
 

  
Telemark University College 

 Faculty of Technology 
Kjølnes 
3914 Porsgrunn 
Norway 
Lower Degree Programmes – M.Sc. Programmes – Ph.D. Programmes         TFver. 0.9 

       
            

Master’s Thesis 2013 

 
 
 
 
 
 

 
 

Candidate:  Muhammad Mohsin 
 

Title:    Model Predictive control (MPC) with integral action;   
                   Reducing the control horizon and model free MPC. 
  



 
 

ii 
 

 
Telemark University College 
Faculty of Technology 

M.Sc. Programme 

MASTER’S THESIS, COURSE CODE FMH606 

Student:  Muhammad Mohsin 

Thesis title:  Model Predictive Control (MPC) with integral action: Reducing the control horizon  
                                           and model free MPC.   

Signature:   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Number of pages:  146 

Keywords:   Model Predictive Control (MPC), Integral action, reducing control horizon,       
                                           Model free MPC, DSR System identification algorithm, Four-tank process.  

Supervisor:   David Di Ruscio                       sign.:  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Censor:                                            sign.:.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

External partner:  Prediktor, Olav Aaker                          sign.:.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Availability:   Open 

Archive approval (supervisor signature): sign.: . . . . . . . . . . . . . . . . . . . . . . . .       Date : . . . . . . . . . . . . .  

Abstract: 
Model Predictive Control (MPC) is the most widely used strategy in process industries due to remarkable features. It 

has the capability to control the non-minimum phase, unstable processes and handle the constraints in a systematic 

way. MPC with integral action is an effective method to achieve the offset free control which can remove the 

unknown slowly varying process and measurement noise respectively. 

In this thesis, a multivariable four-tank process has been developed for simulation experiments and it is controlled at 

two operating conditions i.e. minimum and non-minimum phase setting. The mathematical models are constructed 

from the both physical and simulation data. Theoretical background of the state space model based MPC is 

described and the deviation variables are used to achieve the integral action in MPC. The proposed optimal 

controller has been implemented to control the level in lower tanks. The ‘quadprog’ function and ‘if-else’ technique 

are demonstrated to handle process constraints in MPC with integral action. The execution time for simulation is 

reduced using ‘if-else’ method compared to ‘quadprog’ function. The states are estimated by using the Kalman 

filter. A comparison in reducing control horizon in optimal control is also performed. The decentralized PI controller 

has been implemented to control the four-tank process and results are compared with MPC method. 

Deterministic  and  Stochastic  system  identification  and  Realization  ‘DSR’ algorithm has been proposed to formulate 

model free MPC. A linearized state space model is identified by the ‘DSR’ method and used in MPC algorithm. The 

proposed optimal control is more robust and faster than the traditional PI controller. Simulations are performed in 
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Nomenclature
Thesymbols,subscriptsandabbreviationsusedin thethesisarelisted.
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ia Cross-sectionareaof theoutletholein Tank i

argmin Minimizing argument

iA Cross-sectionareaof thetank i

( , , , )A B D E Statespacemodelmatrices

( A , B , D ) Augmentedmodelmatrices

g Theaccelerationof gravity

( )G s�
Transferfunctionof minimumphaseprocess
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Transferfunctionof non-minimumphaseprocess

ih Thewaterlevel in thetank i

H Hessianmatrix

d
LH Toeplitzmatrix

I Identitymatrix

kJ Cost/Objectionfunction

ck Thepumpgain

K KalmanFilter gain

K Kalmanfilter gainin innovationform

pK Proportionalgainin PI control

L Predictionhorizon

Lu Controlhorizon

n Systemorder

LO Observabilitymatrix

P Symmetricandpositivesemi-definiteweightingmatrix
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 inq   
  

Volumetric flow rate into the tank 

outq                                
Volumetric flow rate out of  the tank 

Q   
  

Symmetric and positive semi-definite weighting matrix 

1|k Lr     
Specified reference signal vector 

R  Symmetric and positive semi-definite weighting matrix 

T   Time constant 

iT    
Integral time in PI control 

iu   
  

The voltage applied to the pump i   

ku                                   
Actual control signal 

|k L
u

                                
Optimal future control signal vector 

|k L
u

                            
Optimal future deviation control signal vector 

U                                  Input data matrix 

v              Unknown slowly varying  process  disturbance 

w    Unknown slowly varying  measurement disturbance 

Y   
  

Output data matrix 

1|k Ly                
Process output vector 

                                Valve constant                    

                                RGA matrix   

 

 

Subscripts 

i  Index 1,2,3,4,.......i   

k       Discrete time 

1k      Next sampling time 
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1. Introduction 

In this chapter, the overview of the thesis topic is introduced with Model Predictive Control 

(MPC) background. The objective of the thesis and the main required tasks for successful 

completion of the work are listed. The outline of the thesis is also provided in this last part. 

1.1 Overview 

Classical proportional-integral-derivative (PID) Controllers have been used in the industries for 

decades and playing an important role to fulfill the operational demands of the industries. They 

ruled the process industries and the most widely used strategy due to their simple structure [1]. 

Due to the environmental regulations and fast changing economic market, industries were 

looking for an optimal controller that can increase the productivity of goods and reduce the 

operating cost. These requirements lead to the development of the Model Predictive Control 

which is an advanced control strategy that meet the requirement of the process industries [2]. 

MPC is the most widely used controller at present due to its ability to handle multivariable 

process and constraints in a simple way [3]. The ideas for developing predictive started since 

1960’s and first successful implementation of MPC reported by Richalet et al [4].  

MPC belongs to a class of optimal control that uses a process model to compute future predicted 

outputs. These predicted outputs are then used to calculate a sequence of control inputs that are 

sent to the system for optimizing the plant future behavior [5]. An MPC algorithm consists of the 

cost function, constraints and a prediction model. The cost function measured the difference 

between the future output and specified reference and also find the control signals. The 

constraints are limitation of the process. The constraints for the MPC are an input amplitude 

constraint, input rate constraint and output constraint.  

The prediction model is constructed from the process model that describe the relationship 

between the future outputs and control inputs.  The difference between the predicted and 

classical controller is the use of the model. The process model can be finite impulse/step 

response model, state space models, or transfer function models [5]. The MPC can be classified 

into linear and nonlinear model predictive control based on the model used to construct the 

prediction model. Using a linear model lead to formulate a linear MPC and on the other hand, a 

nonlinear model resulted in nonlinear MPC.  
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There are several methods within MPC algorithms that differ from each other based on the 

process model used [6]. However, these algorithms have some problems with offset i.e. the 

process output is not equal to the specified reference at steady state. This offset problem can be 

solved by introducing the integral action. There are different methods to obtain integral action in 

MPC. In this thesis, it is achieved by using the deviation variables such that the output from the 

process is equal to the reference in steady state [7]. 

MPC with integral action method is formulated and implemented in benchmark process. Four-

tank process is used as benchmark process, and simulation experiment is performed. System 

identification is a method to construct a mathematical model of the process based on the process 

input-output known data. System identification algorithm as Deterministic and Stochastic system 

identification and Realization (DSR) is used to identify the state space model of the four-tank 

process and then used it in the MPC with the integral action algorithm. The data for the four-tank 

process is generated by the simulation. The model formulation from the known input-output data 

and then using this model in MPC method is defined as model free MPC algorithm. This method 

is useful when the process model is not formulated by first principle. 

1.2 Objective 

The master thesis is a mandatory part of the master’s degree in Systems and Control Engineering 

(SCE) at Telemark University College (TUC). The objective of this work is to give a theoretical 

description of model predictive control with integral action as well as perform simulation 

experiment on benchmark process. The well known nonlinear four-tank process is used for this 

purpose.  The MATLAB software is used for the simulation experiments and the main tasks of 

the thesis are listed as, 

 A short overview of the state space model based Model Predictive Control (MPC). 

 Overview of different methods to achieve integral action in MPC algorithm. 

 Theoretical description of MPC optimal controller with integral action method. 

 Performance simulation experiments of MPC with integral action on the four-tank 

benchmark process. 

 Performance comparison in reducing control horizon in MPC method. 

 Identify the linearized state space model by using a system identification algorithm as 

DSR and use the identified model in the MPC method. 
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1.3 Thesis outline 

The title of the thesis is “Model Predictive Control (MPC) with integral action: Reducing the 

control horizon and model free MPC”. The work is divided into different chapters and tasks are 

completed in a sequential way. In this section, a short overview of all the chapters is included. 

In chapter 1, the overview of the thesis topic is introduced with Model Predictive Control (MPC) 

background. The objective of the thesis and the main required tasks for successful completion of 

the work are listed. The outline of the thesis is also provided in this last part. 

In chapter 2, the basic ideas about the model predictive control is introduced. First of all, theory 

behind MPC is given and then the structure of the controller is summarized which consists of the 

cost function, constraints and prediction model. Finally, the working principle of the MPC is 

explained. 

In chapter 3, state space model based predictive control is presented and different methods of 

achieving integral actions in the MPC optimal control algorithm are discussed. The formulation 

of MPC with integral action is described that will be used for simulation experiments of the four-

tank process. Finally, the Kalman Filter algorithm steps are explained.  

In chapter 4, the four-tank benchmark process is described and its physical model is formulated 

by writing down mathematic equations using the basic laws of physics as presented by many 

researchers. The nonlinear model is linearized for use in MPC with the integral action algorithm. 

The operating condition of the four-tank process as minimum and non-minimum phase are 

discussed at the end.   

The chapter 5 is one of the main chapters, simulation experiments of MPC method on benchmark 

process is discussed. The parameter values for both operating conditions are taken from the 

literature. First of all, stability, observability and controllability of the linearized model of the 

four-tank process is analyzed. Constrained and unconstrained MPC with integral algorithm is 

implemented in the linearized model of four-tank minimum and non-minimum phase process. 

Constrained MPC is further explored with different constraints handling technique i.e. ‘quadprog’ 

function and ‘if-else’ method. A decentralized PI controller is implemented to control the four-

tank process for comparing the results with the MPC optimal controller. In the last part, 

simulation using different values of the control horizon in the MPC algorithm is performed. The 

experimental results for all the simulations are plotted and compared with each other. 
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In chapter 6, the system identification method is used to identify the model of the process and 

formulate a model free MPC algorithm. First of all, short overview of system identification 

algorithm as Deterministic and Stochastic system identification and Realization ‘DSR’ is 

introduced. The input-output data of the four-tank process is generated by simulation for both 

minimum and non-minimum phase setting. The collected data is used in the ‘DSR’ algorithm to 

construct a linearized state space model. The identified model is validated and then used in MPC 

with integral action to control the four-tank process.  

The brief summary of all the simulation results obtained in this work is outlined in chapter 7, and 

some recommendations for the future work are given in the end. 

The conclusions are pointed out in chapter 8. 

 

  



 
 

5 
 

2. Model Predictive Control 

In this chapter, the basic ideas about the model predictive control are introduced. First of all, 

theory behind MPC is given and then the structure of the controller is summarized which 

consists of the cost function, constraints and prediction model. Finally, the working principle of 

the MPC is explained. 

2.1 Introduction 

Model predictive control belongs to a class of optimal control and the most commonly used 

technique in process industries. Model predictive control has a history of more than five decades 

and it is one of the challenging fields both in industrial and academic sectors. Several 

publications associated with MPC methodology provide a good introduction to practical issues. 

Design formulation, ability to handle constraints, online process optimization and simplicity of 

the design are the major aspects of model predictive control that make it attractive to 

practitioners and researchers [3].  

2.2 Theory behind MPC 

The conventional proportional-integral-differential (PID) controllers ruled the process industries 

for decades. Today’s advance computing technology allows implementing more advanced 

control algorithms, but the most of the practitioner’s preferred method is to design the robust and 

transparent process control structure which uses simple controller. This is the reason why the 

PID controllers are mostly used in the industry although many other sophisticated control 

algorithms have been developed, however, this strategy of control structure cases some limitation 

in process performance [3]. In the advance computing technology, the industry was looking for 

optimal control strategy. This demand leads to the development of model predictive control 

which is an effective optimal control strategy that fulfills the control requirement of process 

industries. MPC is an optimal model based control algorithm and it is regarded as the most 

advanced technique among all the control algorithms present today [2]. 

The development of modern control concepts has been started from the work of Kalman with the 

linear quadratic regulator (LQR) designed to minimize a quadratic cost function of states and 

inputs. The reason why the LQR was not the best choice for process industries because the 

nonlinearities of the real systems and the absence of constraint in its formulation and at the same 
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time not much handy for instrument technicians and control engineers as mentioned                          

by Nunes [5]. 

The ideas for developing model predictive control which is a special case of the optimal control 

theory have been started since 1960’s according to Garcia et al [8]. The successful 

implementation of model predictive control in the industry reported by the researcher in late 

1970’s [5]. Particularly the one by Richalet et al. [4] presenting Model Predictive Heuristic 

Control (MPHC) which later known as Model Algorithmic Control (MAC [9]). It was 

implemented on a main fractionator column of Fluid Catalytic Cracking Unit (FCCU) in poly-

Vinyl Chloride (PVC) plant, in the late seventies [2].  

The theory of predictive control has been developed almost in all feature such as stability, 

nonlinearity and robustness [3]. Within the framework of predictive control, there are many 

different ways to design a predictive controller. There are different predictive controllers, each 

with different properties such as a Generalized Predictive Control (GPC, [10-12]), Dynamic 

Matrix Control (DMC, [13]), Unified Predictive Control (UPC, [14]), Internal Model Control 

(IMC, [8]) and Extended model based predictive control (EMPC, [15]) etc. After the successful 

implementation of model predictive control (MPC), it has become the most popular control 

strategy for process industries. The applications for MPC have now extended from 

petrochemicals and refining fields to food processing, automotive, metallurgy, aerospace and 

defense industries according to an industrial survey presented by Qin et al. [6]. 

MPC became the standard control strategy due to its constraints handling abilities and numerous 

advantages over traditional controllers.  It is suitable for multivariable control designs where the 

interaction between manipulated variables (MV) and control variables (CV) is taken into 

consideration. It also has the ability to manage long time delay and non-minimum phase problem 

as discussed by Eng et al.[2].  

2.3 Structure of Model Predictive Control 

A Model predictive control algorithm consists of a cost function, constraints and a prediction 

model or model of the process [16]. It is a computer control algorithm that uses a model of the 

process which generally represents the complex behaviors of the dynamic systems. This model is 

used to predict the system’s future response over a future time interval or normally known as the 

prediction horizon [2]. The future response of the system based on the current and past values of 

system output and on the future control actions. This information is used to calculate the optimal 
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controlsignalsfor futureactions[17]. Thenthemainconceptof theoptimizationis to computea

vectorof control inputsto befed into thesystemin an optimalway andat thesametime process

constraints taken into concern[16]. Thestructureof theMPC is illustratedin thediagramshown

in Figure2.1andbelowits maincomponentsaredescribed.

Figure2.1: Structureof MPC [17].

2.3.1 Cost function

Cost function also called as objectiveor optimization function which is denotedby kJ in this

thesis.It is a scalarcriterion that measuresthe differencebetweenthe future outputs 1|k Ly � and

somespecifiedfuture reference 1|k Lr � andat the sametime finds the control signal ku . This cost

function is themeasureof processbehaviorover thepredictionhorizonsuchthat it is minimized

with respectto the future control vector 1|k Lu � andonly the first input is used. At the next time

instant, : 1k k� � theoptimizationprocessis repeatedagainwhich is knownasa recedingcontrol

horizonproblemandmathematicalderivationsin this chapterare referencedfrom Ruscio[15].

Thegenerallyusedcostfunctionwith MPC in scalarform is givenin equation2.1,

1 1 1 1
1

(( ) ( ) )
L

T T T
k k i k i i k i k i k i i k i k i i k i

i

J y r Q y r u Pu u R u� � � � � � � � � � � �
�

� � � � �� �� (2.1)

Where

m m
i

r r
i

r r
i

Q R

P R

R R

�

�

�

�

�

�

Opt imizer Process

Model +
-

Cost function Constraints

Predicited Output

Setpoint Futureerror ProcessOutputFuture Inputs+
-
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are the user specified symmetric and positive semi-definite weighting matrices and L is 

prediction horizon. For simplicity, these matrices could be chosen as, mIiQ q , Ii rP p and 

0 Ii rR r where ,  q p and 0r are taken as positive parameters. In the general case ,i iQ P  and iR are 

diagonal weighting matrices, where iP  is taken as zero in order to obtain MPC with integral 

action such that output is equal to the reference signal i.e. y r [15]. The cost function can be 

written in matrix form as, 

                              1| 1| 1| 1| | | | |( ) ( )T T T
k k L k L k L k L k L k L k L k LJ y r Q y r u Pu u R u        

     
                  (2.2) 

Where  

Lm Lm

Lr Lr

Lr Lr

Q R

P R

R R












   

 

are symmetric and positive semi-definite weighting matrices. MPC with offset free control, in 

other words MPC with integral action can be achieved by choosing 0.P   The control problem 

subjected to prediction model and process variable constraints is specified as equation 2.3.    

           
 | 

*
| |arg min ( )

k L
k L k k L

u
u J u                 (2.3) 

The objective of the cost function is to minimize the difference between the process output 1|k Ly 

and specified reference 1|k Lr  and at the same time minimize the control |k Lu [15]. 

2.3.2 Constraints 

The limitations to a process are known as constraints, and MPC became the standard control 

strategy due to its constraints handling abilities. Common types of constraints for model 

predictive control are the input amplitude constraint, input rate constraint and output constraint 

that can be written by following linear inequality form as in equation 2.4 [15]. 

                                                                        |k LA u b                                                             (2.4) 

Where A is a matrix and b is the vector. The more details about the common constraints is given 

below, 

 Input amplitude constraint 

It is amplitude constraints on the input signal which can be mathematically written as shown in 

equation 2.5, 
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|

min max
| |k L k L k Lu u u                                                        (2.5) 

The relationship between |k Lu and |k Lu can be defined as follows, 

                                                             | | 1k L k L ku S u cu                                                            (2.6) 

Rearranging the above equation as | | 1k L k L kS u u cu    and the equation (2.5) is equivalent to 

equation (2.7), 

                                                          
max

| | 1

min
| | 1

        k L k L k

k L k L k

S u u cu

S u u cu





   


     

                                                   (2.7) 

Where 
   S

A
S

 
  

 
 and 

max
| 1

min
| 1

    k L k

k L k

u cu
b

u cu




 
  

   

, substituting A and b in equation (2.4) we have, 

                                                            
max
| 1

| min
| 1

       k L k
k L

k L k

u cuS
u

u cuS




  
    

      

                                           (2.8) 

The input amplitude constraints in linear inequality form are given in the above equation. 

 Input rate constraint 

The limitations on the rate of change are stated as input rate constraints. Mathematically it can be 

written as, 

                                                              
|

min max
| |k L k L k Lu u u                                                           (2.9) 

The above equation is equivalent to  

                                                                 
|

max
| |

min
|

       

k L

k L k L

k L

u u

u u

  

  
                                                        (2.10) 

The equation (2.10) can be written in linear inequality form, where 
  I

A
I

 
  

 
 and 

max
|

min
|

    k L

k L

u
b

u

 
  

  

   

                       
max
|

| min
|

       k L
k L

k L

uI
u

uI

  
    

     

                                                 (2.11)
 

 Output constraints 

The limitations on the output are defined as output constraints that can be written as  

                                                                 min 1| maxk Ly y y                                                      (2.12) 

The prediction model in terms of control variable |k Lu is given in equation (2.13), 
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                                                            1| |k L L L k Ly p F u                                                            (2.13) 

From equation (2.6) we have |k Lu such that, 

| | 1k L k L ku S u cu     

Substituting the |k Lu in equation (2.13) we have, 

                                                      1| | 1k L L L k L ky p F S u cu                                                 (2.14) 

                                                     1| | 1k L L L k L L ky p F S u F cu                                                 (2.15) 

                                                      1| | 1k L L k L L L ky F S u p F cu                                                (2.16) 

Further summarizing equation (2.16) gives,  

                                                        1| | Lk L L k Ly F u p 

                                                             (2.17) 

Where 

L LF F S   

1L L L kp p F cu

   

Combining the output constraint and prediction model in term of control change variable as 

given in equation (2.12) and (2.17) respectively, we have 

                                                            min | maxLL k Ly F u p y                                                 (2.18) 

The above equation is equivalent to 

                                                          
| max

| min

       
    L

L

L k L

L k L

F u y p

F u y p

 

 

   


     

                                                (2.19) 

 Writing above equation in linear inequality form |k LA u b  , we have  

                                                           
max

|

min

       
L

L

L
k L

L

y pF
u

F y p



 

  
    

      

                                          (2.20) 

Where,      

 
     L

L

F
A

F





 
  

 
 

max

min

   
L

L

y p
b

y p





 
  

   
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Input amplitude, input change and output constraints from equations (2.8), (2.11) and (2.20) can 

be combined and written as linear inequality of the form |k LA u b 
 
respectively. 

                                                       

max
| 1

min
| 1

max
|

| min
|

max

min

      

       

       
L

L

k L k

k L k

k L
k L

k L

L

L

u cuS
u cuS

I u
u

I u

F y p
F y p











    
    
   
           
   
         

                                            (2.21) 

Where 

   

   

    L

L

S

S

I
A

I

F

F





 
 


 
 

  
 

 
 
  

 and 

max
| 1

min
| 1

max
|

min
|

max

min

   

   

   
L

L

k L k

k L k

k L

k L

u cu

u cu

u
b

u

y p

y p









 
 
  
 
 

 
 
 
 
   

 

The solution to constraint problem can be solved by the quadratic programming. The control 

objective criterion and prediction model are given as, 

                                            1| 1| 1| 1| | |( ) ( )T T
k k L k L k L k L k L k LJ y r Q y r u P u                                 (2.22) 

Prediction model, 

                                                              1| |k L L k L Ly F u p                                                         (2.23) 

By substituting equation (2.23) into (2.22) gives,              

                | 1| | 1| | |( ) ( )T T
k L k L L k L L k L L k L k L k LJ F u p r Q F u p r u P u                                       (2.24) 

                
| | | 1| 1| |

1| 1| | |

( ) ( )

       ( ) ( )

T T T T T
k k L L L k L k L L L k L L k L L k L

T T
L k L L k L k L k L

J u F QF u u F Q p r p r QF u

p r Q p r u P u

 

 

        

   
                 (2.25) 

               | | | 1| 1| | 0( ) ( ) ( )T T T T T
k k L L L k L k L L L k L L k L L k LJ u F QF P u u F Q p r p r QF u J                (2.26) 

Equation (2.26) can be written as  

                                         | | | 02       T T
k k L k L k LJ u H u f u J                                        (2.27) 
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Where,
T

L LH F QF P� �

1|( )T
L L k Lf F Q p r �� �

0 1| 1|( ) ( )T
L k L L k LJ p r Q p r� �� � �

Subjectedto |k LA u b� � thequadraticprogrammingproblemcanbeformulatedasfollows,

|
| | |min( 2 )

k L

T T
k L k L k Lu

u H u f u
�

� � � � (2.28)

Usingthe“quadprog” functionin MATLAB, theproblemcanbesolvedsuchthat,

| ( , , , )k Lu quadprogH f A b� � (2.29)

And the control single |k Lu can be computedas | | 1|k L k L k Lu u u ��� � where 1|k Lu � must be known

howeverit canbespecifiedin thestart[15].

2.3.3 Prediction model

Model predictive control requiresa processmodelthatdescribestheinput to theoutputbehavior

of the process.Prediction model (PM) is usually constructedfrom the processmodel that

describestherelationshipbetweenthe futureoutputsandfuturecontrol inputs. A lineardynamic

processmodelcanbewritten in thestandardpredictionmodelform as,

1| |k L L L k Ly p F u� � � (2.30)

Where Lm Lr
LF �� is a constantmatrix derivedfrom theprocessmodel, L is a predictionhorizon,

and Lr
Lp � is a vectorthat dependson modelparametersanda numberof inputsandoutputs

thatareolderthantimek . The predictionmodelin equation(2.30)is usedin theMPC algorithm

to computetheactualcontrolvector
|

*
k L

u [15].

In someMPC algorithmprocessdeviationvariablesarecomputed, suchasMPC with integral

actioncomputingthevectorof futurecontrol deviationvariables |k Lu� . Thepredictionmodelin

this casecanbewrittenas,

1| | Lk L L k Ly F u p� �
� � � � (2.31)

In theMPC algorithm,this predictionmodelcanbeusedto computethecontrolvector
|

*

k L
u� .The

main purposeof usinga predictionmodelgiven in equation(2.30) and (2.31) is to expressthe
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future predictions as a function of unknown future control vectors which MPC algorithm will 

compute [15]. 

2.4 Model Predictive Control principle 

Current measurements and future outputs predicted by using the process model are the bases of 

the MPC calculations. At each sampling time, the MPC algorithm computes a sequence of 

control signals over the prediction horizon. The purpose of these control signals is to minimize 

the difference between the predicted controlled outputs and set point of the outputs or in other 

words predicted output reached set point in an optimal way [18]. 

The general principle of MPC control calculation is illustrated in Figure 2.2 for a SISO1 control, 

where ,y   ̂ and u are actual output, predicted output and manipulated input respectively. The 

MPC algorithm computes a sequence of control signals ( 1)u k i   for 1,2,....,i L at the current 

sampling time k . This sequence consists of the current control input ( )u k and ( 1)L  future 

control inputs [19]. The first input of optimal sequence computed by the MPC is implemented, 

and the rest of control inputs are discarded. At the next sampling instance 1k  , a new set of 

control signals ( 1)u k L   is calculated and again only the first is sent into the system. The 

entire process is repeated at subsequent sampling intervals.  

In order to find the optimal control input vector, a cost function J  is to be minimized over a 

receding horizon consists of a finite number of steps L  in the future as mention by Byeongil 

Kim [17]. The number of samples the MPC controller predicts in the future called the prediction 

horizon ,L and a number of control moves within the prediction horizon is called the control 

horizon [17]. 
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 Single Input and Single Output 
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 Figure  2.2: Model Predictive control concept [19] 

In MPC algorithm prediction, the horizon is being shifted forward and for this reason MPC is 

also known as receding horizon control [20]. The basic idea of shifting forward prediction 

horizon from the present time instance k  to next time interval 1k   is illustrated in the diagram 

shown in Figure 2.3. At time instance k , an MPC controller predicts the k L  outputs, and at 

the next sampling interval 1,k   the prediction horizon moves forward as a result, the MPC 

controller predicts 1k L  outputs [5]. 

 

 

 

 

 

 

 

       Figure  2.3: MPC receding prediction horizon [16] 
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3. State space model based MPC and integral action 

In this chapter, state space model based predictive control is presented and different methods of 

achieving integral actions in the MPC optimal control algorithm are discussed. The formulation 

of MPC with integral action is described that will be used for simulation experiments of the four-

tank process. Finally, the Kalman Filter algorithm steps are explained.  

3.1 Introduction 

Most of the MPC applications using prediction model based on a linear dynamic model of the 

process that will lead to the linear model predictive control. However, using the nonlinear 

process model for prediction will be resulted in the nonlinear model predictive control and it is a 

nonlinear optimization method that can be solved by Sequential Quadratic Programming (SQP) 

[21]. The problems with nonlinear MPC optimization are local minima, and there is no guarantee 

of nonlinear MPC to converge within the specified computation time. Hence, the model 

predictive control can be categorized into the linear model predictive control and nonlinear 

model predictive control by using the linear and nonlinear models in the prediction model 

respectively [15]. There are various methods to formulate the predict control algorithms that only 

different from each other based on the process model used for the cost function. MPC algorithms 

are using finite impulse response models, step response models, transfer function models or state 

space models for computing the future output predictions [5]. The general approach is to use a 

state space model as it is easy to convert any linear dynamic model into the state space         

model [15].  

 Impulse/Step response model: 

Impulse/ Step models are a special case of input and output models that can be formulated by 

simple experiments but required a large amount of parameters to be considered. These model 

parameters related to the impulse response matrices of the state space model. Matrix Algorithm 

Control (MAC [9]) and Dynamic Matrix Control (DMC [13]) algorithms use these models. 

However, these methods are not common because they rely on the model that describes only 

special case linear dynamic systems e.g. stable systems and systems without integrator, as 

mention by Ruscio [15].  
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 Transfer function model: 

Transfer function models are preferred when it is easy to formulate a good model using physical 

laws or by system identification methods. It required fewer parameters to be estimated as 

compared to the Impulse/ Step response models. Generalized Predictive Control (GPC) is a class 

of predictive control that uses a transfer function model of the system [15, 22]. It uses different 

types of the transfer function models, examples are Controller Auto Regressive Integrated 

Moving Average (CARIMA), Deterministic Auto Regressive Moving Average (DARMA) or 

Controller Auto Regressive Moving Average (CARMA) model [5].  

 State space model: 

State space model similar to transfer function model can be formulated on the basis of physical 

laws or system identification methods. These models are mostly used for a time invariant system. 

In this thesis, the state space model based Model Predictive Control is in the main focus, hence 

its formulation is described in more details. 

3.2 Extended Model Predictive Control (EMPC) 

The prediction model can be formulated by using the state space model that leads to the 

Extended Model Predictive Control (EMPC) algorithm as presented by Rusico [23].  It can 

classify into EMPC1 and EMPC2 based on prediction model that uses the process actual variables 

and process deviation variables respectively. The formulation of the state space model based 

MPC is described below and the mathematical derivations in this chapter are referenced from 

Ruscio [15]. 

3.2.1 Extended Model Predictive Control (EMPC1) 

Prediction model is based on the actual variable in EMPC1. A deterministic linear dynamic 

system can be written as a state space model given in Equation (3.1) and (3.2) as mention by 

Ruscio [15]. 

1k k kx Ax Bu                                                               (3.1) 

  k ky Dx                                                                       (3.2) 

Using the above state space model , the prediction model can be formulated for 4,L   where L

is prediction horizon.                                                               

For 1k k   
                                                              1 1k ky Dx                                                                     (3.3)  
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Substitutingtheequation(3.1) into (3.3),gives

1 ( )k k ky D Ax Bu� � � (3.4)

1k k ky DAx DBu� � � (3.5)

For 2k k� �

2 1 1( )k k ky D Ax Bu� � �� � (3.6)

2
2 1k k k ky DA x DBu DBu� �� � � (3.7)

For 3k k� �

3 2 2( )k k ky D Ax Bu� � �� � (3.8)

3 2
3 1 2k k k k ky DA x DA Bu DABu DBu� � �� � � � (3.9)

Equations(3.2),(3.5),(3.7)and(3.9) canbewritten in matrix form as,

|3

4|4 4

1
12

2
23 2

3

0 0 0

0 0

0

k
d

k

k
k

k
k k

k
k

k
u

oy H

y D
u

y DA DB
x u

y DA DAB DB
u

y DA DA B DAB DB

�
�

�
�

�

� � � � � �
� �� � � � � �
� �� � � � � �� � � �� � � � � �
� �� � � � � � � �

� � � �� �

(3.10)

Where |4ky is datamatrix of outputvariables, |3ku is datamatrix of input variables, 4O extended

observabilitymatrix for the pair (D, A), and 4
dH is lower block triangularToeplitz matrix for

(D,A,B) matrices[24]. Theequation(3.10)canbewrittenas,

|4 4 4 |3
d

k k ky O x H u� � (3.11)

Theaboveequationwhenthepredictionhorizonis equalto L becomes,

| | 1
d

k L L k L k Ly O x H u �� � (3.12)

Formulatingtheequationwhen 1k k� � , theequation(3.12)becomes,

1| 1 1| 1
d

k L L k L k Ly O x H u� � � �� � (3.13)

Fromequation(3.1) 1k k kx Ax Bu� � � , substitutingin theaboveequationgives,

1| 1| 1
d

k L L k L k L k Ly O Ax O Bu H u� � �� � � (3.14)

Writing theequation(3.14)in matrix form gives,
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                      1|
1| 1

kd
k L L k L L

k L

u
y O Ax O B H

u

 

 
     

 
                            (3.15) 

Where,  

L L kp O Ax ,  
d

L L LF O B H    ,   

|
1| 1

k

k L
k L

u
u

u  

 
  
 

,  

Substituting ,Lp  LF  and |k Lu , the equation (3.15) becomes, 

                                                              1| |k L L L k Ly p F u                                                          (3.16) 

The equation (3.16) is the prediction model that will be based for an MPC algorithm to compute 

the predicted outputs. The term Lp in the above equation depends upon the kx  which is the 

present state and resulting MPC will be a state feedback type algorithm [15].  

                                              1| 1| 1| 1| | |( ) ( )T T
k k L k L k L k L k L k LJ y r Q y r u Pu                                   (3.17) 

Substituting prediction model from the equation (3.16) into the cost function given in equation 

(3.17), we have 

                      | 1| | 1| | |( ) ( )T T
k L k L L k L L k L L k L k L k LJ F u p r Q F u p r u Pu                                        (3.18) 

                      | | 1| | 1| 1|( ) 2 ( ) ( ) ( )
L L

T T T T
k k L L k L L k L k L L k L L k LJ u F QF P u F Q p r u p r Q p r              (3.19) 

                      | | | 02T T
k k L k L k LJ u Hu f u J                                                                                  (3.20) 

Where  

L

T
LH F QF P   

1|( )
L

T
L k Lf F Q p r    

0 1| 1|( ) ( )T
L k L L k LJ p r Q p r     

Minimizing the cost function given in equation (3.20) with respect to |k Lu  i.e, 
 | 

min
k L

k
u

J , 

                                                            | | | 0
|

2T Tk
k L k L k L

k L

J
u Hu f u J

u


  


                                     (3.21) 
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The equation (3.21) becomes the future optimal control, where only the first element 
 | k L

u , of 

control vector 
 | 

*

k L
u is used for control purpose [15]. 

                                                                   
 | 

* 1 *
k L

u H f                                                        (3.22) 

3.2.2 Extended Model Predictive Control (EMPC2) 

The EMPC2 is based on the process deviation variables and prediction model can be derived 

from the equations (3.1) and (3.2) by introducing the relationship | | 1k L k L ku S u cu   
 
[15]. The 

prediction model will be of the form, 

                                                                1| |L Lk L k Ly p F u 

                                                     (3.23)            

Lp and LF  are given by equation (3.15), where 
L

F   and 
L

p are, 

L LF F S      

1L L L kp p F cu

        

The cost function, 

                               1| 1| 1| 1| | | | |( ) ( )T T T
k k L k L k L k L k L k L k L k LJ y r Q y r u Pu u R u                              (3.24) 

Substituting prediction model from the equation (3.23) into the cost function given in equation 

(3.24), becomes 

               | 1| | 1| | | | |( ) ( )
L L L L

T T T
k k L k L k L k L k L k L k L k LJ F u p r Q F u p r u Pu u R u   

                      (3.25) 

               
|

   
| 1| 1 | 0( ) 2( ( ) )

T T

k L L L L L

T T T T
k k L k L k k LJ u F QF R S PS u F Q p r S Pcu u J   

           (3.26) 

               
| | | 02

k L

T T
k k L k LJ u H u f u J                                                                                     (3.27) 

Where  

| | 1k L k L ku S u cu    ,  
 ( ),
T

L L

TH F QF R S PS     
 

1| 1( ( ) ),
T

L L

T
k L kf F Q p r S Pcu 

     

10 1| 1| 1( ) ( )
L L k

T T T
k L k L kJ p r Q p r u c Pcu



 

       

Minimizing the cost function given in equation (3.27) with respect to |k Lu  i.e, 
 | 

min
k L

k
u

J


,  
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                                                      | | | 0
|

2T Tk
k L k L k L

k L

J
u H u f u J

u


     


                                   (3.28)      

The equation (3.28) becomes the future optimal control as,  

                                                              
 | 

* 1 *
k L

u H f                                                           (3.29) 

Where only the first element  | k Lu , of control vector 
 | 

*

k L
u  is used  for control purpose and 

actual control signal ku  for MPC optimal control can be calculated as 1k k ku u u    [15]. 

3.3 Integral action in MPC  

Model predictive control has several algorithms that differ from each other based on the process 

model used for the cost function. These formulations have some problems with offset i.e. the 

process output y  is not equal to the set point r  in steady state. In order for the controllers to 

handle the offset problem, integral action is an effective method. Different methods have been 

presented to achieve offset free control or integral action in MPC algorithms. A short overview 

of these methods is discussed here, and formulation of MPC optimal controller with integral 

action used in the simulation experiments is present in the next section.  

Åkesson [25] suggested a disturbance observer approach to obtain offset free control. There are 

always modeling error and disturbance that affect the proper working of the controller. These 

problems can be handled by introducing the integral action as a result, error free tracking of 

reference signal is obtained [25]. 

According to Muske and Bedgwell [26], most of the MPC algorithms use a constant output step 

disturbance model to achieve the integral action. The same approach was discussed by Rawling 

[27] to formulate the controller that effectively handles the steady state offset. Another method to 

achieve the offset free control is by the addition of integrating disturbance to the process model 

presented by Pannocchia and Rawlings [28]. A velocity form state-space method to get an offset 

free control pointed out by Pat and Garcia [29] which is a similar approach to augmenting the 

system model with a disturbance. In this method, state acts as a change in the original state, and 

outputs of the original system are the augmented states. Davison and Smith [30] pointed out that 

disturbance formulation as the standard approach to achieve integral action.  

Morten [31] formulated the MPC with integral action by using the input changes as free 

variables in the optimization instead of using the input itself and presented the augmented model 

formulation as given below using the model in the equations  (3.1) and (3.2), 
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� � � �� �

�

(3.30)

Where 1k k ku u u �� � � .

In this work, the integral action in the MPC algorithm is achievedby using the deviation

variablesmentionby Rusico[7] anddescribedin thenextpartwith detailsderivation.

3.4Formulation of MPC optimal controller with integral action

Themodelof theprocesswith disturbancecanbewrittenas

1k k kx Ax Bu v� � � � (3.31)

k k ky Dx Eu w� � � (3.32)

Theequation(3.32) hasa directtermfrom theinput signal ku to theoutputsignal ky , howeverin

MPC dueto recedinghorizoncontrolprinciple,thecurrentinformationabouttheprocessis used

for predictionand control. Therefore, in processmodel the termE is set to zero becausethe

input signal ku can not affect the output signal ky at the sametime as mention by Wang [3].

Thentheprocessmodelwill beas

1k k kx Ax Bu v� � � � (3.33)

k ky Dx w� � (3.34)

Where ,A B and D are known systemmatrices, n
kx � is a statevariable vector, r

ku � is

control input vector, m
ky � is output (measurement)vector. In equation(3.33) and (3.34),v

representan unknown constantor slowly varying processdisturbanceand w is an unknown

constantor a slowly varying measurementnoisevector [7, 32]. The disturbancev and w both

are not known and the MPC algorithm requiredmodel free from unknowndisturbances[15]

which canbeeliminatedby introducingtheterms kx and 1ky � .

Where

1 1k k kx Ax Bu v� �� � � (3.35)

1 1k ky Dx w� �� � (3.36)
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Subtractingtheequation(3.35) from (3.33) andequation(3.36) from (3.34), gives

1 1 1( )k k k k k kx x Ax Bu v Ax Bu v� � �� � � � � � � (3.37)

1 1( )k k k ky y Dx w Dx w� �� � � � � (3.38)

After simplifying abovetwo equations,

1 1 1( ) ( )k k k k k kx x A x x B u u� � �� � � � � (3.39)

1 1( )k k k ky y D x x� �� � � (3.40)

Where,

1 1k k kx x x� �� � �

1k k kx x x �� � �

1k k ku u u �� � �

By substitutingtheabovetermsin equations(3.39) and(3.40), thenwrite themin a matrix form.

1k k kx A x B u�� � � � � (3.41)

1k k ky y D x�� � � (3.42)

1

1

1

0

0
kk

k k
k

k k

x Bx A

x xA B
u

y yD I

�

�

�

� �� � � �� � � �
� � �� � � �� � � �

� � � �� � � �
(3.43)

� �
1

k

k
k

k
D

x

x
y D I

y �

�� �
� � �

� �
(3.44)

Writing equations(3.43) and(3.44) in morecompactform,

1k k kx A x B u�� � � � � (3.45)

k ky D x� � (3.46)

The predictionmodel from the equations(3.45) and (3.46) canbe formulatedby samemethod

presentedin section(3.2.1).Thepredictionmodelwill bein theform as,

1| |k L L L k Ly p F u� � � � (3.47)

Where,

L L kp O Ax�
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d
L L LF O B H� �� � �

Where LO is extendedobservabilitymatrix for thepair ( , )D A , and 4
dH is a Toeplitzmatrix for

( , , )D A B matrices[15]. Thecostfunctionfrom theequation(3.24)is

1| 1| 1| 1| | | | |( ) ( )T T T
k k L k L k L k L kL kL kL kLJ y r Q y r u Pu u R u� � � �� � � � �� � (3.48)

The control weighting matrix 0P � , to obtain an MPC with integral action suchthat y r� in

steadystate. Then substituting the prediction model equation(3.47) into the cost function

equation(3.48) gives,

| 1| | 1| | |( ) ( )T T
k L kL L k L L kL L k L kL kLJ F u p r Q F u p r u R u� �� � � � � � � �� � (3.49)

After simplifying theaboveequation, it is minimizedwith respectto |k Lu� i.e.
|

min
k L

k
u

J
�

,

| | | 0
|

2T Tk
k L k L k L

k L

J
u H u f u J

u
�

�� � � � �
�

(3.50)

Where,

L

T
LH F QF R� �

1|( )
L

T
L k Lf F Q p r �� �

0 1| 1|( ) ( )T
L k L L k LJ p r Q p r� �� � �

Thepurposeof computingthe controldeviationvariance |k Lu� is to achieveintegralactionin an

optimalmanner.

|

* 1

k L
u H f�� �� � (3.51)

Whereonly the first element |k Lu� , of the control deviation vector
|

*
k L

u� is usedfor control

purpose and the actual control signal ku for MPC optimal control can be calculatedas

1k k ku u u ��� � [15].

3.5Kalman Filter

Thetheoryof KalmanFilter wasdevelopedby Rudolf E. Kalmanin 1960’s.It is commonlyused

algorithmfor estimatingtheunknownstatevariablesof a dynamicsystemthatareexcited by the

stochasticdisturbancesand measurementnoise respectively[33]. This method producesan
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optimal estimation in sucha way that the sum of estimationerrorsobtainsa minimum mean

value[15]. In this section, KalmanFilter algorithmis formulatedwhich will be implementedin

simulationexperimentsdiscussedin chapter5. It will beusedto estimatethestatessinceall the

statesarenotmeasured.A discretetime statespacemodelcanbewrittenas

1k k k k

k k k

x Ax Bu v

y Dx w
� � � �

� �
(3.52)

kv is the white processnoisewhereas kw is white measurementnoise.The stepsfor calculating

thestateestimationby theKalmanFilter algorithmareasfollows [15, 34],

� FindingtheKalmanFilter GainK .

� Definetheinitial Apriori or predictedstateestimate

k kx x� (3.53)

� Findmeasurementmodelupdating,

k ky Dx� (3.54)

� Findingtheestimationerror

k k ke y y� � (3.55)

� Findingtheaposterioristateestimate

ˆk k kx x Ke� � (3.56)

� Findingtheapriori stateestimateupdate

1 ˆk k kx Ax Bu� � � (3.57)

Where kx is apriori or predictedstateestimateand ˆkx is aposterioristateestimate[34]. Noted h

has beenusedin MATLAB m-file script to representthe state x . The Kalman filter in the

innovationform canbewrittenas,

1k k k k

k k k

x Ax Bu Ke

y Dx e
� � � �

� �
(3.58)

TheKalmanfilter gainin innovationformK AK� , [15].
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4. Simulation Experiments on benchmark process 

In this chapter, the four-tank benchmark process is described and its physical model is 

formulated by writing down mathematic equations using the basic laws of physics as presented 

by many researchers. The nonlinear model is linearized for use in MPC with the integral action 

algorithm. The operating condition of the four-tank process as minimum and non-minimum 

phase are discussed at the end.   

4.1 Four-tank Process  

Four-tank or quadruple-tank process is a multivariable standard process used in many control 

laboratories for academic purpose first presented by Johasson [35]. It is a nonlinear system that 

consists of two pumps, two valves, two level sensors and four interconnected water tanks. The 

level sensors are connected to the lower tanks i.e. tank 1 and tank 2. The voltages to the pumps 

( 1u and 2u ) are the process input, and voltages from the level sensors ( 1y  and 2y ) are the process 

outputs. The schematic diagram of the four-tank process is illustrated in Figure 4.1. 

 

 

 

 

 

 

 

 

 

                                                         

             

 

     Figure  4.1: Four-tank process schematic diagram [35] 

Tank 3

Tank 1 Tank 2

Tank 4

Pump 1 Pump 2

Valve 1 Valve 2
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The voltage 1u  is applied to pump 1, for supplying water from the reservoir to tanks 1 and 4 

while the voltage 2u is applied to pump 2 for supplying water in tanks 2 and 3.  The valve 1 is 

used to control the water flow in tanks 1 and 4 while valve 2 is used to control the water flow in 

tanks 2 and 3. The main goal is to control the liquid level in the tanks 1 and 2 therefore level 

sensors are used in lower tanks.  

4.1.1 Physical model of four-tank process 

The mathematical model of the four-tank process can be derived by using mass balances and 

Bernoulli’s law as represented by Johansson [35]. The mass balance for thi  tanks can be written 

as, 

                                                                        i
i i out i in

dh
A q q

dt
                                                  (4.1) 

Where inq  and outq are inflow and outflow of a tank respectively that can be modeled using 

Bernulli’s law. iA  is the cross-section area of ith tank and the potential energy in the tank will be 

equal to kinetic energy of the liquid in the tank such that [36], 

                                                                       21

2
mgh mv                                                          (4.2) 

Solving above equation for v  gives,  

                                                                            2v gh                                                          (4.3) 

Multiplying the equation (4.3) with an area of the outlet hole ( )a of the tank gives the volumetric 

flow rate outq  as, 

                                                                        2outq av a gh                                                 (4.4)                                                                                                  

Then the outflow of thi tanks can be written as, 

                                                                        2i out i i i i
q a v a gh                                              (4.5) 

The flow from pump 1 is 1 1k u  that split into a flow 1  1 1 1inq k u  to the tank 1 and a flow 

4  1 1 1(1 )inq k u   to tank 4. Similarly, the flow from the pump 2 is 2 2k u  that split into a flow 

2  2 2 2inq k u  to the tank 2 and a flow 3  2 2 2(1 )inq k u   to tank 3. The level measurement signals 

are *c ik h . By using equation (4.1) and (4.5) mass balance and Bernoulli’s law can be extended 

for the four-tank process as [35], 
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                                                           1
1 1  3  1 out out in

dh
A q q q

dt
                                                   (4.6) 

                                                          2
2 2  4  2 out out in

dh
A q q q

dt
                                                  (4.7) 

                                                           3
3 3  3 out in

dh
A q q

dt
                                                           (4.8) 

                                                           4
4 4  4 out in

dh
A q q

dt
                                                           (4.9) 

Substituting  the inflow inq  and outflow outq  of the tanks yield, 

                                                            1
1 1 1 3 3 1 1 12 2

dh
A a gh a gh k u

dt
                               (4.10) 

                                                           2
2 2 2 4 4 2 2 22 2

dh
A a gh a gh k u

dt
                            (4.11) 

                                                           3
3 3 3 2 2 22 (1 )

dh
A a gh k u

dt
                                       (4.12) 

                                                          4
4 4 4 1 1 12 (1 )

dh
A a gh k u

dt
                                         (4.13) 

The nonlinear model of the four-tank process is described in above four differential equations 

and the parameter description is given in Table 4.1. 

Table  4.1: The four-tank nonlinear model parameter description 

iA  Cross-section area of the tank i ; 

ia  Cross-section area of the outlet hole i ; 

ih  The water level in the tank i ; 

iu  The voltage applied to the pump i ; 

i  Valve constant for the valve i ; 

ik  Pump constant for the pump i  ; 

g  The acceleration of gravity; 

ck  The pump gain 

i  1,2,...,4  
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4.1.2Linearization of four-tank process

The nonlineardifferential equations(4.10)-(4.13) canbe linearizedat operatingpoint given at

the levels in the tanks 0
ih and voltage 0

iu . Considering the variablessuchthat 0:i i ih h h� � and

0:i i iu u u� � . Thelinearizedstatespacemodelis givenby [35]

dh
Ax Bu

dt
y Dx

� �

�
(4.14)

Where,

3 1 1

11 1 1

1 2 24

22 2 2 2 1

3 22 2

33 4

1 1

4 4

1
00 0

1
00 0

(1 )1
00 0 0

(1 )1
0 0 0 0

A k
AT AT

h kA
AT AT h udh

h ukdt
AT h

k
T A

�

�

�

�

� � � ��� � � �
� � � �

� �� � � �
� � �� � � � � �� �� � � �� � � �� �� � � �� � �� � �� � � �

� �� � � �
� � � ��

�� � � �
� � � �

(4.15)

1

2

3

4

0 0 0

0 0 0
c

c

h

k h
y

k h

h

� �
� �� � � �� � � � �� �
� �
� �

(4.16)

Thetime constantsfor tank i canbecalculatedas,

02 1,2,....,4.i
i i

i

A
T gh for i

a
� �

4.1.3Linear transfer function of the four -tank process

The linear transferfunctionof the four-tankprocesscanbe formulatedby Laplacetransformof

equations (4.15)and(4.16)asmentionedby Numsomran[37].

1 1

2 2

( ) ( )
( ).

( ) ( )

y s u s
G s

y s u s
� � � �

�� � � �
� � � �

(4.17)

1( ) ( )G s D sI A B�� � (4.18)



 
 

29 
 

                                                         11 12

21 22

( ) ( )
( )

( ) ( )

G s G s
G s

G s G s

 
  
 

                                                  (4.19) 

Where  

1 1
11

1

( )
(1 )

c
G s

sT





 

2 1
12

1 3

(1 )
( )

(1 )(1 )

c
G s

sT sT




 
 

1 2
21

2 4

(1 )
( )

(1 )(1 )

c
G s

sT sT




   
2 2

22
2

( )
(1 )

c
G s

sT





 

Substituting above terms into the equation (4.19), we have 

                                              

1 1 2 1

1 1 3

1 2 2 2

2 4 2

(1 )

(1 ) (1 )(1 )
( )

(1 )

(1 )(1 ) (1 )

c c

sT sT sT
G s

c c

sT sT sT

 

 

 
   
 

 
    

                             (4.20) 

Where 1c and 2c  in equation (4.20) are defined as, 1 1
1

1

cT k k
c

A
  and 2 2

2
2

cT k k
c

A
 described in [35]. 

According to the equations (4.17) and (4.19), the relationship between inputs and output will be 
as follows, 
                                                       1 11 1 12 2( ) ( ). ( ) ( ). ( )y s G s u s G s u s                                         (4.21) 

                                                       2 21 1 22 2( ) ( ). ( ) ( ). ( )y s G s u s G s u s                                        (4.22) 

It will be used for input-output pairing to see how the change in inputs 1u or 2u  affects the 

outputs 1y or 2y .  

4.1.4 Operating conditions 

In this thesis, the four-tank process model and control are compared at two operating conditions 

defined as a minimum phase system and non-minimum phase system. They are characterized by 

plotting the system poles and zeros locations on the complex s-plane, whose axes correspond to 

real and imaginary parts of the complex variable s [38]. 
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 Minimum phase system 

A minimum phase system does not have zeros or poles in the right half of the complex s plane. 

According to Ogata [39], the range of phase angle in such system is minimum. In the four-tank 

minimum phase process, the sum of the valve constants 1 and 2 is greater than one but less than 

two i.e., 1 21 2    . According to Johansson, in this case the flow of liquid to lower tanks is 

greater than the flow  in the upper tanks [35]. 

 Non-minimum phase system 

A non-minimum phase system has zeros or poles in the right half of the complex plane and 

according to Ogata [39], the range of phase angle in such system is larger than the minimum 

value. In the four-tank process, if the sum of the valve constants 1 and 2 is greater than zero but 

less than one i.e. 1 20 1,     then the system will have non-minimum phase characteristics. 

According to Johansson, the flow of liquid to lower tanks is smaller compared to the upper tanks. 

Therefore, it is hard to control the level in this phase [35]. 
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5. Simulation Experiments 

The simulation experiments of MPC method on benchmark process are discussed in this chapter. 

The parameter values for both operating conditions are taken from the literature. First of all, 

stability, observability and controllability of the linearized model of the four-tank process is 

analyzed. Constrained and unconstrained MPC with integral algorithm is implemented in the 

linearized model of the four-tank minimum and non-minimum phase process. Constrained MPC 

is further explored with different constraint handling techniques i.e. ‘quadprog’ function and ‘if-

else’ method. A decentralized PI controller is implemented to control the four-tank process for 

comparing the results with the MPC optimal controller. In the last part, simulation using different 

values of the control horizon in the MPC algorithm is performed. The experimental results for all 

the simulations are plotted and compared the performance with each other. 

5.1 Four-tank Process 

Four-tank process is taken as a main benchmark process. The Kalman Filter is implemented for 

state estimation, and the performance comparison of reducing control horizon in MPC method is 

also pointed out. The results of simulation are discussed, and relevant MATLAB scripts are 

given in appendices. The parameter values for the four-tank process are given in the following 

table, 

Table  5.1: Parameter values of the four-tank process [35] 

Parameter Values 

1 3     A and A   [cm2] 28 

2 4     A and A   [cm2] 32 

1 3     a and a    [cm2] 0.071 

2 4     a and a    [cm2] 0.057 

ck                 [V/cm] 0.5/1.0 

g                  [cm/s2] 981 
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5.2 Simulation of nonlinear model 

The physical model of the four-tank process derived in section 4.1.1 from equations (4.10) -(4.13) 

is simulated to find the steady state values of the system in both minimum and non-minimum 

phase characteristics. The parameter values in both cases are taken from the literature and 

tabulated in relevant sections. The tanks are assumed to be empty at the start, and a constant 

voltage is applied such that the liquid level reached the stable point. A combine MATLAB 

program is written for both operating points, and a built-in function “ input ” is used to select 

either minimum phase or non-minimum phase process by typing “ 1 ” or “ 2 ” respectively. A 

data cursor display the values of points on the plotted lines and script files with the supporting 

function are given in Appendix 2. 

5.2.1 Minimum Phase system 

The system will be minimum phase if the sum of the valve constants 1 and 2 is greater than one 

but less than two i.e. 1 21 2,     as mentioned in the previous chapter [35]. In this case, the 

sum of valves constants is 1.3 which states that the system is minimum phase. A constant voltage 

of 3 [V] is applied to pumps 1 and 2, and run the simulations for a time span of 1000 [s]. The 

four tanks are assumed empty at the start, therefore the initial values are set equal to zero. The 

parameter values of the four-tank process are taken from the Table 5.1, and minimum phase 

parameter values are given in Table 5.2 [35].   

Table  5.2: Parameter values of minimum phase [35] 

Parameter Values 

Input voltage            1u   [V]  3.00 

Input voltage            2u   [V] 3.00 

Pump 1 constant       1k    [cm3/V] 3.33 

Pump 2 constant       2k    [cm3/V] 3.35 

Valve 1 constant      1     0.70 

Valve 2 constant       2     0.60 
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The Figure 5.1 shows the results after simulating the minimum phase system. It can be seen from 

the plot, levels in tanks 1 and 2 reached at steady state in 450 and 530 second respectively. 

Similarly, the levels in tanks 3 and 4 are stable after 130 and 190 seconds respectively and 

reached steady state faster than tanks 1 and 3. The steady state levels in four tanks are pointed by 

using the data cursor tool in MATLAB where x-axis represented the simulation time [s] and y-

axis are the level [cm]. The steady state levels in four-tank minimum phase process are given in 

Table 5.3  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure  5.1: Four-tank nonlinear model simulation for minimum phase process 

Table  5.3: Steady state levels in four-tank minimum phase process 

Parameter Values 

Level in tank 1            
0

1h   [cm]  12.30 

Level in tank 2            
0
2h   [cm] 12.80 

Level in tank 3           
0
3h    [cm] 1.63 

Level in tank 4           
0
4h    [cm] 1.41 
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5.2.2 Non-minimum Phase system 

The system will be non-minimum phase if the sum of the valve constants 1 and 2 is greater than 

zero but less than one i.e. 1 20 1,     as mentioned in the previous chapter [35]. In this case, 

the sum of valves constants is 0.77 which states that the system is non-minimum phase. A 

constant voltage of 3.15 [V] is applied to pumps 1 and 2 and simulation performed for a time 

span of 1000 [s]. The four tanks are supposed to be empty at the start, therefore the initial values 

are set equal to zero. The parameter values of the four-tank process are taken from the Table 5.1, 

and non-minimum phase parameter values are given in Table 5.4 [35].   

Table  5.4: Parameter values of non-minimum phase [35] 

Parameter Values 

Input voltage            1u   [V]  3.15 

Input voltage            2u   [V] 3.15 

Pump 1 constant       1k    [cm3/V] 3.14 

Pump 2 constant       2k    [cm3/V] 3.29 

Valve 1 constant      1     0.43 

Valve 2 constant       2     0.34 

 

The Figure 5.2 shows the results after simulating the non-minimum phase system. The levels in 

tanks 1 and 2 reached a steady state in 500 and 644 second respectively and then remained stable 

rest of simulation time. Similarly, the levels in tanks 3 and 4 are stable after 260 and 393 seconds 

respectively. The level in these tanks reached to steady state faster than tanks 1 and 2. A similar 

trend was seen in Figure 5.1, however in non-minimum phase, the process is slower than in 

minimum phase. The steady state levels in four tanks are pointed by using the data cursor tool in 

MATLAB where x-axis represented the simulation time [s] and y-axis are the level [cm]. The 

steady state levels in the four-tank non-minimum phase are given in the Table 5.5. 
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                            Figure  5.2: Four-tank nonlinear model simulation for non-minimum phase process 

Table  5.5: Steady state levels in the four-tank non-minimum phase process 

Parameter Values 

Level in tank 1            
0

1h   [cm]  12.4 

Level in tank 2            
0
2h   [cm] 13.2 

Level in tank 3           
0
3h    [cm] 4.73 

Level in tank 4           
0
4h    [cm] 4.99 

 

5.3 Observability and controllability analysis of linearized model 

Linearized model of the four-tank process presented in section 4.1.2 is analyzed before 

implementing the MPC optimal controller. Eigenvalues are computed to check the stability. 

According to Rusico [32], the real part of the eigenvalues are negative in stable systems and they 

lie in the left part of the complex plane. A system will be observable if the rank of the 

observability is equal to the rank of the system, similarly a system will be controllable if the rank 
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of the controllability is equal to the rank of the system. Therefore, observability and 

controllability and then rank of these matrices are computed to analyze the system observability 

and controllability. A combine MATLAB program is written for both operating conditions. The 

MATLAB built-in function “ input ” is used to select either minimum phase or non-minimum 

phase process by typing “ 1 ” or “ 2 ” respectively. The program script is attached in Appendix 3, 

and results are discussed in the next sections. 

5.3.1 Minimum phase 

The four-tank minimum phase process is stable as the real part of the eigenvalues are negative. 

The system is also observable and controllable as the rank of observability and controllability 

matrices are equal to the rank of the system. A screen dump from the MATLAB code is shown 

in the Figure 5.3. 

 

 

 

 

 

 

 

 
 

 

Figure  5.3: Observability and controllability analysis of minimum phase model 

5.3.2 Non-minimum phase  

The four-tank non-minimum phase process is stable as the real part of the eigenvalues are 

negative. The rank of observability and controllability matrices are equal to the rank of the 
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system, therefore the four-tank non-minimum phase process is observable and controllable. A 

screen dump from the MATLAB code is shown in the Figure 5.4. 

 

                                  

 

 

 

 

 

 

 

 

 

 

Figure  5.4: Observability and controllability analysis of non-minimum phase model 

5.4 Implementation of MPC optimal control with integral action 

MPC optimal control with integral action is implemented after analyzing the linearized model of 

the four-tank process. The mathematical formulation of MPC with integral action is given in 

section 3.4. The steps are also explained to achieve integral action from the discrete model of an 

augmented state space model. The sampling time of 0.1 second is used in all the experiments. 

The constrained and unconstrained MPC with integral are implemented in minimum and non-

minimum cases. The constraints are handled using “if-else” method and MATLAB “ quadprog ” 

function, Kalman filter is used to for state estimation. Appropriate values of the weighting 

matrices Q and R are assigned to weighted the output and input variables respectively.  

Where 

100 0

0 100
Q

 
  
 

, and 
0.1 0

0 0.1
R

 
  
 
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5.4.1 Constrained MPC with integral action  

Implementation of constrained MPC with integral action is divided into simulation of minimum 

and non-minimum phase process and the results are plotted. First of all, the state space 

continuous model is converted into discrete time using the “c2dm” function. The integral action 

in MPC is achieved by augmenting the state space model. The input amplitude constraints are 

implemented and voltage supply to the pumps restrained from minimum 0 [V] to maximum 5 

[V]. The MPC with constraints becomes a quadratic programming problem that is solved by 

“ quadprog ” function. It is a built-in MATLAB function used to solve equality constraint. The 

“if-else” method also implemented to handle constraints in the MPC optimal controller. A 

MATLAB program is written for both operating points. The “input” function is used to select 

constrained MPC with integral action for either a minimum or non-minimum phase process by 

typing “1” or “2” respectively. The main script file along with six other supporting files is 

attached with necessary comments. The MATLAB file using ‘quadprog’ function and ‘if-else’ 

are provided in Appendices 4 and 5 respectively. 

5.4.1.1 Minimum phase system 

In this case, the parameter values are taken from the Table 5.2 and constrained MPC with 

integral action is implemented. The initial level in tanks 1 and 2 are 11.5 and 12.5 [cm] 

respectively and small reference of ±0.1 [cm] is given by using the MATLAB m-file script 

“prbs1.m”. The sampling time of 0.1 second and prediction horizon L of 15 seconds is used both 

strategies of constraints handling for comparison. The constrained MPC with integral action in 

the four-tank minimum phase system using “quadprog” function and “if-else” method is 

simulated, and results are discussed below with plots. 

 Using “quadprog” function 

The input amplitude constraints are implemented by using ‘quadprog’ function and the control 

signals for pumps 1 and 2 are restricted to 0-5 [V] as shown in lower two plots of the Figure 5.5. 

The simulation is performed by changing the set point every 150 seconds and levels in Tanks 1 

and 2 are controlled desirably. In the upper two plots, the red line and blue represents the set 

point and output level respectively.  The output level changes before the change in the set point 

which is the basic principle of the MPC optimal controller. The simulation result of four-tank 
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minimum phase process by implementing the constrained MPC with integral action is illustrated 

in Figure 5.5, and the elapsed time for the simulation is 14.90 seconds. 

 

 

 

 

 

 

 

 

Figure  5.5: The simulation result of four-tank minimum phase process with constrained MPC 
with integral action using “quadprog” function. The upper two plots illustrated the reference 
signal and output levels for tanks 1 and 2. The lower two plots are the controller signals for 
pumps 1 and 2. 

 

 

 

 

 

 

 

 

 

 

Figure  5.6: Results of estimated level during the implementation of constrained MPC with 
integral action using “quadprog” function  in four-tank minimum phase process. Upper two plots 
are a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are 
estimated level in Tanks 3 and 4. 
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The Kalman filter is implemented to estimate the states of the four tanks. The levels are 

measured only in tanks 1 and 2, therefore estimated and measured levels are compared in upper 

two plots. The lower two plots show the estimated levels in tanks 3 and 4. It can be seen from the 

Figure 5.6, the estimated and measured levels in tank 2 are similar, however there is a small 

difference in levels for tank 1. The blue line and green lines represent the measured and 

estimated levels respectively. 

 Using “If-else” method 

This strategy is implemented using if-else loop such that,  

umin=0 

umax=5 

 

 if      u<umin 
         u=umin; 
 elseif  u>umax 
         u=umax 
 end 

The parameter values used in the above method kept the same and simulation is performed. The 

simulation results of constrained MPC with integral action for the minimum phase system using 

“if-else” method is shown in Figure 5.7, and the elapsed time for the simulation is 3.40 seconds. 

A small undershoots and overshoots have been seen in both the tanks 1 and 2, especially in tank 

2 when comparing it with the Figure 5.5. The MATLAB m-script file is attached in appendix 5.  

 

 

 

 

 

 

 

 

 

Figure  5.7: The simulation result of four-tank minimum phase process with constrained MPC 
with integral action using “if-else” method for constraints handling. The upper two plots 
illustrated the reference signal and output levels for tanks 1 and 2. The lower two plots are the 
controller input signal for pumps 1 and 2. 
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It can be seen from the Figure 5.8 there is a difference between the estimated and measured 

levels in tanks 1 and 2. However, these differences are smaller when “quadprog” function is 

used to handle constraints as shown in Figure 5.6. The blue line and green lines represent the 

measured and estimated levels respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.8: Results of estimated level during the implementation of constrained MPC with 
integral action using “if-else” method in four-tank minimum phase process. Upper two plots are 
a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are estimated 
level in Tanks 3 and 4. 
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It is interesting that the elapse time for simulation in ‘if-else’ method is smaller compared with 

the “quadprog” strategy. The reason for a higher execution time in latter strategy is that it has to 

execute a lot of complex calculations. 
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5.4.1.2 Non-minimum phase system 

The parameter values for the non-minimum phase are taken from the Table 5.4 and constrained 

MPC with integral action is implemented similar to the minimum phase system. The initial level 

in tanks 1 and 2 is set to 11.5 and 12.5 [cm] respectively and small reference of ±0.1 [cm] is 

given using the MATLAB m-file script “prbs1.m”. The sampling time of 0.1 second and 

prediction horizon of 15 seconds are used in both strategies of constraints handling for 

comparison. The constrained MPC with integral action in four-tank non-minimum phase system 

is simulated, and results are discussed below with plots. 

 Using “quadprog” function 

In this method, the input amplitude constraints are implemented and the control signal for pumps 

1 and 2 are restricted to 0-5 [V] as shown in lower two plots of the Figure 5.9. The simulation is 

performed using the same method as in minimum phase system, and the levels in Tanks 1 and 2 

are controlled according to specified reference. It can be seen from the plots that the change in 

output levels is slower than minimum phase process. The simulation result of four-tank non-

minimum phase process by implementing the constrained MPC with integral action is illustrated 

in Figure 5.9, and the elapsed time of 16.14 seconds for the simulation is observed. 

 

 

 

 

 

 

 

 

 

Figure  5.9: The simulation result of four-tank non-minimum phase process with constrained 
MPC with integral action using “quadprog” function for constraint handling. The upper two 
plots illustrated the reference signal and output levels for tanks 1 and 2. The lower two plots are 
the controller input signal for pumps 1 and 2. 
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The figure 5.10 illustrates the comparison of estimated and measured levels for tanks 1 and 2 in 

upper two plots and the estimated levels for tanks 3 and 4 in lower two plots. In this case, the 

estimated and measured levels are not matched with each other for tank 1, but the difference is 

small in tank 2. The blue line and green lines represent the measured and estimated levels 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.10: Results of estimated level during the implementation of constrained MPC with 
integral action using “quadprog” function in four-tank non-minimum phase process. Upper two 
plots are a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are 
estimated level in Tanks 3 and 4. 
 Using “If-else” method 

The constraints in MPC with integral action are handled using “if-else”method similar to the one 

implemented in the minimum phase process. The parameter values used in the above method 

kept the same and simulation is performed. The elapsed time for the simulation is 5.67 that is 

again smaller compared with the “quadprog” method. The simulation results for non-minimum 

phase system using “if-else” method are shown in Figure 5.11 and controller response in this 

case is slow. A small undershoots and overshoots have been seen in both the tanks 1 and 2. The 

MATLAB m-script file is attached in appendix 5.  
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Figure  5.11: The simulation result of four-tank non-minimum phase process with constrained 
MPC with integral action using “if-else” for constraints handling. The upper two plots illustrated 
the reference signal and output levels for tanks 1 and 2. The lower two plots are the controller 
input signal for pumps 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.12 Results of estimated levels during the implementation of constrained MPC with 
integral action using “if-else” method in four-tank non-minimum phase process. Upper two plots 
are a comparison of estimated vs measured level in tanks 1 and 2. The lower two plots are 
estimated level in Tanks 3 and 4.  
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The figure 5.12 illustrates the comparison of estimated and measured levels for tanks 1 and 2 in 

upper two plots. The estimated levels for tanks 3 and 4 are shown in lower two plots. It can be 

seen that the difference between the estimated and measured levels in upper two plots increased 

as compared to the Figure 5.10, when “quadprog” was used to handle constraints.  

 Comparison remarks 

The output level in non-minimum phase is changing slowly compared with minimum phase 

system. The control signals to the pumps 1 and 2 are confined within the limit of 0-5 [V] using 

two different approaches. The execution time is smaller by using  “if-else” method, on the other 

hand, the performance of the controller is better when constraints are solved by “quadprog” 

function in the MPC optimal controller. 

5.4.2 Unconstrained MPC with integral action  

In this section, the simulations of MPC with integral action in minimum and non-minimum 

phase systems are performed without implementing the constraints on input voltage. A 

MATLAB program is written for both operating points, and the “ input ” function is used to 

select unconstrained MPC with integral action for either a minimum or non-minimum phase 

process by typing “ 1 ” or “ 2 ” respectively. The main script file is attached in Appendix 6 with 

necessary comments.  

5.4.2.1 Minimum phase system 

For minimum phase system, the parameter values are taken from the Table 5.2, and MPC with 

integral action is implemented. The initial levels in tanks 1 and 2 are 11.5 and 12.5 [cm] 

respectively and small reference of ±0.2 [cm] is given using the MATLAB m-file script 

“prbs1.m”. The sampling time of 0.1 second and prediction horizon of 15 seconds is used. The 

simulation is performed by changing the set point every 150 seconds. However, the controller 

has higher undershoots and overshoots compared with the constrained MPC algorithm as 

presented in prevision section. The red line and blue represent the set point and output level 

respectively in upper two plots of the Figure 5.13. The lower two plots shows the input signals 

for pumps 1 and 2 varying from -8 to 12 [V]. It is not good practice to use voltage higher than 

what is needed. Moreover, it is not only the wastage of energy but also affect the proper working 

of the device. The reasons for bigger undershoots and overshoots is that control signals are not 
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restricted to minimum or maximum limits. The simulation result of four-tank minimum phase 

process by implementing the unconstrained MPC with integral action is illustrated in Figure 5.13. 

 

 

 

 

 

 

 

 

 

 

Figure  5.13:The simulation result of four-tank minimum phase process with unconstrained MPC 
with integral action. The upper two plots illustrated the reference signal and output levels for 
tanks 1 and 2. The lower two plots are the controller input signal for pumps 1 and 2. 

 

It can be seen from the Figure 5.14 the estimated and measured levels in tank 2 have a small 

difference however, in tank 1 the measured level is higher than the estimated level. The lower 

two plots show the estimated levels in tanks 3 and 4. The blue line and green lines represent the 

measured and estimated levels respectively. 
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Figure  5.14: Results of estimated levels during the implementation of unconstrained MPC with 
integral action in four-tank minimum phase process. Upper two plots are a comparison of 
estimated vs measured level in tanks 1 and 2. The lower two plots are estimated level in tanks 3 
and 4. 

5.4.2.2 Non-minimum phase system 

For non-minimum phase system, the parameter values are taken from the Table 5.4, and similar 

method as in minimum phase process is implemented. The initial level in tanks 1 and 2 are 11.5 

and 12.5 [cm] respectively and small reference of ±0.2 [cm] is given using the MATLAB m-file 

script “prbs1.m”. The sampling time of 0.1 second and prediction horizon of 15 seconds is used. 

The simulation is performed by changing the set point every 150 seconds. The controller 

achieves the set point. However, it has more higher undershoots and overshoots than minimum 

phase process. The red line and blue represent the set point and output level respectively in upper 

two plots of the Figure 5.15.  It can be seen from the lower plots, the input signals for pumps 1 

varying from -8 to 15 [V] and for pump 2 varying from -10 to 18 [V]. The reasons for bigger 

undershoots and overshoots is that control signals are not restricted to minimum or maximum 

limits. The simulation result of four-tank minimum phase process by implementing the 

unconstrained MPC with integral action is illustrated in Figure 5.15. 
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Figure  5.15: The simulation result of four-tank non-minimum phase process with unconstrained 
MPC with integral action. The upper two plots illustrated the reference signal and output levels 
for tanks 1 and 2. The lower two plots are the controller input signal for pumps 1 and 2. 
 

 

 

 

 

 

 

 

 

 

 

Figure  5.16: Results of estimated levels during the implementation of unconstrained MPC with 
integral action. Upper two plots are a comparison of estimated vs measured level in tanks 1 and 2. 
The lower two plots are estimated level in Tanks 3 and 4.  
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The difference between the estimated and measured levels in the tank 1 is quite large compared 

with the minimum phase process. It can be seen from the Figure 5.16 that the difference in tank 2 

is not small, however it is following the trend. The lower two plots show the estimated levels in 

tanks 3 and 4. The blue line and green lines represent the measured and estimated levels 

respectively. 

5.4.3 Performance comparison in reducing control horizon 

The control horizon defines as the number of samples within the prediction horizon L of which 

the MPC optimal controller could affect the control action. The MPC optimal controller tries to 

become aggressive if the number of control horizon increase. The reason for aggressive behavior 

is due to increase in computational requirement [16]. Reducing the number of unknown future 

controls, the cost function will be [15],  

                           
1 11 1

1 1

(( ) ( ) )
k i k i

L Lu
T T T

k k i k i i k i k i i k i i k i
i i

J y r Q y r u Pu u R u
          

 

                     (5.1) 

In the cost function given in the equation (5.1), L is prediction horizon and Lu  is control horizon. 

In the previous section, MPC with integral action for minimum and non-minimum phase process, 

control horizon was equal to prediction horizon i.e. .Lu L  However, in reducing the number of 

unknown future controls, the control horizon is chosen such that 1 Lu L   and performance of 

MPC with integral action is compared. The combined MATLAB program is written for both 

operating points, and the “input” function is used to select MPC with integral action for either a 

minimum or non-minimum phase process by typing “1” or “2” respectively. The program m-file 

script is provided in Appendix 7, and different values of control horizon are tested.  

5.4.3.1 Minimum phase  

Reducing the control horizon in MPC optimal control, three cases are formulated in minimum 

phase process to check the performance of the controller. The control horizon with different 

values of 10, 4 and 2 seconds in MPC method are used, and results are discussed. The sampling 

time of 0.1 second and prediction horizon of 15 seconds kept constant for all cases. In section 

5.4.1, MPC with integral action using control horizon equal to prediction horizon already 

implemented, therefore it is not repeated here. The parameter values are taken from the Table 5.2 

and constrained MPC with integral action is implemented. The initial level in tanks 1 and 2 are 

11.5 and 12.5 [cm] respectively and small reference of ±0.1 [cm] is given using the MATLAB 
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m-file script “prbs1.m”. The simulation is performed by changing the set point every 100 

seconds. 

 Case 1: Lu=10 and L=15 

In this case, a control horizon of 10 and prediction horizon of 15 seconds are used and the 

output levels are controlled according to the given set points as illustrated in Figure 5.17. 

There are small undershoots in both tanks 1 and 2. The MPC with integral using control 

horizon 10 give better performance as compared to the case when Lu L shown in the 

Figure 5.5. In the upper two plots, the red line and blue represent the set point and output 

level respectively whereas in lower two plots, control signal for pumps 1 and 2 are shown. 

 

 

 

 

 

 

 

 

 

Figure  5.17: Simulation of four-tank minimum phase process with MPC with integral action in 
reducing control horizon. Control horizon Lu=10,  Prediction horizon L=15. 

 Case 2: Lu=4 and L=15 

In this case, a control horizon of 4 and prediction horizon of 15 seconds is used and then 

simulation is performed. There are slightly bigger undershoots and overshoots for both the 

tanks 1 and 2 as compared to the case when control horizon was 10 seconds. The settling 

time is almost 20 seconds. The simulation results from implementing MPC with integral 

action using control horizon of 4 seconds are illustrated in the Figure 5.18, the red line and 

blue represent the set point and output level in upper two plots respectively. The control input 

signals for pumps 1 and 2 are shown in lower two plots of the Figure 5.18. 
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Figure  5.18: Simulation of four-tank minimum phase process with MPC with integral action in 
reducing control horizon. Control horizon Lu=4,  Prediction horizon L=15. 

 Case 3: Lu=2 and L=15 

An extreme case when the control horizon of 2 seconds is used in MPC with the integral 

action algorithm. The output level for both tanks showed fluctuation and behavior is more 

like a PI controller. The settling time is double as compared to above cases and it reached 50 

and 40 seconds for tanks 1 and 2 respectively. The simulation results from implementing 

MPC with integral action using control horizon of 2 seconds are illustrated in the Figure 5.19, 

where the red line and blue represent the set point and output level in upper two plots 

respectively. The control input signals also have a lot of variation between 0-5 [V] for pumps 

1 and 2 as shown in lower two plots of the Figure 5.19. 
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Figure  5.19: Simulation of four-tank minimum phase process with MPC with integral action in 
reducing control horizon. Control horizon Lu=2,  Prediction horizon L=15 

5.4.3.2 Non-minimum phase  

Similar to the minimum phase process, three cases are tested in non-minimum phase process to 

compare the performance of the MPC with integral action in reducing the control horizon. The 

sampling time of 0.1 second and prediction horizon of 15 seconds kept constant for all the cases. 

In section 5.4.1, MPC with integral action using control horizon equal to prediction horizon 

already implemented, therefore it is not repeated here. The parameter values are taken from the 

Table 5.4 and constrained MPC with integral action is implemented. The initial level in tanks 1 

and 2 are 11.5 and 12.5 [cm] respectively and small reference of ±0.1 [cm] is given using the 

MATLAB m-file script “prbs1.m”. The simulation is performed by changing the set point every 

100 seconds. 

 Case 1: Lu=10 and L=15 

In this case,  a control horizon of 10 seconds is used and the levels are achieved nicely as 

illustrated in Figure 5.20. It was interesting that MPC with integral using control horizon 10 

give better performance as compared to the case when Lu L shown in the Figure 5.9. In the 

upper two plots, the red line and blue represent the set point and output level respectively. In 

lower two plots, the control signal for pumps 1 and 2 are shown. 
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Figure  5.20: Simulation of four-tank non-minimum phase process with MPC with integral action 
in reducing control horizon. Control horizon Lu=10 and  Prediction horizon L=15 
 Case 1: Lu=4 and L=15 

In this case, a control horizon of 4 seconds is used and then simulation is performed. There 

are variations in the start for both the tanks as compared to the above case and after 40 

seconds the output level reached the set point. The simulation results from implementing 

MPC with integral action using control horizon of 4 seconds are illustrated in the Figure 5.21, 

where the red line and blue represent the set point and output level in upper two plots 

respectively. In lower two plots, the control signal for pumps 1 and 2 are shown. 

 

 

 

 

 

 

 

 

 

 

Figure  5.21: Simulation of four-tank non-minimum phase process with MPC with integral action 
in reducing control horizon. Control horizon Lu=4, Prediction horizon L=15 
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 Case 1: Lu=2 and L=15 

An extreme case when the control horizon of 2 seconds is used in MPC with the integral 

action algorithm. The output level for both tanks showed a lot of fluctuation around the set 

point. The controller achieves the set point after 65 seconds in tank 1. However it was not 

able to reach the desired reference point in tank 2. The simulation results from implementing 

MPC with integral action using control horizon of 2 seconds are illustrated in the Figure 5.22, 

where the red line and blue represent the set point and output level in upper two plots 

respectively. The control input signals also have a lot of variation between 0-5 [V] for pumps 

1 and 2 as shown in lower two plots of the Figure 5.22. 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.22: Simulation of four-tank non-minimum phase process with MPC with integral action 
in reducing control horizon. Control horizon Lu=2,  Prediction horizon L=15 

5.5 Implementation of PI controller 

The PI classical controllers are widely used in control engineering practice for the last seventy 

years, and the reason for commonly used control technique is that they are easy to implement. 

Decentralized or multi-loop PI controllers are used to control MIMO2 system [40, 41]. Such a 

decentralized PI controller is implemented to control the four-tank process, and the idea behind 

the implementation is to compare the result with the MPC optimal controller. In this method, two 

PI controllers 1c  and 2c are controlling two pumps. The controller 1c and 2c take the feedback 
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from the outputs 1y and 2y respectivelyand calculatedthe inputs 1u and 2u . Then theseinput

signalssendto the processG. A decentralizedPI control systemfor the four-tank processis

illustrated in Figure 5.23. The controller output signal 1u and 2u are calculatedas given in

equations(5.2) and(5.3) respectively[35].

1
1 1 1 1

1

p
p s

i

K
u K e t e

T
� � (5.2)

2
2 2 2 2

2

p
p s

i

K
u K e t e

T
� � (5.3)

Figure5.23: Structureof decentralizedPI controlwith two PI controllers[35]

5.5.1RGA analysis

The RelativeGain Array (RGA) is a powerful tool usedas an interactionmeasurefor control

systemshaving multiple variables[42], henceit is usedhere to select input-output pairing.

Johansson[35] hasdefinedRGA matrixas,

(0)* (0)TG G�� � (5.4)

Where � is RGA matrix, asterisk(*) is an elementby elementmultiplication andG is the

transferfunctionof thefour-tankprocessdefinedin section(4.1.3)as,
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Where,  

1 1
1

1

cT k k
c

A
   

2 2
2

2

cT k k
c

A
 ,                    

The transfer functions for minimum and non-minimum phase process are calculated by solving 

equation (5.5), and the parameter values are given in Tables 5.1, 5.2 and 5.4. The transfer 

function for minimum phase gives,  

                                              

2.6 1.5

(1 62 ) (1 23 )(1 62 )
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                           (5.6) 

And then solving equation (5.5) for the non-minimum phase process gives, 
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Where ( )G s and ( )G s are transfer function matrices of minimum and non-minimum phase 

process. When 0s  then the equations (5.6) and (5.7) becomes,
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                                                      (5.9) 

The pairing of variables based on the RGA analysis are described by Rusico [32]. According to 

him the starting point is the element ij  in RGA matrix. 

 Select the pairing j iu y for which the corresponding element ij of RGA is positive and 

magnitude close to one as possible. 

 The pairing j iu y must be avoided if the element of RGA is negative such that 0ij  . 
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Substituting the equation (5.8) and (5.9) separately and performed the RGA analysis by using 

MATLAB. The optimal input-output variable pairing based on the above rules is selected for the 

four-tank minimum and non-minimum phase process as shown in the Figure 5.24. The m-file 

script is provided in Appendix 8. 

 

 

 

 

 

 

 

Figure  5.24: RGA analysis to determine the optimal input-output variable pairing for four-tank 
process. 

5.5.2 Minimum phase process 

According to RGA analysis of the minimum phase system, the input 1u will control the output 1y

and input 2u  will control the output 2y , therefore a decentralized PI controller is implemented to 

achieve the target. The simulation is performed for 2000 seconds and the results are illustrated in 

Figure 5.25. In the upper two plots, the red and blue lines represent the set point and output level 

respectively. The initial level in tanks 1 and 2 are 12.3 and 12.8 [cm] respectively and step 

changes to the reference are given at 300 and 1100 seconds of simulation horizon. The upper two 

plots show that levels are controlled, but the PI controller takes a long time to follow the 

reference level as compared to MPC with integral action. In this case, the settling time is around 

200 seconds whereas in the constrained MPC with integral was 15 seconds, which is presented in 

section 5.4.1. The PI tuning parameters are found by trial and error methods where

1 2 14,   3.5,   9 p p ik k T   and 2 10iT   give better results. Similar to MPC with integral action 

using “if-else” method, constrained are handled and the control signals for pumps 1 and 2 are 

restricted to 0-5 [V] as shown in lower two plots of the Figure 5.25. A MATLAB m-file script is 

written for implementation of the PI controller in the four-tank minimum phase process and 

provided in Appendix 9.  
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Figure  5.25: Result of PI controller implementation in four-tank minimum phase process. The 
upper two plots are the reference and the output levels in tanks 1 and 2. Lower two plots are the 
control signal for pumps 1 and 2. 

5.5.3 Non-minimum phase process 

In the four-tank non-minimum phase process, RGA analysis suggested that the input 1u will  

control the output 2y and input 2u  will control the output 1y . The simulation is performed for 

2000 seconds by implementing the decentralized PI controller and the result are illustrated in 

Figure 5.26. In the upper two plots, the red and blue lines represent the set point and output level 

respectively. The initial level in tanks 1 and 2 are 12.4 and 13.2 [cm] respectively. The step 

change to the reference point are given at 300 seconds of simulation horizon and time scale is 

increased from 2000 to 5000 seconds. The settling time in this case is ten times larger than the 

previous case. It also can be seen from the upper two plots, it is difficult to control the four-tank 

non-minimum phase process however, the performance of constrained MPC with integral action 

(section 5.4.1) is much better than a decentralized PI controller in this particular case. The PI 

tuning parameters are found by trial and error methods where 1 2 11.4,   0.22,   100 p p ik k T   and 

2 135it  give better results. Similar to MPC with integral action using “if-else” loop the control 

signals for pumps 1 and 2 are restrained to 0-5 [V] as shown in the Figure 5.26 lower two plots. 

A MATLAB m-script file is written for implementation of the PI controller in the four-tank non-

minimum phase process and provided in Appendix 10.  
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Figure  5.26: Result of PI controller implementation in the four-tank non-minimum phase process. 
The upper two plots are the reference and the output levels in tanks 1 and 2. Lower two plots are 
the control signals for pumps 1 and 2. 
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6. Systemidentification and model free MPC

In this chapter, the systemidentificationmethodis usedto identify the modelof the four-tank

processand formulate a model free MPC algorithm. First of all, short overview of system

identification algorithm as Deterministicand StochasticSystemIdentification and Realization

‘DSR’ is introduced.The input-output dataof the four-tank processis generatedby simulation

for both minimum and non-minimum phasesetting.The collecteddata is usedin the ‘DSR’

algorithmto constructa linearizedstatespacemodel.The identifiedmodelis validatedandthen

usedin MPCwith integralactionto controlthefour-tankprocess.

6.1Systemidentification algorithm asDSR

Systemidentification can be defined as constructing a mathematicalmodel of the dynamic

systemsfrom the measuredinput-output data.Processmodels,statespacemodels,continuous

anddiscretetime transferfunctionscanbeidentifiedby usingtheknowndata[43]. In this work,

the systemidentification algorithm as Deterministicand StochasticSystemIdentification and

Realization‘DSR’ is usedto identify the linearizedstatespacemodel for MPC. The ‘DSR’

algorithm estimatedthe systemorder n , matrices , , , , ,A B D E CF F and initial statevector 0x at

discretetime combinedwith deterministicandstochasticdynamicmodelof innovationform as

mentionby Ruscio[24, 44]. The‘DSR’ algorithmsynopsisas,

0[ , , , , , , ] ( , , , , , , )A B D E CF F x dsr Y U L g J M n� (6.1)

The ,Y U and L are the parameterson the input. The parameter N mY �� is the output data

matrix, whereN is thenumberof samplesand mdenotesthenumberof theoutputvariable.The

input datamatrix is N rU �� and r is thenumberof input variables.L is thefuturehorizonused

for predictingtheorderof thesystem.

Whereas( , , , )g J M n arebeing the optionalinput parametersfor advanceuse.The parameterg

is usedto estimateE , if its valueis equalto zerothen 0E � in themodel.Thepasthorizon J is

usedto removethefuturenoiseand M is helpful for computingCF and F [24, 44].

The four-tank model presentedin section4.1.1 is simulatedusing the pseudo-randombinary

sequence(prbs)function to collect data.Thesamplingtime for all thesimulationis 0.1 seconds

andinitial levelsin thetanksareassumedto bezero.Theinput andoutputdataof 10000samples

arecollectedfor minimumandnon-minimumphaseprocessseparately.All thesamplesareused
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for system identification algorithm as ‘DSR’ to identify a state space model. A totally new set of 

input-output data with 10000 samples is used to validate the identified model. A combined 

MATLAB m-file script is written to simulate the four-tank minimum and non-minimum phase 

process, and the m-file is provided in Appendix 11. In this program, the user can select either 

minimum or non-minimum phase process by typing “1” or “2” respectively.  

6.2 Minimum phase process 

The input and output data from the four-tank minimum phase simulation is saved as 

‘data_minimum.txt’. The first two columns in the file represent the output level in tanks 1 and 2 

whereas next two columns are the corresponding voltage to the pumps 1 and 2. The upper two 

plots show the simulated output level of tanks 1 and 2 in Figure 6.1 and lower two plots show the 

input voltage to the pumps 1 and 2. The MATLAB m-file for plotting the input-output data is 

provided in Appendix 12. 

 

 

 

 

 

 

 

 

 

Figure  6.1: The four-tank minimum phase simulation data for system identification. Upper two 
plots show the simulated output level in tanks 1 and 2. Lower two plots show the input voltage to 
the pumps 1 and 2. 

6.2.1 Identifying the model 

The collected data of four-tank minimum phase process is centered before identify the linear 

model. In order to construct a more accurate model and remove offset the data is centered [45]. 
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subtracted from the output data. Similarly, the corresponding voltage 3 [V] for the steady state 

values are removed from the input data. The centered data are used to identify the state space 

model by ‘DSR’ algorithm. The identified discrete time state space model is, 

                                                                   1k k kx Ax Bu                                                          (6.2) 

                                                                     k k ky Dx Eu                                                         (6.3) 

The model matrices , ,A B D and E are given is the Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.2: The identified model matrices A, B, D and E 

The order of the system is investigated by condition numbers (CN) and the singular values (SV) 

such that it will be either the number of small CN or the number of large SV [24]. The estimated 

singular values and condition numbers for the system order by ‘DSR’ algorithm are shown in 

Figure 6.3.  
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Figure  6.3: The singular values and condition number for system order of identified model in the 
four-tank minimum phase process. 

The stability of the identified model can be analyzed by the Eigenvalues of the system matrix. 

First of all , the identified discrete time model is converted into a continuous time model and 

then the Eigenvalues for the system matrix Ac of the continuous model are computed. It can be 

seen from the Figure 6.4 real parts of the Eigenvalues are all negative, therefore the system is 

stable as presented in section 5.3. The MATLAB m-file to identify the model and Eigenvalues 

for the system matrix is provided in Appendix 13. 
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Figure  6.4: The four-tank minimum phase process, the Eigenvalues for system matrix Ac of the 
continuous time model 

6.2.2 Model validation 

Validation is a method to test the performance of the developed model. There are different 

methods of validation such as Leverage correction, test set or cross validation [46]. Validating 

the model with a different data set is called cross validation. Although the same data can be used 

for identifying and validating the model. However, it will cause the over fitting of the data. [43]. 

Therefore, a new data set is collected with different ‘prbs’ signal as input for the minimum phase 

setting. It is used to test the performance of the model and this data is also centered before using 

in the validation method. The identified state space model from ‘DSR’ fits the validation data 

well. The simulation results of identified model along with validation data for minimum phase 

setting are shown in Figure 6.5. The green line shows the simulation output of the process and 

the blue line shows the simulation output from the ‘DSR’ model. Noted here process output 

means simulation of a physical model of the four-tank minimum phase system. The MATLAB 

m-file script for the validation of identified model is provided in Appendix 14. 

 

 

 

 

 

 

 

 

 

Figure  6.5:  Validation of identified model for four-tank minimum phase process. 

6.2.3 Implementations of MPC with integral action  

The drawback of the MPC optimal controller is that it requires a model of the dynamic system. 

There are different techniques to construct a model of the process. One commonly used 

technique is to develop a mathematical model from the first principle based on the basic physic 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-20

-10

0

10

Le
ve

l [
cm

]

Output for tank1

 

 

Model output

Process output

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-20

-10

0

10

Samples

Le
ve

l [
cm

]

Output for tank2

 

 

Model output

Process output



 
 

65 
 

or chemistry laws that describe the behavior of the system [47]. However, sometimes we do not 

have explicit information about the physic of the system, then we can use the system 

identification method to identify the model based on the input-output data of the system. Such  a 

method is used to find a linearized state space model for MPC method, and it is termed as model 

free MPC algorithm. 

The model identified above will be used in MPC with integral algorithm and mathematical 

derivation of optimal controller with integral action is given in section 3.4. Appropriate values of 

the weighting matrices Q and R are assigned to weighted the output and input variables 

respectively. Where 

100 0

0 100
Q

 
  
 

, 

0.1 0

0 0.1
R

 
  
 

 

The initial level in tanks 1 and 2 are 11.5 and 12.5 [cm] respectively and small reference of ±0.1 

[cm] is given using the MATLAB m-file script “prbs1.m”. The prediction horizon is 15 seconds 

similar to one used in section 5.4. The simulation is performed by changing the set point every 

150 seconds.  

 

 

 

 

 

 

 

 

 

 

 

Figure  6.6: Simulation result by implementing the MPC with integral action in identified model 
of the four-tank minimum phase process. The upper two plots show the reference and the output 
levels in tanks 1 and 2. Lower two plots show the control signals for pumps 1 and 2. 
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The controller follows the reference point better than the one presented in section 5.4.1.1 with 

small undershoot and overshoot. The levels in Tanks 1 and 2 are obtained according to target set 

point. In the upper two plots, the red line and blue represents the set point and output level 

respectively. The input amplitude constraints are used in MPC algorithm, and the control signals 

for pumps 1 and 2 are confined to 0-5 [V] as shown in lower two plots of the Figure 6.6. The 

simulation result by using the identified model of four-tank minimum phase process in MPC 

with integral action algorithm is illustrated in Figure 6.6, and the MATLAB m-file for 

implementing the MPC with integral action is provided in Appendix 15.  

6.3 Non-minimum phase process 

The input and output data from the four-tank non-minimum phase simulation is saved as 

‘data_nonminimum.txt’. The first two columns in the file represent the output level in tanks 1 

and 2 whereas next two columns are the corresponding voltage to the pumps 1 and 2. The upper 

two plots show the simulated output level in tanks 1 and 2 in Figure 6.7 and lower two plots 

show the input voltage to the pumps 1 and 2. The MATLAB m-file for plotting the input-output 

data is provided in Appendix 16. 

 

 

 

 

 

 

 

 

Figure  6.7: The four-tank non-minimum phase simulation data for system identification. Upper 
two plots show the simulated output level in tanks 1 and 2. Lower two plots show the input 
voltage to the pumps 1 and 2. 
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6.3.1 Identifying the model 

The collected data of four-tank nonminimum phase process is centered before identify the linear 

model. The steady state values of output level 12.4 [cm] in tank 1 and 13.2 [cm] in tank 2 are 

removed from the output data. Similarly the corresponding voltage of 3 [V] for the steady state 

values are subtracted from the input data. The centered data are used to identify the state space 

model by ‘DSR’ algorithm. The identified discrete time state space model is of the form given in 

in equation (6.1) and (6.2). The matrices , ,A B D and E  of identified model are given in      

Figure 6.8. 

 

 

                                                                    

 

 

 

 

 

 

 

 

 

                        Figure  6.8: The non-minimum phase case the identified model matrices , ,A B D and E  

The estimated singular values and condition numbers for the system order by ‘DSR’ algorithm 

are shown in Figure 6.3. The MATLAB m-file to identify the model and Eigenvalues for the 

system matrix is provided in Appendix 17. 
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Figure  6.9: The singular values and condition number for system order of identifyed model in the 
four-tank non-minimum phase case. 

The stability of the identified model can be analyzed by the Eigenvalues of the system matrix. 

First of all, the identified discrete time model is converted into a continuous time model and then 

the Eigenvalues for the system matrix Ac  are computed. It can be seen from the Figure 6.10 that 

the real parts of the Eigenvalues are all negative, therefore the system is stable. 

 

 

 

 

 

 

 

 

Figure  6.10: Four-tank non-minimum phase process, the Eigenvalues for system matrix Ac of the 
continuous time model. 
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performance of the model and this data was also centered before use in the validation method. 

The identified state space model from DSR fits the validation data especially in tank 1, however 

there is a small difference in tank 2. The simulation results of identified model along with 

validation data for non-minimum phase setting are shown in Figure 6.11. The green line shows 

the simulation output of the process and the blue line shows the simulation output from the ‘DSR’ 

model. Noted here process output means simulation of a physical model of the four-tank non-

minimum phase system. The MATLAB m-file script for the validation of identified model for 

non-minimum phase case is provided in Appendix 18. 

 

 

 

 

 

 

 

 

 

 

Figure  6.11:  Validation of identified model for four-tank non-minimum phase process 
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The model identified above is used in MPC with integral algorithm and mathematical derivation 
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The initial level in tanks 1 and 2 are 11.5 and 12.5 [cm] respectively and small reference of ±0.1 

[cm] is given using the MATLAB m-file script “prbs1.m”. The prediction horizon is 15 seconds 

similar to the one used in section 5.4. The simulation is performed by changing the set point 

every 150 seconds.  

The controller follows the reference point and interestingly the output response is faster as 

compared to the one presented in section 5.4.1.2. In the upper two plots, the red line and blue 

represents the set point and output level respectively. The input amplitude constraints are used in 

MPC algorithm, and the control signals for pumps 1 and 2 are restricted to 0-5 [V] as shown in 

lower two plots of the Figure 6.12. The simulation result by using the identified model of four-

tank non-minimum phase process in MPC with integral action algorithm is illustrated in Figure 

6.12. The MATLAB m-file for this case is provided in Appendix 19.  

 

 

 

 

 

 

 

 

 

Figure  6.12: Simulation result by implementing the MPC with integral action in identified model 
of the four-tank non-minimum phase process. The upper two plots show the reference and the 
output levels in tanks 1 and 2. Lower two plots show the control signals for pumps 1 
 

 

  

0 50 100 150 200 250 300 350 400 450 500

12.4

12.45

12.5

12.55

12.6

12.65

12.7

Le
ve

l [
cm

]

Tank 2 reference and output level

 

 
Reference rk Output yk

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

Time [s]

V
ol

ta
ge

 [
V

]

Input control signal for Tank 2

0 50 100 150 200 250 300 350 400 450 500

11.4

11.45

11.5

11.55

11.6

11.65

11.7

Le
ve

l [
cm

]

Tank 1 reference and output level

 

 
Reference rk Output yk

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

Time [s]

V
ol

ta
ge

 [
V

]

Input control signal for Tank 1



 
 

71 
 

7. Discussions 

In order to complete this work, I used the knowledge learned in the Model Predictive Control 

with implementation, System Identification and optimal estimation. These subjects are taught 

during the master’s degree in Systems and Control Engineeing at Telemark University College, 

Norway. The mathematical derivation and programming in this work are referenced from these 

courses. MATLAB software (version: R2012a) developed by the MathWorks is used for 

simulation. 

There are different nonlinear benchmark processes such as chemical reactors, the four-tank 

process, distillation columns and three-phase separator. The benchmark four-tank process is 

selected for control implementation as it is a non-linear, complex and interactive system. It has 

two operating conditions i.e., minimum and non-minimum phase that directly related to the valve 

position. The sum of valve constant is greater than one and less than two in a minimum phase 

process. In this case, the steady state level in the four tanks at constant voltage of 3 [V] are 12.3, 

12.8, 1.63 and 1.41 [cm] respectively.  

In non-minimum phase process, the sum of valve constant is less than one and greater than zero. 

In this case, the steady state level in four tanks at constant voltage of 3.15 [V] are 12.4, 13.2, 

4.73 and 4.99 [cm] respectively. The four-tank is a nonlinear process, and nonlinear MPC can be 

used to control it, however this controller is not guaranteed to converge. Therefore, nonlinear 

model of the process is linearized and used in linear MPC.  

MPC with integral is an effective technique to handle the offset problem, and there are several 

ways to achieve the integral action. The most common method is using the deviation variable to 

obtain the integral action as presented in the section 3.4. The aim of implementing the controller 

is to control the level in tanks 1 and 2. All the states are not measurable therefore Kalman filter is 

used to observe the states. 

In all the experiments, sampling time of 0.1 seconds is used to discretize the model. Several 

simulations are performed, and optimal value of 15 seconds for prediction horizon and control 

horizon are used based on the time constant of the system. Larger values of prediction horizon 

and control horizon lead to unnecessary calculations at each sampling time. It is observed from 

simulation experiments in section 5.4.3 that using small control horizon cause the controller 

instability and behave more like a PI controller. 
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The constraints in the MPC optimal controller are handled using two different approaches i.e. 

“quadprog” function and “if-else” method. The voltage limits are 0-5 [V] and constraints are 

handled well in both methods. The executing time for the controller is smaller using the “if-else” 

method than “quadprog” function however, the performance of the controller decreased. The 

level in tanks 1 and 2 is controlled according to the specified set point, and the response in non-

minimum phase setting is comparatively slower than minimum phase setting.  

Using unconstrained MPC with integral action the required set point achieved with higher 

overshoot and undershoot, and the control signal varying from -8 to 15 [V]. Interestingly the 

output response is faster than constrained MPC with integral action. 

A decentralized PI controller is also implemented to control the four-tank process. From the 

result, it shows that it is not an effective method to control the multivariable process. The set 

point is achieved in the minimum phase process, however the settling time is too large compared 

with the optimal controller. In non-minimum phase process, the controller is not able to achieve 

the target. 

System identification algorithm as ‘DSR’ is very useful tool to identify the linear state space 

model from input-output data, especially when the physical model of the process is not available. 

The identified model by using the simulated input-output of the four-tank process is used in 

MPC with integral action. The controller performed better in both cases as compared to the 

results presented in section 5.4.3. 

7.1 Future works 

The future work related to this topic can be listed as, 

 Implementing the proposed controller in other benchmark processes such as chemical 

reactors, distillation columns and three-phase separator. 

 Simulink in MATLAB can be used for graphical block presentation of the controllers. 

 It would be interesting to implement Linear Quadratic (LQ) with integral action and 

compare the performance of the optimal controllers. 

 Data from the four-tank real process can be used to identify the model and then used in 

an MPC method to control the real process. 
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8. Conclusions 

In this work, the detailed study of Model Predictive Control (MPC) with integral action was 

described and implemented in benchmark process. Four-tank process used for simulation 

experiments. The nonlinear model of the process developed and then linearized it for using in the 

control algorithm. The integral action in MPC method was achieved by using the deviation 

variable. The experiment results showed that the proposed optimal controller worked very well 

for both operating conditions and responded to the set point changes in an optimal way. The 

constraints are handled using the ‘quadprog’ function and ‘if-else’ method, and input voltage 

was bound to 0-5 [V]. The ‘quadprog’ function made the control work slower due to extra 

complex calculation. A large value of prediction horizon and control horizon lead to unnecessary 

calculation. Moreover, smaller control horizon caused the controller instability. A decentralized 

PI controller was developed and implemented in the four-tank process, however it was not able 

to control the process according to the desired set point. Comparing the results obtained by using 

an optimal controller with those from PI controller, it was found that the MPC with integral 

action is more robust and faster than traditional controller. It proved that MPC with integral 

action is an effective strategy to control MIMO system. The simulated input-output data were 

collected for system identification and validation of the model. System identification algorithm 

as ‘DSR’ is used to identify the linearized state space model of the process. The identified model 

is used in the control algorithm, and this controller performed better compared with the one used 

in section 5.4. Using the system identification method model free MPC with integral action was 

formulated by just using the input-output data of the process. This is a very useful method when 

the model of the process is not available.  

  



 
 

74 
 

References 
[1] S. Bennett, "A brief history of automatic control," Control Systems, IEEE, vol. 16, pp. 17-25, 

1996. 

[2] Eng Boo Chin and W. A. T. S. Kwee Hong Meo, Yusof Khairiyah Mohd,, "Formulation Of 

Model Predictive Control Algorithm For Nonlinear Process," Universiti Teknologi Malaysia, 

2006. 

[3] L. Wang, "Model Predictive Control System Design and Implementation Using MATLAB," 

Melbourne, Springer, 2009. 

[4] J. Richalet and J. L. T. A. Rault, J. Papon, "Model predictive heuristic control: Applications to 

industrial processes," Automatica, vol. Volume 14, pp. 413-426, 1978. 

[5] G. C. Nunes, "Design and Analysis of Multivariable Predictive Control Applied to an oil-water-

gas seperator: A Polynomial Approach," University of Florida, 2001. 

[6] Qin S. Joe and Badgwell Thomas. A, "A survey of industrial model predictive control 

technology," Control Engineering Practice, vol. 11 (2003) 733-764, 2003. 

[7] Ruscio David.Di, "Discrete LQ optimal control with integral action: A simple controller on 

incremental form for MIMO systems," Modeling, Identication and Control, MIC Journal, vol. 33, 

pp. 35-44, 2012. 

[8] Garcia Carlos E, et al., "Model predictive control: theory and practice—a survey," Automatica, 

vol. 25, pp. 335-348, 1989. 

[9] R. Rouhani and R. K. Mehra, "Model algorithmic control (MAC); basic theoretical properties," 

Automatica, vol. 18, pp. 401-414, 1982. 

[10] D. W. Clarke, et al., "Generalized predictive control—Part I. The basic algorithm," Automatica, 

vol. 23, pp. 137-148, 1987. 

[11] D. Clarke, et al., "Generalized predictive control—part II extensions and interpretations," 

Automatica, vol. 23, pp. 149-160, 1987. 

[12] K. Zhu, et al., "Alternative algorithms for generalized predictive control," Systems & Control 

Letters, vol. 15, pp. 169-173, 1990. 

[13] C. R. Cutler and B. Ramaker, "Dynamic matrix control-a computer control algorithm," in 

Proceedings of the joint automatic control conference, 1980, pp. Wp5-B. 

[14] R. Soeterboek, Predictive control: a unified approach: Prentice-Hall, Inc., 1992. 

[15] Ruscio David.Di, "Model predictive control and optimization, Lecture notes for Master's course 

(SCE 4106)," Telemark University College, Norway, 2012. 

[16] H. Hans-Petter, "Model Predictive Control in LabVIEW," Faculty of Technology, Telemark 

University College, Norway, 30.06.2011. 



 
 

75 
 

[17] B. Kim and H.-S. Y. Gregory N Washington, "Hysteresis-reduced dynamic displacement control 

of piezoceramic stack actuators using model predictive sliding mode control.," IOP Science, 1 

May 2012. 

[18] X. Yong, "ROBUST COORDINATED MULTIPLE-AXIS MOTION CONTROL SYSTEMS 

AND APPLICATIONS," SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING, 

NANYANG TECHNOLOGICAL UNIVERSITY, 2006. 

[19] D. A. M. Dale E. Seborg, Thomas F. Edgar, Francis J. Doyle, III, "Process Dynamics and 

Control," John Wiley & Sons, vol. 3rd, 2011. 

[20] J. Mattingley, et al., "Receding horizon control," Control Systems, IEEE, vol. 31, pp. 52-65, 2011. 

[21] P. T. Boggs and a. J. W. Tolle, "Sequential Quadratic Programming," Acta Numerica, vol. 4, pp. 

1-51, 1995. 

[22] C. B. Eduardo F. Camacho, "Model predictive control," Springer London, Limited, vol. 2nd 

Edition, 2004. 

[23] Ruscio David. Di, "Model Based Predictive Control: An extended state space approach.," In 

proceedings of the 36th Conference on Decision and Control, San Diego, California, December 

6-14, 1997. 

[24] Ruscio David.Di, "System identification and optimal estimation, Lecture notes for Master's 

course (SCE 2206)," Telemark University College, Norway, 2012. 

[25] J. Åkesson and P. Hagander, "Integral action–A disturbance observer approach," in Proceedings 

of European Control Conference, Cambridge, UK (September 2003), 2003. 

[26] K. R. Muske and T. A. Badgwell, "Disturbance modeling for offset-free linear model predictive 

control," Journal of Process Control, vol. 12, pp. 617-632, 2002. 

[27] J. B. Rawlings, et al., "Nonlinear model predictive control: A tutorial and survey," Proceedings of 

ADCHEM’94, pp. 203-214, 1994. 

[28] G. Pannocchia and J. B. Rawlings, "Disturbance models for offset‐free model‐predictive control," 

AIChE Journal, vol. 49, pp. 426-437, 2003. 

[29] D. M. Prett and C. E. García, "Fundamental process control," 1988. 

[30] E. Davison and H. Smith, "Pole assignment in linear time-invariant multivariable systems with 

constant disturbances," Automatica, vol. 7, pp. 489-498, 1971. 

[31] Hovd. Morten, "A brief introduction to Model Predictive Control," URL= http://www. itk. ntnu. 

no/fag/TTK4135/viktig/MPCkompendium% 20HOvd. pdf, 2004. 

[32] Ruscio David. Di, "System theory, state space analysis and control theory, lecture notes in control 

theory for Master's course (SCE 1106)," Telemark University College, Norway 2011. 

[33] F. Haugen, Lecture Notes in Models, Estimation and Control: Techteach, 2009. 



 
 

76 
 

[34] H. Hans-Petter, "State Estimation with Kalman Filter," Systems control laboratory laboratory, 

Telemark University College, Norway, vol. , 2012. 

[35] Johansson Karl. Henrik, "The Quadruple-Tank Process: A Multivariable Laboratory Process with 

an Adjustable Zero," IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, vol. 8, 

pp. 456-465, 2000. 

[36] Ruscio David.Di, "State estimation of quadruple tank process, Exercise 8. System identification 

and optimal estimation. Telemark University College, Norway," 2012. 

[37] Numsomran A. V. Tipsuwanporn. K Tirasesth, "Modeling of the Modified Quadruple-Tank 

Process," SICE Annual Conference 2008. 

[38] Hardt David, "Understanding Poles and Zeros, Lecture notes," Massachusetts Institute of 

Technology, Department of Mechanical Engineering., 2002. 

[39] Katsuhiko Ogata, "Modern Control Engineering," Prentice Hall, Pearson Education 

International, vol. Fourth Edition, 2002. 

[40] O'Dwyer  Aidan, "PI and PID controller tuning rules: an overview and personal perspective," 

Proceedings of the IET Irish Signals and Systems Conference, Dublin Institute of Technology, pp. 

161-166, 2006. 

[41] D. Chen and D. E. Seborg, "Design of decentralized PI control systems based on Nyquist stability 

analysis," Journal of Process Control, vol. 13, pp. 27-39, 2003. 

[42] E. H. Bristol, "On a new measure of interaction for multivariable process control," IEEE 

Transactions on Automatic Control - IEEE TRANS AUTOMAT CONTR vol. 11, pp. 133-134, 

1966. 

[43] L. Ljung, "System Identification Toolbox," The MathWorks, Inc, 2013. 

[44] David Di. Ruscio, "D-SR Toolbox for MATLAB. Copyright D. Di Ruscio. ," Available upon 

request, david.di.ruscio@hit.no., 2013. 

[45] R. A. Harshman and M. E. Lundy, "PARAFAC: Parallel factor analysis," Computational 

Statistics & Data Analysis, vol. 18, pp. 39-72, 1994. 

[46] K. H. Esbensen, et al., Multivariate data analysis-in practice: An introduction to multivariate 

data analysis and experimental design: Multivariate Data Analysis, 2002. 

[47] J. Poshtan and H. Mojallali, "Subspace system identification," Iranian Journal of Electrical & 

Electronic Engineering, vol. 1, pp. 11-17, 2005. 

 

 

  



 
 

77 
 

Appendices 

Appendix 1:  
The scan copy of Master’s thesis task description. 
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Appendix 2: 
MATLAB script files for simulating the four-tank process with minimum and non-minimum 
phase setting. 

 Appendix 2.1: Nonlinear_model_simulation.m 
% =========================================================================== 
% MATLAB Script for:  Simulation of nonlinear model.  
% Master's Thesis:   "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script File:        Nonlinear_model_simulation.m 
% Function file:      Fourtank_nonlinear_model.m 
% --------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [20-03-2013]. 
% =========================================================================== 
clc; 
close all; 
clear all; 

  
% System selection by the user 
System_sel=input(' Type 1 for minimum phase system or\n Type 2 for non-

minimum phase system \n'); 

  
if  System_sel==1; 
% Model will show minimum phase characteristics      
% Initial level in the tanks [cm] 
h1=0; 
h2=0; 
h3=0; 
h4=0; 
h=[h1,h2,h3,h4]; 
% Initial control inputs [V] 
u1=3.0; u2=3.0; 
u=[u1 u2]; 
disp('Minimum phase system') 

  
elseif System_sel==2; 
% Model will show non-minimum phase characteristics      
% Initial level in the tanks [cm] 
h1=0; 
h2=0; 
h3=0; 
h4=0; 
h=[h1,h2,h3,h4]; 
% Initial control inputs [V] 
u1=3.15; u2=3.15; 
u=[u1 u2]; 
disp('Non-minimum phase system') 

  
else display('Number not in range, type 1 or 2') 
end  
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% Simulation time 
N=1000; 
time=1:0.1:N; 
[t,y]=ode45(@Fourtank_nonlinear_model, time,h,[],u,System_sel); 

  
% Results for four tank simulation 
figure(1) 
subplot(2,2,1) 
plot(t,y(:,1)),ylabel('Level [cm]'),grid on,legend('Tank 1') 
subplot(2,2,2) 
plot(t,y(:,2)),grid on,legend('Tank 2') 
subplot(2,2,3) 
plot(t,y(:,3)),xlabel('Time [s]'),ylabel('Level [cm]'),grid on,legend('Tank 

3') 
subplot(2,2,4) 
plot(t,y(:,4)),xlabel('Time [s]'),grid on,legend('Tank 4') 

  
% For super title 
set(gcf,'NextPlot','add'); 
axes; 
if  System_sel==1; 
    label = title('Four-tank nonlinear model simulation for minimum phase 

process'); 
elseif System_sel==2; 
    label = title('Four-tank nonlinear model simulation for nonminimum phase 

process'); 
end 
set(gca,'Visible','off'); 
set(label,'Visible','on'); 

 

  

 Appendix 2.2: Fourtank_nonlinear_model.m 
%========================================================================== 
% MATLAB Script for:  Function for simulating the nonlinear model of the   

                      four-tank process.  
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Function file:      Fourtank_nonlinear_model.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [20-03-2013] 
%==========================================================================  
function model=Fourtank_nonlinear_model(time,h,u,System_sel)  
% Parameters values taken from the literature [Johansson] given in Table 5.1 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Level in the tanks [cm] 
h1=h(1); h2=h(2); 
h3=h(3); h4=h(4); 
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% Control inputs [V] 
u1=u(1);    
u2=u(2); 
% Pump gain [V/cm] 
kc=0.5; 
% Acceleration of gravity [cm/s^2] 
g=981; 

  
if System_sel==1 
% Model will show minimum phase characteristics [Table 5.2] 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Valve constants   
r1=0.70; r2=0.60; 

      
elseif System_sel==2 
% Model will show non-minimum phase characteristics, [Table 5.3] 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 
end 

  
% The nonlinear model. [Equation (4.10)-(4.13)] 
dh(1)=( -a1*sqrt(2*g*h1) + a3*sqrt(2*g*h3) + r1*k1*u1 )/A1; 
dh(2)=( -a2*sqrt(2*g*h2) + a4*sqrt(2*g*h4) + r2*k2*u2 )/A2; 
dh(3)=( -a3*sqrt(2*g*h3) + (1-r2)*k2*u2 )/A3; 
dh(4)=( -a4*sqrt(2*g*h4) + (1-r1)*k1*u1 )/A4; 

  
model=[dh(1);dh(2);dh(3);dh(4)]; 
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Appendix 3 
Controllability and observability analysis of linearized model. 

 
Appendix 3.1: Linearized_model_anaylsis.m 

%========================================================================== 
% MATLAB Script for:  Controllability and observability analysis of  

                      linearized model.  
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        Linearized_model_anaylsis.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [20-03-2013] 
%========================================================================== 
clc; 
close all; 
clear all; 

  
% System selection by the user 
System_sel=input(' Type 1 for minimum phase system or\n Type 2 for non-

minimum phase system \n'); 

  
if  System_sel==1; 
display('Minimum phase system') 
% Model will show minimum phase characteristics      
% Steady state level [cm] in the tanks after performing simulations 
% [Table 5.3] 
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 

  
elseif System_sel==2; 
display('Non-minimum phase system') 
% Model will show non-minimum phase characteristics      
% Steady state level [cm] in the tanks after performing simulations 
% [Table 5.3] 
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 
else display('Number not in range, type 1 or 2') 
end 
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% Parameter values taken from the literature [Johansson], Table [5.1]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071;  
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
kc=0.5; 
% Acceleration of gravity [cm/s^2] 
g=981; 
% Time constants [Section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4;  

  
% Linearized state space equation matrices A, B and D  
% Equations (4.15) and (4.16) 
A=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
B=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
D=[kc,0,0,0;0,kc,0,0]; 

  
% Results 
% Eigen Vales of system matrix 
Eigen_values_of_system_matrix_are=eig(A) 
% Rank of the system  
Rank_of_the_system=rank(A) 
% Observability Matrix 
obs_mat=obsv(A,D); 
Rank_of_Observability_matrix_is=rank(obs_mat) 
% Controllability Matrix  
c_mat=ctrb(A,B); 
Rank_of_controllability_matrix_is=rank(c_mat) 
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Appendix 4 
Implementation of constrained MPC with integral action using ‘quadprog’ function in               
the four-tank process. The user can select either a minimum or non-minimum phase process by 
typing  “1”  or  “2”  respectively. The main script is in Appendix 4.1 and the supporting files 

(four_tank_model.m, eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to 
4.7. 

 Appendix 4.1: Const_MPC_integral_fourtankprocess.m 

%========================================================================== 
% MATLAB Script for:  Constrained MPC with integral action for the four-tank  

                      process including Kalman Filter. 
%                       1:Constrained MPC with integral action for minimum phase. 

%                       2:Constrained MPC with integral action for non-minimum phase. 

% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon.  

%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        Const_MPC_integral_fourtankprocess.m 
% Function files:     four_tank_model.m 
%                     eobsv.m, prbs1.m, q2qt.m, scmat.m, ss2h.m by [David Di Ruscio] 
% Reference           http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [22-03-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
System_sel= input  (' Type 1: For Constrainted MPC with integral action for 

minimum phase \n or\n Type 2: For Constrainted MPC with integral action for 

non-minimum phase \n'); 
% Table 5.1, Parameters values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
% kc=0.5; 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 

  
if  System_sel==1; 
% Model will show minimum phase characteristics [Table 5.2 & 5.3]     
% Steady state level [cm] in the tanks after performing simulations  
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 
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elseif System_sel==2; 
% Model will show non-minimum phase characteristics [Table 5.4 & 5.5]         
% Steady state level [cm] in the tanks after performing simulations 
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 

  
else display('Number not in range, type 1 or 2') 
end 
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4; 
% Equation (4.15) and (4.16), Linearized state space matrics Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
% Sampling time [s] 
ts=0.1; 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2),ts,'zoh'); 
% Making augmented state space model. 
l=size(A,1); 
m=size(B,2); 
n=size(D,1);  
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
% Prediction horizon 
L=15; 
% Weighting matrices 
q=100;  
r=0.1; 
Q=[q 0; 0 q];  
R=[r 0; 0 r]; 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 
% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-

1).[David Di Ruscio] 
[S,c] = scmat(m,L); 
% H as defined in equation (3.50) 
H=FL'*Qt*FL+Rt; 
% Simulation time 
N=515; 
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% Defining inital values for simulation 
Is=[11.5;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*Is; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs1.m [David Di Ruscio]  
rand('seed',0),randn('seed',0); 
step=150; 
ref=[11.5*ones(N,1)+0.1*prbs1(N,step,step),12.5*ones(N,1)+0.1*prbs1(N,step,st

ep)];   
% Used in Input amplitude constraint implementation. 
umax=5; 
umin=0; 
% Making for variable storage 
r1L=zeros(15,1); 
Voltage=zeros(N-L,2); 
Level_meas=zeros(N-L,4); 
Level_est=zeros(N-L,4); 
out_level=zeros(N-L,2); 
% Kalman Gain calculation.  
% A is Transition matrix, G is process noise gain matrix 
% D is a measurement gain matrix, Q1 and R are processed and measurement 
% auto-covariance matrices. 
G=eye(4); 
Q1=200*G; 
r1=0.1; 
R1=[r1 0; 0 r1]; 
[K,P,Z,E]=dlqe(A,G,D,Q1,R1); 
h_est=h_old; 

  
for k=1:N-L 
% Estimated output y. 
y=D*h_est;  
% Kalman Filter Algorithm [Section 3.5] 

  
hb=h_old;        % Apriori (Predicted) state estimate 
yk=D*hb;         % Measurement model update  
ek=y-yk;         % Estimator error 
hb=h_old+K*ek;   % Aposteriori state estimate 
h_est=[hb(1);hb(2);hb(3);hb(4)];  
% Make the extended reference vector, r_(k,L). [David Di Ruscio] 
rf =ref(k+1:k+L,:); 
r1L=rf(1,:)'; 
for i=2:L 
r1L=[r1L;rf(i,:)']; 
end 
 

% Computing MPC control 
xk=[h_est-h_old;y_old]; 
pL=OL*At*xk; 
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% f as defined in equation (3.50) 
f=FL'*Qt*(pL-r1L); 
% For constrained MPC [Equation 2.8] 
a=[S;-S]; 
b=[umax*ones(L*m,1)-c*u_old;-umin*ones(L*m,1)+c*u_old];  
% quadprog function for input amplitude constraints. [Equation 2.9] 
duf=quadprog(H,f,a,b); 
u=u+duf(1:m); 
u_old=u; 

  
% For plotting purpose store the variables.  
Voltage(k,:)=u'; 
Level_meas(k,:)=h'; 
Level_est(k,:)=h_est'; 
out_level(k,:)=y'; 

  
% Feed control to the four-tank process. 
h_old=h_est; 
y_old=y; 
h=h+ts*four_tank_model(h,u,System_sel);            % Simulating model for 

level measured.  
h_est=h_est+ts*four_tank_model(h_est,u,System_sel);% Simulating model for 

level estimated.  
end 

  
% Plotted Results 
t=1:N-L;  
% Level results for Tank 1. 
figure(1)  
subplot(3,1,[1 2]) 
plot(t, ref(1:N-L,1),'r');hold on 
plot(t,out_level(:,1)) 
ylabel('Reference r1_kand output y1_k [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 1 
subplot(3,1,3),  
plot(t,Voltage(:,1)), 
xlabel('Time [s]'); 
ylabel('voltage [V]') 
title('Controller signal u1_k for pump_1') 
grid  
figure(2) 
% Level results for Tank 2. 
subplot(3,1,[1 2]) 
plot (t,ref(1:N-L,2),'r'); hold on 
plot(t,out_level(:,2)) 
ylabel('Reference r2_kand output y2_k [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 2 
subplot(3,1,3),  
plot(t,Voltage(:,2)), 
xlabel('Time [s]'); 
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ylabel('Voltage [V]') 
title('Controller signal u2_k for pump_2') 
grid  
% Results for measured and estimated states for the four - tank process 
figure(3) 
% Tank 1 
subplot(2,2,1) 
plot(t,Level_meas(:,1));hold on;  
plot(t,Level_est(:,1),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 1'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 2 
subplot(2,2,2) 
plot(t,Level_meas(:,2));hold on; 
plot(t,Level_est(:,2),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 2'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 3 
subplot(2,2,3) 
plot(t,Level_est(:,3),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 3'); 
legend('Estimated level'); 
grid  

  
% Tank 4 
subplot(2,2,4) 
plot(t,Level_est(:,4),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 4'); 
legend('Estimated level'); 
grid  

  

Appendix 4.2: Four_tank_Nonlinear_model.m 

%========================================================================== 
% MATLAB Script for:  Model of four-tank process.  
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Mohsin (113817) 
% File name:          Four_tank_Nonlinear_model.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [23-03-2013] 
%========================================================================== 
 function model=four_tank_model(h,u,System_sel) 
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% Table 5.1, parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Level in the tanks [cm] 
h1=h(1); 
h2=h(2); 
h3=h(3); 
h4=h(4); 
% Control inputs [V] 
u1=u(1);    
u2=u(2); 
% Pump gain [V/cm] 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 

  
if System_sel==1 
% Model will show minimum phase characteristics [Table 5.3] 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 

      
elseif System_sel==2 
% Model will show non-minimum phase characteristics [Table 5.5] 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 
end 
% The four-tank model. [Equation (4.10)-(4.13)] 
f(1)=( -a1*sqrt(2*g*h1) + a3*sqrt(2*g*h3) + r1*k1*u1 )/A1; 
f(2)=( -a2*sqrt(2*g*h2) + a4*sqrt(2*g*h4) + r2*k2*u2 )/A2; 
f(3)=( -a3*sqrt(2*g*h3) + (1-r2)*k2*u2 )/A3; 
f(4)=( -a4*sqrt(2*g*h4) + (1-r1)*k1*u1 )/A4; 
 

model=[f(1);f(2);f(3);f(4)]; 

Appendix 4.3: eobsv.m 

%========================================================================== 
% MATLAB Script for:  Function for Compute the Extended Observability matrix O_i 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Author:             David Di Ruscio 
% Function file:      eobsv.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [23-03-2013] 
%========================================================================== 
function O=eobsv(A,D,i); 
% Syntax: 
% O_i=eobsv(A,D,i); 
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% ON INPUT 
% A,D  System matrices, n x n system matrix and m x n output matrix. 
% I    Number of block rows. 
% ON OUTPUT 
% O_I  Extended Observability matrix. 

  
[ny,n]=size(D); 
O=zeros(i*ny,n); 
O(1:ny,:)=D; 
w=D; 
for j=2:i 
    w=w*A; 
    in=j*ny;   
    O(in-ny+1:in,:)=w;              
end 

 

Appendix 4.4: q2qt.m 

%========================================================================== 
% MATLAB Script for:  Make extended weight matrix qt=tilde(q),  
%                     i.e. qt a block diagonal matrix with q on the diagonal. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Author:             David Di Ruscio 
% Function file:      q2qt.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [23-03-2013] 
%========================================================================== 

  
function [qt] = q2qt(q,L);  
[nc,nr]=size(q); 
qt=zeros(nc*L,nr*L); 

  
for i=1:L 
  for j=1:L 
    if i==j 
     qt((i-1)*nc+1:i*nc,(j-1)*nr+1:j*nr)=q; 
    end 
  end 
end 

 

Appendix 4.5: prbs1.m 

%========================================================================== 
% MATLAB Script for:  Make a Pseudo Random Binary Signal of length N samples. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Author:             David Di Ruscio 
% Function file:      prbs1.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [23-03-2013] 
%========================================================================== 
function [u,t]=prbs1(N,Tmin,Tmax); 
% The signal is constant for a random interval of T samples. 
% The random interval T is bounded by a specified band, Tmin <= T <= Tmax.  
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% ON INPUT: 
% N     INTEGER. Number of samples in input signal u, (u_t for all t=1,...,N). 
% Tmin  INTEGER. Minimal interval for which u_t is constant. 
% Tmax  INTEGER. Maximal interval for which u_t is constant. 

  
% ON OUTPUT: 
% u     REAL. The PRBS input signal of lenght N samples. 
%------------------------------------------------------------------------- 
is=1; 
Tmin= Tmin-1; 
dT  = Tmax-Tmin;  
u=zeros(N,1);                 % Make space for input signal. 
if is==0 
 s=sign(randn);               % Sign of input (change) at time 0. 
else 
 s=1; 
end 
k=1;                          % Initialize integer counter for time to switch. 
it=1;                         % Initialize integer counter for # of intervals. 
while k < N+1 
 T=Tmin+dT*rand; T=ceil(T);   % Compute random time horizon T in 
 u(k:k+T-1)=s*ones(T,1);      % the interval [Tmin <= T <= Tmax]. 
 s=s*(-1);                    % Update sign variable s which is either -1 or 1. 
 k=k+T;                       % Update time counter. 
 t(it)=T;                     % Save intervals. 
 it=it+1; 
end 
u=u(1:N);                     % Last interval T may be shorter than Tmin. 

 

  

Appendix 4.6: scmat.m 

%========================================================================== 
% MATLAB Script for:  Make matrices S and c in the relationship,                   

                      u(k,L) = S du(k,L) + c u(k-1) 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Author:             David Di Ruscio 
% Function file:      scmat.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [22-03-2013] 
%========================================================================== 
function [S,c] = scmat(nr,L); 

  
S=zeros(nr*L,nr*L); c=zeros(nr*L,nr); 
for i=1:L 
  for j=1:i 
    S((i-1)*nr+1:i*nr,(j-1)*nr+1:j*nr)=eye(nr); 
  end 
end 

  
for i=1:L 
  c((i-1)*nr+1:i*nr,:)=eye(nr); 
end 
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Appendix 4.7: ss2h.m 

%========================================================================== 
% MATLAB Script for:  Compute the lower block triangular Toeplizt matrix  

%                     H^d_L from a state space model given by the quadruple   

%                     System matrices (A,B,D,E). 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Author:             David Di Ruscio 
% Function file:      ss2h.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [22-03-2013] 
%========================================================================== 
function [H,O,OB]=ss2h(A,B,D,E,L,g);  
% SYNTAX 
% [H^d_L,O_L,O_L B]=ss2h(A,B,D,E,L,g);  
% ON INPUT 
% A,B,D,E  System matrices. 
% L        Number of block rows in H^d, O_L 
% g        Define number of block columns, L+g-1, in H^d_L. 
%          Olso g=0 when E=0 and g=1 when E.neq.0.  
% ON OUTPUT 
% H^D_L, O_L AND O_L B  
[ny,nu]=size(E); 

  
O = eobsv(A,D,L);            % The extended observability matrix. 
OB= O*B;                     % DB, DAB, and so on. 
hi=[E;OB(1:(L-1)*ny,:)];     % The impulse responses which are needed.  
                             % The lower block triangular Toeplizt matrix. 
for j=1:L+g-1 
  H((j-1)*ny+1:L*ny,(j-1)*nu+1:j*nu) =hi(1:(L-j+1)*ny,:); 
end 
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Appendix 5 
Implementation of constrained MPC with integral action using ‘if-else’ method in the four-tank 
process. The user can select either a minimum or non-minimum phase process by typing  “1”  or  

“2” respectively. The main script is in Appendix 5.1 and the supporting files 
(four_tank_model.m, eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to 
4.7. 

 Appendix 5.1: Const_MPC_integral_fourtankprocess.m 

%========================================================================== 
% MATLAB Script for:  Constrained MPC with integral action using if-else  

%                    method for the four-tank process including Kalman Filter. 
%                       1:Constrained MPC with integral action for minimum phase. 

%                       2:Constrained MPC with integral action for non-minimum phase. 

% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        Const_MPC_integral_ifelse.m 
% Function files:     four_tank_model.m 
%                     eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m by [David Di Ruscio] 

% Reference           http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [26-03-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
System_sel= input  (' Type 1: For Constrained MPC with integral action for 

minimum phase \n or\n Type 2: For Constrained MPC with integral action for 

non-minimum phase \n'); 
% Table 5.1, Parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
% kc=0.5; 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 

  
if  System_sel==1; 
% Model will show minimum phase characteristics [Table 5.2 & 5.3]      
% Steady state level [cm] in the tanks after performing simulations  
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 
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elseif System_sel==2; 
% Model will show non-minimum phase characteristics [Table 5.4 & 5.5]          
% Steady state level [cm] in the tanks after performing simulations 
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 

  
else display('Number not in range, type 1 or 2') 
end 
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4; 
% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
% Sampling time [s] 
ts=0.1; 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2),ts,'zoh'); 
% Making augmented state space model. 
l=size(A,1); 
m=size(B,2); 
n=size(D,1);  
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
% Prediction horizon 
L=15; 
% Weighting matrices 
q=100;  
r=0.1; 
Q=[q 0; 0 q];  
R=[r 0; 0 r]; 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 
% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-

1).[David Di Ruscio] 
[S,c] = scmat(m,L); 
% H as defined in equation (3.50) 
H=FL'*Qt*FL+Rt; 
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% Simulation time 
N=515; 
% Defining inital values for simulation 
Is=[11.5;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*Is; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs1.m[David Di Ruscio]  
rand('seed',0),randn('seed',0); 
step=150; 
ref=[11.5*ones(N,1)+0.1*prbs1(N,step,step),12.5*ones(N,1)+0.1*prbs1(N,step,st

ep)];   
% Used constraint implementation by using if-else statement. 
umax=5; 
umin=0; 
umax=umax*ones(L*m,1); 
umin=umin*ones(L*m,1); 
% Making for variable storage 
r1L=zeros(15,1); 
Voltage=zeros(N-L,2); 
Level_meas=zeros(N-L,4); 
Level_est=zeros(N-L,4); 
out_level=zeros(N-L,2); 
% Kalman Gain calculation.  
% A is Transition matrix, G is process noise gain matrix 
% D is a measurement gain matrix, Q1 and R are process and measurement 
% auto-covariance matrices. 
G=eye(4); 
Q1=200*G; 
r1=0.1; 
R1=[r1 0; 0 r1]; 
[K,P,Z,E]=dlqe(A,G,D,Q1,R1); 
h_est=h_old; 

  
for k=1:N-L 
% Estimated output y. 
y=D*h_est;  
% Kalman Filter Algorithm [Section 3.5] 

  
hb=h_old;        % Apriori (Predicted) state estimate 
yk=D*hb;         % Measurement model update  
ek=y-yk;         % Estimator error 
hb=h_old+K*ek;   % Aposteriori state estimate 
h_est=[hb(1);hb(2);hb(3);hb(4)];  
% Make the extended reference vector, r_(k,L).[David Di Ruscio] 
rf =ref(k+1:k+L,:); 
r1L=rf(1,:)'; 
for i=2:L 
r1L=[r1L;rf(i,:)']; 
end 
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% Computing MPC control 
xk=[h_est-h_old;y_old]; 
pL=OL*At*xk; 
% f as defined in equation (3.50) 
f=FL'*Qt*(pL-r1L); 

  
% For constrained MPC by using if-else method [Equation 3.29] 
duf=-inv(H)*f; 
u=u+duf(1:m); 
u_old=u; 

  
if     u(1,1)>umax(1,1) 
       u(1,1)=umax(1,1); 
elseif u(1,1)<umin(1,1) 
       u(1,1)=umin(1,1); 
end 
if     u(2,1)>umax(2,1) 
       u(2,1)=umax(2,1); 
elseif u(2,1)<umin(2,1) 
       u(2,1)=umin(2,1); 
end 

  
% For plotting purpose store the variables.  
Voltage(k,:)=u'; 
Level_meas(k,:)=h'; 
Level_est(k,:)=h_est'; 
out_level(k,:)=y'; 

  
% Feed control to the four-tank process. 
h_old=h_est; 
y_old=y; 
h=h+ts*four_tank_model(h,u,System_sel);            % Simulating model for 

level measured.  
h_est=h_est+ts*four_tank_model(h_est,u,System_sel);% Simulating model for 

level estimated.  
end 

  
% Plotted Results 
t=1:N-L;  
% Level results for Tank 1. 
figure(1)  
subplot(3,1,[1 2]) 
plot(t, ref(1:N-L,1),'r');hold on 
plot(t,out_level(:,1)) 
ylabel('Reference r1_kand output y1_k [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 1 
subplot(3,1,3),  
plot(t,Voltage(:,1)), 
xlabel('Time [s]'); 
ylabel('voltage [V]') 
title('Controller signal u1_k for pump_1') 
grid  
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figure(2) 
% Level results for Tank 2. 
subplot(3,1,[1 2]) 
plot (t,ref(1:N-L,2),'r'); hold on 
plot(t,out_level(:,2)) 
ylabel('Reference r2_kand output y2_k [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 2 
subplot(3,1,3),  
plot(t,Voltage(:,2)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Controller signal u2_k for pump_2') 
grid  
% Results for measured and estimated states for the four-tank process 
figure(3) 
% Tank 1 
subplot(2,2,1) 
plot(t,Level_meas(:,1));hold on;  
plot(t,Level_est(:,1),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 1'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 2 
subplot(2,2,2) 
plot(t,Level_meas(:,2));hold on; 
plot(t,Level_est(:,2),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 2'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 3 
subplot(2,2,3) 
plot(t,Level_est(:,3),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 3'); 
legend('Estimated level'); 
grid  

  
% Tank 4 
subplot(2,2,4) 
plot(t,Level_est(:,4),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 4'); 
legend('Estimated level'); 
grid  
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Appendix 6 
Implementation of unconstrained MPC with integral action in the four-tank process. The user can 
select either a minimum or non-minimum phase process by typing  “1”  or  “2” respectively. The 

main script is in Appendix 6.1 and the supporting files (four_tank_model.m, eobsv.m, q2qt.m, 
prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to 4.7. 

 Appendix 6.1: Const_MPC_integral_fourtankprocess.m 

%========================================================================== 
% MATLAB Script for:  Unconstrained MPC with integral action for the four-  

                      tank process including Kalman Filter. 
%                       1:Unconstrained MPC with integral action for minimum phase. 
%                       2:Unconstrained MPC with integral action for non-minimum phase. 

% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        Unconst_MPC_integral_fourtankprocess.m 
% Function files:     four_tank_model.m 
%                     eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m by [David Di Ruscio] 

% Reference           http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [29-03-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
System_sel= input (' Type 1: For uncnstrainted MPC with integral action for 

minimum phase \n or\n Type 2: For unconstrainted MPC with integral action for 

non-minimum phase \n'); 

  
% Table 5.1, Parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
Kc=0.5; 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981;  
if  System_sel==1; 
% Model will show minimum phase characteristics      
% Table 5.3,Steady state level [cm] in the tanks after performing simulations  
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60;  
elseif System_sel==2; 
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% Model will show non-minimum phase characteristics      
% Table 5.5,Steady state level [cm] in the tanks after performing simulations 
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 

  
else display('Number not in range, type 1 or 2') 
end 
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4; 
% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
% Sampling time [s] 
ts=0.1; 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2),ts,'zoh'); 
% Making augmented state space model. 
l=size(A,1); 
m=size(B,2); 
n=size(D,1);  
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
% Prediction horizon 
L=15; 
% Weighting matrices 
q=100;  
r=0.1; 
Q=[q 0; 0 q];  
R=[r 0; 0 r]; 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 
% Make matrices S and c in the relationship,  

% u(k,L) = S du(k,L) + c u(k-1).[David Di Ruscio] 

[S,c] = scmat(m,L); 
H=FL'*Qt*FL+Rt; 
% Simulation time 
N=515; 
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% Defining inital values for simulation 
Is=[11.5;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*Is; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs.[David Di Ruscio]  
rand('seed',0),randn('seed',0); 
step=150; 
ref=[11.5*ones(N,1)+0.2*prbs1(N,step,step),12.5*ones(N,1)+0.2*prbs1(N,step,st

ep)];   
% Making for variable storage 
r1L=zeros(15,1); 
Voltage=zeros(N-L,2); 
Level_meas=zeros(N-L,4); 
Level_est=zeros(N-L,4); 
out_level=zeros(N-L,2); 
% Kalman Gain calculation.  
% A is Transition matrix, G is process noise gain matrix 
% D is a measurement gain matrix, Q1 and R are process and measurement 
% auto-covariance. 
G=eye(4); 
Q1=100*G; 
r1=0.1; 
R1=[r1 0; 0 r1]; 
[K,P,Z,E]=dlqe(A,G,D,Q1,R1); 
h_est=h_old; 

  
for k=1:N-L 
% Estimated output y. 
y=D*h_est;  
% Kalman Filter Algorithm [Section 3.5]  
hb=h_old;        % Apriori (Predicted) state estimate 
yk=D*hb;         % Measurement model update  
ek=y-yk;         % Estimator error 
hb=h_old+K*ek;   % Aposteriori (corrected) state estimate 
h_est=[hb(1);hb(2);hb(3);hb(4)];  
% Make the extended reference vector, r_(k,L),[David Di Ruscio] 
rf =ref(k+1:k+L,:); 
r1L=rf(1,:)'; 
for i=2:L 
r1L=[r1L;rf(i,:)']; 
end 
% Computing MPC control 
xk=[h_est-h_old;y_old]; 
pL=OL*At*xk; 
% f as defined in equation (3.50) 
f=FL'*Qt*(pL-r1L); 
% For unconstrained MPC [Equation 3.9] 
duf=-inv(H)*f; 
u=u+duf(1:m); 
uold=u; 
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% For plotting purpose store the variables.  
Voltage(k,:)=u'; 
Level_meas(k,:)=h'; 
Level_est(k,:)=h_est'; 
out_level(k,:)=y'; 

  
% Feed control to the four-tank process. 
h_old=h_est; 
y_old=y; 
h=h+ts*four_tank_model(h,u,System_sel);            % Simulating model for 

level measured.  
h_est=h_est+ts*four_tank_model(h_est,u,System_sel);% Simulating model for 

level estimated.  
end 
% Plotted Results 
t=1:N-L;  
% Level results for Tank 1. 
figure(1)  
subplot(3,1,[1 2]) 
plot(t, ref(1:N-L,1),'r');hold on 
plot(t,out_level(:,1)) 
ylabel('Reference r1_kand output y1_k [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 1 
subplot(3,1,3),  
plot(t,Voltage(:,1)), 
xlabel('Time [s]'); 
ylabel('voltage [V]') 
title('Controller signal u1_k for pump_1') 
grid  
figure(2) 
% Level results for Tank 2. 
subplot(3,1,[1 2]) 
plot (t,ref(1:N-L,2),'r'); hold on 
plot(t,out_level(:,2)) 
ylabel('Reference r2_kand output y2_k [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 2 
subplot(3,1,3),  
plot(t,Voltage(:,2)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Controller signal u2_k for pump_2') 
grid  
 

% Results for measured and estimated states for the four-tank process. 
figure(3) 
% Tank 1 
subplot(2,2,1) 
plot(t,Level_meas(:,1));hold on;  
plot(t,Level_est(:,1),'g') 
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% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 1'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 2 
subplot(2,2,2) 
plot(t,Level_meas(:,2));hold on; 
plot(t,Level_est(:,2),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 2'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 3 
subplot(2,2,3) 
plot(t,Level_est(:,3),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 3'); 
legend('Estimated level'); 
grid  

  
% Tank 4 
subplot(224) 
plot(t,Level_est(:,4),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 4'); 
legend('Estimated level'); 
grid  
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Appendix 7 
Performance comparison by reducing the control horizon in MPC with integral action algorithm. 
The user can select either a minimum or non-minimum phase process by typing  “1”  or  “2” 

respectively. The main script is in Appendix 7.1 and the supporting files (four_tank_model.m, 
eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are given in appendices 4.2 to 4.7. 

 Appendix 7.1: Reduced_controlH_MPC_integral.m  

%========================================================================== 
% MATLAB Script for:  Reducing control horizon in MPC with integral action  

                      for the four-tank process . 
%                       1:Constrained MPC with integral action for minimum phase. 
%                       2:Constrained MPC with integral action for non-minimum phase. 

% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        Reduced_controlH_MPC_integral.m 
% Function files:     four_tank_model.m 
%                       eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m by [David Di Ruscio] 

% Reference           http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [20-04-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
System_sel= input  (' Type 1: MPC with integral action for minimum phase \n 

or\n Type 2: MPC with integral action for non-minimum phase \n'); 
% Table 5.1, Parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
% kc=0.5; 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 

  
if  System_sel==1; 
% Model will show minimum phase characteristics [Table 5.2 % 5.3]     
% Steady state level [cm] in the tanks after performing simulations  
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 
elseif System_sel==2; 
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% Model will show non-minimum phase characteristics  [Table 5.4 & 5.5]        
% Steady state level [cm] in the tanks after performing simulations 
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 
else display('Number not in range, type 1 or 2') 
end 
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4; 
% Equation (4.15) and (4.16), Linearized state space matrics Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
% Sampling time [s] 
ts=0.1; 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2),ts,'zoh'); 
% Making augmented state space model. 
l=size(A,1); 
m=size(B,2); 
n=size(D,1);  
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
% Prediction horizon 
L=15; 
% Control horizon 
 Lu=10; 
% Lu=4; 
% Lu=2; 
% Weighting matrices 
q=100;  
r=0.1; 
Q=[q 0; 0 q];  
R=[r 0; 0 r]; 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),Lu,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,Lu); 
Rt=q2qt(R,Lu); 
% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-

1).[David Di Ruscio] 
[S,c] = scmat(m,Lu); 
% H as defined in equation (3.50) 
H=FL'*Qt*FL+Rt; 
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% Simulation time 
N=215; 
% Defining inital values for simulation 
Is=[11.5;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*Is; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs.[David Di Ruscio]  
rand('seed',0),randn('seed',0); 
step=100; 
ref=[11.5*ones(N,1)+0.1*prbs1(N,step,step),12.5*ones(N,1)+0.1*prbs1(N,step,st

ep)];   
% Used in Input amplitude constraint implementation. 
umax=5; 
umin=0; 
% Making for variable storage 
r1L=zeros(15,1); 
Voltage=zeros(N-L,2); 
Level_meas=zeros(N-L,4); 
Level_est=zeros(N-L,4); 
out_level=zeros(N-L,2); 
% Kalman Gain calculation.  
% A is Transition matrix, G is process noise gain matrix 
% D is a measurement gain matrix, Q1 and R are process and measurement 
% auto-covariance matrices. 
G=eye(4); 
Q1=200*G; 
r1=0.1; 
R1=[r1 0; 0 r1]; 
[K,P,Z,E]=dlqe(A,G,D,Q1,R1); 
h_est=h_old; 

  
for k=1:N-L 
% Estimated output y. 
y=D*h_est;  
% Kalman Filter Algorithm [Section 3.5] 

  
hb=h_old;        % Apriori (Predicted) state estimate 
yk=D*hb;         % Measurement model update  
ek=y-yk;         % Estimator error 
hb=h_old+K*ek;   % Aposteriori state estimate 
h_est=[hb(1);hb(2);hb(3);hb(4)];  
% Make the extended reference vector, r_(k,L) .[David Di Ruscio] 
rf =ref(k+1:k+Lu,:); 
r1L=rf(1,:)'; 
for i=2:Lu 
r1L=[r1L;rf(i,:)']; 
end 
 

% Computing MPC control 
xk=[h_est-h_old;y_old]; 
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pL=OL*At*xk; 
f=FL'*Qt*(pL-r1L); 

  
% For constrained MPC [Equation 2.8] 
a=[S;-S]; 
b=[umax*ones(Lu*m,1)-c*u_old;-umin*ones(Lu*m,1)+c*u_old];  
% quadprog function for input amplitude constraints. [Equation 2.29] 
duf=quadprog(H,f,a,b); 
u=u+duf(1:m); 
u_old=u; 

  
% For plotting purpose store the variables.  
Voltage(k,:)=u'; 
Level_meas(k,:)=h'; 
Level_est(k,:)=h_est'; 
out_level(k,:)=y'; 

  
% Feed control to the four-tank process. 
h_old=h_est; 
y_old=y; 
h=h+ts*four_tank_model(h,u,System_sel); % Simulating model for level measured.  
h_est=h_est+ts*four_tank_model(h_est,u,System_sel);% Simulating model for 

level estimated.  
end 
% Plotted Results 
t=1:N-L;  
% Level results for Tank 1. 
figure(1)  
subplot(3,1,[1 2]) 
plot(t, ref(1:N-L,1),'r');hold on 
plot(t,out_level(:,1)) 
ylabel('Reference r1_kand output y1_k [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  
% Input Control signal for Tank 1 
subplot(3,1,3),  
plot(t,Voltage(:,1)), 
xlabel('Time [s]'); 
ylabel('voltage [V]') 
title('Controller signal u1_k for pump_1') 
grid  
figure(2) 
% Level results for Tank 2. 
subplot(3,1,[1 2]) 
plot (t,ref(1:N-L,2),'r'); hold on 
plot(t,out_level(:,2)) 
ylabel('Reference r2_kand output y2_k [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid  

 

% Input Control signal for Tank 2 
subplot(3,1,3),  
plot(t,Voltage(:,2)), 
xlabel('Time [s]'); 
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ylabel('Voltage [V]') 
title('Controller signal u2_k for pump_2') 
grid  
% Results for measured and estimated states for four-tank process 
figure(3) 
% Tank 1 
subplot(2,2,1) 
plot(t,Level_meas(:,1));hold on;  
plot(t,Level_est(:,1),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 1'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 2 
subplot(2,2,2) 
plot(t,Level_meas(:,2));hold on; 
plot(t,Level_est(:,2),'g') 
% xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 2'); 
legend('Measured level','Estimated level'); 
grid  

  
% Tank 3 
subplot(2,2,3) 
plot(t,Level_est(:,3),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 3'); 
legend('Estimated level'); 
grid  

  
% Tank 4 
subplot(224) 
plot(t,Level_est(:,4),'g');  
xlabel('Time [s]'); 
ylabel('Level [cm]');  
title('Tank 4'); 
legend('Estimated level'); 
grid  
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Appendix 8 
RGA analysis to determine the optimal input-output variable pairing for the four-tank process. 
The user can select either a minimum or non-minimum phase process by typing  “1”  or  “2” 

respectively. 
 
Appendix 8.1: RGA_analysis.m 

%========================================================================== 
% MATLAB Script for:  RGA analysis to determine the optimal input-output  

%                     variable pairing for 
%                     four tank process. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        RGA_analysis.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [21-04-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 

  
% Minimum or non-minimum phase selection 
System_sel= input  (' Type 1 for minimum phase system or\n Type 2 for non-

minimum phase system \n'); 

  
% RGA analysis for minimum phase 
if  System_sel==1; 
display('Minimum phase process') 
% Equation (5.8) 
G=[2.6 1.5;1.4 2.8] 

  
% RGA analysis for non-minimum phase 
elseif System_sel==2; 
display('Non-minimum phase process') 
% Equation (5.9) 
G=[1.5 2.5; 2.5 1.6] 
else display('Number not in range, type 1 or 2') 
end 
% Results 
A=G.*(inv(G))' 
disp('RGA Result'); 

% After the RGA analysis 

if  System_sel==1; 
disp('u1 will control output y1 and u2 will control output y2'); 
elseif System_sel==2; 
disp('u1 will control output y2 and u2 will control output y1') 
end 
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Appendix 9 
Implementation  of  the  PI controller on the four-tank minimum phase process. The main script 
and supporting file are given in appendices 9.1 to 9.2  respectively. 

Appendix 9.1: PI_fourtank_minimum_phase.m 

%========================================================================== 
% MATLAB Script for:  PI controller implementation in four-tank minimum phase 

process 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        PI_fourtank_minimum_phase.m 
% Function file:      four_tank_model.m, prbs1.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [21-04-2013] 
%========================================================================== 

  
clc; 
clear all; 
close all; 
% Table 5.1, Parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
% kc=0.5; 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 
% Model will show minimum phase characteristics      
% Table 5.3,Steady state level [cm] in the tanks after performing simulations 
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
hs=[hs1,hs2,hs3,hs4]'; 
% Control inputs [V] 
u1=3.0; u2=3.0; 
u_inp=[u1; u2]; 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 

  
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4; 
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% Equation (4.15) and (4.16), Linearized state space matrics Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
% Sampling time [s] 
ts=0.1; 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2),ts,'zoh'); 
% Setpoint 
ref=[hs(1);hs(2)]; 
% PI controller tuning parameters 
kp1=4; kp2=3.5; 
Ti1=9; Ti2=10; 
% Initial conditions 
hs_old=hs; 
h=hs; 
u_old=u_inp;   
y_old=D*hs; 
e_old=ref-y_old; 
% Control signal range 0-5[V] 
umin=0*ones(2,1); 
umax=5*ones(2,1); 

  
% Simulation time 
T=2000; 
% Simulation 
i=300; 
j=1100; 
for k=1:T 
    if      k<i;        ref=[hs(1);hs(2)]; 
    elseif  k>i && k<j; ref=[hs(1)+0.5; hs(2)+0.5]; 
    elseif  k>j;        ref=[hs(1)+0.8;hs(2)+0.8]; 
    end 
y=D*h; 
e=ref-y; 
% Equation (5.2) and (5.3) 
u1=u_old(1)+kp1*(e(1)-e_old(1))+kp1*ts*e(1)/Ti1; 
u2=u_old(2)+kp2*(e(2)-e_old(2))+kp2*ts*e(2)/Ti2; 
u=[u1;u2]; 

  
if     u(1,1)>umax(1,1) 
       u(1,1)=umax(1,1); 
elseif u(1,1)<umin(1,1) 
       u(1,1)=umin(1,1) 
end 
if     u(2,1)>umax(2,1) 
       u(2,1)=umax(2,1); 
elseif u(2,1)<umin(2,1) 
       u(2,1)=umin(2,1) 
end 
e_old=e; 
hs_old=h; 
u_old=u; 
y_old=y; 
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% Storing variables 
Reference(k,:)=ref'; 
Voltage(k,:)=u'; 
Output(k,:)=y';  
h=h+ts*four_tank_model(h,u); 
end 
% Results 
% Plotted Results 
t=1:T;  
% Level results for Tank 1. 
figure(1)  
subplot(2,1,1) 
plot(t,Reference(:,1),'r'), hold on 
plot(t,Output(:,1)); 
xlabel('Time [s]'); 
ylabel('Reference r1_kand output y1_k [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 1 
subplot(2,1,2),  
plot(t,Voltage(:,1)), 
xlabel('Time [s]'); 
ylabel('Control input u1_k [V]') 
title('Input control signal for Tank 1') 
grid on  
% Level results for Tank 2. 
figure(2) 
subplot(2,1,1) 
plot(t, Reference(:,2),'r'), hold on 
plot(t,Output(:,2)) 
xlabel('Time [s]'); 
ylabel('Reference r2_kand output y2_k [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 2 
subplot(2,1,2),  
plot(t,Voltage(:,2)), 
xlabel('Time [s]'); 
ylabel('Control input u2_k [V]') 
title('Input control signal for Tank 2') 
grid on 

  

Appendix 9. 2: four_tank_model.m 

%========================================================================== 
% MATLAB Script for:  Model of four tank process.  
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% File name:          four_tank_model.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [21-04-2013] 
%========================================================================== 
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function model=four_tank_model(h,u)  
% Table 5.1, parameters values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Level in the tanks [cm] 
h1=h(1); 
h2=h(2); 
h3=h(3); 
h4=h(4); 
% Control inputs [V] 
u1=u(1);    
u2=u(2); 
% Pump gain [V/cm] 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 
% Model will show minimum phase characteristics [Table 5.3] 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.70; r2=0.60; 
% The four-tank model. [Equation (4.10)-(4.13)] 
f(1)=( -a1*sqrt(2*g*h1) + a3*sqrt(2*g*h3) + r1*k1*u1 )/A1; 
f(2)=( -a2*sqrt(2*g*h2) + a4*sqrt(2*g*h4) + r2*k2*u2 )/A2; 
f(3)=( -a3*sqrt(2*g*h3) + (1-r2)*k2*u2 )/A3; 
f(4)=( -a4*sqrt(2*g*h4) + (1-r1)*k1*u1 )/A4;  
model=[f(1);f(2);f(3);f(4)]; 
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Appendix 10 
Implementation  of  the  PI controller on the four-tank non-minimum phase process. The main 
script and supporting file are given in appendices 10.1 to 10.2  respectively. 

Appendix 10.1: PI_fourtank_nonminimum_phase.m 

%========================================================================== 
% MATLAB Script for:  PI controller implementation in four-tank non-minimum 

phase process 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        PI_fourtank_nonminimum_phase.m 
% Function file:      four_tank_model.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [21-04-2013] 
%========================================================================== 

  
clc; 
clear all; 
close all; 
% Table 5.1, Parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
% kc=0.5; 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 
% Model will show non-minimum phase characteristics      
% Table 5.5, Steady state level [cm] in the tanks after performing 

simulations  
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
hs=[hs1,hs2,hs3,hs4]'; 
% Control inputs [V] 
u1=3.15; u2=3.15; 
u_inp=[u1; u2]; 
% Pump constants [cm^3/Vs] 
k1=3.14;k2=3.29; 
% Flow constants   
r1=0.43; r2=0.34; 
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4; 
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% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
% Sampling time [s] 
ts=0.1; 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2),ts,'zoh'); 
% Setpoint 
ref=[hs(1);hs(2)]; 
% PI controller tuning parameters 
kp1=1.4; kp2=0.22; 
Ti1=100; Ti2=135; 
% Initial conditions 
hs_old=hs; 
h=hs; 
u_old=u_inp;   
y_old=D*hs; 
e_old=ref-y_old; 
% Control signal range 0-5[V] 
umin=0*ones(2,1); 
umax=5*ones(2,1); 
% Simulation time 
T=5000; 
% Simulation 
i=300; 
for k=1:T 
    if      k<i;        ref=[hs(1);hs(2)]; 
    elseif  k>i;        ref=[hs(1)+0.5; hs(2)+0.5];     
    end 
y=D*h; 
e=ref-y; 
u1=u_old(1)+kp2*(e(2)-e_old(2))+kp2*ts*e(2)/Ti2; 
u2=u_old(2)+kp1*(e(1)-e_old(1))+kp1*ts*e(1)/Ti1; 
u=[u1;u2]; 
% Constraints implementation using if-else statement 
if     u(1,1)>umax(1,1) 
       u(1,1)=umax(1,1) 
elseif u(1,1)<umin(1,1) 
       u(1,1)=umin(1,1) 
end 
if     u(2,1)>umax(2,1) 
       u(2,1)=umax(2,1) 
elseif u(2,1)<umin(2,1) 
       u(2,1)=umin(2,1) 
end 
e_old=e; 
hs_old=h; 
u_old=u; 
y_old=y; 
% Storing variables 
Reference(k,:)=ref'; 
Voltage(k,:)=u'; 
Output(k,:)=y';  
h=h+ts*four_tank_model(h,u); 
end 
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% Results 
% Plotted Results 
t=1:T;  
% Level results for Tank 1. 
figure(1)  
subplot(2,1,1) 
plot(t, Reference(:,1),'r');hold on 
plot(t,Output(:,1)) 
xlabel('Time [s]'); 
ylabel('Reference r1_kand output y1_k [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 1 
subplot(2,1,2),  
plot(t,Voltage(:,1)), 
xlabel('Time [s]'); 
ylabel('Control input u1_k [V]') 
title('Input control signal for Tank 1') 
grid on 

  
% Level results for Tank 2. 
figure(2) 
subplot(2,1,1) 
plot(t, Reference(:,2),'r');hold on 
plot(t,Output(:,2)) 
xlabel('Time [s]'); 
ylabel('Reference r2_kand output y2_k [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 2 
subplot(2,1,2),  
plot(t,Voltage(:,2)), 
xlabel('Time [s]'); 
ylabel('Control input u2_k [V]') 
title('Input control signal for Tank 2') 
grid on 

 

Appendix 10.2: four_tank_model.m 

%========================================================================== 
% MATLAB Script for:  Model of four tank process.  
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% File name:          four_tank_model.m 
%-------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [23-04-2013] 
%========================================================================== 
function model=four_tank_model(h,u)  
% Table 5.1, parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28;A3=28; 
A2=32;A4=32; 
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% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Level in the tanks [cm] 
h1=h(1); 
h2=h(2); 
h3=h(3); 
h4=h(4); 
% Control inputs [V] 
u1=u(1); u2=u(2); 
% Pump gain [V/cm] 
kc=1; 
% Acceleration of gravity [cm/s^2] 
g=981; 
% Model will show non-minimum phase characteristics 
% Pump constants [cm^3/Vs] 
k1=3.14; 
k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 
% The four-tank model. [Equation (4.10)-(4.13)] 
f(1)=( -a1*sqrt(2*g*h1) + a3*sqrt(2*g*h3) + r1*k1*u1 )/A1; 
f(2)=( -a2*sqrt(2*g*h2) + a4*sqrt(2*g*h4) + r2*k2*u2 )/A2; 
f(3)=( -a3*sqrt(2*g*h3) + (1-r2)*k2*u2 )/A3; 
f(4)=( -a4*sqrt(2*g*h4) + (1-r1)*k1*u1 )/A4;  
model=[f(1);f(2);f(3);f(4)]; 
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Appendix 11 
MATLAB script for simulating the four-tank minimum and non-minimum phase process. The 
user can select either minimum or non-minimum phase process by typing “1” or “2” respectively. 
The supporting function files (four_tank_model.m and prbs1.m) are given in appendix 4.2 and 
4.5. 

 Appendix 11.1: simulation_fordata_generation 

% =========================================================================== 
% MATLAB Script for:  Simulation of four tank process for data generation.  
% Master's Thesis:   "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script File:        simulation_fordata_generation.m 
% Function file:      four_tank_model.m 
%                     prbs1.m by [David Di Ruscio] 
% --------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [02-05-2013]. 
% =========================================================================== 
clc; 
close all; 
clear all; 
% Table 5.1, Parameter values taken from the literature [Johansson]. 
% Cross-section area of tanks [cm^2] 
A1=28; A3=28; 
A2=32; A4=32; 
% Cross-section area of the outlet holes[cm^2] 
a1=0.071; a3=0.071; 
a2=0.057; a4=0.057; 
% Pump gain [V/cm] 
% kc=1; 
kc=0.50; 
% Acceleration of gravity [cm/s^2] 
g=981; 
% Time interval and sampling time [s] 
ts=0.1; t=0; N=10000;  
% System selection by the user 
System_sel=input(' Type 1 for minimum phase system or\n Type 2 for non-

minimum phase system \n'); 
if  System_sel==1; 
% Model will show minimum phase characteristics      
% Table 5.3, Steady state level [cm] in the tanks after performing 

simulations  
hs1=12.3; 
hs2=12.8; 
hs3=1.63; 
hs4=1.41; 
% Parameter values from Table 5.2 
% Pump constants [cm^3/Vs] 
k1=3.33; k2=3.35; 
% Flow constants   
r1=0.7; r2=0.6; 
% Initial control inputs [V] 
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u1=3; u2=3; 
elseif System_sel==2; 
% Model will show non-minimum phase characteristics      
% Table 5.5, Steady state level [cm] in the tanks after performing 

simulations  
hs1=12.4; 
hs2=13.2; 
hs3=4.73; 
hs4=4.99; 
% Parameter values from Table 5.4 
% Pump constants [cm^3/Vs] 
k1=3.14; k2=3.29; 
% Flow constants  
r1=0.43; r2=0.34; 
% Initial control inputs [V] 
u1=3.15; u2=3.15; 
end 

  
% Time constants [section 4.1.2] 
T1=A1*(sqrt(2*hs1/g))/a1; 
T2=A2*(sqrt(2*hs2/g))/a2; 
T3=A3*(sqrt(2*hs3/g))/a3; 
T4=A4*(sqrt(2*hs4/g))/a4;  

  
% Equation (4.15) and (4.16), Linearized state space matrices Ac, Bc and Dc 
Ac=[-1/T1,0,A3/(A1*T3),0;0,-1/T2,0,A4/(A2*T4);0,0,-1/T3,0;0,0,0,-1/T4]; 
Bc=[r1*k1/A1,0;0,r2*k2/A2;0,(1-r2)*k2/A3;(1-r1)*k1/A4,0]; 
Dc=[kc,0,0,0;0,kc,0,0]; 
% Coverting model from continuous to discrete time  
% Method 'zoh' assuming a zero order hold on the inputs. 
[A,B,D]=c2dm(Ac,Bc,Dc,zeros(2,2),ts,'zoh'); 
h=[hs1;hs2;hs3;hs4]; 
h_old=h; 
y_old=D*h_old;  
u=[u1;u2];  
u_old=u; 
% For simulation initialization 
f=zeros(4,1);  
T=zeros(N,1); 
U=zeros(N,2);  
X=zeros(N,4);  

  
% Make input signal for model development. 
input1=prbs1(N,250,800); 
input2=prbs1(N,350,850); 

  
% Make input signal for validation data.  
% input1=prbs1(N,2000,3500); 
% input2=prbs1(N,2100,3600); 

  
U_input=[u1+input1, u2+input2]; 
% Initial level in the tanks is zero. 
  h=h*0; 
% Simulating close loop system 
for i=1:N 
   y=D*h; 
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   u=U_input(i,:)'; 
 % Storing for plotting purposes 
   U(i,:)=u';  
   X(i,:)=h';  
   T(i)=t; 
   f=four_tank_model(h,u,System_sel); 
   h=h+ts*f; 
   % Time update. 
   t=t+ts;                                     
end 

  
% Save data for system identification algorithm 
if System_sel==1 
 Data=[X(:,1:2),U]; 
 save('data_minimum.txt','Data','-ASCII') 
 % for saving validation data 
 % save('valdata_minimum.txt','Data','-ASCII') 
elseif System_sel==2 
Data=[X(:,1:2),U]; 
save('data_nonminimum.txt','Data','-ASCII') 
% for saving validation data 
% save('valdata_nonminimum.txt','Data','-ASCII') 
end 
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Appendix 12  
MATLAB script for plotting the simulation data of four-tank minimum phase process. 

Appendix 12.1: data_plot.m 

%========================================================================== 
% MATLAB Script for:  Plotting the collected simulated data of the four-tank  

                      Minimum phase process. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        data_plot.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [02-05-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
load data_minimum.txt 
% The  first two columns in file  represent  the output level in tanks 1 and 

2  
% Next two columns are the corresponding voltage to the pumps 1 and 2 
Y=[data_minimum(:,1)  data_minimum(:,2)]; 
U=[data_minimum(:,3)  data_minimum(:,4)]; 

  
% Plotting process data 
figure(1) 
subplot(2,1,1) 
plot(Y(:,1)) 
% xlabel('Number of samples') 
ylabel('Level y_1 [cm]') 
title ('Level of Tank 1') 
grid on 
subplot(2,1,2) 
plot(U(:,1)) 
xlabel('Number of samples') 
ylabel('Control input u_1 [V]') 
title ('Input voltage to pump 1') 
grid on 
figure(2) 
subplot(2,1,1) 
plot(Y(:,2)) 
% xlabel('Number of samples') 
ylabel('Level y_2 [cm]') 
title ('Level of Tank 2') 
grid on 
subplot(2,1,2) 
plot(U(:,2)) 
xlabel('Number of samples') 
ylabel('Control input u_2 [V]') 
title ('Input voltage to pump 2') 
grid on 
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Appendix 13 
The MATLAB script for identifying  model and Eigenvalues of the system matrix. 

Appendix 13.1: sysID_4tank.m 

%========================================================================== 
% MATLAB Script for:  System identification algorithm as dsr to identify the 

linearized  
%                     state space model for use in MPC method. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control 

hortizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        sysID_4tank.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [02-05-2013] 
%========================================================================== 
clear all; 
clc; 
close all; 
% Load the simulated process data 
load data_minimum.txt 
n=size(data_minimum); 
i=1; 
t=i:n; 
% The  first two columns in file  represent  the output level in tanks 1 and 

2  
% Next two columns are the corresponding voltage to the pumps 1 and 2 
Y=[data_minimum(t,1) data_minimum(t,2)]; 
U=[data_minimum(t,3) data_minimum(t,4)]; 

  
% System order 
L=4; 
% Number of samples 
N=10000; 
% Trending the data 
U=[U(i:N,1)-3.0   U(i:N,2)-3.0 ]; 
Y=[Y(i:N,1)-12.3  Y(i:N,2)-12.8]; 
% Deterministic and Stochastic system identification and Realization 
[A,B,D,E,CF,F,x0]=dsr(Y,U,L,0); 
% converting discrete time to continuous time model 
ts=0.1; 
[Ac,Bc,Dc,Ec]=d2cm(A,B,D,E,ts,'zoh'); 
display('System Matrix Ac of continuous time model ') 
Ac 
% Eigenvalues of system matrix Ac 
Eigen_values_for_system_matrix_Ac=eig(Ac)  
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Appendix 14 
MATLAB file for validating the identified model of four-tank minimum phase process. 

Appendix 14.1: validation_of_minimum.m 

%========================================================================== 
% MATLAB Script for:  Validating the identified model of four-tank minimum 
%                     phase process 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        validation_of_minimum.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [02-05-2013] 
%========================================================================== 
clc; 

clear all; 

close all; 

 
% Load the simulated process data 
load data_minimum.txt 
data=data_minimum(1:end,:); 
n=size(data); 
i=1; 
t=i:n; 
Uid=[data(t,3) data(t,4)]; 

Yid=[data(t,1) data(t,2)]; 
% System order 
L=4; 

 
% Trending the data 
Uid=[Uid(:,1)-3.0    Uid(:,2)-3.0 ]; 
Yid=[Yid(:,1)-12.3   Yid(:,2)-12.8]; 
% Deterministic and Stochastic system identification and Realization 
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid,L,0) 
 

% validating the model 
% Load the validation data 
load data_valid.txt 
data_val=data_valid(1:end,:); 
m=size(data_val); 
j=1; 
k=j:m; 
Uval=[data_val(k,3) data_val(k,4)]; 
Yval=[data_val(k,1) data_val(k,2)]; 
 

% Trending the data 
Um=mean([data_val(k,3) data_val(k,4)]); 
Ym=mean([data_val(k,1) data_val(k,2)]); 
Uval=[Uval(:,1)-Um(1)      Uval(:,2)-Um(2)]; 
Yval=[Yval(:,1)-Ym(1)      Yval(:,2)-Ym(2)]; 
 

% Simulation of discrete-time linear systems 
Y_sim=dsrsim(A,B,D,E,Uval,x0); 
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figure(2), 
subplot(2,1,1) 
plot([Yval(:,1) Y_sim(:,1)]) 
legend('Model output','Process output') 
title('Output for tank_1'); 

ylabel('Level [cm]');grid on 
 

subplot(2,1,2) 
plot([Yval(:,2) Y_sim(:,2)]) 
legend('Model output','Process output') 
title('Output for tank_2') 
xlabel('Samples'); ylabel('Level [cm]');grid on 
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Appendix 15 
MATLAB m-file for implementing the MPC with integral action in identified model of four-tank 
minimum phase process. The main script is given in appendix 15.1 and supporting function files 
(eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are attached in appendix 4.3 to 4.7. 

Appendix 15.1:mpc_syid.m 

%========================================================================== 
% MATLAB Script for:  Implementation of MPC with integral action in  

                      linearized state space model developed by the system  

                      identification algorithm as dsr. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        mpc_syid.m 
% Function files:     data_minimum.txt 
%                     eobsv.m, prbs1.m, q2qt.m, scmat.m, ss2h.m by [David Di 

Ruscio] 
% Reference           http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [06-05-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
% Load the simulated process data 
load data_minimum.txt 
data=data_minimum(1:end,:); 
nn=size(data); 
i1=1; 
t=i1:nn; 
Uid=[data(t,3) data(t,4)]; 
Yid=[data(t,1) data(t,2)]; 
% System order 
LL=4; 
% Trending the data 
Uid=[Uid(:,1)-3.0    Uid(:,2)-3.0 ]; 
Yid=[Yid(:,1)-12.3   Yid(:,2)-12.8]; 
% % Deterministic and Stochastic system identification and Realization 
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid,LL,0); 
% Making augmented state space model. 
l=size(A,1); 
m=size(B,2); 
n=size(D,1);  
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
% Prediction horizon 
L=15; 
% Simulation horizon 
N=515; 
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% Weighting matrices 
q=100;  
r=0.1; 
Q=[q 0; 0 q];  
R=[r 0; 0 r]; 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 
% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-

1).[David Di Ruscio] 
[S,c] = scmat(m,L); 
% H as defined in equation (3.50) 
H=FL'*Qt*FL+Rt; 
% Defining inital values for simulation 
Is=[11.5;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*Is; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs1.m[David Di Ruscio]  
rand('seed',0),randn('seed',0); 
step=150; 
ref=[11.5*ones(N,1)+0.1*prbs1(N,step,step),12.5*ones(N,1)+0.1*prbs1(N,step,st

ep)];  

  
% Used in Input amplitude constraints implementation. 
umin=0; 
umax=5; 
% Making for variables storage 
r1L=zeros(15,1); 
U=zeros(N-L,2); 
Y=zeros(N-L,2); 

  
for k=1:N-L 
y=D*h; % output equation 
% Make the extended reference vector, r_(k,L) .[David Di Ruscio] 
rf =ref(k+1:k+L,:); 
r1L=rf(1,:)'; 
for i=2:L 
r1L=[r1L;rf(i,:)']; 
end 
% Computing MPC control 
xk=[h-h_old;y_old]; 
pL=OL*At*xk; 
% f as defined in equation (3.50) 
f=FL'*Qt*(pL-r1L); 
% For constrained MPC [Equation 2.8] 
a=[S;-S]; 
b=[umax*ones(L*m,1)-c*u_old;-umin*ones(L*m,1)+c*u_old];  
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% quadprog function for input amplitude constraints. [Equation 2.29] 
duf=quadprog(H,f,a,b); 
u=u+duf(1:m); 
u_old=u; 
% For plotting purpose store the variables.  
U(k,:)=u'; 
Y(k,:)=y';  
% Feed control to process. 
h_old=h; 
y_old=y; 
h=A*h+B*u;  
end 
% Plotted Results 
t=1:N-L;  
% Level results for Tank 1. 
figure(1)  
subplot(3,1,[1,2]) 
plot(t, ref(1:N-L,1),'r');hold on 
plot(t,Y(:,1)) 
ylabel('Level [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 1 
subplot(3,1,3),  
plot(t,U(:,1)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Input control signal for Tank 1') 
grid on 

  
% Level results for Tank 2. 
figure(2) 
subplot(3,1,[1,2]) 
plot(t, ref(1:N-L,2),'r');hold on 
plot (t,Y(:,2)) 
ylabel('Level [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 2 
subplot(3,1,3),  
plot(t,U(:,2)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Input control signal for Tank 2') 
grid on 
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Appendix 16 
MATLAB script for plotting the simulation data of four-tank non-minimum phase process. 

Appendix 16.1: data_plot.m 

%========================================================================== 
% MATLAB Script for:  Ploting the collected simulated data of four-tank non- 

                      minimum phase process. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        data_plot.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [02-05-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
load data_nonminimum.txt 
% The  first two columns in file  represent  the output level in             

tanks 1 and 2  next two columns are the corresponding voltage to the pumps 1 

and 2. 
Y=[data_nonminimum(:,1) data_nonminimum(:,2)]; 
U=[data_nonminimum(:,3) data_nonminimum(:,4)]; 
% Plotting simulated data 
figure(1) 
subplot(2,1,1) 
plot(Y(:,1)) 
% xlabel('Number of samples') 
ylabel('Level y_1 [cm]') 
title ('Level of Tank 1') 
grid on 
subplot(2,1,2) 
plot(U(:,1)) 
xlabel('Number of samples') 
ylabel('Control input u_1 [V]') 
title ('Input voltage to pump 1') 
grid on 
figure(2) 
subplot(2,1,1) 
plot(Y(:,2)) 
% xlabel('Number of samples') 
ylabel('Level y_2 [cm]') 
title ('Level of Tank 2') 
grid on 
subplot(2,1,2) 
plot(U(:,2)) 
xlabel('Number of samples') 
ylabel('Control input u_2 [V]') 
title ('Input voltage to pump 2') 
grid on 

  



 
 

128 
 

Appendix 17 
The MATLAB script for identifying  the model and Eigenvalues of the system matrix. 

Appendix 16.1: sysID_4tank.m 

%========================================================================== 
% MATLAB Script for:  System identification algorithm as dsr to identify the  

                      linearized state space model for use in MPC method. 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        sysID_4tank.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [02-05-2013] 
%========================================================================== 
clear all; 
clc; 
close all; 
% Load the simulated process data 
load data_nonminimum.txt 
n=size(data_nonminimum); 
i=1; 
t=i:n; 
% The  first two columns in file  represent  the output level in tanks 1 & 2   
% Next two columns are the corresponding voltage to the pumps 1 and 2 
Y=[data_nonminimum(t,1) data_nonminimum(t,2)]; 
U=[data_nonminimum(t,3) data_nonminimum(t,4)]; 

  
% System order 
L=4; 
% Number of samples 
N=10000; 
% Trending the data 
Uid=[U(i:N,1)-3.15   U(i:N,2)-3.15 ]; 
Yid=[Y(i:N,1)-12.4   Y(i:N,2)-13.2]; 
% Deterministic and Stochastic system identification and Realization 
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid,L,0) 
% converting discrete time to continuous time model 
ts=0.1; 
[Ac,Bc,Dc,Ec]=d2cm(A,B,D,E,ts,'zoh'); 
display('System Matrix Ac of continnuous time model ') 
Ac 
% Eigenvalues of system matrix Ac 
Eigen_values_for_system_matrix_Ac=eig(Ac)  
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Appendix 18 
MATLAB file for validating the identified model of four-tank non-minimum phase process. 

Appendix 18.1: validation_of_nonminimum.m 

%========================================================================== 
% MATLAB Script for:  Validating the identified model of four-tank non- 

                       minimum phase process 
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author              Muhammad Mohsin 
% Script file:        validation_of_nonminimum.m 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [05-05-2013] 
%========================================================================== 
clc; 
clear all; 
close all; 
% Load the simulated process data 
load data_nonminimum.txt 
data=data_nonminimum(1:end,:); 
n=size(data); 
i=1; 
t=i:n; 
Uid=[data(t,3) data(t,4)]; 
Yid=[data(t,1) data(t,2)]; 
% System order 
L=4; 
% Trending the data 
Uid=[Uid(:,1)-3.15   Uid(:,2)-3.15 ]; 
Yid=[Yid(:,1)-12.4   Yid(:,2)-13.2]; 
% % Deterministic and Stochastic system identification and Realization 
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid,L,0); 
% validating the model 
% Load the validation data 
load data_valid.txt 
data_val=data_valid(1:end,:); 
m=size(data_val); 
j=1; 
k=j:m; 
Uval=[data_val(k,3) data_val(k,4)]; 
Yval=[data_val(k,1) data_val(k,2)]; 
% Trending the data 
Um=mean([data_val(k,3) data_val(k,4)]); 
Ym=mean([data_val(k,1) data_val(k,2)]); 
Uval=[Uval(:,1)-Um(1)      Uval(:,2)-Um(2)]; 
Yval=[Yval(:,1)-Ym(1)      Yval(:,2)-Ym(2)]; 
% Simulation of discrete-time linear systems 
Y_sim=dsrsim(A,B,D,E,Uval,x0); 
figure(2) 
subplot(2,1,1) 
plot([Yval(:,1) Y_sim(:,1)]) 
legend('Model output','Process output') 
title('Output for tank_1') 
ylabel('Level [cm]') 
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grid on 
subplot(2,1,2) 
plot([Yval(:,2) Y_sim(:,2)]) 
legend('Model output','Process output') 
title('Output for tank_2') 
xlabel('Samples');  
ylabel('Level [cm]') 
grid on 
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Appendix 19 
MATLAB m-file for implementing the MPC with integral action in identified model of four-tank 
non-minimum phase process. The main script is given in appendix 19.1 and supporting function 
files (eobsv.m, q2qt.m, prbs1.m, scmat.m, ss2h.m) are attached in appendix 4.3 to 4.7. 

Appendix 19.1: mpc_syid.m 

%========================================================================== 
% MATLAB Script for:  Implementation of MPC with integral action in  

                      linearized state space model developed by the system  

                      identification algorithm as dsr.                      
% Master's Thesis:    "MPC with Integral Action: Reducing the control horizon  
%                     and model free MPC." 
% Supervisior:        David Di Ruscio 
% Author:             Muhammad Mohsin  
% Script file:        mpc_syid.m 
% Function files:     data_nonminimum.txt 
%                     eobsv.m, prbs1.m, q2qt.m, scmat.m, ss2h.m by [David Di 

Ruscio] 
%                     http://www2.hit.no/tf/fag/sce4106/ovinger/ovinger.html 
% ------------------------------------------------------------------------- 
% Telemark University College, Porsgrunn, Norway [06-05-2013] 
%========================================================================== 

  
clc; 
clear all; 
close all; 
% Load the simulated process data 
load data_nonminimum.txt 
data=data_nonminimum(1:end,:); 
n1=size(data); 
i1=1; 
t=i1:n1; 
Uid=[data(t,3) data(t,4)]; 
Yid=[data(t,1) data(t,2)]; 
% System order 
LL=4; 
% % Deterministic and Stochastic system identification and Realization 
[A,B,D,E,CF,F,x0]=dsr(Yid,Uid,LL,0); 

  
% Making augmented state space model. 
l=size(A,1); 
m=size(B,2); 
n=size(D,1);  
% Matrics At, Bt and Dt 
At=[A zeros(l,n); D eye(n,n)]; 
Bt=[B;zeros(n,m)]; 
Dt=[D eye(n,n)]; 
% Model predictive control algorithm, 
% Prediction horizon 
L=15; 
% Simulation horizon 
N=515; 
% Weighting matrices 
q=100;  
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r=0.1; 
Q=[q 0; 0 q];  
R=[r 0; 0 r]; 
% Observability matrix OL and Toeplitz matrix HdL calculation by ss2h 

function.[David Di Ruscio] 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(n,m),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(Q,L); 
Rt=q2qt(R,L); 
% Make matrices S and c in the relationship, u(k,L) = S du(k,L) + c u(k-

1).[David Di Ruscio] 
[S,c] = scmat(m,L); 
% H as defined in equation (3.50) 
H=FL'*Qt*FL+Rt; 

  
% Defining inital values for simulation 
Is=[11.5;12.5]; 
Hd=D*inv(eye(4)-A)*B; 
u_ss=inv(Hd)*Is; 
I=eye(4); 
x_ss =inv(I-A)*B*u_ss; 
% Assigning variables 
u=u_ss; 
h=x_ss; 
u_old=u; h_old=h; y_old=D*h; 
% Make the references by using the function prbs.[David Di Ruscio]  
rand('seed',0),randn('seed',0); 
step=150; 
ref=[11.5*ones(N,1)+0.1*prbs1(N,step,step),12.5*ones(N,1)+0.1*prbs1(N,step,st

ep)];  

  
% Used in Input amplitude constraint implementation. 
umin=0; 
umax=5; 
% Making for variables storage 
r1L=zeros(15,1); 
U=zeros(N-L,2); 
Y=zeros(N-L,2); 

  
for k=1:N-L 
y=D*h; % output equation 
% Make the extended reference vector, r_(k,L) .[David Di Ruscio] 
rf =ref(k+1:k+L,:); 
r1L=rf(1,:)'; 
for i=2:L 
r1L=[r1L;rf(i,:)']; 
end 
% Computing MPC control 
xk=[h-h_old;y_old]; 
pL=OL*At*xk; 
% f as defined in equation (3.50) 
f=FL'*Qt*(pL-r1L); 
% For constrained MPC [Equation 2.8] 
a=[S;-S]; 
b=[umax*ones(L*m,1)-c*u_old;-umin*ones(L*m,1)+c*u_old];  
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% quadprog function for input amplitude constraints. [Equation 2.29] 
duf=quadprog(H,f,a,b); 
u=u+duf(1:m); 
u_old=u; 
% For plotting purpose store the variables.  
U(k,:)=u'; 
Y(k,:)=y';  
% Feed control to the process. 
h_old=h; 
y_old=y; 
h=A*h+B*u;  
end 
% Plotted Results 
t=1:N-L;  
% Level results for Tank 1. 
figure(1)  
subplot(3,1,[1,2]) 
plot(t, ref(1:N-L,1),'r');hold on 
plot(t,Y(:,1)); 

  
ylabel('Level [cm]'); 
title('Tank 1 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 1 
subplot(3,1,3),  
plot(t,U(:,1)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Input control signal for Tank 1') 
grid on 

  
% Level results for Tank 2. 
figure(2) 
subplot(3,1,[1,2]) 
plot(t, ref(1:N-L,2),'r');hold on 
plot(t,Y(:,2)) 
ylabel('Level [cm]'); 
title('Tank 2 reference and output level') 
legend('Reference r_k','Output y_k') 
grid on  
% Input Control signal for Tank 2 
subplot(3,1,3),  
plot(t,U(:,2)), 
xlabel('Time [s]'); 
ylabel('Voltage [V]') 
title('Input control signal for Tank 2') 
grid on 

  


