(p, 1)

Jo =P, = T) QP Ty

The purpose of computing the control deviation variance Au,, is to achieve integral action in an

optimal manner.

Au:‘L =—H'+f (3.51)
Where only the first element Au, ;, of the control deviation vector Au;L is used for control

purpose and the actual control signal u, for MPC optimal control can be calculated as

u, =Au, +u, [15].

3.5 Kalman Filter
The theory of Kalman Filter was developed by Rudolf E. Kalman in 1960’s. It is commonly used

algorithm for estimating the unknown state variables of a dynamic system that are excited by the

stochastic disturbances and measurement noise respectively [33]. This method produces an
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optimal estimation in such a way that the sum of estimation errors obtains a minimum mean
value [15]. In this section, Kalman Filter algorithm is formulated which will be implemented in
simulation experiments discussed in chapter 5. It will be used to estimate the states since all the
states are not measured. A discrete time state space model can be written as

X, =Ax, +Bu, +v,

(3.52)
v, =Dx, +w,

v, is the white process noise whereas w, is white measurement noise. The steps for calculating

the state estimation by the Kalman Filter algorithm are as follows [15, 34],
¢ Finding the Kalman Filter Gain X .

e Define the initial Apriori or predicted state estimate

X, =x, (3.53)
¢ Find measurement model updating,

v, =Dx, (3.54)
¢ Finding the estimation error

e =y,~ (3.55)
¢ Finding the aposteriori state estimate

X, =X, +Ke, (3.56)
¢ Finding the apriori state estimate update

X, =AX, + Bu, (3.57)

Where X, is apriori or predicted state estimate and X, is aposteriori state estimate [34]. Noted 4

has been used in MATLAB m-file script to represent the state x . The Kalman filter in the

innovation form can be written as,

X, = A%, + Bu, + Ke, (3.58)
v, =Dx, +e

The Kalman filter gain in innovation formK = AK , [15].
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4. Simulation Experiments on benchmark process

In this chapter, the four-tank benchmark process is described and its physical model is
formulated by writing down mathematic equations using the basic laws of physics as presented
by many researchers. The nonlinear model is linearized for use in MPC with the integral action
algorithm. The operating condition of the four-tank process as minimum and non-minimum

phase are discussed at the end.

4.1 Four-tank Process

Four-tank or quadruple-tank process is a multivariable standard process used in many control
laboratories for academic purpose first presented by Johasson [35]. It is a nonlinear system that
consists of two pumps, two valves, two level sensors and four interconnected water tanks. The

level sensors are connected to the lower tanks i.e. tank 1 and tank 2. The voltages to the pumps
(u,and u,) are the process input, and voltages from the level sensors (y, and Y, ) are the process

outputs. The schematic diagram of the four-tank process is illustrated in Figure 4.1.

Tank 3 Tank 4

Valve 1 ][‘—‘ ’—P][ Valve 2

Figure 4.1: Four-tank process schematic diagram [35]
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The voltage u, is applied to pump 1, for supplying water from the reservoir to tanks 1 and 4

while the voltage u,is applied to pump 2 for supplying water in tanks 2 and 3. The valve 1 is

used to control the water flow in tanks 1 and 4 while valve 2 is used to control the water flow in
tanks 2 and 3. The main goal is to control the liquid level in the tanks 1 and 2 therefore level

sensors are used in lower tanks.

4.1.1 Physical model of four-tank process
The mathematical model of the four-tank process can be derived by using mass balances and

Bernoulli’s law as represented by Johansson [35]. The mass balance for i" tanks can be written

as,
dh
i _h = Qiow T i in (4.1)
dt
Where q,, and q,, are inflow and outflow of a tank respectively that can be modeled using
Bernulli’s law. A is the cross-section area of i"™ tank and the potential energy in the tank will be
equal to kinetic energy of the liquid in the tank such that [36],
mgh = % mv® (4.2)

Solving above equation for v gives,
v=2gh (4.3)
Multiplying the equation (4.3) with an area of the outlet hole (a) of the tank gives the volumetric
flow rate q,, as,
Q,, =av=a/2gh (4.4)
Then the outflow of i" tanks can be written as,

Qo =4V, =G, 2gh (4.5)

The flow from pump 1 is ku, that split into a flow q,,, =ku, to the tank 1 and a flow
4., =1—=y,)kuy, to tank 4. Similarly, the flow from the pump 2 is k,u, that split into a flow
Gy, = 7,k,U, to the tank 2 and a flow q;,, =(1-7,)k,u, to tank 3. The level measurement signals
are k. *h,. By using equation (4.1) and (4.5) mass balance and Bernoulli’s law can be extended

for the four-tank process as [35],
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dh

A d—tl =—Qiou + Doue + Qi (4.6)
A % = Qi + Daoue T G2in (4.7)
A % = Q0w + Dain (4.8)
AT =g, b, 49)

Substituting the inflow g, and outflowq,, of the tanks yield,

dh

A Ttl = _al\#/zgh1 + a3\/2gh3 + 7, ku, (4.10)
dh,

A R J2gh, +a,\2gh, +y,k,u, (4.11)
dh,

A, - =—d,, j2gh3 + (1= y,)k,u, (4.12)
dh,

At =—a,, [2gh, +(1-y)kuy, (4.13)

The nonlinear model of the four-tank process is described in above four differential equations

and the parameter description is given in Table 4.1.

Table 4.1: The four-tank nonlinear model parameter description

A Cross-section area of the tank i;

a, Cross-section area of the outlet hole i;
h The water level in the tank i;

u, The voltage applied to the pump i;

7; Valve constant for the valve i;

k Pump constant for the pump i ;

g The acceleration of gravity;

k, The pump gain

i 12,...,4
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4.1.2 Linearization of four-tank process

The nonlinear differential equations (4.10)-(4.13) can be linearized at operating point given at

the levels in the tanks %’ and voltage u,. Considering the variables such that /; =4, —hand

u, =u,—u, . The linearized state space model is given by [35]

@=Ax+Bu
dr
y=Dx
Where,
L, A vk
T AT, 4
0o L o Afh 0
a | AL |k
L O L | L 0
T h,
i T, | 4,
h
[k 0 0 0]k
Yo k o oln
h4

The time constants for tank i can be calculated as,

T _A4 2gh’ fori=12,...,4.
a.

I3

4.1.3 Linear transfer function of the four-tank process

(4.14)

A, U
(1-7,)k, H (#12

(4.16)

The linear transfer function of the four-tank process can be formulated by Laplace transform of

equations (4.15) and (4.16) as mentioned by Numsomran [37].

|:y1(s)i| _ G(S).|:u1(5)i|
»,(8) u, (s)

G(s)=D(sI - A" B
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G G
G,i(s) Gy(s)
Where
418}
G, (8)=—"—"—
H (1+sT)
G, (s)= (1_7/2 )Cl
(1+ST)(1+5T,)
G21(S): (1_7/1)C2
(1+sT,)1+5T))
V26
G,(s)=—"—"—
22( ) (1+ ST,Z)
Substituting above terms into the equation (4.19), we have
6 A=7)q
1+sT, 14+ sT)(1+sT.
G| D) (rsTY(LeST) @.20)
(1_ 7/1)C2 V26
(1+sT,)A+sT,) (1+sT,)
Tkk T,k k
Where c,and ¢, in equation (4.20) are defined as, ¢, =——=< and ¢, = == described in [35].

According to the equations (4.17) and (4.19), the relationship between inputs and output will be
as follows,

yl(s) = Gn(s)-ul(s) +G, (5)-u2 (s) (4.21)
Y,(8) =Gy, (8)u,(8) + Gy, (), (s) (4.22)

It will be used for input-output pairing to see how the change in inputs u, or u, affects the

outputs y,or y,.

4.1.4 Operating conditions

In this thesis, the four-tank process model and control are compared at two operating conditions
defined as a minimum phase system and non-minimum phase system. They are characterized by
plotting the system poles and zeros locations on the complex s-plane, whose axes correspond to

real and imaginary parts of the complex variable s [38].
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¢ Minimum phase system
A minimum phase system does not have zeros or poles in the right half of the complex s plane.

According to Ogata [39], the range of phase angle in such system is minimum. In the four-tank
minimum phase process, the sum of the valve constants y,and y,is greater than one but less than
two i.e.,, 1<y, +y, <2. According to Johansson, in this case the flow of liquid to lower tanks is
greater than the flow in the upper tanks [35].

e Non-minimum phase system

A non-minimum phase system has zeros or poles in the right half of the complex plane and

according to Ogata [39], the range of phase angle in such system is larger than the minimum
value. In the four-tank process, if the sum of the valve constants y,and y,is greater than zero but
less than one i.e.0<y,+y, <1, then the system will have non-minimum phase characteristics.

According to Johansson, the flow of liquid to lower tanks is smaller compared to the upper tanks.

Therefore, it is hard to control the level in this phase [35].
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5. Simulation Experiments

The simulation experiments of MPC method on benchmark process are discussed in this chapter.
The parameter values for both operating conditions are taken from the literature. First of all,
stability, observability and controllability of the linearized model of the four-tank process is
analyzed. Constrained and unconstrained MPC with integral algorithm is implemented in the
linearized model of the four-tank minimum and non-minimum phase process. Constrained MPC
is further explored with different constraint handling techniques i.e. ‘quadprog’ function and ‘if-
else’ method. A decentralized PI controller is implemented to control the four-tank process for
comparing the results with the MPC optimal controller. In the last part, simulation using different
values of the control horizon in the MPC algorithm is performed. The experimental results for all

the simulations are plotted and compared the performance with each other.

5.1 Four-tank Process

Four-tank process is taken as a main benchmark process. The Kalman Filter is implemented for
state estimation, and the performance comparison of reducing control horizon in MPC method is
also pointed out. The results of simulation are discussed, and relevant MATLAB scripts are
given in appendices. The parameter values for the four-tank process are given in the following

table,

Table 5.1: Parameter values of the four-tank process [35]

Parameter Values
A and A, [cm’] 28
A and A, [cm’] 32
a, and a, [cm’] 0.071
a, and a, [cm’] 0.057
k. [V/cm] 0.5/1.0
g [em/s”] 981
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5.2 Simulation of nonlinear model

The physical model of the four-tank process derived in section 4.1.1 from equations (4.10) -(4.13)
is simulated to find the steady state values of the system in both minimum and non-minimum
phase characteristics. The parameter values in both cases are taken from the literature and
tabulated in relevant sections. The tanks are assumed to be empty at the start, and a constant
voltage is applied such that the liquid level reached the stable point. A combine MATLAB
program is written for both operating points, and a built-in function “ input ” is used to select
either minimum phase or non-minimum phase process by typing “ 1 ” or “ 2 ” respectively. A
data cursor display the values of points on the plotted lines and script files with the supporting

function are given in Appendix 2.
5.2.1 Minimum Phase system
The system will be minimum phase if the sum of the valve constants y,and y,is greater than one

but less than two i.e. 1<y, +7, <2, as mentioned in the previous chapter [35]. In this case, the

sum of valves constants is 1.3 which states that the system is minimum phase. A constant voltage
of 3 [V] is applied to pumps 1 and 2, and run the simulations for a time span of 1000 [s]. The
four tanks are assumed empty at the start, therefore the initial values are set equal to zero. The
parameter values of the four-tank process are taken from the Table 5.1, and minimum phase

parameter values are given in Table 5.2 [35].

Table 5.2: Parameter values of minimum phase [35]

Parameter Values
Input voltage u, [V] 3.00
Input voltage u, [V] 3.00
Pump 1 constant Kk, [cm’/V] 3.33
Pump 2 constant ~ k, [cm’/V] 3.35
Valve 1 constant 7, 0.70
Valve 2 constant 7, 0.60
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Level [cm]

Level [cm]

The Figure 5.1 shows the results after simulating the minimum phase system. It can be seen from

the plot, levels in tanks 1 and 2 reached at steady state in 450 and 530 second respectively.

Similarly, the levels in tanks 3 and 4 are stable after 130 and 190 seconds respectively and

reached steady state faster than tanks 1 and 3. The steady state levels in four tanks are pointed by

using the data cursor tool in MATLAB where x-axis represented the simulation time [s] and y-

axis are the level [cm]. The steady state levels in four-tank minimum phase process are given in

Four-tank nonlinear model simulation for minimum phase process

Table 5.3
15 [
,———————n | |
X: 450 X: 1000
10 Y:12.3 Y:12.3
Tank 1
5
0
0 200 400 600 800 1000
2
| [ ]
1.5 X: 130 X: 1000
/ Y:1.63 Y:1.63
1
Tank 3
0.5
0
0 200 400 600 800 1000
Time [s]

15
/fﬂ_ﬂ_; - "
X: 530 X: 1000
10 Y:12.8 Y:128 |
Tank 2
5
0
0 200 400 600 800 1000
1.5 T r
| [ ]
X: 190 X: 1000
Y:1.41 Y:1.41
1
Tank 4
0.5 [
0
0 200 400 600 800 1000
Time [s]

Figure 5.1: Four-tank nonlinear model simulation for minimum phase process

Table 5.3: Steady state levels in four-tank minimum phase process

Parameter Values
Level in tank 1 h’ [cm] 12.30
Level in tank 2 h) [cm] 12.80
Level in tank 3 h{ [cm] 1.63
Level in tank 4 h; [cm] 1.41
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5.2.2 Non-minimum Phase system

The system will be non-minimum phase if the sum of the valve constants y,and y,is greater than

zero but less than one i.e. 0 <y, +7, <1, as mentioned in the previous chapter [35]. In this case,

the sum of valves constants is 0.77 which states that the system is non-minimum phase. A
constant voltage of 3.15 [V] is applied to pumps 1 and 2 and simulation performed for a time
span of 1000 [s]. The four tanks are supposed to be empty at the start, therefore the initial values
are set equal to zero. The parameter values of the four-tank process are taken from the Table 5.1,

and non-minimum phase parameter values are given in Table 5.4 [35].

Table 5.4: Parameter values of non-minimum phase [35]

Parameter Values
Input voltage u, [V] 3.15
Input voltage u, [V] 3.15
Pump 1 constant ~ k; [cm*/V] 3.14
Pump 2 constant k, [cm’V] 3.29
Valve 1 constant  }, 0.43
Valve 2 constant 7, 0.34

The Figure 5.2 shows the results after simulating the non-minimum phase system. The levels in
tanks 1 and 2 reached a steady state in 500 and 644 second respectively and then remained stable
rest of simulation time. Similarly, the levels in tanks 3 and 4 are stable after 260 and 393 seconds
respectively. The level in these tanks reached to steady state faster than tanks 1 and 2. A similar
trend was seen in Figure 5.1, however in non-minimum phase, the process is slower than in
minimum phase. The steady state levels in four tanks are pointed by using the data cursor tool in
MATLAB where x-axis represented the simulation time [s] and y-axis are the level [cm]. The

steady state levels in the four-tank non-minimum phase are given in the Table 5.5.
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Four-tank nonlinear model simulation for nonminimum phase process
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Figure 5.2: Four-tank nonlinear model simulation for non-minimum phase process

Table 5.5: Steady state levels in the four-tank non-minimum phase process

Parameter Values
Level in tank 1 h10 [cm] 12.4
Level in tank 2 h) [cm] 13.2
Level in tank 3 h;) [cm] 4.73
Level in tank 4 h; [cm] 4.99

5.3 Observability and controllability analysis of linearized model

Linearized model of the four-tank process presented in section 4.1.2 is analyzed before

implementing the MPC optimal controller. Eigenvalues are computed to check the stability.

According to Rusico [32], the real part of the eigenvalues are negative in stable systems and they

lie in the left part of the complex plane. A system will be observable if the rank of the

observability is equal to the rank of the system, similarly a system will be controllable if the rank
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of the controllability is equal to the rank of the system. Therefore, observability and
controllability and then rank of these matrices are computed to analyze the system observability
and controllability. A combine MATLAB program is written for both operating conditions. The
MATLAB built-in function “ input ” is used to select either minimum phase or non-minimum
phase process by typing “ 1 ” or ““ 2 ” respectively. The program script is attached in Appendix 3,

and results are discussed in the next sections.

5.3.1 Minimum phase

The four-tank minimum phase process is stable as the real part of the eigenvalues are negative.
The system is also observable and controllable as the rank of observability and controllability
matrices are equal to the rank of the system. A screen dump from the MATLAB code is shown

in the Figure 5.3.

Minimum phase system
Eigen walues of system matrix are =
-0.0160
-0.0110
—-0.0440
-0.0332

Rank of the system =

4

Rank of Observability matrix is =

4

Rank of controllability matrix is =

4

Figure 5.3: Observability and controllability analysis of minimum phase model

5.3.2 Non-minimum phase
The four-tank non-minimum phase process is stable as the real part of the eigenvalues are

negative. The rank of observability and controllability matrices are equal to the rank of the
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system, therefore the four-tank non-minimum phase process is observable and controllable. A

screen dump from the MATLAB code is shown in the Figure 5.4.

Hon-minimum phase system
Eigen wvaluesz of system matrix are =
-0.0158
-0.010%9
-0.0258
-0.0177

Rank of the system =

4

Rank of Cbservability matrix is =

4

Rank of controllability matrix is =

4

Figure 5.4: Observability and controllability analysis of non-minimum phase model

5.4 Implementation of MPC optimal control with integral action

MPC optimal control with integral action is implemented after analyzing the linearized model of
the four-tank process. The mathematical formulation of MPC with integral action is given in
section 3.4. The steps are also explained to achieve integral action from the discrete model of an
augmented state space model. The sampling time of 0.1 second is used in all the experiments.
The constrained and unconstrained MPC with integral are implemented in minimum and non-
minimum cases. The constraints are handled using “if-else” method and MATLAB “ quadprog ”
function, Kalman filter is used to for state estimation. Appropriate values of the weighting

matrices Qand R are assigned to weighted the output and input variables respectively.

Where

100 O 0.1 O
Q= ,and R=
0 100 0 0.1
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5.4.1 Constrained MPC with integral action

Implementation of constrained MPC with integral action is divided into simulation of minimum
and non-minimum phase process and the results are plotted. First of all, the state space
continuous model is converted into discrete time using the “c2dm” function. The integral action
in MPC is achieved by augmenting the state space model. The input amplitude constraints are
implemented and voltage supply to the pumps restrained from minimum 0 [V] to maximum 5
[V]. The MPC with constraints becomes a quadratic programming problem that is solved by
“ quadprog ” function. It is a built-in MATLAB function used to solve equality constraint. The
“if-else” method also implemented to handle constraints in the MPC optimal controller. A
MATLAB program is written for both operating points. The “input” function is used to select
constrained MPC with integral action for either a minimum or non-minimum phase process by
typing “1” or “2” respectively. The main script file along with six other supporting files is
attached with necessary comments. The MATLAB file using ‘quadprog’ function and ‘if-else’

are provided in Appendices 4 and 5 respectively.

5.4.1.1 Minimum phase system

In this case, the parameter values are taken from the Table 5.2 and constrained MPC with
integral action is implemented. The initial level in tanks 1 and 2 are 11.5 and 12.5 [cm]
respectively and small reference of +0.1 [cm] is given by using the MATLAB m-file script
“prbsl.m”. The sampling time of 0.1 second and prediction horizon L of 15 seconds is used both
strategies of constraints handling for comparison. The constrained MPC with integral action in
the four-tank minimum phase system using “quadprog” function and “if-else” method is

simulated, and results are discussed below with plots.

e Using “quadprog” function

The input amplitude constraints are implemented by using ‘quadprog’ function and the control
signals for pumps 1 and 2 are restricted to 0-5 [V] as shown in lower two plots of the Figure 5.5.
The simulation is performed by changing the set point every 150 seconds and levels in Tanks 1
and 2 are controlled desirably. In the upper two plots, the red line and blue represents the set
point and output level respectively. The output level changes before the change in the set point

which is the basic principle of the MPC optimal controller. The simulation result of four-tank
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minimum phase process by implementing the constrained MPC with integral action is illustrated

in Figure 5.5, and the elapsed time for the simulation is 14.90 seconds.
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Figure 5.5: The simulation result of four-tank minimum phase process with constrained MPC
with integral action using “quadprog” function. The upper two plots illustrated the reference
signal and output levels for tanks 1 and 2. The lower two plots are the controller signals for

pumps 1 and 2.
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Figure 5.6: Results of estimated level during the implementation of constrained MPC with
integral action using “quadprog” function in four-tank minimum phase process. Upper two plots
are a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are

estimated level in Tanks 3 and 4.

39



Reference rlkand output ylk [cm]

11.4

The Kalman filter is implemented to estimate the states of the four tanks. The levels are
measured only in tanks 1 and 2, therefore estimated and measured levels are compared in upper
two plots. The lower two plots show the estimated levels in tanks 3 and 4. It can be seen from the
Figure 5.6, the estimated and measured levels in tank 2 are similar, however there is a small
difference in levels for tank 1. The blue line and green lines represent the measured and

estimated levels respectively.

e Using “If-else” method

This strategy is implemented using if-else loop such that,

umin=0
umax=>5
if u<umin
u=umin;
elseif u>umax
u=umax
end

The parameter values used in the above method kept the same and simulation is performed. The
simulation results of constrained MPC with integral action for the minimum phase system using
“if-else” method is shown in Figure 5.7, and the elapsed time for the simulation is 3.40 seconds.
A small undershoots and overshoots have been seen in both the tanks 1 and 2, especially in tank

2 when comparing it with the Figure 5.5. The MATLAB m-script file is attached in appendix 5.
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Figure 5.7: The simulation result of four-tank minimum phase process with constrained MPC
with integral action using “if-else” method for constraints handling. The upper two plots
illustrated the reference signal and output levels for tanks 1 and 2. The lower two plots are the
controller input signal for pumps 1 and 2.
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It can be seen from the Figure 5.8 there is a difference between the estimated and measured
levels in tanks 1 and 2. However, these differences are smaller when “quadprog” function is
used to handle constraints as shown in Figure 5.6. The blue line and green lines represent the

measured and estimated levels respectively.
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Figure 5.8: Results of estimated level during the implementation of constrained MPC with
integral action using “if-else” method in four-tank minimum phase process. Upper two plots are
a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are estimated
level in Tanks 3 and 4.

e Comparison remarks

It is interesting that the elapse time for simulation in ‘if-else’ method is smaller compared with
the “quadprog” strategy. The reason for a higher execution time in latter strategy is that it has to

execute a lot of complex calculations.
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5.4.1.2 Non-minimum phase system

The parameter values for the non-minimum phase are taken from the Table 5.4 and constrained
MPC with integral action is implemented similar to the minimum phase system. The initial level
in tanks 1 and 2 is set to 11.5 and 12.5 [cm] respectively and small reference of +0.1 [cm] is
given using the MATLAB m-file script “prbsi.m”. The sampling time of 0.1 second and
prediction horizon of 15 seconds are used in both strategies of constraints handling for
comparison. The constrained MPC with integral action in four-tank non-minimum phase system

is simulated, and results are discussed below with plots.

e Using “quadprog” function

In this method, the input amplitude constraints are implemented and the control signal for pumps
1 and 2 are restricted to 0-5 [V] as shown in lower two plots of the Figure 5.9. The simulation is
performed using the same method as in minimum phase system, and the levels in Tanks 1 and 2
are controlled according to specified reference. It can be seen from the plots that the change in
output levels is slower than minimum phase process. The simulation result of four-tank non-
minimum phase process by implementing the constrained MPC with integral action is illustrated

in Figure 5.9, and the elapsed time of 16.14 seconds for the simulation is observed.
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Figure 5.9: The simulation result of four-tank non-minimum phase process with constrained
MPC with integral action using “quadprog” function for constraint handling. The upper two
plots illustrated the reference signal and output levels for tanks 1 and 2. The lower two plots are
the controller input signal for pumps 1 and 2.
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The figure 5.10 illustrates the comparison of estimated and measured levels for tanks 1 and 2 in
upper two plots and the estimated levels for tanks 3 and 4 in lower two plots. In this case, the
estimated and measured levels are not matched with each other for tank 1, but the difference is

small in tank 2. The blue line and green lines represent the measured and estimated levels

respectively.
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Figure 5.10: Results of estimated level during the implementation of constrained MPC with
integral action using “quadprog” function in four-tank non-minimum phase process. Upper two
plots are a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are
estimated level in Tanks 3 and 4.

e Using “If-else” method

The constraints in MPC with integral action are handled using “if-else”method similar to the one
implemented in the minimum phase process. The parameter values used in the above method
kept the same and simulation is performed. The elapsed time for the simulation is 5.67 that is
again smaller compared with the “quadprog” method. The simulation results for non-minimum
phase system using “if-else” method are shown in Figure 5.11 and controller response in this
case is slow. A small undershoots and overshoots have been seen in both the tanks 1 and 2. The

MATLAB m-script file is attached in appendix 5.
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Figure 5.11: The simulation result of four-tank non-minimum phase process with constrained
MPC with integral action using “if-else” for constraints handling. The upper two plots illustrated
the reference signal and output levels for tanks 1 and 2. The lower two plots are the controller
input signal for pumps 1 and 2.
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Figure 5.12 Results of estimated levels during the implementation of constrained MPC with
integral action using “if-else”” method in four-tank non-minimum phase process. Upper two plots
are a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are
estimated level in Tanks 3 and 4.
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The figure 5.12 illustrates the comparison of estimated and measured levels for tanks 1 and 2 in
upper two plots. The estimated levels for tanks 3 and 4 are shown in lower two plots. It can be
seen that the difference between the estimated and measured levels in upper two plots increased

as compared to the Figure 5.10, when “quadprog” was used to handle constraints.

e Comparison remarks

The output level in non-minimum phase is changing slowly compared with minimum phase
system. The control signals to the pumps 1 and 2 are confined within the limit of 0-5 [V] using
two different approaches. The execution time is smaller by using “if-else” method, on the other
hand, the performance of the controller is better when constraints are solved by “quadprog”

function in the MPC optimal controller.

5.4.2 Unconstrained MPC with integral action

In this section, the simulations of MPC with integral action in minimum and non-minimum
phase systems are performed without implementing the constraints on input voltage. A
MATLAB program is written for both operating points, and the “ input ” function is used to
select unconstrained MPC with integral action for either a minimum or non-minimum phase
process by typing “ 1 ” or “ 2 ” respectively. The main script file is attached in Appendix 6 with

necessary comments.

5.4.2.1 Minimum phase system

For minimum phase system, the parameter values are taken from the Table 5.2, and MPC with
integral action is implemented. The initial levels in tanks 1 and 2 are 11.5 and 12.5 [cm]
respectively and small reference of +0.2 [cm] is given using the MATLAB m-file script
“prbsl.m”. The sampling time of 0.1 second and prediction horizon of 15 seconds is used. The
simulation is performed by changing the set point every 150 seconds. However, the controller
has higher undershoots and overshoots compared with the constrained MPC algorithm as
presented in prevision section. The red line and blue represent the set point and output level
respectively in upper two plots of the Figure 5.13. The lower two plots shows the input signals
for pumps 1 and 2 varying from -8 to 12 [V]. It is not good practice to use voltage higher than
what is needed. Moreover, it is not only the wastage of energy but also affect the proper working

of the device. The reasons for bigger undershoots and overshoots is that control signals are not
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restricted to minimum or maximum limits. The simulation result of four-tank minimum phase

process by implementing the unconstrained MPC with integral action is illustrated in Figure 5.13.
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Figure 5.13:The simulation result of four-tank minimum phase process with unconstrained MPC
with integral action. The upper two plots illustrated the reference signal and output levels for
tanks 1 and 2. The lower two plots are the controller input signal for pumps 1 and 2.

It can be seen from the Figure 5.14 the estimated and measured levels in tank 2 have a small

difference however, in tank 1 the measured level is higher than the estimated level. The lower

two plots show the estimated levels in tanks 3 and 4. The blue line and green lines represent the

measured and estimated levels respectively.

46

500



Tank 1 Tank 2

Measu:ed level Measured level
11.8 Estimated level || 12.8 Estimated level
p——F4 = I — I ——
T | | R | \ |
S. 11.6] S, 12.6 ‘
) | | © | |
% | | 3 | |
| |
11.4 \ 12.4 \
| \
\v\ “‘q — — \—
11.2 12.2
0 100 200 300 400 500 0 100 200 300 400 500
Tank 3 Tank 4
1.8 1.4 -
Estimated level Estimated level
175 1.35
E 17 E 1.3
© ©
3 1.65 3 1.25
| —
1.6 1.2
1.55 1.15
0 100 200 300 400 500 0 100 200 300 400 500
Time [s] Time [s]

Figure 5.14: Results of estimated levels during the implementation of unconstrained MPC with
integral action in four-tank minimum phase process. Upper two plots are a comparison of
estimated vs measured level in tanks 1 and 2. The lower two plots are estimated level in tanks 3
and 4.

5.4.2.2 Non-minimum phase system

For non-minimum phase system, the parameter values are taken from the Table 5.4, and similar
method as in minimum phase process is implemented. The initial level in tanks 1 and 2 are 11.5
and 12.5 [cm] respectively and small reference of +0.2 [cm] is given using the MATLAB m-file
script “prbsl.m”. The sampling time of 0.1 second and prediction horizon of 15 seconds is used.
The simulation is performed by changing the set point every 150 seconds. The controller
achieves the set point. However, it has more higher undershoots and overshoots than minimum
phase process. The red line and blue represent the set point and output level respectively in upper
two plots of the Figure 5.15. It can be seen from the lower plots, the input signals for pumps 1
varying from -8 to 15 [V] and for pump 2 varying from -10 to 18 [V]. The reasons for bigger
undershoots and overshoots is that control signals are not restricted to minimum or maximum
limits. The simulation result of four-tank minimum phase process by implementing the

unconstrained MPC with integral action is illustrated in Figure 5.15.
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Figure 5.15: The simulation result of four-tank non-minimum phase process with unconstrained
MPC with integral action. The upper two plots illustrated the reference signal and output levels
for tanks 1 and 2. The lower two plots are the controller input signal for pumps 1 and 2.
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Figure 5.16: Results of estimated levels during the implementation of unconstrained MPC with
integral action. Upper two plots are a comparison of estimated vs measured level in tanks 1 and 2.
The lower two plots are estimated level in Tanks 3 and 4.
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The difference between the estimated and measured levels in the tank 1 is quite large compared
with the minimum phase process. It can be seen from the Figure 5.16 that the difference in tank 2
is not small, however it is following the trend. The lower two plots show the estimated levels in
tanks 3 and 4. The blue line and green lines represent the measured and estimated levels

respectively.

5.4.3 Performance comparison in reducing control horizon

The control horizon defines as the number of samples within the prediction horizon L of which
the MPC optimal controller could affect the control action. The MPC optimal controller tries to
become aggressive if the number of control horizon increase. The reason for aggressive behavior
is due to increase in computational requirement [16]. Reducing the number of unknown future

controls, the cost function will be [15],

L Lu
J = Z((YM 1) QWi —Tiet) + ukTH,IPi“knA) + ZAUL,lRiAUknA (5.1)

i1 i=1
In the cost function given in the equation (5.1), L is prediction horizon and Lu is control horizon.
In the previous section, MPC with integral action for minimum and non-minimum phase process,
control horizon was equal to prediction horizon i.e. Lu = L. However, in reducing the number of
unknown future controls, the control horizon is chosen such that 1< Lu < L and performance of
MPC with integral action is compared. The combined MATLAB program is written for both
operating points, and the “input” function is used to select MPC with integral action for either a
minimum or non-minimum phase process by typing “1” or “2” respectively. The program m-file

script is provided in Appendix 7, and different values of control horizon are tested.

5.4.3.1 Minimum phase

Reducing the control horizon in MPC optimal control, three cases are formulated in minimum
phase process to check the performance of the controller. The control horizon with different
values of 10, 4 and 2 seconds in MPC method are used, and results are discussed. The sampling
time of 0.1 second and prediction horizon of 15 seconds kept constant for all cases. In section
5.4.1, MPC with integral action using control horizon equal to prediction horizon already
implemented, therefore it is not repeated here. The parameter values are taken from the Table 5.2
and constrained MPC with integral action is implemented. The initial level in tanks 1 and 2 are

11.5 and 12.5 [cm] respectively and small reference of +0.1 [cm] is given using the MATLAB
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m-file script “prbsl.m”. The simulation is performed by changing the set point every 100

seconds.

Case 1: Lu=10 and L=15

In this case, a control horizon of 10 and prediction horizon of 15 seconds are used and the
output levels are controlled according to the given set points as illustrated in Figure 5.17.
There are small undershoots in both tanks 1 and 2. The MPC with integral using control
horizon 10 give better performance as compared to the case when Lu=L shown in the
Figure 5.5. In the upper two plots, the red line and blue represent the set point and output

level respectively whereas in lower two plots, control signal for pumps 1 and 2 are shown.
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Figure 5.17: Simulation of four-tank minimum phase process with MPC with integral action in
reducing control horizon. Control horizon Lu=10, Prediction horizon L=15.

Case 2: Lu=4 and L=15

In this case, a control horizon of 4 and prediction horizon of 15 seconds is used and then
simulation is performed. There are slightly bigger undershoots and overshoots for both the
tanks 1 and 2 as compared to the case when control horizon was 10 seconds. The settling
time is almost 20 seconds. The simulation results from implementing MPC with integral
action using control horizon of 4 seconds are illustrated in the Figure 5.18, the red line and
blue represent the set point and output level in upper two plots respectively. The control input

signals for pumps 1 and 2 are shown in lower two plots of the Figure 5.18.
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Figure 5.18: Simulation of four-tank minimum phase process with MPC with integral action in
reducing control horizon. Control horizon Lu=4, Prediction horizon L=15.

Case 3: Lu=2 and L=15

An extreme case when the control horizon of 2 seconds is used in MPC with the integral
action algorithm. The output level for both tanks showed fluctuation and behavior is more
like a PI controller. The settling time is double as compared to above cases and it reached 50
and 40 seconds for tanks 1 and 2 respectively. The simulation results from implementing
MPC with integral action using control horizon of 2 seconds are illustrated in the Figure 5.19,
where the red line and blue represent the set point and output level in upper two plots
respectively. The control input signals also have a lot of variation between 0-5 [V] for pumps

1 and 2 as shown in lower two plots of the Figure 5.19.
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Figure 5.19: Simulation of four-tank minimum phase process with MPC with integral action in
reducing control horizon. Control horizon Lu=2, Prediction horizon L=15

5.4.3.2 Non-minimum phase

Similar to the minimum phase process, three cases are tested in non-minimum phase process to
compare the performance of the MPC with integral action in reducing the control horizon. The
sampling time of 0.1 second and prediction horizon of 15 seconds kept constant for all the cases.
In section 5.4.1, MPC with integral action using control horizon equal to prediction horizon
already implemented, therefore it is not repeated here. The parameter values are taken from the
Table 5.4 and constrained MPC with integral action is implemented. The initial level in tanks 1
and 2 are 11.5 and 12.5 [cm] respectively and small reference of +0.1 [cm] is given using the
MATLAB m-file script “prbs1.m”. The simulation is performed by changing the set point every
100 seconds.

e Case1l: Lu=10 and L=15
In this case, a control horizon of 10 seconds is used and the levels are achieved nicely as
illustrated in Figure 5.20. It was interesting that MPC with integral using control horizon 10
give better performance as compared to the case when Lu = L shown in the Figure 5.9. In the
upper two plots, the red line and blue represent the set point and output level respectively. In

lower two plots, the control signal for pumps 1 and 2 are shown.
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Figure 5.20: Simulation of four-tank non-minimum phase process with MPC with integral action
in reducing control horizon. Control horizon Lu=10 and Prediction horizon L=15

e Case 1: Lu=4 and L=15
In this case, a control horizon of 4 seconds is used and then simulation is performed. There
are variations in the start for both the tanks as compared to the above case and after 40
seconds the output level reached the set point. The simulation results from implementing
MPC with integral action using control horizon of 4 seconds are illustrated in the Figure 5.21,
where the red line and blue represent the set point and output level in upper two plots

respectively. In lower two plots, the control signal for pumps 1 and 2 are shown.
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Figure 5.21: Simulation of four-tank non-minimum phase process with MPC with integral action
in reducing control horizon. Control horizon Lu=4, Prediction horizon L=15
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Case 1: Lu=2 and L=15

An extreme case when the control horizon of 2 seconds is used in MPC with the integral

action algorithm. The output level for both tanks showed a lot of fluctuation around the set

point. The controller achieves the set point after 65 seconds in tank 1. However it was not

able to reach the desired reference point in tank 2. The simulation results from implementing

MPC with integral action using control horizon of 2 seconds are illustrated in the Figure 5.22,

where the red line and blue represent the set point and output level in upper two plots

respectively. The control input signals also have a lot of variation between 0-5 [V] for pumps
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1 and 2 as shown in lower two plots of the Figure 5.22.
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Figure 5.22: Simulation of four-tank non-minimum phase process with MPC with integral action
in reducing control horizon. Control horizon Lu=2, Prediction horizon L=15

5.5 Implementation of PI controller

The PI classical controllers are widely used in control engineering practice for the last seventy

years, and the reason for commonly used control technique is that they are easy to implement.

Decentralized or multi-loop PI controllers are used to control MIMO? system [40, 41]. Such a

decentralized PI controller is implemented to control the four-tank process, and the idea behind

the implementation is to compare the result with the MPC optimal controller. In this method, two

PI controllers ¢, and c, are controlling two pumps. The controller ¢, and ¢, take the feedback

2 Multiple Input and Multiple Output
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from the outputs y, and y, respectively and calculated the inputs #, andu,. Then these input
signals send to the process G. A decentralized PI control system for the four-tank process is
illustrated in Figure 5.23. The controller output signal u, and u, are calculated as given in

equations (5.2) and (5.3) respectively [35].

€ (5.2)

§

— rl
u = Kplel +T—t
il

K
u, =K e, + T—ﬂt e, (5.3)

N

i2

Figure 5.23: Structure of decentralized PI control with two PI controllers [35]

5.5.1 RGA analysis
The Relative Gain Array (RGA) is a powerful tool used as an interaction measure for control
systems having multiple variables [42], hence it is used here to select input-output pairing.
Johansson [35] has defined RGA matrix as,

A=G(0)*G(0) (5.4
Where A is RGA matrix, asterisk (*) is an element by element multiplication and G is the

transfer function of the four-tank process defined in section (4.1.3) as,

716 (I=-7)¢
G| T WD) 5
(I=7)e, V2Co

(+sT)(A+sT)  (1+sTy)
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C1 — Tiklkc
A

C2 — T2k2kc ,
A

The transfer functions for minimum and non-minimum phase process are calculated by solving
equation (5.5), and the parameter values are given in Tables 5.1, 5.2 and 5.4. The transfer

function for minimum phase gives,

2.6 1.5
G () - (1+62s) (1+23s)(1+ 62s) 6
1.4 2.8
(1+30s)(1+90s) (1.90s)

And then solving equation (5.5) for the non-minimum phase process gives,

1.5 2.5
6.65)= (1+63s) (1+39s)(1+ 63s) 67)
2.5 1.6
(1+565)(1+91s) (1.91s)

Where G (s) and G,(s) are transfer function matrices of minimum and non-minimum phase

process. When s = 0then the equations (5.6) and (5.7) becomes,

G(O)_‘z.s 1.5] 5.8)
14 28] '
G(O)—_l'S 2.5] 5.9)
725 16 '

The pairing of variables based on the RGA analysis are described by Rusico [32]. According to

him the starting point is the element 4; in RGA matrix.
 Select the pairing u; — y, for which the corresponding element 4, of RGA is positive and

magnitude close to one as possible.

e The pairing u; — y, must be avoided if the element of RGA is negative such that 4; <0.
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Substituting the equation (5.8) and (5.9) separately and performed the RGA analysis by using
MATLAB. The optimal input-output variable pairing based on the above rules is selected for the
four-tank minimum and non-minimum phase process as shown in the Figure 5.24. The m-file

script is provided in Appendix 8.

Minimum phase process Hon-minimum phase process
G = c =
2.6000 1.5000 1.5000 2.5000
1.4000 2.8000 2.5000 1.6000
L= a =
1.4054 -0.4054 -0.6234 1.6234
-0.4054 1.4054 1.6234 -0.6234
RGA EResult REG& Eesult
ul will control output yl and w2 will control output y2 ul will control output ¥2 and w2 will control output vyl

Figure 5.24: RGA analysis to determine the optimal input-output variable pairing for four-tank
process.

5.5.2 Minimum phase process

According to RGA analysis of the minimum phase system, the input u, will control the output y,

and input u, will control the output y,, therefore a decentralized PI controller is implemented to

achieve the target. The simulation is performed for 2000 seconds and the results are illustrated in
Figure 5.25. In the upper two plots, the red and blue lines represent the set point and output level
respectively. The initial level in tanks 1 and 2 are 12.3 and 12.8 [cm] respectively and step
changes to the reference are given at 300 and 1100 seconds of simulation horizon. The upper two
plots show that levels are controlled, but the PI controller takes a long time to follow the
reference level as compared to MPC with integral action. In this case, the settling time is around
200 seconds whereas in the constrained MPC with integral was 15 seconds, which is presented in

section 5.4.1. The PI tuning parameters are found by trial and error methods where
k, =4, k,,=35T,=9and T, =10 give better results. Similar to MPC with integral action
using “if-else” method, constrained are handled and the control signals for pumps 1 and 2 are
restricted to 0-5 [V] as shown in lower two plots of the Figure 5.25. A MATLAB m-file script is

written for implementation of the PI controller in the four-tank minimum phase process and

provided in Appendix 9.
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Figure 5.25: Result of PI controller implementation in four-tank minimum phase process. The
upper two plots are the reference and the output levels in tanks 1 and 2. Lower two plots are the
control signal for pumps 1 and 2.

5.5.3 Non-minimum phase process

In the four-tank non-minimum phase process, RGA analysis suggested that the input u, will

control the output y, and input u, will control the output y,. The simulation is performed for

2000 seconds by implementing the decentralized PI controller and the result are illustrated in
Figure 5.26. In the upper two plots, the red and blue lines represent the set point and output level
respectively. The initial level in tanks 1 and 2 are 12.4 and 13.2 [cm] respectively. The step
change to the reference point are given at 300 seconds of simulation horizon and time scale is
increased from 2000 to 5000 seconds. The settling time in this case is ten times larger than the
previous case. It also can be seen from the upper two plots, it is difficult to control the four-tank
non-minimum phase process however, the performance of constrained MPC with integral action
(section 5.4.1) is much better than a decentralized PI controller in this particular case. The PI

tuning parameters are found by trial and error methods where k , =1.4, k , =0.22, T, =100 and

t., =135 give better results. Similar to MPC with integral action using “if-else” loop the control

signals for pumps 1 and 2 are restrained to 0-5 [V] as shown in the Figure 5.26 lower two plots.
A MATLAB m-script file is written for implementation of the PI controller in the four-tank non-

minimum phase process and provided in Appendix 10.
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Figure 5.26: Result of PI controller implementation in the four-tank non-minimum phase process.
The upper two plots are the reference and the output levels in tanks 1 and 2. Lower two plots are

the control signals for pumps 1 and 2.
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6. System identification and model free MPC

In this chapter, the system identification method is used to identify the model of the four-tank
process and formulate a model free MPC algorithm. First of all, short overview of system
identification algorithm as Deterministic and Stochastic System Identification and Realization
‘DSR’ is introduced. The input-output data of the four-tank process is generated by simulation
for both minimum and non-minimum phase setting. The collected data is used in the ‘DSR’
algorithm to construct a linearized state space model. The identified model is validated and then

used in MPC with integral action to control the four-tank process.

6.1 System identification algorithm as DSR

System identification can be defined as constructing a mathematical model of the dynamic
systems from the measured input-output data. Process models, state space models, continuous
and discrete time transfer functions can be identified by using the known data [43]. In this work,
the system identification algorithm as Deterministic and Stochastic System Identification and
Realization ‘DSR’ is used to identify the linearized state space model for MPC. The ‘DSR’

algorithm estimated the system order », matrices 4, B, D, E,CF,F and initial state vector x,at

discrete time combined with deterministic and stochastic dynamic model of innovation form as
mention by Ruscio [24, 44]. The ‘DSR’ algorithm synopsis as,
[4,B,D,E,CF,F,x,]=ds*(Y,U,L,g,J,M,n) 6.1)
The Y,U and L are the parameters on the input. The parameter ¥ € K™ is the output data
matrix, where N is the number of samples and m denotes the number of the output variable. The
input data matrix is U € R"" and 7 is the number of input variables. L is the future horizon used
for predicting the order of the system.
Whereas (g,J, M ,n) are being the optional input parameters for advance use. The parameter g
is used to estimate £, if its value is equal to zero then £ =0 in the model. The past horizon J is
used to remove the future noise and M is helpful for computing CF and F [24, 44].
The four-tank model presented in section 4.1.1 is simulated using the pseudo-random binary
sequence (prbs) function to collect data. The sampling time for all the simulation is 0.1 seconds

and initial levels in the tanks are assumed to be zero. The input and output data of 10000 samples

are collected for minimum and non-minimum phase process separately. All the samples are used
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Control input u 1 \Y%|

15

10

for system identification algorithm as ‘DSR’ to identify a state space model. A totally new set of
input-output data with 10000 samples is used to validate the identified model. A combined
MATLAB m-file script is written to simulate the four-tank minimum and non-minimum phase
process, and the m-file is provided in Appendix 11. In this program, the user can select either

minimum or non-minimum phase process by typing “1” or “2” respectively.

6.2 Minimum phase process

The input and output data from the four-tank minimum phase simulation is saved as
‘data_minimum.txt’. The first two columns in the file represent the output level in tanks 1 and 2
whereas next two columns are the corresponding voltage to the pumps 1 and 2. The upper two
plots show the simulated output level of tanks 1 and 2 in Figure 6.1 and lower two plots show the
input voltage to the pumps 1 and 2. The MATLAB m-file for plotting the input-output data is
provided in Appendix 12.

Level of Tank 1 Level of Tank 2

15

10

Level Y, [cm]

Input voltage to pump 1 Input voltage to pump 2

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

10000

Control input u, \%|
w

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Number of samples
Number of samples

Figure 6.1: The four-tank minimum phase simulation data for system identification. Upper two
plots show the simulated output level in tanks 1 and 2. Lower two plots show the input voltage to
the pumps 1 and 2.

6.2.1 Identifying the model
The collected data of four-tank minimum phase process is centered before identify the linear
model. In order to construct a more accurate model and remove offset the data is centered [45].

Therefore, the steady state values of output level 12.3 [cm] in tank 1 and 12.8 [cm] in tank 2 are
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subtracted from the output data. Similarly, the corresponding voltage 3 [V] for the steady state
values are removed from the input data. The centered data are used to identify the state space

model by ‘DSR’ algorithm. The identified discrete time state space model is,
X, =Ax, +Bu, (6.2)

y, =Dx, +Eu, (6.3)

The model matrices A, B, Dand E are given is the Figure 6.2.

Ordering the given input output data
QR decomposition
System order ? ... [ 4 ) =2
A:
0.9989 -0.0008 -0.7503 -0.4801
0.0001 0.9373 0.4813 -0.7514
0.0000 -0.0000 0.9544 -0.0038
-0.0000 -0.0000 -0.0005 0.9959
B =
-0.0108 -0.0096
0.012& -0.0081
-0.0000 0.0000
0.0000 -0.0000
D=
-0.3248 0.3814 -0.6428 0.1937
-0.3812 -0.3257 -0.1950 -0.6425
E=
0 0
0 0

Figure 6.2: The identified model matrices A, B, D and E

The order of the system is investigated by condition numbers (CN) and the singular values (SV)
such that it will be either the number of small CN or the number of large SV [24]. The estimated
singular values and condition numbers for the system order by ‘DSR’ algorithm are shown in

Figure 6.3.
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Figure 6.3: The singular values and condition number for system order of identified model in the
four-tank minimum phase process.

The stability of the identified model can be analyzed by the Eigenvalues of the system matrix.
First of all , the identified discrete time model is converted into a continuous time model and
then the Eigenvalues for the system matrix Ac of the continuous model are computed. It can be
seen from the Figure 6.4 real parts of the Eigenvalues are all negative, therefore the system is
stable as presented in section 5.3. The MATLAB m-file to identify the model and Eigenvalues

for the system matrix is provided in Appendix 13.

Syatem Matrix Ac of continnuous time model

Ao =
-0.0111 -0.0077 -7.5278 -4 _830%
0.0005 -0.0211 4_.8306 -7.5277
0.0000 -0.0000 -0.0561 -0.0377
-0.0000 -0.0000 -0.0045% -0.040%

Eigen values for system matrix Ac =

-0.0129 + 0.00421i
-0.012% - 0.0042i
-0.0413
-0.0622
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Figure 6.4: The four-tank minimum phase process, the Eigenvalues for system matrix Ac of the
continuous time model

6.2.2 Model validation

Validation is a method to test the performance of the developed model. There are different
methods of validation such as Leverage correction, test set or cross validation [46]. Validating
the model with a different data set is called cross validation. Although the same data can be used
for identifying and validating the model. However, it will cause the over fitting of the data. [43].
Therefore, a new data set is collected with different ‘prbs’ signal as input for the minimum phase
setting. It is used to test the performance of the model and this data is also centered before using
in the validation method. The identified state space model from ‘DSR’ fits the validation data
well. The simulation results of identified model along with validation data for minimum phase
setting are shown in Figure 6.5. The green line shows the simulation output of the process and
the blue line shows the simulation output from the ‘DSR’ model. Noted here process output
means simulation of a physical model of the four-tank minimum phase system. The MATLAB

m-file script for the validation of identified model is provided in Appendix 14.
Output for tank
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Figure 6.5: Validation of identified model for four-tank minimum phase process.

-20

6.2.3 Implementations of MPC with integral action
The drawback of the MPC optimal controller is that it requires a model of the dynamic system.
There are different techniques to construct a model of the process. One commonly used

technique is to develop a mathematical model from the first principle based on the basic physic
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or chemistry laws that describe the behavior of the system [47]. However, sometimes we do not
have explicit information about the physic of the system, then we can use the system
identification method to identify the model based on the input-output data of the system. Such a
method is used to find a linearized state space model for MPC method, and it is termed as model
free MPC algorithm.

The model identified above will be used in MPC with integral algorithm and mathematical
derivation of optimal controller with integral action is given in section 3.4. Appropriate values of
the weighting matrices Q and R are assigned to weighted the output and input variables

respectively. Where
0= 100 O
1o 100/
0.1 O
R=
0 0.1
The initial level in tanks 1 and 2 are 11.5 and 12.5 [cm] respectively and small reference of +0.1
[cm] is given using the MATLAB m-file script “prbsl.m”. The prediction horizon is 15 seconds

similar to one used in section 5.4. The simulation is performed by changing the set point every

150 seconds.

Tank 1 reference and output level Tank 2 reference and output level

12.7

Reference r,

K Output Yi { Reference T Output Yy {

12.65 {

—1

\ \ O \ / \

Level [cm]
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\ [ \ ) \

50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450

Input control signal for Tank 1 Input control signal for Tank 2

6
4 2y
(o]

\ I Tl Il

T i ) s [ \
\ ; \
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Figure 6.6: Simulation result by implementing the MPC with integral action in identified model
of the four-tank minimum phase process. The upper two plots show the reference and the output
levels in tanks 1 and 2. Lower two plots show the control signals for pumps 1 and 2.
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Level Y [cm]

Control input u \Y|

The controller follows the reference point better than the one presented in section 5.4.1.1 with
small undershoot and overshoot. The levels in Tanks 1 and 2 are obtained according to target set
point. In the upper two plots, the red line and blue represents the set point and output level
respectively. The input amplitude constraints are used in MPC algorithm, and the control signals
for pumps 1 and 2 are confined to 0-5 [V] as shown in lower two plots of the Figure 6.6. The
simulation result by using the identified model of four-tank minimum phase process in MPC
with integral action algorithm is illustrated in Figure 6.6, and the MATLAB m-file for
implementing the MPC with integral action is provided in Appendix 15.

6.3 Non-minimum phase process

The input and output data from the four-tank non-minimum phase simulation is saved as
‘data_nonminimum.txt’. The first two columns in the file represent the output level in tanks 1
and 2 whereas next two columns are the corresponding voltage to the pumps 1 and 2. The upper
two plots show the simulated output level in tanks 1 and 2 in Figure 6.7 and lower two plots
show the input voltage to the pumps 1 and 2. The MATLAB m-file for plotting the input-output
data is provided in Appendix 16.

Level of Tank 1 Level of Tank 2

20 20
= 15
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]
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5 5
=
a1 [ -] —HA——F—— ———— [ =N 4] ] ] ] [
5
o
£
3 s 3
€
Q
L L L] 1 Lol L o
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Figure 6.7: The four-tank non-minimum phase simulation data for system identification. Upper
two plots show the simulated output level in tanks 1 and 2. Lower two plots show the input
voltage to the pumps 1 and 2.
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6.3.1 Identifying the model

The collected data of four-tank nonminimum phase process is centered before identify the linear
model. The steady state values of output level 12.4 [cm] in tank 1 and 13.2 [cm] in tank 2 are
removed from the output data. Similarly the corresponding voltage of 3 [V] for the steady state
values are subtracted from the input data. The centered data are used to identify the state space
model by ‘DSR’ algorithm. The identified discrete time state space model is of the form given in

in equation (6.1) and (6.2). The matrices A,B,D and E of identified model are given in

Figure 6.8.

L =

0.38930
0001

0.0000
-0.0000

[=]

-0.0059

0.0076
.0000
0.0000

[=]

-0.3085
-0.3944

-0.

-0.

-0.
-0.

Ordering the given input output data
QR decomposition
Sy=stem order ?

0006 -0.4737 -0.
L9970 0.7527 -0.
0000 0.9979 -0.

. 0000 -0.0016 a.

0055
0043
. 0000
L0000

0.3953 -0.86675 -0.

0.3098 0.0640 -0.

7531
4801
0007
99849

0852
6673

Figure 6.8: The non-minimum phase case the identified model matrices A, B,D and E

The estimated singular values and condition numbers for the system order by ‘DSR’ algorithm

are shown in Figure 6.3. The MATLAB m-file to identify the model and Eigenvalues for the

system matrix is provided in Appendix 17.
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Figure 6.9: The singular values and condition number for system order of identifyed model in the
four-tank non-minimum phase case.

The stability of the identified model can be analyzed by the Eigenvalues of the system matrix.
First of all, the identified discrete time model is converted into a continuous time model and then
the Eigenvalues for the system matrix Ac are computed. It can be seen from the Figure 6.10 that

the real parts of the Eigenvalues are all negative, therefore the system is stable.

System Matrix Ac of continnuous time model

Ac =
-0.0104 -0.0064 -4.8077 -7.5423
0.0007 -0.0300 T7.5424 -4.8076
0.0000 -0.0000 -0.0214 -0.0068
-0.0000 0.0000 -0.0157 -0.01086

Eigen values for system matrix Ac =

-0.0289
-0.0102
-0.0146
-0.0187

Figure 6.10: Four-tank non-minimum phase process, the Eigenvalues for system matrix Ac of the
continuous time model.

6.3.2 Model validation

Similar to minimum phase process the cross validation is performed in this case. A new data set

is collected with different ‘prbs’ signal as input for the non-minimum phase setting to test the
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performance of the model and this data was also centered before use in the validation method.
The identified state space model from DSR fits the validation data especially in tank 1, however
there is a small difference in tank 2. The simulation results of identified model along with
validation data for non-minimum phase setting are shown in Figure 6.11. The green line shows
the simulation output of the process and the blue line shows the simulation output from the ‘DSR’
model. Noted here process output means simulation of a physical model of the four-tank non-
minimum phase system. The MATLAB m-file script for the validation of identified model for

non-minimum phase case is provided in Appendix 18.

Output for tank1

ST N TN

/ I

7

10

Level [cm]

Model output
Process output

20 ‘
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Output for tank2

10
L= \
— O Eﬁj
£
©, I
E &#_—/
% -10 7
Model output
Process output
-20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Samples

Figure 6.11: Validation of identified model for four-tank non-minimum phase process

6.3.3 Implementations of MPC with integral action
The model identified above is used in MPC with integral algorithm and mathematical derivation
of optimal controller with integral action is given in section 3.4. Appropriate values of the

weighting matrices Q and R were assigned to weighted the output and input variables

respectively. Where
0- 100 O
L0 100]
01 0
R=
0 01
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Level [cm]

The initial level in tanks 1 and 2 are 11.5 and 12.5 [cm] respectively and small reference of +0.1
[cm] is given using the MATLAB m-file script “prbs1.m”. The prediction horizon is 15 seconds
similar to the one used in section 5.4. The simulation is performed by changing the set point
every 150 seconds.

The controller follows the reference point and interestingly the output response is faster as
compared to the one presented in section 5.4.1.2. In the upper two plots, the red line and blue
represents the set point and output level respectively. The input amplitude constraints are used in
MPC algorithm, and the control signals for pumps 1 and 2 are restricted to 0-5 [V] as shown in
lower two plots of the Figure 6.12. The simulation result by using the identified model of four-
tank non-minimum phase process in MPC with integral action algorithm is illustrated in Figure

6.12. The MATLAB m-file for this case is provided in Appendix 19.

Tank 1 reference and output level Tank 2 reference and output level
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Figure 6.12: Simulation result by implementing the MPC with integral action in identified model
of the four-tank non-minimum phase process. The upper two plots show the reference and the
output levels in tanks 1 and 2. Lower two plots show the control signals for pumps 1
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7. Discussions

In order to complete this work, I used the knowledge learned in the Model Predictive Control
with implementation, System Identification and optimal estimation. These subjects are taught
during the master’s degree in Systems and Control Engineeing at Telemark University College,
Norway. The mathematical derivation and programming in this work are referenced from these
courses. MATLAB software (version: R2012a) developed by the MathWorks is used for
simulation.

There are different nonlinear benchmark processes such as chemical reactors, the four-tank
process, distillation columns and three-phase separator. The benchmark four-tank process is
selected for control implementation as it is a non-linear, complex and interactive system. It has
two operating conditions i.e., minimum and non-minimum phase that directly related to the valve
position. The sum of valve constant is greater than one and less than two in a minimum phase
process. In this case, the steady state level in the four tanks at constant voltage of 3 [V] are 12.3,
12.8, 1.63 and 1.41 [cm] respectively.

In non-minimum phase process, the sum of valve constant is less than one and greater than zero.
In this case, the steady state level in four tanks at constant voltage of 3.15 [V] are 12.4, 13.2,
4.73 and 4.99 [cm] respectively. The four-tank is a nonlinear process, and nonlinear MPC can be
used to control it, however this controller is not guaranteed to converge. Therefore, nonlinear
model of the process is linearized and used in linear MPC.

MPC with integral is an effective technique to handle the offset problem, and there are several
ways to achieve the integral action. The most common method is using the deviation variable to
obtain the integral action as presented in the section 3.4. The aim of implementing the controller
is to control the level in tanks 1 and 2. All the states are not measurable therefore Kalman filter is
used to observe the states.

In all the experiments, sampling time of 0.1 seconds is used to discretize the model. Several
simulations are performed, and optimal value of 15 seconds for prediction horizon and control
horizon are used based on the time constant of the system. Larger values of prediction horizon
and control horizon lead to unnecessary calculations at each sampling time. It is observed from
simulation experiments in section 5.4.3 that using small control horizon cause the controller

instability and behave more like a PI controller.
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The constraints in the MPC optimal controller are handled using two different approaches i.e.
“quadprog” function and “if-else”” method. The voltage limits are 0-5 [V] and constraints are
handled well in both methods. The executing time for the controller is smaller using the “if-else”
method than “quadprog” function however, the performance of the controller decreased. The
level in tanks 1 and 2 is controlled according to the specified set point, and the response in non-
minimum phase setting is comparatively slower than minimum phase setting.

Using unconstrained MPC with integral action the required set point achieved with higher
overshoot and undershoot, and the control signal varying from -8 to 15 [V]. Interestingly the
output response is faster than constrained MPC with integral action.

A decentralized PI controller is also implemented to control the four-tank process. From the
result, it shows that it is not an effective method to control the multivariable process. The set
point is achieved in the minimum phase process, however the settling time is too large compared
with the optimal controller. In non-minimum phase process, the controller is not able to achieve
the target.

System identification algorithm as ‘DSR’ is very useful tool to identify the linear state space
model from input-output data, especially when the physical model of the process is not available.
The identified model by using the simulated input-output of the four-tank process is used in
MPC with integral action. The controller performed better in both cases as compared to the

results presented in section 5.4.3.

7.1 Future works
The future work related to this topic can be listed as,
e Implementing the proposed controller in other benchmark processes such as chemical
reactors, distillation columns and three-phase separator.
e Simulink in MATLAB can be used for graphical block presentation of the controllers.
e It would be interesting to implement Linear Quadratic (LQ) with integral action and
compare the performance of the optimal controllers.
e Data from the four-tank real process can be used to identify the model and then used in

an MPC method to control the real process.
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8. Conclusions

In this work, the detailed study of Model Predictive Control (MPC) with integral action was
described and implemented in benchmark process. Four-tank process used for simulation
experiments. The nonlinear model of the process developed and then linearized it for using in the
control algorithm. The integral action in MPC method was achieved by using the deviation
variable. The experiment results showed that the proposed optimal controller worked very well
for both operating conditions and responded to the set point changes in an optimal way. The
constraints are handled using the ‘quadprog’ function and ‘if-else’ method, and input voltage
was bound to 0-5 [V]. The ‘quadprog’ function made the control work slower due to extra
complex calculation. A large value of prediction horizon and control horizon lead to unnecessary
calculation. Moreover, smaller control horizon caused the controller instability. A decentralized
PI controller was developed and implemented in the four-tank process, however it was not able
to control the process according to the desired set point. Comparing the results obtained by using
an optimal controller with those from PI controller, it was found that the MPC with integral
action is more robust and faster than traditional controller. It proved that MPC with integral
action is an effective strategy to control MIMO system. The simulated input-output data were
collected for system identification and validation of the model. System identification algorithm
as ‘DSR’ is used to identify the linearized state space model of the process. The identified model
is used in the control algorithm, and this controller performed better compared with the one used
in section 5.4. Using the system identification method model free MPC with integral action was
formulated by just using the input-output data of the process. This is a very useful method when

the model of the process is not available.
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Appendices

Appendix 1:

The scan copy of Master’s thesis task description.

Telemark University College
Faculty of Technology

FMHG606 Master's Thesis

Tiile: Model Pradictive Control (MPC) with integral action: Reducing the control hortzon and
maodel free MPC

FUC supervisor: David D Ruscio
External partner: Olav Aaker, Predikior

Task description:

Give a short overview of state space model based Model Predictive (MPC) contral.

Give an overview of different methods to achieve integral action in MPC algorithms.
Give a theoretical description of the MPC optimal controller with integral action method
{described in a paper by the supervisor).

Compare the performance in reducing the control horizon in the MPC methods,

Perform simulation experiments of the MPC method on some benchmark process models
Lse svstem identification algorithms as SR to identify the linearized state space models
for use in the MPC method and focus on formulating a model free MPC algorithm

Lad bud =

SR -

Task backeround:

The theory of MPC optimal control is a well established discipline. However, it would be of
interest to investigate 8 new method for “Model Predictive Control (MPC) with integral
action”, of models which are contaiming unknown slowly varying process and measurcments
disturbances, respectively. This method should bath be theoretically as well as investigated
by simulation experiments, Some non-linear process models, e.g. chemical reactors,
distillation columns ete., a 4 tank level process, ete, should be used as bench mark processes
and linear approximate models vsed for the LO optimal controller design. This MPC
controller could also with advantage be compared with an Linear Quadratic (LO) optimal
controller. The variables (inputs, outpuls and states) in lingar dynamic models are usually
deviation variables and the variables in non-linear models and physical processes are in
general actual variahles, Many algorithms for MPC are described with deviation variables.
This problem is avoided when using the new MPC method with integral action. This possibly

Adress: Kjelnes ring 36, MO-YFE Porsgrumn, Morsay, Phone: 35 57 500, Fax: 35 35 73 47,
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problem should be pointed out when discussing other MPC methods. Use MATLAB in the
simulation experiments.
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SCE students

Practical arrangements:

The work with the thesis will be held at TUC
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Student (date and signature):

Muhammaol Mohsin  O1. 02 .2013
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Appendix 2:
MATLAB script files for simulating the four-tank process with minimum and non-minimum
phase setting.

Appendix 2.1: Nonlinear_model_simulation.m

% MATLAB Script for: Simulation of nonlinear model.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script File: Nonlinear model simulation.m

% Function file: Fourtank nonlinear model.m

% Telemark University College, Porsgrunn, Norway [20-03-2013].

close all;
clear all;

[)

% System selection by the user
System sel=input (' Type 1 for minimum phase system or\n Type 2 for non-
minimum phase system \n');

if System sel==1;

% Model will show minimum phase characteristics
% Initial level in the tanks [cm]
h1=0;

h2=0;

h3=0;

h4=0;

h=[h1l,h2,h3,h4];

% Initial control inputs [V]
ul=3.0; u2=3.0;

u=[ul u2];

disp('Minimum phase system')

elseif System sel==2;

% Model will show non-minimum phase characteristics
% Initial level in the tanks [cm]
h1=0;

h2=0;

h3=0;

h4=0;

h=[hl,h2,h3,h4];

% Initial control inputs [V]
ul=3.15; u2=3.15;

u=[ul u2];

disp('Non-minimum phase system')

else display('Number not in range, type 1 or 2'")
end
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% Simulation time

N=1000;

time=1:0.1:N;

[t,y]l=0ded5 (EFourtank nonlinear model, time,h, [],u,System sel);

% Results for four tank simulation
figure (1)

subplot (2,2,1)
plot(t,y(:,1)),ylabel ('Level [cm]'),grid on,legend('Tank 1'")
subplot (2,2,2)
plot(t,v(:,2)),9rid on,legend('Tank 2")
subplot (2,2, 3)
))

plot(t,y(:,3
3")

subplot (2,2,4)

plot(t,v(:,4)),xlabel ('Time [s]'),grid on,legend('Tank 4")

,xlabel ('Time [s]'),ylabel('Level [cm]'),grid on,legend('Tank

Q

% For super title
set (gcf, 'NextPlot', 'add"') ;

axes;
if System sel==1;
label = title('Four-tank nonlinear model simulation for minimum phase

process') ;
elseif System sel==2;
label = title('Four-tank nonlinear model simulation for nonminimum phase
process') ;
end
set (gca, 'Visible', 'off');
set (label, 'Visible', 'on') ;

Appendix 2.2: Fourtank_nonlinear_model.m

o\°

% MATLAB Script for: Function for simulating the nonlinear model of the
four-tank process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon

3 and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Function file: Fourtank nonlinear model.m

o°

o\°

Telemark University College, Porsgrunn, Norway [20-03-2013]

o\

function model=Fourtank nonlinear model (time, h,u, System sel)
% Parameters values taken from the literature [Johansson] given in Table 5.1
% Cross-section area of tanks [cm"2]

Al1=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”"2]

al=0.071; a3=0.071;

az2=0.057; a4=0.057;

% Level in the tanks [cm]

hl=h(1); h2=h(2);

h3=h (3); h4=h(4);
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[)

% Control inputs
ul=u(l) ;
u2=u(2);

Q

kc=0.5;

% Acceleration of gravity

g=981;

if System sel==

% Model will show minimum phase characteristics
[cm"3/Vs]

o

Pump constants
k1=3.33; k2=3.35;

% Valve constants
r1=0.70; r2=0.60;

(V]

% Pump gain [V/cm]

elseif System sel==

% Model will show non-minimum phase characteristics,
[cm"3/Vs]

% Pump constants
k1=3.14; k2=3.29;
% Flow constants
r1=0.43; r2=0.34;

end

o
o

Th
dh (1
(2
(3
(4

e
)
) (
) —a3*sqgrt (
)= (

nonlinear model.
( —al*sgrt (2*g*hl)
( —a2*sqgrt (2*g*h2)
( )
( )

2%g=n3
-—ad4*sqgrt (2*g*h4

model=[dh (1) ;dh(2);dh(3);

[Equation

(4.10) -
+ a3*sqgrt (2*g*h3)
ad*sqrt (2*g*h4)
(1-r2) *k2*u2
(1-rl)*kl*ul

+ rl*kl*ul
+ r2*k2*u2

[Table 5.2]

[Table

) /Al;
) /A2;
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Appendix 3

Controllability and observability analysis of linearized model.

Appendix 3.1: Linearized_model_anaylsis.m

% MATLAB Script for: Controllability and observability analysis of
linearized model.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: Linearized model anaylsis.m

% Telemark University College, Porsgrunn, Norway [20-03-2013]

close all;
clear all;

[)

% System selection by the user
System sel=input (' Type 1 for minimum phase system or\n Type 2 for non-
minimum phase system \n');

if System sel==1;

display('Minimum phase system')

% Model will show minimum phase characteristics
% Steady state level [cm] in the tanks after performing simulations
% [Table 5.3]

hs1=12.3;

hs2=12.8;

hs3=1.63;

hs4=1.41;

% Pump constants [cm”3/Vs]

k1=3.33; k2=3.35;

% Flow constants
rl1=0.70; r2=0.60;

elseif System sel==2;

display('Non-minimum phase system')

% Model will show non-minimum phase characteristics

% Steady state level [cm] in the tanks after performing simulations
% [Table 5.3]

[o)

% Pump constants [cm”3/Vs]

k1=3.14; k2=3.29;

% Flow constants

r1=0.43; r2=0.34;

else display('Number not in range, type 1 or 2'")
end
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% Parameter values taken from the literature [Johansson], Table [5.1].
% Cross-section area of tanks [cm”2]

Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”2]

al=0.071; a3=0.071;

a2=0.057; a4=0.057;

% Pump gain [V/cm]

kc=0.5;

% Acceleration of gravity [cm/s"2]

g=981;

% Time constants [Section 4.1.2]

T1=Al* (sqrt (2*hsl/qg))/al;
T2=A2* (sqrt (2*hs2/qg)) /a2;
T3=A3* (sqrt (2*hs3/qg)) /a3;
T4=A4* (sqrt (2*hs4d/qg)) /a4d;

Linearized state space equation matrices A, B and D

Equations (4.15) and (4.16)
=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];
=[rl*k1/A1,0;0,r2*k2/A2;0, (1-r2) *k2/A3; (1-rl)*k1/A4,0];
=[kec,0,0,0;0,kc,0,0];

O W P o o°

% Results

% Eigen Vales of system matrix

Eigen values of system matrix are=eig(A)

% Rank of the system

Rank of the system=rank (A)

% Observability Matrix

obs mat=obsv (A, D) ;

Rank of Observability matrix is=rank (obs mat)
% Controllability Matrix

c mat=ctrb (A, B) ;

Rank of controllability matrix is=rank(c_mat)
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Appendix 4

Implementation of constrained MPC with integral action using ‘quadprog’ function in
the four-tank process. The user can select either a minimum or non-minimum phase process by
typing “1” or “2” respectively. The main script is in Appendix 4.1 and the supporting files
(four_tank_model.m, eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to
4.7.

Appendix 4.1: Const_MPC_integral_fourtankprocess.m

% MATLAB Script for: Constrained MPC with integral action for the four-tank
process including Kalman Filter.

% l:Constrained MPC with integral action for minimum phase.

% 2:Constrained MPC with integral action for non-minimum phase.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon.
% and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: Const MPC integral fourtankprocess.m

% Function files: four tank model.m

% eobsv.m, prbsl.m, g2gt.m, scmat.m, ss2h.m by [David Di Ruscio]
% Reference http://www2.hit.no/tf/fag/sced4l06/ovinger/ovinger.html

% Telemark University College, Porsgrunn, Norway [22-03-2013]

clear all;

close all;

System sel= input (' Type 1: For Constrainted MPC with integral action for
minimum phase \n or\n Type 2: For Constrainted MPC with integral action for
non-minimum phase \n');

% Table 5.1, Parameters values taken from the literature [Johansson].

% Cross-section area of tanks [cm"2]

A1=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”"2]

al=0.071; a3=0.071;

a2=0.057; a4=0.057;

% Pump gain [V/cm]

kc=0.5;

kc=1;

% Acceleration of gravity [cm/s”2]
g=981;

o\°

if System sel==1;

Model will show minimum phase characteristics [Table 5.2 & 5.3]

% Steady state level [cm] in the tanks after performing simulations
hsl=12.3;

hs2=12.8;

hs3=1.63;

hs4=1.41;

% Pump constants [cm”3/Vs]

k1=3.33; k2=3.35;

% Flow constants
r1=0.70; r2=0.60;

o
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elseif System sel==2;

% Model will show non-minimum phase characteristics [Table 5.4 & 5.5]
% Steady state level [cm] in the tanks after performing simulations
hsl=12.4;

hs2=13.2;

hs3=4.73;

hs4=4.99;

% Pump constants [cm”3/Vs]
k1=3.14; k2=3.29;

% Flow constants
r1=0.43; r2=0.34;

else display('Number not in range, type 1 or 2")
end
% Time constants [section 4.1.2]
T1=Al* (sqrt (2*hsl/qg))/al;
T2=A2* (sqrt (2*hs2/qg)) /a2;
T3=A3* (sqrt (2*hs3/qg)) /a3;
T4=A4* (sqrt (2*hs4d/qg)) /a4d;
% Equation (4.15) and (4.16), Linearized state space matrics Ac, Bc and Dc
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];
Bc=[rl*k1/A1,0;0,r2*k2/A2;0, (1-r2) *k2/A3; (1-rl)*k1/A4,0];
Dc=[kc,0,0,0;0,kc,0,0]1;

Coverting model from continuous to discrete time

Method 'zoh' assuming a zero order hold on the inputs.

Sampling time [s]
ts=0.1;
[A,B,D]=c2dm (Ac,Bc,Dc, zeros (2) ,ts, "zoh'") ;
% Making augmented state space model.

l=size(A,1);
m=size (B, 2);

n=size (D, 1) ;

% Matrics At, Bt and Dt
At=[A zeros(l,n); D eye(n,n)];

Bt=[B;zeros(n,m)];

Dt=[D eye(n,n)];

% Model predictive control algorithm,

Prediction horizon
=15;

Weighting matrices
00;

o° o

o°

o° oo
Il

1
0.1;

[q 0; 0 gl;

[r 0; O r];

Observability matrix OL and Toeplitz matrix HdAL calculation by ss2h
function. [David Di Ruscio]

[HdL, OL,OLB]=ss2h (At,Bt, Dt, zeros (n,m) ,L,0) ;

FL=[OLB HAdL];

Qt=g2qt (Q, L) ;

Rt=g2qt (R, L) ;

% Make matrices S and ¢ in the relationship, u(k,L) = S du(k,L) + c u(k-
1) .[David Di Ruscio]

[S,c] = scmat (m,L);

% H as defined in equation (3.50)

=FL'*Qt*FL+Rt;

% Simulation time

N=515;

o\O';UIC”)H;_Q

jas
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% Defining inital values for simulation
Is=[11.5;12.5];

Hd=D*inv (eye (4) -A) *B;

u_ss=inv (Hd) *Is;

I=eye (4) ;

x_ss =inv (I-A) *B*u_ss;

% Assigning variables

U=u_888

h=x ss;

u old=u; h old=h; y old=D*h;

% Make the references by using the function prbsl.m [David Di Ruscio]
rand('seed',0),randn('seed',0);

step=150;

ref=[11.5%*ones (N,1)+0.1*prbsl (N, step,step),12.5%ones (N, 1)+0.1*prbsl (N, step, st
ep)1;

% Used in Input amplitude constraint implementation.

umax=>5;

umin=0;

Q

% Making for variable storage

rllL=zeros (15,1);

Voltage=zeros (N-L,2) ;

Level meas=zeros (N-L,4);

Level est=zeros(N-L,4);

out level=zeros (N-L,2);

Kalman Gain calculation.

% A is Transition matrix, G is process noise gain matrix
% D is a measurement gain matrix, Q1 and R are processed and measurement
% auto-covariance matrices.

G=eye (4) ;

Q1=200*G;

r1=0.1;

Rl1=[r1l 0; O rl];

[K,P,Z,E]l=dlge (A,G,D,Q1,R1) ;

h est=h old;

o

for k=1:N-L

% Estimated output y.

y=D*h est;

% Kalman Filter Algorithm [Section 3.5]

hb=h old; % Apriori (Predicted) state estimate
yk=D*hb; % Measurement model update
ek=y-vk; % Estimator error

o\°

hb=h old+K*ek; Aposteriori state estimate
h est=[hb (1) ;hb(2);hb(3);hb(4)];

% Make the extended reference vector, r (k,L). [David Di Ruscio]
rf =ref (k+1:k+L, :);

rlL=rf(1,:)"';

for i=2:L
rll=[rlL;rf(i,:)"'];
end

[o)

% Computing MPC control
xk=[h_est-h old;y old];
pL=OL*At*xk;
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o\

f

o

o0 O @

f as defined in equation (3.50)
FL'*Qt* (pL-rlL) ;

For constrained MPC [Equation 2.8]
[S;-S];

quadprog function for input amplitude constraints.

duf=quadprog (H, f,a,b);

u:
u_

Q

°

ut+tduf (1:m) ;
old=u;

For plotting purpose store the variables.

Voltage (k, :)=u';

Level meas (k,:)=h"';
Level est(k,:)=h est';
out level (k,:)=y';

o
o

hi

Feed control to the four-tank process.
old=h est;

y _old=y;

h=

[o)

h+ts*four tank model (h,u,System sel); %

level measured.

h_

[)

est=h est+ts*four tank model (h est,u,System sel);%

level estimated.
end

ps

%

Plotted Results
1:N-L;
Level results for Tank 1.

figure (1)

subplot (3,1, [1 21])

plot(t, ref(l:N-L,1),'r');hold on

plot (t,out level(:,1))

ylabel ('Reference rl kand output yl k [cm]');
title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')

grid

%

Input Control signal for Tank 1

subplot (3,1,3),

plot(t,Voltage(:,1)),

xlabel ('Time [s]');

ylabel ('voltage [V]"')

title('Controller signal ul k for pump 1'")
grid

figure (2)

Q

°

Level results for Tank 2.

subplot (3,1, [1 27])

plot (t,ref(l1:N-L,2),'r"); hold on

plot (t,out level(:,2))

ylabel ('Reference r2 kand output y2 k [cm]');
title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')

grid

o

°

Input Control signal for Tank 2

subplot (3,1, 3),
plot (t,Voltage(:,2)),
xlabel ('Time [s]'):

=[umax*ones (L*m, 1) -c*u_old;-umin*ones (L*m, 1) +c*u_old];

[Equation 2.9]

Simulating model for

Simulating model for
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ylabel ('Voltage [V]'")

title('Controller signal u2 k for pump 2'")
grid

% Results for measured and estimated states for the four - tank process
figure (3)

% Tank 1

subplot (2,2,1)

plot (t,Level meas(:,
plot (t,Level est(:,1),'g")

$ xlabel ('Time [s]'):;

ylabel ('Level [cm]');

title('Tank 1'");

legend ('Measured level', 'Estimated level');
grid

1)) ;hold on;

$ Tank 2

subplot (2,2,2)

plot (t,Level meas(:,2));hold on;
plot (t,Level est(:,2),"'qg")

$ xlabel ('Time [s]'
ylabel ('Level [cm]'
title('Tank 2'");
legend ('Measured level', 'Estimated level');
grid

) &
) -

’

% Tank 3

subplot (2,2, 3)

plot (t,Level est(:,3),'g");
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 3');
legend ('Estimated level');
grid

) 8

% Tank 4

subplot (2,2,4)

plot (t,Level est(:,4),'qg");
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 4');
legend ('Estimated level');
grid

) ;

Appendix 4.2: Four_tank_Nonlinear_model.m

o©

o

MATLAB Script for: Model of four-tank process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author: Mohsin (113817)

% File name: Four tank Nonlinear model.m

o\°

o\°

Telemark University College, Porsgrunn, Norway [23-03-2013]

o\°

function model=four tank model (h,u,System sel)
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% Table 5.1, parameter values taken from the literature [Johansson].
% Cross-section area of tanks [cm”2]

Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”2]

al=0.071; a3=0.071;

a2=0.057; a4=0.057;

% Level in the tanks [cm]
hl=h (1) ;

h2=h(2) ;

h3=h (3) ;

h4=h (4) ;

% Control inputs [V]

ul=u(l);

u2=u(2);

% Pump gain [V/cm]

kc=1;

% Acceleration of gravity [cm/s"2]
g=981;

if System sel==

% Model will show minimum phase characteristics [Table 5.3]
Pump constants [cm”3/Vs]

k1=3.33; k2=3.35;

% Flow constants
r1=0.70; r2=0.60;

o

elseif System sel==

% Model will show non-minimum phase characteristics [Table 5.5]
% Pump constants [cm”3/Vs]

k1=3.14; k2=3.29;

% Flow constants
r1=0.43; r2=0.34;

% The four-tank model. [Equation (4.10)-(4.13)]

f(1)=( -al*sqgrt(2*g*hl) + a3*sqgrt(2*g*h3) + rl*kl*ul )/Al;
£(2)=( -a2*sqrt (2*g*h2) + ad*sqrt (2*g*hd4) + r2*k2*u2 )/A2;
£(3)=( -a3*sqrt (2*g*h3) + (1-r2)*k2*u2 )/A3;
£(4)=( -ad*sqrt (2*g*h4) + (l-rl)*kl*ul )/A4;

Appendix 4.3: eobsv.m

o\9

o

MATLAB Script for: Function for Compute the Extended Observability matrix O_i

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Author: David Di Ruscio

% Function file: eobsv.m

o

o

Telemark University College, Porsgrunn, Norway [23-03-2013]

o©

function O=eobsv(A,D,1i);
% Syntax:
% O_i=eobsv(A,D,1i);
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o\

ON INPUT

% A,D System matrices, n x n system matrix
s I Number of block rows.

% ON OUTPUT

% O I Extended Observability matrix.

[ny,n]=size (D) ;
O=zeros (i*ny,n) ;
O(l:ny,:)=D;
w=D;
for j=2:1
W=W*A;
in=j*ny;
O(in-ny+l:in,
end

) =w;

and m x n output matrix.

Appendix 4.4: q2qt.m

o

o°

MATLAB Script for:

o°

o°

Master's Thesis:

o

o

Author:
Function file:

o° oo

o°

Telemark University College,

Make extended weight matrix gt=tilde(q),

i.e.
"MPC with Integral Action:
and model free MPC."

David Di Ruscio

g2gt.m

Porsgrunn, Norway

gt a block diagonal matrix with g on the diagonal.

Reducing the control horizon

[23-03-2013]

o

function [gt] =
[nc,nr]=size(q);
gt=zeros (nc*L,nr*L) ;

for i=1:L
for j=1:L
if i==j

a2qt (g, L) ;

gt ((i-1) *nc+l:i*nc, (j-1) *nr+l:j*nr)=q;

end
end
end

Appendix 4.5: prbs1.m

o° oo

MATLAB Script for:
Master's Thesis:

o° oo

o

Author:
Function file:

o° oo

o\°

Telemark University College,

Make a Pseudo Random Binary Signal of length N samples.

"MPC with Integral Action:
and model free MPC."

David Di Ruscio

prbsl.m

Porsgrunn, Norway

Reducing the control horizon

[23-03-2013]

o\

function

o° oo

[u, t]=prbsl (N, Tmin, Tmax) ;
The signal is constant for a random interval of T samples.
The random interval T is bounded by a specified band,
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o\

ON INPUT:

N INTEGER. Number of samples in input signal u, (u_t for all t=1,...,N).
Tmin INTEGER. Minimal interval for which u t is constant.

Tmax INTEGER. Maximal interval for which u t is constant.

o° o

o°

% ON OUTPUT:

% u REAL. The PRBS input signal of lenght N samples.
is=1;
Tmin= Tmin-1;
dT = Tmax—-Tmin;
u=zeros (N, 1) ; % Make space for input signal.
if is==
s=sign (randn) ; % Sign of input (change) at time 0.
else
s=1;
end
k=1; % Initialize integer counter for time to switch.

I
it=1; % Initialize integer counter for # of intervals.
while k < N+1
T=Tmin+dT*rand; T=ceil (T) ;
u(k:k+T-1)=s*ones (T, 1) ;
s=s*(-1);

o°

Compute random time horizon T in
the interval [Tmin <= T <= Tmax].
Update sign variable s which is either -1 or 1.

o° oP

k=k+T; % Update time counter.
t(it)=T; $ Save intervals.
it=it+1;
end
u=u(l:N); % Last interval T may be shorter than Tmin.

Appendix 4.6: scmat.m

o\°

o\°

MATLAB Script for: Make matrices S and c in the relationship,

u(k,L) = S du(k,L) + c u(k-1)
% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."
% Author: David Di Ruscio
% Function file: scmat.m

o°

o°

Telemark University College, Porsgrunn, Norway [22-03-2013]

o

function [S,c] = scmat (nr,L);

S=zeros (nr*L,nr*L); c=zeros (nr*L,nr);
for i=1:L
for j=1:1
S((i-1)*nr+l:i*nr, (j-1)*nr+l:j*nr)=eye (nr) ;
end
end

for i=1:1L
c((i-1)*nr+l:i*nr, :)=eye(nr);
end
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Appendix 4.7: ss2h.m

o° o

o°

H*d L from a

o\

MATLAB Script for: Compute the lower block triangular Toeplizt matrix

state space model given by the quadruple

System matrices (A,B,D,E).

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Author: David Di Ruscio

% Function file: ss2h.m

o\

o\

Telemark University College, Porsgrunn, Norway [22-03-2013]

\o

°

function [H,0,0OB]=ss2h(A,B,D,E,L,q);

o°

SYNTAX

o

oo

ON INPUT
A,B,D,E System matrices.
L Number of block rows in

o° o° o o°

o

ON OUTPUT
H*D L, O L AND O L B
ny,nul=size(E);

— 0P

O = eobsv(A,D,L); % The
OB= O*B; % DB,
hi=[E;OB(l: (L-1) *ny, :)]; % The

% The

for j=1:L+g-1

[H*d 1.,0 L,0 L B]=ss2h(A,B,D,E,L,

g);

H"d, O L

g Define number of block columns, L+g-1, in H"d L.
Olso g=0 when E=0 and g=

1 when E.neq.O0.

extended observability matrix.

DAB, and so on.

impulse responses which are needed.
lower block triangular Toeplizt matrix.

H((J-1)*ny+1:L*ny, (j-1) *nu+l:j*nu) =hi(l: (L-j+1)*ny,:);

end
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Appendix 5

Implementation of constrained MPC with integral action using ‘if-else” method in the four-tank
process. The user can select either a minimum or non-minimum phase process by typing “1” or
“2” respectively. The main script is in Appendix 5.1 and the supporting files

(four_tank_model.m, eobsv.m, g2qt.m, prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to
4.7.

Appendix 5.1: Const_ MPC_integral_fourtankprocess.m

% MATLAB Script for: Constrained MPC with integral action using if-else

% method for the four-tank process including Kalman Filter.
% l:Constrained MPC with integral action for minimum phase.

% 2:Constrained MPC with integral action for non-minimum phase.
% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: Const MPC integral ifelse.m

% Function files: four tank model.m

% eobsv.m, g2gt.m, prbsl.m, scmat.m, ss2h.m by [David Di Ruscio]
% Reference http://www2.hit.no/tf/fag/sced4l106/ovinger/ovinger.html

% Telemark University College, Porsgrunn, Norway [26-03-2013]

clear all;

close all;

System sel= input (' Type 1: For Constrained MPC with integral action for
minimum phase \n or\n Type 2: For Constrained MPC with integral action for
non-minimum phase \n');

% Table 5.1, Parameter values taken from the literature [Johansson].

% Cross-section area of tanks [cm”"2]

Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”2]

al=0.071; a3=0.071;

a2=0.057; a4=0.057;

Pump gain [V/cm]

% kc=0.5;

kc=1;

% Acceleration of gravity [cm/s”2]
g=981;

o\°

if System sel==1;

% Model will show minimum phase characteristics [Table 5.2 & 5.3]

% Steady state level [cm] in the tanks after performing simulations
hsl=12.3;

hs2=12.8;

hs3=1.63;

hsd4=1.41;

% Pump constants [cm”3/Vs]

k1=3.33; k2=3.35;

% Flow constants
r1=0.70; r2=0.60;
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elseif System sel==2;

% Model will show non-minimum phase characteristics [Table 5.4 & 5.5]
% Steady state level [cm] in the tanks after performing simulations
hsl=12.4;

hs2=13.2;

hs3=4.73;

hs4=4.99;

% Pump constants [cm”3/Vs]
k1=3.14; k2=3.29;

% Flow constants
r1=0.43; r2=0.34;

else display('Number not in range, type 1 or 2")
end

% Time constants [section 4.1.2]

T1=Al* (sqrt (2*hsl/qg))/al;

T2=A2* (sqrt (2*hs2/qg)) /a2;

T3=A3* (sqrt (2*hs3/qg)) /a3;

T4=A4* (sqrt (2*hs4d/qg)) /a4d;

% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];
Bc=[rl*k1/A1,0;0,r2*k2/A2;0, (1-r2) *k2/A3; (1-rl)*k1/A4,0];
Dc=[kc,0,0,0;0,kc,0,0]1;

Coverting model from continuous to discrete time

Method 'zoh' assuming a zero order hold on the inputs.

Sampling time [s]

ts=0.1;

[A,B,D]=c2dm (Ac,Bc,Dc, zeros (2) ,ts, "zoh'") ;

% Making augmented state space model.

l=size(A,1);

m=size (B, 2);

n=size (D, 1) ;

% Matrics At, Bt and Dt

At=[A zeros(l,n); D eye(n,n)];

Bt=[B;zeros(n,m)];

Dt=[D eye(n,n)];

% Model predictive control algorithm,

Prediction horizon

o° o

o°

o°

L=15;

% Weighting matrices

g=100;

r=0.1;

Q=I[q 0; 0 gql;

R=[r 0; 0 r];

% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h

function. [David Di Ruscio]

[HdL, OL,OLB]=ss2h (At,Bt, Dt, zeros (n,m) ,L,0) ;

FL=[OLB HAdL];

Qt=g2qt (Q, L) ;

Rt=g2qt (R, L) ;

% Make matrices S and ¢ in the relationship, u(k,L) = S du(k,L) + c u(k-
1) .[David Di Ruscio]

[S,c] = scmat (m,L);

% H as defined in equation (3.50)

H=FL'*Qt*FL+Rt;
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% Simulation time
N=515;

% Defining inital values for simulation
Is=[11.5;12.5];

Hd=D*inv (eye (4) -A) *B;

u_ss=inv (Hd) *Is;

I=eye (4) ;

X ss =inv (I-A) *B*u_ss;

% Assigning variables
u=u_ss;

h=x ss;

u old=u; h old=h; y old=D*h;

% Make the references by using the function prbsl.m[David Di Ruscio]
rand('seed',0),randn('seed',0);

step=150;
ref=[11.5*ones (N,1)+0.1*prbsl (N,step,step),12.5%ones (N, 1)+0.1*prbsl (N, step, st
ep)1;

Q

% Used constraint implementation by using if-else statement.
umax=>5;

umin=0;

umax=umax*ones (L*m, 1) ;

umin=umin*ones (L*m, 1) ;

% Making for variable storage

rlL=zeros (15,1);

Voltage=zeros (N-L,2) ;

Level meas=zeros (N-L,4);

Level est=zeros(N-L,4);

out level=zeros (N-L,2);

% Kalman Gain calculation.

% A is Transition matrix, G i1s process noise gain matrix
% D is a measurement gain matrix, Ql and R are process and measurement
% auto-covariance matrices.

G=eye (4) ;

Q1=200*G;

r1=0.1;

Rl1=[r1l 0; O rl];

[K,P,Z2,E]=dlge(A,G,D,Q1,R1);

h est=h old;

for k=1:N-L
% Estimated output y.
y=D*h est;

% Kalman Filter Algorithm [Section 3.5]

hb=h old; % Apriori (Predicted) state estimate
yk=D*hb; % Measurement model update
ek=y-vk; % Estimator error

o\°

hb=h old+K*ek; Aposteriori state estimate

h est=[hb (1) ;hb(2);hb(3);hb(4)];

% Make the extended reference vector, r (k,L).[David Di Ruscio]
rf =ref (k+1:k+L, :);

elll=wE (1,8) ¢

for i=2:L
rll=[rlL;rf(i,:)"'];
end
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% Computing MPC control
xk=[h_est-h old;y old];
pL=0OL*At*xk;

% f as defined in equation
f=FL'*Qt* (pL-rll) ;

(3.50)

Q

% For constrained MPC by using if-else method
duf=-inv (H) *£f;
u=u+duf (1:m) ;

u_old=u;

if u(l,l)>umax(1,1)
u(l,l)=umax(1l,1);

elseif u(l,l)<umin(1l,1)
u(l,l)=umin(1,1);

end

if u(2,1l)>umax(2,1)
u(2,1l)=umax(2,1);

elseif u(2,1)<umin(2,1)
u(2,1l)=umin(2,1);

end

Q

% For plotting purpose store the variables.
Voltage (k, :)=u';

Level meas (k,:)=h"';

Level est(k,:)=h est';

out level(k,:)=y"';

% Feed control to the four-tank process.
h old=h est;

y_old=y;
h=h+ts*four tank model (h,u, System sel);
level measured.

h est=h est+ts*four tank model (h _est,u, System sel);

level estimated.
end

% Plotted Results
t=1:N-L;

% Level results for Tank 1.

figure (1)

subplot (3,1, [1 21])

plot(t, ref(l:N-L,1),'r');hold on

plot (t,out level(:,1))

ylabel ('Reference rl kand output yl k [cm]');
title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')

grid

% Input Control signal for Tank 1

subplot (3,1,3),

plot (t,Voltage(:,1)),

xlabel ('Time [s]');

ylabel ('voltage [V]"')

title('Controller signal ul k for pump 1'")
grid
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%

[Equation 3.209]

Simulating model for

Simulating model for



figure (2)

% Level results for Tank 2.

subplot (3,1, [1 2])

plot (t,ref(l:N-L,2),'r"'); hold on

plot (t,out level(:,2))

ylabel ('Reference r2 kand output y2 k [cm]');

title('Tank 2 reference and output level')

legend ('Reference r k', 'Output y k')

grid

% Input Control signal for Tank 2

subplot (3,1, 3),

plot (t,Voltage(:,2)),

xlabel ('Time [s]');

ylabel ('Voltage [V]'")

title('Controller signal u2 k for pump 2'")

grid

% Results for measured and estimated states for the four-tank process
figure (3)

$ Tank 1

subplot (2,2,1)

plot (t,Level meas(:,1));hold on;

plot (t,Level est(:,1),'g")

% xlabel ('"Time [s]'
ylabel ('Level [cm]'
title('Tank 1');
legend ('Measured level', 'Estimated level');
grid

) &
) -

’

% Tank 2
subplot (2,2,2)
plot (t,Level meas(:,2));hold on;
plot (t,Level est(:,2),'g")
")
)

$ xlabel ('Time [s] g
ylabel ('Level [cm]'
title('Tank 2'");

legend ('Measured level', 'Estimated level');

grid

’

% Tank 3

subplot (2,2, 3)

plot (t,Level est(:,3),'g");
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 3'");
legend ('Estimated level');
grid

) 8

% Tank 4

subplot (2,2,4)

plot (t,Level est(:,4),'qg');
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 4'");
legend ('Estimated level');
grid

) ;
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Appendix 6

Implementation of unconstrained MPC with integral action in the four-tank process. The user can
select either a minimum or non-minimum phase process by typing “1” or “2” respectively. The
main script is in Appendix 6.1 and the supporting files (four_tank_model.m, eobsv.m, q2qt.m,
prbsl.m, scmat.m, ss2h.m) are given in appendices 4.2 to 4.7.

Appendix 6.1: Const_ MPC_integral_fourtankprocess.m

% MATLAB Script for: Unconstrained MPC with integral action for the four-
tank process including Kalman Filter.

% l:Unconstrained MPC with integral action for minimum phase.

% 2:Unconstrained MPC with integral action for non-minimum phase.
% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: Unconst MPC integral fourtankprocess.m

% Function files: four tank model.m

% eobsv.m, g2gt.m, prbsl.m, scmat.m, ss2h.m by [David Di Ruscio]
% Reference http://www2.hit.no/tf/fag/sced4l06/ovinger/ovinger.html

% Telemark University College, Porsgrunn, Norway [29-03-2013]

clear all;

close all;

System sel= input (' Type 1: For uncnstrainted MPC with integral action for
minimum phase \n or\n Type 2: For unconstrainted MPC with integral action for
non-minimum phase \n');

% Table 5.1, Parameter values taken from the literature [Johansson].
% Cross-section area of tanks [cm"2]

Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”2]

al=0.071; a3=0.071;

a2=0.057; a4=0.057;

% Pump gain [V/cm]

Kc=0.5;

kc=1;

% Acceleration of gravity [cm/s”2]
g=981;

if System sel==1;

o\°

Model will show minimum phase characteristics

% Table 5.3,Steady state level [cm] in the tanks after performing simulations
hs1=12.3;

hs2=12.8;

hs3=1.63;

hs4=1.41;

% Pump constants [cm”3/Vs]
k1I=31.3350 k2=3/.35/;

% Flow constants
r1=0.70; r2=0.60;
elseif System sel==2;
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% Model will show non-minimum phase characteristics

% Table 5.5,Steady state level [cm] in the tanks after performing simulations
hsl=12.4;

hs2=13.2;

hs3=4.73;

hs4=4.99;

% Pump constants [cm”3/Vs]

k1=3.14; k2=3.29;

% Flow constants
r1=0.43; r2=0.34;

else display('Number not in range, type 1 or 2'")

end

% Time constants [section 4.1.2]

Tl=Al* (sqrt(2*hsl/qg))/al;

T2=A2* (sqrt (2*hs2/qg)) /a2;

T3=A3* (sqrt (2*hs3/qg)) /a3;

T4=A4* (sqrt (2*hs4d/qg)) /a4d;

% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc

Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T73,0;0,0,0,-1/T47];

Bc=[rl*k1/A1,0;0,r2*k2/A2;0, (1-r2) *k2/A3; (1-rl)*k1/A4,0];
Dc=[kc,0,0,0;0,kc,0,0];
Coverting model from continuous to discrete time
Method 'zoh' assuming a zero order hold on the inputs.
Sampling time [s]

s=0.1;

A,B,D]=c2dm (Ac,Bc,Dc, zeros (2),ts, "zoh'") ;

Making augmented state space model.

l=size(A,1);

m=size (B, 2);

n=size (D, 1) ;

$ Matrics At, Bt and Dt

At=[A zeros(l,n); D eye(n,n)];

Bt=[B;zeros(n,m)];

Dt=[D eye(n,n)];

% Model predictive control algorithm,

% Prediction horizon

o oP

o°

o° — (t

servability matrix OL and Toeplitz matrix HAL calculation by ss2h
function. [David Di Ruscio]

[HdL, OL,OLB]=ss2h (At,Bt, Dt, zeros (n,m) ,L,0) ;
FL=[OLB HAL];

Qt=g2qt (Q, L) ;

Rt=g29t (R, L) ;

% Make matrices S and c in the relationship,
u(k,L) = S du(k,L) + c¢c u(k-1).[David Di Ruscio]
S,c] = scmat (m,L);

H=FL'*Qt*FL+Rt;

% Simulation time

N=515;

— oP
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% Defining inital values for simulation
Is=[11.5;12.5];

Hd=D*inv (eye (4) -A) *B;

u_ss=inv (Hd) *Is;

I=eye (4) ;

x_ss =inv (I-A) *B*u_ss;

% Assigning variables

U=u_888

h=x ss;

u old=u; h old=h; y old=D*h;

% Make the references by using the function prbs. [David Di Ruscio]
rand('seed',0),randn('seed',0);

step=150;
ref=[11.5%*ones (N,1)+0.2*prbsl (N, step, step),12.5%ones (N, 1)+0.2*prbsl (N, step, st
ep)1;

[)

% Making for variable storage

rllL=zeros (15,1);

Voltage=zeros (N-L,2) ;

Level meas=zeros (N-L,4);

Level est=zeros(N-L,4);

out level=zeros (N-L, 2);

% Kalman Gain calculation.

% A is Transition matrix, G is process noise gain matrix
% D is a measurement gain matrix, Ql and R are process and measurement
% auto-covariance.

G=eye (4) ;

Q1=100*G;

rl=0.1;

Rl1=[x1 0; O xrl];

(K, P, Z, E]=dlqe (A,G,D,Q1,R1);

h est=h old;

for k=1:N-L

% Estimated output y.
y=D*h est;

Q

% Kalman Filter Algorithm [Section 3.5]

hb=h old; % Apriori (Predicted) state estimate
yk=D*hb; % Measurement model update
ek=y-yk; % Estimator error

o\°

hb=h old+K*ek; Aposteriori (corrected) state estimate

h est=[hb(1l);hb(2);hb(3);hb(4)];

% Make the extended reference vector, r (k,L), [David Di Ruscio]
rf =ref (k+1:k+L, :);

elll=wE (1,38) ¢

for i=2:L
rll=[rlL;rf(i,:)"'];
end

Q

% Computing MPC control

xk=[h est-h old;y old];
pL=OL*At*xk;

% f as defined in equation (3.50)
f=FL'*Qt* (pL-rlL) ;

% For unconstrained MPC [Equation 3.9]
duf=-inv (H) *f;

u=ut+duf (1l:m) ;

uold=u;
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% For plotting purpose store the variables.
Voltage(k,:)=u',
Level meas (k, :)=h

Level est (k, )=h est"

out level (k,:)=y'

% Feed control to the four-tank process.
h old=h est;

y_old=y;
h=h+ts*four tank model (h,u, System sel);
level measured.

level estimated.
end
% Plotted Results
=1:
% Level results for Tank 1.
figure (1)
subplot (3,1, [1 2])
plot(t, ref(l:N-L,1),'r');hold on
plot (t,out level(:,1))
ylabel ('Reference rl kand output yl k [cm]');
title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')
grid
% Input Control signal for Tank 1
subplot (3,1,3),
plot (t,Voltage(:,1)),
xlabel ('Time [s]');
ylabel ('voltage [V]'")
title('Controller signal ul k for pump 1'")
grid
figure (2)
% Level results for Tank 2.
subplot (3,1, [1 21])
plot (t,ref(l:N-L,2),'r"'); hold on
plot (t,out level(:,2))
ylabel ('Reference r2 kand output y2 k [cm]'");
title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')
grid
% Input Control signal for Tank 2
subplot (3,1, 3),
plot(t,Voltage(:,2)),
xlabel ('Time [s]');
ylabel ('Voltage [V]'")
title('Controller signal u2 k for pump 2'")
grid

S

°

Q

h est=h est+ts*four tank model (h est,u, System sel);

°

Simulating model for

Simulating model for

% Results for measured and estimated states for the four-tank process.

figure (3)

% Tank 1

subplot(2,2,1)

plot (t,Level meas(:,1));hold on;
plot (t,Level est(:,1),'g")
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$ xlabel ('Time [s]'):;

ylabel ('Level [cm]');

title('Tank 1'");

legend ('Measured level', 'Estimated level');
grid

$ Tank 2

subplot (2,2,2)

plot (t,Level meas(:,2));hold on;
plot (t,Level est(:,2),'g")

$ xlabel ('Time [s]'
ylabel ('Level [cm]'
title('Tank 2'");
legend ('Measured level', 'Estimated level');
grid

) 8
).

’

% Tank 3

subplot (2,2, 3)

plot (t,Level est(:,3),'g");
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 3');
legend ('Estimated level');
grid

) ;

$ Tank 4

subplot (224)

plot (t,Level est(:,4),'qg"');
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 4'");
legend ('Estimated level');
grid

) ;
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Appendix 7

Performance comparison by reducing the control horizon in MPC with integral action algorithm.
The user can select either a minimum or non-minimum phase process by typing “1” or “2”
respectively. The main script is in Appendix 7.1 and the supporting files (four_tank_model.m,
eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to 4.7.

Appendix 7.1: Reduced_controlH_MPC_integral.m

% MATLAB Script for: Reducing control horizon in MPC with integral action
for the four-tank process

% l:Constrained MPC with integral action for minimum phase.

% 2:Constrained MPC with integral action for non-minimum phase.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: Reduced controlH MPC integral.m

% Function files: four tank model.m

% eobsvfm, qf&t.m, prbsl.m, scmat.m, ss2h.m by [David Di Ruscio]
% Reference http://www2.hit.no/tf/fag/scedl06/ovinger/ovinger.html

% Telemark University College, Porsgrunn, Norway [20-04-2013]

clear all;

close all;

System sel= input (' Type 1: MPC with integral action for minimum phase \n
or\n Type 2: MPC with integral action for non-minimum phase \n');

$ Table 5.1, Parameter values taken from the literature [Johansson].
% Cross-section area of tanks [cm”"2]

Al=28; A3=28;

A2=32; RA4=32;

% Cross-section area of the outlet holes[cm”2]

al=0.071; a3=0.071;

a2=0.057; a4=0.057;

Pump gain [V/cm]

% kc=0.5;

kc=1;

% Acceleration of gravity [cm/s"2]

g=981;

o°

if System sel==1;

% Model will show minimum phase characteristics [Table 5.2 % 5.3]
% Steady state level [cm] in the tanks after performing simulations
hs1=12.3;

hs2=12.8;

hs3=1.63;

hs4=1.41;

% Pump constants [cm”3/Vs]

k1=31.335 k2=3/.35/;

% Flow constants

r1=0.70; r2=0.60;

elseif System sel==2;
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% Model will show non-minimum phase characteristics [Table 5.4 & 5.5]
% Steady state level [cm] in the tanks after performing simulations
hsl=12.4;
hs2=13.2;
hs3=4.73;
hs4=4.99;
% Pump constants [cm”3/Vs]
k1=3.14; k2=3.29;
% Flow constants
r1=0.43; r2=0.34;
else display('Number not in range, type 1 or 2')
end
% Time constants [section 4.1.2]
T1=Al* (sqrt (2*hsl/qg))/al;
T2=A2* (sqrt (2*hs2/qg)) /a2;
T3=A3* (sqrt (2*hs3/qg)) /a3;
T4=A4* (sqrt (2*hs4d/qg)) /a4d;
% Equation (4.15) and (4.16), Linearized state space matrics Ac, Bc and Dc
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];
Bc=[rl*kl1/A1,0;0,r2*k2/A2;0, (1-r2)*k2/A3; (1-rl1) *k1/A4,0];
Dc=[kc,0,0,0;0,kc,0,0];
Coverting model from continuous to discrete time
Method 'zoh' assuming a zero order hold on the inputs.
Sampling time [s]
s=0.1;
A,B,D]=c2dm (Ac,Bc,Dc, zeros (2),ts, "zoh'") ;
Making augmented state space model.
l=size(A,1);
m=size (B, 2);
n=size (D, 1) ;
% Matrics At, Bt and Dt
At=[A zeros(l,n); D eye(n,n)];
Bt=[B;zeros(n,m)];
Dt=[D eye(n,n)];
% Model predictive control algorithm,

o° o

o°

o° — t

% Prediction horizon

L=15;

% Control horizon
Lu=10;

s Lu=4;

s Lu=2;

% Weighting matrices

g=100;

r=0.1;

O=[g 0; 0 gl;

R=[r 0; 0 r];

% Observability matrix OL and Toeplitz matrix HdAL calculation by ss2h

function. [David Di Ruscio]

[HdL, OL,OLB]=ss2h (At,Bt, Dt, zeros (n,m) ,Lu,0) ;

FL=[OLB HdL];

Qt=g2qgt (Q, Lu) ;

Rt=g2qt (R, Lu) ;

% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-
1) .[David Di Ruscio]

[S,c] = scmat (m,Lu);

% H as defined in equation (3.50)

H=FL'*Qt*FL+Rt;
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% Simulation time
N=215;

% Defining inital values for simulation
Is=[11.5;12.5];

Hd=D*inv (eye (4) -A) *B;

u_ss=inv (Hd) *Is;

I=eye (4) ;

X ss =inv (I-A) *B*u_ss;

% Assigning variables
u=u_ss;

h=x ss;

u old=u; h old=h; y old=D*h;

% Make the references by using the function prbs. [David Di Ruscio]
rand('seed',0),randn('seed',0);

step=100;

ref=[11.5*ones (N,1)+0.1*prbsl (N,step,step),12.5%ones (N, 1)+0.1*prbsl (N, step, st
ep)l;

% Used in Input amplitude constraint implementation.

umax=>5;

umin=0;

[)

% Making for variable storage

rllL=zeros (15,1);

Voltage=zeros (N-L,2) ;

Level meas=zeros (N-L,4);

Level est=zeros(N-L,4);

out level=zeros (N-L,2);

Kalman Gain calculation.

A is Transition matrix, G 1s process noise gain matrix
D is a measurement gain matrix, Ql and R are process and measurement
auto-covariance matrices.

G=eye (4) ;

Q1=200%*G;

rl=0.1;

Rl=[x1 0; O xrl1];

[K,P,Z2,E]=dlge(A,G,D,Q1,R1);

h est=h old;

o o° oP

o°

for k=1:N-L

% Estimated output y.

y=D*h est;

% Kalman Filter Algorithm [Section 3.5]

hb=h old; % Apriori (Predicted) state estimate
yk=D*hb; % Measurement model update
ek=y-vyk; % Estimator error

o

hb=h old+K*ek; Aposteriori state estimate

h est=[hb(1);hb(2);hb(3);hb(4)];

% Make the extended reference vector, r (k,L) .[David Di Ruscio]
rf =ref (k+1:k+Lu, :);

rll=rf (1, :)";

for i=2:Lu

rll=[rlL;rf(i,:)"'];

end

% Computing MPC control

xk=[h est-h old;y old];
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pL=OL*At*xk;
f=FL'*Qt* (pL-rll) ;

% For constrained MPC [Equation 2.8]

a=[S;-81;
b=[umax*ones (Lu*m, 1) -c*u old;-umin*ones (Lu*m, 1) +c*u old];
% quadprog function for input amplitude constraints. [Equation 2.29]

duf=quadprog (H, f,a,b);

u=u+duf (1l:m) ;

u_old=u;

% For plotting purpose store the variables.
Voltage (k,:)=u';

Level meas (k,:)=h"';

Level est(k,:)=h est';

out level(k,:)=y';

% Feed control to the four-tank process.
h old=h est;
y_old=y;
h=h+ts*four tank model (h,u, System sel); % Simulating model for level measured.
h est=h est+ts*four tank model (h est,u,System sel);% Simulating model for
level estimated.
end
Plotted Results
=1:N-L;
% Level results for Tank 1.
figure (1)
subplot (3,1, [1 21])
plot(t, ref(l:N-L,1),'r');hold on
plot (t,out level(:,1))
ylabel ('Reference rl kand output yl k [cm]');
title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')
grid
% Input Control signal for Tank 1
subplot (3,1,3),
plot (t,Voltage(:,1)),
xlabel ('Time [s]');
ylabel ('voltage [V]'")
title('Controller signal ul k for pump 1'")
grid
figure (2)
% Level results for Tank 2.
subplot (3,1, [1 2])
plot (t,ref(l1:N-L,2),'r"'"); hold on
plot (t,out level(:,2))
ylabel ('Reference r2 kand output y2 k [cm]'");
title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')
grid

ps

[o)

% Input Control signal for Tank 2
subplot (3,1, 3),

plot (t,Voltage(:,2)),

xlabel ('Time [s]');
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ylabel ('Voltage [V]'")

title('Controller signal u2 k for pump 2'")
grid

figure (3)

% Tank 1

subplot (2,2,1)

plot (t,Level meas(:,1));hold on;
plot (t,Level est(:,1),'g")

$ xlabel ('Time [s]');
ylabel ('Level [cm]');
title('Tank 1'");

legend ('Measured level', 'Estimated level');

grid

$ Tank 2
subplot (2,2,2)
plot (t,Level meas(:,2));hold on;
plot (t,Level est(:,2),"'qg")

$ xlabel ('Time [s]'
ylabel ('Level [cm]'
title('Tank 2'");

) &
) -

’

legend ('Measured level', 'Estimated level');

grid

% Tank 3

subplot (2,2, 3)

plot (t,Level est(:,3),'g");
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 3');
legend ('Estimated level');
grid

) 8

% Tank 4

subplot (224)

plot (t,Level est(:,4),'qg");
xlabel ('Time [s]');
ylabel ('Level [cm]'
title('Tank 4');
legend ('Estimated level');
grid

) ;

% Results for measured and estimated states for

four-tank process
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Appendix 8

RGA analysis to determine the optimal input-output variable pairing for the four-tank process.
The user can select either a minimum or non-minimum phase process by typing “1” or “2”
respectively.

Appendix 8.1: RGA_analysis.m

% MATLAB Script for: RGA analysis to determine the optimal input-output

% variable pairing for

% four tank process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: RGA analysis.m

% Telemark University College, Porsgrunn, Norway [21-04-2013]

clear all;
close all;

% Minimum or non-minimum phase selection
System sel= input (' Type 1 for minimum phase system or\n Type 2 for non-
minimum phase system \n');

% RGA analysis for minimum phase
if System sel==1;
display('Minimum phase process')

% Equation (5.8)
G=[2.6 1.5;1.4 2.8]

% RGA analysis for non-minimum phase

elseif System sel==2;

display ('Non-minimum phase process')

% Equation (5.9)

G=[1.5 2.5; 2.5 1.6]

else display('Number not in range, type 1 or 2'")
end

% Results

A=G.* (inv (G)) "'

disp ('RGA Result');

% After the RGA analysis

if System sel==1;

disp('ul will control output yl and u2 will control output y2');
elseif System sel==2;

disp('ul will control output y2 and u2 will control output yl')
end
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Appendix 9
Implementation of the PI controller on the four-tank minimum phase process. The main script
and supporting file are given in appendices 9.1 to 9.2 respectively.

Appendix 9.1: PI_fourtank_minimum_phase.m

o

% MATLAB Script for: PI controller implementation in four-tank minimum phase
process

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: PI fourtank minimum phase.m

% Function file: four tank model.m, prbsl.m

o

o°

Telemark University College, Porsgrunn, Norway [21-04-2013]

o

eles
clear all;
close all;

% Table 5.1, Parameter values taken from the literature [Johansson].
% Cross—-section area of tanks [cm”2]
Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”"2]
al=0.071; a3=0.071;
a2=0.057; a4=0.057;

Pump gain [V/cm]
kc=0.5;
kc=1;

Acceleration of gravity [cm/s"2]
=981;

Model will show minimum phase characteristics
% Table 5.3,Steady state level [cm] in the tanks after performing simulations
hsl=12.3;
hs2=12.8;
hs3=1.63;
hs4=1.41;
hs=[hsl,hs2,hs3,hs4]"';

% Control inputs [V]
ul=3.0; u2=3.0;

u_inp=[ul; u2];

% Pump constants [cm”3/Vs]
k1=3.33; k2=3.35;

% Flow constants
r1=0.70; r2=0.60;

o\°

o\°

o°

a° Q

[

% Time constants [section 4.1.2]
T1l=Al* (sqrt(2*hsl/qg))/al;

T2=A2* (sqrt (2*hs2/qg)) /a2;
T3=A3* (sqrt (2*hs3/g)) /a3;
T4=A4* (sqrt (2*hs4/qg)) /a4;

—_~ e~~~
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% Equation (4.15) and (4.16),

Linearized state space matrics Ac,

Bc and Dc

Ac=[-1/T1,0,A3/(Al1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];
Bc=[rl*kl/Al1,0;0,r2*k2/A2;0, (1-r2)*k2/A3; (1-rl)*k1/A4,0];

Dc=[kc,0,0,0;0,kc,0,0];

o\

% Method 'zoh'
% Sampling time [s]
ts=0.1;

Coverting model from continuous to discrete time
assuming a zero order hold on the inputs.

[A,B,D]=c2dm (Ac,Bc,Dc, zeros (2),ts, "zoh'") ;

[)

% Setpoint
ref=[hs (1) ;hs(2)];

[)

kpl=4; kp2=3.5;
Til=9; Ti2=10;

% Initial conditions

hs old=hs;

h=hs;

u old=u inp;

y_old=D*hs;

e old=ref-y old;

% Control signal range 0-5[V]
umin=0*ones (2,1) ;

umax=5*ones (2,1);

% Simulation time
T=2000;
% Simulation
i=300;
3=1100;
for k=1:T
if
elseif
elseif
end
y=D*h;
e=ref-y;

Q

% Equation

k<i;
k>1i && k<j;
k>7j;

(5.2) and (5.3)

% PI controller tuning parameters

ref=[hs (1) ;hs (2)];
ref=[hs(1)+0.5;
ref=[hs(1)+0.8;hs (2)+0.8];

hs(2)+0.51;

ul=u o0ld(1l)+kpl*(e(1l)-e old(l))+kpl*ts*e(l)/Til;
u2=u_o0ld(2) +tkp2* (e (2) -e_old(2))+kp2*ts*e(2)/Ti2;

u=[ul;u2];

if u(l,l)>umax(1,1)
u(l,l)=umax(1l,1);

elseif u(l,1l)<umin(1,1)
u(l,l)=umin(1,1)

end

if u(2,1)>umax(2,1)
u(2,1l)=umax(2,1);

elseif u(2,1)<umin(2,1)
u(2,1l)=umin(2,1)

end

e old=e;

hs old=h;

u old=uj;

y_old=y;
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[)

% Storing variables

Reference (k, :)=ref';

Voltage (k, :)=u';

Output (k, :)=y"';
h=h+ts*four tank model (h,u);

end

% Results

% Plotted Results

t=1:T;

% Level results for Tank 1.

figure (1)

subplot (2,1,1)

plot (t,Reference(:,1),'r'), hold on
plot (t,Output(:,1));

xlabel ('Time [s]');

ylabel ('Reference rl kand output yl k [cm]');
title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')
grid on

% Input Control signal for Tank 1
subplot(2,1,2),

plot(t,Voltage(:,1)),

xlabel ('Time [s]');

ylabel ('Control input ul k [V]'")
title('Input control signal for Tank 1')
grid on

% Level results for Tank 2.

figure (2)

subplot(2,1,1)

plot (t, Reference(:,2),'r'), hold on
plot (t,Output(:,2))

xlabel ('Time [s]');

ylabel ('Reference r2 kand output y2 k [cm]'");
title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')
grid on

% Input Control signal for Tank 2
subplot(2,1,2),

plot(t,Voltage(:,2)),

xlabel ('Time [s]');

ylabel ('Control input u2z k [V]'")
title('Input control signal for Tank 2'")
grid on

Appendix 9. 2: four_tank_model.m

o©

o

MATLAB Script for: Model of four tank process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% File name: four tank model.m

o

o\°

Telemark University College, Porsgrunn, Norway [21-04-2013]

o\°
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function model=four tank model (h,u)

% Table 5.1,
% Cross-section area of
Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of
al=0.071; a3=0.071;
a2=0.057; a4=0.057;
% Level in the tanks
hl=h (1) ;
h2=h(2) ;

h3=h (3) ;

h4=h (4) ;

% Control inputs
ul=u(l);
uz2=u(2);

% Pump gain
kc=1;

Q

(V]

[V/cm]

g=981;

% Model will show minimum phase characteristics
[cm”3/Vs]

o

Pump constants
k1=3.33; k2=3.35;
% Flow constants
r1l=0.70; r2=0.60;
% The four-tank model.
f(1)=( -al*sqgrt (2*g*hl)
f(2)=( -a2*sqgrt (2*g*h2)
£f(3)=( -a3*sqgrt (2*g*h3)
f(4)=( -ad*sqgrt (2*g*h4)
model=[f(1);£f(2);£(3);f

—_~ e~~~
—_~ e~~~

% Acceleration of gravity

parameters values taken from the literature

tanks [cm”™2]

the outlet holes[cm”2]

[cm]

[cm/s"2]

[Equation (4.10)-(4.13)]

+ a3*sqrt (2*g*h3) + rl*kl*ul
+ ad*sqrt (2*g*h4) + r2*k2*u2
+ (1-12)*k2*u2 )/A3;

+ (l-rl)*kl*ul )/A4;
(4)1;

[Table 5.3]

) /Al;
) /A2;
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Appendix 10
Implementation of the PI controller on the four-tank non-minimum phase process. The main
script and supporting file are given in appendices 10.1 to 10.2 respectively.

Appendix 10.1: PI_fourtank_nonminimum_phase.m

o

% MATLAB Script for: PI controller implementation in four-tank non-minimum
phase process

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: PI fourtank nonminimum phase.m

% Function file: four tank model.m

o

o°

Telemark University College, Porsgrunn, Norway [21-04-2013]

o

eles
clear all;
close all;

% Table 5.1, Parameter values taken from the literature [Johansson].
% Cross—-section area of tanks [cm”2]
Al=28; A3=28;

A2=32; A4=32;

% Cross-section area of the outlet holes[cm”"2]
al=0.071; a3=0.071;
a2=0.057; a4=0.057;

Pump gain [V/cm]
kc=0.5;
kc=1;

Acceleration of gravity [cm/s"2]
=981;

Model will show non-minimum phase characteristics
% Table 5.5, Steady state level [cm] in the tanks after performing
simulations
hsl=12.4;
hs2=13.2;
hs3=4.73;
hs4=4.99;
hs=[hsl,hs2,hs3,hs4]"';

% Control inputs [V]
ul=3.15; u2=3.15;
u_inp=[ul; u2];

% Pump constants [cm”3/Vs]
k1=3.14;k2=3.29;

% Flow constants

r1=0.43; r2=0.34;

[o)

% Time constants [section 4.1.2]

o\°

o\°

o°

a° Q

T1=Al* (sqrt (2*hsl/qg)) /al;
T2=A2* (sqrt (2*hs2/qg)) /a2;
T3=A3* (sqrt (2*hs3/qg)) /a3;
T4=A4* (sqrt (2*hs4d/qg)) /a4;
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% Equation (4.15) and (4.16), Linearized state space matrices Ac,

Bc and Dc

Ac=[-1/T1,0,A3/(Al1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];

Bc=[rl1*k1/A1,0;0,r2*k2/A2;0, (1-r2)*k2/A3; (1-rl) *k1/A4,0];

Dc=[kc,0,0,0;0,kc,0,0];

Coverting model from continuous to discrete time

Method 'zoh' assuming a zero order hold on the inputs.

% Sampling time [s]

ts=0.1;

[A,B,D]=c2dm (Ac,Bc,Dc, zeros (2),ts, "zoh'") ;

% Setpoint

ref=[hs (1) ;hs (2)];

% PI controller tuning parameters

kpl=1.4; kp2=0.22;

Til=100; Ti2=135;

% Initial conditions

hs old=hs;

h=hs;

u old=u inp;

y_old=D*hs;

e old=ref-y old;

% Control signal range 0-5[V]

umin=0*ones (2,1) ;

umax=5*ones (2,1);

% Simulation time

T=5000;

% Simulation

i=300;

for k=1:T
if k<i;
elseif k>i;
end

y=D*h;

e=ref-y;

ul=u_old(1l)+kp2* (e (2)-e 0ld(2))+kp2*ts*e(2)/Ti2;

u2=u_o0ld(2) +tkpl* (e (1l)-e old(l))+kpl*ts*e(l)/Til;

u=[ul;u2];

[)

% Constraints implementation using if-else statement

o\

o\

ref=[hs (1) ;hs(2)];
ref=[hs(1)+0.5; hs(2)+0.5];

if u(l,1l)>umax(1,1)
u(l,l)=umax(1l,1)

elseif u(l,1l)<umin(1,1)
u(l,1)=umin(1,1)

end

if u(2,1l)>umax(2,1)
u(2,1l)=umax(2,1)

elseif u(2,1l)<umin(2,1)
u(2,1l)=umin(2,1)

end

e old=e;

hs old=h;

u_old=u;

y_old=y;

% Storing variables

Reference (k, :)=ref';

Voltage(k, :)=u"';
Output (k, :)=y"';
h=h+ts*four tank model (h,u);
end
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% Results

% Plotted Results

t=1:T;

% Level results for Tank 1.

figure (1)

subplot (2,1,1)

plot(t, Reference(:,1),'r');hold on

plot (t,Output (:,1))

xlabel ('Time [s]');

ylabel ('Reference rl kand output yl k [cm]');
title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')

grid on

% Input Control signal for Tank 1
subplot (2,1,2),

plot(t,Voltage(:,1)),

xlabel ('Time [s]'):;

ylabel ('Control input ul k [V]'")
title('Input control signal for Tank 1'")
grid on

% Level results for Tank 2.

figure (2)

subplot(2,1,1)

plot(t, Reference(:,2),'r');hold on

plot (t,Output (:,2))

xlabel ('Time [s]');

ylabel ('Reference r2 kand output y2 k [cm]');
title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')

grid on

% Input Control signal for Tank 2
subplot(2,1,2),

plot (t,Voltage(:,2)),

xlabel ('Time [s]');

ylabel ('Control input u2 k [V]'")
title('Input control signal for Tank 2'")
grid on

Appendix 10.2: four_tank_model.m

% MATLAB Script for: Model of four tank process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% File name: four tank model.m

% Telemark University College, Porsgrunn, Norway [23-04-2013]

function model=four tank model (h,u)

Table 5.1, parameter values taken from the literature [Johansson].
% Cross-section area of tanks [cm”™2]

Al1=28;A3=28;

A2=32;A4=32;

o
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% Cross-section area of the outlet holes[cm”2]
al=0.071; a3=0.071;
a2=0.057; a4=0.057;
% Level in the tanks [cm]
hl=h (1) ;
h2=h(2) ;
h3=h (3) ;
h4=h (4) ;
% Control inputs [V]
ul=u(l); u2=u(2);
% Pump gain [V/cm]
kc=1;
Acceleration of gravity [cm/s"2]
=981;
% Model will show non-minimum phase characteristics
Pump constants [cm”3/Vs]
k1=3.14;
k2=3.29;
% Flow constants
r1=0.43; r2=0.34;
% The four-tank model. [Equation (4.10)-(4.13)]

Q oe

o

(1)=( -al*sqgrt(2*g*hl) + a3*sqgrt(2*g*h3) + rl*kl*ul
£f(2)=( -a2*sqgrt (2*g*h2) + ad*sqgrt(2*g*h4) + r2*k2*u2
(3)=( -a3*sqgrt(2*g*h3) + (1l-r2)*k2*u2 ) /A3;
f(4)=( —-ad*sgrt(2*g*hd) + (l-rl)*kl*ul )/A4;
model=[£(1);£(2);£(3);£(4)];

) /Al;
) /A2;
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Appendix 11
MATLAB script for simulating the four-tank minimum and non-minimum phase process. The
user can select either minimum or non-minimum phase process by typing “1” or “2” respectively.

The supporting function files (four_tank_model.m and prbs1l.m) are given in appendix 4.2 and
4.5.

Appendix 11.1: simulation_fordata_generation

% MATLAB Script for: Simulation of four tank process for data generation.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script File: simulation fordata generation.m

% Function file: four tank model.m

S prbsl.m by [David Di Ruscio]

% Telemark University College, Porsgrunn, Norway [02-05-2013].

close all;

clear all;

% Table 5.1, Parameter values taken from the literature [Johansson].
% Cross-section area of tanks [cm”"2]

Al=28; A3=28;

A2=32; RA4=32;

% Cross-section area of the outlet holes[cm”2]
al=0.071; a3=0.071;

a2=0.057; a4=0.057;

Pump gain [V/cm]

kc=1;

kc=0.50;

Acceleration of gravity [cm/s”2]

g=981;

% Time interval and sampling time [s]

ts=0.1; t=0; N=10000;

% System selection by the user

System sel=input (' Type 1 for minimum phase system or\n Type 2 for non-
minimum phase system \n');

if System sel==1;

% Model will show minimum phase characteristics
% Table 5.3, Steady state level [cm] in the tanks after performing
simulations

hsl=12.3;

hs2=12.8;

hs3=1.63;

hs4=1.41;

Parameter values from Table 5.2

% Pump constants [cm”3/Vs]

k1=3.33; k2=3.35;

% Flow constants

r1=0.7; r2=0.6;

[

% Initial control inputs [V]

o\°

o°

o°

o
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ul=3; u2=3;

elseif System sel==2;

% Model will show non-minimum phase characteristics

% Table 5.5, Steady state level [cm] in the tanks after performing
simulations

hsl=12.4;

hs2=13.2;

hs3=4.73;

hs4=4.99;

% Parameter values from Table 5.4

% Pump constants [cm”3/Vs]

k1=3.14; k2=3.29;

% Flow constants

r1=0.43; r2=0.34;

% Initial control inputs [V]
ul=3.15; u2=3.15;

end

[)

% Time constants [section 4.1.2]

T1=Al* (sqrt (2*hsl/g))/al;
T2=A2* (sqrt (2*hs2/qg)) /a2;
T3=A3* (sqrt (2*hs3/g)) /a3;
T4=A4* (sqrt (2*hs4d/qg)) /a4;

% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4];
Bc=[rl*kl1/A1,0;0,r2*k2/A2;0, (1-r2)*k2/A3; (1-rl1) *k1/A4,0];
Dc=[kc,0,0,0;0,kc,0,0];

% Coverting model from continuous to discrete time

% Method 'zoh' assuming a zero order hold on the inputs.
[A,B,D]=c2dm (Ac,Bc,Dc, zeros (2,2),ts, "zoh'") ;

h=[hsl;hs2;hs3;hs4];

h old=h;

y_old=D*h old;

u=[ul;u2];

u_old=u;

% For simulation initialization

f=zeros (4,1);
T=zeros (N, 1) ;
U=zeros (N, 2) ;
X=zeros (N, 4)

’

[o)

% Make input signal for model development.
inputl=prbsl (N,250,800) ;
input2=prbsl (N, 350,850) ;

o

Make input signal for validation data.
inputl=prbsl (N,2000,3500) ;
% input2=prbsl (N,2100,3600) ;

o

U input=[ul+inputl, u2+input2];

% Initial level in the tanks is zero.
h=h*0;

% Simulating close loop system

for i=1:N
y=D*h;
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u=U _input(i,:)"';
Storing for plotting purposes

o\

U(i,:)=u';
X(i,:)=h"';
T(i)=t;

f=four tank model (h,u, System sel);
h=h+ts*f;

% Time update.
E=CHEss

end

Q

% Save data for system identification algorithm
if System sel==

Data=[X(:,1:2),U];

save ('data minimum.txt', 'Data', '-ASCII')

Q

% for saving validation data
% save('valdata minimum.txt',6 'Data', '-ASCII')
elseif System sel==

Data=[X(:,1:2),U];

save ('data nonminimum.txt', 'Data', '-ASCII')

% for saving validation data

% save('valdata nonminimum.txt', 'Data’', '-ASCII'")

end
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Appendix 12

MATLAB script for plotting the simulation data of four-tank minimum phase process.

Appendix 12.1: data_plot.m

% MATLAB Script for: Plotting the collected simulated data of the four-tank
Minimum phase process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: data plot.m

% Telemark University College, Porsgrunn, Norway [02-05-2013]

clear all;

close all;

load data minimum.txt

The first two columns in file represent the output level in tanks 1 and

o

2

% Next two columns are the corresponding voltage to the pumps 1 and 2
Y=[data minimum(:,1) data minimum(:,2)];

U=[data minimum(:,3) data minimum(:,4)];

[)

% Plotting process data

figure (1)
subplot(2,1,1)
plot (Y (:,1))

[o)

s xlabel ('Number of samples')
ylabel ('Level y 1 [cm]"')

title ('Level of Tank 1'")

grid on

subplot(2,1,2)

plot (U(:,1))

xlabel ('Number of samples')
ylabel ('Control input u 1 [V]')
title ('Input voltage to pump 1')
grid on

figure (2)

subplot(2,1,1)

plot (Y (:,2))

% xlabel ('Number of samples')
ylabel ('Level y 2 [cm]"')

title ('Level of Tank 2'")

grid on

subplot (2,1,2)

plot(U(:,2))

xlabel ('Number of samples')
ylabel ('Control input u 2 [V]'")
title ('Input voltage to pump 2')
grid on
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Appendix 13
The MATLAB script for identifying model and Eigenvalues of the system matrix.

Appendix 13.1: sysID_4tank.m

o9

% MATLAB Script for: System identification algorithm as dsr to identify the
linearized

% state space model for use in MPC method.

% Master's Thesis: "MPC with Integral Action: Reducing the control
hortizon

3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: sysID 4tank.m

% Telemark University College, Porsgrunn, Norway [02-05-2013]

clc;

close all;

% Load the simulated process data
load data minimum.txt

n=size(data minimum) ;

% The first two columns in file represent the output level in tanks 1 and

% Next two columns are the corresponding voltage to the pumps 1 and 2
Y=[data minimum(t,1l) data minimum(t,2)];
U=[data minimum(t,3) data minimum(t,4)];

1
Trending the data

U=[U(i:N,1)-3.0 U(i:N,2)-3.0 1;

Y=[Y(i:N,1)-12.3 Y(i:N,2)-12.8];

% Deterministic and Stochastic system identification and Realization
[A,B,D,E,CF,F,x0]=dsr(Y,U,L,0);

% converting discrete time to continuous time model

ts=0.1;

[Ac,Bc,Dc,Ec]=d2cm(A,B,D,E, ts, "zoh'") ;

display('System Matrix Ac of continuous time model ')

Ac

% Eigenvalues of system matrix Ac

Eigen values for system matrix Ac=eig(Ac)
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Appendix 14

MATLARB file for validating the identified model of four-tank minimum phase process.

Appendix 14.1: validation_of_minimum.m

% MATLAB Script for: Validating the identified model of four-

% phase process

% Master's Thesis: "MPC with Integral Action: Reducing the
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: validation of minimum.m

% Telemark University College, Porsgrunn, Norway [02-05-2013]

tank minimum

control horizon

clear all;
close all;

Q

% Load the simulated process data
load data minimum.txt

data=data minimum(l:end, :);
n=size (data);

i=1;

t=i:n;

Uid=[data(t,3) data(t,4)];
Yid=[data(t,1l) data(t,2)];

% System order

L=4;

% Trending the data
Uid=[U0Uid(:,1)-3.0 Uid(:,2)-3.0 1;
Yid=[Yid(:,1)-12.3 Yid(:,2)-12.8];

— oP

A,B,D,E,CF,F,x0]=dsr(Yid, Uid, L, 0)

% validating the model

% Load the validation data

load data valid.txt

data val=data valid(l:end, :);
m=size (data val);

j=1;

k=7 :m;

Uval=[data val (k,3) data val(k,4)];
Yval=[data val (k,1) data val(k,2)]

[o)

% Trending the data

Um=mean ( [data val(k,3) data val(k,4)]);
Ym=mean ([data val (k,1) data val(k,2)]);
Uval=[Uval(:,1)-Um (1) Uval(:,2)-Um(2)];
Yval=[Yval(:,1)-Ym(1l) Yval(:,2)-Ym(2)];

% Simulation of discrete-time linear systems
Y sim=dsrsim(A,B,D,E,Uval,x0);

Deterministic and Stochastic system identification and Realization
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figure (2),

subplot (2,1,1)

plot ([Yval(:,1) Y sim(:,1)])

legend ('Model output', 'Process output')
title ('Output for tank 1');

ylabel ('Level [cm]'");grid on

subplot(2,1,2)

plot ([Yval(:,2) Y sim(:,2)])

legend ('Model output', 'Process output')

title ('Output for tank 2')

xlabel ('Samples'); ylabel('Level [cm]');grid on
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Appendix 15

MATLAB m-file for implementing the MPC with integral action in identified model of four-tank
minimum phase process. The main script is given in appendix 15.1 and supporting function files
(eobsv.m, g2qt.m, prbs1.m, scmat.m, ss2h.m) are attached in appendix 4.3 to 4.7.

Appendix 15.1:mpc_syid.m

o

o

MATLAB Script for: Implementation of MPC with integral action in
linearized state space model developed by the system
identification algorithm as dsr.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: mpc_syid.m

% Function files: data minimum.txt

% eobsv.m, prbsl.m, g2gt.m, scmat.m, ss2h.m by [David Di
Ruscio]

% Reference http://www2.hit.no/tf/fag/sced4l06/ovinger/ovinger.html

% Telemark University College, Porsgrunn, Norway [06-05-2013]

clear all;
close all;
% Load the simulated process data
load data minimum.txt

data=data minimum(l:end, :);
nn=size (data) ;

il=1;

t=il:nn;

Uid=[data(t,3) data(t,4)];
Yid=[data(t,1l) data(t,2)]

[

% System order

’

LL=4;
% Trending the data
Uid=[Uid(:,1)-3.0 Uilel(8,2)=3.0 13

Yid=[Yid(:,1)-12.3 Yid(:,2)-12.8];
% % Deterministic and Stochastic system identification and Realization
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid, LL,0) ;
% Making augmented state space model.
l=size(A,1);

m=size (B,2);

n=size (D, 1) ;

% Matrics At, Bt and Dt

At=[A zeros(l,n); D eye(n,n)];
Bt=[B;zeros(n,m)];

Dt=[D eye(n,n)];

% Model predictive control algorithm,
% Prediction horizon

L=15;

% Simulation horizon

N=515;
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% Weighting matrices
g=100;

r=0.1;

o=[q 0; 0 gl;

R=[r 0; 0 r];

% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h
function. [David Di Ruscio]

[HdL, OL,OLB]=ss2h (At,Bt,Dt, zeros (n,m) ,L,0) ;

FL=[OLB HAdL];

Qt=g2qt (Q,L) ;

Rt=g2gt (R, L) ;

% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-
1) .[David Di Ruscio]

[S,c] = scmat (m,L);

% H as defined in equation (3.50)

H=FL'*Qt*FL+Rt;

% Defining inital values for simulation

Is=[11.5;12.5];

Hd=D*inv (eye (4) -A) *B;

u_ss=inv (Hd) *Is;

I=eye (4) ;

x_ss =inv (I-A) *B*u_ss;

% Assigning variables

u=u_ss;

h=x ss;

u old=u; h old=h; y old=D*h;

% Make the references by using the function prbsl.m[David Di Ruscio]
rand('seed',0),randn('seed',0);

step=150;

ref=[11.5*ones (N,1)+0.1*prbsl (N,step,step),12.5%ones (N, 1)+0.1*prbsl (N, step, st
ep)l;

% Used in Input amplitude constraints implementation.

umin=0;

umax=>5;

% Making for variables storage

rlL=zeros (15,1);

U=zeros (N-L, 2) ;

Y=zeros (N-L, 2) ;

for k=1:N-L

y=D*h; % output equation

% Make the extended reference vector, r (k,L) .[David Di Ruscio]
rf =ref (k+1:k+L, :);

rll=rf (1, :)";

for i=2:L
rll=rllezE (1, 8) "1 5
end

[o)

% Computing MPC control

xk=[h-h old;y old];

pL=OL*At*xk;

% £ as defined in equation (3.50)

f=FL'*Qt* (pL-rlL) ;

% For constrained MPC [Equation 2.8]

a=[S;-S];

b=[umax*ones (L*m, 1) -c*u old;-umin*ones (L*m,1)+c*u old];
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% quadprog function for input amplitude constraints.

duf=quadprog(H, f,a,b);
u=u+duf (1l:m) ;
u_old=u;

% For plotting purpose store the variables.

U(k,:)=u';
Y(k,:)=y";
% Feed control to process.

h=A*h+B*u;

end

% Plotted Results

t=1:N-L;

% Level results for Tank 1.

figure (1)

subplot (3,1,[1,2])

plot(t, ref(l:N-L,1),'r');hold on
plot(t,Y(:,1))

ylabel ('Level [cm]');

title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')
grid on

% Input Control signal for Tank 1
subplot (3,1, 3),

plot(t,U(:,1)),

xlabel ('Time [s]'):;

ylabel ('Voltage [V]"')

title('Input control signal for Tank 1'")
grid on

% Level results for Tank 2.

figure (2)

subplot (3,1,[1,2])

plot(t, ref(l:N-L,2),'r');hold on

plot (t,Y(:,2))

ylabel ('Level [cm]');

title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')
grid on

% Input Control signal for Tank 2
subplot (3,1,3),

plot(t,U(:,2)),

xlabel ('Time [s]');

ylabel ('Voltage [V]"')

title('Input control signal for Tank 2')
grid on
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Appendix 16

MATLAB script for plotting the simulation data of four-tank non-minimum phase process.

Appendix 16.1: data_plot.m

% MATLAB Script for: Ploting the collected simulated data of four-tank non-
minimum phase process.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: data plot.m

% Telemark University College, Porsgrunn, Norway [02-05-2013]

clear all;

close all;

load data nonminimum.txt
% The first two columns in file represent the output level in
tanks 1 and 2 next two columns are the corresponding voltage to the pumps 1
and 2.

Y=[data nonminimum(:,1) data nonminimum(:,2)];
U=[data nonminimum(:,3) data nonminimum(:,4)]

[)

% Plotting simulated data

’

figure (1)
subplot(2,1,1)
plot (Y (:,1))

Q

s xlabel ('Number of samples')
ylabel ('Level y 1 [cm]"')

title ('Level of Tank 1'")

grid on

subplot(2,1,2)

plot (U(:,1))

xlabel ('Number of samples')
ylabel ('Control input u 1 [V]')
title ('Input voltage to pump 1')
grid on

figure (2)

subplot(2,1,1)

plot (Y (:,2))

% xlabel ('Number of samples')
ylabel ('Level y 2 [cm]"')

title ('Level of Tank 2'")

grid on

subplot (2,1,2)

plot(U(:,2))

xlabel ('Number of samples')
ylabel ('Control input u 2 [V]'")
title ('Input voltage to pump 2')
grid on
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Appendix 17
The MATLAB script for identifying the model and Eigenvalues of the system matrix.

Appendix 16.1: sysID_4tank.m

% MATLAB Script for: System identification algorithm as dsr to identify the
linearized state space model for use in MPC method.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: sysID 4tank.m

% Telemark University College, Porsgrunn, Norway [02-05-2013]

clc;

close all;

% Load the simulated process data
load data nonminimum.txt

n=size (data nonminimum) ;

i=1;

% The first two columns in file represent the output level in tanks 1 & 2
% Next two columns are the corresponding voltage to the pumps 1 and 2
Y=[data nonminimum(t,1l) data nonminimum(t,2)];

U=[data nonminimum(t,3) data nonminimum(t,4)];

% System order
4

% Number of samples

N=10000;

% Trending the data

Uid=[U(i:N,1)-3.15 U(i:N,2)-3.15 ];
Yid=[Y(i:N,1)-12.4 Y(i:N,2)-13.2];

% Deterministic and Stochastic system identification and Realization
[A,B,D,E,CF,F,x0]=dsr (Yid, Uid, L, 0)

% converting discrete time to continuous time model
ts=0.1;

[Ac,Bc,Dc,Ec]=d2cm(A,B,D,E, ts, 'zoh') ;

display('System Matrix Ac of continnuous time model ')
Ac

% Eigenvalues of system matrix Ac
Eigen values for system matrix Ac=eig (Ac)
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Appendix 18

MATLARB file for validating the identified model of four-tank non-minimum phase process.

Appendix 18.1: validation_of_nonminimum.m

% MATLAB Script for: Validating the identified model of four-tank non-

minimum phase process

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
3 and model free MPC."

% Supervisior: David Di Ruscio

% Author Muhammad Mohsin

% Script file: validation of nonminimum.m

% Telemark University College, Porsgrunn, Norway [05-05-2013]

clear all;

close all;

% Load the simulated process data
load data nonminimum.txt
data=data nonminimum(l:end, :);
n=size (data) ;

i=1;

t=i:n;

Uid=[data(t,3) data(t,4)];
Yid=[data(t,1l) data(t,2)];
% System order

L=4;

% Trending the data
Uid=[Uid(:,1)-3.15 Uid(:,2)-3.15 1;
Yid=[Yid(:,1)-12.4 Yid(:,2)-13.21;
A,B,D,E,CF,F,x0]=dsr(Yid,Uid, L, 0) ;
validating the model

% Load the validation data

load data valid.txt

data val=data valid(l:end, :);
m=size (data val);

j=1;

k=7 :m;

Uval=[data val(k,3) data val(k,4)];
Yval=[data val(k,1l) data val(k,2)]
% Trending the data
Um=mean ( [data val (k,3) data val(k,4)]
Ym=mean ( [data val (k,1) data val(k,2)]);
Uval=[Uval(:,1)-Um(1) Uval(:,2)-Um(2)];
Yval=[Yval(:,1)-Ym(1l) Yval(:,2)-Ym(2)];
% Simulation of discrete-time linear systems
Y sim=dsrsim(A,B,D,E,Uval,x0);

figure (2)

subplot(2,1,1)

plot ([Yval(:,1) Y sim(:,1)])

legend ('Model output', 'Process output')
title('Output for tank 1')

ylabel ('Level [cm]')

o° — oP

’

) ;
)

% Deterministic and Stochastic system identification and Realization
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grid on

subplot (2,1,2)

plot ([Yval(:,2) Y sim(:,2)])

legend ('Model output', 'Process output')
title('Output for tank 2')

xlabel ('Samples') ;

ylabel ('Level [cm]')

grid on
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Appendix 19

MATLAB m-file for implementing the MPC with integral action in identified model of four-tank
non-minimum phase process. The main script is given in appendix 19.1 and supporting function
files (eobsv.m, g2qt.m, prbs1.m, scmat.m, ss2h.m) are attached in appendix 4.3 to 4.7.

Appendix 19.1: mpc_syid.m

o

o

MATLAB Script for: Implementation of MPC with integral action in
linearized state space model developed by the system
identification algorithm as dsr.

% Master's Thesis: "MPC with Integral Action: Reducing the control horizon
% and model free MPC."

% Supervisior: David Di Ruscio

% Author: Muhammad Mohsin

% Script file: mpc_syid.m

% Function files: data nonminimum.txt

o°

eobsv.m, prbsl.m, g2gt.m, scmat.m, ss2h.m by [David Di
Ruscio]

o

http://www2.hit.no/tf/fag/sced4l06/ovinger/ovinger.html

o

o

Telemark University College, Porsgrunn, Norway [06-05-2013]

o

eles

clear all;

close all;

% Load the simulated process data
load data nonminimum.txt
data=data nonminimum(l:end, :);
nl=size (data);

il=1;

t=il:nl;

Uid=[data(t,3) data(t,4)]:;
Yid=[data(t,1l) data(t,2)]
% System order

LL=4;

’

[)

% % Deterministic and Stochastic system identification and Realization
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid, LL,0) ;
% Making augmented state space model.
l=size(A,1);

m=size (B, 2);

n=size (D, 1) ;

$ Matrics At, Bt and Dt

At=[A zeros(l,n); D eye(n,n)];
Bt=[B;zeros (n,m)];

Dt=[D eye(n,n)];

% Model predictive control algorithm,
% Prediction horizon

L=15;

% Simulation horizon

N=515;

% Weighting matrices

qg=100;
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% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h
function. [David Di Ruscio]

[HdL, OL,OLB]=ss2h (At,Bt, Dt, zeros (n,m) ,L,0) ;

FL=[OLB HdL];

Qt=g2qt (Q, L) ;

Rt=g2qgt (R, L) ;

% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-
1) . [David Di Ruscio]

[S,c] = scmat(m,L);

% H as defined in equation (3.50)

H=FL'*Qt*FL+Rt;

% Defining inital values for simulation
Is=[11.5;12.5];

Hd=D*inv (eye (4) -A) *B;

u_ss=inv (Hd) *Is;

I=eye (4);

X ss =inv (I-A) *B*u_ss;

% Assigning variables

u=u ss;

h=x ss;

u old=u; h old=h; y old=D*h;
% Make the references by using the function prbs. [David Di Ruscio]
rand('seed',0),randn('seed',0);

step=150;

ref=[11.5*ones (N,1)+0.1*prbsl (N,step,step),12.5%ones (N, 1)+0.1*prbsl (N, step, st
ep)l;

% Used in Input amplitude constraint implementation.

umin=0;

umax=>5;

% Making for variables storage

rllL=zeros (15,1);

U=zeros (N-L, 2) ;

Y=zeros (N-L, 2) ;

for k=1:N-L

y=D*h; % output equation

% Make the extended reference vector, r (k,L) .[David Di Ruscio]
rf =ref (k+1:k+L, :);

elll=wE (1,38) ¢

for i=2:L
rll=[rlL;rf(i,:)"'];
end

[o)

% Computing MPC control

xk=[h-h old;y old];

pL=OL*At*xk;

% f as defined in equation (3.50)

f=FL'*Qt* (pL-rlL) ;

% For constrained MPC [Equation 2.8]

a=[S;-S];

b=[umax*ones (L*m, 1) -c*u_old;-umin*ones (L*m,1)+c*u _old];
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% quadprog function for input amplitude constraints.

duf=quadprog(H, f,a,b);
u=u+duf (1l:m) ;
u_old=u;

% For plotting purpose store the variables.

U(k,:)=u';
Y(k,:)=y";
% Feed control to the process.

h=A*h+B*u;

end

% Plotted Results

t=1:N-L;

% Level results for Tank 1.
figure (1)

subplot (3,1,[1,2])

plot(t, ref(l:N-L,1),'r');hold on
plot(t,Y(:,1));

ylabel ('Level [cm]');

title('Tank 1 reference and output level')
legend ('Reference r k', 'Output y k')
grid on

% Input Control signal for Tank 1
subplot (3,1,3),

plot (t,U(:,1)),

xlabel ('Time [s]'):

ylabel ('Voltage [V]'")

title('Input control signal for Tank 1'")
grid on

% Level results for Tank 2.

figure (2)

subplot (3,1,[1,2])

plot(t, ref(l:N-L,2),'r');hold on
plot(t,Y(:,2))

ylabel ('Level [cm]');

title('Tank 2 reference and output level')
legend ('Reference r k', 'Output y k')
grid on

% Input Control signal for Tank 2
subplot (3,1, 3),

plot(t,U(:,2)),

xlabel ('Time [s]');

ylabel ('Voltage [V]'")

title('Input control signal for Tank 2')
grid on
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